
My first HTML form
This is an introductory article to HTML Forms. Through a simple contact form, we'll see all the basic requirements to
build HTML Forms. This article assumes you don't know anything about HTML Forms but you know the basics of HTML
and CSS.

Before we start
What are HTML forms?
HTML Forms are one of the main points of interaction between a user and a web site or application. They allow users
to send data to the web site. Most of the time that data is sent to the web server, but the web page can also intercept
it to use it on its own.

An HTML Form is made of one or more widgets. Those widgets can be text fields (single line or multiline), select boxes,
buttons, checkboxes, or radio buttons. Most of the time those widgets are paired with a label that describes their
purpose.

What do you need to work with forms?
You need nothing more than what is required to work with HTML: a Code Editor (Sublime or Atom are good
options) and a web browser. Of course, if you are used to it, you can take advantage of a full IDE such as Visual
Studio, Eclipse, Aptana, etc., but it's up to you.

The main difference between a HTML form and a regular HTML document is that, most of the time, the data collected
by the form is sent to a web server. In that case, you need to set up a web server to receive and process the data. How
to set up such a server is beyond the scope of this article, but if you want to know more, see the article dedicated to
this topic: Sending and retrieving form data.

Designing your form
Before starting to code, it's always better to step back and take the time to think about your form. Designing a quick
mockup will help you to define the right set of data you want to ask your user. From a user experience (UX) point of
view, it's important to remember that the bigger your form, the more you risk losing users. Keep it simple and stay
focused: ask only for what you absolutely need. Designing forms is an important step when you are building a site or
application. It's beyond the scope of this article to cover the user experience of forms, but if you want to dig into that
topic you should read the following articles:

Smashing Magazine has very good articles about forms UX, but perhaps the most important is their
Extensive Guide To Web Form Usability.

UXMatters is also a very thoughtful resource with good advice from basic best practices to complex concerns
such as multi-page forms.

In this article we'll build a simple contact form. Let's make a rough sketch.

! !

!

! !

! !

!

!

https://developer.mozilla.org/en-US/docs/HTML/Introduction
https://developer.mozilla.org/en-US/docs/CSS/Getting_Started
https://www.sublimetext.com/
https://atom.io/
http://www.microsoft.com/visualstudio
http://www.eclipse.org/
http://www.aptana.com/
https://developer.mozilla.org/en-US/docs/HTML/Forms/Sending_and_Retrieving_form_data
http://uxdesign.smashingmagazine.com/tag/forms/
http://uxdesign.smashingmagazine.com/2011/11/08/extensive-guide-web-form-usability/
http://www.uxmatters.com/mt/archives/2012/05/7-basic-best-practices-for-buttons.php
http://www.uxmatters.com/mt/archives/2010/03/pagination-in-web-forms-evaluating-the-effectiveness-of-web-forms.php

Our form will contain three text fields and one button. Basically, we ask the user for their name, their e-mail and the
message they want to send. Hitting the button will just send the data to the web server.

Get your hands dirty with HTML
Ok, now we're ready to go to HTML and code our form. To build our contact form, we will use the following HTML
elements: <form>, <label>, <input>, <textarea>, and <button>.

The <form> element
All HTML forms start with a <form> element like this:

This element formally defines a form. It's a container element like a <div> or <p> element, but it also supports some

specific attributes to configure the way the form behaves. All of its attributes are optional but it's considered best
practice to always set at least the action attribute and the method attribute.

The action attribute defines the location (URL) where the form's collected data should be sent.

The method attribute defines which HTTP method to send the data with (it can be "get" or "post").

If you want to dig into how those attributes work, it is detailed in the Sending and retrieving form data article.

Add widgets with the <label>, <input>, and <textarea> elements
Our contact form is really simple and contains three text fields, each with a label. The input field for the name will be a
basic single-line text field; the input field for the e-mail will be a single-line text field that accepts only an e-mail
address; the input field for the message will be a basic multiline text field.

<form	action="/my-handling-form-page"	method="post">

</form>

1

2

3

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/label
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/p
https://developer.mozilla.org/en-US/docs/HTML/Forms/Sending_and_retrieving_form_data
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/label
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea

In terms of HTML code we'll get something like this:

The <div> elements are there to conveniently structure our code and make styling easier (see below). Note the use of

the for attribute on all <label> elements; it's a formal way to link a label to a form widget. This attribute references

the id of the corresponding widget. There is some benefit to doing this. The most obvious one is to allow the user to

click on the label to activate the corresponding widget. If you want a better understanding of the other benefits of this
attribute, everything is detailed in the article: How to structure an HTML form.

On the <input> element, the most important attribute is the type attribute. This attribute is extremely important

because it defines the way the <input> element behaves. It can radically change the element so pay attention to it. If

you want to know more about this, go to read the native form widgets article. In our example we use the value text—

the default value for this attribute. It represents a basic single-line text field that accepts any kind of text without
control or validation. We also use the value email that defines a single-line text field that only accepts a well-formed e-

mail address. This last value turns a basic text field into a kind of "intelligent" field that will perform some checks on
the data typed by the user. If you want to know more about form validation, we'll detail this in the Form data
validation article.

Last but not least, note the syntax of <input	/> vs. <textarea></textarea>. This is one of the oddities of HTML. The

<input> tag is an auto-closing element, which means that if you want to formally close the element, you have to add a

"/" at the end of the element itself and not a closing tag. On the contrary, <textarea> is not an auto-closing element,

so you have to close it with the proper ending tag. This has an impact on a specific feature of HTML forms: the way you
define the default value. To define the default value of an <input> element you have to use the value attribute like

this:

On the contrary, if you want to define the default value of a <textarea>, you just have to put that default value

between the starting and ending tag of the <textarea> element, like this:

<form	action="/my-handling-form-page"	method="post">

				<div>

								<label	for="name">Name:</label>

								<input	type="text"	id="name"	name="user_name"	/>

				</div>

				<div>

								<label	for="mail">E-mail:</label>

								<input	type="email"	id="mail"	name="user_mail"	/>

				</div>

				<div>

								<label	for="msg">Message:</label>

								<textarea	id="msg"	name="user_message"></textarea>

				</div>

</form>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

<input	type="text"	value="by	default	this	element	is	filled	with	this	text"	/>1

<textarea>by	default	this	element	is	filled	with	this	text</textarea>1

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/label
https://developer.mozilla.org/en-US/docs/HTML/Forms/How_to_structure_an_HTML_form
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/HTML/Forms/The_native_form_widgets
https://developer.mozilla.org/en-US/docs/HTML/Forms/Data_form_validation
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea

And a <button> to finish
Our form is almost ready; we just have to add a button to allow the user to send their data once they have filled out
the form. This is simply done by using the <button> element:

A button can be of three types: submit, reset, or button.

A click on a submit button sends the form's data to the web page defined by the action attribute of the <form>

element.

A click on a reset button resets all the form widgets to their default value immediately. From a UX point of view,

this is considered bad practice.

A click on a button button does... nothing! That sounds silly, but it's amazingly useful to build custom buttons

with JavaScript.

Note that you can also use the <input> element with the corresponding type to produce a button. The main

difference with the <button> element is that the <input> element only allows plain text as its label whereas the

<button> element allows full HTML content as its label.

Let's make it a bit nicer with CSS
Now that we have our HTML form, if you look at it in your favorite browser, you'll see that it looks kind of ugly.

<form	action="/my-handling-form-page"	method="post">

				<div>

								<label	for="name">Name:</label>

								<input	type="text"	id="name"	name="user_name"	/>

				</div>

				<div>

								<label	for="mail">E-mail:</label>

								<input	type="email"	id="mail"	name="user_mail"	/>

				</div>

				<div>

								<label	for="msg">Message:</label>

								<textarea	id="msg"	name="user_message"></textarea>

				</div>

				

				<div	class="button">

								<button	type="submit">Send	your	message</button>

				</div>

</form>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button

Let's make it a little nicer with the following CSS stylesheet.

Let's start with the form itself; let's center it and make it visible with a border:

Then, we will add some space between each of the form widgets:

Now let's focus on the labels. To make our form more readable, it's considered best practice to have all the labels the
same size and aligned along the same side. In that case, we will align them to the right, but in some cases left
alignment can be okay too.

One of the hardest things to do with HTML forms is to style HTML widgets themselves. Text fields are easy to style, but
some other widgets are not. If you want to know more about styling HTML form widgets, go read the Styling HTML
forms article.

Here we will use a few common tricks: harmonizing fonts, size, and borders:

form	{

				/*	Just	to	center	the	form	on	the	page	*/

				margin:	0	auto;

				width:	400px;

				/*	To	see	the	outline	of	the	form	*/

				padding:	1em;

				border:	1px	solid	#CCC;

				border-radius:	1em;

}

1

2

3

4

5

6

7

8

9

form	div	+	div	{

				margin-top:	1em;

}

1

2

3

label	{

				/*	To	make	sure	that	all	labels	have	the	same	size	and	are	properly	aligned	*/

				display:	inline-block;

				width:	90px;

				text-align:	right;

}

1

2

3

4

5

6

https://developer.mozilla.org/en-US/docs/HTML/Forms/Styling_HTML_forms

HTML forms support a lot of pseudo-classes to describe the states of each element. As an example, we will add a little
highlight when a widget is active. It's a convenient way to help the user keep track of where they are in the form.

Multiline text fields need a few custom styles on their own. By default, a <textarea> element is an inline block with its

bottom aligned to the text baseline. Most of the time, this is not what we want. In that case, to nicely align the label
and the field, we have to change the vertical-align property of the <textarea> to top.

Note also the use of the resize property, which is a convenient way to let users resize a <textarea>.

Many times, the buttons need special styles as well. To that end, we put them inside a <div> with a class button. Here,

we want the button to be aligned with the other widgets. To achieve that, we have to mimic the presence of a <label>.

This is done by playing with padding and margin.

input,	textarea	{

				/*	To	make	sure	that	all	text	fields	have	the	same	font	settings

							By	default,	textareas	have	a	monospace	font	*/

				font:	1em	sans-serif;

				/*	To	give	the	same	size	to	all	text	field	*/

				width:	300px;

				-moz-box-sizing:	border-box;

				box-sizing:	border-box;

				/*	To	harmonize	the	look	&	feel	of	text	field	border	*/

				border:	1px	solid	#999;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

input:focus,	textarea:focus	{

				/*	To	give	a	little	highlight	on	active	elements	*/

				border-color:	#000;

}

1

2

3

4

textarea	{

				/*	To	properly	align	multiline	text	fields	with	their	labels	*/

				vertical-align:	top;

				/*	To	give	enough	room	to	type	some	text	*/

				height:	5em;

				/*	To	allow	users	to	resize	any	textarea	vertically

							It	does	not	work	on	all	browsers	*/

				resize:	vertical;

}

1

2

3

4

5

6

7

8

9

10

11

.button	{1

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/label

Now our form looks much prettier.

Sending the data to your web server
The last part, and maybe the trickiest, is to handle form data on the server side. As we said before, most of the time, a
HTML Form is a convenient way to ask the user for data and to send it to a web server.

The <form> element will define where and how to send the data thanks to the action attribute and the method

attribute.

But it's not enough. We also need to give a name to our data. Those names are important on both sides; on the
browser side, it tells the browser which name to give each piece of data, and on the server side, it lets the server
handle each piece of data by name.

So to name your data you need to use the name attribute on each form widget that will collect a specific piece of data:

				/*	To	position	the	buttons	to	the	same	position	of	the	text	fields	*/

				padding-left:	90px;	/*	same	size	as	the	label	elements	*/

}

button	{

				/*	This	extra	margin	represent	roughly	the	same	space	as	the	space

							between	the	labels	and	their	text	fields	*/

				margin-left:	.5em;

}

2

3

4

5

6

7

8

9

<form	action="/my-handling-form-page"	method="post">

				<div>

								<label	for="name">Name:</label>

								<input	type="text"	id="name"	name="user_name"	/>

				</div>

				<div>

								<label	for="mail">E-mail:</label>

								<input	type="email"	id="mail"	name="user_email"	/>

				</div>

				<div>

								<label	for="msg">Message:</label>

								<textarea	id="msg"	name="user_message"></textarea>

1

2

3

4

5

6

7

8

9

10

11

12

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form

In our example, the form will send 3 pieces of data, named "user_name", "user_email" and "user_message". That data

will be sent to the URL "/my-handling-form-page" with the HTTP POST method.

On the server side, the script at the URL "/my-handling-form-page" will receive the data as a list of 3 key/value items

embodied in the HTTP request. The way this script will handle that data is up to you. Each server-side language (PHP,
Python, Ruby, Java, C#, etc.) has its own mechanism. It's beyond the scope of this guide to go deeply into that subject,
but if you want to know more, we will give some examples on the Sending and retrieving form data article.

Conclusion
Congratulations! You've built your very first HTML form. Here is a live example of the end result.

Live example

Name:

E-mail:

Message:

Send your message

Now it's time to take a deeper look. HTML forms are way more powerful than what we saw here and the other articles
of this guide will help you to master the rest.

				</div>

				

				<div	class="button">

								<button	type="submit">Send	your	message</button>

				</div>

</form>

13

14

15

16

17

18

Learn the best of web development
Sign up for our newsletter:

you@example.com

SIGN UP NOW

"

https://developer.mozilla.org/en-US/docs/HTML/Forms/Sending_and_retrieving_form_data
https://developer.mozilla.org/en-US/docs/HTML/Forms

