

Windows® Sysinternals
Administrator’s Reference

Mark Russinovich
Aaron Margosis

Table of Contents
Foreword .xix

Introduction .xxi
Tools the Book Covers .xxi
The History of Sysinternals .xxi
Who Should Read This Book . xxv

Assumptions . xxv
Organization of This Book . xxv
Conventions and Features in This Book .xxvi
System Requirements . .xxvi
Acknowledgments . xxvii
Errata & Book Support . xxviii
We Want to Hear from You . xxviii
Stay in Touch . xxviii

Getting Started

Getting Started with the Sysinternals Utilities . 3
Overview of the Utilities . 3
The Windows Sysinternals Web Site . 6

Downloading the Utilities . 7
Running the Utilities Directly from the Web . 10
Single Executable Image . 11
The Windows Sysinternals Forums . 11
Windows Sysinternals Site Blog . 12
Mark’s Blog . 12
Mark’s Webcasts . 13

Sysinternals License Information . 13
End User License Agreement and the /accepteula Switch 13
Frequently Asked Questions About Sysinternals Licensing 14

Windows Core Concepts . 15
Administrative Rights . 15

Running a Program with Administrative Rights on Windows XP and Windows Server 2003 16
Running a Program with Administrative Rights on Windows Vista or Newer 18

Processes, Threads, and Jobs . 21
User Mode and Kernel Mode . 22
Handles . 23
Call Stacks and Symbols . 24

What Is a Call Stack? . 24
What Are Symbols? . 26
Configuring Symbols . 28

Sessions, Window Stations, Desktops, and Window Messages 30
Terminal Services Sessions . 31
Window Stations . 32
Desktops . 33
Window Messages . 34

Usage Guide

Process Explorer . 39
Procexp Overview . 39

Measuring CPU Consumption . 41

Administrative Rights . 42
Main Window . 43

Process List . 43
Customizing Column Selections . 53
Saving Displayed Data . 65
Toolbar Reference . 65
Identifying the Process That Owns a Window . 66
Status Bar . 67

DLLs and Handles . 67
Finding DLLs or Handles . 68
DLL View . 69
Handle View . 73

Process Details . 77
Image Tab . 78
Performance Tab . 79
Performance Graph Tab . 80
Threads Tab . 81
TCP/IP Tab . 82
Security Tab . 83
Environment Tab . 84
Strings Tab . 85
Services Tab . 86
 .NET Tabs . 87
Job Tab . 88

Thread Details . 89
Verifying Image Signatures . 91
System Information . 92
Display Options . 95
Procexp as a Task Manager Replacement . 96

Creating Processes from Procexp . 97
Other User Sessions . 97

Miscellaneous Features . 97
Shutdown Options . 97
Command-Line Switches . 98
Restoring Procexp Defaults . 98

Keyboard Shortcut Reference . 98

Process Monitor . 101
Getting Started with Procmon . 102
Events . 104

Understanding the Column Display Defaults . 104
Customizing the Column Display . 107
Event Properties Dialog Box . 108
Displaying Profiling Events . 114
Finding an Event . 115
Copying Event Data . 115
Jumping to a Registry or File Location . 115
Searching Online . 116

Filtering and Highlighting . 116
Configuring Filters . 117
Configuring Highlighting . 119
Advanced Output . 120
Saving Filters for Later Use . 121

Process Tree . 122
Saving and Opening Procmon Traces . 123

Saving Procmon Traces . 124
Opening Saved Procmon Traces . 125

Logging Boot, Post-Logoff, and Shutdown Activity 127
Boot Logging . 127
Keeping Procmon Running After Logoff . 128

Long-Running Traces and Controlling Log Sizes . 129
Drop Filtered Events . 129
History Depth . 130
Backing Files . 130

Importing and Exporting Configuration Settings . 131
Automating Procmon: Command-Line Options . 132
Analysis Tools . 134

Process Activity Summary . 134
File Summary . 136
Registry Summary . 137
Stack Summary . 138
Network Summary . 139
Cross Reference Summary . 140
Count Occurrences . 140

Injecting Debug Output into Procmon Traces . 141
Toolbar Reference . 142

Autoruns . 145
Autoruns Fundamentals . 146

Disabling or Deleting Autostart Entries . 148
Autoruns and Administrative Permissions . 148
Verifying Code Signatures . 149
Hiding Microsoft Entries . 150
Getting More Information About an Entry . 151
Viewing the Autostarts of Other Users . 151
Viewing ASEPs of an Offline System . 152
Listing Unused ASEPs . 152
Changing the Font . 153

Autostart Categories . 153
Logon . 153
Explorer . 155
Internet Explorer . 157
Scheduled Tasks . 158
Services . 158
Drivers . 159
Codecs . 160
Boot Execute . 160
Image Hijacks . 161
AppInit . 162
KnownDLLs . 162
Winlogon . 163
Winsock Providers . 164
Print Monitors . 164
LSA Providers . 164
Network Providers . 165
Sidebar Gadgets . 165

Saving and Comparing Results . 166
Saving as Tab-Delimited Text . 166
Saving in Binary (.arn) Format . 166
Viewing and Comparing Saved Results . 167

AutorunsC . 167

Autoruns and Malware . 168

PsTools 171
Common Features . 172

Remote Operations . 172
Troubleshooting Remote PsTools Connections 174

PsExec . 176
Remote Process Exit . 177
Redirected Console Output . 178
PsExec Alternate Credentials . 179
PsExec Command-Line Options . 180
Process Performance Options . 180
Remote Connectivity Options . 181
Runtime Environment Options . 181

PsFile . 184
PsGetSid . 185
PsInfo . 187
PsKill . 188
PsList . 189
PsLoggedOn . 191
PsLogList . 192
PsPasswd . 196
PsService . 197

Query . 198
Config . 199
Depend . 200
Security . 201
Find . 202
SetConfig . 202
Start, Stop, Restart, Pause, Continue . 202

PsShutdown . 203
PsSuspend . 205
PsTools Command-Line Syntax . 206

PsExec . 206
PsFile . 206
PsGetSid . 206
PsInfo . 207
PsKill . 207
PsList . 207
PsLoggedOn . 207
PsLogList . 207
PsPasswd . 207
PsService . 207
PsShutdown . 208
PsSuspend . 208

PsTools System Requirements . 208

Process and Diagnostic Utilities . 211
VMMap . 211

Starting VMMap and Choosing a Process . 212
The VMMap window . 214
Memory Types . 216
Memory Information . 217
Timeline and Snapshots . 218
Viewing Text Within Memory Regions . 220
Finding and Copying Text . 221

Viewing Allocations from Instrumented Processes 221
Address Space Fragmentation . 224
Saving and Loading Snapshot Results . 225
VMMap Command-Line Options . 226
Restoring VMMap defaults . 227

ProcDump . 227
Command-Line Syntax . 228
Specifying Which Process to Monitor . 229
Specifying the Dump File Path . 229
Specifying Criteria for a Dump . 230
Dump File Options . 232
Miniplus Dumps . 233
Running ProcDump Noninteractively . 235
Capturing All Application Crashes with ProcDump 236
Viewing the Dump in the Debugger . 236

DebugView . 237
What Is Debug Output? . 237
The DebugView Display . 238
Capturing User-Mode Debug Output . 240
Capturing Kernel-Mode Debug Output . 241
Searching, Filtering, and Highlighting Output 242
Saving, Logging, and Printing . 245
Remote Monitoring . 247

LiveKd . 249
LiveKd Requirements . 250
Running LiveKd . 250
LiveKd Examples . 251

ListDLLs . 253
Handle . 256

Handle List and Search . 256
Handle Counts . 259
Closing Handles . 260

Security Utilities . 261
SigCheck . 261

Signature Verification . 263
Which Files to Scan . 264
Additional File Information . 265
Output Format . 267

AccessChk . 267
What Are “Effective Permissions”? . 267
Using AccessChk . 268
Object Type . 270
Searching for Access Rights . 272
Output Options . 273

AccessEnum . 275
ShareEnum . 277
ShellRunAs . 278
Autologon . 280
LogonSessions . 280
SDelete . 283

Using SDelete . 284
How SDelete Works . 285

Active Directory Utilities . 287
AdExplorer . 287

Connecting to a Domain . 287
The AdExplorer Display . 288
Objects . 290
Attributes . 291
Searching . 293
Snapshots . 294
AdExplorer Configuration . 296

AdInsight . 296
AdInsight Data Capture . 297
Display Options . 300
Finding Information of Interest . 301
Filtering Results . 303
Saving and Exporting AdInsight Data . 305
Command-Line Options . 306

AdRestore . 306

Desktop Utilities . 309
BgInfo . 309

Configuring Data to Display . 310
Appearance Options . 313
Saving BgInfo Configuration for Later Use . 315
Other Output Options . 315
Updating Other Desktops . 317

Desktops . 318
ZoomIt . 320

Using ZoomIt . 320
Zoom Mode . 321
Drawing Mode . 322
Typing Mode . 323
Break Timer . 323
LiveZoom . 324

File Utilities . 325
Strings . 325
Streams . 326
NTFS Link Utilities . 328

Junction . 329
FindLinks . 330

DU (Disk Usage) . 331
Post-Reboot File Operation Utilities . 333

PendMoves . 333
MoveFile . 334

Disk Utilities . 335
Disk2Vhd . 335
Diskmon . 337
Sync . 339
DiskView . 341
Contig . 344
PageDefrag . 345
DiskExt . 347
LDMDump . 347
VolumeID . 350

System Information Utilities . 351
RAMMap . 351

Use Counts . 352
Processes . 354
Priority Summary . 355
Physical Pages . 355
Physical Ranges . 356
File Summary . 357
File Details . 358
Purging Physical Memory . 359
Saving and Loading Snapshots . 359

CoreInfo . 359
ProcFeatures . 361
WinObj . 362
LoadOrder . 365
PipeList . 366
ClockRes . 367

Network and Communication Utilities . 369
TCPView . 369
Whois . 371
Portmon . 371

Searching, Filtering, and Highlighting . 373
Saving, Logging, and Printing . 375

Miscellaneous Utilities . 377
RegJump . 377
Hex2Dec . 378
RegDelNull . 378
Bluescreen Screen Saver . 379
Ctrl2Cap . 380

Troubleshooting—”The Case
of the Unexplained . . .”

Error Messages . 383
The Case of the Locked Folder . 383
The Case of the Failed AV Update . 385
The Case of the Failed Lotus Notes Backups . 387
The Case of the Failed Play-To . 389
The Case of the Crashing Proksi Utility . 390
The Case of the Installation Failure . 391

The Troubleshooting . 392
The Analysis . 394

The Case of the Missing Folder Association . 397
The Case of the Temporary Registry Profiles . 400

Hangs and Sluggish Performance . 405
The Case of the IExplore-Pegged CPU . 405
The Case of the Excessive ReadyBoost . 408
The Case of the Slow Keynote Demo . 410
The Case of the Slow Project File Opens . 415
The Compound Case of the Outlook Hangs . 420

Malware . 427
The Case of the Sysinternals-Blocking Malware . 427
The Case of the Process-Killing Malware . 429
The Case of the Fake System Component . 431
The Case of the Mysterious ASEP . 433

Index . 437

About the Authors . 463

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2011 by Aaron Margosis and Mark Russinovich

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2011931614
ISBN: 978-0-7356-5672-7

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Devon Musgrave
Editorial Production: Waypoint Press
Technical Reviewer: Christophe Nassare; Technical Review services provided by Content Master, a member of
CM Group, Ltd.
Copyeditor: Roger LeBlanc
Indexer: Christina Yeager
Cover: Twist Creative .Seattle

To my fellow Windows troubleshooters: Never give up! Never surrender!

— Mark Russinovich

To Elise, who makes great things possible and then makes sure they happen.

(And who is much cooler than I am.)

— Aaron Margosis

 v

Contents at a Glance

Part I Getting Started
 1 Getting Started with the Sysinternals Utilities 3
 2 Windows Core Concepts . 15

Part II Usage Guide
 3 Process Explorer . 39
 4 Process Monitor . 101
 5 Autoruns . 145
 6 PsTools . 171
 7 Process and Diagnostic Utilities . 211
 8 Security Utilities . 261
 9 Active Directory Utilities . 287
 10 Desktop Utilities . 309
 11 File Utilities . 325
 12 Disk Utilities . 335
 13 Network and Communication Utilities . 351
 14 System Information Utilities . 359
 15 Miscellaneous Utilities . 377

Part III Troubleshooting—”The Case of the Unexplained...”
 16 Error Messages . 383
 17 Hangs and Sluggish Performance . 405
 18 Malware . 427

 vii

Table of Contents
Foreword .xix

Introduction .xxi
Tools the Book Covers .xxi
The History of Sysinternals . xxii
Who Should Read This Book . xxv

Assumptions . xxv
Organization of This Book . .xxvi
Conventions and Features in This Book .xxvi
System Requirements . .xxvi
Acknowledgments . xxvii
Errata & Book Support . xxviii
We Want to Hear from You . xxviii
Stay in Touch . xxviii

Part I Getting Started
 1 Getting Started with the Sysinternals Utilities 3

Overview of the Utilities . 3
The Windows Sysinternals Web Site . 6

Downloading the Utilities . 7
Running the Utilities Directly from the Web . 10
Single Executable Image . 11
The Windows Sysinternals Forums . 11
Windows Sysinternals Site Blog . 12
Mark’s Blog . 12
Mark’s Webcasts . 13

Sysinternals License Information . 13
End User License Agreement and the /accepteula Switch 13
Frequently Asked Questions About Sysinternals Licensing 14

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

viii Table of Contents

 2 Windows Core Concepts . 15
Administrative Rights . 15

Running a Program with Administrative Rights on
Windows XP and Windows Server 2003 . 16
Running a Program with Administrative Rights on
Windows Vista or Newer . 18

Processes, Threads, and Jobs . 21
User Mode and Kernel Mode . 22
Handles . 23
Call Stacks and Symbols . 24

What Is a Call Stack? . 24
What Are Symbols? . 26
Configuring Symbols . 28

Sessions, Window Stations, Desktops, and Window Messages 30
Terminal Services Sessions . 31
Window Stations . 32
Desktops . 33
Window Messages . 34

Part II Usage Guide
 3 Process Explorer . 39

Procexp Overview . 39
Measuring CPU Consumption . 41
Administrative Rights . 42

Main Window . 43
Process List . 43
Customizing Column Selections . 53
Saving Displayed Data . 65
Toolbar Reference . 65
Identifying the Process That Owns a Window . 66
Status Bar . 67

DLLs and Handles . 67
Finding DLLs or Handles . 68
DLL View . 69
Handle View . 73

Process Details . 77
Image Tab . 78
Performance Tab . 79

 Table of Contents ix

Performance Graph Tab . 80
Threads Tab . 81
TCP/IP Tab . 82
Security Tab . 83
Environment Tab . 84
Strings Tab . 85
Services Tab . 86
 .NET Tabs . 87
Job Tab . 88

Thread Details . 89
Verifying Image Signatures . 91
System Information . 92
Display Options . 95
Procexp as a Task Manager Replacement . 96

Creating Processes from Procexp . 97
Other User Sessions . 97

Miscellaneous Features . 97
Shutdown Options . 97
Command-Line Switches . 98
Restoring Procexp Defaults . 98

Keyboard Shortcut Reference . 98

 4 Process Monitor . 101
Getting Started with Procmon . 102
Events . 104

Understanding the Column Display Defaults . 104
Customizing the Column Display . 107
Event Properties Dialog Box . 108
Displaying Profiling Events . 114
Finding an Event . 115
Copying Event Data . 115
Jumping to a Registry or File Location . 115
Searching Online . 116

Filtering and Highlighting . 116
Configuring Filters . 117
Configuring Highlighting . 119
Advanced Output . 120
Saving Filters for Later Use . 121

x Table of Contents

Process Tree . 122
Saving and Opening Procmon Traces . 123

Saving Procmon Traces . 124
Opening Saved Procmon Traces . 125

Logging Boot, Post-Logoff, and Shutdown Activity 127
Boot Logging . 127
Keeping Procmon Running After Logoff . 128

Long-Running Traces and Controlling Log Sizes . 129
Drop Filtered Events . 129
History Depth . 130
Backing Files . 130

Importing and Exporting Configuration Settings . 131
Automating Procmon: Command-Line Options . 132
Analysis Tools . 134

Process Activity Summary . 134
File Summary . 136
Registry Summary . 137
Stack Summary . 138
Network Summary . 139
Cross Reference Summary . 140
Count Occurrences . 140

Injecting Debug Output into Procmon Traces . 141
Toolbar Reference . 142

 5 Autoruns . 145
Autoruns Fundamentals . 146

Disabling or Deleting Autostart Entries . 148
Autoruns and Administrative Permissions . 148
Verifying Code Signatures . 149
Hiding Microsoft Entries . 150
Getting More Information About an Entry . 151
Viewing the Autostarts of Other Users . 151
Viewing ASEPs of an Offline System . 152
Listing Unused ASEPs . 152
Changing the Font . 153

Autostart Categories . 153
Logon . 153
Explorer . 155
Internet Explorer . 157

 Table of Contents xi

Scheduled Tasks . 158
Services . 158
Drivers . 159
Codecs . 160
Boot Execute . 160
Image Hijacks . 161
AppInit . 162
KnownDLLs . 162
Winlogon . 163
Winsock Providers . 164
Print Monitors . 164
LSA Providers . 164
Network Providers . 165
Sidebar Gadgets . 165

Saving and Comparing Results . 166
Saving as Tab-Delimited Text . 166
Saving in Binary (.arn) Format . 166
Viewing and Comparing Saved Results . 167

AutorunsC . 167
Autoruns and Malware . 168

 6 PsTools . 171
Common Features . 172

Remote Operations . 172
Troubleshooting Remote PsTools Connections 174

PsExec . 176
Remote Process Exit . 177
Redirected Console Output . 178
PsExec Alternate Credentials . 179
PsExec Command-Line Options . 180
Process Performance Options . 180
Remote Connectivity Options . 181
Runtime Environment Options . 181

PsFile . 184
PsGetSid . 185
PsInfo . 187
PsKill . 188
PsList . 189
PsLoggedOn . 191

xii Table of Contents

PsLogList . 192
PsPasswd . 196
PsService . 197

Query . 198
Config . 199
Depend . 200
Security . 201
Find . 202
SetConfig . 202
Start, Stop, Restart, Pause, Continue . 202

PsShutdown . 203
PsSuspend . 205
PsTools Command-Line Syntax . 206

PsExec . 206
PsFile . 206
PsGetSid . 206
PsInfo . 207
PsKill . 207
PsList . 207
PsLoggedOn . 207
PsLogList . 207
PsPasswd . 207
PsService . 207
PsShutdown . 208
PsSuspend . 208

PsTools System Requirements . 208

 7 Process and Diagnostic Utilities . 211
VMMap . 211

Starting VMMap and Choosing a Process . 212
The VMMap window . 214
Memory Types . 216
Memory Information . 217
Timeline and Snapshots . 218
Viewing Text Within Memory Regions . 220
Finding and Copying Text . 221
Viewing Allocations from Instrumented Processes 221
Address Space Fragmentation . 224
Saving and Loading Snapshot Results . 225

 Table of Contents xiii

VMMap Command-Line Options . 226
Restoring VMMap defaults . 227

ProcDump . 227
Command-Line Syntax . 228
Specifying Which Process to Monitor . 229
Specifying the Dump File Path . 229
Specifying Criteria for a Dump . 230
Dump File Options . 232
Miniplus Dumps . 233
Running ProcDump Noninteractively . 235
Capturing All Application Crashes with ProcDump 236
Viewing the Dump in the Debugger . 236

DebugView . 237
What Is Debug Output? . 237
The DebugView Display . 238
Capturing User-Mode Debug Output . 240
Capturing Kernel-Mode Debug Output . 241
Searching, Filtering, and Highlighting Output 242
Saving, Logging, and Printing . 245
Remote Monitoring . 247

LiveKd . 249
LiveKd Requirements . 250
Running LiveKd . 250
LiveKd Examples . 251

ListDLLs . 253
Handle . 256

Handle List and Search . 256
Handle Counts . 259
Closing Handles . 260

 8 Security Utilities . 261
SigCheck . 261

Signature Verification . 263
Which Files to Scan . 264
Additional File Information . 265
Output Format . 267

AccessChk . 267
What Are “Effective Permissions”? . 267
Using AccessChk . 268

xiv Table of Contents

Object Type . 270
Searching for Access Rights . 272
Output Options . 273

AccessEnum . 275
ShareEnum . 277
ShellRunAs . 278
Autologon . 280
LogonSessions . 280
SDelete . 283

Using SDelete . 284
How SDelete Works . 285

 9 Active Directory Utilities . 287
AdExplorer . 287

Connecting to a Domain . 287
The AdExplorer Display . 288
Objects . 290
Attributes . 291
Searching . 293
Snapshots . 294
AdExplorer Configuration . 296

AdInsight . 296
AdInsight Data Capture . 297
Display Options . 300
Finding Information of Interest . 301
Filtering Results . 303
Saving and Exporting AdInsight Data . 305
Command-Line Options . 306

AdRestore . 306

 10 Desktop Utilities . 309
BgInfo . 309

Configuring Data to Display . 310
Appearance Options . 313
Saving BgInfo Configuration for Later Use . 315
Other Output Options . 315
Updating Other Desktops . 317

Desktops . 318

 Table of Contents xv

ZoomIt . 320
Using ZoomIt . 320
Zoom Mode . 321
Drawing Mode . 322
Typing Mode . 323
Break Timer . 323
LiveZoom . 324

 11 File Utilities . 325
Strings . 325
Streams . 326
NTFS Link Utilities . 328

Junction . 329
FindLinks . 330

DU (Disk Usage) . 331
Post-Reboot File Operation Utilities . 333

PendMoves . 333
MoveFile . 334

 12 Disk Utilities . 335
Disk2Vhd . 335
Diskmon . 337
Sync . 339
DiskView . 341
Contig . 344
PageDefrag . 345
DiskExt . 347
LDMDump . 347
VolumeID . 350

 13 Network and Communication Utilities . 351
TCPView . 351
Whois . 353
Portmon . 353

Searching, Filtering, and Highlighting . 355
Saving, Logging, and Printing . 357

xvi Table of Contents

 14 System Information Utilities . 359
RAMMap . 359

Use Counts . 360
Processes . 362
Priority Summary . 363
Physical Pages . 363
Physical Ranges . 364
File Summary . 365
File Details . 366
Purging Physical Memory . 367
Saving and Loading Snapshots . 367

CoreInfo . 367
ProcFeatures . 369
WinObj . 370
LoadOrder . 373
PipeList . 374
ClockRes . 375

 15 Miscellaneous Utilities . 377
RegJump . 377
Hex2Dec . 378
RegDelNull . 378
Bluescreen Screen Saver . 379
Ctrl2Cap . 380

Part III Troubleshooting—”The Case of the Unexplained...”
 16 Error Messages . 383

The Case of the Locked Folder . 383
The Case of the Failed AV Update . 385
The Case of the Failed Lotus Notes Backups . 387
The Case of the Failed Play-To . 389
The Case of the Crashing Proksi Utility . 390
The Case of the Installation Failure . 391

The Troubleshooting . 392
The Analysis . 394

The Case of the Missing Folder Association . 397
The Case of the Temporary Registry Profiles . 400

 Table of Contents xvii

 17 Hangs and Sluggish Performance . 405
The Case of the IExplore-Pegged CPU . 405
The Case of the Excessive ReadyBoost . 408
The Case of the Slow Keynote Demo . 410
The Case of the Slow Project File Opens . 415
The Compound Case of the Outlook Hangs . 420

 18 Malware . 427
The Case of the Sysinternals-Blocking Malware . 427
The Case of the Process-Killing Malware . 429
The Case of the Fake System Component . 431
The Case of the Mysterious ASEP . 433

Index . 437

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

 xix

Foreword
I was honored when Mark and Aaron asked me to write the foreword for this book.

My association with Mark and his tools goes back to 1997 when I first heard him speak at
a Windows developer conference in Santa Clara, California. Little did I know that two years
later we would begin collaborating on Inside Windows 2000 and the subsequent editions of
Windows Internals.

In fact, because of working with Mark on both the Windows Internals books and later on
the Windows Internals courses we authored and taught together, I often get thanked for the
Sysinternals tools—something that irks Mark! While I’m tempted to graciously accept the
praise and say “You’re welcome,” the truth is that, while I use the tools heavily in my training
and consulting work, I have not authored any of them.

There has been a need for a Sysinternals book for many years now, though it’s a testament
to the design of the tools and their user interface that they have been used so widely and
successfully without a book to explain them all. But the book opens the door even wider
for more IT professionals to leverage the Sysinternals tools to peer beneath the surface of
Windows to really understand what’s going on. Aaron Margosis’ careful, meticulous research
resulted in many improvements in the tools—fixing inconsistencies, improving the help text,
and adding new features.

I have personally solved innumerable client and server system and application problems with
the tools, even in situations where I didn’t think the tools would help. As a result, I coined the
expression “When in doubt, run Filemon and Regmon” (now Procmon).

To help more IT professionals see how to apply the tools to real problems, this book has an
entire section on case studies. These real-life examples show how your fellow IT professionals
have used the Sysinternals tools to solve what would otherwise be unsolvable problems.

Finally, a word of warning—even though I talk to Mark on a regular basis, I can’t count the
number of times that I’ve reported a bug to him that he’d already fixed—so make sure you
are running the latest versions before you send him email! The best way to do that is to
 follow the Sysinternals site blog RSS feed.

This book belongs on every IT professional’s desk (or e-reader)—and if you see Mark, tell him
you appreciate Dave’s work on the Sysinternals tools.

David Solomon

President, David Solomon Expert Seminars, Inc.
www.solsem.com

 xxi

Introduction
The Sysinternals Suite is a set of over 70 advanced diagnostic and troubleshooting utilities
for the Microsoft Windows platform written by me—Mark Russinovich—and Bryce Cogswell.
Since Microsoft’s acquisition of Sysinternals in 2006, these utilities have been available for
free download from Microsoft’s Windows Sysinternals Web site (part of Microsoft TechNet).

The goal of this book is to familiarize you with the Sysinternals utilities and help you
 understand how to use them to their fullest. The book will also show you examples of how
I and other Sysinternals users have leveraged the utilities to solve real problems on Windows
systems.

Although I coauthored this book with Aaron Margosis, the book is written as if I am speaking.
This is not at all a comment on Aaron’s contribution to the book; without his hard work, this
book would not exist.

Tools the Book Covers
This book describes all of the Sysinternals utilities that are available on the Windows
Sysinternals Web site (http://technet.microsoft.com/en-us/sysinternals/default.aspx) and all
of their features as of the time of this writing (summer, 2011). However, Sysinternals is highly
dynamic: existing utilities regularly gain new capabilities, and new utilities are introduced
from time to time. (To keep up, follow the RSS feed of the “Sysinternals Site Discussion” blog:
http://blogs.technet.com/b/sysinternals/.) So, by the time you read this book, some parts of
it may already be out of date. That said, you should always keep the Sysinternals utilities
 updated to take advantage of new features and bug fixes.

This book does not cover Sysinternals utilities that have been deprecated and are no longer
available on the Sysinternals site. If you are still using RegMon (Registry Monitor) or FileMon
(File Monitor), you should replace them with Process Monitor, described in Chapter 4. Rootkit
Revealer, one of the computer industry’s first rootkit detectors (and the tool that discovered
the “Sony rootkit”), has served its purpose and has been retired. Similarly, a few other utilities
(such as Newsid and EfsDump) that used to provide unique value have been retired be-
cause either they were no longer needed or equivalent functionality was eventually added
to Windows.

The History of Sysinternals
The first Sysinternals utility I wrote, Ctrl2cap, was born of necessity. Before I started using
Windows NT in 1995, I mostly used UNIX systems, which have keyboards that place the Ctrl
key where the Caps Lock key is on standard PC keyboards. Rather than adapt to the new

xxii Introduction

layout, I set out to learn about Windows NT device driver development and to write a driver
that converts Caps Lock key presses into Ctrl key presses as they make their way from the
keyboard into the Windows NT input system. Ctrl2cap is still posted on the Sysinternals site
today, and I still use it on all my systems.

Ctrl2cap was the first of many tools I wrote to learn about the way Windows NT works under
the hood while at the same providing some useful functionality. The next tool I wrote,
NTFSDOS, I developed with Bryce Cogswell. I had met Bryce in graduate school at Carnegie
Mellon University, and we had written several academic papers together and worked on
a startup project where we developed software for Windows 3.1. I pitched the idea of a
tool that would allow users to retrieve data from an NTFS-formatted partition by using the
 ubiquitous DOS floppy. Bryce thought it would be a fun programming challenge, and we
 divided up the work and released the first version about a month later.

I also wrote the next two tools, Filemon and Regmon, with Bryce. These three utilities—
NTFSDOS, Filemon, and Regmon—became the foundation for Sysinternals. Filemon and
Regmon, both of which we released for Windows 95 and Windows NT, showed file sys-
tem and registry activity, becoming the first tools anywhere to do so and making them
 indispensible troubleshooting aids.

Bryce and I decided to make the tools available for others to use, but we didn’t have a Web
site of our own, so we initially published them on the site of a friend, Andrew Schulman,
who I’d met in conjunction with his own work uncovering the internal operation of DOS
and Windows 95. Going through an intermediary didn’t allow us to update the tools with
enhancements and bug fixes as quickly as we wanted, so in September 1996 Bryce and I
 created NTInternals.com to host the tools and articles we wrote about the internal operation
of Windows 95 and Windows NT. Bryce and I had also developed tools that we decided we
could sell for some side income, so the same month, we also founded Winternals Software, a
commercial software company that we bootstrapped by driving traffic with a single banner
ad on NTInternals.com. The first utility we released as Winternals Software was NTRecover,
a utility that enabled users to mount the disks of unbootable Windows NT systems from a
working system and access them as if they were locally attached disks.

The mission of NTInternals.com was to distribute freeware tools that leveraged our deep
 understanding of the Windows operating system in order to deliver powerful diagnostic,
monitoring, and management capabilities. Within a few months, the site, shown below as it
looked in December 1996 (thanks to the Internet Archive’s Wayback Machine), drew 1,500
visitors per day, making it one of the most popular utility sites for Windows in the early days
of the Internet revolution. In 1998, at the “encouragement” of Microsoft lawyers, we changed
the site’s name to Sysinternals.com.

Over the next several years, the utilities continued to evolve. We added more utilities as we
needed them, as our early power users suggested enhancements, or when we thought of a
new way to show information about Windows.

 Introduction xxiii

The Sysinternals utilities fell into three basic categories: those used to help programmers,
those for system troubleshooting, and those for systems management. DebugView, a utility
that captures and displays program debug statements, was one of the early developer-
oriented tools that I wrote to aid my own development of device drivers. DLLView, a tool for
displaying the DLLs that processes have loaded, and HandleEx, a process-listing GUI utility
that showed open handles, were two of the early troubleshooting tools. (I merged DLLView
and HandleEx to create Process Explorer in 2001.) The PsTools, discussed in Chapter 6, are
some of the most popular management utilities, bundled into a suite for easy download.
PsList, the first PsTool, was inspired initially by the UNIX “ps” command, which provides a
process listing. The utilities grew in number and functionality, becoming a software suite of
utilities that allowed you to easily perform many tasks on a remote system without requiring
installation of special software on the remote system beforehand.

Also in 1996, I began writing for Windows IT Pro magazine, highlighting Windows internals
and the Sysinternals utilities and contributing additional feature articles, including a
 controversial article in 1996 that established my name within Microsoft itself, though not
necessarily in a positive way. The article, “Inside the Difference Between Windows NT
Workstation and Windows NT Server,” pointed out the limited differences between Windows
NT Workstation and Windows NT Server, which contradicted Microsoft’s marketing message.

As the utilities continued to evolve and grow, I began to contemplate writing a book on
Windows internals. Such a book already existed, Inside Windows NT (Microsoft Press, 1992),
the first edition of which was written by Helen Custer alongside the original release of
Windows NT 3.1. The second edition was rewritten and enhanced for Windows NT 4.0 by
David Solomon, a well-established operating system expert, trainer, and writer who had
worked at DEC. Instead of writing a book from scratch, I contacted him and suggested
that I coauthor the third edition, which would cover Windows 2000. My relationship with

xxiv Introduction

Microsoft had been on the mend since the 1996 article as the result of my sending Windows
bug reports directly to Windows developers, but David still had to obtain permission, which
Microsoft granted.

As a result, David Solomon and I coauthored the third, fourth, and fifth editions of the book,
which we renamed Windows Internals at the fourth edition. (The fifth edition of Windows
Internals was published in 2009.) Not long after we finished Inside Windows 2000 (Microsoft
Press, 2000), I joined David to teach his Windows internals seminars, adding my own content.
Offered around the world, even at Microsoft to the developers of Windows, these classes
have long used the Sysinternals utilities to show students how to peer deep into Windows
internals and learn more when they returned to their developer and IT professional roles at
home. David still offers Windows internals classes at http://www.solsem.com/.

By 2006, my relationship with Microsoft had been strong for several years, Winternals had
a full line of enterprise management software and had grown to about 100 employees,
and Sysinternals had two million downloads per day. On July 18, 2006, Microsoft acquired
Winternals and Sysinternals. Not long after, Bryce and I (there we are below in 2006) moved
to Redmond to become a part of the Windows team. Today, I serve as one of Microsoft’s
small group of Technical Fellows, providing technical leadership to help drive the direction of
the company. I’m now in the Windows Azure group, working on the “kernel” of Microsoft’s
cloud operating system.

Two of the goals of the acquisition were to make sure that the tools Bryce and I developed
would continue to be freely available and that the community we built would thrive, and
they have. Today, the Windows Sysinternals site on technet.microsoft.com is one of the
most frequently visited sites on TechNet, averaging 50,000 visitors per day and three mil-
lion downloads per month. Sysinternals power users come back time and again for the
 latest versions of the utilities and for new utilities, such as the recently released RAMMap
and VMMap, as well as to participate in the Sysinternals community, a growing forum with
over 30,000 registered users at the time of this writing. I remain dedicated to continuing to
 enhance the existing tools and to add new tools, including ones focused on Windows Azure.

 Introduction xxv

Many people suggested that a book on the tools would be valuable, but it wasn’t until David
Solomon suggested that one was way overdue that I started the project. My responsibilities
at Microsoft did not permit me to devote the time necessary to write another book, but
David pointed out that I could find someone to help. I was pleased that Aaron Margosis
agreed to partner with me. Aaron is a Principal Consultant with Microsoft Public Sector
Services who is known for his deep understanding of Windows security and application
 compatibility. I have known Aaron for many years and his excellent writing skills, familiarity
with Windows internals, and proficiency with the Sysinternals tools made him an ideal
coauthor.

Who Should Read This Book
This book exists for Windows IT professionals and power users who want to make the most
of the Sysinternals tools. Regardless of your experience with the tools, and whether you
 manage the systems of a large enterprise, a small business, or the PCs of your family and
friends, you’re sure to discover new tools, pick up tips, and learn techniques that will help you
more effectively troubleshoot the toughest Windows problems and simplify your system-
management operations and monitoring.

Assumptions
This book expects that you have familiarity with the Windows operating system. Basic
 familiarity with concepts such as processes, threads, virtual memory, and the Windows
command prompt, is helpful, though some of these concepts are discussed in Chapter 2,
“Windows Core Concepts”.

Organization of This Book
The book is divided into three parts. Part I, “Getting Started,” provides an overview of the
Sysinternals utilities and the Sysinternals Web site, describes features common to all of the
utilities, tells you where to go for help, and discusses some Windows core concepts that will
help you better understand the platform and the information reported by the utilities.

Part II, “Usage Guide,” is a detailed reference guide covering all of the Sysinternals utilities’
features, command-line options, system requirements, and caveats. With plentiful screen
shots and usage examples, this section should answer just about any question you have
about the utilities. Major utilities such as Process Explorer and Process Monitor each get their
own chapter; subsequent chapters cover utilities by category, such as security utilities, Active
Directory utilities, and file utilities.

xxvi Introduction

Part III, “Troubleshooting—‘The Case of the Unexplained…’,” contains stories of real-world
problem solving using the Sysinternals utilities from Aaron and me, as well as from
 administrators and power users from around the world.

Conventions and Features in This Book
This book presents information using conventions designed to make the information
 readable and easy to follow:

■ Boxed elements with labels such as “Note” provide additional information or alternative
methods for completing a step successfully.

■ Text that you type (apart from code blocks) appears in bold.

■ A plus sign (+) between two key names means that you must press those keys at the
same time. For example, “Press Alt+Tab” means that you hold down the Alt key while
you press the Tab key.

■ A vertical bar between two or more menu items (for example, File | Close), means that
you should select the first menu or menu item, then the next, and so on.

System Requirements
The Sysinternals tools work on the following versions of Windows, including 64-bit editions,
unless otherwise specified:

■ Windows XP with Service Pack 3

■ Windows Vista

■ Windows 7

■ Windows Server 2003 with Service Pack 2

■ Windows Server 2003 R2

■ Windows Server 2008

■ Windows Server 2008 R2

Some tools require administrative rights to run, and others implement specific features that
require administrative rights.

 Introduction xxvii

Acknowledgments
First, Aaron and I would like to thank Bryce Cogswell, cofounder of Sysinternals, for his
 enormous contribution to the Sysinternals tools. Because of our great collaboration, what
Bryce and I published on Sysinternals was more than just the sum of our individual efforts.
Bryce retired from Microsoft in October 2010, and we wish him luck in whatever he pursues.

We’d like to thank David Solomon for spurring Mark to write this book, providing detailed
review of many chapters, and writing the Foreword. Dave has also been one of Sysinternals
most effective evangelists over the years and has suggested many valuable features.

Thanks to Curtis Metz and Karl Seng, who manage the Sysinternals Web site, forums, and
code-publishing process. Otto Helweg had that role when Microsoft acquired Sysinternals,
and we thank him for helping to preserve the spirit of Sysinternals during the integration.

We are grateful to the following people who provided valuable and insightful technical
 review, corrections, and suggestions for the book: Andreas Klein, Brian Matusz, Bruno Aleixo,
Carsten Kinder, Chris Jackson, Ewan MacKellar, Fatih Colgar, Gautam Anand, Gowri Kumar
Chandramouli, Greg Cottingham, John Dietrick, Mario Hewardt, Mario Raccagni, Mark
Priem, Matt Garson, Pavel Lebedynskiy, Richard Diver, Scott Frunzi, Stephen Griffin, and Tim
Reckmeyer. Andrew Richards deserves special mention for providing detailed feedback on
more chapters than any other reviewer.

We also want to thank Carl Harrison for supplying a sidebar on using LiveKd to capture
 online kernel dumps.

We’d like to thank Martin DelRe from Microsoft Press for seeing the potential of the book;
Devon Musgrave, also from Microsoft Press, for championing the book; and Steve Sagman
from Waypoint Press for guiding the book through the editorial and production process.
Thanks also to Christophe Nasarre for technical editing and Roger LeBlanc for copyediting.

Aaron’s wife Elise deserves thanks for providing Aaron with enthusiastic encouragement at a
 crucial point in the book’s development. Aaron thanks her and their children—Elana, Jonah,
and Gabriel—for their love and support. Aaron also thanks Brenda Schrier for his author
photo.

Mark thanks his wife, Daryl, and daughter, Maria, for supporting all his endeavors.

xxviii Introduction

Errata & Book Support
We’ve made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site at oreilly.com:

http://go.microsoft.com/FWLink/?Linkid=220275

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, e-mail Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch
Let’s keep the conversation going. Follow Microsoft Press on Twitter: http://twitter.com/
MicrosoftPress.

Windows® Sysinternals Administrator’s Reference

 1

Part I

Getting Started
In this part:
Chapter 1: Getting Started with the Sysinternals Utilities . 3
Chapter 2: Windows Core Concepts . 15

 3

Chapter 1

Getting Started with the
Sysinternals Utilities

The Sysinternals utilities are free, advanced administrative, diagnostic, and troubleshooting
utilities for the Microsoft Windows platform written by the founders of Sysinternals: me
(Mark Russinovich) and Bryce Cogswell1. Since Microsoft’s acquisition of Sysinternals in July
2006, these utilities have been available for download from Microsoft’s TechNet Web site.

Among the hallmarks of a Sysinternals utility are that it

■ Serves unmet needs of a significant IT pro or developer audience

■ Is intuitive and easy to use

■ Is packaged as a single executable image that does not require installation and can be
run from anywhere, including from a network location or removable media

■ Does not leave behind any significant incidental data after it has run

Because Sysinternals doesn’t have the overhead of a formal product group, I can quickly
release new features, utilities, and bug fixes. In some cases, I can take a useful and simple- to-
implement feature from suggestion to public availability in under a week.

However, the other side of not having a full product group and formal testing organization is
that the utilities are offered “as is” with no official Microsoft product support. The Sysinternals
team maintains a dedicated community support forum—described later in this chapter—on
the Sysinternals Web site, and I try to fix reported bugs as quickly as possible.

Overview of the Utilities
The Sysinternals utilities cover a broad range of functionality across many aspects of the
Windows operating system. While some of the more comprehensive utilities such as Process
Explorer and Process Monitor span several categories of operations, others can more or
less be grouped within a single category, such as “process utilities” or “file utilities.” Many of
the utilities have a graphical user interface (GUI), while others are console utilities with rich
 command-line interfaces designed for automation or for use at a command prompt.

This book covers three major utilities (Process Explorer, Process Monitor, and Autoruns), each
in its own chapter. Subsequent chapters cover several utilities each, grouped by category.

1 Bryce left Microsoft in late 2010 and no longer contributes to the Sysinternals utilities.

4 Part I Getting Started

Table 1-1 lists these chapters with a brief overview of each of the utilities covered within
them.

TABLE 1-1 Chapter Topics

Utility Description
Chapter 3, Process Explorer

Process Explorer Replaces Task Manager, and displays far more detail about processes and
threads, including parent/child relationships, dynamic-link libraries (DLLs) loaded,
and object handles opened such as files in use

Chapter 4, Process Monitor
Process Monitor Logs details about all file system, registry, network, process, thread, and image

load activity in real time

Chapter 5, Autoruns
Autoruns Lists and categorizes software that is configured to start automatically when your

system boots, when you log on, and when you run Internet Explorer, and lets you
disable or delete those entries

Chapter 6, PsTools
PsExec Executes processes remotely and/or as Local System with redirected output.

PsFile Lists or closes files opened remotely

PsGetSid Displays the Security Identifier (SID) of a security principal, such as a computer,
user, group, or service

PsInfo Lists information about a system

PsKill Terminates processes by name or by Process ID (PID)

PsList Lists detailed information about processes and threads

PsLoggedOn Lists accounts that are logged on locally and through remote connections

PsLogList Dumps event log records

PsPasswd Changes passwords for user accounts

PsService Lists and controls Windows services

PsShutdown Shuts down, logs off, or changes the power state of local and remote systems

PsSuspend Suspends and resumes processes

Chapter 7, Process and Diagnostic Utilities
VMMap Displays details of a process’ virtual and physical memory usage

ProcDump Generates a memory dump for a process when it meets specifiable criteria, such
as exhibiting a CPU spike or having an unresponsive window

DebugView Monitors user-mode and kernel-mode debug output generated from the local
computer or a remote computer

LiveKd Runs a standard kernel debugger on a snapshot of the running local system
or Hyper-V guest without having to reboot into debug mode, and also allows
 making a memory dump of a live system

ListDLLs Displays information about DLLs loaded on the system in a console window

Handle Displays information about object handles opened by processes on the system in
a console window

 Chapter 1 Getting Started with the Sysinternals Utilities 5

Utility Description
Chapter 8, Security Utilities
SigCheck Verifies file signatures, and displays version information

AccessChk Searches for objects that grant permissions to specific users or groups, and
p rovides detailed information on permissions granted

AccessEnum Searches a file or registry hierarchy, and identifies where permissions might have
been changed

ShareEnum Enumerates file and printer shares on your network and who can access them

ShellRunAs Restores the ability to run a program under a different user on Windows Vista

Autologon Configures a user account for automatic logon when the system boots

LogonSessions Enumerates active Local Security Authority (LSA) logon sessions on the computer

SDelete Securely deletes files or folder structures, and erases data in unallocated areas of
the hard drive

Chapter 9, Active Directory Utilities
AdExplorer Displays and enables editing of Active Directory objects

AdInsight Traces Active Directory Lightweight Directory Access Protocol (LDAP) API calls

AdRestore Enumerates and restores deleted Active Directory objects

Chapter 10, Desktop Utilities
BgInfo Displays computer configuration information on the desktop wallpaper

Desktops Runs applications on separate virtual desktops

ZoomIt Magnifies the screen, and enables screen annotation

Chapter 11, File Utilities
Strings Searches files for embedded ASCII or Unicode text

Streams Identifies file system objects that have alternate data streams, and deletes those
streams

Junctions Lists and deletes NTFS directory junctions

FindLinks Lists NTFS hard links

DU Lists logical and on-disk sizes of a directory hierarchy

PendMoves Reports on file operations scheduled to take place during the next system boot

MoveFile Schedules file operations to take place during the next system boot

Chapter 12, Disk Utilities
Disk2Vhd Captures a VHD image of a physical disk

Diskmon Logs sector-level hard disk activity

Sync Flushes unwritten changes from disk caches to the physical disk

DiskView Displays a cluster-by-cluster graphical map of a volume, letting you find what file
is in particular clusters and which clusters are occupied by a given file

Contig Defragments specific files, or shows how fragmented a particular file is

PageDefrag Defragments system files at boot time that cannot be defragmented while
Windows is running

DiskExt Displays information about disk extents

6 Part I Getting Started

Utility Description
LDMDump Displays detailed information about dynamic disks from the Logical Disk

Manager (LDM) database

VolumeID Changes a volume’s ID (also known as its serial number)

Chapter 13, Network and Communication Utilities
TCPView Lists active TCP and UDP endpoints

Whois Reports Internet domain registration information or performs reverse Domain
Name System (DNS) lookups

Portmon Monitors serial and parallel port I/O in real time

Chapter 14, System Information Utilities
RAMMap Provides detailed view of physical memory usage

CoreInfo Lists mapping of logical processors to cores, sockets, Non-Uniform Memory
Access (NUMA) nodes, and processor groups

ProcFeatures Reports processor features such as No-Execute memory protection

WinObj Displays Windows’ Object Manager namespace

LoadOrder Shows approximate order in which Windows loads device drivers and starts
 services

PipeList Lists listening named pipes

ClockRes Displays the current, maximum, and minimum resolution of the system clock

Chapter 15, Miscellaneous Utilities
RegJump Launches RegEdit, and navigates to the registry path you specify

Hex2Dec Converts numbers from hexadecimal to decimal and vice versa

RegDelNull Searches for and deletes registry keys with embedded NUL characters in their
names

Bluescreen
Screen Saver

Screen saver that realistically simulates a “Blue Screen of Death”

Ctrl2Cap Converts Caps Lock keypresses to Control keypresses

The Windows Sysinternals Web Site
The easiest way to get to the Sysinternals Web site (Figure 1-1) is to browse to
http://www.sysinternals.com, which redirects to the Microsoft TechNet home of Sysinternals,
currently at http://technet.microsoft.com/sysinternals. In addition to all the Sysinternals
 utilities, the site contains or links to many related resources, including training, books, blogs,
articles, webcasts, upcoming events, and the Sysinternals community forum.

 Chapter 1 Getting Started with the Sysinternals Utilities 7

FIGURE 1-1 The Windows Sysinternals Web site.

Downloading the Utilities
You can download just the Sysinternals utilities that you need one at a time, or download
the entire set in a single compressed (.zip) file called the Sysinternals Suite. Links on the
Sysinternals home page take you to pages that link to individual utilities. The Utilities
Index lists all the utilities on one page; links to categories such as “File and Disk Utilities” or
“Networking Utilities” take you to pages that list only subsets of the utilities.

Each download is packaged as a compressed (.zip) file that contains the executable (or
 executables), an End User License Agreement (EULA) text file, and for some of the utilities, an
online help file.

Note The individual PsTool utilities are available for download only in bundles—either the
PsTools suite or the full Sysinternals Suite.

My co-author, Aaron, makes it his habit to create a “C:\Program Files\Sysinternals” folder
and extract the Sysinternals Suite into it, where it cannot be modified by non-administrative
 users. He then adds that location to the Path system environment variable so that he can
 easily launch the utilities from anywhere, including from the Windows 7 Start menu search
box as shown in Figure 1-2.

8 Part I Getting Started

FIGURE 1-2 Launching Procmon via Path search from the Start menu search box.

“Unblock” .zip Files Before Extracting Files
Before extracting content from the downloaded .zip files, you should first remove the
marker that tells Windows to treat the content as untrusted and that results in warnings
and errors like those shown in Figures 1-3 and 1-4. The Windows Attachment Execution
Service adds an alternate data stream (ADS) to the .zip file indicating that it came from
the Internet. When you extract the files with Windows Explorer, it propagates the ADS
to all extracted files.

FIGURE 1-3 Windows displays a warning when files from the Internet are opened.

 Chapter 1 Getting Started with the Sysinternals Utilities 9

FIGURE 1-4 Compiled HTML Help (CHM) files fail to display content when marked as having come
from the Internet.

One way to remove the ADS is to open the .zip file’s Properties dialog box in Windows
Explorer and click the Unblock button near the bottom of the General tab as shown in
Figure 1-5. Another way is to use the Sysinternals Streams utility, which is described in
Chapter 11, “File Utilities.”

FIGURE 1-5 The Unblock button appears near the bottom of the downloaded file’s Properties
dialog box.

10 Part I Getting Started

Running the Utilities Directly from the Web
Sysinternals Live is a service that enables you to execute Sysinternals utilities directly from
the Web without first having to hunt for, download, and extract them. Another advantage of
Sysinternals Live is that it guarantees you run the latest versions of the utilities.

To run a utility using Sysinternals Live from Internet Explorer, type http://live.sysinternals.
com/utilityname.exe in the address bar (for example, http://live.sysinternals.com/procmon.
exe). Alternatively, you can specify the Sysinternals Live path in Universal Naming Convention
(UNC) as \\live.sysinternals.com\tools\utilityname.exe. (Note the addition of the “tools”
subdirectory, which is not required when you specify a utility’s URL.) For example, you
can run the latest version of Process Monitor by running \\live.sysinternals.com\tools\
procmon.exe.

Note The UNC syntax for launching utilities using Sysinternals Live requires that the WebClient
service be running. In newer versions of Windows, the service might not be configured to
start automatically. Starting the service directly (for example, by running net start webclient)
 requires administrative rights. You can start the service indirectly without administrative rights by
running net use \\live.sysinternals.com from a command prompt or by browsing to
\\live.sysinternals.com with Windows Explorer.

You can also map a drive letter to \\live.sysinternals.com\tools or open the folder as a
r emote share in Windows Explorer, as shown in Figure 1-6. Similarly, you can view the entire
Sysinternals Live directory in a browser at http://live.sysinternals.com.

FIGURE 1-6 Sysinternals Live displayed in Windows Explorer.

 Chapter 1 Getting Started with the Sysinternals Utilities 11

Single Executable Image
To simplify packaging, distribution, and portability without relying on installation programs,
all of the Sysinternals utilities are single 32-bit executable images that can be launched
 directly. They embed any additional files they might need as resources and extract them
 either into the folder in which the program resides or, if that folder isn’t writable (for
 example, if it’s on read-only media), into the current user’s %TEMP% folder. The program
 deletes extracted files when it no longer needs them.

Supporting both 32-bit and 64-bit systems is one example where the Sysinternals utilities
make use of this technique. For utilities that require 64-bit versions to run correctly on 64-bit
Windows, the main 32-bit program identifies the CPU architecture, extracts the appropriate
x64 or IA64 binary, and launches it. When running Process Explorer on x64, for instance, you
will see Procexp64.exe running as a child process of Procexp.exe.

Note If the program file extracts to %TEMP%, the program will fail to run if the permissions on
%TEMP% have been modified to remove Execute permissions.

Most of the Sysinternals utilities that use a kernel-mode driver extract the driver file to
%SystemRoot%\System32\Drivers, load the driver, and then delete the file. The driver image
remains in memory until the system is shut down. When running a newer version of a utility
that has an updated driver, a reboot might be required to load the new driver.

The Windows Sysinternals Forums
The Windows Sysinternals Forums at http://forum.sysinternals.com (shown in Figure 1-7) are
the first and best place to get answers to your questions about the Sysinternals utilities and
to report bugs. You can search for posts and topics by keyword to see whether anyone else
has had the same issue as you. There are forums dedicated to each of the major Sysinternals
utilities, as well as a forum for suggesting ideas for new features or utilities. The Forums also
host community discussion about Windows internals, development, troubleshooting, and
malware.

You must register and log in to post to the Forums, but registration requires minimal
 information. After you register, you can also subscribe for notifications about replies to
 topics or new posts to particular forums, and you can send private messages to and receive
 messages from other forum members.

12 Part I Getting Started

FIGURE 1-7 The Windows Sysinternals Forums.

Windows Sysinternals Site Blog
Subscribing to the Sysinternals Site Discussion blog is the best way to receive notifications
when new utilities are published, existing utilities are updated, or other new content becomes
available on the Sysinternals site. The site blog is located at http://blogs.technet.com/b/
sysinternals. Although the front page notes only major utility updates, the site blog reports
all updates, including minor ones.

Mark’s Blog
My own blog covers Windows internals, security, and troubleshooting topics. The blog
 features two popular article series related to Sysinternals: “The Case of…” articles, which
document how to solve everyday problems with the Sysinternals utilities; and “Pushing the
Limits,” which describes resource limits in Windows, how to monitor them, and the effect of
hitting them. You can access my blog by using the following URL:

http://blogs.technet.com/b/markrussinovich

 Chapter 1 Getting Started with the Sysinternals Utilities 13

You also can find a full listing of my blog posts by title by clicking on the Mark’s Blog link on
the Sysinternals home page.

Mark’s Webcasts
You can find a full list of recordings of my presentations from TechEd and other conferences
for free on-demand viewing—including my top-rated “Case of the Unexplained…” sessions,
Sysinternals troubleshooting how-to sessions, my Channel 9 interviews and the Springboard
Virtual Roundtables that I hosted—by clicking on the Mark’s Webcasts link on the
Sysinternals home page. The webcasts available at the time of this book’s publication are
 included on this book’s companion media.

Sysinternals License Information
The Sysinternals utilities are free. You can install and use any number of copies of the soft-
ware on your computers and the computers owned by your company. However, your use
of the software is subject to the license terms displayed when you launch a tool and at the
Software License page linked to from the Sysinternals home page.

End User License Agreement and the /accepteula Switch
As mentioned, each utility requires acceptance of an End User License Agreement (EULA) by
each user who runs the utility on a given system. The first time a user runs a particular utility
on a computer—even a console utility—the utility displays a EULA dialog box like the one
shown in Figure 1-8. The user must click the Agree button before the utility will run.

FIGURE 1-8 The End User License Agreement for PsGetSid.

14 Part I Getting Started

Because the display of this dialog box interferes with automation and other noninteractive
scenarios, most of the Sysinternals utilities take the command-line switch /accepteula as a
valid assertion of agreement with the license terms. For example, the following command
uses PsExec (described in Chapter 6) to run LogonSessions.exe (described in Chapter 8) in a
noninteractive context on server1, where the /accepteula switch on the LogonSessions.exe
command line prevents it from getting stuck waiting for a button press that will never come:

PsExec \\server1 logonsessions.exe /AcceptEula

Note that some Sysinternals utilities have not yet been updated to support the /accepteula
switch. For these utilities, you might need to manually set the flag indicating acceptance. You
can do this with a command line like the following, which creates a EulaAccepted registry
value in the per-utility registry key in the HKEY_CURRENT_USER\Software\Sysinternals branch
of the registry on server1:

psexec \\server1 reg add hkcu\software\sysinternals\pendmove /v eulaaccepted /t reg_dword /d
1 /f

Frequently Asked Questions About Sysinternals Licensing
■ How many copies of Sysinternals utilities can I freely load or use on computers

owned by my company?

There is no limit to the number of times you can install and use the software on your
devices or those you support.

■ Can I distribute Sysinternals utilities in my software, on my Web site, or with my
magazine?

No. Microsoft is not offering any distribution licenses, even if the third party is distrib-
uting them for free. Microsoft encourages people to download the utilities from its
download center or run them directly from the Web where they can be assured to get
the most recent version of the utility.

■ Can I license or re-use any Sysinternals source code?

The Sysinternals source code is no longer available for download or licensing.

■ Will the Sysinternals tools continue to be freely available?

Yes. Microsoft has no plans to remove these tools or charge for them.

■ Is there technical support available for the Sysinternals tools?

All Sysinternals tools are offered “as is” with no official Microsoft support. Microsoft
does maintain a Sysinternals dedicated community support forum (http://forum.
sysinternals.com) where you can report bugs and request new features.

 15

Chapter 2

Windows Core Concepts
The more you know about how Microsoft Windows works, the more value you can get from
the Sysinternals utilities. This chapter offers an overview of select Windows concepts relevant
to multiple Sysinternals utilities that can help you better understand these sometimes-
misunderstood topics. The best and most comprehensive reference available today about
Windows’ core operating system components is Windows Internals (Microsoft Press, 2009)1.
The Usage Guide of the book you are holding can offer at most only brief descriptions about
aspects of complex subjects such as Windows memory management. After all, this book is
about the Sysinternals utilities, not about Windows, and clearly cannot include all the rich
detail provided by Windows Internals. It is also not a comprehensive overview of Windows
architecture, nor does it cover basic concepts it’s assumed you already understand, such as
“What is the registry?” or “What is the difference between TCP and UDP?”

The topics covered in this chapter and the utilities to which they apply include

■ Administrative Rights, and how to run a program with administrative rights on different
versions of Windows (Applies to most of the utilities)

■ Processes, Threads, and Jobs (Process Explorer, Process Monitor, PsTools, VMMap,
ProcDump, TCPView, RAMMap)

■ User Mode and Kernel Mode (Process Explorer, Process Monitor, Autoruns, VMMap,
ProcDump, DebugView, LiveKd, TCPView, RAMMap, LoadOrder)

■ Handles (Process Explorer, Handle)

■ Call Stacks and Symbols, including what a call stack is, what symbols are, and how
to configure symbols in the Sysinternals utilities (Process Explorer, Process Monitor,
VMMap)

■ Sessions, Window Stations, Desktops, and Window Messages (Process Explorer, Process
Monitor, PsExec, AdInsight, Desktops, LogonSessions, WinObj, RegJump)

Administrative Rights
Windows NT has always had a rich access control model to protect sensitive system resources
from modification by or disclosure to unauthorized entities. Within this model, user accounts
are typically given Administrator rights or User rights. Administrators have complete and

1 The latest edition as of this writing is Windows Internals, 5th Edition, by Mark E. Russinovich and David A. Solomon
with Alex Ionescu (Microsoft Press, 2009). The 6th Edition, by the same authors, is in progress at the time of this
writing.

16 Part I Getting Started

 unrestricted access to the computer and all its resources, while Users are restricted from
making changes to operating system configuration or accessing data belonging to other
users. For historical reasons, however, until recently end users on Windows computers were
frequently granted administrative access, so many people have remained unaware that these
distinctions exist. (Even today, the first local user account created on a Windows 7 computer
is a member of the Administrators group.)

Note Users can have effective administrative control over a computer without explicit member-
ship in the Administrators group if they are given the ability to configure or control software that
runs in a more powerful security context—for example: granting users control over systemwide
file or registry locations used by administrators or services (as Power Users had before Windows
Vista); granting users “admin-equivalent” privileges such as the Debug, Take-Ownership, Restore,
or Load Driver privileges; or enabling the AlwaysInstallElevated Windows Installer policy, under
which any MSI file launched by any user runs under the System account.

Recently, organizations wishing to improve security and reduce costs have begun moving
toward a “non-admin” model for their end users. And with Windows Vista’s introduction of
User Account Control (UAC), most programs run by users—including those who are members
of the Administrators group—execute with user rights, not administrative rights. However,
it sometimes becomes necessary to run a program with administrative rights. While many
people didn’t know how to do this in Windows XP, Windows Vista changed those methods
significantly.

Many of the Sysinternals utilities always require administrative rights, while many have full
functionality without them. Some, however, are able to work correctly with standard user
rights but have features that need administrative rights, and thus operate in a “partially
 degraded” mode when executed with standard user rights.

Running a Program with Administrative Rights on Windows
XP and Windows Server 2003
If you log on to a Windows XP or Windows Server 2003 computer with an account that is a
member of the Administrators group, no special steps are required to run a Sysinternals util-
ity with administrative rights. Every program you run has full administrative rights.

But if you log on to that same computer with an account that does not have the required
privileges to run a particular Sysinternals utility, you will need to get the administrative rights
from a different user account. The Secondary Logon (Seclogon) service enables programs to
start a new process as a different user on the current desktop by supplying alternative cre-
dentials. Two programs that expose this functionality are Explorer’s Run As dialog box and
the Runas.exe command-line utility.

 Chapter 2 Windows Core Concepts 17

To use the Run As dialog box to start a program with administrative rights, right-click on
any program or shortcut in Explorer or the Start menu and choose Run As from the context
menu. In the Run As dialog box, choose the second radio button (“The Following User) as
shown in Figure 2-1, type the credentials for an administrative account, and click OK. You
can make Run As the default for a shortcut by opening its Properties dialog box, clicking the
Advanced button, and selecting the “Run With Different Credentials check box.

FIGURE 2-1 The Windows XP Run As dialog box with the second radio button selected.

To start a program with administrative rights with the Runas.exe command-line utility, open a
command prompt and start Runas.exe with this syntax:

runas /u:username program

For example, to run Process Monitor (Procmon.exe) with the local Administrator account, run
the following command:

runas /u:administrator procmon.exe

After you press Enter, Runas.exe prompts you for the account’s password. You must type the
password at the prompt; Runas.exe does not accept a password on the command line nor
piped to it from the standard input stream. You can use the /savecred command-line op-
tion to save the account’s password the first time you enter it; subsequent use of /savecred
with the same account will retrieve the saved password so that you don’t have to enter it
again. While this behavior is convenient, note that the standard user under whose account
the administrator’s password is saved can now use Runas.exe to launch any program without
having to supply the password.

To use smartcard authentication instead of password authentication, add the
/ smartcard option to the command line. You will be prompted for a smartcard PIN instead
of a password.

18 Part I Getting Started

For more information and tips about using RunAs, see Aaron Margosis’ “RunAs basic (and
intermediate) topics” blog post at the following URL:

http://blogs.msdn.com/b/aaron_margosis/archive/2004/06/23/163229.aspx

If you need the Sysinternals utility to run with full administrative rights but under your
 nonadministrator account (for example, so that it can authenticate to domain resources),
you can use Aaron Margosis’ MakeMeAdmin script. It invokes Runas.exe twice to launch a
 command prompt that runs under your current account but with full administrative rights.
(Note that you must have credentials for an administrative account to make this work.)
For more information, see his “MakeMeAdmin — temporary admin for your Limited User
 account” blog post at the following URL:

http://blogs.msdn.com/b/aaron_margosis/archive/2004/07/24/193721.aspx

Running a Program with Administrative Rights on Windows
Vista or Newer
Windows Vista and UAC changed everything when it came to running programs with
 administrative rights. Running as a standard user is now the default state for users’ programs,
even when run by a member of the Administrators group.

If you log on to a computer running Windows Vista or newer with an account that is a
 member of Administrators (the first account is the only one that defaults to Administrators
group membership on computers not joined to a domain) or another powerful group such as
Backup Operators or that has been granted “admin-equivalent” privileges, the Local Security
Authority (LSA) creates two logon sessions for the user, with a distinct access token for each.
(The LogonSessions utility enumerates these sessions and is described in Chapter 8, “Security
Utilities.”) One of these tokens represents the user’s full rights, with all groups and privileges
intact. The other is a filtered token that is roughly equivalent to one belonging to a standard
user, with powerful groups disabled and powerful privileges removed. This filtered token is
used to create the user’s initial processes, such as Userinit.exe and Explorer.exe, and is inher-
ited by their child processes. Starting a process with the user’s full token requires UAC eleva-
tion, mediated by the Application Information (Appinfo) service. The Runas.exe command is
still present, but it does not invoke the Appinfo service—so its effect is not quite the same
as it was on Windows XP. If you start a program with Runas.exe and specify an administrative
account, the target program runs under the “standard user” version of that account.2

2 With UAC enabled, there is one exception to this rule. By default, UAC token filtering and “admin approval mode”
does not apply to the built-in Administrator account. Anything run under that account always runs with full
 administrative rights. However, the built-in Administrator account is disabled by default.

 Chapter 2 Windows Core Concepts 19

UAC elevation can be triggered for a new process in one of several ways:

■ The program file contains a manifest that indicates that it requires elevation.
Sysinternals GUI utilities such as Disk2Vhd and RAMMap that always require elevation
contain such manifests. (You can view an image’s manifest with the Sigcheck utility,
 described in Chapter 8.)

■ The user explicitly requests that the program run elevated—for example, by right-click-
ing it and choosing Run As Administrator from the context menu.

■ Windows heuristically determines that the application is a legacy installation program.
(Installer detection is enabled by default, but it can be turned off through a security
policy.)

■ The application is associated with a compatibility mode or shim that requires elevation.

If the parent process is already running with an administrative token, the child process simply
inherits that token and the UAC elevation sequence is not needed. By convention, console
utilities that require administrative rights (for example, Sysinternals LogonSessions) do not
request UAC elevation. Instead, you should start them from an elevated command prompt or
Windows PowerShell console.

Once triggered, UAC elevation can be accomplished in three ways:

■ Silently The elevation occurs without end-user interaction. This option is available
only if the user is a member of the Administrators group. By default in Windows 7,
silent elevation is enabled for certain Windows commands. Silent elevation can be
 enabled for all elevation requests through security policy.

■ Prompt For Consent The user is prompted whether to permit the elevation to occur
with a Yes/No dialog box. (See Figure 2-2.) This option is available only if the user is a
member of the Administrators group and is the default (for elevations other than the
default silent elevations of Windows 7).

■ Prompt For Credentials The user is prompted to provide credentials for an adminis-
trative account. (See Figure 2-3.) This is the default for nonadministrative accounts and
is the only way that UAC elevation can be achieved by a nonadministrative user. You
can also configure this option for administrative users with a security policy setting.

Note that UAC elevations can be disabled for standard users via security policy. When the
policy is configured, users get an error message whenever an elevation is requested.

20 Part I Getting Started

FIGURE 2-2 Windows 7 elevation prompt for consent.

FIGURE 2-3 Windows 7 elevation prompt for credentials.

When User Account Control is disabled, Windows reverts to a mode similar to that of
Windows XP. In that case, the LSA does not create filtered tokens, and programs run
by members of the Administrators group always run with administrative rights. Further,
 elevation prompts do not display, but Runas.exe can be used to start a program with
 administrative rights. Note that disabling UAC also disables Internet Explorer’s Protected
Mode, so Internet Explorer runs with the full rights of the logged-on user. Disabling UAC
also turns off its file and registry virtualization, a feature that enables many applications that
 required administrative rights on Windows XP to work with standard user rights.

 Chapter 2 Windows Core Concepts 21

Processes, Threads, and Jobs
Although programs and processes appear similar on the surface, they are fundamentally
 different. A program is a static sequence of instructions, whereas a process is a container for
a set of resources used to execute a program. At the highest level of abstraction, a Windows
process comprises the following:

■ A unique identifier called a process ID (PID).

■ At least one thread of execution. Every thread in a process has full access to all the
 resources referenced by the process container

■ A private virtual address space, which is a set of virtual memory addresses that the
 process can use to store and reference data and code

■ An executable program, which defines initial code and data and is mapped into the
process’ virtual address space

■ A list of open handles to various system resources, such as semaphores, communication
ports, and files

■ A security context called an access token that identifies the user, security groups,
 privileges, UAC virtualization state, LSA logon session ID, and terminal services
session ID

Each process also has a record of the PID of its parent process. However, if the parent exits,
this information is not updated. Therefore, it is possible for a process to reference a nonex-
istent parent or even a different process that has been assigned the original parent’s PID. A
process records its parent PID only for informational purposes, however.

Windows provides an extension to the process model called a job. A job object’s main
 function is to allow groups of processes to be managed and manipulated as a unit. For
 example, a job can be used to terminate a group of processes all at once instead of one at
a time and without the calling process having to know which processes are in the group.
A job object also allows control of certain attributes and provides limits for the process or
processes associated with the job. For example, jobs can enforce per-process or job-wide
limits on user-mode execution time and committed virtual memory. Windows Management
Instrumentation (WMI) loads its providers into separate host processes controlled by a job
that limits memory consumption as well as the total number of WMI provider host processes
that can run at one time.

As mentioned, a process is merely a container. Technically, it is not the process that runs—it
is its threads. A thread is the entity within a process that Windows schedules for execution,
and it includes the following essential components:

22 Part I Getting Started

■ The contents of a set of CPU registers representing the state of the processor. These
include an instruction pointer that identifies the next machine instruction the thread
will execute.

■ Two stacks, one for the thread to use while executing in kernel mode and one for
 executing in user mode.

■ A private storage area called thread-local storage (TLS) for use by subsystems, run-time
libraries, and dynamic-link libraries (DLLs).

■ A unique identifier called a thread ID (TID). Process IDs and thread IDs are generated
from the same namespace, so they never overlap.

■ Threads sometimes have their own security context that is often used by multithreaded
server applications that impersonate the security context of the clients they serve.

Although threads have their own execution context, every thread within a process shares
the process’ virtual address space (in addition to the rest of the resources belonging to the
process), meaning that all the threads in a process can write to and read from one another’s
memory. Threads cannot reference the address space of another process, however, unless the
other process makes available part of its private address space as a shared memory section
(called a file mapping object in the Windows API) or unless one process has the right to open
another process to use cross-process memory functions.

By default, threads don’t have their own access token, but they can obtain one, thus allowing
individual threads to impersonate a different security context—including that of a process
running on a remote Windows system—without affecting other threads in the process.

User Mode and Kernel Mode
To prevent user applications from accessing or modifying critical operating system data,
Windows uses two processor access modes: user mode and kernel mode. All processes other
than the System process run in user mode (Ring 3 on Intel x86 and x64 architectures), where-
as device drivers and operating system components such as the executive and kernel run
only in kernel mode. Kernel mode refers to a mode of execution (Ring 0 on x86 and x64) in a
processor that grants access to all system memory and to all CPU instructions. By providing
the low-level operating system software with a higher privilege level than user-mode pro-
cesses have, the processor provides a necessary foundation for operating system designers to
ensure that a misbehaving application can’t disrupt the stability of the system as a whole.

Note Do not confuse the user-mode vs. kernel-mode distinction with that of user rights
vs. administrator rights. “User mode” in this context does not mean “has only standard user
 privileges.”

 Chapter 2 Windows Core Concepts 23

Although each Windows process has its own private memory space, the kernel-mode
 operating system and device driver code share a single virtual address space that is also
 included in the address space of every process. The operating system tags each page of
 virtual memory with the access mode the processor must be in to read or write the page.
Pages in system space can be accessed only from kernel mode, whereas all pages in the user
address space are accessible from user mode.

Threads of user-mode processes switch from user mode to kernel mode when they make a
system service call. For example, a call into the Windows ReadFile API eventually needs to
call the internal Windows routine that actually handles reading data from a file. That routine,
because it accesses internal system data structures, must run in kernel mode. The transition
from user mode to kernel mode is accomplished by the use of a special processor instruction
that causes the processor to switch to a system service dispatching function in kernel mode.
The operating system executes the corresponding internal function, which for ReadFile is the
NtReadFile kernel function. Kernel service functions validate parameters and perform appro-
priate access checks using the Security Reference Monitor before they execute the requested
operation. When the function finishes, the operating system switches the processor mode
back to user mode.

Thus, it is normal for a thread in a user-mode process to spend part of its time executing in
user mode and part in kernel mode. In fact, because the bulk of the graphics and windowing
system also runs in kernel mode, processes hosting graphics-intensive applications can spend
more of their time in kernel mode than in user mode. You can see these two modes in the
Process Explorer CPU usage graphs: the red portion of the graph represents time spent in
kernel mode, and the green area of the graph represents time spent in user mode.

Handles
The kernel-mode core of Windows, which is implemented in Ntoskrnl.exe, consists of various
subsystems such as the Memory Manager, Process Manager, I/O Manager, and Configuration
Manager (registry), which are all parts of the Executive. Each of these subsystems defines
one or more types with the Object Manager to represent the resources they expose to
 applications. For example, the Configuration Manager defines the Key object to represent
an open registry key; the Memory Manager defines the Section object for shared memory;
the Executive defines Semaphore, Mutant (the internal name for a mutex), and Event syn-
chronization objects (which are objects that wrap fundamental data structures defined by
the operating system’s Kernel subsystem); the I/O Manager defines the File object to rep-
resent open instances of device-driver resources, which include file system files; and the
Process Manager creates Thread and Process objects. Every release of Windows introduces
new object types, with Windows 7 defining a total of 42. You can see the object types that a
 particular version of Windows defines by running the WinObj utility (described in Chapter 14,

24 Part I Getting Started

“System Information Utilities”) with administrative rights and navigating to the ObjectTypes
directory in the Object Manager namespace.

When an application wants to use one of these resources, it first must call the appropriate
API to create or open the resource. For instance, the CreateFile function opens or creates a
file, the RegOpenKeyEx function opens a registry key, and the CreateSemaphoreEx function
opens or creates a semaphore. If the function succeeds, Windows allocates a reference to
the object in the process’ handle table, which is maintained by the Executive, and returns the
 index of the new handle table entry to the application.

This handle value is what the application uses for subsequent operations on the resource. To
query or manipulate the resource, the application passes the handle value to API functions
such as ReadFile, SetEvent, SetThreadPriority, and MapViewOfFile. The system can look up
the object the handle refers to by indexing into the handle table to locate the correspond-
ing handle entry, which contains a pointer to the object. The handle entry also stores the
accesses the process was granted at the time it opened the object, which enables the system
to make sure it doesn’t allow the process to perform an operation on the object for which it
didn’t ask permission. For example, if the process successfully opened a file for read access
but tried to use the handle to write to the file, the function would fail.

When a process no longer needs access to an object, it can release its handle to that object,
typically by passing the handle value to the CloseHandle API. (Note that some resource
 managers provide a different API to release its resources.) When a process exits, any handles
it still possesses are closed.

Call Stacks and Symbols
Several Sysinternals utilities—including Process Explorer, Process Monitor, and VMMap—
can display details about the code paths being executed at a particular point in time called
call stacks. Associating symbols with the modules in a process’ address space provides
more meaningful context information about those code paths, particularly within Windows
 operating system code. Understanding call stacks and symbols, and how to configure them
in the Sysinternals utilities, gives tremendous insight into a process’ behavior and can often
lead to the root cause of a problem.

What Is a Call Stack?
Executable code in a process is normally organized as a collection of discrete functions. To
perform its tasks, a function can invoke other functions (subfunctions). When a function has
finished, it returns control back to the function that called it.

 Chapter 2 Windows Core Concepts 25

A made-up example, shown in Figure 2-4, demonstrates this flow. MyApp.exe ships with
a DLL named HelperFunctions.dll. That DLL includes a function named EncryptThisText
that encrypts text passed to it. After performing some preparatory operations,
EncryptThisText calls the Windows API CryptEncryptMessage in Crypt32.dll. At some point,
CryptEncryptMessage needs to allocate some memory and invokes the memory-allocation
function malloc in Msvcrt.dll. After malloc has done its work and allocated the requested
memory, execution resumes at the point where CryptEncryptMessage had left off. And
when CryptEncryptMessage has completed its task, control returns back to the point in
EncryptThisText just after its call to CryptEncryptMessage.

MyApp.exe

HelperFunctions.dll
Crypt32.dll

Msvcrt.dll

EncryptThisText()

CryptEncrtypMessage()

malloc()

Process Virtual Address Space

FIGURE 2-4 Example function calling sequence.

The call stack is the construct that allows the system to know how to return control to a
 series of callers, as well as to pass parameters between functions and to store local func-
tion variables. It’s organized in a “last in, first out” manner, where functions remove items
in the reverse order from how they add them. When a function is about to call a subfunc-
tion, it puts the memory address of the next instruction to execute upon returning from the
 subfunction (its “return address”) at the top of the stack. When that subfunction calls yet
 another function, it adds its own return address to the stack. On returning from a function,
the system retrieves whatever address is at the top of the stack and begins executing code
from that point.

The convention for displaying a return address in a call stack is module!function+offset, where
module is the name of the executable image file containing the function, and offset is the
number of bytes (in hexadecimal) past the beginning of the function. If the function name

26 Part I Getting Started

is not available, the address is shown simply as “module+offset”. While malloc is executing in
the fictitious example just given, the call stack might look like this:

msvcrt!malloc+0x2a
crypt32!CryptEncryptMessage+0x9f
HelperFunctions!EncryptThisText+0x43
MyApp.exe+0x25d8

As you can see, a call stack not only tells you what piece of code is executing, it also tells you
how the program got there.

What Are Symbols?
When inspecting a thread start address or a return address on a call stack, a debugger can
easily determine what module it belongs to by examining the list of loaded modules and
their address ranges. However, when a compiler converts a developer’s source code into
computer instructions, it does not retain the original function names. The one exception is
that a DLL includes an export table that lists the names and offsets of the functions it makes
available to other modules. However, the export table does not list the names of the library’s
internal functions, nor does it list the names of COM entry points that are designed to be
 discovered at runtime.

Note Executable files loaded in user-mode processes are generally either EXE files with which a
new process can be started or DLL files that are loaded into an existing process. EXE and DLL files
are not restricted to using those two file extensions, however. Files with COM or SCR extensions
are actually EXE files, while ACM, AX, CPL, DRV, and OCX are examples of other file extensions of
DLLs. And installation programs commonly extract and launch EXE files with TMP extensions.

When creating executable files, compilers and linkers can also create corresponding symbol
files (with the default extension PDB). Symbol files hold a variety of data that is not needed
when running the executable code but which can be useful during debugging, including
the names and entry point offsets of functions within the module. With this information,
a debugger can take a memory address and easily identify the function with the closest
 preceding address. Without symbols, the debugger is limited to using exported functions, if
any, which might have no relation at all to the code being executed. In general, the larger the
offset on a return address, the less likely the reported function name is to be accurate.

Note The Sysinternals utilities are able to use only native (unmanaged) symbol files when
 reporting call stacks. They are not able to report function names within JIT-compiled .NET
 assemblies.

 Chapter 2 Windows Core Concepts 27

A symbol file must be built at the same time as its corresponding executable or it will not be
correct and the debug engine might refuse to use it. Older versions of Microsoft Visual C++
created symbol files only for Debug builds unless the developer explicitly changed the build
configuration. Newer versions now create symbol files for Release builds as well, writing them
into the same folder with the executable files. Microsoft Visual Basic 6 can create symbol files,
but it does not do so by default.

Symbol files can contain differing levels of detail. Full symbol files (sometimes called private
symbol files) contain details that are not found in public symbol files, including the path to
and the line number within the source file where the symbol is defined, function parameter
names and types, and variable names and types. Software companies that make symbol files
externally available typically release only public symbol files, while retaining the full symbol
files for internal use.

The Debugging Tools for Windows make it possible to download correct symbol files on
demand from a symbol server. The server can store symbol files for many different builds of
a given executable file, and the Debugging Tools will download the one that matches the
image you are debugging. (It uses the timestamp and checksum stored in the executable’s
header as a unique identifier.)

Microsoft has a symbol server accessible over the Web that makes Windows’ public symbol
files freely available. By installing the Debugging Tools for Windows and configuring the
Sysinternals utilities to use the Microsoft symbol server, you can easily see what Windows
functions are being invoked by your processes.

Figure 2-5 shows a call stack for an event captured with Process Monitor. The presence of
MSVBVM60.DLL on the stack (frames 15 and 17–21) indicates that this is a Visual Basic 6
program because MSVBVM60.DLL is the Visual Basic 6 runtime DLL. The large offsets for
the MSVBVM60 frames suggest that symbols are not available for that module and that the
names shown are not the actual functions being called. Frame 14 shows a call into a function
named Form1::cmdCreate_Click in the main executable (LuaBugs_VB6.exe). This frame also
shows a source file path, indicating that we have full symbolic information for this third-party
module. This function then calls CWshShell::RegWrite in Wshom.ocx (frame 13), indicating
that this Visual Basic 6 program is using a Windows Script Host ActiveX to write to the regis-
try. CWshShell::RegWrite calls an internal function in the same module (frame 12), which calls
the documented RegCreateKeyExA Windows API in Kernel32.dll (frame 11). Execution passes
through Kernel32 internal functions (frames 8–10) and then into the ZwCreateKey native API
in Ntdll.dll (frame 7). So far, all of these functions have executed in user mode, as indicated by
the U in the Frame column, but in frame 6 the program transitions to kernel mode, indicated
by the K. The two-letter prefixes of the kernel functions (frames 0–6) identify the executive
components to which they belong. For example, Cm refers to the Configuration Manager,
which is responsible for the registry, and Ob refers to the Object Manager. It was during the
processing of CmpCallCallBacks (frame 0) that this stack trace was captured. Note that the

28 Part I Getting Started

symbolic information shown in frames 0–13 was all derived from Windows public symbols
downloaded on demand by Process Monitor from Microsoft’s symbol server.

FIGURE 2-5 Process Monitor call stack with information from symbol files.

Configuring Symbols
The Sysinternals utilities that use symbols require two pieces of information, as shown in
Figure 2-6: the location of the Dbghelp.dll to use, and the symbols path. The Sysinternals
utilities that can use full symbolic information to display source files also request source code
paths.

Dbghelp.dll is one of Microsoft’s debug engine DLLs, and it provides the functionality
for walking a call stack, loading symbol files, and resolving process memory addresses to
names. Only the version of Dbghelp.dll that ships in the Debugging Tools for Windows
supports the downloading of files from symbol servers. The Dbghelp.dll that ships with
Windows in the %SystemRoot%\System32 directory can use only symbol files stored locally.
The first time you run them, Sysinternals utilities check default installation locations for the
Debugging Tools and use its Dbghelp.dll if found. Otherwise, it defaults to using the version
in %SystemRoot%\System32.

 Chapter 2 Windows Core Concepts 29

FIGURE 2-6 Process Explorer’s Configure Symbols dialog box.

The URL for the Debugging Tools for Windows is http://www.microsoft.com/whdc/devtools/
debugging/default.mspx. The Debugging Tools installer used to be a standalone download,
but it is now incorporated into the Windows SDK. To get the Debugging Tools, you must run
the SDK installer and select the Debugging Tools options you want. Among the options are
the Debugging Tools redistributables, which are the standalone Debugging Tools installers,
available for x86, x64, and IA64. The redistributables are handy for installing the debuggers
to other machines in your environment without having to run the full SDK installer on each of
them.

The symbols path tells the debugging engine where to search for symbol files if they cannot
be found in default locations. The two default locations that the debugging engine searches
for symbol files before checking the symbols path are the executable’s folder and the folder
where the symbol file was originally created, if that information is in the executable file.

The symbols path can consist of file system folders and symbol server directives. The
first time you run it, the Sysinternals utility will set its symbol path to the value of the
_NT_SYMBOL_PATH environment variable. If that variable is not defined, the utility sets its
symbol path to srv*http://msdl.microsoft.com/download/symbols, which uses the Microsoft
public symbol server but does not save the downloaded symbol files to a local cache.

File system folders and symbol server directives can be intermixed in the symbols path,
separated with a semicolon. Each element is searched in the order it appears in the path. As
implied earlier, symbol server directives are of the form srv*DownstreamStore*SymbolServer.
Consider the following symbols path:

C:\MySyms;srv*C:\MSSymbols*http://msdl.microsoft.com/download/symbols

30 Part I Getting Started

The debugging engine will first search the default locations and then C:\MySyms, which
could be a good place to put your own applications’ private symbol files. If it hasn’t found
the symbol file, it then searches C:\MSSymbols, and if the file isn’t there it finally queries the
symbol server. If the symbol server has the file, the debugging engine downloads the file to
C:\MSSymbols.

See the Debugging Tools documentation for more information about symbol paths, symbol
servers, source paths, and environment variables used by the debugging engine.

Tip If the Microsoft public symbols are the only symbols you need, set the symbols path to the
following:

srv*c:\symbols*http://msdl.microsoft.com/download/symbols

This directs the debugging engine first to search the cache under C:\Symbols and then to down-
load symbol files as needed from the Microsoft public symbol server, saving them into the cache
so that they won’t need to be downloaded again. The debugging engine will create C:\Symbols if
it doesn’t already exist.

Sessions, Window Stations, Desktops, and Window
Messages

The descriptions of several of the Sysinternals utilities—including Process Explorer, Process
Monitor, PsExec, AdInsight, Desktops, and LogonSessions—refer to terminal services sessions,
session IDs, the “console session,” and “session 0”; interactive and noninteractive window
stations; and other programs running on the “same desktop.” These concepts, although not
widely understood, can be critical to problem solving on the Windows platform.

Let’s start with an overview of the hierarchy, an example of which is depicted in Figure 2-7,
and then define the terms. At the outermost layer are terminal services (TS) sessions. Each
session contains one or more window stations, which contain desktops. Each of these se-
curable objects has resources allocated for its sole use. There is also a loose relationship
between these and logon sessions created by the LSA. Although Windows documentation
doesn’t always make a clear distinction between LSA logon sessions and TS sessions, they are
completely separate entities.

 Chapter 2 Windows Core Concepts 31

mswindowstation

Session
0

Services-0x0-3E7$

Services-0x0-3E5$

Services-0x0-3E4$

WinSta0

Default

Default

Disconnect

Winlogon

MsrestrictedDesk

Default

Default

Default

Disconnect

Winlogon

Desktop1

Disconnect

Winlogon

Default

WinSta0

WinSta0

Session
1

Session
2

FIGURE 2-7 Relationship between sessions, window stations, and desktops.

Terminal Services Sessions
Terminal services support multiple interactive user sessions on a single computer. Introduced
in Windows NT 4.0 Terminal Server Edition, they were not incorporated into the Windows
client operating system family until Windows XP. Features they support include Fast User
Switching, Remote Desktop, Remote Assistance, Remote Applications Integrated Locally
(RAIL, a.k.a. RemoteApps), and virtual machine integration features. An important limitation
of Windows clients (Windows XP, Windows Vista, and Windows 7) is that only one interac-
tive session can be active at a time. That is, while processes can continue to run in multiple
disconnected sessions simultaneously, only one session can update a display device and
receive keyboard and mouse input. A further limitation is that a domain-joined Windows XP
computer supports at most only one interactive session. For example, if a user is logged on
at the console, you can log on to the computer via Remote Desktop using the same account
and continue that session, but you cannot log on with a different user account unless the first
user is logged off.

32 Part I Getting Started

Terminal services sessions are identified by an incrementing numeric session ID, starting with
session 0. Windows defines a global namespace in the Object Manager and a session-private
“local” namespace for each session numbered 1 and higher to provide isolation between
sessions. The global namespace serves as the local namespace for processes in session 0.
(WinObj offers a graphical view of the Object Manager namespace and is described in
Chapter 14.)

System processes and Windows services always run in terminal services session 0. In Windows
XP and Windows Server 2003, the first interactive user to log on to a computer also uses
terminal services session 0 and, consequently, uses the same local namespace as services.
Windows XP and Windows Server 2003 create sessions 1 and higher only when needed; if
the first user logs off before a second one logs on, the second user uses session 0 as well.
Consequently, on a domain-joined Windows XP, session 0 is always the only session.

In Windows Vista and newer, services run in session 0, but for security reasons all interac-
tive user sessions run in sessions 1 and higher. This increased separation between end-user
 processes and system processes is called session 0 isolation.

Note The term console session is sometimes mistaken as a synonym for session 0. The console
session is the terminal services session associated with the locally attached keyboard, video, and
mouse. If all active sessions on a computer are remote desktop sessions, the console session re-
mains connected and displays a logon screen. It might or might not happen to be session 0 on
Windows XP/Windows 2003, but it is never session 0 on Windows Vista or newer.

Window Stations
Each terminal services session contains one or more named window stations. A window
 station is a securable object that contains a clipboard, an atom table, and one or more
 desktops. Every process is associated with one window station. Within a TS session, only
the window station named WinSta0 can display a user interface or receive user input. In TS
sessions 1 and higher, Windows creates only a WinSta0 window station. (See Figure 2-8.) In
session 0, in addition to WinSta0, Windows creates a separate window station for every LSA
logon session associated with a service, with the locally unique identifier (LUID) of the logon
session incorporated into the window station name. For example, service processes that
run as System run in the Service-0x0-3e7$ window station, while those that run as Network
Service run in the Service-0x0-3e4$ window station. These window stations cannot display UI.

 Chapter 2 Windows Core Concepts 33

FIGURE 2-8 WinObj showing the interactive window station in session 2’s private namespace.

PsExec -s cmd.exe runs a command prompt in the Service-0x0-3e7$ window station and
redirects its console I/O to PsExec. PsExec’s -i option lets you specify the terminal services
session and runs the target process in its WinSta0 window station. PsExec is described in
Chapter 6.

A service configured to run as System can also be configured to Allow Service To Interact
With Desktop. When so configured, the service runs in session 0’s WinSta0 instead of
 Service-0x0-3e7$. When the interactive user was also in session 0, this allowed the service to
display UI directly to the end user. In hindsight, this wasn’t a good idea as I’ll describe shortly,
and Microsoft has recommended against using this technique—and with session 0 isolation,
this no longer works. (The Interactive Services Detection service, UI0Detect, offers partial
mitigation.)

Desktops
Each window station contains one or more desktops. A desktop is a securable object with a
logical display surface on which applications can render UI in the form of windows.

Note The desktops described here are unrelated to the Desktop abstraction at the top of the
Windows Explorer shell namespace.

Multiple desktops can contain UI, but only one can be displayed at a time. There are typically
three desktops in the interactive window station: Default, Screen-saver, and Winlogon.
The Default desktop is where user applications run by default. (The Sysinternals Desktops
 utility creates up to three additional desktops on which to run applications. It is described in
Chapter 10, “Desktop Utilities.”) The Screen-saver desktop is where Windows runs the screen
saver if password protection is enabled. The Winlogon desktop, also known as the secure
desktop, is where Windows transfers control when you press Ctrl+Alt+Del and the default
place to display UAC elevation dialog boxes. Permissions on the Winlogon desktop restrict

34 Part I Getting Started

access only to programs running as System, which protects secure operations involving
 password entry.

As a process is associated with a window station, each of its threads is associated with
a desktop within the window station. Although individual threads of a process can be
 associated with different desktops, they are usually associated with a single desktop.

Several Sysinternals utilities, including Process Explorer (discussed in Chapter 3) and Process
Monitor (covered in Chapter 4), identify the TS session ID to which a process belongs.
Although none of the utilities reliably identify the window station or desktops that a process
is associated with, Process Explorer’s Handle View can offer hints in the form of open handles
to window stations or desktop objects. For example, in Figure 2-9, Process Explorer shows a
process running as System in session 0 with open handles to the \Default desktop and the
\Windows\WindowStations\Service-0x0-3e7$ window station.

FIGURE 2-9 A process in session 0 with open handles to desktop and window station objects.

Window Messages
Unlike console applications, Windows-based applications are event driven. Each thread that
creates window objects has a queue to which messages are sent. These GUI threads wait for
and then process window messages as they arrive. These messages tell the window what to
do or what occurred. For example, messages can tell the window “Redraw yourself,” “Move
to screen coordinates (x,y),” “Close yourself,” “The Enter key was pressed,” “The right mouse
 button was clicked at coordinates (x,y),” or “The user is logging off.”

 Chapter 2 Windows Core Concepts 35

Window messaging is mediated by the window manager. Messages can be sent to any
 window from any thread running on the same desktop—the window manager does not allow
a program to send a window message to a window on a different desktop. Process Monitor’s
/Terminate and /WaitForIdle commands must be invoked from the same desktop on which
the target Procmon instance is running, because they use window messaging to tell the exist-
ing instance to shut itself down and to determine that the target instance is ready to process
commands in the form of window messages.

Window messages can be used to simulate mouse or keyboard activity. RegJump and the
Jump To feature in Process Monitor and Autoruns do exactly this to navigate to a key in
Regedit. Because of the levels of abstraction between a physical keypress and the resulting
window messages received by a GUI program, it is effectively impossible for the target pro-
gram to know with absolute certainty whether a key was pressed on a keyboard or another
program simulated a keypress by sending it window messages. (This is true of all windowing
systems, not just Windows.)

Except for the introduction of multithreading support in 32-bit versions of Windows, this
window messaging architecture dates back to Windows 1.0, and it brings forward a lot of
legacy. In particular, window objects do not have security descriptors or access control lists.
This is why allowing services to display windows on the user’s desktop was a bad idea—
user programs could send malformed or specially crafted messages to windows owned by
processes running as System and, if successfully exploited, control those processes. (This is
commonly called a shatter attack.) If the user was not already an administrator, elevation of
privilege became trivially easy. This is the main reason that interactive users no longer log on
to session 0.

With “standard user,” which is the default mode in Windows Vista and newer—and with
UAC elevation popularizing the ability of applications to run with administrator rights in the
same desktop with nonadministrative processes—some additional protection was needed to
 reduce the risk of shatter attacks against windows owned by elevated processes. The result is
User Interface Privilege Isolation (UIPI).

Prior to Windows Vista, any process running as a particular user could take complete control
over any other process running as the same user. With Mandatory Integrity Control (MIC),
processes are assigned and run at an integrity level (IL), a numeric value that indicates the
relative trustworthiness of the process. Elevated apps run at High, normal user apps run at
Medium, and low-rights processes such as Protected Mode Internet Explorer run at Low.
(Process Explorer, described in Chapter 3, can show each process’ IL.)

36 Part I Getting Started

With UIPI, when the window manager mediates a window message that can change the
target’s state (such as a button click message), the window manager compares the IL of the
process sending the message to the IL of the process that owns the window receiving the
message. If the sender’s IL is lower than that of the receiver’s, the message is blocked. This is
the reason that RegJump and similar Jump To features must execute at an IL at least as high
as that of Regedit.

For more information about MIC and UIPI, see the Windows Vista Integrity Mechanism
Technical Reference at http://msdn.microsoft.com/en-us/library/bb625964.aspx.

Windows® Sysinternals Administrator’s Reference

 37

Part II

Usage Guide
In this part:
Chapter 3: Process Explorer . 39
Chapter 4: Process Monitor . 101
Chapter 5: Autoruns . 145
Chapter 6: Pstools . 171
Chapter 7: Process and Diagnostic Utilities . 211
Chapter 8: Security Utilities . 261
Chapter 9: Active Directory Utilities . 287
Chapter 10: Desktop Utilities . 309
Chapter 11: File Utilities . 325
Chapter 12: Disk Utilities . 335
Chapter 13: Network and Communication Utilities . 351
Chapter 14: System Information Utilities . 359
Chapter 15: Miscellaneous Utilities . 377

 39

Chapter 3

Process Explorer
Processes are the heart of any Microsoft Windows system. Knowing what processes are
 running at any given time can help you understand how your CPU and other resources are
being used, and it can assist you in diagnosing problems and identifying malware. As you’ll
see, there is a reason why Process Explorer is the most popular download from Sysinternals.

To help provide Windows users with insight into process activity on their systems, Windows
has always included Task Manager, an easy-to-use application for viewing the processes
 (applications and services) that are running on your system. To avoid overwhelming users,
Task Manager provides limited details. It allows users to see a high-level, flat list of processes,
services and users, graphs of system performance and network usage, and an abstraction
called “applications” (effectively a list of the visible windows in the current user’s session).
Task Manager is the application users typically turn to in order to find out why their system is
slow and perhaps to kill errant processes. It often doesn’t provide deep enough insight into
what is causing a process to misbehave, nor does it show key data that can help a technical
user to identify a process as malware.

Early on in the life of Sysinternals, Bryce Cogswell and I created multiple utilities to fill the
gaps in Task Manager. These utilities, each with a different perspective, began tracking
more detailed information on Windows processes and services. Three of the first ones we
developed—PsList, DLLView, and HandleEx (now just named Handle)—were the start for
Sysinternals’ mission of exposing detailed process information. All of these utilities are still
available today and are covered in other chapters. Each filled a specific niche, but it soon
 became apparent that something more comprehensive was needed—a single GUI to really
drill in to what was happening on a Windows system from a process perspective.

Process Explorer (Procexp) was born.

Procexp Overview
Of all the Sysinternals utilities, Procexp is arguably the most feature-rich and touches more
aspects of Windows internals than any other. (To get the most out of Procexp, you should
review Chapter 2, “Windows Core Concepts.”) Here are just some of the key features of
Procexp:

■ Tree view shows parent/child process relationships.

■ Color coding identifies the process type, such as services, .NET processes, processes
running as the same user as Procexp, processes that are part of a job, and packed
images.

40 Part II Usage Guide

■ Tooltips show command-line and other process information.

■ Highlighting to call attention to new and recently exited processes.

■ Fractional CPU so that processes consuming less than 1 percent of CPU time do not
 appear completely inactive.

■ More accurate indication of CPU consumption based on CPU cycle counts or context
switches.

■ Task Manager replacement—you can have Process Explorer run whenever Task
Manager is requested.

■ Identify which process owns any visible window on your desktop.

■ Identify a top-level window belonging to a given process, and bring it forward or close
it.

■ Identify all dynamic-link libraries (DLLs) and mapped files loaded by a process and all
handles to kernel objects opened by a process.

■ Find which processes have open handles to kernel objects such as files or folders.

■ Find which processes have loaded a DLL, and identify its path and other attributes.

■ Graphical representations of CPU activity, memory usage, and I/O activity, both
 systemwide and per-process.

■ Detailed metrics of memory usage and I/O activity.

■ Detailed information about a process security context.

■ Detailed information about process TCP/IP endpoints.

■ View process threads, including their start addresses and stacks.

■ Create process dumps.

Procexp provides several views to display process information. The default Procexp window
consists of a process list, with processes arranged in a tree view (as shown in Figure 3-1). This
window is discussed in the “Main Window” section later in this chapter. Procexp can split the
main window into an upper pane and lower pane, with the process list in the upper pane
and either DLL view or Handle view in the lower pane. DLL view lets you drill down into the
DLLs and mapped files loaded by the process selected in the upper pane. Handle view lets
you inspect all the kernel objects currently opened by the selected process, including (but
not limited to) files, folders, registry keys, window stations, desktops, network endpoints,
and synchronization objects. DLL view and Handle view are described in the “DLLs and
Handles” section. Finally, the process’ Properties dialog box offers a tremendous amount of
 information about a particular process and is discussed in the “Process Details” section.

Procexp runs on x86, x64, and IA64 versions of Windows XP and newer, and Windows
Server 2003 and newer.

 Chapter 3 Process Explorer 41

FIGURE 3-1 The Procexp process list, with tree view.

Measuring CPU Consumption
Older versions of Windows were able to track only an approximation of actual CPU usage.
At a clock-generated interrupt that on most systems has a period of 15.6 milliseconds (ms),
Windows identifies the thread currently executing on each CPU. If the thread is executing
in kernel mode, its kernel-mode time is incremented by 15.6 ms; otherwise, its user-mode
time is incremented by that amount. The thread might have been executing for only a few
CPU cycles when the interrupt fired, but the thread is charged for the entire 15.6-ms interval.
Meanwhile, hundreds of other threads might have executed during that interval, but only
the thread currently running at the clock tick gets charged. Windows Task Manager uses
these approximations to report CPU usage even on newer versions of Windows that have
more accurate metrics available. Task Manager further reduces its accuracy by rounding
to the nearest integer percentage, so processes with executing threads that consume less
than 1 percent of CPU time are indistinguishable from processes that do not execute at all.
Finally, Task Manager does not account for CPU time spent servicing interrupts or deferred
 procedure calls (DPCs), incorrectly including that time with the System Idle Process.

42 Part II Usage Guide

Procexp represents CPU usage more accurately than does Task Manager. First, Procexp shows
per-process CPU utilization percentages rounded to a resolution of two decimal places by
default instead of to an integer. Second, Procexp tracks the time spent servicing interrupts
and DPCs and displays them separately from the Idle process. Finally, Procexp uses addi-
tional system metrics so that processes consuming small amounts of CPU can be identified
and, when possible, provide a more accurate account of actual CPU consumption. Different
 metrics are available on Windows XP, Windows Vista, and Windows 7 and their correspond-
ing server versions. Procexp takes advantage of whatever is available to report the most
 accurate measures possible.

On all supported versions of Windows, each thread tracks its context switches—the number
of times that a CPU’s context was switched to begin executing the thread. If you display the
Context Switch Delta column, Procexp monitors and reports changes in these numbers,
so you can see processes that consume even small amounts of CPU. These often include
 processes that periodically wake to look for status changes rather than using system-
synchronization mechanisms that would allow the process not to execute until an actual
 status change occurs. Such processes consume more power than needed and also require
that their code and data be paged into the working set and therefore occupy RAM. With
this column enabled on Windows XP or Windows Vista, Procexp reports “< 0.01” in the
CPU column if the process had any context switches in the refresh interval but not enough
CPU usage to report 0.01%.

A context switch indicates that a thread has executed, but not how long it executed. In
 addition to context switches, Windows Vista and newer measure the actual kernel-mode and
user-mode CPU cycles consumed by each thread. If you enable the display of the CPU Cycles
Delta column, Procexp monitors and reports those changes. With this column enabled on
Windows Vista, Procexp can report “< 0.01” for processes consuming small amounts of CPU.
As with Context Switch Delta, CPU Cycles Delta can help identify processes that are wasting
resources.

On Windows Vista, Procexp can measure context switches for interrupts and DPCs, but
not the corresponding CPU cycles. On Windows 7, Procexp can accurately attribute all CPU
cycles, including those for interrupts and DPCs. So on Windows 7 instead of using Windows’
inaccurate timer-based accounting, Procexp reports CPU usage percentages based on actual
CPU cycles consumed. Processes consuming small amounts of CPU report “< 0.01” without
you having to enable additional columns for display. Procexp’s calculation of CPU usage is
much more accurate than Task Manager’s, with the perhaps-surprising effect that the CPU
usage it reports is generally higher.

Administrative Rights
Procexp does not absolutely require administrative rights, but a great deal of system
 information is accessible only when running with elevated permissions, particularly

 Chapter 3 Process Explorer 43

for processes not running in the current user’s logon session. Procexp depends on the
Debug Programs privilege (which is granted to Administrators by default) to do this.
Environments that adopt security policies that do not grant the Debug Programs privilege
to Administrators will not be able to take full advantage of Procexp’s capabilities. Procexp
makes a best effort to display the information that it can, and it leaves fields blank or reports
“access denied” when it can’t.

Note On Windows Vista and newer, even full administrative rights are not sufficient to read
 detailed information from protected processes. The Audiodg.exe and System processes are
 protected processes, which Procexp reports on the security page of the process’ Properties
 dialog box.

To run Procexp with administrative rights on Windows XP and Server 2003 if you are not
 already logged on as an administrator, you must use RunAs to launch Procexp, or start
Procexp from another program (such as Cmd.exe) that is already running as an administra-
tor. On Windows Vista and newer, the Run As Administrator option can serve an equivalent
purpose.

On Windows Vista and newer, Procexp offers two additional options. If Procexp is running
nonelevated, choosing Show Details For All Processes from the File menu restarts Procexp
with User Account Control (UAC) elevation. The second option is to start Procexp with the
/e command-line option, which also requests UAC elevation. (Of course, you must be running
in a context in which elevation is possible.)

See the “Administrative Rights” section in Chapter 2 for more information on RunAs and UAC
elevation.

Main Window
The process list is a table in which each row represents a process on the system, and the
 columns represent continually updated attributes of those processes. You can change which
attributes are displayed, resize and reorder the columns, and save column sets for later
use. The Procexp toolbar includes buttons for performing common actions and graphs
 representing systemwide metrics. Finally, the status bar shows user-selectable system metrics.
Each of these features will be described in turn.

Process List
Each row in the process list represents a running process on the local computer. Actually,
that’s not technically accurate. As my friend and Windows Internals co-author David Solomon
likes to point out, processes do not run—only threads can run. Threads—not processes—are
the entities that Windows schedules for execution and that consume CPU time. A process

44 Part II Usage Guide

is simply the container for a set of resources, including one or more threads. It’s also not
 accurate to refer to “active processes” or to “processes with running threads,” because many
processes spend most of their lifetimes with none of their threads running or scheduled for
execution. So each row in the process list really represents a process object on the system
that has its own virtual address space and one or more threads that conceivably could
 execute code at some point. And as we’ll discuss later, the first three rows in the default (tree)
view are exceptions. Going forward, I’ll refer to them as running processes.

Process Highlighting
One of the first things that stands out in the process list is the use of color highlighting to
distinguish different types of processes. Although you can configure which process types are
highlighted and in what color, these are the defaults:

■ Light blue These processes (“own processes”) are the processes that are running in
the same user account as Procexp. Note that although they are running in the same
user account, they might be in different Local Security Authority (LSA) logon sessions,
integrity levels, or terminal sessions, and therefore are not all necessarily running in the
same security context. Also note that if you started Procmon as a different user, other
applications on the desktop will not be highlighted as “own processes.”

■ Pink Designates services. These are processes containing one or more Windows
services.

■ Violet Denotes “packed images.” Procexp uses simple heuristics to identify program
files that might contain executable code in compressed form, encrypted form, or both.
Malware often uses this technique to evade anti-malware and then unpack itself in
memory and execute. Note that sometimes the heuristics result in false positives, most
commonly with debug builds of Microsoft Visual C++ applications.

■ Brown Indicates jobs. These are processes that have been associated with a job. A
job is a Windows construct that allows one or more processes to be managed as a unit.
Jobs can have constraints applied to them, such as memory and execution time limits.
A process can be associated with at most one job. Jobs are not highlighted by default.

■ Yellow Indicates .NET processes. These are processes that use the Microsoft .NET
Framework.

■ Dark gray Indicates suspended processes. These are processes in which all threads are
suspended and cannot be scheduled for execution. Processes that have crashed might
appear as suspended while Windows Error Reporting handles the crash. (Don’t confuse
this gray with the lighter gray color that, with default Windows color schemes, indicates
the selected row when the Procexp window does not have focus.)

If a process belongs to more than one of these categories, the precedence order is
Suspended, Packed, .NET, Jobs, Services, Own Process. For example, if a process hosts a
 service and uses the .NET Framework, Procexp applies the highlight color associated with

 Chapter 3 Process Explorer 45

.NET processes because that has higher precedence than Services. Procexp requires admin-
istrative rights to recognize a packed image, a .NET process, or association with a job if the
process is running at a higher integrity level or in a different user account from Procexp.

In addition to highlighting process types, Procexp highlights new processes and processes
that have just exited. By default, when Procexp identifies a new process, it highlights its row
in the process list with a green background for one second. When a process exits, Procexp
keeps it in the list for one second, highlighted in red. Note that even though the process
 appears in the list, if it is highlighted in red, the process has already exited and no longer
exists. You can configure how long the “difference highlight” lasts by choosing Difference
Highlight Duration from the Options menu and entering a number from 0 to 9 in the dialog
box. (See Figure 3-2.) Note that the actual duration also depends on the Procexp refresh
 interval. The difference highlighting changes only when the display is refreshed.

FIGURE 3-2 Difference Highlighting Duration dialog box.

To change whether a process type or difference is highlighted and in what color, choose
Configure Highlighting from the Options menu. As indicated by Figure 3-3, you can en-
able or disable the highlighting of changes or process types by selecting the corresponding
boxes. New Objects and Deleted Objects also refer to items appearing in the DLL view and
Handle view. Relocated DLLs, which is not selected by default, applies only to DLL view. Click
the Change button to display a color-picker dialog box to change the highlighting color
for the corresponding highlight type. (The highlight color for suspended processes is not
customizable.)

FIGURE 3-3 Configure Highlighting dialog box.

46 Part II Usage Guide

Updating the Display
By default, Procexp updates dynamic attributes in the display once per second. Dynamic
 attributes are those that are likely to change regularly, such as CPU time. You can pause the
updating by pressing the space bar; pressing space again resumes the automatic refresh.
You can trigger a one-time update of all the displayed data (dynamic and static attributes)
by pressing F5 or clicking the Refresh icon in the toolbar. Finally, you can change the auto-
matic refresh duration through the Update Speed submenu of the View menu. The available
 intervals range from 0.5 seconds to 10 seconds.

Tip Manually updating the display combined with difference highlighting is a great way to see
all new and deleted objects across a time span of your choosing. Pause the update, perform
 actions on the system, and then press F5 in Procexp.

Default Columns
Each column in the process list represents some static or dynamic attribute of the process.
Dynamic attributes are updated at each automatic refresh interval. The default configuration
of Procexp shows these columns:

■ Process This column shows the name of the executable, along with its icon if Procexp
can identify the full path to the executable. The first three rows represent “pseudo-
processes,” which I will describe in the “What You Can Expect to See” section shortly.

■ PID The process ID.

■ CPU The percentage of CPU time, rounded to two decimal places, consumed
by the process in the last refresh interval. (This column is fully described in the
“Process Performance Tab” section later in this chapter. Also see the “Measuring CPU
Consumption” section earlier in this chapter for more information.)

■ Private Bytes The number of bytes allocated and committed by the process for its
own use, and that are not shareable with other processes. Per-process private bytes
 include heap and stack memory. Memory leaks are often exhibited by a continual rise
in this value.

■ Working Set The amount of physical memory assigned to the process by the memory
manager.

■ Description and Company Name Extracted from the version information resource
of the executable image file. These columns are populated only if Procexp is able to
identify the path to the file and can read from it. If Procexp is not running with admin-
istrative rights, it will not be able to read that information from nonservice processes
running in a different security context.

 Chapter 3 Process Explorer 47

There are many more attributes you can choose to display, which will be described in the
“Customizing Column Selections” section later in this chapter.

You can resize columns by dragging the border lines in the column headers. You can autosize
a column to its current content by double-clicking the border line to the right of the column
title. And you can reorder columns—except for the Process column, which is always the left-
most—by dragging the column headers. The Process column is also always kept in the view;
if the other columns are wider than can fit in the window, they can be scrolled horizontally.

Clicking on a column header sorts the table by the data in that column in ascending order.
Clicking the same column header again toggles between ascending and descending order.
For example, clicking on the CPU column to get a descending sort shows the processes con-
suming the most CPU at the top of the list. The list automatically reorders at each refresh
interval as different processes consume more or less CPU. Again here, there is an exception
for the Process column.

One hidden trick in Procexp is that in both the main window and in the lower pane, pressing
Ctrl+C copies the content of the selected row to the clipboard as tab-separated text.

Process Tree
As mentioned, the Process column is always the first one displayed. It has three sorting
modes: ascending, descending, and Process Tree.

By default, Procexp displays processes in a tree view, which shows the processes’ parent/child
relationships. Whenever a process creates another process, Windows puts the process ID
(PID) of the creating process (the parent) into the internal data structure of the new process
(the child). Procexp uses this information to build its tree view. Unlike in UNIX, the process
parent/child relationship is not used by Windows, so when a process exits, processes that it
created are not updated to identify another ancestor. In the Procexp tree view, processes that
have no existing parent are left-aligned in the column.

You can collapse or expand portions of the tree by clicking the plus (+) and minus (–) icons to
the left of parent processes in the tree, or you can do it by selecting those nodes and press-
ing the left and right arrow keys. Nodes that you collapse remain collapsed if you switch to
an ascending or descending sort on the Process column or any other column.

Clicking the Process column header cycles through an ascending sort by process name,
a descending sort, and the tree view. You can also switch to the tree view at any time by
 pressing Ctrl+T or by clicking the Show Process Tree toolbar icon.

48 Part II Usage Guide

Tooltips
Hovering the mouse cursor over a column entry in which the text does not fit within the
column’s width displays a tooltip with the full text content of that entry. And yet again, the
Process column is a special case.

By default, hovering over any process name displays its command line and the full path to
its executable image, if Procexp can obtain that information. As mentioned earlier, obtain-
ing that information can require administrative rights in some cases. The command line
and image path are not shown in the tooltip if the corresponding columns are enabled for
 display. Likewise, if the Description or Company Name columns are not enabled, the tooltip
will display that information.

In addition, when you hover over a service process, the tooltip also lists the display and
 internal names of all the services hosted within that process. Hovering over taskeng.exe
on Windows Vista or taskhost.exe on Windows 7 displays the tasks running within it. And
 hovering over an Internet Explorer 8 or newer iexplore.exe hosting one or more tabs adds
the tabs’ text to the tooltip, so you can tell which process is hosting which Web page.

If the process has a user-defined comment associated with it and the Comment column is not
selected for display, the comment also appears in the tooltip. (A user-defined comment can
be entered in the Image tab of the process’ Properties dialog box. See the “Process Details”
section later in the chapter for more information.)

What You Can Expect to See
There are some patterns you can always expect to see in Procexp on a normal Windows
system. Some processes and parent/child relationships will always appear, as well as some
pseudo-processes that Procexp uses to distinguish categories of kernel-mode activity.

System processes The first three rows in the Process Tree view are System Idle Process,
System, and Interrupts. System Idle Process and Interrupts are not real operating system
 processes, and the System process does not run user-mode code.

The System Idle Process (called just “Idle” by some utilities) has one “thread” per CPU and is
used to account for CPU idle time when Windows is not running any program code. Because
it isn’t a real process, it doesn’t have a PID—there is no PID 0 in Windows. However, because
Task Manager shows an artificial System Idle Process and displays 0 in its PID column,
Procexp follows suit and assigns it PID 0.

The System process hosts only kernel-mode system threads, which only ever run (as you
might expect) in kernel mode. These threads typically execute operating system code from
Ntoskrnl.exe and device driver code.

 Chapter 3 Process Explorer 49

The Interrupts pseudo-process represents kernel-mode time spent servicing interrupts and
deferred procedure calls (DPCs). Procexp represents Interrupts as a child process of System
because its time is spent entirely in kernel mode. Windows does not charge the time repre-
sented by this pseudo-process to the System process nor to any other process. Task Manager
incorrectly includes interrupt and DPC time in its numbers for the System Idle Process.
A system with heavy interrupt activity will therefore appear to be idle according to Task
Manager. If you have a high interrupt or DPC load, you might want to investigate the reason
by using Xperf to trace interrupts and DPCs or Kernrate to monitor kernel-mode CPU usage.
For more information about interrupts and DPCs, see Windows Internals.

Startup and Logon Processes From the time Windows starts until the first user logs on,
there is a well-defined sequence of processes. By the time you log on and are able to see
the process tree in Procexp, some of these processes have exited, so the user shell (typically
Explorer.exe) appears on the left edge of the window with no parent process. For much more
information on the startup and logon sequences, see Windows Internals.

The startup sequence changed between Windows XP and Windows Vista. On Windows XP,
as shown in Figure 3-4, the System process starts Smss.exe (the Session Manager), which
starts Csrss.exe (the Windows subsystem) and Winlogon.exe. Winlogon starts Services.exe
(the Service Control Manager process), Lsass.exe (the Local Security Authority subsystem),
and two processes not seen in the figure: LogonUI.exe, which displayed the logon screen on
 non-domain-joined systems, and Userinit.exe, which Windows started after the user logged
on. Userinit.exe launched Explorer.exe (the user shell application) and then exited. Most user
applications are direct or indirect descendants of Explorer.exe. Service processes are almost
always descendants of Services.exe. Note that on Windows XP, Services.exe hosts some
 services itself and thus gets the pink highlight.

FIGURE 3-4 Process tree on Windows XP.

50 Part II Usage Guide

On Windows Vista and newer, because the interactive user no longer logs on in the same
terminal services session that the services are running in (session 0), the startup and logon
sequence was refactored, with visible differences in the Procexp process tree, shown in
Figure 3-5.

FIGURE 3-5 Process tree on Windows 7.

The System process starts an instance of Smss.exe, which remains running until system
 shutdown. That Smss.exe launches two new instances of Smss.exe, one in session 0 and one
in session 1, which create processes in their respective sessions. Both of these instances end
up exiting before a user logs on, so the initial Smss.exe always appears not to have child
processes. The instance of Smss.exe in session 0 starts an instance of Csrss.exe in session 0
and Wininit.exe. Wininit.exe starts Services.exe, Lsass.exe, and Lsm.exe (the Local Session
Manager Service). In session 1, Smss.exe starts a new instance of Csrss.exe and Winlogon.exe.
Winlogon starts LogonUI.exe to prompt the interactive user for credentials, and then Userinit.
exe (which starts Explorer) after the user has authenticated. Both LogonUI and Userinit typi-
cally exit before the shell initializes and the user can start Procexp. As on Windows XP, most
services are descendants of Services.exe; but unlike on Windows XP, Services.exe no longer
hosts any services itself.

 Chapter 3 Process Explorer 51

To view the complete startup process tree for yourself, refer to the “Boot Logging” section in
Chapter 4, “Process Monitor.”

User Processes There are some typical patterns you might wonder about in the Procexp
display. For example, you might see “own processes” that are children of service processes
rather than descendants of Explorer. The most common examples are out-of-process DCOM
components. An application invokes a component that COM determines needs to be hosted
in a separate process. Even though the new process might run as the interactive user, the
new process is launched by the process hosting the DcomLaunch service rather than directly
by the client process. Similarly, on Windows Vista and newer, the Desktop Window Manager
(Dwm.exe) is launched as the desktop user by the Desktop Window Manager Session
Manager service (UxSms).

Another frequent pattern is the use of job objects. Some DCOM components, particularly
Windows Management Instrumentation (WMI) hosting processes, run with restrictions on
the amount of memory they can allocate, the number of child processes they can start (if
any), or the maximum amount of CPU time they can charge. Anything launched through the
Secondary Logon service (for example, with RunAs) is added to a job so that the process and
any children it launches can be tracked as a unit and terminated if they are still running when
the user logs off. Finally, the Program Compatibility Assistant (PCA) on Windows Vista and
newer tracks legacy applications so that it can offer a compatibility fix to the user if the PCA
detects a potential compatibility problem for which it might have a solution after the last
process in the job has exited.

Process Actions
You can perform a number of actions on a process by right-clicking on it, or by selecting it
and choosing any of the following options from the Process menu:

■ Window submenu If the process owns a visible window on the desktop, the window
submenu lets you bring it to the foreground, or restore, minimize, maximize, or close it.
The window submenu is disabled if the process owns no visible windows.

■ Set Affinity On multi-CPU systems, you can set processor affinity for a process so
that its threads will run only on the CPU or CPUs you specify. (See Figure 3-6.) This can
be useful if you have a runaway CPU-hogging process that must be allowed to keep
running but throttled back so that you can troubleshoot it. You can use Set Affinity
to restrict the process to a single core temporarily and free up other CPUs so that the
system is still usable. (If a particular process should always be restricted to a single CPU
and you can’t modify its source code, use the SingleProcAffinity application compatibil-
ity shim, or as a last resort, modify the file’s PE header to specify affinity.)

52 Part II Usage Guide

FIGURE 3-6 Dialog box for setting processor affinity on a two-processor system.

■ Set Priority View or set the base scheduling priority for the process.

■ Kill Process You can forcibly terminate a process by choosing Kill Process or by
clicking the Kill Process button in the toolbar. By default, Procexp prompts you for
confirmation before terminating the process. You can disable that prompt by clearing
Confirm Kill in the Options menu.

Warning Forcibly terminating a process does not give the process an opportunity to shut
down cleanly and can cause data loss or system instability. In addition, Procexp does not
provide extra warnings if you try to terminate a system-critical process such as Csrss.exe.
Terminating a system-critical process results in an immediate Windows blue screen crash.

■ Kill Process Tree When Procexp is in the process-tree sorting mode, this menu item
is available and allows you to forcibly terminate a process and all its descendants. If the
Confirm Kill option is enabled, you will be prompted for confirmation first.

■ Restart When you select this item, Procexp terminates the highlighted process (after
optional confirmation) and starts the same image using the same command-line argu-
ments. Note that the new instance might fail to work correctly if the original process
depended on other operating characteristics, such as the security context, environment
variables, or inherited object handles.

■ Suspend If you want a process to become temporarily inactive so that a system
 resource—such as a network, CPU, or disk—becomes available for other processes, you
can suspend the process’ threads. To resume a suspended process, choose the Resume
item from the process context menu.

Tip Suspend can be useful when dealing with “buddy system” malware, in which two or
more processes watch for each other’s termination, with the nonterminated one restarting
its buddy if it dies. To defeat such malware, suspend the processes first and then terminate
them.

 Chapter 3 Process Explorer 53

■ Launch Depends If the Dependency Walker (Depends.exe) utility is found, Procexp
launches it with the path to the executable image of the selected process as a
 command-line argument. Depends.exe shows DLL dependencies. It used to ship
with various Microsoft products, and it’s now distributed through
www.DependencyWalker.com.

■ Debug This menu item is available only if a debugger is registered in HKEY_LOCAL_
MACHINE\Software\Microsoft\Windows NT\CurrentVersion\AeDebug. Choosing
Debug launches the registered debugger with –p followed by the selected process’ PID
as the command-line arguments. Note that closing the debugger without detaching
first will terminate the debugee as well. If the debugger registration is changed while
Procexp is running, Procexp needs to be restarted to pick up the change.

■ Create Dump submenu The options on this submenu let you capture a minidump
or a full memory dump of the selected process to a file location of your choosing.
Capturing a dump does not terminate the process.

■ Properties This menu item displays the Properties dialog box for the selected process,
which displays a wealth of information about the process. It is described in detail in the
“Process Details” section later in this chapter.

■ Search Online Procexp will launch a search for the selected executable name using
your default browser and search engine. This option can be useful when researching
malware or identifying the source of an unrecognized process.

Customizing Column Selections
You can change which columns are displayed by right-clicking the column header row and
selecting Select Columns, or by choosing Select Columns from the View menu. Procexp
 offers over 100 process attributes that can be displayed in the main window, and over three
dozen more that can be displayed in the DLL and Handle views and in the status bar. The
Select Columns dialog box (shown in Figure 3-7) categorizes these into ten tabs: Process
Image, Process Performance, Process Memory, .NET, Process I/O, Process Network, Process
Disk, Handle, DLL, and Status Bar. Let’s look at the attributes that can be displayed in the
main window.

54 Part II Usage Guide

FIGURE 3-7 The Process Image tab of the Select Columns dialog box.

Process Image Tab
The Process Image tab (shown in Figure 3-7) contains process attributes that, for the most
part, are established at process start and do not change over the life of a process. These
include the Process Name and PID columns, which are always displayed and cannot be
 deselected. The other columns you can select from this tab are as follows:

■ User Name The user account in which the process is running, in DOMAIN\USER
format.

■ Description Extracted from the version resource of the executable image. If this
 column is not enabled, the information appears in the process name tooltip.

■ Company Name Extracted from the version resource of the executable image. If this
column is not enabled, the information appears in the process name tooltip.

■ Verified Signer Indicates whether the executable image has been verified as digitally
signed by a certificate that chains to a root authority trusted by the computer. See the
“Verifying Image Signatures” section later in this chapter for more information.

■ Version The file version extracted from the version resource of the executable image.

■ Image Path The path to the executable image. Note that when this column is
 enabled, the process name tooltip no longer shows the full path.

■ Image Type (64 vs 32-bit) On 64-bit versions of Windows, this field indicates whether
the program is running native 64-bit code or 32-bit code running in WOW64 (Windows
On Windows64). On 32-bit versions of Windows, this check box is disabled.

 Chapter 3 Process Explorer 55

■ Window Title If the process owns any visible windows, shows the text of the title bar
of a top-level window, similar to the Applications tab of Task Manager. This attribute is
dynamic and changes when the application’s window title changes.

■ Window Status If the process owns any visible windows, indicates whether it
 responds in a timely fashion to window messages (Running or Not Responding). This is
similar to the Status column on the Task Manager Applications tab. This attribute is also
dynamic.

■ Session Identifies the terminal services session in which the process is running.
Services and most system code runs in session 0. User sessions on Windows XP and
Windows Server 2003 can be in any session; user sessions on Windows Vista and newer
are always in session 1 or higher.

■ Command Line The command line that was used to start the process.

■ Comment A user-defined comment that can be entered in the Image tab of the
 process’ Properties dialog box. See the “Process Details” section for more information.

■ DEP Status Indicates whether Data Execution Prevention (DEP) is enabled for the
 process. DEP is a security feature that mitigates buffer overflow and other attacks by
disallowing code execution from memory that has been marked “no-execute,” such as
the stack and heap. The column text can be blank (DEP not enabled), DEP (enabled),
DEP (permanent) (DEP enabled within the executable and cannot be disabled), or
<n/a> if Procexp cannot determine the DEP status of the process.

■ Integrity Level On Windows Vista and newer, indicates the integrity level (IL) of the
process. Services run at System level, elevated processes at High, normal user processes
at Medium, and low-rights processes such as Protected Mode Internet Explorer at Low.

■ Virtualized On Windows Vista and newer, indicates whether UAC file and registry
virtualization is enabled. File and registry virtualization is an application=compatibility
technology that intercepts attempts by legacy Medium IL processes to write to pro-
tected areas and transparently redirects them to areas owned by the user.

■ ASLR Enabled On Windows Vista and newer, indicates whether Address Space Layout
Randomization (ASLR) is enabled for the process. ASLR is a defense-in-depth security
feature that can mitigate remote attacks that assume that function entry points are at
predictable memory addresses.

Procexp requires administrative rights to access most of the preceding information from
non-service processes running in a different security context. The exceptions are window
title and status for windows on the same desktop as Procexp and User Name when running
on Windows XP. Because the display of the Comment attribute depends on the image path,
what gets displayed can be affected by whether the comment was entered when Procexp
was running with the same rights as current.

56 Part II Usage Guide

Process Performance Tab
The Process Performance tab (shown in Figure 3-8) contains attributes relating to CPU usage
as well as the number of threads and open handles in the process. Some of the attributes
 report cumulative data, while others show the delta (the difference) since the previous
 update. Procexp does not require administrative rights to display any of the information
on this tab. See the “Measuring CPU Consumption” section earlier in this chapter for more
 information about how Procexp reports these metrics.

FIGURE 3-8 The Process Performance tab of the Select Columns dialog box.

With the exception of the Start Time column, all of these are dynamic attributes that are
 updated with each refresh:

■ CPU Usage The percentage of the overall CPU time, rounded to two decimal places,
attributed to the process (or pseudo-process) since the previous update. On Windows
7, the column shows < 0.01 if the process consumed any CPU cycles during the inter-
val but less than a hundredth of 1%, and it shows no number only if the process did
not consume any CPU time at all during the interval. On Windows Vista and older, this
column shows < 0.01 only if the CPU Cycles Delta or Context Switch Delta columns are
enabled and reported a delta during the interval. Otherwise, no number means that
the process did not execute or consumed less than 0.01% of CPU time. The number
can be rounded to a whole number instead of to two decimal places by disabling the
Show Fractional CPU option on the View menu. See the “Measuring CPU Consumption”
 section earlier in this chapter for more information.

■ Tree CPU Usage The percentage of the CPU time attributed to the process and
all its descendants. Note that the Tree CPU Usage column always uses timer-based
CPU usage accounting. (See the “Measuring CPU Consumption” section earlier in this
 chapter for more information.)

 Chapter 3 Process Explorer 57

■ CPU History A graphical representation of the recent CPU usage charged to each
process. Kernel-mode time is shown in red and user-mode time in green.

■ CPU Time The total amount of kernel-mode and user-mode CPU time charged to the
process (or pseudo-process), shown as hours:minutes:seconds.milliseconds.

■ Start Time The time and date that the process was started.

■ Base Priority The scheduling priority for the process. A value of 8 is normal priority;
numbers above 8 indicate a higher priority, and those below 8 indicate a lower priority.

■ Threads The number of threads in the process.

■ Handle Count The number of handles to kernel objects currently opened by the
process.

■ CPU Cycles On Windows Vista and newer, the total number of kernel-mode and
 user-mode CPU cycles consumed by the process since it started. (On Windows Vista,
this number is not tracked for the Interrupts pseudo-process.)

■ CPU Cycles Delta On Windows Vista and newer, the number of CPU cycles consumed
by the process since the previous update. (On Windows Vista, this number is not
tracked for the Interrupts pseudo-process.)

■ Context Switches The total number of times that the CPU context changed to begin
executing a thread in the process. (For the Interrupts pseudo-process, this number
represents the number of DPCs and interrupts.) Note that because Windows does not
maintain a process-wide counter for context switches, this attribute shows the sum of
switches for the existing threads. If a thread exits, its context switches will no longer be
counted toward this number.

■ Context Switch Delta The number of times that the CPU context switched to begin
executing a thread in the process since the last update. (For the Interrupts pseudo-
process, this number represents the number of DPCs and interrupts since the last
update.)

Process Memory Tab
The Process Memory tab (shown in Figure 3-9) contains attributes relating to memory usage,
including virtual memory management metrics around working set and page faults, as well
as counts of the windowing system’s GDI and USER objects.

58 Part II Usage Guide

FIGURE 3-9 The Process Memory tab of the Select Columns dialog box.

These are obviously all dynamic properties and are updated with each refresh. Most of these
metrics can be read for all processes on the system without administrative rights. Procexp
 requires administrative rights to read the following metrics for processes in other security
contexts: minimum and maximum working set; working set (WS) shareable, shared, and
private bytes; and GDI and USER object counts. In addition, GDI and USER counts can be
 obtained only for processes in the same terminal services session, regardless of privilege:

■ Page Faults The total number of times that the process accessed an invalid memory
page, causing the memory manager fault handler to be invoked. Some reasons for
pages being invalid are these: the page is on disk in a page file or a mapped file, first
access requires copying or zeroing, and there was illegal access resulting in an access
violation. Note that this total includes soft page faults (that is, faults resolved by
 referencing information not in the working set but already in physical memory).

■ Page Fault Delta The number of page faults that occurred since the previous display
refresh. Note that the column header is labeled “PF Delta.”

■ Private Bytes The number of bytes allocated and committed by the process for its
own use and not shareable with other processes. Per-process private bytes include
heap and stack memory. A continual rise in this value can indicate a memory leak.

■ Private Delta Bytes The amount of change—positive or negative—in the number of
private bytes since the previous refresh.

■ Peak Private Bytes The largest number of private bytes the process had committed at
any one time since the process started.

■ Private Bytes History A graphical representation of the process’ private byte commit
history. The wider you make this column, the longer the timeframe it shows. Note that
the graph scale is the same for all processes and is based on the maximum number of
private bytes currently committed by any process.

 Chapter 3 Process Explorer 59

■ Virtual Size The amount of the process’ virtual memory that has been reserved or
committed.

■ Memory Priority In Windows Vista and newer, the default memory priority that is
assigned to physical memory pages used by the process. Pages that are cached in RAM
and not part of any working set get repurposed starting with the lowest priority.

■ Minimum Working Set The amount of physical memory reserved for the process; the
operating system guarantees that the process’ working set can always be assigned at
least this amount. The process can also lock pages in the working set up to that amount
minus eight pages. This minimum does not guarantee that the process’ working set will
always be at least that large, unless a hard limit has been set by a resource manage-
ment application.

■ Maximum Working Set Indicates the maximum amount of working set assigned to
the process. However, this number is ignored by Windows unless a hard limit has been
configured for the process by a resource management application.

■ Working Set Size The amount of physical memory assigned to the process by the
memory manager.

■ Peak Working Set Size The largest working set size the process has had since its start.

■ WS Shareable Bytes The portion of the process’ working set that contains memory
that can be shared with other processes, such as mapped executable images.

■ WS Shared Bytes The portion of the process’ working set that contains memory that
is currently shared with other processes.

■ WS Private Bytes The portion of the process’ working set that contains private bytes
that cannot be shared with other processes.

■ GDI Objects The number of Graphics Device Interface (GDI) objects—such as brushes,
fonts, and bitmaps—owned by the process.

■ USER Objects The number of USER objects—such as windows and menus—owned by
the process.

Note that GDI and USER objects are created by the windowing subsystem in the process’
terminal server session. They are not kernel objects and do not have security descriptors
 associated with them.

 .NET Tab
The .NET tab (shown in Figure 3-10) contains performance counters that measure behaviors
of processes that use the .NET framework version 1.1 or higher.

60 Part II Usage Guide

FIGURE 3-10 The .NET tab of the Select Columns dialog box.

These numbers are all dynamic. Administrative rights are required to observe them in a
 process running in a different security context:

■ Methods Jitted Displays the total number of methods just-in-time (JIT) compiled
since the application started.

■ % Time in JIT Displays the percentage of elapsed time spent in JIT compilation since
the last JIT compilation phase.

■ AppDomains Displays the current number of application domains loaded in this
application.

■ Total AppDomains Displays the peak number of application domains loaded since
the application started.

■ Classes Loaded Displays the current number of classes loaded in all assemblies.

■ Total Classes Loaded Displays the cumulative number of classes loaded in all
 assemblies since the application started.

■ Assemblies Displays the current number of assemblies loaded across all application
domains in the currently running application. If this keeps increasing, it could indicate
an assembly leak.

■ Total Assemblies Displays the total number of assemblies loaded since the
 application started.

■ Gen 0, 1, 2 Collections Displays the number of times that generation 0, 1, or 2 objects
have been garbage collected since the application began. Generation 0 objects are
the newest, most recently allocated objects, while Gen 2 collections are also called full
garbage collections. Higher generation garbage collections include all lower generation
collections.

 Chapter 3 Process Explorer 61

■ % Time in GC Displays the percentage of elapsed time that was spent performing a
garbage collection since the last garbage collection cycle.

■ Allocated Bytes/s Displays the number of bytes per second allocated on the garbage
collection heap.

■ Heap Bytes Displays the number of bytes allocated in all heaps in the process.

■ Runtime Checks Displays the total number of runtime code access security checks
performed since the application started.

■ Contentions Displays the total number of times that threads in the runtime have
 attempted to acquire a managed lock unsuccessfully.

Process I/O Tab
The Process I/O tab (shown in Figure 3-11) contains attributes relating to file and
 device I/O, including file I/O through the LANMan and WebDAV redirectors. When you
 enable these columns, Procexp measures the numbers of NtReadFile, NtWriteFile, and
NtDeviceIoControlFile system calls representing I/O reads, writes and “other” (respectively),
and the numbers of bytes associated with those calls. The I/O counts shown by Procexp are
for “private I/O”—that is, I/O operations that can be unequivocally attributed to a process.
Note that memory-mapped file I/O is not necessarily attributable to a particular process.

FIGURE 3-11 The Process I/O tab of the Select Columns dialog box.

These are all dynamic properties, updated with each refresh. All require administrative rights
in order to read these metrics for processes running under a different user account. However,
they do not require administrative rights to read them for processes running under the same
account even at a higher integrity level.

62 Part II Usage Guide

By default, Procexp reports exact numbers for byte counts. If you enable the Format I/O
Bytes Columns option on the View menu, Procexp reports approximations as KB, MB, or GB
as appropriate. Note that the attributes’ display names in the column headers have “I/O”
 prepended. For example, if you enable the “Read Bytes” column on this tab, its column
 header will show “I/O Read Bytes”.

■ I/O operations There are four metrics each for I/O Read, Write, and Other operations:
the total number of operations performed by the process since it started (Reads), the
total number of bytes involved in those operations (Read Bytes), the number of opera-
tions performed since the last update (Delta Reads), and the number of bytes since the
last update (Delta Read Bytes).

■ Delta Total Bytes Represents the number of bytes involved in I/O operations since
the previous update.

■ I/O History A graphical representation of the process’ recent I/O throughput. The
blue line represents the total throughput, while the pink line shows write traffic.

■ I/O Priority On Windows Vista and newer, shows the I/O priority for the process. I/O
prioritization allows the I/O subsystem to distinguish between foreground processes
and lower-priority background processes. Most processes have a priority of Normal,
while others can be Low or Very Low. Only the memory manager has Critical I/O
 priority. A fifth level, High, is not used in current versions of Windows.

Process Network Tab
The Process Network tab (shown in Figure 3-12) lets you configure Procexp to show the
 numbers of TCP connect, send, receive, and disconnect operations; the number of bytes
in those operations; and the deltas since the previous refresh. Note that these figures do
not include file I/O through the LANMan redirector (as mentioned in the “Process I/O Tab”
 section), but they do include file I/O through the WebDAV redirector.

Also note that the display of any of the attributes on this tab requires administrative rights.
The Select Columns dialog box does not display the Process Network tab when Procexp is
not running with administrative rights. Procexp displays a warning if you enable any of these
columns and later run Procexp without administrative rights.

 Chapter 3 Process Explorer 63

FIGURE 3-12 The Process Network tab of the Select Columns dialog box.

As with the metrics on the Process I/O tab, the Network I/O metrics include total numbers
of operations (Receives, Sends, and Other) since the process started and since the previous
 refresh, and the number of bytes since the process started and since the previous refresh.

The cumulative counts that Procexp displays when you enable these columns reflect only the
numbers of operations and corresponding bytes since Procexp started. Windows does not
track these metrics on a per-process basis, so Procexp has no way to show historical informa-
tion from before it started.

By default, Procexp reports exact numbers for byte counts. If you enable the Format I/O
Bytes Columns option on the View menu, Procexp reports approximations as KB, MB, or GB
as appropriate.

Process Disk Tab
Enabling column displays of the attributes on the Process Disk tab (shown in Figure 3-13)
shows I/O to local disks (not including CD/DVD drives). Unlike the attributes on the Process
I/O tab, this includes all disk I/O, including that initiated from the kernel and file system
 drivers. It does not include file I/O resolved by network redirectors or by in-memory caches.

Note that display of any of the attributes on this tab requires administrative rights. The Select
Columns dialog box does not display the Process Disk tab when Procexp is not running with
administrative rights. Procexp displays a warning if you enable any of these columns and later
run Procexp without administrative rights.

64 Part II Usage Guide

FIGURE 3-13 The Process Disk tab of the Select Columns dialog box.

As with the metrics on the Process I/O and Process Network tabs, the Disk I/O metrics
 include total numbers of operations (Reads, Writes, and Other) since the process started and
since the previous refresh, and the number of bytes since the process started and since the
previous refresh. And as with the Network I/O metrics, the cumulative counts that Procexp
displays when you enable Process Disk columns reflect only the numbers of operations and
corresponding bytes since Procexp started. Procexp has no visibility into a process’ disk I/O
prior to Procexp starting.

By default, Procexp reports exact numbers for byte counts. If you enable the Format I/O
Bytes Columns option on the View menu, Procexp reports approximations as KB, MB, or GB
as appropriate.

Column Sets
You can save a column configuration and its associated sort settings by choosing Save
Column Set from the View menu. Procexp will prompt you to name the column set. (See
Figure 3-14.) To modify an existing column set, save the updated configuration to the same
name as the set you want to modify by choosing it from the drop-down combo box.

FIGURE 3-14 The Save Column Set dialog box.

You can load a saved column set by selecting it in the Load Column Set submenu on the
View menu or by entering the accelerator keys that Procexp assigns to it and that appear on

 Chapter 3 Process Explorer 65

the submenu. To rename, reorder, or delete existing column sets, choose Organize Column
Sets from the View menu. Reordering the column sets changes the order in which they
 appear in the Load Column Set submenu and the accelerator keys assigned to them.

Note The saved column set accelerator keys assigned by Procexp conflict with the default
 hotkeys used by ZoomIt, described in Chapter 10, “Desktop Utilities.”

Saving Displayed Data
Click the Save icon on the toolbar to save a snapshot of current process activity to a text file.
Procexp saves the data from all the columns that are selected for display in the main window,
and in the lower pane if it is open, to a tab-delimited text file. If a file has not already been
selected, Procexp prompts for a file location. To change the file location, choose Save As
from the File menu.

Toolbar Reference
The Procexp toolbar includes buttons for quick access to frequently used features, and four
or six continually updated graphs displaying the recent history of systemwide metrics.

FIGURE 3-15 The Procexp menu and toolbar.

Graphs
The minigraphs in the Procexp toolbar can be resized or moved to separate rows by dragging
their left-edge handles. Procexp displays graphs representing CPU usage, commit charge,
physical memory usage, and file and device I/O. If Procexp is running with administrative
rights, it adds graphs for network and disk I/O.

The CPU graph shows recent history for systemwide CPU usage, with red showing kernel
usage and green showing the sum of kernel-mode and user-mode usage. The systemwide
commit charge is shown in the yellow graph and physical memory usage in the orange
graph. Recent systemwide I/O throughput is graphed with violet for writes and light blue for
all I/O. Moving the mouse over the graphs displays a tooltip with numeric details and the
time of day for that part of the graph, and for the CPU and I/O graphs it displays the pro-
cess responsible for the largest proportion of the CPU or I/O at that moment. The wider you
 resize a graph, the longer the timeframe it displays. Clicking on any of the graphs displays the
corresponding graph in the System Information dialog box. (See the “System Information”
section later in this chapter for more complete descriptions of the meanings of these graphs.)

66 Part II Usage Guide

You can display tiny versions of each of these graphs (and their tooltips) in the notification
area of the taskbar (commonly but mistakenly referred to as “the tray”) by selecting options
from the Tray Icons submenu of the Options menu. By default, only the CPU Usage icon is
displayed, showing recent CPU utilization history with kernel usage in red and total usage
in green. Clicking on any of the Procexp notification area icons toggles the display of the
Procexp main window.

Right-clicking a Procexp notification area icon displays a context menu allowing you to
 display the System Information dialog box or the Procexp main window, or exit Procexp. Its
Shutdown submenu lets you log off, shut down, or restart Windows, or lock the workstation.

Toolbar Buttons
This section identifies the Procexp toolbar icons and the sections of this chapter that describe
what they do.

FIGURE 3-16 The Procexp toolbar buttons.

Referring to the Figure 3-16, the toolbar icons are, in order:

■ Save See the “Saving Displayed Data” section.

■ Refresh Now See the “Updating the Display” section.

■ System Information See the “System Information” section.

■ Show Process Tree See the “Process Tree” section.

■ Show/Hide Lower Pane (toggle) See the “DLLs and Handles” section.

■ View DLLs / View Handles (toggle) See the “DLL View” and “Handle View” sections.

■ Properties Displays the Properties dialog box for the selected process, handle, or DLL.

■ Kill Process/Close Handle If a process is selected, terminates the process; if a handle
is selected in Handle view, closes the handle. (As discussed elsewhere in this chapter,
these operations can be risky, especially closing a handle in use by a process.)

■ Find Handle or DLL See the “Finding DLLs or Handles” section.

■ Find Window’s Process See the “Identifying the Process That Owns a Window”
section.

Identifying the Process That Owns a Window
You can quickly identify the process that owns any visible window on your desktop. Click and
hold the crosshairs icon in the toolbar, and then drag it over the window you are interested

 Chapter 3 Process Explorer 67

in. Procexp moves itself behind all other windows during this operation and draws a frame
around the window the cursor is over. Release the mouse button, and Procexp will reap-
pear with the process that owns the window selected in the main window. This is particularly
 valuable when trying to ascertain the source of an unexpected error message.

Status Bar
The status bar shows key systemwide metrics in numeric form, such as CPU usage, number
of processes, and memory use. If Procexp’s automatic refresh is disabled, the word “Paused”
 appears in the status bar.

By right-clicking on the status bar and choosing Select Status Bar Columns, you can select
different metrics to display, as shown in Figure 3-17. The options include a number of system-
wide metrics and corresponding metrics relating only to processes running under the same
account as Procexp. Selecting Refresh Time displays the time of day when the display was last
updated.

FIGURE 3-17 The Status Bar tab of the Select Columns dialog box.

DLLs and Handles
Procexp’s lower pane lets you peer inside and list the contents of the process selected in
the upper pane. DLL view lists all the dynamic-link libraries and other files mapped into the
process’ address space, while Handle view lists all the kernel objects opened by the process.
Pressing Ctrl+D opens DLL view (shown in Figure 3-18), Ctrl+H opens Handle view, and Ctrl+L
toggles the lower pane open or closed. Drag the pane separator to change the relative sizes
of the panes.

68 Part II Usage Guide

FIGURE 3-18 Procexp’s lower pane displaying DLL View.

The DLL View and Handle View lists are updated at the automatic refresh interval. Similarly
to the process list, newly loaded DLLs and newly acquired handles are highlighted in green
for the configured difference highlight duration, and newly unloaded DLLs and newly closed
handles are highlighted in red. (See the “Process Highlighting” section earlier in this chapter.)

As with the main window, columns in DLL view and Handle view can be reordered, resized,
and sorted, and the column selection can be customized. Configuration selections made in
the DLL and Handle views are included when you save a column set.

Finding DLLs or Handles
One of Procexp’s most powerful features is its ability to quickly identify the process or
 processes that have a DLL loaded or an object open. For example, suppose you’re trying to
delete a folder called ProjectX, but Windows won’t let you because “it is open in another
program”—but Windows won’t tell you which program.

Press Ctrl+F to open the Search dialog box (shown in Figure 3-19), type the name or partial
name of the DLL or object you’re trying to find, and then click the Search button. Procexp
matches the name you entered against every DLL path, handle type, and handle name that
it can access, and it lists all the matches along with the processes that own them. Click on

 Chapter 3 Process Explorer 69

a match to select it in the lower pane and its owning process in the upper pane. Double-
clicking selects them and closes the Search dialog box.

FIGURE 3-19 The Process Explorer Search dialog box.

If the Search returns many results, click on a column header to sort by that column to make
it easier to find items of interest. The Type column identifies whether the matched item is a
DLL (more accurately, a mapped file) or an object handle. The Handle or DLL column contains
the handle name or the path to the DLL. A handle name might be blank if Show Unnamed
Handles And Mappings is selected in the View menu and the name you entered matches the
handle type.

DLL View
As you would expect, DLL view displays all the DLLs loaded by the selected process. It also
displays other memory-mapped files, including the data files and the image file (EXE) be-
ing run. For the System process, DLL view lists the image files mapped into kernel memory,
 including ntoskrnl.exe and all the loaded device drivers. DLL view is empty for the System Idle
Process and Interrupts pseudo-processes.

Procexp requires administrative rights to list DLLs loaded in processes running as a different
user, but not to list the images loaded in the System process.

Customizing DLL View
With DLL view open, right-click on the column header in the lower pane and choose Select
Columns to display the DLL tab of the Select Columns dialog box, as shown in Figure 3-20.
The DLL tab lists attributes of DLLs and mapped files that can be selected to appear when
Procexp’s DLL view is open.

70 Part II Usage Guide

FIGURE 3-20 The DLL tab of the Select Columns dialog box.

The following describes the columns that can be displayed in DLL view:

■ Description Extracted from the file’s version resource, if present.

■ Version The file version extracted from the file’s version resource, if present.

■ Time Stamp The last modification time of the file, as reported by the file system.

■ Name The file name of the DLL or mapped file, or <Pagefile Backed> for an unnamed
file mapping. Hover the mouse pointer over the name to display its full path in a
tooltip.

■ Path The full path to the DLL or mapped file, or <Pagefile Backed> for an unnamed
file mapping.

■ Company Name Extracted from the file’s version resource, if present.

■ Verified Signer Indicates whether the file has been verified as digitally signed by a
certificate that chains to a root authority trusted by the computer. See the “Verifying
Image Signatures” section later in this chapter for more information.

■ Image Base Address For files loaded as executable images, the virtual memory
 address from the executable image header that indicates where the image should be
loaded. If any of the necessary memory range is already in use, the image will need to
be relocated to another address.

■ Base Address The virtual memory address where the file is actually loaded.

■ Mapped Size The number of contiguous bytes, starting from the base address,
 consumed by the file mapping.

■ Mapping Type The Mapping Type column displays “Image” for executable image
files or “Data” for data files, including DLLs loaded for resources only (such as icons or
 localized text) and unnamed file mappings.

 Chapter 3 Process Explorer 71

■ WS Total Bytes The total amount of working set (physical memory) currently
 consumed by the file mapping.

■ WS Private Bytes The amount of physical memory consumed by the file mapping
that belongs solely to this process and cannot be shared with other processes.

■ WS Shareable Bytes The amount of physical memory consumed by the file mapping
that can be shared with other processes.

■ WS Shared Bytes The amount of physical memory consumed by the file mapping
that is also mapped into the address space of one or more other processes.

■ Image Type (64 vs 32-bit) (64-bit versions of Windows only) For executable image
files, indicates whether the file’s header specifies 64-bit or 32-bit code.

■ ASLR Enabled (Windows Vista and newer) For executable image files, displays ASLR
if the file’s header indicates support for Address Space Layout Randomization. The
 column is blank if the image does not support ASLR and n/a for data files.

Although they are not enabled by default, you can highlight DLLs that are not loaded at their
programmed base address by selecting Relocated DLLs in the Configure Highlighting dialog
box. (See the “Process Highlighting” section earlier in this chapter.) DLLs that cannot load at
their base address because other files are already mapped there are relocated by the loader,
which consumes CPU and makes the parts of the DLL that are modified as part of the reloca-
tion not shareable, which can reduce the efficiency of Windows memory management.

If Show Unnamed Handles And Mappings is selected in the View menu, DLL view also lists
unnamed file mappings in the process’ address space, labeled as <Pagefile Backed> in the
Name and Path columns, if displayed. For unnamed mappings, many of the attribute columns
contain no useful information, including those that are displayed by default. The columns
that might be of interest for unnamed mappings are the base address, mapped size, and
working set metrics.

When DLL view is open, the DLL menu offers the following options for named files:

■ Properties Displays a Properties dialog box for the selected file. See the “Peering
Deeper into DLLs” section for more information.

■ Search Online Procexp will launch a search for the selected file name using your
 default browser and search engine. This option can be useful when researching mal-
ware or identifying the source of an unrecognized DLL.

■ Launch Depends If the Dependency Walker (Depends.exe) utility is found, Procexp
launches it with the path to the selected file as a command-line argument. Depends.
exe shows DLL dependencies. It used to ship with various Microsoft products and is
now distributed through www.DependencyWalker.com.

72 Part II Usage Guide

Peering Deeper into DLLs
Double-click on a named item in DLL view to display its Properties dialog box, as shown in
Figure 3-21. The Image tab displays information about the mapped file such as Description,
Company, Version, Path, base address and size in the process’ memory, and (on x64) whether
it is 32-bit or 64-bit. Several of these fields can be selected and copied to the clipboard.

FIGURE 3-21 The Image tab of the DLL Properties dialog box.

The Company field is also used to indicate whether the executable file has been verified as
digitally signed by a trusted publisher. (See the “Verifying Image Signatures” section later
in this chapter for more information.) If the mapped file is an executable file type with a
Company Name version resource and signature verification has not already been attempted,
click the Verify button to perform validation. This feature can be useful to verify that a
file that claims to be from a particular source is actually from that publisher and has not
been modified. If the signature on the image has been verified, the Company field displays
(Verified) and the subject name on the signing certificate. If verification has not been at-
tempted, the field displays (Not verified) with the company name from the image’s version
resource. If the image is not signed or a signature check has failed, the column shows (Unable
to verify) with the company name.

The Strings tab of the Properties dialog box (shown in Figure 3-22) shows all sequences of
three or more printable characters found in the mapped file. If the Image radio button is
selected, strings are read from the image file on disk. If the Memory radio button is selected,
strings are read from the memory range in which the file is mapped. Image and memory
strings might be different when an image is decompressed, or they might be decrypted

 Chapter 3 Process Explorer 73

when loaded into memory. Memory strings might also include dynamically constructed data
areas of the image’s memory range.

Note In computer programming, the term “string” refers to a data structure consisting of a
s equence of characters, usually representing human-readable text.

FIGURE 3-22 The Strings tab of the DLL Properties dialog box.

Click the Save button to save the displayed strings to a text file. To compare image and
 memory strings, save the image and memory strings to separate files and then identify the
differences with a text-comparison utility.

To search for specific text in the strings list, click the Find button to display the standard Find
dialog box. To search for additional occurrences of the same text, simply press F3 or click
Find and Find Next again—the search continues from the currently selected row.

Handle View
Procexp’s Handle view lists the object handles belonging to the process selected in the upper
pane, as shown in Figure 3-23. Object handles are what programs use to manipulate system
objects managed by kernel-mode code, such as files, registry keys, synchronization objects,
memory sections, window stations, and desktops. Even though disparate types of resources
are involved, all kernel object types use this consistent mechanism for managing access.

74 Part II Usage Guide

FIGURE 3-23 Handle view displayed in Procexp’s lower pane.

When a process tries to create or open an object, it also requests specific access rights for
the operations it intends to perform, such as read or write. If the create or open action is
 successful, the process acquires a handle to the object that includes the access rights that
were granted. That handle can then be used for subsequent operations on the object, but
only for the access rights that were granted. Even if the user could have been granted Full
Control access to the object, if only Read access were requested, the handle could only be
used for Read operations.

Although programs treat handles as opaque, at the program’s level a handle is simply an
 integer. That integer serves as a byte offset into the process’ handle table, which is man-
aged in kernel memory. Information in the handle table includes the object’s type, the access
granted, and a pointer to the data structure representing the actual object.

Note Windows programmers might be familiar with “handle” types to manipulate window
 manager objects, such as HWND for windows, HBRUSH for brushes, HDC for device contexts,
and so on. These objects are managed through mechanisms that are completely distinct from
and unrelated to what is described here, and they do not appear in the process handle table.

Note that loading a DLL or mapping another file type into a process’ address space normally
does not also add a handle to the process’ handle table. Such files can therefore be in use
and not be able to be deleted, even though a handle search might come up empty. This is
why Procexp’s Find feature searches both DLLs and handles.

 Chapter 3 Process Explorer 75

Procexp must run with administrative rights to view handles owned by a process running in a
different security context from Procexp.

By default, Handle view shows the type and name for all named objects opened by the
 process selected in the upper pane. You can choose to show additional information about
each handle, as well as to show information about unnamed objects.

Customizing Handle View
To change the column selection that appears in Handle view, press Ctrl+H to open Handle
view, and then right-click on the column header in the lower pane and choose Select
Columns. This displays the Handle tab of the Select Columns dialog box, as shown in
Figure 3-24.

FIGURE 3-24 The Handle tab of the Select Columns dialog box.

These attributes remain constant for as long as the handle is open:

■ Type The type of securable object that the handle grants access to, such as Desktop,
Directory, File, Key, and Thread.

■ Name The name associated with the object. For most object types, the name is an
object namespace name, such as \Device\Afd. For file system and registry objects, drive
letters and friendly root keys replace internal names like \Device\HarddiskVolume1
(C:) and \REGISTRY\MACHINE\Software\Classes (HKCR). For process handles, the pro-
cess name and PID is used; thread handles append the thread ID (TID) to that. Token
handles use the principal and the logon session ID. Unnamed handles are not shown by
default.

■ Handle Value The handle value in hexadecimal that the process passes to APIs to
 access the underlying object. This value is the byte offset into the process’ handle table.

76 Part II Usage Guide

■ Access Mask The bitmask in hexadecimal that identifies what permissions the process
is granted through the handle. Each bit that is set grants a permission specific to the
object type. For example, “read” permission for a registry key is 0x00020019; for a file,
it is usually 0x00120089. Full control permission for a registry key is 0x000F003F, while
for a file it is usually 0x001F01FF. (For more information, search MSDN for the “Access
Rights and Access Masks” topic.)

■ File Share Flags For file objects, the sharing mode that was set when the handle
was opened. Flags can include R, W, or D, indicating that other callers (including
other threads within the same process) can open the same file for reading, writing, or
 deleting, respectively. If no flags are set, the file system object is opened for exclusive
use through this handle.

■ Object Address The memory address in kernel memory of the data structure
 representing the object. This information can be used with a kernel debugger to dis-
play more information about the object.

If Show Unnamed Handles And Mappings is selected in the View menu, Handle view also lists
objects that do not have a name associated with them. (Note that some types of objects are
always unnamed, and others are sometimes but not always unnamed.) Unnamed objects are
typically created by the process for its own use. They can also be inherited and used by child
processes, as long as the child process has a way to identify which inherited handle value it
should use. Handles can also be duplicated from one process to another, provided that the
process performing the handle duplication has the necessary access to the target process.

Note Procexp consumes significantly more CPU resource when the Show Unnamed Handles
And Mappings option is selected.

When Handle view is open, the Handle menu appears on the menu bar, offering the
Properties and Close Handle options. Close Handle forces a handle to be closed. This is
 typically risky. Because the process that owns the handle is not aware that its handle has
been closed, using this feature can lead to data corruption or crash the application; closing
a handle in the System process or a critical user-mode process such as Csrss can lead to a
 system crash.

Double-clicking a handle or choosing Properties from the Handle menu displays the
Properties dialog box for the selected handle. The caption of the Details tab, shown in
Figure 3-25, displays the internal name of the object, while the Name field in the dialog box
shows the more user-friendly equivalent. In the figure, \Device\HarddiskVolume2\Windows\
System32 and C:\Windows\System32 are equivalent. The dialog box also includes a more
detailed description of the one-word object type. The References group box indicates how
many open handles and references still exist for the object. Because each handle includes
a reference to the object, the reference count is never smaller than the handle count. The

 Chapter 3 Process Explorer 77

 difference between the two figures is the number of direct references to the object structure
from within kernel mode rather than indirectly through a handle. An object can be closed
only when its reference count drops to zero—that is, when it has been closed as many times
as it has been opened. The quota charges show how much paged and nonpaged pool is
charged to the process’ quota when it creates the object.

FIGURE 3-25 The Handle Properties dialog box.

The Security tab of the Handle Properties dialog box shows a standard security editor dialog
box displaying the security descriptor of the underlying object referenced by the handle.
Note that in some cases, particularly with unnamed objects, the dialog box will warn of a
 potential security risk because permissions had not been assigned for the object. For un-
named objects, this generally isn’t important because the lack of a name means that the only
way for another process to gain access to the object is through an existing handle.

Process Details
With its customizable column sets, the Procexp main window process list can show a
 tremendous amount of information about all processes on the system. To view even more
detailed information about a specific process, double-click it in the Procexp main window to
display its Properties dialog box. Procexp categorizes the data into a number of tabs: Image,
Performance, Performance Graph, Threads, TCP/IP, Security, Environment, and Strings. It
adds a Disk And Network tab if running with administrative rights. Extra tabs are added for
 processes that are services, are associated with a job, or use the .NET Framework.

78 Part II Usage Guide

The Properties dialog box is modeless, meaning that you do not need to close it to
 interact with the main window; in fact, you can have multiple Properties dialog boxes open
 simultaneously. The dialog boxes can also be resized or maximized.

Most of the information shown in the Process Properties dialog box requires either full
 access to the process or the ability to identify the full path to the executable image file. If
run without administrative rights, Procexp will be able to show detailed information only for
processes running under the same account as Procexp. Other than the Disk And Network tab,
which always requires administrative rights, the few exceptions will not be called out in this
section.

Image Tab
The Image tab, shown in Figure 3-26, displays information about the process that mostly
 remains static for the lifetime of the process, including information collected from the
 executable image file’s icon and version resources, the full path to the image file, the
 command line that was used to start the process, the user account under which the process
is running, when it started, whether DEP is enabled, whether ASLR is enabled (Windows Vista
and newer), and on x64 versions of Windows, whether the process is running 32-bit or
64-bit code. Two fields that can change if you open a new Properties dialog box for the
 process are the current directory and the parent process. If the parent process was still
 running when Procexp started, the field reports the image name and the PID; if it had exited,
the field reports <Non-existent Process> and the PID.

FIGURE 3-26 The Image tab of the process’ Properties dialog box.

 Chapter 3 Process Explorer 79

The second field in the Image tab serves as a Verified Signer field, showing the company
name from the version resource or the subject name from the verified signing certificate. If
signature verification has not been attempted, you can click the Verify button to perform
that verification. See the “Verifying Image Signature” section in this chapter for more
information.

If the process owns a visible window on the current desktop, clicking the Bring To Front
 button brings it to the foreground. If the process owns more than one top-level window,
Bring To Front brings the one closest to the top of the z-order to the foreground.

Clicking the Kill Process button forcibly terminates the process. By default, Procexp will
prompt you for confirmation before terminating the process. You can disable that prompt by
clearing the Confirm Kill check box in the Options menu.

Warning Forcibly terminating a process does not give the process an opportunity to shut down
cleanly and can cause data loss or system instability. In addition, Procexp does not provide extra
warnings if you try to terminate a system-critical process such as Csrss.exe. Terminating a system-
critical process results in an immediate Windows blue screen crash.

You can add a comment for a process in the Comment field. Comments are visible in the
process list if you display the Comment column or, if you do not have the Comment column
selected, in the tooltip for the process. Comments apply to all processes with the same path
and are remembered for future executions of Procexp. Note that administrative rights are
required to identify the executable image path for processes running in other accounts. If the
image path cannot be identified, the process name is used instead. That means, for example,
that a comment entered for a svchost.exe process while running Procexp with administra-
tive rights might be associated with “C:\Windows\System32\svchost.exe”, while a comment
entered for the same process when running without administrative rights will be associated
with “svchost.exe”, and the comment associated with the full path will not be displayed.
Procexp saves comments under the same registry key as its other configuration settings
(HKCU\Software\Sysinternals\Process Explorer).

Performance Tab
The Performance tab, shown in Figure 3-27, reports metrics for CPU usage, virtual memory,
physical memory (working set), I/O, kernel object handle count, and window manager handle
counts. All the data on the tab is updated at the Procexp refresh interval.

80 Part II Usage Guide

FIGURE 3-27 The Performance tab of the process’ Properties dialog box.

The Performance tab provides a convenient way for you to see a large number of process
metrics in one place. Most of the fields on the Performance tab can also be viewed in the
process list as described in the “Customizing Column Selections” section earlier in this
chapter. The fields that appear in the Performance tab are specifically described in the sub-
sections for the Process Performance, Process Memory, and Process I/O tabs of the Select
Columns dialog box. The two additional pieces of information that are displayed only in the
Performance tab are how much of the CPU utilization charged to the process is kernel time
vs. user time and peak handle count.

Performance Graph Tab
The Performance Graph tab displays Task Manager–like graphs for a single process. (See
Figure 3-28.) The top graph displays recent CPU usage history, with the red area indicating
kernel-mode usage charged to the process and the green area above it indicating user-mode
usage. Moving the mouse over this graph displays a tooltip with the percentage of the total
CPU time consumed by the process at that time, along with the time of day that part of the
graph represents. Note that this graph does not distinguish between CPUs. If the process
consumed 100 percent of one CPU’s time on a dual-core system and none of the second
CPU’s time, the graph would indicate 50 percent usage.

 Chapter 3 Process Explorer 81

FIGURE 3-28 The Performance Graph tab of the process’ Properties dialog box.

The second graph shows the recent history of the amount of the process’ committed private
bytes. It is scaled against the peak private bytes for the process; if the peak grows, the graph
is rescaled against the new peak. Moving the mouse over this graph displays the private
byte count and time of day for that part of the graph. Continual growth in this graph might
 indicate a memory leak.

The third graph represents the process’ file and device I/O throughput history, with the light
blue line indicating total I/O traffic between refreshes and the pink line indicating write
 traffic. The I/O graph is scaled against the peak I/O traffic the process has generated since
the start of monitoring. Moving the mouse over this graph displays a tooltip showing the
number of bytes for read, write, and other operations and the time of day for that part of the
graph.

As mentioned, the dialog box can be resized or maximized. The wider you make the dialog
box, the longer the historical timeframe displayed in the graphs.

Threads Tab
The Threads tab of the process’ Properties dialog box shows detailed information, including
current call stacks, for each of the threads in the selected process, and it lets you kill or
 suspend individual threads within the process. It will be described in the “Thread Details”
 section later in this chapter.

82 Part II Usage Guide

TCP/IP Tab
Any active TCP, TCPV6, UDP, or UDPV6 endpoints owned by the process are shown in a list
on the TCP/IP tab. (See Figure 3-29.) The tab lists the protocol, state, and local and remote
addresses and port numbers for each connection. For service processes on Windows Vista
and newer, the tab adds a Service column showing the service that owns the endpoint. Select
the Resolve Addresses check box to resolve endpoint addresses to their DNS names; clearing
the check box displays the actual IPv4 or IPv6 addresses.

FIGURE 3-29 The TCP/IP tab of the process’ Properties dialog box.

On Windows XP, this page includes a Stack button that opens a dialog box that shows
the stack of the thread that opened the selected endpoint at the time of the open. (See
Figure 3-30.) This can be useful for identifying the purpose of endpoints in the System
 process and in Svchost processes because the stack will include the name of the driver or
 service that is responsible for the endpoint.

 Chapter 3 Process Explorer 83

FIGURE 3-30 The TCP/IP tab on Windows XP and the Thread Stack dialog box.

Security Tab
The process token defines the security context for the process: the user principal the process
is running as, the groups that the user is a member of, and systemwide privileges that the
account has. The Security tab (shown in Figure 3-31) displays these details, as well as whether
User Account Control file and registry virtualization is enabled for the process, and the ID of
the terminal services session in which the process is running. Selecting a group in the Group
list displays its Security Identifier (SID) below the list box.

FIGURE 3-31 The Security tab of the process’ Properties dialog box.

84 Part II Usage Guide

In most circumstances, particularly with desktop applications, access checks are performed
with the process token, or in some cases with a thread token derived from the process token
and that can never have more rights than the process token. The information on the Security
tab can help explain the success or failure of operations.

Services and server applications can impersonate the security context of a different user
when performing actions on behalf of that user. Impersonation is implemented by associat-
ing a copy of the other user’s token with a thread within the process. During impersonation,
access checks are performed with the thread token, so in these cases the process token might
not be applicable. The dialog box does not show thread tokens.

I won’t go into a detailed description of token contents here, but I would like to point out a
few helpful tips and clear up some common misunderstandings:

■ In practice, a group that has the Deny flag set can be considered effectively equivalent
to not being present in the token at all. With User Account Control, powerful groups
such as Administrators are marked Deny-Only except in elevated processes. The Deny
flag indicates that if an object has an access-allowed access control entry (ACE) for
Administrators in its permissions, that entry is ignored, but if it has an access-denied
ACE for Administrators (not common), the access is denied.

■ A privilege that is marked Disabled is not at all the same as the privilege not being
present. If a privilege is in the token, the program can enable the privilege and then
use it. If the privilege is not present, the process cannot acquire it. It’s also important to
note that several privileges are considered administrator-equivalent in Windows Vista
and newer. Windows never allows these privileges to appear in a standard user token.

■ If a domain-joined computer cannot contact a domain controller and has not cached
the results of previous SID-to-name lookups, it cannot translate the SIDs for token
groups into the group names. In this case, Procexp will display the SIDs.

■ The group called Logon SID is based on a random number generated at the time the
user logged on. One of its uses is to grant access to terminal server session-specific
 resources. Logon SIDs always begin with S-1-5-5-.

The Permissions button displays the security descriptor for the process object itself—that is,
who can perform which actions on the process.

Environment Tab
The Environment tab lists the process’ environment variables and their corresponding values.
Processes usually inherit their environment variables from their parent process, and very
 often, the environment blocks of all processes will be substantially equivalent. However, there
can be exceptions:

 Chapter 3 Process Explorer 85

■ A parent process can specify a different set of environment variables for a child
process.

■ Each process can add, delete, or modify its own environment variables.

■ When a message is broadcast alerting running processes that the environment
 variable configuration for the system has changed, not all processes receive the
 notification (particularly console programs), and not all processes will update their own
 environment block with the new settings.

Strings Tab
The Strings tab of the process’ Properties dialog box (shown in Figure 3-32) shows all
 sequences of three or more printable characters found in the image file of the process. If the
Image radio button is selected, strings are read from the image file on disk. If the Memory
radio button is selected, strings are read from the memory range in which the executable
file is mapped. Note that it does not inspect all committed memory in the process’ virtual
 address space—only the region where the executable is mapped. Image and memory strings
can be different when an image is decompressed, or they can decrypted when loaded into
memory. Memory strings can also include dynamically constructed data areas of the image’s
memory range.

Note In computer programming, the term “string” refers to a data structure consisting of a
 sequence of characters, usually representing human-readable text.

FIGURE 3-32 The Strings tab of the process’ Properties dialog box.

86 Part II Usage Guide

Click the Save button to save the displayed strings to a text file. To compare image and
 memory strings, save the image and memory strings to separate files and then identify the
differences with a text-comparison utility.

To search for specific text in the strings list, click the Find button to display the standard Find
dialog box. To search for additional occurrences of the same text, simply press F3 or click
Find and Find Next again—the search continues from the currently selected row.

Services Tab
Windows services run in (usually noninteractive) processes that can be configured to start
independently of any user logging on and that are controlled through a standard interface
with the Service Control Manager. Multiple services can be configured to share a single
 process. A common example of this can be seen in Svchost.exe, which is specifically designed
to host multiple services implemented in separate DLLs.

If the selected process hosts one or more services, the process’ Properties dialog box adds
a Services tab, as shown in Figure 3-33. Its list box lists the internal and display names for
each service, and for services hosted within a Svchost.exe process, the path to the DLL that
 implements the service. Selecting a service in the list displays its description below the list
box.

FIGURE 3-33 The Services tab of the process’ Properties dialog box.

Individual services can be configured to allow or not allow stop or pause/resume operations.
Procexp enables Stop, Pause, and Resume buttons if the selected service allows those
operations.

 Chapter 3 Process Explorer 87

The Permissions button displays the security editor dialog box for the service, and it lets
you view or permanently change the permissions on the service. Specific rights for services
include Start, Stop, Pause/Resume, Query Status, Query Config, Change Config, Interrogate,
Enumerate Dependents, User-Defined Control, and the standard Read Permissions, Change
Permissions, and Change Owner.

Warning Granting any non-administrator Write permission or the Change Config, Change
Permissions, or Change Owner specific rights for any service makes it very easy for that user to
take full administrative control over the computer.

 .NET Tabs
If the selected process uses the .NET Framework, Procexp adds up to two .NET tabs to the
process’ Properties dialog box. The .NET Performance tab (shown in Figure 3-34) lists the
AppDomains in the process and displays data from nine sets of .NET performance coun-
ters. Select a performance object from the drop-down list (for example, .NET CLR Data,
Exceptions, Interop, Memory, and Security), and the current counters for that object are
 displayed in the list below.

FIGURE 3-34 The .NET Performance tab of the process’ Properties dialog box.

When Procexp runs with administrative rights on Windows Vista and newer, the .NET
Assemblies tab (shown in Figure 3-35) displays all the AppDomains in the process, with the
names of the assemblies loaded in each listed in a tree view. To the right of each assembly
name, Procexp shows the flags and the full path to the assembly’s executable image. Procexp
uses undocumented .NET ETW events to obtain this information.

88 Part II Usage Guide

FIGURE 3-35 The .NET Assemblies tab of the process’ Properties dialog box.

Job Tab
If the selected process is associated with a job, Procexp adds a Job tab to the process’
Properties dialog box. The tab displays the name of the job if it has one, lists the processes
associated with the job, and lists any limits that the job enforces. In Figure 3-36, a WMI
host provider process is associated with a job that also includes another WMI host pro-
cess. The job limits each process to 512 MB of committed memory, limits the entire job to
a maximum of 1 GB of committed memory, and limits the job to a maximum of 32 active
 processes at a time.

FIGURE 3-36 The Job tab of the process’ Properties dialog box.

 Chapter 3 Process Explorer 89

Thread Details
As mentioned earlier, a process doesn’t actually run code itself, but is a container for a set
of resources, including a virtual address space, one or more mapped file images containing
code to execute, and one or more threads of execution. A thread is the entity that actually
runs code: its resources include a call stack and an instruction pointer that identifies the next
executable instruction. (For more information, see the “Call Stacks and Symbols” section in
Chapter 2.)

The Threads tab of the process’ Properties dialog box (shown in Figure 3-37) displays
 detailed information about each thread in the current process, with the following information
appearing in the list box in the top area of the dialog box:

■ TID The system-assigned, unique thread identifier. While a thread identifier can be
reused at some point after the thread has exited, a TID is only ever associated with one
thread on the system at a time.

■ CPU The percentage of total CPU time that the thread was executing during the
 previous refresh cycle. Note that because a thread can consume at most 100 percent of
a single logical CPU, this number cannot exceed 50 percent on a two-CPU system, 25
percent on a four-CPU system, and so on.

■ Cycles Delta or CSwitch Delta If on Windows Vista or newer and Procexp is running
in a context that gives it full control over the process, this column displays CPU Cycles
Delta; otherwise, it displays the Context Switch Delta, even for protected processes.
Cycles Delta is the number of processor cycles consumed by the thread since the previ-
ous update; Context Switch Delta is the number of times that the thread has been given
control and has begun executing since the previous update.

■ Service This column appears on Windows Vista and newer for processes hosting one
or more services, showing which service is associated with each thread. Windows tags
the threads of service processes to associate threads and TCP/IP endpoints with their
owning service.

■ Start Address The symbolic name associated with the program-specified location in
the process’ virtual memory where the thread began executing. The name is reported
in module!function format. (Refer to the “Call Stacks and Symbols” section of Chapter 2
for information about how to configure and interpret symbols.) If Procexp is configured
to use a symbol server, displaying this tab might introduce a lag as required symbols
are downloaded. An indicator appears above the list box when this is happening.

90 Part II Usage Guide

FIGURE 3-37 The Threads tab of the Properties dialog box.

By default, the list is sorted by CPU time in descending order. Click on any column header to
change the sort order. Columns can be resized but cannot be reordered.

Selecting a row in the list box displays more detail about that thread in the lower area of the
Threads tab: when the thread started; how much CPU time it has consumed in kernel mode
and in user mode; how many context switches and CPU cycles it has consumed; its base
 priority and dynamic priority; and on Windows Vista and newer, its I/O priority, memory
 priority, and ideal processor. Clicking the Permissions button displays the security descriptor
for the thread—that is, who can perform which actions on the thread. Although this interface
allows you to modify permissions on the thread, actually making changes is not advised and
will usually lead to unpredictable results.

For the System Idle Process, the list box enumerates processors rather than threads. The
processor number is shown instead of the Thread ID, and the CPU time represents the per-
centage of time the CPU spent idle during the refresh interval. When you select one of the
processors in the list, the Kernel Time shown below the list box reports the total amount of
idle time for that CPU.

Clicking the Module button displays a standard file properties dialog box for the EXE or DLL
name in the selected row.

The Stack button displays the call stack for the selected thread, as shown in Figure 3-38. The
start address is the bottom-most item in the stack, and the current location of the thread is
at the top. The Copy button in the Stack dialog box copies the currently selected symbolic
name in the stack to the clipboard. You can select multiple rows in the standard ways, such
as holding Shift and pressing the down arrow key. (For more information, see the “Call Stacks
and Symbols” section of Chapter 2,.)

 Chapter 3 Process Explorer 91

FIGURE 3-38 Call stack for a thread.

Finally, the Kill and Suspend buttons allow you to terminate or suspend the selected thread.
Unless you are intimately familiar with what the threads are running (for example, you wrote
the program), it is almost always a bad idea to terminate or suspend a single thread within a
process.

Verifying Image Signatures
The version resource can include the Company Name, Description, and Copyright fields,
and other publisher information. However, by itself it provides no assurance of authentic-
ity. Anyone can create a program and put “Microsoft” in the Company Name field. A digital
 signature associated with the file can help assure that the file came from the publisher and
has not been modified since.

Procexp can verify whether executable files and DLLs in the processes it inspects have valid
digital signatures. By default, verification is performed only on demand. The Image tab of
both the process’ Properties and DLL Properties dialog boxes include a Verify button that
attempts to verify the authenticity and integrity of the executable image or DLL file. You can
also opt to verify the signatures for all files automatically by selecting Verify Image Signatures
on the Options menu. In addition to being displayed on those Properties dialog boxes, image
verification status can also be seen by selecting the Verified Signer column for display in the
main process list and in DLL view.

If the signature on the selected file has been verified, the verification status displays (Verified)
and the subject name on the signing certificate. If signature verification has not been at-
tempted (or if the selected file is not an executable file type), the field is blank or displays
(Not verified) with the company name from the file’s version resource. If the file is not signed
or a signature check has failed, the status shows (Unable to verify) with the company name.

Note that the name on the signing certificate and the Company Name version resource
might not be identical. For example, most executable files that ship as part of Windows have
“Microsoft Corporation” as the company name but are signed with a “Microsoft Windows”
certificate.

92 Part II Usage Guide

Some reasons that signature verification can fail include

■ The file has not been signed.

■ The file has been modified since its signing.

■ The signing certificate does not derive from a root certificate authority that is trusted
on the computer. (This can be a frequent occurrence if Automatic Root Certificates
Update is disabled through group policy.)

■ The signing certificate has been revoked.

System Information
Procexp’s System Information dialog box, shown in Figure 3-39, is like Task Manager’s
Performance tab, but with much more information. To display it, press Ctrl+I or click any of
the minigraphs in the main window toolbar.

FIGURE 3-39 The Summary tab of the System Information dialog box.

The Summary tab of the dialog box features several pairs of graphs representing system-
wide metrics that are shown in more detail on the CPU, Memory, and I/O tabs (shown in
Figures 3-40, 3-41, and 3-42, respectively). The left of each pair shows the current level in
graphical and numeric form. The wider graph to its right shows recent history; the wider
the dialog box is, the more history it can display. Moving the mouse over the history graphs
displays a tooltip containing the time of day represented at that point in the graph, along
with the metrics at that point in text format. For the CPU Usage and I/O graphs, the tooltip
also indicates which process was consuming the most of that resource at that point in time.
Clicking on any of the graphs freezes the tooltip at that point; even though the graphs might
continue to update, the content in the tooltip doesn’t change until you move the mouse.

 Chapter 3 Process Explorer 93

In the CPU Usage graphs, the red area displays the percentage of time spent executing in
kernel mode; the area under the green line represents total CPU utilization as a percentage.
If the computer has multiple logical CPUs, selecting the Show One Graph Per CPU check box
in the lower left of the CPU tab splits the CPU Usage History graph on that tab into separate
per-CPU graphs. The CPU graphs are always scaled against a 100 percent peak. Note that
if there are multiple graphs for CPUs, the CPU Usage tooltip will show the process with the
highest systemwide CPU utilization at that moment; Procexp does not track which process
consumed the most processor time on a particular CPU. Note also that when showing per-
CPU graphs, Procexp must use timer-based usage metrics because per-CPU, cycle-based
data is not tracked by Windows. This can result in the per-CPU graph showing different
 usage than the single-graph view and what the main Procexp window shows.

The lower area of the CPU tab shows the systemwide total numbers of open object handles,
threads, and processes, and the number of CPU context switches, interrupts, and DPCs since
the previous data refresh.

FIGURE 3-40 The CPU tab of the System Information dialog box.

The Memory tab shows the Commit and Physical Memory graphs. In the Commit graphs,
the area under the yellow line indicates the commit charge—the total amount of private
bytes committed across all processes, plus paged pool. The graph is scaled against the com-
mit limit—the maximum amount of private bytes that can be committed without increasing
pagefile size. The graph shows a series of snapshots captured at each update, and it does
not show what happens between updates. For example, if the commit charge is 1.0 GB when
Procexp performs an update and a process then allocates and commits 1.5 GB of memory
and then releases it before Procexp updates again, the graph will show a steady 1.0 GB with
no spike. The Physical Memory graphs show the amount of physical RAM that is in use by
the system. It is scaled to the amount of physical memory installed on the computer and

94 Part II Usage Guide

 available to Windows. Similarly to commit charge, the physical memory graph shows a se-
quence of snapshots and does not report transient changes that occur between updates.

FIGURE 3-41 The Memory tab of the System Information dialog box.

The lower part of the Memory tab shows a number of memory-related metrics:

■ Commit Charge (K) The current commit charge, the limit at which no more private
bytes can be allocated without increasing pagefile size, and the peak commit charge
 incurred on the system since its last boot. This group also shows the percentage of
peak commit vs. the limit and the current charge vs. the limit.

■ Physical Memory (K) Total physical memory available to Windows in KB, available
RAM that is not in use, and the sizes of the cache, kernel, and driver working sets.

■ Kernel Memory (K) Paged WS is the amount of paged pool in KB that is present in
RAM. Paged Virtual is the total amount of allocated paged pool, including bytes that
have been swapped out to the pagefile. Paged Limit is the maximum amount of paged
pool that the system will allow to be allocated. Nonpaged is the amount of allocated
nonpaged pool, in KB; Nonpaged Limit is the maximum amount of nonpaged pool that
can be allocated. Procexp requires administrative rights and symbols to be correctly
configured in order to display Paged Limit and Nonpaged Limit.

■ Paging The number of page faults since the previous data refresh, the number of
paging I/O reads to a mapped file or the paging file, the number of writes to the
 paging file, and the number of writes to mapped files.

■ Paging Lists (K) This column of items appears only on Windows Vista and newer.
It shows the amount of memory in KB in the various page lists maintained by the
 memory manager.

 Chapter 3 Process Explorer 95

The I/O tab shows I/O Bytes and, if Procexp is running with administrative rights, Network
Bytes and Disk Bytes. I/O Bytes represents the amount of file and device I/O throughput,
Network Bytes represents network I/O, and Disk Bytes represents I/O throughput to local
disks. All three are scaled against their peak levels since Procexp started monitoring them.
The pink areas represent write traffic, while the light blue indicates total I/O bytes since the
previous update. In contrast to the commit charge graph, at each update the I/O graphs
show the number of bytes since the previous update. If you pause updating for a while, the
next update will include all the I/O traffic that occurred while Procexp was paused. This will
likely appear as spikes and possibly change the measured peaks, and thus the graph scales.

FIGURE 3-42 The I/O tab of the System Information dialog box.

The lower part of the I/O tab shows the number of I/O and Disk Read, Write, and Other
 operations and Network Receive, Send, and Other operations since the previous data refresh,
and the number of bytes involved in those operations.

Display Options
In addition to extensive customizing of displayed content, Procexp provides a handful of
 display options not already described in this chapter:

■ Hide When Minimized When this option is selected from the Options menu, Procexp
displays only a notification area icon when minimized and does not display a taskbar
icon. Also, clicking its standard Close icon in the upper right corner of the title bar mini-
mizes rather than exits Procexp. (Task Manager used to behave this way.)

■ Allow Only One Instance When Procexp starts after this option has been selected
from the Options menu, Procexp checks whether another instance of Procexp is already

96 Part II Usage Guide

running on the same desktop. If so, the new instance exits after trying to bring the
 previous instance to the foreground.

■ Always On Top When this option is selected from the Options menu, Procexp remains
above all other windows on the desktop (with the possible exception of other windows
marked “always on top”).

■ Font This item on the Options menu lets you select a different font for the main
 window and the lower pane, and many dialog box elements of Procexp.

■ Opacity The Opacity submenu on the View menu lets you set the transparency level
of Procexp’s main window.

■ Scroll To New Processes When this option is selected from the View menu, Procexp
scrolls the process list when a new process starts to bring the new process into view.

■ Show Processes From All Users This option appears in the View menu and is selected
by default. When this option is selected, the process list includes all processes running
on the computer. When this check box is cleared, the process list shows only processes
running under the same account as Procexp. The highlight color for “own processes”
is not used in that case. Task Manager has a similar but not identical feature. The dis-
tinction that Task Manager’s Show Processes From All Users option makes is between
 processes running in the same terminal session vs. all sessions. Task Manager’s option
also requires administrative rights.

Procexp as a Task Manager Replacement
Because Procexp provides so much more useful information than Task Manager, you might
well find yourself using Procexp exclusively and never using Task Manager again. In fact,
Procexp provides an option to do just that. After you select Replace Task Manager in the
Options menu, Windows will start Procexp whenever TaskMgr.exe is launched—no matter
how it is launched. If you right-click on the taskbar and choose Start Task Manager, Procexp
will start instead. If you press Ctrl+Shift+Esc, Procexp will start.

A few things to note about the Replace Task Manager option:

■ This is a global setting that affects all users on the computer. If you have Procexp.exe in
a location where another user has no access, that user will not be able to run Procexp
or Task Manager.

■ Selecting this option requires administrative rights.

■ This option does not modify or delete Taskmgr.exe in the System32 folder. Instead, it
uses Image File Execution Options to point to Procexp.exe when Taskmgr.exe is started.

■ To restore the ability to run Task Manager, select Restore Task Manager in the Options
menu. (Restore Task Manager appears in the menu when Task Manager has been
replaced.)

 Chapter 3 Process Explorer 97

Task Manager includes a few other capabilities that have also been added to Procexp, and of
course Procexp builds on those as well.

Creating Processes from Procexp
Task Manager offers File, Run to start a new process. Procexp also offers File, Run, as well
as the following other choices on the File menu to start the new process with elevated or
 diminished rights:

■ On Windows Vista or newer, if Procexp is not running elevated, Run As Administrator
requests elevation to start the new process.

■ On Windows XP, Runas lets you start the new process with any other user account for
which you have credentials.

■ Run As Limited User starts the new process with reduced rights. On Windows Vista
and newer, this starts the process at Low integrity level. On Windows XP and Windows
Server 2003, the new process runs with a token with most privileges removed and
 powerful groups marked Deny-Only. If Procexp has administrative rights, the new
 process is approximately equivalent to the same user account running as a standard
user. If Procexp is running as a standard user, the new process runs in an even more
constrained context.

Other User Sessions
Task Manager’s Users tab lets you see whether other users have interactive sessions on the
same computer. With administrative rights, you can send a message that appears on that
user’s desktop, disconnect that user’s session, or log the user off. Procexp offers those op-
tions on its Users menu, and it adds a Properties dialog box that shows the session ID, state
of the session, and if it is active, the name and IP address of the remote connection’s source,
and the display resolution that the remote desktop is displaying.

Miscellaneous Features
Here are a few topics that don’t seem to fit anywhere else.

Shutdown Options
The File, Shutdown submenu lets you log off, shut down, lock, or restart the computer.
Hibernate and Stand By are also offered if the system supports those options.

98 Part II Usage Guide

Command-Line Switches
Table 3-1 describes Procexp’s command-line options.

TABLE 3-1 Command-Line Options

Option Description
/e On Vista or newer, requests UAC elevation when Procexp is started.

/t Start Procexp minimized and visible only in the notification area (the
“tray”).

/p:r
/p:h
/p:n
/p:l

Sets the initial process priority for Procexp: Realtime, High, Normal, or
Low. Procexp’s default level is High if no priority is specified.

/s:PID Selects the process identified by process identifier PID, which must be
specified in decimal. For example:
Procexp.exe /s:520

Restoring Procexp Defaults
Procexp stores all its configuration settings in the registry in “HKEY_CURRENT_USER\
Software\Sysinternals\Process Explorer”. The simplest way to restore all Procexp configuration
settings to their defaults is to close Procexp, delete the registry key, and then start Procexp
again.

Keyboard Shortcut Reference
Keyboard shortcuts used by Procexp are shown in Table 3-2.

TABLE 3-2 Procexp Keyboard Shortcuts

Key Combination Description
Ctrl+A Save displayed data to a new file (File, Save As).

Ctrl+C Copy the current row from the main window or lower pane.

Ctrl+D Display DLL view.

Ctrl+F Find the handle or DLL.

Ctrl+H Display Handle view.

Ctrl+I Display the System Information dialog box.

Ctrl+L Display/hide the lower pane

Ctrl+M Search online.

 Chapter 3 Process Explorer 99

Key Combination Description
Ctrl+R Start a new process (File, Run).

Ctrl+S Save the displayed data to a file (File, Save).

Ctrl+T Show the process list in tree view (View, Show Process Tree).

Ctrl+1, Ctrl+2, and so on Load the first column set, second column set, and so on.

Space Pause/resume automatic updating.

Del Kill the selected process.

Shift+Del Kill the process tree—Selected process and its descendants.

F1 Display Help.

F5 Refresh now—Update displayed data.

 101

Chapter 4

Process Monitor
David Solomon, my Windows Internals co-author, was hired to deliver a Microsoft Windows
internals class for kernel-support engineers at a major Windows original equipment
 manufacturer (OEM). A couple of months before the class, the company asked if he would
 integrate one of its internal kernel-analysis tools into the training. Dave thought that what-
ever tool they had should be easy enough to learn and he charges a lot of money, so he
agreed.

Of course, Dave waited until the flight the night before to even bother looking at the tool.
After watching a few episodes of Star Trek on his laptop, he decided to take a break and
launched the tool, only to be greeted with an error message: “This utility requires [major
Windows OEM] hardware.” He was using a different vendor’s laptop, so his heart stopped.
How was he going to show up in the morning and admit that he discovered just a few hours
earlier that he couldn’t run the tool?

He started to panic, breaking out into a sweat and calling the flight attendant to bring him
a stiff drink (actually, refill it since he had enjoyed a few while watching Star Trek). She came
back to his seat a few minutes later, saw that he was clearly flustered and in distress, and
asked whether there was anything she could do to help. Dave, despondent and not expecting
her to understand anything he was saying, pointed at the screen and explained his predica-
ment. She paused for a second thinking about it and then asked, “Have you tried running
Process Monitor?”

As this apocryphal story suggests, Process Monitor (Procmon) is the first utility that many
people turn to when diagnosing computer problems. It is also often the last utility they use,
as Procmon frequently pinpoints the source of their troubles. The majority of the “Case Of”
troubleshooting stories I receive from users can be summarized as, “We had a mysterious
problem; we ran Procmon; we found the cause of the problem.”

Process Explorer, described in Chapter 3, is a great tool for observing the processes on a
system: how much CPU and memory they are consuming, what DLLs they have loaded,
what system objects they are using, the security context each is running under, and so forth.
Procmon shows you a different view of system activity. Where Procexp is essentially a moving
snapshot of the system, Procmon is an advanced logging tool that captures detailed infor-
mation about registry, file, process/thread, and network activity. While Procexp can tell you
that a process has an open handle to a particular file, Procmon can tell you what low-level
operations the process is performing on that file, when they occurred, how long they took,
whether they succeeded or why they failed, what the full call stack is (the trail of code leading
to the operation), and more.

102 Part II Usage Guide

Because millions of operations can occur in a short amount of time, Procmon provides
 powerful and flexible filtering and highlighting capabilities so that you can find the events of
interest to you quickly. Procmon can be scripted from batch files with command-line param-
eters, and its data can be saved to a file that can be viewed and analyzed on another system
at a later time. In other words, it isn’t terribly hard to get a novice user at a remote location
to capture a Procmon trace and send it to you so that you can solve his or her problem.

Procmon was first released in 2006 and replaces Filemon and Regmon, two of the original
Sysinternals tools. Filemon captured information about file system activity; Regmon did the
same for the registry. Both tools suffered from diminishing performance as they collected
more data, and their filtering capabilities were limited. In addition, a filter in effect during
data collection caused filtered data never to be captured; a filter applied to collected data
permanently deleted those records. Procmon was written from the ground up and provides
a unified view of all file, registry, and process/thread activity (and more), capturing far more
detail and scaling much better than Filemon and Regmon did, with much lower performance
impact. Procmon also offers boot-time logging, nondestructive filtering, a log file format
that retains all captured data, an API for injecting debug output into the capture, and much
more. If you are still using Filemon and Regmon out of habit, stop! Filemon and Regmon
remained on the Sysinternals site to support legacy systems that did not meet the minimum
requirements for Procmon, but as those versions of Windows have long been out of support,
Filemon and Regmon have been retired and are no longer available.

Procmon runs on x86 and x64 versions of Windows XP and newer, and Windows Server 2003
and newer.

Getting Started with Procmon
Because it loads a kernel driver, Procmon requires administrative rights to capture events,
including the Load and Unload Device Drivers privilege. On Windows Vista and newer,
Windows automatically prompts for User Account Control (UAC) elevation if you start
Procmon from a nonelevated process such as Explorer. On Windows XP or Windows Server
2003, you need to be logged in as an administrator or use RunAs with an administrator
 account. See the “Administrative Rights” section in Chapter 2, “Windows Core Concepts,” for
more information.

Note Procmon does not require administrative rights to open an existing log file with the
/OpenLog command-line option.

 Chapter 4 Process Monitor 103

The easiest way to get started with Procmon is just to run it. The Process Monitor window
shown in Figure 4-1 will appear and immediately begin filling up with data. Each row in the
table represents one low-level event that has occurred on your system. Although you can
customize which columns appear in the table and in what order, the default column set
 includes the time of day, the process name and ID, the operation (with an icon identifying the
type of operation, such as file system, registry, and so forth), the path of the object operated
on (if applicable), the result of the operation, and additional details.

FIGURE 4-1 Process Monitor.

Among other things, the status bar shows how many events have been captured. This
 number will rapidly increase until you stop capturing events. To toggle the capture on and
off, press Ctrl+E or click the Capture icon in the toolbar.

To clear the display of all captured events, press Ctrl+X or click the Clear icon in the toolbar.

Events are added to the end of the list as they occur. Procmon’s Autoscroll feature (off by
default) scrolls the display as new events are added so that the most recent addition is visible.
To toggle Autoscroll on and off, press Ctrl+A or click the Autoscroll icon in the toolbar.

Display Options
You can keep Procmon visible when it doesn’t have focus by checking Always On Top
in the Options menu.

Choose Font on the Options menu to change the font that Procmon uses in the
main window and in other tables such as the filter and highlight dialog boxes, event
 properties Stack tab, and the Trace Summary dialog boxes.

104 Part II Usage Guide

Events
Table 4-1 describes the types of events Procmon captures.

TABLE 4-1 Event Types

Icon Event Description
Registry Registry operations, such as creating, enumerating, querying, and deleting

keys and values.

File System Operations on local storage and remote file systems, including file systems
or devices added while Procmon was running.

Network UDP and TCP- network activity, including source and destination addresses
(but not the actual data that was transmitted or received). Procmon can be
configured to resolve network addresses to network names, or just show
the IP addresses. The option to Show Resolved Network Addresses is on
the Options menu. You can also toggle it by pressing Ctrl+N.

Process Process and thread events such as process creation by a parent process,
process start, thread create, thread exit, process exit, and the loading of
executable images and data files into the process’ address space. (Note
that Procmon does not log the unloading of these images.)

Profiling Generates and logs an event for every process and thread on the system,
capturing the kernel and user time charged, memory use, and context
switches since the previous profiling event. Process profiling events are
 always captured. By default, thread profiling events are not captured.
Debug output profiling, described later, also falls under this event type.

You can toggle the displaying of each of these event types with the five buttons on the right
side of the Procmon toolbar. These buttons are described in the “Filtering and Highlighting”
section later in this chapter.

Tip The Load Image event can help troubleshoot program start failures. If a program fails to
start, identifying the last DLLs that loaded often provides clues to the root cause. For example,
there might be a bug in the DLL that triggers an access violation; it might be triggering a loader
lock issue or hanging the process at that point, or it might have an unresolved dependency on
another DLL. In the last case, the Load Image event will typically be followed by File System
events searching for the missing DLL.

Understanding the Column Display Defaults
Procmon displays event data in columns that you can customize. The default set of columns
includes

■ Time of Day The time of day when the event occurred. The time shows fractional
 seconds out to seven decimal places, but the actual resolution depends on the
 processor’s high-resolution timer, the precision of which is system dependent.

 Chapter 4 Process Monitor 105

Procmon captures UTC time, but displays it in the time zone of the computer on which
it is rendered. For example, if a log is captured at 9:00 A.M. Eastern Time (UTC5), the
time will appear as 6:00 A.M. when the log is viewed on a system configured for the
Pacific time zone.

■ Process Name The name of the process performing the operation, along with an icon
from the process’ executable file.

■ PID The process ID of the process.

■ Operation The name of the low-level operation being logged, along with an icon
representing the event type (registry, file system, network, process, or profiling).

■ Path If applicable, the path of the object being operated on. Examples of paths
i nclude: a registry path beginning with the well-known hive name, a file system path
beginning with a drive letter or UNC path, or source and destination network addresses
and ports. Note that at the Win32 level, HKEY_CLASSES_ROOT is a merged view of
HKLM\Software\Classes and HKCU\Software\Classes. For registry paths, the display of
“HKCR” is a synonym for HKLM\Software\Classes; when the per-user portion of HKCR
is accessed, the full HKCU or HKU path will be shown. Also, HKCU is a synonym for the
HKEY_USERS hive of the account running Procmon. If Procmon is running under a dif-
ferent account from a process of interest, that process accessing its HKCU will appear in
the display as HKU\{user SID}.

■ Result The result of the operation. Common result codes include SUCCESS, ACCESS
DENIED, NAME NOT FOUND, END OF FILE, and the frequently misunderstood BUFFER
OVERFLOW. See the “Result = BUFFER OVERFLOW” sidebar for an explanation of that
benign but scary-sounding result code and Table 4-2 for descriptions of other common
result codes.

■ Detail Additional operation-specific information about the event, such as desired
 access when first opening an object; data size, type, and content when reading a reg-
istry value; or data length of a network send or receive. Some file system operations
include the file attribute codes that are listed in Table 4-3.

Result = BUFFER OVERFLOW
With the rise of Internet-based attacks, the term “buffer overflow” became synonymous
with malicious software taking unauthorized control over a remote computer. In that
context, a buffer overflow occurs when a program copies more data into a memory
buffer than the program was designed to accommodate, leading to the overwriting of
program logic and the execution of code of the attacker’s choosing. It is therefore not
surprising that new Procmon users become alarmed when they see BUFFER OVERFLOW
in the Result column. There’s no need for concern, though.

106 Part II Usage Guide

As an NTSTATUS result code, STATUS_BUFFER_OVERFLOW occurs when a program
requests variable-length information, such as data from a registry value, but doesn’t
provide a large enough buffer to receive the information because it doesn’t know the
actual data size in advance. The system will tell the program how large a buffer is re-
quired and might copy as much data as it can into the buffer, but it will not actually
overflow the buffer. One typical coding pattern is that after a BUFFER OVERLOW result
is received, the program then allocates a large enough buffer and requests the same
data again—this time resulting in SUCCESS.

TABLE 4-2 Common Result Codes and Their Meanings

Result Code Description
SUCCESS The operation succeeded.

ACCESS DENIED The operation failed because the security descriptor on the object
does not grant the rights to the caller that the caller requested. The
failure might also be the result of a file being marked as read-only.
This result code is frequently a red flag when troubleshooting.

SHARING VIOLATION The operation failed because the object is already opened and does
not allow the sharing mode that the caller requested.

NAME COLLISION The caller tried to create an object that already exists.

NAME NOT FOUND
PATH NOT FOUND
NO SUCH FILE

The caller tried to open an object that doesn’t exist. One scenario in
which these result codes can arise is when a DLL load routine looks in
various directories as part of the DLL search process.

NAME INVALID The caller requested an object with an invalid name—for example,
C:\Windows\”regedit.exe”.

NO MORE ENTRIES
NO MORE FILES

The caller has finished enumerating the contents of a folder or
 registry key.

END OF FILE The caller has read to the end of a file.

BUFFER TOO SMALL Essentially the same as BUFFER OVERFLOW. It’s rarely significant when
troubleshooting.

REPARSE The caller has requested an object that links to another object. For
example, HKLM\System\CurrentControlSet might redirect to
HKLM\System\ControlSet001.

NOT REPARSE POINT The requested object does not link to another object.

FAST IO DISALLOWED Indicates that a low-level optimized mechanism is not available for
the requested file system object. It’s rarely significant in trouble-
shooting.

FILE LOCKED WITH ONLY
READERS

Indicates that a file or file mapping was locked and that all users of
the file can only read from it.

FILE LOCKED WITH WRITERS Indicates that a file or file mapping was locked and that at least one
user of the file can write to it.

IS DIRECTORY The requested object is a file system folder.

 Chapter 4 Process Monitor 107

Result Code Description
INVALID DEVICE REQUEST The specified request is not a valid operation for the target device.

INVALID PARAMETER An invalid parameter was passed to a service or function.

NOT GRANTED A requested file lock cannot be granted because of other existing
locks.

CANCELLED An I/O request was canceled—for example, the monitoring of a file
system folder for changes.

BAD NETWORK PATH The network path cannot be located.

BAD NETWORK NAME The specified share name cannot be found on the remote server.

MEDIA WRITE PROTECTED The disk cannot be written to because it is write-protected.

KEY DELETED Illegal operation attempted on a registry key that has been marked
for deletion.

NOT IMPLEMENTED The requested operation is not implemented.

Customizing the Column Display
Often the information in a column is too long to display within the column. In this case, you
can move the mouse pointer over the entry and the full text content of that column appears
in a tooltip. You can resize columns by dragging the border lines in the column headers. You
can autosize a column to its content by double-clicking the border line to the right of the
column title. And you can reorder columns by dragging the column headers.

You can change which columns are displayed by right-clicking the column header row and
selecting Select Columns, or by choosing Select Columns from the Options menu. As shown
in Figure 4-2, available columns are grouped as Application Details, Event Details, and
Process Management.

FIGURE 4-2 Process Monitor Column Selection dialog box.

108 Part II Usage Guide

Application details include static information that is determined at process startup and never
change for the life of the process, such as the image path, command line, and architecture.

Event details include information that is specific to an event. In addition to the columns that
appear by default, here are some other event details:

■ Sequence Number The zero-based row number within the current display.

■ Event Class This can be Registry, File System, Network, Process, or Profiling.

■ Category Where applicable, operation categories are Read, Write, Read Metadata, or
Write Metadata.

■ Relative Time The time of the operation relative to Procmon’s start time or the last
time that the Procmon display was cleared.

■ Duration How long the operation took, in seconds. For Thread Profiling events, this
is the sum of kernel and user time charged to the thread since the previous Thread
Profiling event; for Process Profiling events, this value is set to zero. See the “Displaying
Profiling Events” section later in this chapter for more information.

Process Management columns include runtime information about the process, such as the
following:

■ User Name The security principal under which the process is executing.

■ Session ID The terminal services session in which the process is running. Services
always run in session 0. (See the “Sessions, Window Stations, Desktops, and Window
Messages” section of Chapter 2 for more information.)

■ Integrity The integrity level of the process performing the operation (Windows Vista
and newer).

■ Thread ID The ID of the thread performing the operation; also known as the TID,
which is how it appears in the column header.

■ Virtualized Indicates whether UAC virtualization is enabled for the process
 performing the operation (Windows Vista and newer). Note that this is unrelated to
 application virtualization or machine virtualization.

Event Properties Dialog Box
To find more details about an event, double-click the event row to open the Event Properties
dialog box. Pressing Ctrl+K opens the Event Properties dialog box with the Stack tab
 displayed. The Event Properties dialog box is modeless; not only can you continue to work
with the main Procmon window, you can have multiple Event Properties dialog boxes open
simultaneously. The dialog boxes are also resizable and can even be maximized.

 Chapter 4 Process Monitor 109

Up and Down arrow buttons, shown in Figure 4-3, allow you to look at the properties of the
immediately preceding or next event in the display. If you select the Next Highlighted check
box, clicking the arrow buttons shows the properties of the preceding or next item that is
highlighted. (Highlighting is described in the “Filtering and Highlighting” section later in this
chapter.)

FIGURE 4-3 Navigation buttons in the Event Properties dialog box.

The Copy All button copies the content of the current tab to the clipboard as tab-separated
plain text.

Event Tab
The Event tab of the Event Properties dialog box, shown in Figure 4-4, shows the following
information for every event: Date and time, TID, event class, operation, result, path, and
 duration. Below the horizontal line is the operation-specific information that also appears in
the Detail column, but it appears here in a more readable form.

TABLE 4-3 File Attribute Codes Used in the Detail Column
File Attribute Code Meaning
A A file or directory that is an archive file or directory. Applications typically

use this attribute to mark files for backup or removal.

C A file or directory that is compressed. For a file, all the data in the file is
 compressed. For a directory, compression is the default for newly created
files and subdirectories.

D The object is a directory, or the object is a device.

E A file or directory that is encrypted. For a file, all data streams in the file are
encrypted. For a directory, encryption is the default for newly created files
and subdirectories.

H The file or directory is hidden. It is not included in an ordinary directory
 listing.

N A file that does not have other attributes set. This attribute is valid only
when used alone.

NCI The file or directory is not to be indexed by the content indexing service.

O The data of a file is not available immediately. This attribute indicates that
the file data is physically moved to offline storage. This attribute is used by
Remote Storage, which is the hierarchical storage management software.

R A file that is read-only. Applications can read the file but cannot write to it or
delete it. This attribute is not honored on directories.

110 Part II Usage Guide

File Attribute Code Meaning
RP A file or directory that has an associated reparse point, or a file that is a

 symbolic link.

S A file or directory that the operating system uses a part of, or uses
 exclusively.

SF A file that is a sparse file.

T A file that is being used for temporary storage. File systems avoid writing
data back to mass storage if sufficient cache memory is available, because
typically, an application deletes a temporary file after the handle is closed. In
that scenario, the system can entirely avoid writing the data. Otherwise, the
data is written after the handle is closed.

In the Figure 4-4, the operation was an attempted CreateFile operation on a file in the root
folder of the C drive that resulted in Access Denied. The details include the desired access.
The Disposition line indicates that an existing object would have been opened if the opera-
tion had been successful, rather than a new object being created. The ShareMode line in-
dicates that it’s not exclusive access and that other processes can open the object for read,
write, or delete operations. These details are obviously specific to a CreateFile operation and
would not appear for a Load Image operation, for example. (If the text is too wide to fit in
the display, that situation can be remedied by resizing or maximizing the dialog box. You can
also click Copy All—or right-click within the Details box—click Select All and Copy, and then
paste the text elsewhere.)

FIGURE 4-4 The Event tab of the Event Properties dialog box.

 Chapter 4 Process Monitor 111

Process Tab
The Process tab of the Event Properties dialog box, shown in Figure 4-5, displays detailed
 information about the process behind the selected event at the time the event occurred.

FIGURE 4-5 The Process tab of the Event Properties dialog box.

The information displayed on the Process tab includes

■ Application icon extracted from the process image (or a default icon if the image has
none).

■ Description, company name, and file version extracted from the version information
resource of the image.

■ Process name.

■ File path to the executable image.

■ Command line that was used to start this process.

■ Process ID for this process and for the parent process that started this one.

■ Terminal services session ID in which this process is running.

■ User account under which the process is running.

■ Authentication ID (Auth ID) for the process token. The Authentication ID is a locally
unique ID (LUID) that identifies the Local Security Authority (LSA) logon session that
created the access token that this process is using. (An LUID is a system-generated,
64-bit value guaranteed to be unique during a single boot session on the system on
which it was generated.) LogonSessions lists active LSA logon sessions and is described
in Chapter 8, “Security Utilities.”

112 Part II Usage Guide

■ When the process started, and when it ended (if it has).

■ Architecture (32-bit or 64-bit executable code).

■ Whether UAC file and registry virtualization is enabled for this process (Windows Vista
and newer only).

■ The integrity level of the process (Windows Vista and newer only).

■ The list of modules (executable images) loaded into the process’ address space at the
time this event occurred. A newly launched process will have an empty list until after
some Load Image events load the exe, Ntdll.dll, and other modules.

Stack Tab
The Stack tab of the Event Properties dialog box, shown in Figure 4-6, displays the thread
call stack when the event was recorded. The stack can be useful for determining the rea-
son an event took place and the component responsible for the event. See the “Call Stacks
and Symbols” section in Chapter 2 to understand what a call stack is and how to configure
Procmon to maximize the information you can get from one.

Each row represents one stack frame, with five columns of data:

■ Frame Displays the frame number, and a K for a kernel-mode frame or a U for a
 user-mode frame. (User-mode stack frames are not captured on x64 versions of
Windows prior to Windows Vista SP1 and Windows Server 2008.)

■ Module The name of the file containing the code being executed in this frame.

■ Location The specific location within the module where the code is executing. If
 symbols are available, the location is expressed as a function name and an offset from
the beginning of that function; if source file information is also available, the location
will include the path to and the line number within the source file. If symbols are not
available and the module has an export table, the location is given as the nearest pre-
ceding exported name and an offset from that location. If no symbols or exports are
available, the location is expressed as an offset from the base address of the module in
memory. See the “Call Stacks and Symbols” section in Chapter 2 for more information.

■ Address The address of the code instruction in the virtual address space of the
 executing process.

■ Path The full path of the file identified in the Module column. With the default size of
the dialog box, you need to scroll or resize the dialog box to see this column. This can
help you verify which version of a DLL is executing.

 Chapter 4 Process Monitor 113

FIGURE 4-6 The Stack tab of the Event Properties dialog box.

On the Stack tab, you can do the following:

■ Click Save to save the stack trace as a comma-separated values (CSV) file.

■ Double-click a row in the stack trace to open the Module Properties dialog box. This
dialog box displays the name and path of the module in the stack trace, along with
the description, file version, and company name extracted from the module’s version
 information resource.

■ Select a row and click Search to search online for more information about a symbol or
module name in the Location column. Procmon will initiate a search using your default
browser and search engine.

■ Click the Source button, which is enabled if the symbol information for the selected
stack frame includes source file information. The source file (if found at the expected
location) is displayed in a new window, with the identified line of source code selected.

Note Symbols need to be configured for Procmon to enable some of these features. You
 configure them from the Procmon window (shown in Figure 4-1) by choosing Configure Symbols
from the Options menu. Refer to the “Configuring Symbols” section in Chapter 2 for details.

114 Part II Usage Guide

Displaying Profiling Events
The four classes of events that Procmon displays by default—registry, file system, network,
and process activity—represent operations initiated by processes on the computer. The fifth
event class, profiling events, includes artificial events periodically generated by Procmon itself
(except for Debug Output Profiling events, described in the “Injecting Debug Output into
Procmon Traces” section later in this chapter). Profiling events are not displayed by default,
but they can be displayed by toggling the Show Profiling Events icon on the toolbar.

Process Profiling events are generated for every process on the computer once per second.
Each event captures the user-mode and kernel-mode CPU time charged to the process since
it started, the private bytes currently allocated by the process, and the working set consumed
by the process. The Duration attribute for Process Profiling events is fixed at 0.

Unlike with Process Profiling events, the data captured by Thread Profiling events is not
cumulative. When enabled, Thread Profiling events capture the amount of user-mode and
kernel-mode CPU time and the number of context switches since the thread’s previous profil-
ing event. The Duration attribute reports the sum of the user-mode and kernel-mode CPU
time, and it can be used in a filter rule to help identify CPU spikes. Thread Profiling events are
created only for threads that had at least one context switch during the polling interval, not
for threads in the Idle process.

Process Profiling events are always generated once per second. Thread Profiling events are
not generated by default, but they can be enabled with the Thread Profiling Options dialog
box (shown in Figure 4-7), which you access by choosing Profiling Events from the Options
menu. When Generate Thread Profiling Events is selected, Procmon generates Thread
Profiling events either once per second or ten times per second, according to the period
 chosen in the Options dialog box.

Important Enabling Thread Profiling capture is a potentially expensive option that should be
used only when necessary.

FIGURE 4-7 The Thread Profiling Options dialog box.

 Chapter 4 Process Monitor 115

Finding an Event
To find an event in the main Procmon window based on text in the event, open the Procmon
Find dialog box by pressing Ctrl+F or clicking the binoculars icon in the toolbar. Enter the
text you are looking for, and click Find Next. Procmon will select the next event that contains
the search text in any of the displayed columns. Press F3 to repeat the search to find the next
matching event. The Find feature can be useful for quickly locating an event while still seeing
the context of preceding and following events that could be hidden if you had used a filter.
(Filters are discussed in the “Filtering and Highlighting” section.)

Copying Event Data
Press Ctrl+C to copy the selected event data to the clipboard as tab-separated text. Note that
you can use standard Windows techniques for selecting multiple items in the list, including
Shift+arrow or Shift+click to extend a selection and Ctrl+click to select noncontiguous items.
Procmon will dutifully copy text from whichever columns are displayed for the items that are
selected.

You can copy the text from a single field by right-clicking the field and selecting Copy
“ field-text” from the context menu. In the example shown in Figure 4-8, choosing the eighth
item in the context menu copies the text “HKCR\.exe\OpenWithProgids” to the clipboard.

FIGURE 4-8 Context menu from right-clicking on an event’s Path field.

Jumping to a Registry or File Location
To jump to a registry or file location, select a registry or file system event that has a path that
exists, and press Ctrl+J. Procmon will launch Regedit (for a registry path) or a new Explorer
window (for a file system path) and navigate to the selected path. “Jump to” can also be

116 Part II Usage Guide

invoked by clicking the Jump To Object toolbar icon, or choosing Jump To from the event’s
context menu as shown in Figure 4-8.

Searching Online
You can search online for the process name of an event by selecting the event and choosing
Search Online from the Event menu, or by right-clicking the event and choosing Search
Online from the context menu as shown in Figure 4-8. Procmon will launch a search using
your default browser and search engine. This option can be useful when researching malware
or identifying the source of an unrecognized process.

Filtering and Highlighting
Procmon can easily log millions of events in a short amount of time, initiated from dozens
of different processes. To help you isolate the events of interest to you, Procmon provides
 powerful and flexible filtering options to limit what appears in the display, and it provides
similar options for highlighting particular events. In the example in Figure 4-9, Procmon is
displaying only Access Denied results from Cinmania.exe and highlighting those events in
which the Path begins with “C:\Windows\Fonts”. The status bar shows that although the log
contains 355,859 events, only 63 of those events meet the filter criteria and are displayed.
Over 99.9 percent of the captured events are removed from the display.

FIGURE 4-9 Procmon filtering and highlighting example.

Regmon and Filemon had limited filtering capabilities. One of their biggest limitations was
that when a filter was applied that removed entries from the display, they were permanently
removed and could not be recovered. With Procmon, filtered entries are removed only from
the display, not from the underlying data. They can be displayed again simply by changing or
removing the filter.

 Chapter 4 Process Monitor 117

Configuring Filters
You can configure filters based on any event attributes, whether the data appears in a
displayed column or not. You can look for an exact match to a value you specify; partial
matches including “begins with”, “ends with”, or “contains”; or “less than” or “more than”
 comparisons. (See the “Understanding the Column Display Defaults” section earlier in this
chapter for descriptions of the attributes you can use in a filter.)

The simplest filters to apply are the Event Class filters exposed in the five buttons on the right
side of the toolbar (shown in Figure 4-10), which toggle the display of registry, file system,
network, process/thread, and profiling events. When an event class is toggled off, an Exclude
filter is added for that event class, hiding all events of that type.

FIGURE 4-10 Event Class toggles in the Procmon toolbar.

Another easy way to modify the filter is with Include Process From Window. This feature
lets you set a filter on the PID of the process that owns a particular window. Click and hold
the Crosshairs icon in the toolbar, and then drag it over the window you are interested in.
Procmon hides itself during this operation and draws a frame around the window the cursor
is over. Release the mouse button, and Procmon reappears with the PID of the process that
owns the window added to the filter.

The full range of filtering options can be seen in the Process Monitor Filter dialog box (shown
in Figure 4-11) by pressing Ctrl+L or clicking the Filter icon in the toolbar. You’ll notice that
the default filter already has a number of Exclude rules. These will be discussed later in the
“Advanced Output” section.

To add a filter rule, choose an attribute from the first drop-down list, the type of test to
 perform in the second drop-down list, and the value to compare against in the third drop-
down combo box. All text comparisons are case-insensitive. When you select an attribute
in the first list, the third drop-down combo box will be pre-populated with all the values
seen in the current data set. For example, when you choose Process Name, the third drop-
down combo box will be pre-populated with all the process names that generated events.
(Procmon does not do this for attributes such as Path that can have a very large number of
distinct values.) You can also edit the value in this drop-down combo box directly. Choose
whether to include matching events or exclude them from the display with the fourth drop-
down list in the top row. Click the Add button to add the new filter criteria to the existing
filter. When you are done modifying the filter list, click OK or Apply.

To edit or remove a rule from the filter, double-click it or select it and click the Remove
 button. It will be removed from the list and copied into the rule-editing drop-down menus
so that you can easily edit it and re-add it to the list. You can disable an individual rule

118 Part II Usage Guide

 without permanently removing it by clearing its check box. To enable the rule again, simply
select its check box again and click OK or Apply.

To reset the filter to default settings, click the Reset button in the Filter dialog box. You can
reset the filter from the Procmon main window by pressing Ctrl+R.

FIGURE 4-11 Process Monitor Filter dialog box.

Procmon ORs together all the filter rules for a particular attribute and ANDs filters for
 different attributes. For example, if you specify Process Name “include” filters for Notepad.
exe and Cmd.exe, and a Path “include” filter for C:\Windows, Procmon displays only events
involving C:\Windows that originated from Notepad or Command Prompt. It doesn’t show
any other events involving other paths or other processes.

Another powerful way to add filter criteria is by right-clicking an event and selecting criteria
from the context menu. Figure 4-12 shows just the context menu from Figure 4-8 and
 illustrates the available choices.

First, the context menu offers quick-filter entries for the value on which you click. For
 example, the fourth and fifth items in Figure 4-12 show Include and Exclude quick filters
for registry path “HKCR\.exe\OpenWithProgids”. The Exclude Events Before option hides
all events preceding the selected one by adding a rule based on the event’s Date & Time
 attribute; similarly, Exclude Events After hides all events following the selected one. Finally,
the Include and Exclude submenus (the second and third items from the bottom) list most
available filter attributes. Pick an attribute name from one of these submenus and the
 corresponding value from the selected event will be added to the filter. You can also add a
filter based on the collection of values from multiple events simultaneously: select the events,
right-click, and select an attribute name from the Include or Exclude submenu. Doing this
configures a filter for all the unique values contained in the selected events.

 Chapter 4 Process Monitor 119

FIGURE 4-12 Context menu detail from Figure 4-8.

These different methods for configuring a filter can be combined. Let’s say you see
 processes accessing registry keys at and under HKCR\CLSID\{DFEAF541-F3E1-4C24-ACAC-
99C30715084A} and you want to filter on that activity. That calls for a Begins With filter on
that path. One way to get there without a lot of typing or copy and pasting is to find an
event with that key, right-click, and choose Include ‘HKCR\CLSID\{DFEAF541-F3E1-4C24-
ACAC-99C30715084A}’. That sets a Path Is filter. Press Ctrl+L to open the Filter dialog box,
double-click on the new criteria to move it from the list to the rule-editing drop-down
menus, change “is” to “begins with,” edit the path if needed, click Add, and then click OK.

The Process Tree and Summary dialog boxes, discussed later in this chapter, also offer
 mechanisms for modifying the current filter.

Procmon remembers the most recent filter you set. The next time you start Procmon after
you have set a filter, Procmon will display the Filter dialog box before beginning event
 capture. This gives you an opportunity to keep, edit, or reset the filter before capturing data.
You can bypass this step by running Procmon with the /Quiet command-line option. You
can automatically clear the filter at startup with the /NoFilter command-line option. See
the “Automating Procmon: Command-Line Options” section later in this chapter for more
information.

Configuring Highlighting
While filtering removes events from the displayed list, highlighting makes selected events
visually distinctive. By default, highlighted events appear with a bright blue background. You
can change the highlight foreground and background colors by choosing Highlight Colors
from the Options menu.

120 Part II Usage Guide

Configuring highlighting is almost identical to configuring filters. The Process Monitor
Highlighting dialog box can be displayed by pressing Ctrl+H or by clicking the Highlight
icon on the toolbar. The Highlight dialog box works exactly the same way the Filter dialog
box does, and the right-click context menu on selected events offers the same options for
 highlighting as it does for applying filters.

The Event Properties dialog box discussed earlier in this chapter lets you look at the next or
previous item in the event list. By selecting the Next Highlighted check box, you can navigate
to the next or previous highlighted item instead.

Advanced Output
By default, Procmon hides events that are usually not relevant for application
troubleshooting:

■ Events originating from Procmon’s own activity.

■ Events originating from within the System process.

■ Profiling events, including the Process Profiling events, which are generated every
second.

■ Low-level operations whose names begin with IRP_MJ_ (I/O Request Packets, used by
Windows drivers for file or device I/O, PnP, power, and other I/O-related functions).

■ Low-level operations whose names begin with FASTIO_. These are like an I/O request
packet (IRP) except they are used by the I/O system and use the file system driver or
cache manager to complete the I/O request.

■ Results beginning with “FAST IO,” such as “FAST IO DISALLOWED.”

■ Activity involving the system pagefile.

■ NTFS and MFT (Master File Table) internal management

Selecting Advanced Output on the Filter menu removes all these exclusions (except for
Profiling events) and displays driver-level names for file system operations. For example, the
CreateFile operation in Basic mode appears as IRP_MJ_CREATE when in Advanced mode.
Clearing Enable Advanced Output reapplies the exclusions just described and restores
 Basic-mode operation naming.

When Advanced Output is selected, Reset Filter removes all filter rules except for excluding
Profiling events.

You can see all system activity but retain the friendly event names by removing default filters
while keeping Advanced Output turned off.

 Chapter 4 Process Monitor 121

Saving Filters for Later Use
After you configure a filter, you can save it for later use. This lets you reload and apply
 complex filters quickly or easily switch between different filter sets. You can also export your
saved filters and import them onto another system or for another user account.

To save a filter, choose Save Filter from the Filter menu and type a name for it as shown in
Figure 4-13. Procmon offers Filter 0, Filter 1, and so on, as defaults. You might want to choose
a more descriptive name, like “IE Write operations.”

FIGURE 4-13 The Save Filter dialog box.

To load and apply a saved filter, choose it from the Load Filter submenu on the Filter menu.
Filters are listed in the menu in alphabetical order. (See Figure 4-14.)

FIGURE 4-14 The Procmon Load Filter menu.

You can rename or delete filters with the Organize Filters dialog box, as shown in Figure 4-15.
Choose Organize Filters from the Filter menu. To export a filter, select it in the list, click the
Export button, and choose a file location. Procmon uses the *.PMF extension to identify
Procmon filter files. To import a filter, click Import and select the exported Procmon filter.

Note that saved and exported filters capture only filter rules. Highlight rules can be saved
only by exporting the Procmon configuration (which also includes filter rules). See the
“Importing and Exporting Configuration Settings” section later in this chapter for more
 information, and the “Automating Procmon: Command-Line Options” section for information
about loading saved configurations from the command line.

122 Part II Usage Guide

FIGURE 4-15 The Procmon Organize Filters dialog box.

Process Tree
Pressing Ctrl+T or clicking the Process Tree toolbar button displays the Process Tree dialog
box shown in Figure 4-16. The Process Tree dialog box displays all the processes that are ref-
erenced in the loaded trace in a hierarchy that reflects their parent-child relationships, similar
to Procexp’s tree view. You can collapse or expand portions of the tree by clicking the plus (+)
and minus (–) icons to the left of parent processes in the tree, or selecting those nodes and
pressing the left and right arrow keys. Processes that are aligned along the left side of the
window have parent processes that have not generated any events in the trace.

FIGURE 4-16 The Process Tree dialog box.

Each process name appears next to its corresponding application icon. The icon is dimmed if
the process exited during the trace. To show only processes that were still running at the end
of the current trace, set the corresponding check box at the top of the dialog box.

 Chapter 4 Process Monitor 123

Select a row to display information about the process in the bottom of the dialog box.
Information includes the PID, description, image path, command line, start time, stop time
(if applicable), company name, and user account under which the process runs. That infor-
mation is also shown in the table itself, along with a graphical representation of the process’
timeline.

The Life Time column shows the timeline of the process relative to the trace or to the
boot session, depending on whether the Timelines Cover Displayed Events Only option is
 selected. With the option selected, a green bar going from edge to edge indicates that
the process was running at the time the trace started and was still running when the trace
ended. A green bar that begins further to the right (for example, the tree’s last visible item
in Figure 4-16) indicates the process’ relative start time after the trace had begun. A darker
green bar indicates a process that exited during the trace, with its extent indicating when
during the trace it exited. If the Timelines Cover Displayed Events Only option is not selected,
the graphs indicate the process’ lifetimes relative to the boot session: a green bar closer to
the left edge of the column indicates a process that has been running since system startup or
that began shortly after.

In addition to graphically showing the parent-child relationship of processes, including those
that have since exited, the Process Tree can help identify unusual conditions, such as short-
lived processes being created over and over.

Selecting a process in the tree and clicking the Include Process button adds a PID Is rule to
the filter with the selected process’ PID. Clicking Include Subtree adds a PID Is rule for the
selected process and all its descendants in the tree.

To find an event in the trace associated with a process, select the process in the tree and
click Go To Event. Procmon locates and selects the first visible event in the trace in the main
Procmon window. Note that filters can prevent a process from having any visible events. For
example, a process might not have executed any code during the trace but still appear in the
tree because of Process Profiling events, which are normally filtered out of the display.

Saving and Opening Procmon Traces
“Please send me a Procmon log” might be one of the most commonly used phrases by
 support technicians. The ability to see a detailed log of system activity on a remote computer
enables troubleshooting to be performed across firewalls and time zones that would
 otherwise be much more difficult. And when this capability is combined with the command-
line options described later in this chapter, the user receiving the assistance can just run a
batch command and doesn’t need to be told how to save the log or otherwise interact with
Procmon.

124 Part II Usage Guide

Saving Procmon Traces
To save a Procmon trace, press Ctrl+S or click the Save icon on the toolbar to open the Save
To File dialog box. (See Figure 4-17.)

FIGURE 4-17 Save To File dialog box.

You can opt to save all events whether they are displayed or not, save only events that are
displayed by the current filter (with or without profiling events), or just save events that are
selected by the current highlighting rules.

Procmon can save traces to one of three file formats. PML is Procmon’s native file format,
which preserves all captured data with full fidelity, including stack and module information,
so that it can be loaded into Procmon on the same system or a different system. When later
viewed on a system properly configured with the Debugging Tools for Windows, the module
information saved in the PML file enables the correct symbol and binary files to be down-
loaded from symbol servers. (Binaries are downloaded in addition to symbols if the computer
name from the trace is not the same as that of the current computer.) See the “Configuring
Symbols” section of Chapter 2 for more information.

Note that the internal PML file format is different for traces on x86 and x64 versions of
Windows. Although x86 captures can be viewed on x86 or x64 systems, logs captured on x64
editions of Windows can be viewed only on an x64 system. The “Opening Saved Procmon
Traces” section provides the details.

Another option is to save captured data to a CSV file. CSV files are useful for importing into
Microsoft Excel or other data analysis applications, or for performing comparisons using
text-file-comparison utilities such as WinDiff or fc.exe. With CSV files, Procmon saves only the
text data from the columns selected for display. The first line of the CSV contains the column
names. To compare two captures saved as CSV files, make sure to remove columns, such as
Time Of Day, that will always be different.

 Chapter 4 Process Monitor 125

Procmon can also save its data to XML for processing by tools that can parse XML. For
 example, the following lines of Windows PowerShell script parses a Procmon XML file and
outputs a sorted list of all unique module paths loaded from outside of the C:\Windows
folder hierarchy:

$x = [xml]$(gc logfile.xml)
$x.SelectNodes("//module") |
 ?{ !$_.Path.ToLower().StartsWith("c:\windows\") } |
 %{ $_.Path } |
 sort -Unique

Here’s the result of that script extracted from a 5-MB XML log file captured on a Virtual PC
virtual machine:

C:\PROGRA~1\WI4EB4~1\wmpband.dll
C:\Program Files\Common Files\microsoft shared\ink\tiptsf.dll
C:\Program Files\Debugging Tools for Windows\DbgHelp.dll
c:\Program Files\Sysinternals\Procmon.exe
C:\Program Files\Virtual Machine Additions\mrxvpcnp.dll
C:\Program Files\Virtual Machine Additions\VMBACKUP.DLL
C:\Program Files\Virtual Machine Additions\vmsrvc.exe
C:\Program Files\Virtual Machine Additions\vmusrvc.exe
C:\Program Files\Virtual Machine Additions\vpcmap.exe
C:\Program Files\Virtual Machine Additions\VPCShExG.dll
c:\program files\windows defender\MpClient.dll
C:\Program Files\Windows Defender\MpRtMon.DLL
c:\program files\windows defender\mprtplug.dll
c:\program files\windows defender\mpsvc.dll
C:\Program Files\Windows Defender\MSASCui.exe
C:\Program Files\Windows Defender\MsMpRes.dll
C:\Program Files\Windows Media Player\wmpnetwk.exe
C:\Program Files\Windows Media Player\WMPNSCFG.exe
C:\Program Files\Windows Media Player\wmpnssci.dll
C:\Program Files\Windows Sidebar\sidebar.exe
C:\ProgramData\Microsoft\Windows Defender\Definition Updates\{02030721-61CF-400A-86EE-
1A0594D4B35E}\mpengine.dll

When saving to XML, you can optionally include stack traces and resolve stack symbols at
the time of the save. Note that these options will increase the size of the saved file and the
time required to save it. Note also that trying to render large XML files without schemas in
Internet Explorer will bring IE to its knees.

Opening Saved Procmon Traces
Procmon running on an x86 system can open only traces captured on an x86 system.
Procmon running on an x64 system can open x86 or x64 traces, but it must be in the correct
mode for the architecture. To open an x86 trace on x64, Procmon must be started with the
/Run32 command-line option to run the 32-bit version of Procmon. Note that when running
in 32-bit mode on x64, Procmon cannot capture events.

126 Part II Usage Guide

If Procmon is already running, open the File Open dialog box by clicking the Open toolbar
icon. You can open a Procmon log file from the command line with the /OpenLog command
line option as follows:

■ For opening x86 traces on x64:

procmon.exe /run32 /openlog logfile.pml

■ Everyplace else:

procmon.exe /openlog logfile.pml

Each time you run Procmon, it registers a per-user file association for .PML to the current
Procmon path with the /OpenLog option. So after you have run Procmon one time, you can
open a Procmon log file simply by double-clicking it in Explorer. If you run Procmon with the
/Run32 option, that option will also be added to the file association. So if you’re analyzing a
set of 32-bit logs, you can do so from Explorer. The /Run32 option will be removed from the
association if you later run Procmon without that option.

Procmon does not require administrative rights to open an existing log file, and it won’t
prompt for elevation on Windows Vista and newer versions when started with the /OpenLog
option. However, if you later want to capture events, you’ll need to restart Procmon with
 administrative rights.

The log file includes information about the system on which the data was collected, including
the computer name, operating system version and whether it is 32-bit or 64-bit, system root
path, number of CPUs, and amount of RAM. You can see this in the System Details dialog box
(shown in Figure 4-18) on the Tools menu.

FIGURE 4-18 System Details dialog box.

To view symbols in stack traces, the system on which the trace was captured does not need
to have debugging tools installed nor symbols configured, but the system on which the trace
is viewed must have both. In addition, it must have access to symbol files and binaries for the
trace system. For Windows files, the Microsoft public symbol server will usually provide these.

 Chapter 4 Process Monitor 127

Logging Boot, Post-Logoff, and Shutdown Activity
Up to this point in the chapter, everything that has been described about Procmon assumes
you’re logged on at an interactive desktop. Procmon also provides ways to monitor system
activity when no one has logged on and after users have logged off.

Boot Logging
You can configure Procmon to begin logging system activity from a point very early in the
boot process. This is the feature you need if you’re diagnosing issues that occur before,
 during, or in the absence of user logon, such as those involving boot-start device drivers,
autostart services, the logon sequence itself, or shell initialization. Boot logging also enables
you to diagnose issues that occur during user logoff and system shutdown.

Boot logging is the only Procmon mode that is tolerant of hard resets. Because of this, it
can help diagnose system hangs and crashes, including those occurring during startup or
shutdown.

When you Enable Boot Logging from the Options menu, Procmon configures its driver to run
as a boot start driver that loads very early in the boot sequence at the next system startup,
before most other drivers. Procmon’s driver will log activity into %windir%\Procmon.PMB
and it will continue logging through shutdown or until you run Procmon again. Thus, if you
don’t run Procmon during a boot session, you’ll capture a trace of the entire boot-to-shut-
down cycle. As a boot start driver, it remains loaded very late into the shutdown sequence.

After the boot-start driver loads, it changes its startup configuration to be a demand-start
driver for subsequent boots. Consequently, when you enable boot logging, it is only for the
next boot. To enable boot logging for subsequent boots, you must explicitly enable it again
each time.

When you run Procmon, it looks to see whether an unsaved boot log has been generated,
either from the current session or from a previous boot session. If Procmon finds one, it asks
you whether and where you want to place the processed boot log output file. (See Figure
4-19.) Procmon then opens and displays the saved log. If you do not save the boot log to
 another location, it will be overwritten the next time you capture a boot-time log.

FIGURE 4-19 Procmon prompts whether and where to save a boot log.

128 Part II Usage Guide

When looking at boot-time activity, remember that the System process is the only process
early in a boot and that activity originating from the System process is filtered by default.
Choose Advanced Output on the Filter menu to see System process activity.

Note that tracing of network events depends on Event Tracing for Windows (ETW) and is not
available in boot logs. Also, Process and Thread Profiling events are not captured during boot
logs either. Finally, note that Procmon does not configure its boot logging to run during Safe
Mode.

If you configure boot logging and the system crashes early in the boot, you can deactivate
the boot logging by choosing the Last Known Good option from the Windows boot menu.
Press F8 during Windows startup to access this option.

Keeping Procmon Running After Logoff
Boot logging is the only option Procmon offers to capture events very late in the shutdown
sequence. If you need to capture events that occur during or after user logoff but don’t need
a complete trace of the shutdown, boot logging always remains an option. However, in ad-
dition to the post-logoff data you want to capture, you’ll end up with a log of the entire
boot session from system startup on, which might be far more data than you want. Another
 option, then, is to start Procmon in a way that survives user logoff.

One way to monitor a user’s logoff is to leverage terminal services, using either Fast User
Switching or Remote Desktop. With the target user already logged on, start a new session
as a different user and start Procmon. Switch back to the original user’s session and log off.
Return to the second session, and stop capturing events. Set a filter on the Session attribute
to see only the events that occurred within the original user’s terminal services session.

Another effective way to capture post-logoff activity is to use PsExec with the –s option to
run Procmon as System in the same environment in which noninteractive System services
run. There are some tricks to this, though, because you won’t be able to interact with this
 instance of Procmon:

■ You need to specify a backing file on the command line with /BackingFile. Remember
that this setting sticks. So if you run Procmon and capture data again as System without
specifying a different backing file, you’ll overwrite your previous trace.

■ You must specify /AcceptEula and /Quiet on the command line to ensure that
Procmon doesn’t try to display dialog boxes that cannot be dismissed.

■ Procmon must be shut down cleanly. To do this without shutting the system down, you
must run Procmon /Terminate in the exact same manner as the original command.

See the “Backing Files” and “Automating Procmon: Command-Line Options” sections in this
chapter for more information about these options. See “Sessions, Window Stations, Desktops,

 Chapter 4 Process Monitor 129

and Window Messages” in Chapter 2 to better understand the underlying concepts covered
here. And see Chapter 6, “PsTools,” for more information about PsExec.

Here is an example command line to start a Procmon trace that survives logoff:

PsExec -s -d Procmon.exe /AcceptEula /Quiet /BackingFile C:\Procmon.pml

And the following command line will stop that trace:

PsExec -s -d Procmon.exe /AcceptEula /Terminate

The PsExec -d option allows PsExec to exit without waiting for the target process to exit.

If a PsExec-launched instance of Procmon is running as System during a clean system shut-
down, Procmon will stop logging when CSRSS tears down user-mode processes. To capture
events beyond this point, boot logging is the only option.

Long-Running Traces and Controlling Log Sizes
Procmon trace files can become very large, particularly with boot logging or other long-
running traces. Therefore, Procmon provides several ways to control log file size.

Drop Filtered Events
Ordinarily, Procmon will log all system activity, including events that are normally never
displayed because of the active filters. That way, you always have the option to set a filter,
explore the resulting output, and then change the filter to see a different set of output.
However, if you know in advance of a long-running trace that you’ll never need to see events
for, you can keep them from taking space in the log by choosing the Drop Filtered Events
option in the Filter menu.

When Drop Filtered Events is chosen, events that don’t meet the filter criteria are never
added to the log, reducing the impact on log size. Obviously, that event data cannot be
 recovered later. This option affects only newly collected events. Any events that were already
in the log are not removed.

Note that filtering is not applied while a boot log is being collected, so Drop Filtered Events
will not reduce disk usage impact during a boot log trace. But also note that the filters—and
the Drop Filtered Events setting—are applied when the boot log is processed. So if you elect
to drop events and need to see System process activity or other low-level events, make sure
to choose Enable Advanced Output (Filter menu) before rebooting.

130 Part II Usage Guide

History Depth
Process Monitor watches committed memory usage and stops capturing events when system
virtual memory runs low. By opening the History Depth dialog box (shown in Figure 4-20)
from the Options menu, you can limit the number of entries kept so that you can leave
Process Monitor running for long periods and ensure that it always keeps the most recent
events. The range goes from a minimum of 1 million to 199 million events. The default is
199 million.

FIGURE 4-20 History Depth dialog box.

Backing Files
By default, Procmon uses virtual memory to store captured data. If virtual memory runs low,
Procmon automatically stops logging and displays an error message. If your logging needs
exceed the capacity of virtual memory, you can configure Procmon to store captured data to
a named file on disk. The capacity limit when using a named file is the amount of free space
on the hard drive.

You can configure and see information about backing files by choosing Backing Files from
the File menu. The Process Monitor Backing Files dialog box shown in Figure 4-21 opens.
Backing file configuration changes take effect the next time you begin capturing a new log
or clear the current log.

FIGURE 4-21 Process Monitor Backing Files dialog box.

 Chapter 4 Process Monitor 131

Note that if you choose a named file, Procmon might create additional files to keep
 individual file sizes manageable. Files will have the same base name, with an incrementing
number appended, as shown in Figure 4-22. As long as the files are kept in the same folder
and with the same base name, Procmon will treat the file set as a single log.

The Backing Files dialog box also displays diagnostic information, including the number of
events captured and the number of processes observed.

FIGURE 4-22 Process Monitor Backing Files dialog box with named files.

Importing and Exporting Configuration Settings
From the File menu, you can export Procmon’s entire configuration to a single Procmon
Configuration (*.PMC) file, including settings for filters, highlight rules, column selection,
column order and size, backing file settings, symbols, Advanced Output, and Drop Filtered
Events. An exported configuration can be imported on another system or used in a scripted
fashion with the /LoadConfig command-line option (described in the next section). You can
also create multiple shortcuts to Procmon with different /LoadConfig configuration files
specified for different tasks.

Filter rule sets can also be imported and exported individually. See the “Saving Filters for
Later Use” section for details.

Note Procmon stores all its configuration settings in the registry in
HKEY_CURRENT_USER\Software\Sysinternals\Process Monitor. The simplest way to restore
all Procmon configuration settings to their defaults is to close all instances of Procmon, delete
the registry key, and then start Procmon again. When viewing x86 Procmon logs on x64
 versions of Windows, the 32-bit version of Procmon saves its configuration settings to
HKCU\Software\Sysinternals\Process Monitor32.

132 Part II Usage Guide

Automating Procmon: Command-Line Options
Procmon offers a number of command-line options, which helps enable scripted execution.
Say, for example, you need a novice user to run Procmon with a particular configuration
and to send you the results. Instead of asking the user to follow detailed instructions for
 configuring and running Procmon, you can simply give that person a batch file to run.

Procmon’s Help menu includes a quick summary of Procmon’s command-line options.
Table 4-4 describes them in more detail.

TABLE 4-4 Command-Line Options

Option Description
/OpenLog pml-file Opens a previously saved Procmon log file. Note that a log file must

be opened by an instance of Procmon running in the same processor
 architecture as that which recorded it.

/BackingFile pml-file Saves events in the specified backing file. Using a named backing file
enables a log file capacity limited by free disk space. Note that this op-
tion is sticky—the file you specify becomes the Procmon log not just for
the instance you’re launching; it becomes a permanent setting change.
(See the “Backing Files” section for more information.)

/PagingFile Saves events in virtual memory, backed by the system page file. This
 option is used to revert the /BackingFile setting.

/NoConnect Starts Procmon but does not automatically begin capturing data. By
 default, Procmon begins event capture on start.

/NoFilter Clears the filter at startup. This removes all filter rules except the
 exclusion of Profiling events.

/AcceptEula Doesn’t display the End User License Agreement (EULA) dialog box on
first use. Use of this option implies acceptance of the EULA.

/LoadConfig config-file Loads a previously saved configuration file. (See the section on
Configuration Files for more information.)

/Profiling Enables the Thread Profiling feature.

/Minimized Starts Procmon minimized.

/WaitForIdle Waits for up to 10 seconds for another instance of Procmon on the same
Win32 Desktop to become ready to accept commands. See below for an
example of how to use this option.

/Terminate Terminates any instance of Procmon running on the same Win32
Desktop and then exits. This option uses window messages to send
the command to the target Procmon instance. (See “Sessions, Window
Stations, Desktops, and Window Messages” in Chapter 2.)

/Quiet Doesn’t confirm filter settings during start up. By default, if filter rules
have been configured, Procmon displays the filter dialog box to allow
you to modify them before capturing data.

/Run32 Run the 32-bit version to load 32-bit log files (x64 only).

 Chapter 4 Process Monitor 133

Option Description
/HookRegistry This switch, which is available only on 32-bit Windows Vista and newer,

has Procmon use system-call hooking instead of the Registry callback
mechanism to monitor registry activity, which enables it to see Microsoft
Application Virtualization (App-V, formerly Softgrid) virtual registry
operations. This option must be used the first time that Process Monitor
is run in a boot session and should be used only to troubleshoot App-V
sequenced applications.

/SaveAs path When used with the /OpenLog option, exports the captured log to an
XML, CSV, or PML file. The output format is determined by the path’s file
extension, which must be .xml, .csv, or .pml.

/SaveAs1 path When used with the /OpenLog option, exports to XML and includes
stack traces. See the “Saving and Opening Procmon Traces” section for
more information.

/SaveAs2 path When used with the /OpenLog option, exports to XML and includes
stack traces and symbols. See the “Saving and Opening Procmon Traces”
section for more information.

Here are some examples of putting these options to use:

■ Opening a 32-bit log file on an x64 version of Windows:

Procmon.exe /Run32 /OpenLog c:\pmlLogs\logfile.pml

■ Here’s a more elaborate one. This batch captures “write” operations from an instance of
Notepad.exe into C:\notepad.pml:

set PMExe="C:\Program Files\Sysinternals\Procmon.exe"
set PMHide= /AcceptEula /Quiet /Minimized
set PMCfg= /LoadConfig C:\TEMP\PmCfg.pmc
set PMFile= /BackingFile C:\notepad.pml

start "" %PMExe% %PMHide% %PMCfg% %PMFile%
%PMExe% /WaitForIdle
notepad.exe
%PMExe% /Terminate
start "" %PMExe% /PagingFile /NoConnect /Minimized /Quiet
%PMExe% /WaitForIdle
%PMExe% /Terminate

Let’s look at this last example line by line:

■ Line 1 (set PMExe) identifies the path to Procmon so that it doesn’t need to be repeated
in the subsequent commands.

■ Line 2 (set PMHide) specifies command-line options to make Procmon’s running as
 unobtrusive to the user as possible.

■ Line 3 (set PMCfg) specifies a previously saved configuration file that filters on write
events for Notepad.exe and drops filtered events.

134 Part II Usage Guide

■ Line 4 (set PMFile) configures the desired backing file.

■ Line 5 uses the Command Prompt’s start command to launch an instance of Procmon
and return control to the batch file immediately.

■ Line 6 invokes a second instance of Procmon that waits for the first instance to be up
and running and actively capturing events (/WaitForIdle), and then it returns control to
the batch file. Notepad is then started on line 7. When the user finishes using Notepad
and closes it, control returns to the batch file.

■ Line 8 terminates the instance of Procmon that was capturing events.

■ To restore the pagefile as the backing store, Line 9 starts an instance of Procmon that
sets the paging file as the backing store (/PagingFile) but doesn’t log any events.

■ When that instance is ready to accept commands (line 10), it can be terminated
(line 11).

Analysis Tools
Procmon offers a number of ways to visualize captured data and allow you to perform simple
data mining on the events collected in a trace. These can be found on the Tools menu:

■ Process Activity Summary

■ File Summary

■ Registry Summary

■ Stack Summary

■ Network Summary

■ Cross Reference Summary

■ Count Occurrences

The Summary dialog boxes are all modeless, so you can open several at once and continue to
interact with the main window.

Process Activity Summary
The Process Activity Summary dialog box (shown in Figure 4-23) displays a table listing
every process for which data was captured with the current filter applied. Each row in the
table shows the process name and PID, a CPU usage graph, the numbers of file, registry
and network events, the commit peak and the working set peak, and graphs showing these
and other numbers changing over the timeline of the process. You can save all the text
 information to a CSV file by clicking the Save button.

 Chapter 4 Process Monitor 135

FIGURE 4-23 Process Activity Summary dialog box.

Selecting a row displays more information about the process at the bottom of the dialog
box—the command line, start and stop time, and total user and kernel CPU time. Double-
clicking a row or selecting it and clicking the Detail button displays the Process Timeline
dialog box for that process (shown in Figure 4-24). Columns can be resized or reordered by
dragging the appropriate parts of the column headers.

The Process Timeline (shown in Figure 4-24) displays the process’ graphs from the Process
Activity Summary dialog box stacked above each other in a resizable dialog box. Clicking
on a point in a graph selects the nearest corresponding event for that process in the main
window. So, for example, say that at about 40 percent through the graphs, you see a sudden
spike in file I/O operations, private memory bytes, and working set. Click on that point in
any of the graphs and the nearest corresponding event for that process is selected in the
Procmon main window.

FIGURE 4-24 Process Timeline dialog box.

136 Part II Usage Guide

File Summary
The File Summary dialog box shown in Figure 4-25 aggregates information about every file
and folder operation displayed by the current filter, and it groups the results on separate
tabs by path, by folder, and by file extension. For each unique file system path, the dialog
box displays how much total time was spent performing I/O to the file; the number of opens,
closes, reads, writes, Get ACL, Set ACL and other operations; the total number of operations
performed; and the number of bytes read from and written to the file.

FIGURE 4-25 By Path tab of the File Summary dialog box.

The By Path tab displays a simple list in which each unique path appears as a separate row.

The By Folder tab (shown in Figure 4-26) displays an expandable tree view based on the
folder hierarchy. Expandable folder nodes represent the sum of the data from operations
performed within that folder hierarchy. Nonexpandable nodes show data for operations
performed on that object. For example, there might be two Program Files nodes: the nonex-
pandable one indicates operations performed on the folder itself, while the expandable one
displays the sums of all operations performed on its files and subfolders.

FIGURE 4-26 By Folder tab of the File Summary dialog box.

 Chapter 4 Process Monitor 137

The By Extension tab (shown in Figure 4-27) displays a one-level tree for each file extension:
expanding a node for a file extension lists all files with that extension as immediate child
nodes. The row containing the extension name contains the sum of all the data for files of
that extension.

FIGURE 4-27 By Extension tab of the File Summary dialog box.

Clicking a column header sorts the table on the current tab by that column. On the By Folder
and By Extension tabs, the groupings are maintained and rows are sorted within their groups.
Sorting columns lets you quickly identify usage patterns. For example, column-sorting on the
By Folder tab identifies which folder hierarchies have the largest number of operations, bytes
read or written, or file I/O time. Column-sorting on the By Extension tab shows which file
types are getting accessed the most. You can also reorder columns by dragging the column
headers. (On the By Folder and By Extension tabs, the leftmost columns cannot be moved.)

Double-clicking a row sets a Path rule for the file path in that row to the current filter.
Clicking the Filter button displays the Filter dialog box so that you can further refine the filter.

The Save button on each tab saves the current table view as a CSV file.

Registry Summary
Much like the File Summary dialog box, the Registry Summary dialog box (shown in
Figure 4-28) lists every registry path referenced by registry operations in a table, along with
how much total time was spent performing I/O to the key; the number of opens, closes,
reads, writes, and other operations; and the sum total of these. Clicking on a column header
sorts by the data in that column, and columns can be reordered by dragging the column
headers. Double-clicking a row adds a Path rule for the registry path in that row to the
 current filter. The Filter dialog box can be displayed by clicking the Filter button, and you can
save the data to a CSV file.

138 Part II Usage Guide

FIGURE 4-28 Registry Summary dialog box.

Stack Summary
The Stack Summary dialog box (Figure 4-29) takes all the stack traces for each Procmon-
traceable event, identifies the commonalities and divergences in them, and renders them
as expandable trees. For each frame within a call stack, you can see how many times its ex-
ecution resulted in a Procmon-traceable event, the cumulative amount of time spent in the
Procmon-captured operations, the name and path of the module, and the absolute offset
within it. The Stack Summary also shows function names and the path to and line number
within source files for each stack frame if symbolic information is available. (See “Call Stacks
and Symbols” in Chapter 2 for more information.)

Note Stack Summary is not a comprehensive code coverage and profiling tool. The counts
it reports reflect only the number of times that a Procmon-traceable event occurred, the
times it reports indicate the amount of CPU time spent performing those operations, and the
 percentages are relative to those accumulated figures.

FIGURE 4-29 Stack Summary dialog box.

 Chapter 4 Process Monitor 139

Figure 4-29 shows a stack summary for a program for which full symbolic information is
available. The top two frames represented in the dialog box show that the C runtime library’s
startup function, __tmainCRTStartup called the standard wmain entry point, and that the
functions they called resulted in 55,117 separate Procmon-tracked events with the current fil-
ter. By expanding child nodes that have the largest counts or times associated with them, you
can quickly determine where the bulk of the activity occurred. Over 72 percent of the events
displayed with the current filter were invoked from InternalWorkItem+0x81, and it invoked
RegSetValueExW 39,806 times.

Selecting a stack frame and clicking the Go To Event button selects the first event in the trace
with a corresponding call stack. The Source button is enabled if full symbolic information
is available for the selected item. If the source file is available, clicking the Source button
displays the file in the Procmon source file viewer, with the indicated line of source code
selected.

As with the other summary dialog boxes, columns can be sorted by clicking on the headers,
and all but the leftmost column can be reordered by dragging the headers.

Note that building the stack summary can be time consuming, especially when symbols are
being resolved.

Network Summary
The Network Summary dialog box (shown in Figure 4-30) lists every TCP and UDP endpoint
and port present in the filtered trace, along with the corresponding number of connects,
disconnects, sends, and receives; the total number of these events; and the numbers of bytes
sent and received. Clicking a column header sorts by the data in that column, and columns
can be reordered by dragging the column headers. Double-clicking a row sets a Path rule in
the filter for that endpoint and port. The Filter dialog box can be displayed by clicking the
Filter button, and you can save the data to a CSV file.

FIGURE 4-30 Network Summary dialog box.

140 Part II Usage Guide

Cross Reference Summary
The Cross Reference Summary dialog box (shown in Figure 4-31) lists all paths displayed by
the current filter that have been accessed by more than one process. Each row shows the
path, the processes that have written to it, and the processes that have read from it. The
 columns can be sorted or reordered, and you can save the data to a CSV file. Double-clicking
a row, or selecting the row and clicking the Filter On Row button, adds the selected path to
the filter.

FIGURE 4-31 Cross Reference Summary dialog box.

Count Occurrences
Choose a column name in the Count Values Occurrences dialog box (shown in Figure 4-32),
and click the Count button. Procmon displays all the distinct values for the selected attribute
and the number of events that include that value with the current display filter applied. The
columns can be sorted or reordered, and you can save the data to a CSV file. Double-clicking
on an item sets a rule for that column/value to the filter.

FIGURE 4-32 Count Values Occurrences dialog box.

 Chapter 4 Process Monitor 141

Injecting Debug Output into Procmon Traces
Procmon provides an application programming interface (API) allowing developers to
 create debug output events that appear in the Procmon event stream with custom text. For
 example, you can inject custom debug output in the trace upon entering or exiting a func-
tion to correlate those activities with file, registry, or other events. By applying the Exclude
Events Before and Exclude Events After filters on these debug events, you can easily focus
on the areas of interest in your program. Unlike standard Windows debug output that is
captured by DebugView (described in Chapter 7, “Process and Diagnostic Utilities”) or other
debuggers, this interface specifically targets Procmon.

These events appear as Debug Output Profiling operations and are part of the Profiling
events class, along with Process Profiling and Thread Profiling events. Note that by default all
Profiling events are filtered out. To see your debug output events, enable the Show Profiling
Events toggle button on the toolbar. After doing so, you might also want to highlight Debug
Output Profiling operations and exclude the display of Process Profiling operations. Figure
4-33 shows debug output highlighted and interspersed with registry operations.

FIGURE 4-33 Debug Output Profiling events.

Any process, including one running at Low integrity, can use this interface, which accepts
wide character (Unicode) text strings of up to 2048 characters in length. The following code
sample demonstrates how to use the interface:

#include <stdio.h>
#include <windows.h>

const ULONG FILE_DEVICE_PROCMON_LOG = 0x00009535;
const ULONG IOCTL_EXTERNAL_LOG_DEBUGOUT =
 (ULONG) CTL_CODE(FILE_DEVICE_PROCMON_LOG, 0x81, METHOD_BUFFERED, FILE_WRITE_ACCESS);

142 Part II Usage Guide

BOOL WriteProcmonDebugOutput(const wchar_t * szDebugOutput)
{
 if (!szDebugOutput)
 return FALSE;
 HANDLE hDevice = CreateFileW(L"\\\\.\\Global\\ProcmonDebugLogger",
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);
 if (hDevice == INVALID_HANDLE_VALUE)
 return FALSE;
 DWORD buflen = wcslen(szDebugOutput) * sizeof(wchar_t);
 DWORD unused = 0;
 BOOL ret = DeviceIoControl(hDevice, IOCTL_EXTERNAL_LOG_DEBUGOUT,
 (LPVOID)szDebugOutput, buflen, NULL, 0, &unused, NULL);
 CloseHandle(hDevice);
 return ret;
}

Debugging guru John Robbins has created helper classes that you can easily incorporate into
your native or managed applications. Download them from the following URL:

http://www.wintellect.com/downloads/ProcMonDebugOutput.zip

Toolbar Reference
This section identifies the Procmon toolbar icons and the sections of this chapter that
 describe what they do. Figure 4-34 shows the toolbar.

FIGURE 4-34 The Procmon toolbar.

Referring to the Procmon toolbar shown in Figure 4-34, from left to right, the icons are

■ Open Log See the “Opening Saved Procmon Traces” section.

■ Save Log See the “Saving Procmon Traces” section.

■ Capture Events (toggle) See the “Getting Started with Procmon” section.

■ Autoscroll (toggle) See the “Getting Started with Procmon” section.

■ Clear Display See the “Getting Started with Procmon” section.

■ Filter dialog box See the “Filtering and Highlighting” section.

■ Highlight dialog box See the “Highlighting” section.

 Chapter 4 Process Monitor 143

■ Include Process From Window See the “Basics of Filtering” section.

■ Show Process Tree See the “Process Tree” section.

■ Find See the “Finding an Event” section.

■ Jump To Object See the “Jumping to a Registry or File Location” section.

■ Show/Hide Registry Activity (toggle) See the “Basics of Filtering” section.

■ Show/Hide File System Activity (toggle) See the “Basics of Filtering” section.

■ Show/Hide Network Activity (toggle) See the “Basics of Filtering” section.

■ Show/Hide Process and Thread Activity (toggle) See the “Basics of Filtering” section.

■ Show/Hide Profiling Events (toggle) See the “Displaying Profiling Events” section.

 145

Chapter 5

Autoruns
A question I often hear is, “Why is all this stuff running on my computer?” That’s often
 followed with, “How do I get rid of it?” The Microsoft Windows operating system is a highly
extensible platform. Not only can programmers write applications that users can choose to
run, those programmers can “add value” by having their software run automatically without
troubling the user to start it, by adding visible or nonvisible features to Windows Explorer
and Internet Explorer or by supplying device drivers that can interact with custom hardware
or change the way existing hardware works. Sometimes the “value” to the user is doubtful at
best; sometimes the value is for someone else entirely and the software acts to the detriment
of the user (which is when the software is called malware).

Autostarts is the term I use to refer to software that runs automatically without being
 intentionally started by a user. These include drivers and services that start when the
 computer is booted; applications, utilities, and shell extensions that start when a user logs on;
and browser extensions that load when Internet Explorer is started. There are over 100 loca-
tions in the file system and registry that allow autostarts to be configured on x86 versions
of Windows, and many more on x64. These locations are often referred to as Autostart
Extensibility Points, or ASEPs.

ASEPs have legitimate and valuable purposes. For example, if you want your instant
 messaging contacts to know when you are online, having the messaging client start when
you log on is a great help. Users enjoy search toolbars and PDF readers that become part of
Internet Explorer. And much of Windows itself is implemented through ASEPs in the form of
drivers, services, and Explorer extensions.

On the other hand, consider the plethora of “free” trial versions of programs that computer
manufacturers install on new computers and that fill up the taskbar notification area.
Consider also the semi-hidden processes that legitimate vendors run all the time so that
their applications can appear to start more quickly. Do you really need all these processes
constantly consuming resources? On top of that, malware almost always hooks one or more
ASEPs, and virtually every ASEP in Windows has been used by malware at one point or
another.

Although Windows offers the System Configuration Utility (msconfig.exe, shown in
Figure 5-1) to let you see some of these autostarts, it shows only a small subset and is of
limited usability. Msconfig also requires administrative rights, even just to view settings. That
means it cannot identify or disable per-user autostarts belonging to nonadministrator users.

146 Part II Usage Guide

FIGURE 5-1 The MSConfig utility included in Windows exposes a very limited set of autostarts.

Bryce and I created the Autoruns utility to expose as many autostarts as we could identify,
and to make it easy to disable or remove those autostarts. The information that Autoruns
 exposes can be discovered manually if you know where to look in the registry and file
 system. Autoruns automates that task, scanning a large number of ASEPs in a few seconds,
verifying entries, and making it easier to identify entries with suspicious characteristics such
as the lack of a digital signature. We also created a command-line version, AutorunsC, to
make it possible to capture the same information in a scripted fashion.

Using either Autoruns or AutorunsC, you can easily capture a baseline of the ASEPs on
a system. That baseline can be compared against results captured at a later time so that
 changes can be identified for troubleshooting purposes. Many organizations use Autoruns
as part of a robust change management system, capturing a new baseline whenever the
desktop image is updated.

Autoruns Fundamentals
Launch Autoruns and it immediately begins filling its display with entries collected from
known ASEPs. As shown in Figure 5-2, each shaded row represents an ASEP location, with
a Regedit icon if it is a registry location or a folder icon if it is stored in the file system.1 The
rows underneath a shaded row indicate entries configured in that ASEP. Each row includes
the name of the autostart entry, the description and publisher of the item, and the path to
the file to run and an icon for that file. Each row also has a check box to temporarily disable
the entry. A panel at the bottom of the window displays details about the selected entry,
including its full command line. The Everything tab, which is displayed when Autoruns starts,
displays all ASEP entries on the system; the 17 other tabs let you view just specific categories
of autostarts. Each of these categories will be described later in this chapter.

1 Scheduled Tasks appear with a folder icon, because configuration settings for tasks were stored in %windir%\Tasks
prior to Windows Vista. As part of the re-architecting of Task Scheduler, configuration settings are now in the
 registry under HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Schedule\TaskCache.

 Chapter 5 Autoruns 147

FIGURE 5-2 Autoruns main window.

The Image Path column shows the full path to the target file identified by the autostart entry.
In some cases, this will be the first name in the autostart’s command line. For autostarts that
use a hosting process—such as Cmd.exe, Wscript.exe, Rundll32.exe, Regsvr32.exe, or
Svchost.exe—the image path identifies the target script or DLL on the command line instead
of the main executable. The Image Path column will include the text “File not found” if the
target file cannot be found in the expected location.

The Description and Publisher columns in the display are taken from the Description and
Company Name version resources, respectively, for files that contain version resources,
such as EXE and DLL files. If the file’s digital signature has been verified, the Publisher col-
umn displays the subject name from the corresponding code-signing certificate. (See the
“Verifying Code Signatures” section later in this chapter for more information.)

The Description and Publisher columns are left blank if the target file cannot be found, has
no Description and Company Name in its version resources, or has no version resource
(which is always true of script files).

You can quickly search for an item by pressing Ctrl+F and entering text to search for.
Autoruns will select the next row that contains the search text. Pressing F3 repeats the search
from the current location. Pressing Ctrl+C copies the text of the selected row to the clipboard
as tab-delimited text.

The Options menu is disabled while Autoruns is scanning the system. To cancel the scan so
that you can change options (which are described later in this chapter), press the Esc key.
Changing any of the selections in the Options menu (other than Font) takes effect during the
next scan. After selecting the options you want, press F5 or click the Refresh button on the
toolbar to run a new scan.

148 Part II Usage Guide

Disabling or Deleting Autostart Entries
Autoruns allows you to disable or delete autostart entries. Deleting an entry permanently
removes it, and it’s what you should do only if you’re certain that you never want the soft-
ware to autostart again. Select the entry in the list and press the Del key. Because there is no
Undo, Autoruns prompts for confirmation before deleting the autostart entry.

By contrast, when you disable an entry by clearing its check box, Autoruns leaves a marker
behind that Autoruns recognizes and with which it can reconstitute and re-enable the entry.
For example, for most registry ASEPs, Autoruns creates an AutorunsDisabled subkey in the
ASEP location and copies the registry value being disabled into that subkey before delet-
ing the original value. Windows will not process anything in that subkey, so the items in it
will not run, but Autoruns displays them as disabled autostarts. Checking the entry again
puts the entry back into the actual ASEP location. For ASEPs in the file system such as in the
Start menu, Autoruns creates a hidden folder named AutorunsDisabled and moves disabled
 entries into that folder.

Note that disabling or deleting an autostart entry prevents it from being automatically
 started in the future. It does not stop any existing processes.

Also note that if you disable autostarts that are critical for system boot, initialization, or
 correct operation, you can put the system into a state in which recovery is not possible
 without booting into an alternate operating system or recovery environment.

Autoruns and Administrative Permissions
The vast majority of ASEPs are in locations that grant Read permission to standard users. On
some versions of Windows, the registry keys containing configuration information for some
services are locked down, and many scheduled tasks are not user readable. But for the most
part, Autoruns works perfectly fine without administrative rights for the purposes of view-
ing autostart entries. Administrative rights are required to view all autostarts, and they are
required if you need to change the state of entries in systemwide locations, such as HKLM
or the all users’ Startup folder in the Start menu. If you select or clear a check box, or try to
delete one of these entries without administrative rights, Autoruns will report Access Denied.

On Windows Vista and newer, the error message dialog box includes a Run As Administrator
button that lets you restart Autoruns elevated. (See Figure 5-3.) When Autoruns has adminis-
trative rights, configuration changes should succeed. You can also restart Autoruns with User
Account Control (UAC) elevation by choosing Run As Administrator from the File menu.

 Chapter 5 Autoruns 149

FIGURE 5-3 Access Denied and the option to restart Autoruns with UAC elevation.

To ensure that Autoruns has elevated rights when it launches, start Autoruns with the –e
command-line option. On Windows Vista and newer, this will request UAC elevation if the
invoker is not already running elevated. On Windows XP and Windows Server 2003, the Run
As dialog box will appear. Select “The following user” and enter credentials for an account
that has administrative rights.

See the “Administrative Rights” section in Chapter 2, “Windows Core Concepts,” for more
 information on RunAs and UAC elevation.

Verifying Code Signatures
Anyone can create a program and stick the name “Microsoft Corporation” in it. Therefore,
seeing that text in the Publisher column gives only a low degree of assurance that the file
in question was created by Microsoft and has not been modified since. Verifying a digital
 signature associated with that file gives a much higher degree of assurance of the file’s
 authenticity and integrity. The file format for some types of files allows for a digital signature
to be embedded within the file. Files can also be “catalog-signed,” meaning that the informa-
tion needed to validate a file’s content is in a separate file. Catalog signing means that even
plain text files can be verified.

You can verify an entry’s digital signature by selecting the entry and pressing Ctrl+V. If the
file has been signed with a valid code-signing certificate that derived from a root certifi-
cate authority that is trusted on the computer, the text in the Publisher column changes to
“(Verified)” followed by the subject name in the code-signing certificate. If the file has not
been signed or the verification fails for any other reason, the text changes to “(Not verified)”
followed by the company name from the file’s version resource, if present.

Instead of verifying entries one at a time, you can enable Verify Code Signatures in the
Options menu and rescan by pressing F5. Autoruns will then attempt to verify the signatures
for all image paths as it scans autostarts. Note that the scan might take longer because it
also verifies whether each signing certificate has been revoked by its issuer, which requires
Internet connectivity to work reliably.

150 Part II Usage Guide

Files for which signature checks fail might be considered suspicious. A common malware
technique is to install files that on casual inspection appear to be legitimate Windows files.

The Sysinternals Sigcheck utility, described in Chapter 8, “Security Utilities,” provides deeper
detail for file signatures, including whether the file is catalog-signed and the location of the
catalog.

Hiding Microsoft Entries
The default list of ASEP entries is always large because, as mentioned earlier, Windows itself
makes extensive use of ASEPs. Typically, these autostart entries are not of interest when
troubleshooting. Likewise, autostart entries from other Microsoft-published software such as
Microsoft Office are usually not the droids you’re looking for2. You can choose to hide these
autostart entries from the display by enabling the Hide Windows Entries or Hide Microsoft
And Windows Entries from the Options menu and refreshing the display by pressing F5. The
Hide Windows Entries option is enabled by default.

The behavior of these options depends on whether Verify Code Signatures is also enabled. If
signature verification is not enabled, Hide Windows Entries omits from the display all entries
for which the target image file has the word “Microsoft” in the version resource’s Company
Name field, and for which the image file resides in or below the %windir% folder. Hide
Microsoft And Windows Entries checks only for “Microsoft” in the Company Name field and
omits those entries. As mentioned earlier, it is easy for anyone to create a program that gets
past this check, so the Verify Code Signatures option is recommended.

If signature verification is enabled, Hide Windows Entries omits entries that are signed with
the Microsoft Windows code-signing certificate. (Windows components are signed with a
different certificate from other Microsoft products.) Hide Microsoft And Windows Entries
omits entries that are signed with any Microsoft code-signing certificate that chains to a
trusted root certificate authority on the computer.

Note Some files that ship with Windows, particularly drivers, are provided by third parties and
have a third-party name in the Company Name field of the file’s version resource, but they are
catalog signed with the Windows code-signing certificate. Consequently, these entries can be
hidden when signature verification is enabled but displayed when verification is not enabled.

The Verify and Hide options are saved in the registry, and they’ll remain in effect the next
time the same user starts Autoruns.

2 Cultural reference: “These aren’t the droids you’re looking for” is a quote from the film, Star Wars IV: A New Hope.

 Chapter 5 Autoruns 151

Getting More Information About an Entry
Right-clicking an entry displays the Entry submenu as a popup context menu. Four of the
options use other programs to display more information about the selected entry than is
 displayed in Autoruns:

■ Properties Displays the Windows Explorer file Properties dialog box for the target
 image path.

■ Jump To Opens the location where the autostart entry is configured. For ASEPs
 configured in the registry, Jump To starts the registry editor (Regedit.exe) and sends it
simulated keystrokes to navigate to the autostart entry. (If Regedit does not navigate
to the correct location the first time, try the Jump To command again.) For ASEPs con-
figured in the file system, Jump To opens a new Windows Explorer folder window in
that location. For Scheduled Tasks, Jump To opens the Task Scheduler user interface.
Note that on Windows Vista and newer, Autoruns’ driving of the navigation of Regedit
 requires that Autoruns not be running at a lower integrity level than Regedit.

■ Search Online Initiates an online search for the file name using your default browser
and search engine.

■ Process Explorer If the image path is an executable (as opposed to a script or DLL
file) and a process with that name is still running, Autoruns tries to get Process Explorer
(Procexp) to display its Process Properties dialog box for the process. For this option
to work, Procexp needs to be in the same folder with Autoruns, found in the path, or
already be running. If Procexp is already running, it cannot be at a higher integrity level
than Autoruns. For example, if Autoruns is not elevated and Procexp is, this option will
not work.

Viewing the Autostarts of Other Users
If Autoruns is running with administrative rights, the User menu will appear, listing the
 account names that have logged on to the computer and have an accessible user profile.
Selecting a user account from that menu rescans the system, searching that user’s ASEPs,
 including the Run keys under that user’s HKCU and the Startup folder in that user’s profile.

One example of when this option is useful is if a standard user has installed some harmful
software. With only standard user privileges, only the user’s per-user ASEPs could have been
modified. Software that has only standard user privileges cannot modify systemwide settings
nor touch the accounts of other users on the system. Rather than logging on and allowing
that malware to run—and possibly interfering with an Autoruns scan—you can log on to the
system with an administrative account, start Autoruns, select the potentially compromised
account from the User menu, inspect the user’s ASEPs, and perform a cleanup if problems
are identified.

152 Part II Usage Guide

Viewing ASEPs of an Offline System
Autoruns allows you to view the ASEPs of an offline instance of Windows from a different,
known-good instance of Windows. This can be helpful in several scenarios:

■ If Windows will not start, offline analysis can identify and remove faulty or
 misconfigured ASEPs.

■ Malware, and rootkits in particular, can prevent Autoruns from accurately identifying
ASEPs. For example, a rootkit that intercepts and modifies registry reads can hide the
content of selected keys from Autoruns. By taking the system offline and viewing its
ASEPs from an instance of Windows in which that malware is not running, those entries
will not be hidden.

■ Malicious files on your system might appear to be signed by a trusted publisher, when
in fact the root certificate might also have come from the attacker. A known-good
 system in which the bogus certificate is not installed will fail the signature verification
for those files.

To perform offline analysis, Autoruns must run with administrative rights and must have
 access to the offline instance’s file system. Choose Analyze Offline System from the File
menu, and then identify the target’s Windows (System Root) directory and a user’s profile
directory, as shown in Figure 5-4. Autoruns then scans that instance’s directories and registry
hives for its ASEPs. Note that the registry hives cannot be on read-only media.

FIGURE 5-4 Picking system and user profile directories of an offline system.

Listing Unused ASEPs
By default, Autoruns displays a shaded row only for ASEPs that have entries configured
within them. If Include Empty Locations is enabled on the Options menu, Autoruns displays
a shaded row for every ASEP that it scans, whether it has entries or not. Autoruns scans a
 tremendous number of ASEPs, so this increases the amount of output dramatically. Enabling
this option can be useful to verify whether particular ASEPs are scanned, or to satisfy
curiosity.

 Chapter 5 Autoruns 153

As with the “Hide” and “Verify” options, enabling the Include Empty Locations takes effect on
the next scan.

Changing the Font
Choose Font from the Options menu to change the font Autoruns uses to display its results.
Changing the font updates the display immediately.

Autostart Categories
When you launch Autoruns for the first time, all autostart entries on the system are displayed
in one long list on the Everything tab. As Figure 5-5 shows, the display includes up to 17
other tabs that break down the complete list into categories.

FIGURE 5-5 Autostart categories are displayed on up to 18 different tabs.

Logon
This tab lists the “standard” autostart entries that are processed when Windows starts
up and a user logs on, and it includes the ASEPs that are probably the most commonly
used by applications. They include the various Run and RunOnce keys in the registry, the
Startup folders in the Start menu, computer startup and shutdown scripts, and logon and
 logoff scripts. It also lists the initial user session processes, such as the Userinit process
and the desktop shell. These ASEPs include both per-user and systemwide locations, and
 entries designed for control through Group Policy. Finally, it lists the Active Setup\Installed
Components keys, which although never publicly documented or supported for third-party
use have been reverse-engineered and repurposed both for good and for ill.

The following lists the Logon ASEP locations that Autoruns inspects on a particular instance
of an x64 version of Windows 7.

The Startup Folder in the “All Users” Start Menu
%ALLUSERSPROFILE%\Microsoft\Windows\Start Menu\Programs\Startup

The Startup Folder in the User’s Start Menu
%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup

154 Part II Usage Guide

Per-User ASEPs Under HKCU\Software
HKCU\Software\Microsoft\Windows\CurrentVersion\Run
HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Terminal Server\Install\Software\Microsoft\

Windows\CurrentVersion\Run
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Terminal Server\Install\Software\Microsoft\

Windows\CurrentVersion\Runonce
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Terminal Server\Install\Software\Microsoft\

Windows\CurrentVersion\RunonceEx
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows\Load
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows\Run
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell

Per-User ASEPs Under HKCU\Software Intended to be Controlled Through Group Policy
HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run
HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\System\Shell
HKCU\Software\Policies\Microsoft\Windows\System\Scripts\Logon
HKCU\Software\Policies\Microsoft\Windows\System\Scripts\Logoff

Systemwide ASEPs in the Registry
HKLM\Software\Microsoft\Windows\CurrentVersion\Run
HKLM\Software\Microsoft\Windows\CurrentVersion\RunOnce
HKLM\Software\Microsoft\Windows\CurrentVersion\RunOnceEx
HKLM\SOFTWARE\Microsoft\Active Setup\Installed Components
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Terminal Server\Install\Software\

Microsoft\ Windows\CurrentVersion\Run
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Terminal Server\Install\Software\

Microsoft\ Windows\CurrentVersion\Runonce
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Terminal Server\Install\Software\

Microsoft\ Windows\CurrentVersion\RunonceEx
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\AppSetup
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Taskman
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Userinit
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\AlternateShell
HKLM\System\CurrentControlSet\Control\Terminal Server\Wds\rdpwd\StartupPrograms

Systemwide ASEPs in the Registry, Intended to be Controlled Through Group Policy
HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run
HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\System\Shell
HKLM\Software\Policies\Microsoft\Windows\System\Scripts\Logon
HKLM\Software\Policies\Microsoft\Windows\System\Scripts\Logoff
HKLM\Software\Policies\Microsoft\Windows\System\Scripts\Startup
HKLM\Software\Policies\Microsoft\Windows\System\Scripts\Shutdown
HKLM\Software\Microsoft\Windows\CurrentVersion\Group Policy\Scripts\Startup
HKLM\Software\Microsoft\Windows\CurrentVersion\Group Policy\Scripts\Shutdown

 Chapter 5 Autoruns 155

Systemwide ASEPs in the Registry—64-Bit Only
HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Run
HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\RunOnce
HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\RunOnceEx
HKLM\SOFTWARE\Wow6432Node\Microsoft\Active Setup\Installed Components

Systemwide ActiveSync ASEPs in the Registry
HKLM\SOFTWARE\Microsoft\Windows CE Services\AutoStartOnConnect
HKLM\SOFTWARE\Microsoft\Windows CE Services\AutoStartOnDisconnect

Systemwide ActiveSync ASEPs in the Registry—64-Bit Only
HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows CE Services\AutoStartOnConnect
HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows CE Services\AutoStartOnDisconnect

Explorer
The Explorer tab lists common autostart entries that hook directly into Windows Explorer
and usually run in-process with Explorer.exe. Again, although most entries are systemwide,
there are a number of per-user entries. Key entries on the Explorer tab include the following:

■ Shell extensions that add context menu items, modify property pages, and control
 column displays in folder windows

■ Namespace extensions such as the Desktop, Control Panel, and Recycle Bin, as well as
third-party namespace extensions

■ Pluggable namespace handlers, which handle standard protocols such as http, ftp, and
mailto, as well as Microsoft or third-party extensions such as about, mk, and res

■ Pluggable MIME filters

On 64-bit versions of Windows, in-process components such as DLLs can be loaded only into
processes built for the same CPU architecture. For example, shell extensions implemented
as 32-bit DLLs can be loaded only into the 32-bit version of Windows Explorer—and 64-bit
Windows uses the 64-bit Explorer by default. Therefore, these extensions might not appear
to work at all on 64-bit Windows.

The following lists the Explorer ASEP locations that Autoruns inspects on a particular instance
of an x64 version of Windows 7.

156 Part II Usage Guide

Per-User ASEPs Under HKCU\Software
HKCU\Software\Classes*\ShellEx\ContextMenuHandlers
HKCU\Software\Classes*\ShellEx\PropertySheetHandlers
HKCU\Software\Classes\AllFileSystemObjects\ShellEx\ContextMenuHandlers
HKCU\Software\Classes\AllFileSystemObjects\ShellEx\DragDropHandlers
HKCU\Software\Classes\AllFileSystemObjects\ShellEx\PropertySheetHandlers
HKCU\Software\Classes\Directory\Background\ShellEx\ContextMenuHandlers
HKCU\Software\Classes\Directory\ShellEx\ContextMenuHandlers
HKCU\Software\Classes\Directory\Shellex\CopyHookHandlers
HKCU\Software\Classes\Directory\Shellex\DragDropHandlers
HKCU\Software\Classes\Directory\Shellex\PropertySheetHandlers
HKCU\Software\Classes\Folder\Shellex\ColumnHandlers
HKCU\Software\Classes\Folder\ShellEx\ContextMenuHandlers
HKCU\Software\Classes\Folder\ShellEx\DragDropHandlers
HKCU\Software\Classes\Folder\ShellEx\ExtShellFolderViews
HKCU\Software\Classes\Folder\ShellEx\PropertySheetHandlers
HKCU\SOFTWARE\Classes\Protocols\Filter
HKCU\SOFTWARE\Classes\Protocols\Handler
HKCU\Software\Microsoft\Ctf\LangBarAddin
HKCU\SOFTWARE\Microsoft\Internet Explorer\Desktop\Components
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\ShellIconOverlayIdentifiers
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad

Systemwide ASEPs in the Registry
HKLM\Software\Classes*\ShellEx\ContextMenuHandlers
HKLM\Software\Classes*\ShellEx\PropertySheetHandlers
HKLM\Software\Classes\AllFileSystemObjects\ShellEx\ContextMenuHandlers
HKLM\Software\Classes\AllFileSystemObjects\ShellEx\DragDropHandlers
HKLM\Software\Classes\AllFileSystemObjects\ShellEx\PropertySheetHandlers
HKLM\Software\Classes\Directory\Background\ShellEx\ContextMenuHandlers
HKLM\Software\Classes\Directory\ShellEx\ContextMenuHandlers
HKLM\Software\Classes\Directory\Shellex\CopyHookHandlers
HKLM\Software\Classes\Directory\Shellex\DragDropHandlers
HKLM\Software\Classes\Directory\Shellex\PropertySheetHandlers
HKLM\Software\Classes\Folder\Shellex\ColumnHandlers
HKLM\Software\Classes\Folder\ShellEx\ContextMenuHandlers
HKLM\Software\Classes\Folder\ShellEx\DragDropHandlers
HKLM\Software\Classes\Folder\ShellEx\ExtShellFolderViews
HKLM\Software\Classes\Folder\ShellEx\PropertySheetHandlers
HKLM\SOFTWARE\Classes\Protocols\Filter
HKLM\SOFTWARE\Classes\Protocols\Handler

 Chapter 5 Autoruns 157

HKLM\Software\Microsoft\Ctf\LangBarAddin
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\SharedTaskScheduler
HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\ShellExecuteHooks
HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\ShellIconOverlayIdentifiers
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad

Systemwide ASEPs in the Registry—64-Bit Only
HKLM\Software\Wow6432Node\Classes\Directory\Shellex\CopyHookHandlers
HKLM\Software\Wow6432Node\Classes\Directory\Shellex\DragDropHandlers
HKLM\Software\Wow6432Node\Classes\Directory\Shellex\PropertySheetHandlers
HKLM\Software\Wow6432Node\Classes\Folder\Shellex\ColumnHandlers
HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\SharedTaskScheduler
HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\ShellExecuteHooks
HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\

ShellIconOverlayIdentifiers
HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad

Internet Explorer
Internet Explorer is designed for extensibility, with interfaces specifically exposed to enable
Explorer bars such as the Favorites and History bars, toolbars, and custom menu items and
toolbar buttons. And Browser Helper Objects (BHOs) enable almost limitless possibilities for
extending the capabilities and user experiences for Internet Explorer.

However, because so much of users’ computer time is spent in a browser, and because much
of the high-value information that users handle (such as passwords and credit card informa-
tion) goes through the browser, it has become a primary target of attackers. The same pro-
grammatic interfaces that enable integration with third-party document readers and instant
messaging have also been used by spyware, adware, and other malicious endeavors.

The following lists the Internet Explorer ASEP locations that Autoruns inspects on a particular
instance of an x64 version of Windows 7.

Per-User ASEPs Under HKCU\Software
HKCU\Software\Microsoft\Internet Explorer\Explorer Bars
HKCU\Software\Microsoft\Internet Explorer\Extensions
HKCU\Software\Microsoft\Internet Explorer\UrlSearchHooks

Systemwide ASEPs in the Registry
HKLM\Software\Microsoft\Internet Explorer\Explorer Bars
HKLM\Software\Microsoft\Internet Explorer\Extensions
HKLM\Software\Microsoft\Internet Explorer\Toolbar
HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects

158 Part II Usage Guide

Per-User and Systemwide ASEPs in the Registry—64-Bit Only
HKCU\Software\Wow6432Node\Microsoft\Internet Explorer\Explorer Bars
HKCU\Software\Wow6432Node\Microsoft\Internet Explorer\Extensions
HKLM\Software\Wow6432Node\Microsoft\Internet Explorer\Explorer Bars
HKLM\Software\Wow6432Node\Microsoft\Internet Explorer\Extensions
HKLM\Software\Wow6432Node\Microsoft\Internet Explorer\Toolbar
HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\Browser Helper

Objects

Scheduled Tasks
The Scheduled Tasks tab displays entries that are configured to be launched by the Windows
Task Scheduler. The Task Scheduler allows programs to be launched on a fixed schedule or
upon triggering events, such as a user logging on or the computer being idle for a period of
time. Commands scheduled with At.exe also appear in the list. The Task Scheduler was greatly
enhanced in Windows Vista, so Windows now makes heavy use of it, and the list on the
Scheduled Tasks tab will generally be long unless you hide verified Windows entries.

Because tasks can actually be disabled (unlike Start menu items), clearing the check box next
to a scheduled task in Autoruns disables the task rather than copying it to a backup location.3

If you select Jump To from the Entry menu for a schedule task entry, Autoruns displays the
Task Scheduler user interface, but it does not try to navigate to the selected entry.

Services
Windows services run in noninteractive, user-mode processes that can be configured to start
independently of any user logging on, and that are controlled through a standard interface
with the Service Control Manager. Multiple services can be configured to share a single
process. A common example of this can be seen in Svchost.exe (Host Process for Windows
Services), which is specifically designed to host multiple services implemented in separate
DLLs.

Services are configured in the subkeys of HKLM\System\CurrentControlSet\Services. The Start
value within each subkey determines whether and how the service starts.

Autoruns’ Services tab lists services that are not disabled, unless they were disabled
by Autoruns (indicated by an AutorunsDisabled value in the key). The content for the
Description column comes from the text or the resource identified by the Description value
in the configuration key. The image path column displays the path to the service executable;

3 As of this writing, “At” jobs cannot be disabled on Windows Vista or newer, whether using Autoruns or the
Windows Task Scheduler. “At” jobs can be deleted.

 Chapter 5 Autoruns 159

for Svchost services, Autoruns displays the path to the target DLL identified by the ServiceDll
value in the service’s key or its Parameters subkey. There are cases for some services in some
versions of Windows where administrative rights are required to view the Parameters key; in
these cases, Autoruns displays the path to Svchost.exe in the image path column.

Be certain you know what you are doing when disabling or deleting services. Missteps can
leave your system with degraded performance, unstable, or unbootable. And again, note that
disabling or deleting a service does not stop the service if it is already running.

One malware technique to watch for is a service that looks like it’s supposed to be part
of Windows but isn’t, such as a file named svchost.exe in the Windows folder instead of in
System32. Another technique is to make legitimate services dependent on a malware service;
removing or disabling the service without fixing the dependency can result in an unbootable
system. Autoruns’ Jump To feature is handy for inspecting service dependencies in the
 registry before making changes.

Drivers
Drivers are also configured in the subkeys of HKLM\System\CurrentControlSet\Services,
but they run in kernel mode, thus becoming part of the core of the operating system. Most
are installed in System32\Drivers and have a .sys file extension. Drivers enable Windows to
 interact with various types of hardware, including displays, storage, smart card readers, and
human input devices. They are also used to monitor network traffic and file I/O by antivirus
software (and by Sysinternals utilities such as Procmon and Procexp!). And, of course, they are
also used by malware, particularly rootkits.

As with services, the Drivers tab displays drivers that are not marked as disabled, except
those disabled through Autoruns. The Description value comes from the version resource of
the driver file, and the image path points to the location of the driver file.

Most blue-screen crashes are caused by an illegal operation performed in kernel mode, and
most of those are caused by a bug in a third-party driver. (Less common reasons for blue
screens are faulty hardware, the termination of a system-critical process such as Csrss.exe, or
an intentional crash triggered through the keyboard driver’s crash functionality, as described
in Knowledge Base article 244139: http://support.microsoft.com/kb/244139.)

You can disable or delete a problematic driver with Autoruns. Doing so will usually take effect
after a reboot. As with services, be absolutely certain you know what you are doing when
disabling or deleting the configuration of drivers. Many are critical to the operating system,
and any misconfiguration might prevent Windows from working at all.

160 Part II Usage Guide

Codecs
The Codecs category lists executable code that can be loaded by media playback
 applications. Buggy or misconfigured codecs have been known to cause system slowdowns
and other problems, and these ASEPs have also been abused by malware. The following lists
the keys that are shown on the Codecs tab.

Keys Inspected Under Both HKLM and HKCU
\Software\Classes\CLSID\{083863F1-70DE-11d0-BD40-00A0C911CE86}\Instance
\Software\Classes\CLSID\{7ED96837-96F0-4812-B211-F13C24117ED3}\Instance
\Software\Classes\CLSID\{ABE3B9A4-257D-4B97-BD1A-294AF496222E}\Instance
\Software\Classes\CLSID\{AC757296-3522-4E11-9862-C17BE5A1767E}\Instance
\Software\Classes\Filter
\Software\Microsoft\Windows NT\CurrentVersion\Drivers32

Keys Inspected Under Both HKLM and HKCU on 64-Bit Windows
\Software\Wow6432Node\Classes\CLSID\{083863F1-70DE-11d0-BD40-00A0C911CE86}\Instance
\Software\Wow6432Node\Classes\CLSID\{7ED96837-96F0-4812-B211-F13C24117ED3}\Instance
\Software\Wow6432Node\Classes\CLSID\{ABE3B9A4-257D-4B97-BD1A-294AF496222E}\Instance
\Software\Wow6432Node\Classes\CLSID\{AC757296-3522-4E11-9862-C17BE5A1767E}\Instance
\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Drivers32

Boot Execute
The Boot Execute tab shows you Windows native-mode executables that are started by the
Session Manager (Smss.exe) during system boot. BootExecute typically includes tasks, such
as hard-drive verification and repair (Autochk.exe), that cannot be performed while Windows
is running. The Execute, S0InitialCommand, and SetupExecute entries should never be popu-
lated after Windows has been installed. The following lists the keys that are displayed on the
Boot Execute tab.

Keys That Are Displayed on the Boot Execute Tab
HKLM\System\CurrentControlSet\Control\ServiceControlManagerExtension
HKLM\System\CurrentControlSet\Control\Session Manager\BootExecute
HKLM\System\CurrentControlSet\Control\Session Manager\Execute
HKLM\System\CurrentControlSet\Control\Session Manager\S0InitialCommand
HKLM\System\CurrentControlSet\Control\Session Manager\SetupExecute

 Chapter 5 Autoruns 161

Image Hijacks
Image Hijacks is the term I use for ASEPs that run a different program from the one you
specify and expect to be running. The Image Hijacks tab displays three types of these
redirections:

■ exefile Changes to the association of the .exe or .cmd file types with an executable
command. The file association user interfaces in Windows have never exposed a way
to change the association of the .exe or .cmd file types, but they can be changed in the
registry. Note that there are and systemwide versions of these ASEPs.

■ Command Processor\Autorun A command line that is executed whenever a new
Cmd.exe instance is launched. The command runs within the context of the new Cmd.
exe instance. There is a per-user and systemwide variant, as well as a separate version
for the 32-bit Cmd.exe on 64-bit Windows.

■ Image File Execution Options (IFEO) Subkeys of this registry location (and its echo in
the 64-bit versions of Windows) are used for a number of internal and undocumented
purposes. One purpose for IFEO subkeys that has been documented is the ability to
specify an alternate program to start whenever a particular application is launched. By
creating a subkey named for the file name of the original program and a “Debugger”
value within that key that specifies an executable path to an alternate program, the
alternate program is started instead and receives the original program path and com-
mand line on its command line. The original purpose of this mechanism was for the
alternate program to be a debugger and for the new process to be started by that
debugger, rather than having a debugger attach to the process later, after its startup
code had already run. However, there is no requirement that the alternate program
actually be a debugger, nor that it even look at the command line passed to it. In fact,
this mechanism is how Process Explorer (described in Chapter 3, “Process Explorer”)
 replaces Task Manager.

The following list shows the registry keys corresponding to these ASEPS that are shown on
the Image Hijacks tab.

Keys Inspected for EXE File Hijacks
HKCU\SOFTWARE\Classes\Exefile\Shell\Open\Command\(Default)
HKCU\Software\Classes\.exe
HKCU\Software\Classes\.cmd
HKLM\SOFTWARE\Classes\Exefile\Shell\Open\Command\(Default)
HKLM\Software\Classes\.exe
HKLM\Software\Classes\.cmd

162 Part II Usage Guide

Command Processor Autorun Keys
HKCU\Software\Microsoft\Command Processor\Autorun
HKLM\Software\Microsoft\Command Processor\Autorun
HKLM\Software\Wow6432Node\Microsoft\Command Processor\Autorun

Keys Inspected for Image File Execution Options Hijacks
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution Options
HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Image File Execution

Options

AppInit
The idea behind AppInit DLLs surely seemed like a good idea to the software engineers who
incorporated it into Windows NT 3.1. Specify one or more DLLs in the Appinit_Dlls registry
key, and those DLLs will be loaded into every process that loads User32.dll (that is, virtually all
user-mode Windows processes). Well, what could go wrong with that?

■ The AppInit DLLs are loaded into the process during User32’s initialization—that is,
while its DllMain function is executing. Developers are explicitly told not to load other
DLLs within a DllMain. It can lead to deadlocks and out-of-order loads, which can lead
to application crashes. And yet here, the AppInit DLL “feature” does exactly that. And
yes, that has led to deadlock and application crashes.

■ A DLL that automatically gets loaded into every process on the computer sounds like a
winner if you are writing malware. Although AppInit has been used in legitimate (but
misguided) software, it is frequently used by malware.

Because of these problems, AppInit DLLs are deprecated and disabled by default in Windows
Vista and newer. For purposes of backward compatibility, it is possible to re-enable AppInit
DLL functionality, but it is not recommended.

Keys Inspected for AppInit Entries
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\Appinit_Dlls
HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Windows\Appinit_Dlls

KnownDLLs
KnownDLLs helps improve system performance by ensuring that all Windows processes
use the same version of certain DLLs, rather than choose their own from various file
 locations. During startup, the Session Manager maps the DLLs listed in HKLM\System\
CurrentControlSet\Control\Session Manager\KnownDlls into memory as named section
 objects. When a new process is loaded and needs to map these DLLs, it uses the existing
 sections rather than searching the file system for another version of the DLL.

 Chapter 5 Autoruns 163

The Autoruns KnownDLLs tab should contain only verifiable Windows DLLs. On 64-bit
 versions of Windows, the KnownDLLs tab lists one ASEP, but file entries are duplicated for
both 32-bit and 64-bit versions of the DLLs, in folders specified by the DllDirectory and
DllDirectory32 values in the registry key.

To verify that malware hasn’t deleted an entry from this key so that it can load its own
 version of a system DLL, save the autoruns results from the suspect system and compare
it against the results from a known-good instance of the same operating system. See the
“Saving and Comparing Results” section later in this chapter for more information.

Winlogon
The Winlogon tab displays entries that hook into Winlogon.exe, which manages the Windows
logon user interface. On Windows XP and Windows Server 2003, these can include the
GINA DLL interface and Winlogon notification packages. Those interfaces were removed in
Windows Vista, which introduced the Credential Provider interface.

The Winlogon tab also includes the user’s configured screen saver, which is started by
Winlogon.exe after inactivity.

The following list specifies the registry keys that are shown on the Winlogon tab.

Per-User Specification of the Screen Saver
HKCU\Control Panel\Desktop\Scrnsave.exe

Per-User Specification of the Screen Saver, Controlled by Group Policy
HKCU\Software\Policies\Microsoft\Windows\Control Panel\Desktop\Scrnsave.exe

GINA, Notification Packages, and So Forth . (Windows XP and Windows Server 2003)
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\GinaDLL
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\SaveDumpStart
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\System
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Taskman
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\UIHost

Credential Provider ASEPs (Windows Vista and newer)
HKLM\Software\Microsoft\Windows\CurrentVersion\Authentication\Credential Provider Filters
HKLM\Software\Microsoft\Windows\CurrentVersion\Authentication\Credential Providers
HKLM\Software\Microsoft\Windows\CurrentVersion\Authentication\PLAP Providers

Systemwide Identification of a Program to Verify Successful Boot
HKLM\System\CurrentControlSet\Control\BootVerificationProgram\ImagePath

164 Part II Usage Guide

Winsock Providers
Windows Sockets (Winsock) is an extensible API on Windows because third parties can add
a transport service provider that interfaces Winsock with other protocols or layers on top
of existing protocols to provide functionality such as proxying. Third parties can also add a
namespace service provider to augment Winsock’s name-resolution facilities. Service provid-
ers plug into Winsock by using the Winsock service provider interface (SPI). When a transport
service provider is registered with Winsock, Winsock uses the transport service provider
to implement socket functions, such as connect and accept, for the address types that the
 provider indicates it implements. There are no restrictions on how the transport service
 provider implements the functions, but the implementation usually involves communicating
with a transport driver in kernel mode.

The Winsock tab lists the providers registered on the system, including those that are built
into Windows. You can hide the latter group by enabling Hide Windows Entries and Verify
Code Signatures to focus on the entries that are more likely to be causing problems.

Keys Inspected for Winsock Provider Entries
HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\NameSpace_Catalog5\Catalog_

Entries
HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\NameSpace_Catalog5\Catalog_

Entries64
HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\Protocol_Catalog9\Catalog_Entries
HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\Protocol_Catalog9\Catalog_

Entries64

Print Monitors
The entries listed on the Print Monitors tab are DLLs that are configured in the subkeys of
HKLM\System\CurrentControlSet\Control\Print\Monitors. These DLLs are loaded into the
Spooler service, which runs as Local System.

Note One of the most common problems that affects the print spooler is misbehaving or
 poorly coded third-party port monitors. A good first step in troubleshooting print spooler issues
is to disable third-party port monitors to see whether the problem persists.

LSA Providers
This category of autostarts comprises packages that define or extend user authentication
for Windows, via the Local Security Authority (LSA). Unless you have installed third-party

 Chapter 5 Autoruns 165

 authentication packages, this list should contain only Windows verifiable entries. The DLLs
listed in these entries are loaded by Lsass.exe or Winlogon.exe and run as Local System.

The SecurityProviders ASEP that is also shown on this tab lists registered cryptographic pro-
viders. DLLs listed in this ASEP get loaded into many privileged and standard user processes,
so this ASEP has been targeted as a malware persistence vector. (This ASEP isn’t truly related
to the LSA, except that, like the LSA, it represents security-related functionality.)

Keys Inspected for Authentication Providers
HKLM\System\CurrentControlSet\Control\Lsa\Authentication Packages
HKLM\System\CurrentControlSet\Control\Lsa\Notification Packages
HKLM\System\CurrentControlSet\Control\Lsa\Security Packages

Keys Inspected for Registered Cryptographic Providers
HKLM\System\CurrentControlSet\Control\SecurityProviders\SecurityProviders

Network Providers
The Network Providers tab lists the installed providers handling network communication,
which are configured in HKLM\System\CurrentControlSet\Control\NetworkProvider\Order.
On a Windows desktop operating system, for example, this tab includes the default providers
that provide access to SMB (file and print) servers, Microsoft RDP (Terminal Services/Remote
Desktop) servers, and access to WebDAV servers. Additional providers are often visible in this
list if you have a more heterogeneous network or additional types of servers that Windows
needs to connect to. All entries in this list should be verifiable.

Sidebar Gadgets
On Windows Vista and newer, this tab lists the Sidebar Gadgets (now called Desktop Gadgets
on Windows 7) that are configured to appear on the user’s desktop. Although gadget soft-
ware is often (but not always) installed in a systemwide location such as %ProgramFiles%, the
configuration of which gadgets to run is in %LOCALAPPDATA%\Microsoft\Windows Sidebar\
Settings.ini, which is per-user and nonroaming. Disabling or deleting gadgets with Autoruns
manipulates entries in the Settings.ini file.

The image path usually points to an XML file. The gadgets that ship with Windows are
 catalog signed and can be verified.

166 Part II Usage Guide

Saving and Comparing Results
Autoruns results can be saved to disk in two different file formats: tab-delimited text, or a
binary format that preserves all the data captured. The binary format can be loaded into
Autoruns for viewing at a later time or on a different system, and it can be compared against
another set of Autoruns results.

In both cases, the results are read-only: they can’t be used to roll back a system to an earlier
state or configuration, and after they have been captured, you cannot add or remove options
to modify the saved results.

Saving as Tab-Delimited Text
Click the Save button on the toolbar; in the Save dialog box change the Save As Type to Text
(*.txt), and specify a file in which to save the current results. Data displayed on the Everything
tab is written to the file in four-column, tab-delimited format. The output includes the ASEPs
(the shaded rows) in the first column and three empty strings in the remaining columns.
Entries that are enabled (the check boxes are selected) are written to the file prepended with
a plus sign (+); those that are disabled are prepended with an X.

The text file can be imported into Microsoft Office Excel. You should specify the first column
as Text instead of General so that the leading plus signs do not get interpreted as an instruc-
tion or other special character.

The tab-delimited format respects the selections on the Options menu. If Include Empty
Locations is selected, the file will include all ASEPs, including those that have no entries. If
Hide Microsoft and Windows Entries or Hide Windows Entries is selected, those entries will
be omitted from the output. If Verify Code Signatures is selected, the Publisher column will
include Verified or Not Verified, as appropriate.

Note that Autoruns results saved in text format cannot be read back in to Autoruns.

See the section on AutorunsC later in this chapter for a scriptable way to capture Autoruns
data to other text file formats.

Saving in Binary (.arn) Format
The Autoruns binary file format with its default .arn file extension is the Autoruns “ native”
file format. Click the Save icon on the toolbar, and specify a file in which to save the results,
leaving the Save As Type option as Autoruns Data (*.arn). All information shown on the
Everything tab is preserved. If the Include Empty Locations option is selected, the data
 includes all empty ASEPs. If one of the Hide options is selected, the saved data does not

 Chapter 5 Autoruns 167

 include the omitted rows. And if any files had signature verification attempted, the saved file
will retain the results of those verifications.

You can automate the capture of Autoruns data and saving it to a .arn file with the –a
 command-line option. The following command captures the state of autostart entries on the
system to outputfile.arn, using default Autoruns options:

Autoruns -a outputfile.arn

To add signature verification, include the –v option. Make sure not to put it between the –a
and the file name:

Autoruns -v -a outputfile.arn

Viewing and Comparing Saved Results
To view the .arn file on the same or another system, choose Open from the File menu and
select the saved file.

To compare the results displayed in Autoruns—whether it’s a fresh capture or from a saved
file—choose Compare from the File menu and select the saved file to compare the displayed
results against. Entries that have changed between the two sets are highlighted in green, as
are any entries that were added in the first set and weren’t found in the “compare” set. Note
however, that items that were deleted aren’t displayed. One workaround that will show these
as well is to save the sets as FileOne.arn and FileTwo.arn, open FileOne.arn and compare
FileTwo.arn, and then open FileTwo.arn and compare FileOne.arn.

AutorunsC
AutorunsC is a console-mode version of Autoruns that outputs results to its standard output.
It is designed primarily for use in scripts. Its purpose is data collection only: it cannot disable
or delete any autostart entries.

The command-line options are listed in Table 5-11. They let you capture all autostarts or just
specific categories, verify digital signatures, omit Microsoft entries, specify a user account for
which to capture autostarts, and output results as comma-separated values (CSV) or as XML.
If you don’t specify any options, AutorunsC outputs just the Logon entries without signature
verification and in an indented list format designed for human reading.

Whether in the default list format, CSV, or XML, AutorunsC’s output always includes the ASEP
location, entry name, description, publisher, image path, and whether the entry is enabled. It
also includes the MD5, SHA-1, and SHA-256 hashes of the image file.

168 Part II Usage Guide

The CSV format includes column headers, and it imports easily into Excel or relational
 databases. The XML format is easily consumed by Windows PowerShell or any other XML
consumer. For example, the following lines of PowerShell run AutorunsC, read the XML, and
then display disabled items:

$arcx = [xml]$(AutorunsC -a -x -accepteula)

$arcx.SelectNodes("/autoruns/item") | ?{ $_.enabled -ne "Enabled" }

TABLE 5-11 AutorunsC Command-Line Options

Options
–c Prints output as CSV

–x Prints output as XML

–v Verifies digital signatures

–m Hides Microsoft entries

user
Specifies the name of the user account for which autostart
entries will be shown

Autostart Types
–a Shows all entries

–b Shows boot execute entries

–d Shows Appinit DLLs

–e Shows Explorer addons

–g Shows Sidebar gadgets (Windows Vista and newer)

–h Shows image hijacks

–i Shows Internet Explorer addons

–k Shows known DLLs

–l Shows Logon autostart entries (the default)

–n Shows Winsock protocol and network providers

–o Shows codecs

–p Shows print monitor DLLs

–r Shows LSA security providers

–s Shows services and drivers

–t Shows scheduled tasks

–w Shows Winlogon entries

Autoruns and Malware
One of the goals of most malware is to remain active on an infected system indefinitely.
Malware has therefore always used ASEPs. Years ago, it usually just targeted simple locations
such as the Run key under HKLM. As malware has become more sophisticated and difficult

 Chapter 5 Autoruns 169

to identify, its use of ASEPs has become more sophisticated as well. Malware has been
 implemented as Winsock providers and as print monitors. Not only are such ASEP locations
more obscure, but the malware doesn’t show up in a process list because it loads as a DLL in
an existing, legitimate process. Malware has also become more adept at infecting and run-
ning without requiring administrative privileges, because there are increasing numbers of
users who only ever have standard user privileges.

In addition, malware often leverages rootkits, which subvert the integrity of the operating
system. Rootkits intercept and modify system calls, lying to software that uses documented
system interfaces about the state of the system. Rootkits can hide the presence of registry
keys and values, files and folders, processes, sockets, user accounts, and more, or they can
make software believe something exists when it doesn’t. In short, a computer on which
 malware has run with administrative privileges cannot be trusted to report its own state
 accurately. Therefore, Autoruns cannot always be expected to identify malicious autostart
entries on a system.

That said, not all malware is that sophisticated, and there are still some telltale signs that can
point to malware:

■ Entries with a well-known publisher such as Microsoft that fail signature verification.
(Unfortunately, not all software published by Microsoft is signed.)

■ Entries with an image path pointing to a DLL or EXE file that is missing Description or
Publisher information (unless the target file is not found).

■ A common Windows component that is launched from an unusual or nonstandard
location—for example, svchost.exe launching from C:\Windows (instead of from
System32) or from C:\System Volume Information.

■ Entries for which the file date and time of the launched program correspond to when
problems were first noticed or a breach is discovered to have occurred.

■ Disabling or deleting an entry, pressing F5 to refresh the display, and finding the entry
still present and enabled. Malware will often monitor its ASEPs and put them back if
they get removed.

Malware and antimalware remains a moving target. Today’s “best practices” will seem naïve
and insufficient tomorrow.

There are some entries you might come across that seem suspicious but are innocuous:

■ A default installation of Windows XP or Windows Server 2003 will show a number of
“File not found” entries, particularly on the Drivers tab. These are legacy entries for
which the files have been removed from the default installation but the registry entries
were inadvertently retained.

170 Part II Usage Guide

■ A default installation of Windows XP will show an entry on the Image Hijacks tab, under
Image File Execution Options (IFEO). The entry name is “Your Image File Name Here
without a path,” and it points to Ntsd.exe in the System32 folder. The purpose of the
entry is to serve as a sample for use of the IFEO key.

■ A default installation of Windows Vista might have a small number of “File not found”
entries on the Drivers tab for NetWare IPX drivers and for “IP in IP Tunnel Driver.”

■ A default installation of Windows 7 might have a small number of entries on the
Scheduled Tasks tab under “\Microsoft\Windows” that show an entry name but no
 further information.

 171

Chapter 6

PsTools
Sysinternals PsTools is a suite of 12 Microsoft Windows management utilities with common
characteristics:

■ They are all console utilities. That is, they are designed to run at a command prompt
or from a batch file, and they write to the standard output and standard error streams
(which can appear in the console window or be redirected to files).

■ They can operate on the local computer or on a remote computer. Unlike most remote
control programs, the PsTools utilities do not require preinstallation of client software
on the remote systems. (And of course, like all other Sysinternals utilities, they require
no installation on the local computer either.)

■ They provide a standard syntax for specifying alternate credentials so that the utilities’
tasks can be performed as another user.1

The utilities included in the PsTools suite are

■ PsExec Executes processes remotely and/or as Local System with redirected output

■ PsFile Lists or closes files opened remotely

■ PsGetSid Displays the Security Identifier (SID) of a computer, a user or a group

■ PsInfo Lists information about a system

■ PsKill Terminates processes by name or by process ID (PID)

■ PsList Lists information about processes

■ PsLoggedOn Lists accounts that are logged on locally and through remote
connections

■ PsLogList Dumps event log records

■ PsPasswd Changes passwords for user accounts

■ PsService Lists and controls Windows services

■ PsShutdown Shuts down, logs off, or changes the power state of local and remote
systems

■ PsSuspend Suspends and resumes processes

1 Two exceptions are that PsLoggedOn does not accept alternate credentials, nor does PsPasswd when changing the
password for a domain account.

172 Part II Usage Guide

Incidentally, the reason that the suite is named PsTools and that all the member utilities have
Ps as a prefix to their names is that the first of these that I developed was PsList, which lists
running processes. I named it after the ps utility that provides similar functionality on UNIX
systems.

Before we get started on the utilities, an issue that still comes up is that occasionally antivirus
products will flag some of the PsTools as Trojan-horse programs or other types of malware.
Rest assured that none of the PsTools—or any Sysinternals utilities—are malware. However,
miscreants have incorporated various PsTools, particularly PsExec, into malware payloads.
Because my name and Web site are included in the PsTools, and the malware authors don’t
usually put their own contact information on the parts of the payload they write, I’m the one
who gets the angry e-mails from Windows users berating me for writing viruses and infecting
their systems. As I’ve had to explain many times, the PsTools serve legitimate purposes, and
their misuse is not something that I have any control over. Furthermore, the utilities do not
exploit vulnerabilities or gain unauthorized access. They either have to be already running
with an account that has the necessary access, or be given the user name and password of an
authorized account.

Common Features
All of the utilities in the PsTools suite work on all supported client and server versions of
Windows. That includes x86 and x64 versions of Windows XP, Windows Vista, and Windows 7,
and x86, x64, and IA-64 versions of Windows Server 2003, 2008, and 2008 R2. Support for
64-bit versions requires that WOW64, the components that support 32-bit applications on
64-bit Windows, be installed. (WOW64 can be uninstalled on Server Core.)

All of the PsTools utilities support remote operations using a syntax that is consistent across
the entire suite. You can display the syntax for a utility by running it with –? on the command
line. The command-line syntax for each of the PsTools utilities is listed in the “PsTools
Command-Line Syntax” section near the end of this chapter.

Remote Operations
The PsTools utilities can perform operations on the local computer or on a remote computer.
Each of the utilities accepts an optional \\computer command-line parameter: the backslash
pair followed by a computer name or IP address directs the utility to perform actions on the
specified computer. For example:

psinfo \\srv2008r2

psinfo \\192.168.0.10

 Chapter 6 Pstools 173

Some of the utilities perform remote operations simply by using Windows APIs that allow
specification of a remote computer on which to operate. Some of the utilities accomplish
remote operations by extracting an EXE file embedded in its executable image, copying
that file to the remote computer’s Admin$ share, registering it as a service on that system
and starting that service using the Windows Service Control Manager APIs, and then com-
municating with that service using named pipes. Creating a remote service requires that file
sharing and the Admin$ share be enabled on the target computer. A table at the end of this
chapter lists which of the PsTools utilities require these features for remote operation.

Remote Operations on Multiple Computers
Several of the utilities can operate on multiple remote computers with a single command.
(The table at the end of this chapter lists which ones support this feature.) For these utili-
ties, you can specify the remote computers directly on the command line or in an input file.
The command-line syntax is a pair of backslashes, followed by the computer names or IP
 addresses separated with commas and with no spaces between them. For example:

psinfo \\server1,server2,192.168.0.3,server4

That command line lists system information from server1, then from server2, then from the
computer at IP address 192.168.0.3, and finally from server4.

Another way to specify the remote computers for utilities that can operate on multiple
 computers is by using a text file containing each computer name or IP address on a separate
line, and naming the file on the command line prefixed with an @ symbol. The previous
 example can be accomplished with a file called computers.txt containing the following lines:

server1
server2
192.168.0.3
server4

And then running the following command line:

psinfo @computers.txt

Finally, for the utilities that can operate on multiple remote computers, passing * on
the command line directs the utility to operate on all computers in the current domain or
workgroup:

psinfo *

If none of these options are used, the utility operates on the local computer.

174 Part II Usage Guide

Alternate Credentials
When operating on remote computers, the PsTools utilities impersonate the account from
which you run the utility on the local system. If it is running with a local account rather than
with a domain account, the authentication can succeed only if the remote computer also has
a local account with the same user name and password.

There are several reasons that you might want to run the utility with a different account on
the remote system. First, most of the utilities require administrative privileges on the tar-
get system, so you need to use a different account if the one you are using doesn’t have
those privileges. Second, as I will discuss shortly in the “Troubleshooting Remote PsTools
Connections” section, restrictions were introduced in Windows Vista on the use of local
accounts for remote administration. Finally, there are several reasons that pertain only to
PsExec; those are discussed in the “PsExec” section of this chapter.

To use a different user account, specify it with the –u command-line parameter, and
 optionally specify the account password with the –p parameter. For example:

psinfo \\server1 -u MYDOMAIN\AdminAccnt -p Pass@word123

If the user name or password contains spaces, enclose them in double quotes:

psinfo \\server1 -u "MYDOMAIN\Admin Account" -p "Password with spaces"

If you omit the –p, the utility will prompt you for the password. For security reasons, it
will not echo the password characters to the screen as you type them. The utilities use
the WNetAddConnection2 API, so passwords are not sent over the network in the clear
to authenticate to remote systems. (However, in some cases PsExec needs to send the
 credentials after authenticating to create a new logon session; in this case, credentials are
sent unencrypted.)

All of the PsTools support the –u and –p command-line parameters except for PsLoggedOn.

Troubleshooting Remote PsTools Connections
A number of dials and knobs need to be set just right for PsTools to work on remote systems.
Obviously, they all require connectivity to the necessary network interfaces, which involves
firewall settings and ensuring that services are running. Most of the utilities require admin-
istrative rights. And finally, User Account Control (UAC) applies restrictions to local accounts
that must be taken into consideration.

 Chapter 6 Pstools 175

Basic Connectivity
Unless you specify an IP address, name resolution needs to work. If DNS is not available,
NetBIOS over TCP (NBT) might suffice, but it requires that 137 UDP, 137 TCP, 138 UDP, and
139 TCP be opened on the firewall of the target system.

Some of the utilities require that the administrative Admin$ share be available. This requires
that file and print sharing be enabled (the Workstation service locally and the Server service
on the target system), that the firewall not block the ports that are needed to support file
and printer sharing, and also that “simple file sharing” be disabled.

Some of the utilities require that the Remote Registry service be running on the target
 system. (The table at the end of the chapter lists which ones require this feature.) Note that in
the newer versions of Windows, this service is not configured for automatic start by default.
It therefore needs to be manually started or configured for automatic start before some of
these tools will work.

User Accounts
Most of the utilities require administrative rights. Before Windows Vista and User Account
Control, administrative accounts were straightforward. If the account was a member of the
Administrators group, everything run by that account also ran with full administrative rights.
Successfully authenticating to the computer with an account in the Administrators group
 allowed full control over the computer.

Windows Vista introduced User Account Control, which (among other things) pioneered the
concept of a user account that could be both an administrative account and a standard user
account. This account type is sometimes called Protected Administrator. The idea is that pro-
grams started by the user will run with standard user privileges, and that for a program to
run with full administrative rights, the user must explicitly approve the elevation. Programs
running as the user should not be able to programmatically approve the elevation for the
user or otherwise bypass the interaction. If they could, software developers would take those
shortcuts and continue to write programs that required administrative rights rather than
write software for standard users.

Network loopback is one of the automatic elevation paths that Windows Vista blocks. As
 described in Knowledge Base article 951016, if a network connection is established to a
remote computer using a local account that is a member of the Administrators group, it
connects only with standard user privileges. Because it is not an interactive logon, there
is no opportunity to elevate to full administrator. Domain accounts are not subject to this
restriction.

176 Part II Usage Guide

What this means is that although PsTools work perfectly well for remote administration
 using local accounts on Windows XP and Windows Server 2003, they do not work so well on
Windows Vista and newer. If domain accounts are not an option, you can read KB 951016 to
see how to set the LocalAccountTokenFilterPolicy setting to remove the restrictions on local
accounts.

PsExec
PsExec lets you execute arbitrary processes on one or more remote computers. PsExec
 redirects the input and output streams of console applications so that they appear to be
 running locally, as though in a Telnet session. In this way, console utilities that normally
 operate only on the local computer can be remote-enabled. A particularly powerful use
of this capability is to run a command prompt on a remote system and interact with it as
though it were running on the local computer. Unlike most remote control utilities, PsExec
does not require installation of agents or other client software on the target computer ahead
of time. Of course, you do need an account that is authorized for remote administration of
the computer.

PsExec also lets you execute programs locally or remotely in the System account, either
 interactively or noninteractively. For example, you can run Regedit and view registry key
hierarchies that are accessible only to the System account, such as HKLM\SAM and HKLM\
Security. And as described in Chapter 4, “Process Monitor,” PsExec can launch a program in a
noninteractive session that survives user logoff. PsExec offers many other options that con-
trol the way in which the local or remote target process should run, including user account,
privilege level, priority level, and CPU assignment.

The command-line syntax to run a process on a remote computer is

psexec \\computer [options] program [arguments]

For example, to run ipconfig /all on a remote system and view its output locally, run the
following:

psexec \\server1 ipconfig /all

To run a process on the local computer, simply omit the \\computer parameter:

psexec [options] program [arguments]

If the “program” part of the command line contains spaces, you must put quotation marks
around the program path. If parts of the remote command line include special characters
such as the pipe or redirection characters, use the command shell’s escape character (̂) to
prevent their being treated as special characters by the local command shell. The following

 Chapter 6 Pstools 177

example runs ipconfig /all on server1 and redirects its standard output to C:\ipconfig.out
on server1:

psexec \\server1 cmd.exe /c ipconfig /all ^> c:\ipconfig.out

Without the escape character (̂), the standard output of the PsExec command (including
the redirected console output of ipconfig) would be written to c:\ipconfig.out on the local
computer. (PsExec’s diagnostic output is written to its standard error stream rather than to its
standard output so that local redirection captures only the output of the remote process.)

If the “program” part of the PsExec command line specifies only a file name, it must be found
in the Path on the remote system. (Note that changes made to the global PATH environment
variable are generally not seen by services until after a subsequent reboot.) If the “program”
argument specifies an absolute path, realize that drive letters are relative to the global envi-
ronment of the remote system. For example, C: will refer to the C: drive of the remote system,
and network drive letter mappings on the local computer or those that are mapped during
user logons will not be recognized. However, if the program is not already on the remote
 system, PsExec can copy a program file from the local computer to the remote system for
you. (See the “Remote Connectivity Options” section later in this chapter.)

Remote Process Exit
By default, PsExec does not exit until the program it started has exited. When a process exits,
it reports an exit code—a 32-bit integer—to the operating system, where it can be read by
its parent process (or any other process that has an open handle to it). The exit code is often
used to report whether the process succeeded at its task, with 0 (zero) typically indicating
success. The exit code is what is tested by Cmd’s IF ERRORLEVEL command and its && and
|| conditional operators. PsExec outputs the process’ exit code to its console (for example,
“Notepad.exe exited with error code 0”). PsExec then exits, using the target program’s exit
code as its own exit code so that a parent process or batch file can test it and perform
 conditional processing.

When PsExec’s –d option is used, PsExec starts the remote process but does not wait for it to
exit. On success, PsExec outputs the process ID of the new process to the stderr stream and
exits, using the new PID as its own exit code. That PID can be captured in a batch file like this:

psexec \\server1 -d App.exe
SET NEWPID=%ERRORLEVEL%
ECHO The Process ID for App.exe is %NEWPID%

However, if PsExec cannot start the remote process, its exit code represents an error code.
There isn’t a reliable programmatic way to distinguish whether an exit code is a PID or an
 error code.

178 Part II Usage Guide

Redirected Console Output
To start a command prompt on a remote system and interact with it on the local computer,
simply run

psexec \\server1 Cmd.exe

There are a few things to note about redirected console output:

■ Operations that require knowledge of the containing console, such as cursor
 positioning or text coloring, do not work. These include the clear screen (cls) command,
the more command, and tab completion for file and folder names.

■ If you launch a program in a new window, such as with the start command or any GUI
program, the program will run on the remote computer but you will not be able to
 interact with it.

■ All Sysinternals utilities, including the console utilities, display a EULA dialog box that
must be accepted the first time the utility runs under that account on that computer
unless you add /accepteula to the command line. As mentioned in the previous
 bullet, you will not be able to dismiss that dialog box and the utility will hang until you
 terminate it by pressing Ctrl+C. Be sure to use the /accepteula flag when redirecting
Sysinternals utility output.

Note Some Sysinternals utilities have not yet been updated to support the /accepteula
switch. For these utilities, you might need to manually set the flag indicating acceptance.
You can do this with a command line like the following:

psexec \\server1 reg add hkcu\software\sysinternals\pendmove /v eulaaccepted /t
reg_dword /d 1 /f

■ Windows PowerShell version 1 does not support having its console output redirected,
but PowerShell version 2 does if started with the –File – command-line option. For
example:

psexec \\server1 PowerShell.exe -file -

■ Pressing Ctrl+C terminates the remote process, not just the current command. For
example, if you are running a remote command shell and accidentally run dir /s c:\,
pressing Ctrl+C will terminate the command shell, not just the dir command.

Some common commands such as dir and copy are not separate executable programs, but
are built in to Cmd.exe. To run a built-in command, use Cmd’s /c option to run the com-
mand within the context of a Cmd.exe process that exits after the command has finished. For
 example, the command

psexec \\server1 Cmd.exe /c ver

 Chapter 6 Pstools 179

starts an instance of Cmd.exe on server1 that runs the built-in ver command and then exits.
The output of ver from server1 appears in the local console window in which PsExec was
launched. In this case, Cmd.exe is the “program” part of the PsExec command line and /c ver
is the optional “arguments” part passed to the program when it starts.

PsExec Alternate Credentials
The “Alternate Credentials” section earlier in this chapter described the use of the –u and –p
parameters to provide explicit credentials to PsTools utilities. If these options are not used,
the logged-on user account that is running PsExec is used to authenticate to the remote
system, and then that account is impersonated by the remote process started by PsExec. This
raises several issues:

■ To start a process on a remote system, PsExec must use an account that has
 administrative rights on the remote system.

■ If the remote process accesses network resources, it will authenticate as anonymous
unless Kerberos delegation has been enabled. This is the one-hop limitation of imper-
sonation: the computer on which a logon session is established with explicit credentials
can authenticate to a remote server that can impersonate that security context on that
system, but the process on the remote computer cannot then use the security context
to authenticate to a third system.

■ The impersonated security context will not include any logon SIDs that would grant it
access to any interactive user sessions.

You should provide explicit credentials if the account running PsExec does not have
 administrative access to the remote computer, if the remote process requires authenticated
access to network resources, or if the remote process needs to run on an interactive user
desktop. When explicit credentials are supplied, they are used to authenticate to the remote
system, and then to create a new logon session that can run on a particular interactive
desktop.

Important The user name and password used to create the new logon session are transmitted
to the remote system in the clear—that is, unencrypted. Anyone sniffing the network will be
able to capture these credentials. Consider configuring your network to use IPsec with ESP
(Encapsulating Security Payload) to encrypt all communications.

The –u and –p parameters can also be used when starting a process on the local computer,
in a manner similar to RunAs.exe. And as with RunAs.exe, because of UAC the target process
will not have full administrative rights on Windows Vista or newer, even if the user account is
a member of the Administrators group (unless you specify –h, described later).

180 Part II Usage Guide

PsExec Command-Line Options
Let’s take a look at PsExec’s command-line options. They control aspects of process
 performance, remote connectivity, runtime environment, and whether PsExec should wait for
the target process to exit. Table 6-1 summarizes these options, which are discussed in more
detail after the table.

TABLE 6-1 PsExec Command-Line Options

Option Description
–d Doesn’t wait for the process to terminate. (This is described earlier in the “Remote

Process Exit” section.)

Process Performance Options
–background
–low
–belownormal
–abovenormal
–high
–realtime

Runs the process at a different priority.

–a n,n… Specifies the CPUs on which the process can run.

Remote Connectivity Options
–c [–f|–v] Copies the specified program from the local system to the remote system. If

you omit this option, the application must be in the system path on the remote
system. Adding –f forces the copy to occur; –v performs a version or timestamp
check and copies only if the source is newer.

–n seconds Specifies timeout in seconds when connecting to remote computers.

Runtime environment options
–s Runs the process in the System account.

–i [session] Runs the program on an interactive desktop.

–x Runs the process on the Winlogon secure desktop.

–w directory Sets the working directory of the process.

–e Does not load the specified account’s profile.

–h Uses the account’s elevated context, if available.

–l Runs the process as a limited user.

Process Performance Options
By default, the target process runs with normal priority. You can set the process priority
of the target process by specifying any of the following on the PsExec command line:
– background, –low, –belownormal, –abovenormal, –high, and –realtime. The
 – background option is supported only on Windows Vista and newer; in addition to setting
the process priority to Low, it sets the process’ memory priority and I/O priority to Very Low.

 Chapter 6 Pstools 181

If the target is a multiprocessor system, you can specify that the threads of the target
 process be scheduled only on specific CPUs. Add the –a option followed by the list of logical
CPUs separated by commas (where 1 is the lowest-numbered CPU). For example, to run the
 process only on CPU 3, use the following:

psexec -a 3 app.exe

To run the target process on CPUs 2, 3 and 4, use this command line:

psexec -a 2,3,4 app.exe

Remote Connectivity Options
If the program you want to run on a remote system is not installed on that system, PsExec
can copy it from the local file system to the remote computer’s system32 folder, run it from
that location, and then delete the program after it has finished execution. You can make the
copy conditional on a newer version not already being present on the remote system. When
you specify the –c option, the “program” on the PsExec command line specifies a file path
relative to the local computer; that file is copied to the system32 folder of the remote system.
Note, though, that this option copies only that one file; it does not copy any dependent DLLs
or other files.

Using the –c option by itself, PsExec does not perform the file copy if the file already exists in
the target location. Adding the –f option forces the file copy, even overwriting a file marked
as read-only, hidden, or system. The –v option checks the file versions and time stamps,
copying only if the local copy has a higher version and a newer time stamp, but starting the
remote process in either case.

When trying to establish a connection with a remote system that is offline, is very busy, or
has some other connectivity problems, PsExec uses the default system timeouts for each
of the network operations required. To select a shorter timeout period, use the –n option
followed by the maximum number of seconds that PsExec should allow for each remote
connection. For example, to limit the amount of time spent trying to connect to a series of
remote systems to 10 seconds each, use the following:

psexec @computers.txt -n 10 app.exe

Runtime Environment Options
PsExec offers several command-line options to control the runtime environment of the
 target process. These options include the ability to run the process in the System account or
in a reduced-privileged mode, whether to run interactively and in which interactive session,
whether to load the account’s profile on the target system, and the ability to set the initial
working directory of the target process.

182 Part II Usage Guide

The –s option runs the target application in the System account. If you don’t also specify the
–i “interactive” option (discussed shortly), the process will run in the same noninteractive
environment in which other Windows services running as System execute (Session 0, window
station Service-0x0-3e7$)2, with console output redirected to the console in which PsExec is
running. Review the “Redirected Console Output” section earlier in this chapter for issues to
be aware of. One benefit of this mode of execution is that the process will continue to run
even after interactive user logoff. The Process Monitor chapter includes an example of using
PsExec in this way to monitor events during user logoff and system shutdown.

If the target system is the local computer, PsExec must already be running with full admin-
istrative permissions to use the –s option. For remote execution, PsExec already requires an
administrative account on the remote system.

The –i [session] option is used to run the target process interactively on the target system—
more specifically, on the default interactive desktop of a terminal services session. Without
the –i switch, processes on remote computers will run in a noninteractive window station
within session 0. The optional session parameter specifies the ID number of the terminal
 services session in which you want the process to run. If you use –i but omit the session
 parameter, PsExec runs the process in the current desktop session when run on the local
computer, or in the current console session when run on a remote computer. The console
session is the session currently associated with the keyboard and display attached to the
computer (as opposed to a remote desktop session). Recall that explicit credentials are
 required to run an interactive process on a remote computer.

Tip Enable the Session column in Process Explorer (which is discussed in Chapter 3, “Process
Explorer”) to see the session ID associated with processes.

The following command line runs Regedit as System and in the current interactive session
so that you can view those portions of the registry that grant access only to System (such as
HKLM\SAM and HKLM\Security):

psexec -s –i Regedit.exe

And this command line starts a command shell running as System on the current desktop:

psexec -s –i Cmd.exe

The –x option runs the target process on the secure Winlogon desktop. The Winlogon
 desktop is managed by the System account, and only processes running as System can access
it. Generally, that means that –x needs to be used in conjunction with –s, and that PsExec
must already be running with administrative permissions. In addition, the –x option can be

2 See “Sessions, Window Stations, Desktops, and Window Messages” in Chapter 2, “Windows Core Concepts,” for
more information.

 Chapter 6 Pstools 183

used only on the local computer. By default, –x runs the target process on the Winlogon
desktop of the console session. Use the –i option along with –x to run the target process on
the Winlogon desktop of a different remote desktop session. The following command line
runs a command prompt on the secure desktop of the console session:

psexec -x -s Cmd.exe

If you are logged on at the console, press Ctrl+Alt+Del to switch to the Winlogon desktop. If
the version of Windows you are running displays a full-screen image on the secure desktop,
press Alt+Tab to switch to the command prompt.

The –w directory option sets the initial directory for the target process. Note that the
 directory path you specify is relative to the target computer. For example, C:\Program Files
refers to the C:\Program Files folder on the remote computer, not on the local computer.
Note also that network drive letter mappings will usually not be recognized.

When you use the –e option, the user account’s profile is not loaded. This feature can save a
little execution time for short-lived processes where the user account’s profile is not needed.
However, it should not be used if any operations might depend on user-profile settings. The
HKCU seen by the process refers to the System account’s HKCU hive unless another logon
session had already loaded the user’s profile at the time the remote process was started. In
that case, the process’ HKCU refers to the user’s normal HKCU hive. The %USERPROFILE%
 environment variable refers to the System account’s profile directory regardless of whether
the user’s profile had been loaded. Because the System account’s profile is always loaded,
PsExec does not allow the use of the –e and –s options at the same time.

On Windows Vista and newer, a logon of “interactive” type (such as that which is invoked
when you provide explicit credentials) is subject to token filtering—administrative groups
are disabled and administrative privileges are removed. When providing explicit credentials,
 adding the –h option starts the target process on a remote system with the user account’s
full administrative token. If the target system is the local computer, –h can ensure that the
target process runs with an elevated token only if PsExec is already running elevated.

The –l (lowercase L) option runs the target process with limited rights. If the Administrators
group is present in the user’s token, it is disabled; also, all privileges are removed except
those that are granted to the Users group on the target computer. On Windows Vista and
newer, the process runs at Low integrity, which prevents it from writing to most areas of the
file system and registry. The following command line allows a Windows XP administrator to
run Internet Explorer with reduced rights:

psexec -l -d "%ProgramFiles%\Internet Explorer\iexplore.exe"

184 Part II Usage Guide

Note The resulting “limited rights” process will not necessarily have the same characteristics
as other “low rights” processes seen on Windows computers, such as Protected Mode Internet
Explorer. PsExec does not disable powerful groups other than Administrators that UAC normally
disables (such as Power Users and certain domain groups). Also, if executed from an elevated
process, the new process token still derives from the user’s “elevated” logon session, even though
it is marked Low integrity. A command shell with this token will still say “Administrator” in its title
bar, and child processes that require elevation will not be able to prompt for or gain elevation.

PsFile
The Windows “NET FILE” command shows you a list of the files that processes on other
 computers have opened on the system on which you execute the command. However, it
truncates longer path names and doesn’t let you see that information for remote systems.
PsFile shows a list of files or named pipes on a system that are opened remotely via the
Server service, and it also allows you to close remotely-opened files either by name or by an
ID number.

The default behavior of PsFile is to list the files on the local system that are currently open
from remote systems. To see files opened on a remote system, name the remote computer
(providing alternate credentials if needed) using the syntax described in the “Common
Features” section earlier in this chapter. Output looks similar to the following example:

Files opened remotely on win7_vm:
[332] C:\Users
 User: ABBY
 Locks: 0
 Access: Read
[340] C:\Windows\TEMP\listing.txt
 User: ABBY
 Locks: 0
 Access: Read Write
[352] \PIPE\srvsvc
 User: ABBY
 Locks: 0
 Access: Read Write

The number in brackets is a system-provided identifier, followed by the path that is opened
and the user account associated with the remote connection. When listing open files on a
remote computer, you will always see the srvsvc named pipe open; this is because of the
 connection established by PsFile to the Server service.

You can filter the output by adding a resource’s ID number or a matching path-name prefix
to the command line. This shows only the information associated with the resource that was
assigned ID number 340 on the computer named Win7_vm:

psfile \\Win7_vm 340

 Chapter 6 Pstools 185

This shows information associated only with opened files under the C:\Users folder—that is,
all resources with path names beginning with C:\Users:

psfile \\Win7_vm C:\Users

To close opened files, add –c to the command line after specifying an ID or path prefix. This
command closes all remotely opened files under C:\Users on the local computer:

psfile C:\Users -c

You should close files using PsFile with caution because data cached on the client system
does not get written to the file before it gets closed.

PsGetSid
In Windows, Security Identifiers (SIDs) uniquely identify users, groups, computers, and other
entities. SIDs are what are stored in access tokens and in security descriptors, and they are
what are used in access checks. The names that are associated with SIDs are only for user-
interface purposes, and because of localization they can change from system to system. For
example, all US English systems have an Administrators group with the SID S-1-5-32-544, but
on German systems the same group is called Administratoren, on Italian systems it is Gruppo
Administrators, and on Finnish systems, Järjestelmänvalvojat.

Each Windows computer has a local SID, also known as a machine SID, which is created
 during setup. Each local group and user account on the computer has a SID based on the
machine SID with a relative ID (RID) appended to it. Likewise, each Active Directory domain
has a SID, and entities within the domain (including domain groups, user accounts, and
member computers) have SIDs based on that SID with a RID appended. In addition to these
machine-specific and domain-specific SIDs, Windows defines a set of well-known SIDs in the
NT AUTHORITY and BUILTIN domains.

PsGetSid makes it easy to translate SIDs to their corresponding names, to translate names
to SIDs, and to get the SID for a computer or domain. As with all the PsTools, PsGetSid can
 perform the translations on remote systems and report the results locally.

To translate a name or a SID to its counterpart, run PsGetSid with the name or SID on the
command line. Without parameters, PsGetSid displays the local computer’s machine SID. For
example:

C:\>psgetsid
SID for \\WIN_VM:
S-1-5-21-2292904206-3342264711-2075022165

C:\>psgetsid Administrator
SID for WIN_VM\Administrator:
S-1-5-21-2292904206-3342264711-2075022165-500

186 Part II Usage Guide

Use of fully qualified account names (DOMAIN\USERNAME) prevents ambiguity and
 improves performance. If only an account name is provided, PsGetSid checks well-known
SIDs first, then built-in and administratively defined local accounts. If the name still hasn’t
been resolved, PsGetSid checks the primary domain, and finally trusted domains.

No translation is possible for Logon SIDs. Logon SIDs are randomly generated identifiers
 associated with nonpersistent objects and have the format S-1-5-5-X-Y.

The following line of PowerShell script lists the names associated with well-known SIDs in the
range from S-1-5-32-544 to S-1-5-32-576, redirecting any error output to nul. The output
from that command is shown in Figure 6-1.

0x220..0x240 | %{ psgetsid S-1-5-32-$_ 2> $nul }

FIGURE 6-1 PsGetSid enumerating a range of BUILTIN names.

And the next two lines of PowerShell script get the names of the first 10 local groups and
users defined on the computer. The first command extracts the machine SID from PsGetSid
output, and the second one appends 1000 through 1009 to that SID and passes each of
those to PsGetSid:

$msid = $(psgetsid)[2] + "-"
1000..1009 | %{ psgetsid $msid$_ 2> $nul }

 Chapter 6 Pstools 187

PsInfo
PsInfo gathers key information about systems, including the type of installation, kernel build
number, system uptime, registered owner and organization, number of processors and their
type, amount of memory, and Internet Explorer version. Command-line options also let you
view disk volume information, installed hotfixes, and software applications. For example:

System information for \\WIN7-X86-VM:
Uptime: 0 days 23 hours 58 minutes 9 seconds
Kernel version: Windows 7 Ultimate, Multiprocessor Free
Product type: Professional
Product version: 6.1
Service pack: 0
Kernel build number: 7600
Registered organization: Microsoft
Registered owner: Abby
IE version: 8.0000
System root: C:\Windows
Processors: 1
Processor speed: 2.3 GHz
Processor type: Intel(R) Core(TM)2 Duo CPU T7700 @
Physical memory: 2048 MB
Video driver: Microsoft Virtual Machine Bus Video Device

The Uptime figure represents the accumulated amount of time that the computer has been
running since the last boot. Time spent in sleep or hibernate mode does not count toward
this figure, so Uptime does not necessarily indicate how much actual time has elapsed since
the last system startup.

Note As of this writing, physical memory does not get reported for 64-bit versions of Windows.

To report only selected rows of this information, provide the full or partial name of the field
or fields of interest on the command line. For example, if you run psinfo register, only the
Registered Organization and Registered Owner fields will be reported.

By default, PsInfo captures information about the local computer, but by using the syntax
described in the “Common Features” section of this chapter, it can report information for one
or more remote computers. PsInfo does not require administrative rights locally, but it does
need administrative rights on remote systems.

Adding –d to the PsInfo command line appends information about disk volumes to the
r eport, similar to the following:

Volume Type Format Label Size Free Free
 A: Removable 0.0%
 C: Fixed NTFS 126.99 GB 123.34 GB 97.1%
 D: CD-ROM CDFS VMGUEST 23.66 MB 0.0%
 X: Remote NTFS 19.99 GB 13.35 GB 66.8%

188 Part II Usage Guide

In the preceding example, the user running PsInfo had X: mapped to a remote file share.
When querying drive information from remote computers, PsInfo gathers information in the
SYSTEM context, so only globally-visible volumes are reported. This will not include remote
drive mappings unless the mappings are created in the SYSTEM context, which makes them
visible to all processes on the computer.

Note PsInfo does not distinguish SUBST associations. If a drive letter is associated with a local
path, it will appear in the listing as another fixed drive with the exact same characteristics as the
real volume on the system.

The –h option reports installed hotfixes on the target system. Hotfix information is gathered
from several points in the registry that are known to contain information about Windows and
Internet Explorer hotfixes.

The –s option reports installed software applications, according to uninstall information for
the applications found in the registry.

To report the results as comma-separated values (CSVs), add the –c option to the command
line. Results from each computer are reported on one line, which is helpful for generating
a spreadsheet. To use a character other than a comma as the delimiter, add the –t option
 followed by the desired character. To use the tab character, use \t as in the following
example:

psinfo -c -t \t

If PsInfo is reporting on the local computer or a single remote computer, PsInfo’s exit code is
the service pack number of that system. When reporting on multiple systems, PsInfo returns
a conventional success or failure code.

PsKill
PsKill is a command-line utility to terminate processes by ID or by image name. It can also be
used to terminate all the descendent processes of the target process. And as with all other
PsTools, it can target processes and process trees on remote computers, using alternate
 credentials if needed.

Warning PsKill terminates processes immediately . Forcibly terminating a process does not
give it an opportunity to shut down cleanly and can cause data loss or system instability. In
 addition, PsKill does not provide extra warnings if you try to terminate a system-critical pro-
cess such as Csrss.exe. Terminating a system-critical process results in an immediate Windows
 blue-screen crash.

 Chapter 6 Pstools 189

Specify the process ID (PID) in decimal or the image name of the process to terminate on the
PsKill command line. If the parameter can be interpreted as a decimal number, it is assumed
to be a PID; otherwise, it is assumed to be an image name. The image name does not need
to include “.exe”, but otherwise must be an exact match—PsKill does not accept wildcards. If
you specify an image name, PsKill will attempt to terminate all processes on the system that
have that name.

If you have a case where the image name happens to be a decimal number, include the .exe
part of the name so that the parameter will be treated as a name and not as a PID.

Add the –t option to the command line to terminate the process tree of the target process or
processes. The process tree of a target process is that process and any descendant processes.
The process tree can be visualized with Process Explorer (the topic of Chapter 3) or with the
–t option of PsList, discussed next in this chapter.

PsKill does not require administrative rights to terminate processes running in the same
 security context as PsKill and on the same computer. Administrative rights are needed for all
other cases.

Note PsKill was originally developed when Windows came with relatively few command-line
utilities. Windows XP and higher now includes both Taskkill.exe and Tskill.exe, which offer all the
capabilities of PsKill and more.

PsList
PsList, the first of the PsTools utilities I wrote and which is based on the ps utility found on
UNIX platforms, lists running processes and their runtime characteristics, such as memory
and CPU usage. PsList can optionally show process parent-child relationships, list per-thread
information, or continually self-update in task manager mode. PsList can report on local or
remote processes.

PsList does not require administrative rights to list process information on the local com-
puter. By default, listing process information on a remote Windows XP computer requires
administrative rights on the target system. On Windows Vista and newer, members of the
Administrators, Performance Monitor Users, or Performance Log Users groups can run PsList
remotely. The Remote Registry service must be running on the target computer.

Without command-line arguments, PsList enumerates the processes running on the local
computer in the order that they started, along with process ID (column header Pid), process
priority (Pri), number of threads (Thd), number of handles to kernel objects (Hnd), private
virtual memory in kilobytes (Priv), total amount of CPU time charged to the process, and the
elapsed time since the process started.

190 Part II Usage Guide

Note PsList uses the name “Idle” to refer to the PID 0 pseudo-process that Process Explorer and
other utilities call “System Idle Process.” And like most other process-listing utilities, PsList does
not separately identify the Interrupts pseudo-process that Process Explorer identifies, instead
counting that CPU charge to the Idle process.

The –t option displays processes in a tree view, similar to that of Process Explorer, with child
processes indented below their parent process. With tree view, the CPU Time and Elapsed
Time columns do not appear; instead, PsList shows reserved virtual memory (VM) and
 working set (WS) in kilobytes.

The –m option displays memory-related information for each process rather than CPU
 information. The statistics shown include reserved virtual memory (VM), working set size
(WS), private virtual memory (Priv), the peak private virtual memory in the process’ lifetime
(Priv Pk), page faults (Faults) including both hard and soft faults, and nonpaged and paged
pool sizes (NonP and Page, respectively). All memory sizes are in kilobytes.

The –d option displays information about each thread on the system. Threads are grouped
under the processes to which they belong and are sorted by start time. The information
shown for each thread includes thread ID (Tid), thread priority (Pri), number of context
switches or the number of times the thread has begun executing on a CPU (Cswtch), its
 current state (State), the amount of time it has executed in user mode (User Time) and in
 kernel mode (Kernel Time), and the Elapsed Time since the thread began execution.

The –x option displays CPU, memory, and thread information for each process. The –m, –x,
and –d options can be combined, but they cannot be used with the –t option.

Instead of listing all processes, you can specify which processes to display by ID, by partial
name, or by exact name. The following command line displays information about the process
with PID 560 on the computer named Win7_vm:

pslist \\Win7_vm 560

The following command displays CPU, thread, and memory information about all processes
with names beginning with svc:

pslist -x svc

Add –e to the command line to match the specified process name exactly. In the preceding
example, only svc.exe processes would be listed; instances of svchost.exe would not be listed.

The –s option runs PsList in “task manager” mode, in which PsList periodically clears and
 refreshes the console screen with updated statistics. The list is sorted by the CPU column,
which displays the percentage of CPU time charged to each process since the previous
 update. By default, PsList updates the display once per second until you press Escape. You
can specify a number of seconds for PsList to run immediately following the –s, and you can

 Chapter 6 Pstools 191

set the refresh rate with the –r option. The following example runs PsList in task manager
mode for 60 seconds (or until you press Escape), refreshing the display every five seconds:

pslist -s 60 -r 5

The –s option can be combined with the –m option to display continually updated memory
statistics, and with processes sorted by private bytes rather than by CPU usage. It can also
be combined with the –t option to continually display processes in a tree view as Process
Explorer does. You can also specify a PID or a partial or exact process name with these
 options to limit which processes to display in task manager mode. If you specify a PID,
you might want to specify it before the –s option so that it isn’t interpreted as the number
of seconds to run. The following command continually monitors the memory usage of
 leakyapp.exe on a remote computer:

pslist \\Win7_vm -s -m -e leakyapp

PsLoggedOn
PsLoggedOn tells you who is logged on to a particular computer, either locally or through
resource shares. Alternately, PsLoggedOn can tell you which computers on your network a
particular user is logged on to.

Without command-line parameters, PsLoggedOn reports which users are locally logged on
to the current computer and when they logged on; it then reports users that are logged on
through resource shares and at what time the session was started. (This latter information is
similar to what the net session command reports.)

To view the same information for logons on a remote computer, add the computer name to
the command line prefixed with a double backslash:

psloggedon \\Win7_vm

You need to run PsLoggedOn under an account that has administrative permissions on
the remote computer. PsLoggedOn is the one PsTools utility that does not offer –u and –p
options for specifying alternate credentials. Also, because PsLoggedOn uses the Remote
Registry service to gather information from a remote computer, it will always show as a
 resource share connection on the computer from which you are retrieving information.

To show only local logons and not report resource share logons, add the –l (lower case L)
command-line option. To show only account names without logon times, add the –x option.

If you specify a user name instead of a computer, PsLoggedOn searches all the computers
in the current domain or workgroup and reports whether the user is locally logged on. Note
that PsLoggedOn must be run with an account with administrative rights on all computers

192 Part II Usage Guide

on the network, and that the search might be time-consuming on a large or bandwidth-
constrained network.

PsLoggedOn’s definition of a locally logged-on user is a user that has its profile loaded into
the registry. When the user’s profile is loaded, the user’s security identifier (SID) appears as a
subkey under HKEY_USERS. PsLoggedOn looks at the last-write time stamp under a subkey
of that SID key as an approximation of the user’s logon time. The logon time reported will be
accurate in most cases but is not authoritative. For a more complete and accurate listing of
logon sessions on a computer, see the LogonSessions utility, described in Chapter 8, “Security
Utilities.”

PsLogList
PsLogList displays records from the Windows event logs of the local computer or of remote
computers. You can filter the output based on time stamp, source, ID, type, or other criteria.
PsLogList also lets you export log records to a *.evt file, read from a saved *.evt file, or clear
an event log.

Without parameters, PsLogList dumps all records from the System event log on the local
computer. To view records from a different event log, just name it on the command line. For
example, the following command lines dump records from the Application log and from the
Windows PowerShell log, respectively:

psloglist application

psloglist "Windows Powershell"

To view records from one or more remote computers, specify computer names on the
 command line as described at the beginning of this chapter.

Every event log record includes an event source and an event ID. The event ID is used to look
up and display localizable, human-readable text from a message resource DLL associated
with the event source. That message text can contain placeholders for text that can vary per
event (such as a file name or an IP address). That per-event text is associated with the event
log record as zero or more insertion strings. Most event-viewing applications, including Event
Viewer, display only the insertion strings (not the full text) when the referenced message
resource DLLs are not present on the local system. This makes the text difficult to read. One
of the features that distinguishes PsLogList when reading a remote event log is that it will
get message text from the resource DLLs on those remote systems. However, this requires
that the remote system’s default administrative share (Admin$) be enabled and accessible,
that the resource DLLs be located under that directory, and that the Remote Registry service
is running on that system. Before using PsLogList to gather data from remote systems, be
sure that this is the case on those systems; otherwise, PsLogList will not be able to display full
event text.

 Chapter 6 Pstools 193

PsLogList does not require administrative rights to display records from the local Application
or System logs or from a saved *.evt file, or to export the Application or System logs to
an *.evt file. Administrative rights might not be needed to view the Application log of a
 remote Windows XP computer, but event text will not be accessible. Administrative rights
are required to clear event logs or to access the local Security log or any other remote
event logs.

The rest of PsLogList’s command-line options are summarized in Table 6-2 and are discussed
in more detail in the rest of this section.

TABLE 6-2 PsLogList Command-Line Options

Option Description
Output options
–x Displays extended data if that is present. (It’s not applicable if –s used.)

–n # Limits the number of records displayed to the specified number.

–r Reverses the order—displays oldest to newest (with default being newest to
oldest).

–s Displays each record on one line with delimited fields.

–t char Specifies the delimiter character to use with –s. Use \t to specify Tab.

–w Waits for new events, displaying them as they are generated. PsLogList runs
until you press Ctrl+C. (Local computer only.)

Timestamp options
–a mm/dd/yyyy Displays records time-stamped on or after the date mm/dd/yyyy.

–b mm/dd/yyyy Displays records time-stamped before the date mm/dd/yyyy.

–d # Displays only records from the previous # days.

–h # Displays only records from the previous # hours.

–m # Displays only records from the previous # minutes.

Event content filtering options
–f filter Filters event types, where each letter in filter represents an event type.

–i ID[,ID,…] Shows only events with the specified ID or IDs (up to 10).

–e ID[,ID,…] Shows events excluding those with the specified ID or IDs (up to 10).

–o source[,source,…] Shows only events from the specified event source or sources. The * character
can be appended for a substring match.

–q source[,source,…] Shows events excluding the specified event source or sources. The * character
can be appended for a substring match.

Log-management options
–z Lists event logs registered on the target system.

–c Clears the event log after displaying records.

–g filename Exports an event log to a *.evt file. (Local computer only.)

–l filename Displays records from a saved *.evt file instead of from an active log.

194 Part II Usage Guide

By default, PsLogList displays the record number, source, type, computer, time stamp, event
ID, and text description of each record. PsLogList loads message source modules on the
system where the event log being viewed resides so that it correctly displays event log
 messages. For example:

 [34769] Service Control Manager
 Type: INFORMATION
 Computer: WIN7X86-VM
 Time: 12/22/2009 11:31:09 ID: 7036
The Application Experience service entered the stopped state.

The –x option displays any extended data in the event record in a hex dump format. With
that option, the previous record would appear like this:

[34769] Service Control Manager
 Type: INFORMATION
 Computer: WIN7X86-VM
 Time: 12/22/2009 11:31:09 ID: 7036
The Application Experience service entered the stopped state.
 Data:
 0000: 41 00 65 00 4C 00 6F 00 6F 00 6B 00 75 00 70 00 A.e.L.o.o.k.u.p.
 0010: 53 00 76 00 63 00 2F 00 31 00 00 00 S.v.c./.1...

The –n option limits the number of records displayed to the number you specify. The
 following command displays the 10 most recent records in the Application log:

psloglist –n 10 application

By default, PsLogList displays records from newest to oldest. The –r option reverses that
 order, displaying oldest records first. The following command combines –r with –n to display
the 10 oldest records in the Application log:

psloglist –r –n 10 application

The –s option displays the content of each record on a single line with comma-delimited
fields. This is convenient for text searches because you can search for any text in the record
and see the entire record—for example, psloglist –s | findstr /i luafv. The –t option lets
you specify a different delimiter character, which can help with importing into a spreadsheet.
Note that PsLogList quotes only the text description field in –s mode, so choose a delimiter
character that does not appear in any of the event text. You can use \t to specify the Tab
character. Note also that –x extended data is not output when –s is used.

The –w option runs PsLogList in a continuous mode, waiting for and displaying new event
records as they are added to the event log. Combined with other filtering options, PsLogList
displays only new records that fit the criteria. PsLogList continues to run until you press
Ctrl+C or Ctrl+Break. The –w option cannot be used when targeting a remote computer.

The –a and –b options filter records based on their time stamps. The –a option displays only
records on or after the date specified; the –b option displays only records before the date

 Chapter 6 Pstools 195

specified. Note that dates must be in month/day/year format, regardless of the regional
date-formatting option in effect. The following command displays all records from the
System log from December 22, 2009:

psloglist -a 12/22/2009 -b 12/23/2009

Instead of using a specific date, you can get the most recent records from an event log going
back a specific amount of time. The –d, –h, and –m options let you display the most recent
records going back a specific number of days, hours, or minutes, respectively. The following
command displays all records from the System log that occurred in the last three hours:

psloglist -h 3

The –f filter option filters the records to display based on the event type. For each event
type to display, add its first letter to the filter. For example, –f e displays only error events,
–f ew displays errors and warnings, and –f f displays failure audits. Use i for informational
events and s for success audits.

To display only records with specific event IDs, use the –i option followed by a comma-
separated list of up to 10 ID numbers. To exclude event IDs, use the –e option instead. Do not
put any spaces within the list.

To display only records from specific event sources, use the –o option followed by a
 comma-separated list of source names. If any of the source names contains spaces, quote
the entire set. Add a * character to match the text you specify anywhere in the source name.
Do not put any spaces around the commas. To exclude rather than include records based on
source name, use the –q option instead of –o. The following example displays all events in
the System log from the Service Control Manager and any event source with net in its name,
except for records with event IDs 1 or 7036:

psloglist -o "service control manager,net*" -e 1,7036

You can export an event log on the local computer to a *.evt file with the –g option. The
 following command exports the Application log to app.evt in the current directory:

psloglist -g .\app.evt Application

You can view records from a saved *.evt file instead of from an active event log with the –l
(lowercase L) option. So that the event text is properly interpreted, specify the original name
of the log as well. The following command displays the 10 most recent records in the saved
app.evt file, using message files associated with the Application log:

psloglist -l .\app.evt -n 10 application

PsLogList supports viewing only from legacy-style event logs—specifically, those that have a
named subkey under HKLM\System\CurrentControlSet\Services\EventLog. The –z option lists

196 Part II Usage Guide

the event logs that are available for viewing on the target system. Note that the registered
name for an event log might be different from the display name shown in Event Viewer.

Finally, you can clear an event log after displaying records with the –c option. To display no
records, use a filter that excludes everything, such as –f x (no event types begin with “x”). The
following command clears the security event log on a remote computer without displaying
any records:

psloglist \\win7demo -c –f x security

PsPasswd
PsPasswd lets you set the password for domain or local user accounts. You can set the
 password for a named local account on a single computer, a specific set of computers,
or all computers in your domain or workgroup. This can be useful particularly for setting
 passwords for service accounts or for local built-in Administrator accounts.

To set a domain password, simply specify the target account in domain\account format,
 followed by the new password. If the account name or password contains spaces, put quotes
around it. The following example sets a highly complex yet easily memorized 28-character
passphrase for the MYDOMAIN\Toby account:

pspasswd mydomain\toby "Passphrase++ 99.9% more good"

The password is optional. If you specify the user account but no new password, PsPasswd will
apply a null password to the account, if the security policy allows it.

To set the password for an account on the local computer, specify just the account name and
the new password. Again, the password is optional: omitting it from the command line blanks
the password for the account, if security policy permits it.

Note Resetting the password of a local user account can cause an irreversible loss of encrypted
data belonging to that account, such as files protected with the Encrypting File System (EFS).

To set the password for a local account on one or more remote computers, use the
 remote-computers syntax described at the beginning of this chapter, along with alternate
credentials if desired. Then specify the account name and the optional new password. The
following example sets the password for the local Administrator account on all computers in
the domain or workgroup to a random, 50-character password:

pspasswd * Administrator "^HVKh*iK:F`Rv0[8<Zdp#|,I.:TI_K’:W\xEwi9D3I,O}tQ>tK"

By default, only Domain Admins or Account Operators can set the password for a do-
main user account. Note that PsPasswd does not accept alternate credentials in the do-

 Chapter 6 Pstools 197

main account case; you must run PsPasswd with sufficient privileges to change the target
 password. To set the password for a local user account, administrative rights are required on
the target computer.

PsService
PsService lists or controls Windows services and drivers on a local or a remote system. It is
similar in many respects to SC.EXE and to some features of NET.EXE, both of which come with
Windows, but offers improvements in usability and flexibility. For instance, services can be
specified using service names or display names and, in some cases, partial name matches.
PsService also includes a unique service-search capability that lets you search for instances of
a service on your network, as well as for services that are marked “interactive.”

Without parameters, PsService lists status information for all Win32 (user-mode) services
 registered on the local computer. You can, of course, specify a computer name on the com-
mand line to perform commands on a remote system, and optionally supply a user name and
password if your current credentials do not have administrative rights on the remote system.

PsService supports the following commands and options, which will be discussed in more
detail in this section:

■ query [–g group] [–t {driver|service|interactive|all}] [–s {active|inactive|all}]
[service]

■ config [service]

■ depend service

■ security service

■ find service [all]

■ setconfig service {auto|demand|disabled}

■ start service

■ stop service

■ restart service

■ pause service

■ cont service

PsService /? lists these options. PsService command /? shows the syntax for the named
command—for example, psservice query /?.

PsService does not explicitly require administrative permissions for operations on the local
computer. Because permissions for each service can be set separately, the permissions re-
quired for any local operation can vary based on which service or services are involved. For

198 Part II Usage Guide

example, although most don’t, some services grant the interactive user permission to start
and stop the service. As another example, psservice depend server is the command to list
services that depend on the Server service. The list of services reported will differ for admin-
istrators and nonadministrators on Windows 7 because nonadmins aren’t allowed to read
status information for the HomeGroup Listener service, which depends on Server.

Query
The query command displays status information about services or drivers on the target
 system, using flexible criteria to determine which ones to include. For each matching service
or driver, PsService displays the following:

■ Service name The internal name of the service or driver. This is the name that most
sc.exe commands require.

■ Display name The display name, as shown in the Services MMC snap-in.

■ Description The descriptive text associated with the service or driver.

■ Group If specified, the load order group that the service belongs to.

■ Type User-mode services are either own-process or share-process, depending on
whether the service’s process can host other services. User-mode processes can also
be marked “interactive” (although that’s strongly discouraged). Drivers can be kernel
 drivers or file system drivers. (File system drivers must register with the I/O manager,
and they interact more extensively with the memory manager.)

■ State Indicates whether the service is running, stopped, or paused, or in transition
with a pending start, stop, pause, or continue. Below this line, PsService shows whether
the service accepts stop or pause/continue commands, and whether it can process
 pre-shutdown and shutdown notifications.

■ Win32 exit code Zero indicates normal runtime operation or termination. A non-zero
value indicates a standard error code reported by the service. The value 1066 indicates
a service-specific error. The value 1077 indicates that the service has not been started
since the last boot, which is normal for many services.

■ Service-specific exit code If the Win32 exit code is 1066 (0x42A), this value indicates
a service-specific error code; otherwise, it has no meaning.

■ Checkpoint Normally zero, this value is incremented periodically to report service
progress during lengthy start, stop, pause, or continue operations. It has no meaning
when an operation is not pending.

■ Wait hint The amount of time, in milliseconds, that the service estimates is required
for a pending start, stop, pause, or continue operation. If that amount of time passes
without a change to the State or Checkpoint, it can be assumed that an error has
 occurred within the service.

 Chapter 6 Pstools 199

By default, the PsService query command lists all Win32 services configured on the target
system, whether they’re running or not. (PsService without any command-line parameters is
equivalent to psservice query.) To narrow down the list by service or driver name, specify
the name at the end of the command line. PsService will report status information for all
services and drivers with exact or partially matching service or display names. For example,
psservice query ras will list all services and drivers that have service or display names
 beginning with ras. (The match is case insensitive.)

You can further filter the query results by type and by state. Add the –t option followed by
driver to display only drivers, service to display only Win32 services, interactive to display
only Win32 services that are marked allow service to interact with desktop, or all not to
filter results based on type. To filter query results based on whether the service or driver is
active, add –s to the command line followed by active, inactive, or all. If a service name is
not added to the command line, PsService defaults to displaying only Win32 services and
all states. If a service name is specified and –t is not specified, PsService displays matching
 services or drivers.

Note It is strongly discouraged to mark services “interactive.” Such services are often vulnerable
to elevation-of-privilege attacks and often will not work on Windows Vista or newer, or on earlier
versions of Windows with Fast User Switching or other terminal services. The psservice query –t
interactive command is an easy way to identify these potentially problematic services.

To list only services or drivers that belong to a particular load order group, name the group
after the –g option. Group name matching is case insensitive but must be an exact match,
not a partial match.

All these options can be combined. The following command displays status information for
kernel drivers on a remote computer that are in the PnP Filter group, that are not loaded,
and that have service or display names beginning with bth:

psservice \\win7x86-vm query -g "pnp filter" -t driver -s inactive bth

Config
The config command displays configuration information about services or drivers. Used by
itself, the PsService config command displays configuration information about all registered
Win32 services on the target system. Add a name after the config command, and PsService
will display configuration settings about all services and drivers with service or display names
beginning with the name you specify. For example, psservice config ras displays configura-
tion settings for all services and drivers with a service or display name beginning with “ras”
(case insensitive).

200 Part II Usage Guide

The config command displays the following information:

■ Service name The internal name of the service or driver. This is the name that most
sc.exe commands require.

■ Display name The display name, as shown in the Services MMC snap-in.

■ Description The descriptive text associated with the service or driver.

■ Type Indicates whether the item is configured as own-process or share-process
 service and whether it is marked “interactive”; configured as a kernel driver; or
 configured as a file system driver.

■ Start type Drivers that are loaded at startup can be marked boot-start or system-
start; services that are loaded at startup are marked auto-start or auto-start (delayed).
“Demand-start” (also known as “manual start”) indicates services or drivers that can be
started as needed. “Disabled” services and drivers cannot be loaded.

■ Error control Indicates what Windows should do if the service or driver fails to start
during Windows startup. Ignore or Normal means that Windows will continue system
startup, logging the error in the event log for the Normal case. If Severe or Critical,
Windows restarts using the last-known-good configuration; if the failure occurs with
the last-known-good, Severe continues booting while Critical fails the startup.

■ Binary path name Shows the path to the executable to be loaded, along with
 optional command-line parameters for an auto-start service.

■ Load order group The name of the load order group to which the service or driver
belongs (blank if not part of a group).

■ Tag For boot-start and system-start drivers that are part of a load order group, the
tag is a unique value within the group that can be used to specify load order within the
group.

■ Dependencies Services or load order groups that must be loaded before this service
or driver can start.

■ Service start name For services, the account name under which the service runs.

Depend
The depend command lists services and drivers that have direct or indirect dependencies on
the named service. For example, psservice depend tdx lists services and drivers that cannot
start unless the tdx driver (NetIO Legacy TDI Support Driver) is loaded.

 Chapter 6 Pstools 201

The information displayed by the depend command is the same as that for the query
 command. The service name on the psservice depend command line must exactly match
the service or display name of a registered service or driver; PsService will not perform partial
name matching for the depend command.

To see which services a particular service depends upon, use the psservice config command.

Security
As you might guess, the security command displays security information about the named
service or driver. Specifically, it displays its discretionary access control list (DACL) in a human-
readable way. Instead of displaying arcane Security Descriptor Definition Language (SDDL)
as sc.exe sdshow does, it lists the names of the accounts granted or denied access, and the
specific permissions granted or denied. As you can see in Figure 6-2, PsService clearly shows
that the Fax service can be started by any user. The equivalent but less-readable SDDL is
shown by the sc.exe command in the same figure.

FIGURE 6-2 PsService Security command and equivalent SC.EXE output.

For Win32 services, PsService also displays the account name under which the service runs.

The name on the PsService Security command line must be an exact, case-insensitive match
for either the service name or display name of the service or driver.

202 Part II Usage Guide

Find
One of PsService’s unique capabilities is to search your network for instances of a service. The
find command enumerates all the computers in your workgroup or domain and checks each
for a running instance of the named service. You can search for a service using either its ser-
vice name or display name. For example, the following command identifies all the Windows
computers in your domain or workgroup that are running the DNS Server service:

psservice find "dns server"

To search for both running and inactive instances of the service, add the keyword all to the
command line:

psservice find "dns server" all

The find command can also be used to search for loaded or inactive drivers on your net-
work. For example, psservice find vmbus will search your network for Windows computers
with the Virtual Machine Bus driver loaded.

SetConfig
The setconfig command lets you set the start type for a Win32 service. Follow the setconfig
command with the service name or display name of the service, followed by the start type.
The options are auto for an automatic-start service, demand for a manual-start service, or
disabled to prevent the service from starting. For example, to disable the Fax service, use the
following command line:

psservice setconfig fax disabled

Start, Stop, Restart, Pause, Continue
You can use PsService to start, stop, restart, or pause a service, or to resume (continue)
a paused service. The syntax is simply to use the start, stop, restart, pause, or cont
 command, followed by the service name or display name of the service or driver. If the
 control command is successful, PsService displays “query” results showing the requested
operation as pending or completed. Note that not all of these operations are valid for every
service and driver. Note also that the stop and restart commands will not work if there are
running services or loaded drivers that depend on the service or driver you are stopping.

 Chapter 6 Pstools 203

PsShutdown
PsShutdown is similar to the Shutdown.exe console utility from older versions of the Windows
Resource Kits and in current versions of Windows, providing a command-line mechanism
to shutdown, reboot, or hibernate local and remote Windows systems. PsShutdown also
pioneered the “shutdown reason” options that have since been added to the Windows
Shutdown.exe.

Because PsShutdown was designed before the advent of Terminal Services and the
 prevalence of users running without administrative rights, its usefulness is limited primarily
to Windows XP. PsShutdown requires administrative rights to create and start the custom
service that ultimately performs most of its tasks, and user-specific operations such as “lock
workstation” and “logoff” assume that services and the interactive user’s desktop are in
the same Terminal Services session (“session 0”). This assumption is never true on Windows
Vista and newer, and it cannot be relied upon with Windows XP when Fast User Switching
is in use or on Windows Server 2003 when using Remote Desktop. However, PsShutdown’s
suspend option to put the computer in sleep mode is a feature that is not available with
Shutdown.exe.

PsShutdown’s command-line options are described in Table 6-3. Note that to help prevent
accidental use, PsShutdown requires you to specify a shutdown option on the command line.

TABLE 6-3 PsShutdown Command-Line Options

Option Description
Shutdown commands (one required)
–s Shuts down. (Power remains on if BIOS does not support power-off.)

–k Powers off the computer. (Reboots if BIOS does not support power-off.)

–r Reboots the computer.

–h Hibernates the computer.

–d Suspends the computer (sleep mode).

–l Locks the workstation (Windows XP/Windows 2003 only). It locks the
 workstation or disconnects a remote desktop user if the interactive user is
logged in to terminal services session 0. Otherwise, it has no effect.

–o Logs off (Windows XP/Windows 2003 only). It logs off an interactive user
logged in to terminal services session 0. If –f is not also specified, logoff might
be blocked by an application that refuses to exit. Otherwise, it has no effect.

–a Aborts a PsShutdown-initiated shutdown operation (valid only when a
 countdown is in progress). This command does not require administrative
rights when invoked on the current computer.

204 Part II Usage Guide

Option Description
Display options
–m “message” For shutdown operations, displays a dialog box with the specified message to

an interactive user. If this option is not specified, a default notification message
will be displayed.

–c For shutdown operations, adds a Cancel button to the notification dialog box,
allowing an interactive user to cancel the operation.

–v seconds Displays the notification dialog box only for the specified number of seconds
before the shutdown. If this option is not set, the dialog box appears right
away when the shutdown is scheduled. If this option is set to 0, no dialog box
is displayed.

Other options
–t [seconds|hh:mm] Specifies when the shutdown operation should be performed, either in

 seconds or as time-of-day in 24-hour format. The default is 20 seconds. (It
 cannot be used with –l, –o, or –a.)

–f Forces running applications to terminate. (Note that Shutdown.exe on
Windows XP/Windows 2003 has a bug in which the logic for its –f option is
unintentionally reversed.)

–e [u|p]:xx:yy Specifies the shutdown reason code, with u for “unplanned” and p for
“planned.”

–n seconds Specifies the timeout in seconds to connect to remote computers.

PsShutdown does not use the InitiateSystemShutdown[Ex] and AbortSystemShutdown APIs
for remote shutdown or for cancellation by the interactive user. Instead, its service dis-
plays a custom interactive dialog box. Therefore, PsShutdown and other utilities cannot be
 intermixed to abort each other’s shutdown operations.

The notification and cancellation dialog box is displayed by the PsShutdown service, which
is remotely created and configured as an interactive service. Interactive services are a
 deprecated feature of Windows, so this feature works as intended only in certain scenarios:

■ On Windows XP and Server 2003, the dialog box is displayed only to an interactive user
that is logged on to terminal services session 0, and only if NoInteractiveServices has
not been enabled. With Fast User Switching or Remote Desktop, users can be logged in
to other sessions. The session 0 user can be disconnected or even logged out.

■ On Windows Vista and newer, when the PsShutdown service displays the notification,
an interactively logged-on user is notified by the Interactive Services Detection
(UI0Detect) service. This service, if not disabled, allows the user to switch temporarily
to session 0 to interact with the dialog box. If the service has been disabled, interactive
users receive no notifications.

The reason you might want to use the –n option to control the remote connection timeout
is that if you try to use PsShutdown to control a computer that is already off, the command
might appear to hang for a minute before timing out. This delay, which is the standard

 Chapter 6 Pstools 205

Windows timeout for computer connections, can severely lengthen shutdown operations
that run against many computers. The –n option gives you the ability to shorten the length
of time that PsShutdown will attempt to establish a connection before giving up.

The shutdown reason codes that can be used with the –e option are listed here:

Type Major Minor Title
 U 0 0 Other (Unplanned)
 P 0 0 Other (Planned)
 U 1 1 Hardware: Maintenance (Unplanned)
 P 1 1 Hardware: Maintenance (Planned)
 U 1 2 Hardware: Installation (Unplanned)
 P 1 2 Hardware: Installation (Planned)
 U 2 2 Operating System: Recovery (Planned)
 P 2 2 Operating System: Recovery (Planned)
 P 2 3 Operating System: Upgrade (Planned)
 U 2 4 Operating System: Reconfiguration (Unplanned)
 P 2 4 Operating System: Reconfiguration (Planned)
 P 2 16 Operating System: Service pack (Planned)
 U 2 17 Operating System: Hot fix (Unplanned)
 P 2 17 Operating System: Hot fix (Planned)
 U 2 18 Operating System: Security fix (Unplanned)
 P 2 18 Operating System: Security fix (Planned)
 U 4 1 Application: Maintenance (Unplanned)
 P 4 1 Application: Maintenance (Planned)
 P 4 2 Application: Installation (Planned)
 U 4 5 Application: Unresponsive
 U 4 6 Application: Unstable
 U 5 19 Security issue
 P 5 19 Security issue
 U 5 20 Loss of network connectivity (Unplanned)
 P 7 0 Legacy API shutdown

The System event log might show errors relating to PsShutdown. Cancellation of a shutdown
operation might be reported as an unexpected termination of the PsShutdown service; the
log might also report an error because PsShutdown is configured as an interactive service.
Both of these errors can be ignored.

PsSuspend
PsSuspend lets you suspend processes on the local system or a remote system. This can be
useful if a process is consuming a resource (such as CPU) that you want to allow another
 process to use. Rather than kill the process that’s consuming the resource, suspending it
 permits you to let it continue operation at some later point in time. It can also be useful
when investigating or removing malware that involve multiple processes monitoring each
other for termination.

206 Part II Usage Guide

To suspend a single process, specify its process ID (PID) on the PsSuspend command line.
Specify a process name to suspend all processes that have that name. To resume a process,
add –r to the command line.

Each thread in a process has a suspend count so that each call to the SuspendThread API for
that thread must be matched by a ResumeThread call before the thread will resume execu-
tion. PsSuspend preserves the suspend counts of threads within a process so that threads
that were already suspended when the process was suspended by PsSuspend will remain
suspended when the process is resumed. If PsSuspend –r is invoked on a process that is not
suspended but that has suspended threads, those threads will have their suspend counts
 decremented and will resume execution if decremented to zero. Programs that have sus-
pended threads most likely have reasons for doing so, so you should be careful about
“ resuming” processes you did not suspend.

PsTools Command-Line Syntax
This section shows the command-line syntax for each of the PsTools utilities. Because the
 syntax for remote operations is consistent across the utilities, that syntax is shown here in-
stead of within each utility. The RemoteComputers syntax applies to all of the utilities that
can operate on multiple computers; the RemoteComputer syntax applies to those that can
operate on only one remote computer.

RemoteComputers = \\computer[,computer2[,...]]|*|@file [-u username [-p password]]
RemoteComputer = \\computer [-u username [-p password]]

PsExec
psexec [RemoteComputers] [-d] [-background|-low|-belownormal|-abovenormal|-high|-realtime]
 [-a n[,n[,...]]] [-c [-f|-v]] [-n seconds] [-s|-e] [-i [session]] [-x]
 [-w directory] [-h] [-l] [-u username [-p password]] command [arguments]

Unlike the other utilities, PsExec supports the use of the –u and –p options both for remote
and local operations.

PsFile
psfile [RemoteComputer] [[Id | path] [-c]]

PsGetSid
psgetsid [RemoteComputers] [name | SID]

 Chapter 6 Pstools 207

PsInfo
psinfo [RemoteComputers] [-h] [-s] [-d] [-c [-t delimiter]] [field]

PsKill
pskill [RemoteComputer] [-t] {PID | name}

PsList
pslist [RemoteComputer] [[-t] | [[-m] [-d] [-x]]] [-s [n] [-r n]] [name | PID]

PsLoggedOn
psloggedon [\\computer|*] [-l] [-x]

PsLogList
psloglist [RemoteComputers] [-s [-t delimiter] | -x] [-n #] [-r] [-w]
[-a mm/dd/yyyy] [-b mm/dd/yyyy] [-d #|-h #|-m #] [-f filter]
[-i ID[,ID[,...]] | -e ID[,ID[,...]]]
[-o source[,source[,...]] | -q source[,source[,...]]]
[-z] [-c] [-g filename | -l filename] [eventlog]

PsPasswd
For local accounts:

pspasswd [RemoteComputers] LocalAccount [NewPassword]

For domain accounts:

pspasswd Domain\Account [NewPassword]

PsService
psservice [RemoteComputer] [command [options]]

The supported commands and options for PsService are

query [-g group] [-t {driver|service|interactive|all}] [-s {active|inactive|all}] [service]

config [service]

208 Part II Usage Guide

depend service

security service

find service [all]

setconfig service {auto|demand|disabled}

start service

stop service

restart service

pause service

cont service

PsShutdown
psshutdown [RemoteComputers] {-s|-k|-r|-h|-d|-l|-o|-a} [-f] [-c] [-t [seconds|hh:mm]]
[-v seconds] [-e [u|p]:xx:yy] [-m "message"] [-n seconds]

PsSuspend
pssuspend [RemoteComputer] [-r] {PID|name}

PsTools System Requirements
Table 6-4 lists the requirements for local and remote operations for each of the PsTools
utilities.

 Chapter 6 Pstools 209

TABLE 6-4 PsTools System Requirements
Utility Local Remote

Requires
administrative rights
locally

Requires Admin$
share on remote

Requires
RemoteRegistry
service

Supports specification
of multiple computer
names

PsExec Depends on command
and options

Yes No Yes

PsFile Yes No No No

PsGetSid No Yes No Yes

PsInfo No Yes Yes Yes

PsKill Depends on target
process

Yes No No

PsList No Yes Yes No

PsLoggedOn No No Yes (Can scan network)

PsLogList Depends on operation
and target log

Yes Yes Yes

PsPasswd Yes No No Yes (for local accounts)

PsService Depends on operation
and specific services

No No No (but the find option
can scan network)

PsShutdown Yes Yes No Yes

PsSuspend Depends on target
process

Yes No No

 211

Chapter 7

Process and Diagnostic Utilities
Process Explorer and Process Monitor, discussed in Chapters 3 and 4, respectively, are the
primary utilities for analyzing the runtime behavior and dynamic state of processes and of
the system as a whole. This chapter describes six additional Sysinternals utilities for viewing
details of process state:

■ VMMap is a GUI utility that displays details of a process’ virtual and physical memory
usage.

■ ProcDump is a console utility that can generate a memory dump for a process when
it meets specifiable criteria, such as exhibiting a CPU spike or having an unresponsive
window.

■ DebugView is a GUI utility that lets you monitor user-mode and kernel-mode debug
output generated from either the local computer or a remote computer.

■ LiveKd lets you run a standard kernel debugger on a snapshot of the running local
 system without having to reboot into debug mode.

■ ListDLLs is a console utility that displays information about DLLs loaded on the system.

■ Handle is a console utility that displays information about object handles held by
 processes on the system.

VMMap
VMMap (shown in Figure 7-1) is a process virtual and physical memory analysis utility. It
shows graphical and tabular summaries of the different types of memory allocated by a
 process, as well as detailed maps of the specific virtual memory allocations, showing char-
acteristics such as backing files and types of protection. VMMap also shows summary and
detailed information about the amount of physical memory (working set) assigned by the
operating system for the different virtual memory blocks.

VMMap can capture multiple snapshots of the process’ memory allocation state, graphically
display allocations over time, and show exactly what changed between any two points in
time. Combined with VMMap’s filtering and refresh options, this allows you to identify the
sources of process memory usage and the memory cost of application features.

VMMap can also instrument a process to track its individual memory allocations and
show the code paths and call stacks where those allocations are made. With full symbolic
 information, VMMap can display the line of source code responsible for any memory
allocation.

212 Part II Usage Guide

FIGURE 7-1 VMMap main window.

Besides flexible views for analyzing live processes, VMMap supports the export of data in
multiple formats, including a native format that preserves detailed information so that you
can load it back into VMMap at a later time. It also includes command-line options that
 enable scripting scenarios.

VMMap is the ideal tool for developers who want to understand and optimize their
 application’s memory resource usage. (To see how Microsoft Windows allocates physical
memory as a systemwide resource, see RAMMap, which is described in Chapter 14, “System
Information Utilities.”) VMMap runs on x86 and x64 versions of Windows XP and newer.

Starting VMMap and Choosing a Process
The first thing you must do when starting VMMap is to pick a process to analyze. If you
don’t specify a process or an input file on the VMMap command line (described later in this
 chapter), VMMap displays its Select or Launch Process dialog box. Its View A Running Process
tab lets you pick a process that is already running, and the “Launch And Trace A New Process
tab lets you start a new, instrumented process and track its memory allocations. You can
 display the Select or Launch Process dialog box at a later time by pressing Ctrl+P.

 Chapter 7 Process and Diagnostic Utilities 213

View a Running Process
Select a process from the View A Running Process tab (shown in Figure 7-2), and click OK. To
quickly find a process by process ID (PID) or by memory usage, click on any column header
to sort the rows by that column. The columns include User, Private Bytes, Working Set, and
Architecture (that is, whether the process is 32-bit or 64-bit). Click Refresh to update the list.

FIGURE 7-2 VMMap Select or Launch Process dialog box lists running processes.

The View A Running Process tab lists only processes that VMMap can open. If VMMap is not
running with administrative permissions (including the Debug privilege), the list includes only
processes running as the same user as VMMap and at the same integrity level or a lower one.
On Windows Vista and newer, you can restart VMMap with elevated rights by clicking the
Show All Processes button in the dialog box, or by choosing File | Run As Administrator.

On x64 editions of Windows, VMMap can analyze 32-bit and 64-bit processes. VMMap
launches a 32-bit version of itself to analyze 32-bit processes and a 64-bit version to analyze
64-bit processes. (See “Single Executable Image” in Chapter 1, “Getting Started with the
Sysinternals Utilities,” for more information.) With the –64 command-line option, described
later in this chapter, the 64-bit version is used to analyze all processes.

Launch and Trace a New Process
When you launch an application from VMMap, the application is instrumented to track all
individual memory allocations along with the associated call stack. Enter the path to the
 application and optionally any command-line arguments and the start directory as shown in
Figure 7-3, and then click OK.

214 Part II Usage Guide

FIGURE 7-3 Launch and trace a new process.

VMMap injects a DLL into the target process at startup and intercepts its virtual memory
API calls. Along with the allocation type, size, and memory protection, VMMap captures the
call stack at the point when the allocation is made. VMMap aggregates this information in
various ways, which are described in the “Viewing Allocations from Instrumented Processes”
section later in this chapter. (See “Call Stacks and Symbols” in Chapter 2, “Windows Core
Components,” for more information.)

On x64 editions of Windows, VMMap can instrument and trace x86 and x64 programs,
launching a 32-bit or 64-bit version of itself accordingly. However, on x64 Windows VMMap
cannot instrument and trace .NET programs built for “Any CPU.. It can instrument those pro-
grams on 32-bit versions of Windows, and you can analyze an “Any CPU” program on x64
without instrumentation by picking it from the View A Running Process tab of the Select or
Launch Process dialog box.

Note “Any CPU” is the default target architecture for Microsoft C# and Visual Basic .NET
 applications built with Microsoft Visual Studio 2005 and newer.

The VMMap window
After you select or launch a process, VMMap analyzes the process, displaying graphical
representations of virtual and physical memory, and tabular Summary and Details Views.
Memory types are color coded in each of these components, with the Summary View also
serving as a color key.

 Chapter 7 Process and Diagnostic Utilities 215

The first bar graph in the VMMap window (shown in Figure 7-1) is the Committed summary.
Its differently-colored areas show the relative proportions of the different types of
 committed memory within the process’ address space. It also serves as the basis against
which the other two graphs are scaled. The total figure shown above the right edge of the
graph is not all allocated memory, but the process’ “accessible” memory. Regions that have
only been reserved cannot yet be accessed and are not included in this graph. In other
words, the memory included here is backed by RAM, a paging file, or a mapped file.

The second bar graph in the VMMap window is the Private Bytes summary. This is process
memory not shareable with other processes and that’s backed by physical RAM or by a
 paging file. It includes the stack, heaps, raw virtual memory, page tables, and read/write
portions of image and file mappings. The label above the right side of the graph reports
the total size of the process’ private memory. The colored areas in the bar graph show the
 proportions of the various types of memory allocations contributing to the private byte
 usage. The extent of the colored areas toward the graph’s right edge indicates its proportion
to in-use virtual memory.

The third bar graph shows the working set for the process. The working set is the process’
virtual memory that is resident in physical RAM. Like the Private Bytes graph, the colored
areas show the relative proportions of different types of allocations in RAM, and their extent
toward the right indicates the proportion of the process’ committed virtual memory that is
resident in RAM.

Note that these graphs show only the relative proportions of the different allocation types.
They are not layout maps that show where in memory they are allocated. The Address Space
Fragmentation dialog box, described later in this chapter, provides such a map for 32-bit
processes.

Below the three graphs, the Summary View table lists the different types of memory
 allocations (described in the “Memory Types” section in this chapter), the total amount of
each type of allocation, how much is committed, and how much is in physical RAM. Select
a memory type in Summary View to filter what is shown in the Details View window. You
can sort the Summary View table by the values in any column by clicking the corresponding
column header. Clicking a column header again reverses the sort order for that column. The
order of the colored areas in the VMMap bar graphs follows the sort order of the Summary
View table. You can also change the column order for this table by dragging a column
 header to a new position, and resize column widths by dragging the borders between the
column headers.

Below Summary View, Details View displays information about each memory region of the
process’ user-mode virtual address space. To show only one allocation type in Details View,
select that type in the Summary View. To view all memory allocations, select the Total row
in the Summary View. As with the Summary View, the columns in Details View allow sorting,
resizing and reordering.

216 Part II Usage Guide

Allocations shown in Details View can expand to show sub-blocks within the original
 allocation. This can occur, for example, when a large block of memory is reserved, and then
parts of it are committed. It also occurs when the image loader or an application creates a
file mapping and then creates multiple mapped views of that file mapping; for example, to
set protection differently on the different regions of the file mapping. You can expand or
collapse individual groups of sub-allocations by clicking the plus (+) and minus (–) icons in
Details View. You can also expand or collapse all of them by choosing Expand All or Collapse
All from the Options menu. The top row of such a group shows the sums of the individual
components within it. When a different sort order is selected for Details View, sub-blocks
 remain with their top-level rows and are sorted within that group.

If VMMap’s default font is not to your liking, choose Options | Font to select a different font
for Summary View, Details View, and some of VMMap’s dialog boxes.

Memory Types
VMMap categorizes memory allocations into one of several types:

■ Image The memory represents an executable file, such as an EXE or DLL, that has
been loaded into a process by the image loader. Note that Image memory does not
include executable files loaded as data files—these are included in the Mapped File
memory type. Executable code regions are typically read/execute-only and shareable.
Data regions, such as initialized data, are typically read/write or copy-on-write. When
copy-on-write pages are modified, additional private memory is created in the process
and is marked as read/write. This private memory is backed by RAM or a paging file
and not by the image file. The Details column in Details View shows the file’s path or
section name.

■ Mapped File The memory is shareable and represents a file on disk. Mapped files are
often resource DLLs and typically contain application data. The Details column shows
the file's path.

■ Shareable Shareable memory is memory that can be shared with other processes
and is backed by RAM or by the paging file (if present). Shareable memory typically
 contains data shared between processes through DLL shared sections or through
 pagefile-backed, file-mapping objects (also known as pagefile-backed sections).

■ Heap A heap represents private memory allocated and managed by the user-mode
heap manager and typically contains application data. Application memory allocations
that use Heap memory include the C runtime malloc library, the C++ new operator, the
Windows Heap APIs, and the legacy GlobalAlloc and LocalAlloc APIs.

■ Managed Heap Managed Heap represents private memory that is allocated and
managed by the .NET runtime and typically contains application data.

 Chapter 7 Process and Diagnostic Utilities 217

■ Stack Stack memory is allocated to each thread in a process to store function
 parameters, local variables, and invocation records. Typically, a fixed amount of Stack
memory is allocated and reserved when a thread is created, but only a relatively small
amount is committed. The amount of memory committed within that allocation will
grow as needed, but it will not shrink. Stack memory is freed when its thread exits.

■ Private Data Private Data memory is memory that is allocated by VirtualAlloc and
that is not further handled by the Heap Manager or the .NET runtime, or assigned to
the Stack category. Private Data memory typically contains application data, as well as
the Process and Thread Environment Blocks. Private Data memory cannot be shared
with other processes.

Note VMMap’s definition of “Private Data” is more granular than that of Process
Explorer’s “private bytes.” Procexp’s “private bytes” includes all private committed memory
belonging to the process.

■ Page Table Page Table memory is private kernel-mode memory associated with the
process’ page tables. Note that Page Table memory is never displayed in VMMap’s
Details View, which shows only user-mode memory.

■ Free Free memory regions are spaces in the process’ virtual address space that are
not allocated. To include free memory regions in Details View when inspecting a
 process’ total memory map, choose Options | Show Free Regions.

Memory Information
Summary View and Details View show the following information for allocation types and in-
dividual allocations. To reduce noise in the output, VMMap does not show entries that have a
value of 0.

■ Size The total size of the allocated type or region. This includes areas that have been
reserved but not committed.

■ Committed The amount of the allocation that is committed—that is, backed by RAM,
a paging file, or a mapped file.

■ Private The amount of the allocation that is private to the process.

■ Total WS The total amount of working set (physical memory) assigned to the type or
region.

■ Private WS The amount of working set assigned to the type or region that cannot be
shared with other processes.

■ Shareable WS The amount of working set assigned to the type or region that can be
shared with other processes.

218 Part II Usage Guide

■ Shared WS The amount of Shareable WS that is currently shared with other processes.

■ Locked WS The amount of memory that has been guaranteed to remain in physical
memory and not incur a page fault when accessed.

■ Blocks The number of individually allocated memory regions.

■ Largest In Summary View, the size of the largest contiguous memory block for that
allocation type.

■ Address In Details View, the base address of the memory region in the process’
 virtual address space.

■ Protection In Details View, identifies the types of operations that can be performed
on the memory. In the case of top-level allocations that show expandable sub-blocks,
Protection identifies a summary of the types of protection in the sub-blocks. An access
violation occurs on an attempt to execute code from a region not marked Execute (if
DEP is enabled), to write to a region not marked Write or Copy-on-Write, or to access
memory that is marked as no-access or is only reserved but not yet committed.

■ Details In Details View, additional information about the memory region, such as the
path to its backing file, Heap ID (for Heap memory), Thread ID (for Stack memory), or
.NET AppDomain and Garbage Collection generations.

Note The VirtualProtect API can change the protection of any page to something different from
that set by the original memory allocation. This means that there can potentially be pages of
memory private to the process in a shareable memory region, for instance, because the region
was created as a pagefile-backed section, but then the application or some other software
changed the protection to copy-on-write and modified the pages.

Timeline and Snapshots
VMMap retains a history of snapshots of the target process’ memory allocation state. You
can load any of these snapshots into the VMMap main view and compare any two snapshots
to see what changed.

When tracing an instrumented process, VMMap captures snapshots automatically. You can
set the automatic capture interval to 1, 2, 5, or 10 seconds from the Options | Trace Snapshot
Interval submenu. You can pause and resume automatic snapshots by pressing Ctrl+Space,
and manually capture a new snapshot at any time by pressing F5.

When you analyze a running process instead of launching an instrumented one, VMMap
does not automatically capture snapshots. You must manually initiate each snapshot by
pressing F5.

 Chapter 7 Process and Diagnostic Utilities 219

Click the Timeline button on the VMMap main view to display the Timeline dialog box
(shown in Figure 7-4), which renders a graphical representation of the history of allocations
in the process’ working set. The Timeline lets you load a previous snapshot into the VMMap
main view and compare any two snapshots. The graph’s horizontal axis represents the num-
ber of seconds since the initial snapshot, and its vertical access to the process’ working set.
The colors in the graph correspond to the colors used to represent memory types in the
VMMap main window.

FIGURE 7-4 VMMap Timeline dialog box.

When automatic capture is enabled for an instrumented trace, the Timeline dialog box
 automatically updates its content. You can click the Pause button to suspend automatic
 snapshot capture; click it again to resume automatic captures. When viewing a process
 without instrumented tracing, the Timeline dialog box must be closed and reopened to
 update its content.

Click on any point within the timeline to load the corresponding snapshot into the VMMap
main view. To compare any two snapshots, click on a point near one of the snapshots and
then drag the mouse to the other point. While you have the mouse button down, the time-
line displays vertical lines indicating when snapshots were captured and shades the area
between the two selected points, as shown in Figure 7-5. To increase the granularity of the
timeline to make it easier to select snapshots, click the plus (+) and minus (–) zoom buttons
and move the horizontal scroll.

FIGURE 7-5 VMMap Timeline dialog box while dragging between two snapshots.

220 Part II Usage Guide

When you compare two snapshots, the VMMap main view graphs and tables show the
 differences between the two snapshots. All displayed numbers show the positive or nega-
tive changes since the previous snapshot. Address ranges in Details View that are in the new
snapshot but not in the previous one are highlighted in green; address ranges that were only
in the previous screen shot are highlighted in red. You might need to expand sub-allocations
to view these. Rows in Details View that retain their normal color indicate a change in the
amount of assigned working set. To view changes only for a specific allocation type, select
that type in Summary View.

If you choose Empty Working Set from the View menu, VMMap first releases all physical
memory assigned to the process and then captures a new snapshot. This feature is useful for
measuring the memory cost of an application feature: empty the working set, exercise the
feature, and then refresh the display to look at how much physical memory the application
referenced.

To switch from comparison view to single-snapshot view, open the Timeline dialog box and
click on any snapshot.

Viewing Text Within Memory Regions
In some cases, the purpose of a memory region can be revealed by the string data stored
within it. To view ASCII or Unicode strings of three or more characters in length, select a
 region in Details View and then choose View | Strings. VMMap displays a dialog box show-
ing the virtual address range and the strings found within it, as shown in Figure 7-6. If the
 selected region has sub-blocks, the entire region is searched.

String data is not captured as part of a snapshot. The feature works only with a live process,
and not with a saved VMMap (.mmp) file loaded from disk. Further, the strings are read
 directly from process memory when you invoke the Strings feature. That memory might have
changed since the last snapshot was captured.

Note In computer programming, the term “string” refers to a data structure consisting of a
 sequence of characters, usually representing human-readable text.

 Chapter 7 Process and Diagnostic Utilities 221

FIGURE 7-6 The VMMap Strings dialog box.

Finding and Copying Text
To search for specific text within Details View, press Ctrl+F. The Find feature selects the next
visible row in Details View that contains the text you specify in any column. Note that it will
not search for text in unexpanded sub-blocks. To repeat the previous search, press F3.

VMMap offers two ways to copy text from the VMMap display to the clipboard:

■ Ctrl+A copies all text from the VMMap display, including the process name and ID, and
all text in Summary View and Details View, retaining the sort order. All sub-allocation
data is copied even if it is not expanded in the view. If a specific allocation type is
 selected in Summary View, only that allocation type will be copied from Details View.

■ Ctrl+C copies all text from the Summary View table if Summary View has focus. If
Details View has focus, Ctrl+C copies the address field from the selected row, which
can then be pasted into a debugger.

Viewing Allocations from Instrumented Processes
When VMMap starts an instrumented process, it intercepts the program’s calls to virtual
memory APIs and captures information about the calls. The captured information includes
the following:

■ The function name, which indicates the type of allocation. For example, VirtualAlloc
and VirtualAllocEx allocate private memory; RtlAllocateHeap allocates heap memory.

■ The operation, such as Reserve, Commit, Protect (change protection), and Free.

222 Part II Usage Guide

■ The memory protection type, such as Execute/Read and Read/Write.

■ The requested size, in bytes.

■ The virtual memory address at which the allocated block was created.

■ The call stack at the point when the API was invoked.

The call stack identifies the code path within the program that resulted in the allocation
 request. VMMap assigns a Call Site ID number to each unique call stack that is captured. The
first call stack is assigned ID 1, the second unique stack is assigned ID 2, and so forth. If the
same code path is executed multiple times, each instance will have the same call stack, and
the data from those allocations are grouped together under a single Call Site ID.

Note Symbols must be properly configured to obtain useful information from instrumented
processes. See “Call Stacks and Symbols” in Chapter 2 for information on configuring symbols.

Refresh the VMMap main view, and then click the Trace button. The Trace dialog box (shown
in Figure 7-7) lists all captured memory allocations grouped by Call Site ID. The Function
 column identifies the API that was called; the Calls column indicates how many times that
code path was invoked; the Bytes column lists the total amount of memory allocated through
that site. The values in the Operation and Protection columns are the values that were passed
in the first time the call site was invoked.

FIGURE 7-7 VMMap Trace dialog box.

Click the plus sign to expand the call site and show the virtual memory addresses at which
the requested memory was provided. The Bytes column shows the size of each allocation.
Note that when memory is freed, a subsequent allocation request through the same call

 Chapter 7 Process and Diagnostic Utilities 223

site might be satisfied at the same address. When this happens, VMMap does not display a
 separate entry. The Bytes column reports the size only of the first allocation granted at that
address. However, the sum shown for the Call Site is accurate.

By default, the Trace dialog box shows only those operations for which “Bytes” is more than
0. Select the “Show all memory operations” check box to display operations that report no
bytes. These include operations such as RtlCreateHeap, RtlFreeHeap, and VirtualFree (when
releasing an entire allocation block).

In Figure 7-7, the call site assigned the ID 1136 was invoked eight times to allocate 26 MB
of private memory. That node is expanded and shows the virtual memory addresses and
the requested sizes. Because all of these requests went through a single code path, you can
 select any of them or the top node and click the Stack button to see that site’s call stack,
shown in Figure 7-8. If full symbolic information and source files are available, select a frame
in the call stack and click the Source button to view the source file in the VMMap source file
viewer with the indicated line of source selected.

FIGURE 7-8 Call stack for a call site accessed from the Trace dialog box.

Click the Call Tree button in the VMMap main window for another way to visualize where
your program allocates memory. The Call Tree dialog box (shown in Figure 7-9) identifies
the commonalities and divergences in all the collected call stacks and renders them as an
 expandable tree. The topmost nodes represent the outermost functions in the call stacks.
Their child nodes represent functions that they called, and their child nodes represent the
various functions they called on the way to a memory operation. Across each row, the Count
and % Count columns indicate how many times in the collected set of call stacks that code
path was traversed; the Bytes and % Bytes columns indicate how much memory was allo-
cated through that path. You can use this to quickly drill down to the places where the most
allocations were invoked or the most memory was allocated.

224 Part II Usage Guide

FIGURE 7-9 The VMMap Call Tree dialog box.

Finally, you can view the call stack for a specific heap allocation by selecting it in Details View
and clicking the Heap Allocations button to display the Heap Allocations dialog box. (See
Figure 7-10). Select the item in the dialog box, and click Stack to display the call stack that
resulted in that allocation.

FIGURE 7-10 The Heap Allocations dialog box.

Address Space Fragmentation
Poor or unlucky memory management can result in a situation where there is plenty of free
memory, but no individual free blocks large enough to satisfy a particular request. For
32-bit processes, the Address Space Fragmentation dialog box (shown in Figure 7-11) shows
the layout of the different allocation types within the process’ address space. This can help
identify whether fragmentation is a problem and locate the problematic allocations.

 Chapter 7 Process and Diagnostic Utilities 225

FIGURE 7-11 Address Space Fragmentation (32-bit processes only).

When analyzing a 32-bit process, choose View | Fragmentation View to display Address
Space Fragmentation. The graph indicates allocation types using the same colors as the
VMMap main view, with lower virtual addresses at the top of the window. The addresses
at the upper and lower left of the graph indicate the address range currently shown. If the
entire address range cannot fit in the window, you move the vertical scroll bar to view other
parts of the address range. The slider to the left of the graph changes the granularity of the
graph. Moving the slider down increases the size of the blocks representing memory alloca-
tions in the graph. If you click on a region in the graph, the dialog box shows its address,
size, and allocation type just below the graph, and it selects the corresponding allocation in
Details View of the VMMap main view.

Saving and Loading Snapshot Results
The Save and Save As menu items in the File menu include several file formats to save
 output from a VMMap snapshot. The Save As Type drop-down list in the file-save dialog box
 includes the following:

■ .MMP This is the native VMMap file format. Use this format if you want to load the
output back into the VMMap display on the same computer or a different computer.
This format saves data from all snapshots, enabling you to view differences from the
Timeline dialog box when you load the file back into VMMap.

■ .CSV This option saves data from the most recent snapshot as comma-separated
values, which is ideal for generating output that you can easily import into Microsoft
Excel. If a specific allocation type is selected in Summary View, details are saved only
for that memory type.

226 Part II Usage Guide

■ .TXT This option saves data as formatted text, which is ideal for sharing the text
 results in a readable form using a monospace font. Like the .CSV format, if a specific
allocation type is selected, details are saved only for that type.

To load a saved .MMP file into VMMap, press Ctrl+O, or pass the file name to VMMap on the
command line with the –o option. Also, when a user runs VMMap, VMMap associates the
.mmp file extension with the path to that instance of VMMap and the –o option so that users
can open a saved .mmp file by double-clicking it in Windows Explorer.

VMMap Command-Line Options
VMMap supports the following command-line options:

vmmap [-64] [-p {PID | processname} [outputfile]] [-o inputfile]

–64
On x64 editions of Windows, VMMap will run a 32-bit version of itself when a 32-bit process
is selected, and a 64-bit version when a 64-bit process is selected. With the –64 option, the
64-bit version of VMMap is used to analyze all processes. For 32-bit processes, the 32-bit
version of VMMap more accurately categorizes allocation types. The only advantages of the
64-bit version are that it can identify the thread ID associated with 64-bit stacks and more
accurately report System memory statistics.

Note The –64 option applies only to opening running processes; it does not apply when
 instrumenting and tracing processes launched from VMMap.

–p {PID | processname} [outputfile]
Use this format to analyze the process specified by the PID or process name. If you specify
a name, VMMap will match it against the first process that has a name that begins with the
specified text.

If you specify an output file, VMMap will scan the target process, output results to the named
file, and then terminate. If you don’t include an extension, VMMap will add .MMP and save in
its native format. Add a .CSV extension to the output file name to save as comma-separated
values. Any other file extension will save the output using the .TXT format.

–o inputfile
When you use this command, VMMaps open the specified .MMP input file on startup.

 Chapter 7 Process and Diagnostic Utilities 227

Restoring VMMap defaults
VMMap stores all its configuration settings in the registry in “HKEY_CURRENT_USER\
Software\Sysinternals\VMMap.” The simplest way to restore all VMMap configuration settings
to their defaults is to close VMMap, delete the registry key, and then start VMMap again.

ProcDump
ProcDump lets you monitor a process and create a user-mode dump file when that process
meets criteria that you specify, such as exceeding CPU or memory thresholds, hitting an
exception or exiting unexpectedly, UI becoming nonresponsive, or exceeding performance
counter thresholds. ProcDump can capture a dump for a single instance of criteria being met
or continue capturing dumps each time the problem recurs. ProcDump can also generate an
immediate dump or a periodic series of dumps.

A process dump file is a detailed snapshot of a process’ internal state, and it can be used
by an administrator or a developer to help determine the cause of an application problem.
Dump files are analyzed with a debugger such as WinDbg, which ships with the Debugging
Tools for Windows.

Because ProcDump has little impact on a system while monitoring a process, it is ideal for
capturing data for problems that are difficult to isolate and reproduce, even if it takes weeks
for a problem to repeat. ProcDump does not terminate the process being monitored, so you
can acquire dump files from processes in production with little, if any, disruption in service.

ProcDump also introduces a new “Miniplus” dump type that is ideal for use with very
large processes such as Microsoft Exchange Server and SQL Server. A Miniplus dump is the
 equivalent of a full memory dump but with large allocations (for example, cache) omitted,
and it has been shown to reduce dump sizes of such processes by 50 to 90 percent without
reducing the ability to do effective dump analysis. (See Figure 7-12.)

FIGURE 7-12 ProcDump launching a process and capturing a dump when it exceeds a CPU limit for three
seconds.

228 Part II Usage Guide

Command-Line Syntax
The following code block shows the full command-line syntax for ProcDump, and Table 7-1
gives brief descriptions of each of the options. They are discussed in greater detail in the
 following sections.

procdump [-c percent [-u]] [-s n] [-n count] [-m commit] [-h] [-e [1] [-b]] [-t]
[-p counter threshold]
[-ma | -mp] [-r] [-o] [-64]
{ {processname | PID} [dumpfile] | -x {imagefile} {dumpfile} [arguments] }

TABLE 7-1 ProcDump Command-Line Options

Option Description
Target Process and Dump File
processname Name of the target process. It must be a unique instance and already running.

PID Process ID of the target process.

dumpfile Name of dump file. This is optional if the process is already running; it’s required
if using –x.

–x Starts the target process, using imagefile and command-line arguments.

imagefile Name of executable file to launch.

arguments Optional command-line arguments to pass to new process.

Dump Criteria
–c percent CPU usage above which to capture a dump.

–u Used with –c to scale threshold against number of CPUs present.

–s n Used with –c, sets duration of high CPU usage to trigger a dump.
Used with –p, sets duration of a performance counter threshold exceeded to
 trigger a dump.
Used with –n and no other dump criteria, dumps process every n seconds.

–n count Used with –c, –s, or –p, specifies number of dumps to capture.

–m commit Specifies commit charge limit in MB at which to capture a dump.

–h Captures a dump when a hung window is detected.

–e Captures a dump when an unhandled exception occurs. If followed with 1, it also
captures a dump on a first-chance exception.

–b Used with –e, treats breakpoints as exceptions. Otherwise, it ignores them.

–t Captures a dump when the process terminates.

–p counter
threshold

Captures a dump when the named performance counter exceeds the threshold.

Dump File Options
–ma Include all process memory in the dump.

–mp “Miniplus”; creates the equivalent of a full dump but with large allocations
 omitted.

 Chapter 7 Process and Diagnostic Utilities 229

Option Description
–r Reflects (clones) the process for the dump to minimize the time the process is

suspended. (This option requires Windows 7 or Windows Server 2008 R2 or
higher.)

–o Overwrites an existing dump file.

–64 Creates a 64-bit dump of the target process. (for x64 editions of Windows only).

Specifying Which Process to Monitor
You can launch the target process from the ProcDump command line or monitor an
 already-running process. To start the process with ProcDump, use the –x option, followed
by the name of the executable to start, the name of the dump file to write to, and then any
command-line arguments to pass to the program. Note that you must specify the actual
 executable to run—ProcDump will not launch an application via a file association. If you use
this option, the –x and what follows it must be the last items on the ProcDump command
line.

To monitor an already-running program, specify its image name or process ID (PID) on
the command line. If you specify a name and there are multiple processes with that name,
ProcDump will not pick one—you must specify a PID instead.

Administrative rights are not required to monitor a process running in the same security
 context as ProcDump. Administrative rights, including the Debug privilege, are required
to monitor an application running as a different user or at a higher integrity level than
ProcDump’s.

Specifying the Dump File Path
The dumpfile command-line parameter specifies the path and base file name for the dump
file. You are required to supply a dumpfile parameter when starting the target process with
–x. The dumpfile parameter is optional when monitoring an already-running process; if you
omit it, ProcDump creates the dump file in the current folder and uses the target process
name as the base file name.

You can specify dumpfile as an absolute or relative path. If dumpfile names an existing folder,
ProcDump creates the dump file in that folder, using the process name as the base name.
Otherwise, the last part of the dumpfile parameter becomes the base file name for the dump
file. For example, if you specify C:\dumps\sample as the dumpfile parameter and C:\dumps\
sample is an existing folder, ProcDump creates the dump file in that folder with the process
name as the dump file’s base name. If C:\dumps\sample does not exist, ProcDump creates
the dump file in C:\dumps with “sample” as the base file name. The target folder must exist;
otherwise, ProcDump reports an error and exits immediately.

230 Part II Usage Guide

To avoid an accidental overwrite of other dump files, ProcDump creates unique dump file
names by incorporating the current date and time into the file name. The format for the
file name is basename_yyMMdd_HHmmss.dmp. For example, the following command line
 creates an immediate dump file for Testapp.exe:

procdump testapp

If that dump were created at exactly 11:45:56 PM on December 28, 2010 its file name would
be Testapp_101228_234556.dmp. This file naming ensures that an alphabetic sort of dump
files associated with a particular executable will also be sorted chronologically (for files
 created from the years 2000 through 2099). Note that the format of the file name is fixed
and is independent of regional settings. ProcDump also ensures that the dump file has a file
extension of .dmp.

The one case where the date and time is not incorporated into the dump file name is if
you capture an immediate dump of a running process and specify the dump file name. For
 example, the following command creates a dump file for Testapp.exe in c:\dumps\dumpfile.
dmp (assuming that c:\dumps\dumpfile is not an existing folder):

procdump testapp c:\dumps\dumpfile

If c:\dumps\dumpfile.dmp already exists, ProcDump will not overwrite it unless you add the
–o option to the command line.

Dumps that are created later as a result of satisfied dump criteria always have the date and
time incorporated into the dump file name or names.

Specifying Criteria for a Dump
As mentioned, to capture an immediate dump of a running process, just specify it by name
or PID with no other dump criteria, and an optional dump file name.

ProcDump can monitor a target process’ CPU usage and create a dump file when it exceeds
a threshold for a fixed period of time. In this example, if Testapp’s CPU usage continually
 exceeds 90 percent for five seconds, ProcDump generates a dump file and then exits:

procdump -c 90 -s 5 testapp

If you omit the –s option, the default time period is 10 seconds. To capture multiple samples,
in case the first was to the result of some transient condition not related to the problem
you’re tracking (that is, a false positive), use the –n option to specify how many dumps to
capture before exiting. In the following example, ProcDump will continue monitoring Testapp
and create a new dump file every time it sustains 95 percent CPU for two seconds, until it has
captured 10 dumps:

procdump -c 95 -s 2 -n 10 testapp

 Chapter 7 Process and Diagnostic Utilities 231

On a multi-core system, a single thread cannot consume 100 percent of all the processors’
time. On a dual core, the maximum one thread can consume is 50 percent; on a quad core,
the maximum is 25 percent. To scale the –c threshold against the number of CPUs on the
system, add –u to the command line. On a dual-core system, procdump –c 90 –u testapp
creates a dump when Testapp exceeds 45 percent CPU for 10 seconds—the equivalent of
90 percent of one of the CPUs. On a 16-core system, the trigger threshold is 5.625 percent.
Because –c requires an integer value, the –u option increases the granularity with which you
can specify a threshold on multi-core systems. See “The Compound Case of the Outlook
Hangs” in Chapter 17, “Hangs and Sluggish Performance”, for an example of its use.

Note A user-mode thread running a tight CPU-bound loop can, and often will, be scheduled to
run on more than one CPU, unless its processor affinity has been set to tie it to one CPU. The –u
option scales the threshold only against the number of cores; it doesn’t mean, “Create a dump if
the process exceeds the threshold on a single CPU.” That wouldn’t be possible anyway because
Windows does not provide the tracking information to support such a query.

To capture a periodic series of dumps, use the –s and –n options together without any other
dump criteria. The –s option specifies the number of seconds between the end of the previ-
ous capture and the beginning of the next capture. The –n option specifies how many dumps
to capture. The following example captures a dump of Testapp immediately, another dump
five seconds later, and again five seconds after that, for a total of three dumps:

procdump -s 5 -n 3 testapp

To capture a dump when the process hits an unhandled exception, use the –e option. Use
–e 1 to capture a dump on any exception, including a first-chance exception. Use –t to
 capture a dump when the process terminates. The –t option is useful to identify the cause
of an unexpected process exit that is not caused by an unhandled exception. If you add –b,
ProcDump treats debug breakpoints as exceptions; otherwise, it ignores them. For example, a
program might contain code like the following:

if (IsDebuggerPresent())
 DebugBreak();

ProcDump attaches to the target program as a debugger, the IsDebuggerPresent API
will return TRUE, and DebugBreak will be called. ProcDump will capture a dump when
DebugBreak is called only if you specify –b.

ProcDump’s –h option monitors the target process for a hung (nonresponsive) top-level
window and captures a dump when detected. ProcDump uses the same definition of “not
responding” that Windows and Task Manager use: if a window belonging to the process fails
to respond to window messages for five seconds, it’s considered hung. ProcDump must be
running on the same desktop as the target process to use this option.

232 Part II Usage Guide

You can use a process’ commit charge threshold to trigger a dump. Specify the memory
threshold in MB with the –m option. The following example captures a dump when Testapp’s
commit charge exceeds 200 MB:

procdump -m 200 testapp

ProcDump checks the memory counters of the process once per second, and it captures a
dump only if the amount of process memory charged against the system commit limit (the
sum of the paging file sizes plus most of RAM) exceeds the threshold at the moment of the
check. If the commit charge spikes only briefly, ProcDump might not detect it.

Finally, you can use any performance counter to trigger a dump. Specify the –p option,
 followed by the name of the counter and the threshold to exceed. Put the counter name in
double quotes if it contains spaces. The following example captures a dump of Taskmgr.exe if
the number of processes on the system exceeds 750 for three seconds or more:

procdump -p "\System\Processes" 750 -s 3 taskmgr.exe

One way to obtain valid counter names is to add them in Performance Monitor and then
view the names on the Data tab of the Properties dialog box. However, Perfmon’s default
notation for distinguishing multiple instances of a process with a hash sign and a sequence
number (for example, cmd#2) is neither predictable nor stable—the name associated with a
specific process can change as other instances start or exit. Therefore, ProcDump does not
support this notation, but instead supports the process_PID notation described in Microsoft
Knowledge Base article 281884. For example, if you have two instances of Testapp with PIDs
1135 and 924, you can monitor attributes of the former by specifying it as testapp_1135.
The following example captures a dump of that process if its handle count exceeds 200 for
three seconds:

procdump -p "\Process(testapp_1135)\Handle Count" 200 -s 3 1135

The process_PID notation is not mandatory. You can specify just the process name, but
 results will be unpredictable if multiple instances of that process are running.

Options can be combined. The following command captures a dump if Testapp exceeds
the CPU or the commit charge threshold, has a hung window or unhandled exception, or
 otherwise exits:

procdump -m 200 -c 90 -s 3 -u -h -t -e testapp

To stop monitoring at any time, just press Ctrl+C or Ctrl+Break.

Dump File Options
Different debug dump options are available depending on the version of dbghelp.dll
that ProcDump uses. To get the latest and greatest features, install the latest version of

 Chapter 7 Process and Diagnostic Utilities 233

Debugging Tools for Windows, copy ProcDump.exe into the folder containing dbghelp.dll,
and run it from there.

At a minimum, dumps created by ProcDump will contain basic information about the process
and all its threads, including stack traces for all threads; data sections from all loaded mod-
ules, including global variables; and module signature information so that the corresponding
symbol files can be downloaded from a symbol server, even if the dump is analyzed on a
completely different platform.

Note With Dbghelp.dll version 6.1 or higher, ProcDump adds thread CPU usage data so that
the debugger’s !runaway command can show the amount of time consumed by each thread.
Version 6.1 is included with Windows 7 and Windows Server 2008 R2.

To include all the process’ accessible memory in the dump, add the –ma option to the
ProcDump command line. With newer versions of dbghelp.dll, this option also captures
memory region information, including details about the allocations and protection
s ettings. Note that the –ma option makes the dump file much larger and can be very time-
consuming, potentially taking several minutes to write the memory of a large application to
disk. (The Miniplus dump option, described in the next section, is as useful as a full dump but
is up to 90 percent smaller.)

Ordinarily, ProcDump needs to suspend the target process while the dump is being captured.
Windows 7 and Windows Server 2008 R2 introduced a process reflection feature, which allows
the process to be “cloned” so that the process can continue to run while a memory snapshot
is dumped. You can take advantage of this feature by using the –r option. ProcDump creates
three files: dumpfile.dmp, which captures process and thread information; dumpfile-reflected.
dmp, which captures the process’ memory; and dumpfile.ini, which ties them together and
is the file you should open with the debugger. Windbg treats *.ini as a valid dump file type,
although the file-open dialog box doesn’t indicate so.

On x64 editions of Windows, ProcDump creates a 32-bit dump file when the target process
is a 32-bit process. To override this default and create a 64-bit dump file, add –64 to the
ProcDump command line.

Miniplus Dumps
The Miniplus (–mp) dump type was specifically designed to tackle the growing problem of
capturing full dumps of large applications such as the Microsoft Exchange Information Store
(store.exe) on large servers. For example, capturing a full dump of Exchange 2010 can take
30 minutes and result in a dump file of 48 GB. Compressing that file down to 8 GB can take
another 60 minutes, and uploading the compressed file to Microsoft support can take an-
other six hours. Capturing a Miniplus dump of the same Exchange server takes one minute,

234 Part II Usage Guide

and results in a 1.5-GB dump file that takes two minutes to compress and about 15 minutes
to upload.

Although originally designed for Exchange, the algorithm is generic and works as well on
Microsoft SQL Server or any other native application that allocates large memory regions.
This is because the algorithm uses heuristics to determine what data is to be included.

A Miniplus dump starts by creating a minidump and adds (“plus”) memory deemed
 important. The first step is to consider only pages marked as read/write. This excludes the
majority of the image pages but still retains the image pages associated with global variables.
The next step is to find the largest read/write memory area larger than 512 MB. If found, the
memory area is provisionally excluded. A memory area is the collection of same-sized mem-
ory allocations. For example, if there are twenty 64-MB regions (1280 MB total), and five
128-MB regions (640 MB total), the 64-MB regions will be excluded because they use more
memory than the 128-MB regions even though the size of the allocations is not the largest.
These excluded regions have a second chance to be included. They are divided into 4-MB
chunks, and if referenced by any thread stack, the referenced 4-MB chunk is included.

Even if the process isn’t overly large, Miniplus dumps are still considerably smaller than full
dumps because they do not contain the process’ executable image. For example, a full dump
of Notepad is approximately 50 MB, but a Notepad Miniplus dump is only about 2 MB. And
a full dump of Microsoft Word is typically around 280 MB, but a Miniplus dump of the same
process is only about 36 MB. When the process isn’t overly large, you can get an approximate
size of the dump by viewing the Total/Private value in VMMap.

Note When debugging Miniplus dumps, the debugger needs to substitute in the omitted
 image pages from a symbol store (.sympath) or executable store (.exepath). If you are capturing
Miniplus dumps of your application, you need to maintain both a symbol and executable store
that contains each build of your application.

An additional benefit of the Miniplus implementation is its ability to recover from memory
read failures. A memory read failure is the reason why various dump utilities sometimes fail
to capture a full dump. If you run across this issue when capturing a full dump, try using
Miniplus instead to activate this recovery logic.

The Miniplus dump option can be combined with other ProcDump options as the following
examples demonstrate. To capture a single Miniplus dump of store.exe, use the following
command line:

procdump -mp store.exe

Use the following command to capture a single Miniplus dump when store.exe crashes:

procdump -mp -e store.exe

 Chapter 7 Process and Diagnostic Utilities 235

This command captures three Miniplus dumps of store.exe 15 seconds apart:

procdump -mp -n 3 -s 15 store.exe

To capture three Miniplus dumps when the RPC Averaged Latency performance counter is
over 250 ms for 15 seconds, use this command:

procdump -mp -n 3 -s 15 -p "\MSExchangeIS\RPC Averaged Latency" 250 store.exe

Note I don’t recommend you capture a Miniplus dump of a managed (.NET) application, but
that you capture a full dump (–ma) instead. The Miniplus algorithm tries to capture a full dump
in this situation, but because it builds on top of a minidump, the resulting dump isn’t as complete
as a full dump. A full dump is needed because intact GC data structures and access to the NGEN
image (which won’t be on a symbol or executable store) are required by the debugger.

Running ProcDump Noninteractively
ProcDump does not need to be run in an interactive desktop session. Some reasons that
you might want to run it noninteractively are that you have a long-running target process
and don’t want to remain logged in while monitoring it, or you’re tracking a problem that
 happens when no one is logged on or during a logoff.

The following example shows how to use PsExec to run ProcDump as System in the same
noninteractive session and desktop in which services running as System run. The example
runs it within a Cmd.exe instance so that its console outputs can be redirected to files.
Note the use of the escape (̂) character with the output redirection character (>) so that it
isn’t treated as an output redirector on the PsExec command line but becomes part of the
Cmd.exe command line. The following example should be typed as a single command line.
(See Chapter 6, “PsTools,” for more information about PsExec, and see Chapter 2 for more
 information about noninteractive sessions and desktops.)

psexec -s -d cmd.exe /c procdump.exe -e -t testapp c:\temp\testapp.dmp ^>
 c:\temp\procdump.out 2^> c:\temp\procdump.err

If the target application crashes during a logoff, this type of command will work better than
if ProcDump were running in the same session, because ProcDump could end up exiting
earlier than the target. However, if the logoff terminates the target application, ProcDump
will not be able to capture a dump. ProcDump acts as a debugger for its target process, and
logoff detaches any debuggers attached to processes that it terminates.

Note also that ProcDump cannot monitor for hung application windows when the target
process is running on a different desktop from ProcDump.

236 Part II Usage Guide

Capturing All Application Crashes with ProcDump
You can use ProcDump to create a crash dump whenever any application crashes by
 configuring it as the postmortem debugger.1 In the registry, go to HKLM\Software\Microsoft\
Windows NT\CurrentVersion\AeDebug. Set the “Debugger” REG_SZ value to the ProcDump
command line to execute, using %ld as the placeholder for the PID of the crashing process.
For example, the following command will create a full memory dump in C:\Dumps whenever
any application crashes with the process name and time stamp in the file name:

"C:\Program Files\Sysinternals\procdump.exe" /accepteula -ma %ld C:\Dumps

It is important to specify the dump file path. Otherwise, ProcDump tries to create the dump
file in the current directory, which is %SystemRoot%\System32 when started in this manner.
Because the configured debugger is launched in the same security context as the crashing
process, ProcDump cannot create the dump file there unless the crashing process had ad-
ministrative rights. Also note that the target folder must exist before ProcDump launches,
and it must be writable.

Viewing the Dump in the Debugger
For all dumps triggered by a condition, ProcDump records a comment in the dump that
describes why the dump was captured. The comment can be seen in the initial text that
WinDbg presents when you open the dump file. The first line of the comment shows the
ProcDump command line that was used to create the dump. The second line of the comment
describes what triggered the dump, along with other pertinent data if available. For example,
if the memory threshold had been passed, the comment shows the memory commit limit
and the process’ commit usage:

*** Process exceeded 100 MB commit usage: 107 MB

If the CPU threshold has been passed, the comment shows the CPU threshold, the duration,
and the thread identifier (TID) that consumed the largest amount of CPU cycles in the period:

*** Process exceeded 50% CPU for 3 seconds. Thread consuming CPU: 4484 (0x1184)

If the performance counter threshold had been exceeded, the comment reports the
 performance counter, threshold, duration, and TID that consumed the largest amount of CPU
cycles in the period. (The following command should be typed on a single command line,
with a space separating the period and “Thread”.)

*** Counter "\Process(notepad_1376)\% Processor Time" exceeded 5 for 3 seconds.
 Thread consuming CPU: 1368 (0x558)

1 Windows Error Reporting can capture crash dumps, but ProcDump can be easier to configure.

 Chapter 7 Process and Diagnostic Utilities 237

If a hung window triggered the dump, the comment includes the window handle in
 hexadecimal. If the dump was captured immediately, was timed, or was triggered by an
 exception or a normal termination, the comment reports only the cause with no additional
data.

To avoid you having to change the thread context to the busy thread (the ~~[TID]s
 command) when opening a dump that has been created because of a CPU or performance
counter trigger, ProcDump inserts a fake exception to do it for you. This is very useful when
you capture multiple dump files because you can open each dump file knowing that the
default thread context is the thread of interest. The insertion of the fake exception into the
dump results in the debugger reporting a false positive with text like the following:

This dump file has an exception of interest stored in it.
The stored exception information can be accessed via .ecxr.
(104c.14c0): Wake debugger - code 80000007 (first/second chance not available)
eax=000cfe00 ebx=00188768 ecx=00000001 edx=00000000 esi=00000000 edi=00000000
eip=01001dc7 esp=00feff70 ebp=00feff88 iopl=0 nv up ei pl zr na pe nc
cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000246

Now that you know about that, you can safely ignore it.

DebugView
DebugView is an application that lets you monitor debug output generated from the local
computer or from remote computers. Unlike most debuggers, DebugView can display
 user-mode debug output from all processes within a session, as well as kernel-mode debug
output. It offers flexible logging and display options, and it works on all x86 and x64 versions
of Windows XP and newer.

What Is Debug Output?
Windows provides APIs that programs can call to send text that can be captured and
 displayed by a debugger. If no debugger is active, the APIs do nothing. These interfaces
make it easy for programs to produce diagnostic output that can be consumed by any
 standard debugger and that is discarded if no debugger is connected.

Debug output can be produced both by user-mode programs and by kernel-mode drivers.
For user-mode programs, Windows provides the OutputDebugString Win32 API. 16-bit appli-
cations running on x86 editions of Windows can produce debug output by calling the Win16
OutputDebugString API, which is forwarded to the Win32 API. For managed applications, the
Microsoft .NET Framework provides the System.Diagnostics.Debug and Trace classes with

238 Part II Usage Guide

static methods that internally call OutputDebugString. Those methods can also be called from
Windows PowerShell—for example:

[System.Diagnostics.Debug]::Print("Some debug output")

Kernel-mode drivers can produce diagnostic output by invoking the DbgPrint or DbgPrintEx
routines, or several related functions. Programmers can also use the KdPrint or KdPrintEx
macros, which produce debug output only in debug builds and do nothing in release builds.

Although Windows provides both an ANSI and a Unicode implementation of the
OutputDebugString API, internally all debug output is processed as ANSI. The Unicode
 implementation of OutputDebugString converts the debug text based on the current system
locale and passes that to the ANSI implementation. As a result, some Unicode characters
might not be displayed correctly.

The DebugView Display
Simply execute the DebugView program file (Dbgview.exe). It will immediately start capturing
and displaying Win32 debug output from all desktops in the current terminal server session.

Note All interactive desktop sessions are internally implemented as terminal server sessions.

As you can see in Figure 7-13, the first column is a DebugView-assigned, zero-based
 sequence number. Gaps in the sequence numbers might appear when filter rules exclude
lines of text or if DebugView’s internal buffers are overflowed during extremely heavy
 activity. The sequence numbers are reset whenever the display is cleared. (DebugView
 filtering is described later in this chapter.)

FIGURE 7-13 DebugView.

 Chapter 7 Process and Diagnostic Utilities 239

The second column displays the time at which the item was captured, either in elapsed time
or clock time. By default, DebugView shows the number of seconds since the first debug
record in the display was captured, with the first item always being 0.00. This can be helpful
when debugging timing-related problems. This timer is reset when the display is cleared.
Choose Clock Time from the Options menu if you prefer that the local clock time be dis-
played instead. Additionally, choose Show Milliseconds from the Options menu if you want
the time stamp to show that level of granularity. You can also configure the time display with
command-line options: /o to display clock time, /om to display clock time with milliseconds,
and /on to show elapsed time.

Tip Changing the Show Milliseconds setting doesn’t change the display of existing entries.
You can refresh these entries by pressing Ctrl+T twice to toggle Clock Time off and back on. All
 entries will then reflect the new setting for Show Milliseconds.

The debug output is in the Debug Print column. For user-mode debug output, the process
ID (PID) of the process that generated the output appears in square brackets, followed by the
output itself. If you don’t want the PID in the display, disable the Win32 PIDs option in the
Options menu.

You can select one or more rows of debug output and copy them to the Windows clipboard
by pressing Ctrl+C. DebugView supports standard Windows methods of selecting multiple
rows such as holding down Shift while pressing the Up or Down arrow keys to select
 consecutive rows, or holding down Ctrl while clicking nonconsecutive rows.

By default, the Force Carriage Returns option is enabled, which displays every string passed
to a debug output function on a separate line, whether or not that text is terminated with a
carriage return. If you disable that option in the Options menu, DebugView buffers output
text in memory and adds it to the display only when a carriage return is encountered or the
memory buffer is filled (approximately 4192 characters). This allows applications and drivers
to build output lines with multiple invocations of debug output functions. However, if output
is being generated from more than one process, the output can be jumbled together, and
the PID that appears on the line will be that of the process that output a carriage return or
filled the buffer.

If the text of any column is too wide for that column, move the mouse over it and the full
text will appear in a tooltip.

Debug output is added to the end of the list as it is produced. DebugView’s Autoscroll
 feature (which is off by default) scrolls the display as new debug output is captured so that
the most recent entry is visible. To toggle Autoscroll on and off, press Ctrl+A or click the
Autoscroll icon in the toolbar.

240 Part II Usage Guide

You can annotate the output by choosing Append Comment from the Edit menu. The text
you enter in the Append Comment dialog box is added to the debug output display and to
the log file if logging is enabled. Note that filter rules apply to appended comments as well
as to debug output.

You can increase the display space for debug output by selecting Hide Toolbar on the
Options menu. You can also increase the number of visible rows of debug output by
 selecting a smaller font size. Choose Font from the Options menu to change the font.

To run DebugView in the background without taking up space in the taskbar, select Hide
When Minimized from the Options menu. When you subsequently minimize the DebugView
window, it will appear only as an icon in the notification area (also known as “the tray”). You
can then right-click on the icon to display the Capture pop-up menu, where you can choose
to enable or disable various Capture options. Double-click the icon to display the DebugView
window again. You can enable the Hide When Minimized option on startup by adding /t to
the DebugView command line.

Select Always On Top from the Options menu to keep DebugView as the topmost window on
the desktop when it’s not minimized.

Capturing User-Mode Debug Output
DebugView can capture debug output from multiple local sources: the current terminal
services session, the global terminal services session (“session 0”), and kernel mode. Each
of these can be selected from the Capture menu. All capturing can be toggled on or off by
choosing Capture Events, pressing Ctrl+E, or clicking the Capture toolbar icon. When Capture
Events is off, no debug output is captured; when it is on, debug output is captured from the
selected sources.

By default, DebugView captures only debug output from the current terminal services
 session, called “Capture Win32” on the Capture menu. A terminal services session can be
thought of as all user-mode activity associated with an interactive desktop logon. It includes
all processes running in the window stations and (Win32) Desktops of that session.

On Windows XP and on Windows Server 2003, an interactive session can be in session 0,
and it always is when Fast User Switching and Remote Desktop are not involved. Session 0 is
the session in which all services also execute and in which global objects are defined. When
DebugView is executing in session 0 and Capture Win32 is enabled, it will capture debug
output from services as well as the interactive user’s processes. Administrative rights are not
required to capture debug output from the current session, even that from services. (See
the “Sessions, Window Stations, Desktops, and Window Messages” section of Chapter 2 for
more information.)

 Chapter 7 Process and Diagnostic Utilities 241

With Fast User Switching or Remote Desktop, Windows XP and Windows Server 2003 users
often log in to sessions other than the global one. Also, beginning with Windows Vista,
 session 0 isolation ensures that users never log on to the session in which services run. When
run in a session other than session 0, DebugView adds the Capture Global Win32 option to
the Capture menu. When enabled, this option captures debug output from processes run-
ning in session 0. DebugView must run elevated on Windows Vista and newer to use this
 option. Administrative rights are not required to enable this option on Windows XP.

Capturing Kernel-Mode Debug Output
You can configure DebugView to capture kernel-mode debug output generated by device
drivers or by the Windows kernel by enabling the Capture Kernel option on the Capture
menu. Process IDs are not reported for kernel-mode output because such output is typically
not related to a process context. Kernel-mode capture requires administrative rights, and in
particular the Load Driver privilege.

Kernel-mode components can set the severity level of each debug message. On Windows
Vista and newer, kernel-mode debug output can be filtered based on severity level. If you
want to capture all kernel debug output, choose the Enable Verbose Kernel Output option on
the Capture menu. If this option is not enabled, DebugView captures only debug output at
the error severity level.

DebugView can be configured to pass kernel-mode debug output to a kernel-mode
 debugger or to swallow the output. You can toggle pass-through mode on the Capture
menu or with the Pass-Through toolbar icon. The pass-through mode allows you to see
kernel-mode debug output in the output buffers of a conventional kernel-mode debugger
while at the same time viewing it in DebugView.

Because it is an interactive program, DebugView cannot be started until after you log on.
Ordinarily, to view debug output generated prior to logon, you need to hook up a kernel
 debugger from a remote computer. DebugView’s Log Boot feature offers an alternative,
 capturing kernel-mode debug output during system startup, holding that output in memory,
and displaying it after you log in and start DebugView interactively. When you choose Log
Boot from the Capture menu, DebugView configures its kernel driver to load very early
in the next boot sequence. When it loads, it creates a 4-MB buffer and captures verbose
 kernel debug output in it until the buffer is full or DebugView connects to it. When you start
DebugView with administrative rights and Capture Kernel enabled, DebugView checks for
the existence of the memory buffer in kernel memory. If that is found, DebugView displays its
contents. Configuring boot logging requires administrative permissions and applies only to
the next boot.

If DebugView is capturing kernel debug output at the time of a bugcheck (also known as a
blue-screen crash), DebugView can recover the output it had captured to that point from

242 Part II Usage Guide

the crash dump file. This can be helpful if, for example, you are trying to diagnose a crash
 involving a kernel-mode driver you are developing. You can also instrument your driver to
produce debug output so that users who experience a crash using your driver can send you a
debug output file instead of an entire memory dump.

Choose Process Crash Dump from the File menu to select a crash dump file for DebugView
to analyze. DebugView will search the file for its debug output buffers. If it finds them,
DebugView will prompt you for the name of a log file in which to save the output. You can
load saved output files into DebugView for viewing. Note that the system must be config-
ured to create a kernel or full dump (not a minidump) for this feature to work. DebugView
saves all capture configuration settings on exit and restores them the next time it runs.
Note that if it had been running elevated and capturing kernel or global (session 0) debug
output, DebugView displays error messages and disables those options if it doesn’t have
 administrative rights the next time it runs under the same user account, because it will not be
able to capture output from those sources. You can avoid these error messages by starting
DebugView with the /kn option to disable kernel capture and /gn to disable global capture.

Searching, Filtering, and Highlighting Output
DebugView has several features that can help you focus on the debug output you are
 interested in. These capabilities include searching, filtering, highlighting, and limiting the
number of debug output lines saved in the display.

Clearing the Display
To clear the display of all captured debug text, press Ctrl+X or click the Clear icon in the
 toolbar. You can also clear the DebugView output from a debug output source: when
DebugView sees the special debug output string DBGVIEWCLEAR (all capitals) anywhere in
an input line, DebugView clears the output. Clearing the output also resets the sequence
number and elapsed timer to 0.

Searching
If you want to search for a line containing text of interest, press Ctrl+F to display the Find
dialog box. If the text you specify matches text in the output window, DebugView selects the
next matching line and turns off the Autoscroll feature to keep the line in the window. Press
F3 to repeat a successful search. You can press Shift+F3 to reverse the search direction.

Filtering
Another way to isolate output you are interested in is to use DebugView’s filtering capability.
Click the Filter/Highlight button in the DebugView toolbar to display the Filter dialog box,

 Chapter 7 Process and Diagnostic Utilities 243

shown in Figure 7-14. The Include and Exclude fields are used to set criteria for including or
excluding incoming lines of debug text based on their content. The Highlight group box is
used to color-code selected lines based on their content. Filter and Highlight rules can be
saved to disk and then reloaded at a later time. (Highlighting is discussed in the next section
of this chapter.)

FIGURE 7-14 The DebugView Filter dialog box.

Enter substring expressions in the Include field that match debug output lines that you want
DebugView to display, and enter substring expressions in the Exclude field to specify debug
output lines that you do not want DebugView to display. You can enter multiple expressions,
separating each with a semicolon. Do not include spaces in the filter expression unless you
want the spaces to be part of the filter. Note that the “*” character is interpreted as a wild-
card, and that filters are interpreted in a case-insensitive manner and are also applied to the
Process ID portion of the line if PIDs are included in the output. The default rules include
 everything (“*”) and exclude nothing.

As shown in the example in Figure 7-14, say that you want DebugView to display debug
 output only if it contains the words “win,” “desk,” or “session,” unless it also contains the
word “error.” Set the Include filter to “win;desk;session” (without the quotes) and the
Exclude filter to “error.” If you want DebugView to show only output that has “MyApp:”
and the word “ severe” following later in the output line, use a wildcard in the Include filter:
“myapp:*severe”.

Filtering is applied only to new lines of debug output as they are captured and to comments
appended with the Append Comment feature. New text lines that match the rules that are
in effect are displayed; those that don’t match are dropped and cannot be “unhidden” by
changing the filter rules after the fact. Also, changing the filter rules does not remove lines
that are already displayed by DebugView.

If any filter rules are in effect when you exit DebugView, DebugView will display them in a
dialog box the next time you start it. Simply click OK to continue using those rules, or change
them first. You can edit them in place, click Load to use a previously saved filter, or click Reset
to remove the filter. To bypass this dialog box and continue to use the rules that were in
 effect, add /f to the DebugView command line.

244 Part II Usage Guide

Highlighting
Highlighting lets you color-code selected lines based on the text content of those lines.
DebugView supports up to 20 separate highlighting rules, each with its own foreground and
background color. The highlight rule syntax is the same as that for the Include filter.

Use the Filter drop-down list in the Highlight group box to select which filter (numbered 1
through 20) you want to edit. By default, each filter is associated with a color combination
but no highlight rule. To set a rule for that filter, type the text for the rule in the drop-down
list showing the color combination. In Figure 7-14, Filter 1 highlights lines containing the
word “Console.”

Lower-numbered highlight filters take precedence over higher-numbered rules. If a line of
text matches the rules for Filter 3 and Filter 5, the line will be displayed in the colors associ-
ated with Filter 3. Changing highlight rules updates all lines in the display to reflect the new
highlight rules.

To change the colors associated with a highlight filter, select that filter in the drop-down list
and click on the Colors button. To change the foreground color, select the FG radio button,
choose a color, and click the Select button. Do the same using the BG radio button to change
the background color, and then click OK.

Saving and Restoring Filter and Highlight Rules
Use the Load and Save buttons on the Filter dialog box to save and restore filter settings,
including the Include, Exclude, and Highlight filter rules, as well as the Highlight color
 selections. DebugView uses the .INI file extension for its filter files, even though they are not
formatted as initialization files.

Clicking the Reset button resets all Filter and Highlight rules to DebugView defaults. Note
that Reset does not restore default Highlight colors.

History Depth
A final way to control DebugView output is to limit the number of lines that are retained in
the display. Choose History Depth from the Edit menu to display the History Depth dialog
box. Enter the number of output lines you want DebugView to retain, and it will keep only
that number of the most recent debut output lines, discarding older ones. A history depth
of 0 (zero) represents no limit on the number of output lines retained. You can specify the
 history depth on the command line with the /h switch, followed by the desired depth.

You do not need to use the History Depth feature to prevent all of a system’s virtual memory
from being consumed in long-running captures. DebugView monitors system memory
 usage, alerts the user, and suspends capture of debug output when it detects that memory is
running low.

 Chapter 7 Process and Diagnostic Utilities 245

Saving, Logging, and Printing
DebugView lets you save captured debug output to file, either on demand or as it is being
captured. Saved files can be opened and displayed by DebugView at a later time. DebugView
also lets you print all or parts of the displayed output.

You can save the contents of the DebugView output window as a text file by choosing Save
or Save As from the File menu. DebugView uses the .LOG extension by default. The file
format is tab-delimited ANSI text. You can display the saved text in DebugView at a later
time by choosing Open from the File menu, or by specifying the path to the file on the
DebugView command line, as in the following example:

dbgview c:\temp\win7-x86-vm.log

Logging
To have DebugView log output to a file as it displays it, choose Log To File from the File
menu. The first time you choose that menu item or click the Log To File button on the
 toolbar, DebugView displays the Log-To-File Settings dialog box shown in Figure 7-15,
prompting you for a file location. From that point forward, the Log To File menu option and
toolbar button toggle logging to that file on or off. To log to a different file or to change
other log file settings, choose Log To File As from the File menu. (If log-to-file is currently
 enabled, choosing Log To File As has the same effect as toggling Log To File off.)

FIGURE 7-15 The DebugView Log-to-File Settings dialog box.

The other configuration options in the Log-To-File Settings dialog box are

■ Unlimited Log Size This selection allows the log file to grow without limit.

■ Create New Log Every Day When this option is selected, DebugView will not limit
the size of the log file, but will create a new log file every day, with the current date
appended to the base log file name. You can also select the option to clear the display
when the new day’s log file is created.

246 Part II Usage Guide

■ Limit Log Size When this option is selected, the log file will not grow past the size
limit you specify. DebugView will stop logging to the file at that point, unless you
also select the Wrap option. With Wrap enabled, DebugView will wrap around to the
 beginning of the file when the file’s maximum size is reached.

If Append is not selected and the target log file already exists, DebugView truncates the
 existing file when logging begins. If Append is selected, DebugView appends to the existing
log file, preserving its content.

If you are monitoring debug output from multiple remote computers and enable logging to
a file, all output is logged to the one file you specify. Ranges of output from different com-
puters are separated with a header that indicates the name of the computer from which the
subsequent lines were recorded.

Logging options can also be controlled by using the command-line options listed in
Table 7-2:

TABLE 7-2 Command-Line Options for Logging

Option Description
–l logfile Logs output to the specified logfile

–m n Limits log file to n MB

–p Appends to the file if it already exists; otherwise, overwrites it

–w Used with –m, wrap to the beginning of the file when the maximum size is
reached

–n Creates a new log file every day, appending the date to the file name

–x Used with –n, clears the display when a new log file is created

Printing
Choose Print or Print Range from the File menu to print the contents of the display to a
printer. Choose Print Range if you want to print only a subset of the sequence numbers dis-
played, or choose Print if you want to print all the output records. Note that capture must be
disabled prior to printing.

The Print Range dialog box also lets you specify whether or not sequence numbers and time
stamps will be printed along with the debug output. Omitting these fields can save page
space if they are not necessary. The settings you choose are used in all subsequent print
operations.

To prevent wrap-around when output lines are wider than a page, consider using landscape
mode instead of portrait when printing.

 Chapter 7 Process and Diagnostic Utilities 247

Remote Monitoring
DebugView has remote monitoring capabilities that allow you to view debug output
 generated on remote systems. DebugView can connect to and monitor multiple remote
computers and the local computer simultaneously. You can switch the view to see output
from a computer by selecting it from the Computer menu as shown in Figure 7-16, or you
can cycle through them by pressing Ctrl+Tab. The active computer view is identified in the
title bar and by an arrow icon in the Computer menu. Alternatively, you can open each
 computer in a separate window and view their debug outputs simultaneously.

FIGURE 7-16 DebugView monitoring two remote computers and the local computer.

To perform remote monitoring, DebugView runs in agent mode on the remote system,
sending debug output it captures to a central DebugView viewer that displays the output.
Typically, you will start DebugView in agent mode on the remote system manually. In some
circumstances, the DebugView viewer can install and start the remote agent component
 automatically, but with host-based firewalls now on by default, this is usually impractical.

To begin remote monitoring, press Ctrl+R or choose Connect from the Computer menu to
display a computer connection dialog box. Enter the name or IP address of the remote com-
puter, or select a previously-connected computer from the drop-down list, and click OK.
DebugView will try to install and start an agent on that computer; if it cannot, DebugView
tries to find and connect to an already-running, manually-started agent on the computer.
If its attempt is successful, DebugView begins displaying debug output received from that
computer, adding the remote computer name to the title bar and to the Computer menu.

To begin monitoring the local computer, choose Connect Local from the Computer menu.
Be careful not to connect multiple viewers to a single computer because the debug output
will be split between those viewers.

248 Part II Usage Guide

To view debug output from two computers side by side, choose New Window from the File
menu to open a new DebugView window before establishing the second connection. Make
the connection from that new window.

To stop monitoring debug output from a computer, make it the active computer view by
 selecting it in the Computer menu, and then choose Disconnect from the Computer menu.

Running the DebugView Agent
To manually start DebugView in agent mode, specify /a as a command-line argument.
DebugView displays the “Waiting for connection” dialog box shown in Figure 7-17 until a
DebugView monitor connects to it. The dialog box then indicates “Connected.” Note that in
agent mode, DebugView does not capture or save any debug output when not connected to
a DebugView monitor. When connected, the DebugView agent always captures Win32 debug
output in the current terminal services session. To have the agent capture kernel debug
 output, add /k to the command line; to capture verbose kernel debug output, also add /v to
the command line. To capture global (session 0) output, add /g to the command line.

FIGURE 7-17 The DebugView Remote Agent window.

If the monitor disconnects or the connection is otherwise broken, the agent status window
reverts to “Waiting for connection” and DebugView awaits another connection. By adding /e
to the DebugView agent command line, you can opt to display an error message when this
occurs and not accept a new connection until the error message is dismissed.

You can hide the agent status window and instead display an icon in the taskbar notification
area by adding /t to the command line. The icon is gray when the agent is not connected
to a monitor and colored when it is connected. You can open the status window by double-
clicking on the icon and return it to an icon by minimizing the status window. You can hide
the DebugView agent user interface completely by adding /s to the DebugView command
line. In this mode, DebugView remains active until the user logs off, silently accepting con-
nections from DebugView monitors. Note that /s overrides /e: if the viewer disconnects,
DebugView will silently await and accept a new connection without displaying a notification.

The manually-started DebugView agent listens for connections on TCP port 2020. The
Windows Firewall might display a warning the first time you run DebugView in agent mode.
If you choose to allow the access indicated in the warning message, Windows will create
a program exception for DebugView in the firewall. That or a port exception for TCP 2020
will enable the manually-started DebugView agent to work. Note that connections are
 anonymous and not authenticated.

 Chapter 7 Process and Diagnostic Utilities 249

The agent automatically installed and started on the remote computer by the viewer is
implemented as a Windows service. Therefore, it runs in terminal services session 0, where
it can monitor only kernel and global Win32 debug output; it cannot monitor debug out-
put from interactive user sessions outside of session 0. Also, it listens for a connection on
a random high port, which isn’t practical when using a host-based firewall. In most cases,
the manually started DebugView agent will generally be much more reliable and is the
 recommended way to monitor debug output remotely.

When using the agent automatically installed by the monitor, the state of global capture,
Win32 debug capture, kernel capture, and pass-through for the newly established remote
session are all adopted from the current settings of the DebugView viewer. Changes you
make to these settings on the viewer take effect immediately on the monitored computer.

LiveKd
LiveKd allows you to use kernel debuggers to examine a snapshot of a live system without
booting the system in debugging mode. This can be useful when kernel-level troubleshoot-
ing is required on a machine that wasn’t booted in debugging mode. Certain issues might
be hard to reproduce, so rebooting a system can be disruptive. On top of that, booting a
computer in debug mode changes how some subsystems behave, which can further compli-
cate analysis. In addition to not requiring booting with debug mode enabled, LiveKd allows
the Microsoft kernel debuggers to perform some actions that are not normally possible with
 local kernel debugging, such as creating a full memory dump file.

In addition to examining the local system, LiveKd supports the debugging of Hyper-V guest
virtual machines (VMs) externally from the Hyper-V host. In this mode, the debugger runs
on the Hyper-V host and not on the guest VMs, so there is no need to copy any files to the
 target VM or configure the VM in any way.

LiveKd creates a snapshot dump file of kernel memory, without actually stopping the kernel
while the snapshot is captured. LiveKd then presents this simulated dump file to the kernel
debugger of your choosing. You can then use the debugger to perform any operations on
this snapshot of live kernel memory that you could on any normal dump file.

Because LiveKd relies on physical memory to back the simulated dump, the kernel debugger
might run into situations in which data structures are in the middle of being changed by the
system and are inconsistent. Each time the debugger is launched, it starts with a fresh view
of the system state. If you want to refresh the snapshot, quit the debugger (with the q com-
mand), and LiveKd will ask you whether you want to start it again. If the debugger enters a
loop in printing output, press Ctrl+C to interrupt the output, quit, and rerun it. If it hangs,
press Ctrl+Break, which will terminate the debugger process and ask you whether you want
to run the debugger again.

250 Part II Usage Guide

LiveKd Requirements
LiveKd supports all x86 and x64 versions of Windows. It must be run with administrative
rights, including the Debug privilege.

LiveKd depends on the Debugging Tools for Windows, which must be installed on the
same machine before you run LiveKd. The URL for the Debugging Tools for Windows is
http://www.microsoft.com/whdc/devtools/debugging/default.mspx. The Debugging Tools
 installer used to be a standalone download, but it is now incorporated into the Windows
SDK. To get the Debugging Tools, you must run the SDK installer and select the Debugging
Tools options you want. Among the options are the Debugging Tools redistributables, which
are the standalone Debugging Tools installers, available for x86, x64, and IA64. These work
well if you want to install the Debugging Tools on other machines without running the SDK
installer.

LiveKd requires that kernel symbol files be available. These can be downloaded as needed
from the Microsoft public symbol server. If the system to be analyzed does not have an
Internet connection, see the “Online Kernel Memory Dump Using LiveKd” sidebar to learn
how to acquire the necessary symbol files.

Running LiveKd
The LiveKd command-line syntax is

livekd [-w | -k debugger-path | -o dumpfile] [[-hvl] | [-hv VMName][-p]] [debugger options]

Table 7-3 summarizes the LiveKd command-line options, which are then discussed in more
detail.

TABLE 7-3 LiveKd Command-Line Options

Option Description
–w Runs WinDbg.exe instead of Kd.exe

–k debugger-path Runs the specified debugger instead of Kd.exe

–o dumpfile Saves a kernel dump to the dumpfile instead of launching a debugger

–hvl From Hyper-V host, lists the GUIDs and names of available guest VMs

–hv VMName From Hyper-V host, debugs the VM identified by GUID or name

–p From Hyper-V host, pauses the target VM while capturing the dump
 (recommended for use with –o)

debugger options Additional command-line options to pass to the kernel debugger

 Chapter 7 Process and Diagnostic Utilities 251

By default, LiveKd takes a snapshot of the local computer and runs Kd.exe. The –w and –k
 options let you specify WinDbg.exe or any other debugger instead of Kd.exe. LiveKd passes
any additional command-line options that you specify on to the debugger, followed by –z
and the path to the simulated dump file.

To debug a Hyper-V virtual machine from the host, specify –hv and either the friendly name
or the GUID of the VM. To list the names and GUIDs of the available VMs, run LiveKd with the
–hvl option. Note that you can debug only one VM on a host at a time.

With the –o option, LiveKd just saves a kernel dump of the target system to the specified
dumpfile and doesn’t launch a debugger. This option is useful for capturing system dumps
for offline analysis. If the target is a Hyper-V VM, you can also add –p to the command line
to pause the VM while the snapshot is being captured in order to get a completely consistent
snapshot.

If you are launching a debugger and don’t specify –k and a path to a debugger, LiveKd will
find Kd.exe or WinDbg.exe if it is in one of the following locations:

■ The current directory when you start LiveKd

■ The same directory as LiveKd

■ The default installation path for the Debugging Tools (“%ProgramFiles%\Debugging
Tools for Windows (x86)” on x86 or “%ProgramFiles%\Debugging Tools for Windows
(x64)” on x64)

■ A directory specified in the PATH variable

If the _NT_SYMBOL_PATH environment variable has not been configured, LiveKd will ask if
you want it to configure the system to use Microsoft’s symbol server, and then it will ask for
the local folder in which to download symbol files (C:\Symbols by default).

Refer to the Debugging Tools documentation regarding how to use the kernel debuggers.

Note The debugger will complain that it can’t find symbols for LiveKdD.SYS. This is expected
because I have not made symbols for LiveKdD.SYS available. The lack of these symbols does not
affect the behavior of the debugger.

LiveKd Examples
This command line debugs a snapshot of the local computer, passing parameters to WinDbg
to write a log file and not to display the Save Workspace? dialog box:

livekd -w -Q -logo C:\dbg.txt

252 Part II Usage Guide

This command line captures a kernel dump of the local computer and does not launch a
debugger:

livekd -o C:\snapshot.dmp

When run on a Hyper-V host, this command lists the virtual machines available for
 debugging; it then shows sample output:

C:\>livekd -hvl

Listing active Hyper-V partitions...

Hyper-V VM GUID Partition ID VM Name
------------------------------------ ------------ -------
3187CB6B-1C8B-4968-A501-C8C22468AB77 29 WinXP x86 (SP3)
9A489D58-E69A-48BF-8747-149344164B76 30 Win7 Ultimate x86
DFA26971-62D7-4190-9ED0-61D1B910466B 28 Win7 Ultimate x64

You can then use either a GUID or a VM name from the listing to specify the VM to debug.
This command pauses the “Win7 Ultimate x64” VM from the example and captures a kernel
dump of that system, resuming the VM after the dump has been captured:

livekd -p -o C:\snapshot.dmp -hv DFA26971-62D7-4190-9ED0-61D1B910466B

Finally, this command debugs a snapshot of the “WinXP x86 (SP3)” VM using Kd.exe:

livekd -hv "WinXP x86 (SP3)"

Online Kernel Memory Dump Using LiveKd
How many times have you had to acquire a kernel memory dump, but you or your
customer (quite rightly) refused to have the target system attached to the Internet,
 preventing the downloading of required symbol files? I have had that dubious pleasure
far too often, so I decided to write down the process for my future reference.

The key problem is that you need to get the correct symbol files for the kernel memory
dump. At a minimum, you must have symbols for Ntoskrnl.exe. Just downloading the
symbol file packages from WHDC or MSDN for your operating system and service pack
version is not quite good enough, because files and corresponding symbols might have
been changed by updates since the service pack was released.

Here is the process I follow:

■ Copy Ntoskrnl.exe and any other files for which you want symbols from the
System32 folder on the computer to be debugged to a folder (for example,
C:\DebugFiles) on a computer with Internet access.

■ Install the Debugging Tools for Windows on the Internet-facing system.

 Chapter 7 Process and Diagnostic Utilities 253

■ From a command prompt on that system, run Symchk to download symbols
for the files you selected into a new folder. The command might look like this:

symchk /if C:\DebugFiles*.* /s srv*C:\DebugSymbols*http://msdl.microsoft.
com/download/symbols

■ Copy the downloaded symbols (for example, the C:\DebugSymbols folder in
the previous example) from the Internet-facing system to the original system.

■ Install the Debugging Tools for Windows on the computer from which you
 require a kernel memory dump, and copy LiveKd.exe into the same folder
with the debuggers. Add this folder to the PATH.

■ With administrator privileges, open a command prompt and set the environ-
ment variable _NT_SYMBOL_PATH to the folder containing symbol files. For
example:

SET _NT_SYMBOL_PATH=C:\DebugSymbols

■ At the command prompt, run LiveKd -w -Q to start WinDbg.

■ When the WinDbg prompt appears, type the following command to create a
full memory dump:

.dump /f c:\memory.dmp

You need to make sure there is enough space on this drive.

■ Type q to quit WinDbg and then n to quit LiveKd.

You should find the full memory dump in C:\memory.dmp, which you can compress
and deliver for analysis.

Note This sidebar is adapted from a blog post by Carl Harrison. Carl’s blog is at
http://blogs.technet.com/carlh.

ListDLLs
ListDLLs is a console utility that displays information about DLLs loaded in processes on the
local computer. It can show you all DLLs in use throughout the system or in specific pro-
cesses, and it can let you search for processes that have a specific DLL loaded. It is also useful
for verifying which version of a DLL a process has loaded and from what path. It can also flag
DLLs that have been relocated from their preferred base address or that have been replaced
after they have been loaded.

254 Part II Usage Guide

ListDLLs requires administrative rights, including the Debug privilege, only to list DLLs
in processes running as a different user or at a higher integrity level. It does not require
 elevated permissions for processes running as the same user and at the same integrity level
or a lower one.

The command-line syntax for ListDLLs is

listdlls [-r] [processname | PID | -d dllname]

Run ListDLLs without command-line parameters to list all processes and the DLLs loaded in
them, as shown in Figure 7-18. For each process, ListDLLs outputs a dashed-line separator,
followed by the process name and PID. If ListDLLs has the necessary permissions to open the
process, it then displays the full command line that was used to start the process, followed
by the DLLs loaded in the process. ListDLLs reports the base address, size, version, and path
of the loaded DLLs in tabular form with column headers. The base address is the virtual
memory address at which the module is loaded. The size is the number of contiguous bytes,
starting from the base address, consumed by the DLL image. The version is extracted from
the file’s version resource, if present; otherwise, it is left blank. The path is the full path to
the DLL.

FIGURE 7-18 ListDLLs output.

ListDLLs compares the time stamp in the image’s Portable Executable (PE) header in memory
to that in the PE header of the image on disk. A difference indicates that the DLL file was
replaced on disk after the process loaded it. ListDLLs flags these differences with output like
the following:

 *** Loaded C:\Program Files\Utils\PrivBar.dll differs from file image:
 *** File timestamp: Wed Feb 10 22:06:51 2010
 *** Loaded image timestamp: Thu Apr 30 01:48:12 2009
 *** 0x10000000 0x9c000 1.00.0004.0000 C:\Program Files\Utils\PrivBar.dll

 Chapter 7 Process and Diagnostic Utilities 255

ListDLLs reports only DLLs that are loaded as executable images. Unlike Process Explorer’s
DLL View (discussed in Chapter 3), it does not list DLLs or other files or file mappings loaded
by the image loader as data, including DLLs that are loaded for resources only.

The –r option flags DLLs that have been relocated to a different virtual memory address from
the base address specified in the image.2 With –r specified, a DLL that has been relocated
will be preceded in the output with a line reporting the relocation and the image base
 address. The following example output shows webcheck.dll with an image base address of
0x00400000 but loaded at 0x01a50000:

 ### Relocated from base of 0x00400000:
 0x01a50000 0x3d000 8.00.6001.18702 C:\WINDOWS\system32\webcheck.dll

To limit which processes are listed in the output, specify a process name or PID on the
 command line. If you specify a process name, ListDLLs reports only on processes with an
 image name that matches or begins with the name you specify. For example, to list the DLLs
loaded by all instances of Internet Explorer, run the following command:

listdlls iexplore.exe

ListDLLs will show each iexplore.exe process and the DLLs loaded in each. If you specify a
PID, ListDLLs shows the DLLs in that one process.

To identify the processes that have a particular DLL loaded, add –d to the command line
followed by the full or partial name of the DLL. ListDLLs searches all processes that it has
permission to open and inspect the full path of each of its DLLs. If the name you specified
appears anywhere in the path of a loaded DLL, ListDLLs outputs the information for the
 process and for the matching DLLs. For example, to search for all processes that have loaded
Crypt32.dll, run the following command:

listdlls -d crypt32

You can use this option not only to search for DLLs by name, but for folder locations as well.
To list all DLLs that have been loaded from the Program Files folder hierarchy, you can run
this command:

listdlls -d "program files"

2 With Address Space Layout Randomization (ASLR), introduced in Windows Vista, an ASLR-compatible DLL’s base
address is changed at first load after each boot. ListDLLs reports a DLL as relocated only if it is loaded in a pro-
cess to a different address from its preferred ASLR address in that boot session because of a conflict with another
 module.

256 Part II Usage Guide

Handle
Handle is a console utility that displays information about object handles held by processes
on the system. Handles represent open instances of basic operating system objects that
 applications interact with, such as files, registry keys, synchronization primitives, and shared
memory. You can use the Handle utility to search for programs that have a file or folder
open, preventing its access or deletion from another program. You can also use Handle to list
the object types and names held by a particular program. For more information about object
handles, see “Handles” in Chapter 2.

Because the primary purpose for Handle is to identify in-use files and folders, running
Handle without any command-line parameters lists all the File and named Section handles
owned by those processes. Handle’s command-line parameters in various combinations
 allow you to list all object types, search for objects by name, limit which process or pro-
cesses to include, display handle counts by object type, show details about pagefile-backed
Section objects, display the user name with the handle information, or (although generally
ill- advised) close open handles.

Note that loading a DLL or mapping another file type into a process’ address space via
the LoadLibrary API does not also add a handle to the process’ handle table. Such files can
therefore be in use and not be able to be deleted, even though a handle search might come
up empty. ListDLLs, described earlier in this chapter, can identify DLLs loaded as execut-
able images. More powerfully, Process Explorer’s Find feature searches for both DLL and
handle names in a single operation, and it includes DLLs mapped as data. Process Explorer is
 described in Chapter 3.

Handle List and Search
The command-line syntax to list object handles is

handle [-a [-l]] [-p process|PID] [[-u] objname]

If you specify no command-line parameters, Handle lists all processes and all the File and
named Section handles owned by those processes, with dashed-line separators between the
information for each process. For each process, Handle displays the process name, PID, and
account name that the process is running under, followed by the handles belonging to that
process. The handle value is displayed in hexadecimal, along with the object type and the
object name (if it has one).

“File” handles can include folders, device drivers, and communication endpoints, in addition
to normal files. File handle information also includes the sharing mode that was set when
the handle was opened. The parenthesized sharing flags can include R, W, or D, indicating

 Chapter 7 Process and Diagnostic Utilities 257

that other callers (including other threads within the same process) can open the same file
for reading, writing, or deleting, respectively. A hyphen instead of a letter indicates that the
sharing mode is not set. If no flags are set, the object is opened for exclusive use through this
handle.

A named Section, also called a file mapping object, can be backed by a file on disk or by the
pagefile. An open file-mapping handle to a file can prevent it from being deleted. Pagefile-
backed named Sections are used to share memory between processes.

To search for handles to an object by name, add the object name to the command line.
Handle will list all object handles where the object’s name contains the name you specified.
The search is case insensitive. When performing an object name search, you can also add the
–u option to display the user account names of the processes that own the listed handles.

The object name search changes the format of the output. Instead of grouping handles by
process with separators, each line lists a process name, PID, object type, handle value, handle
name, and optionally a user name.

So if you are trying to find the process that is using a file called MyDataFile.txt in a folder
called MyDataFolder, you can search for it with a command like this:

handle mydatafolder\mydatafile.txt

To view all handle types rather than just Files and named Sections, add –a to the Handle
command line. Handle will list all handles of all object types, including unnamed objects. You
can combine the –a parameter with –l (lower case L) to show all Section objects and the size
of the pagefile allocation (if any) associated with each one. This can help identify leaks of
 system commit caused by mapped pagefile-backed sections.

To limit which processes are included in the output, add –p to the command line, followed
by a partial or full process name or a process ID. If you specify a process name, Handle lists
handles for those processes with an image name that matches or begins with the name you
specify. If you specify a PID, Handle lists handles for that one process.

Let’s look at some examples. This command line lists File and named Section object handles
owned by processes where the process name begins with explore, including all running
 instances of Explorer.exe:

handle -p explore

Partial output from this command is shown in Figure 7-19.

258 Part II Usage Guide

FIGURE 7-19 Partial output from handle –p explore.

By contrast, the following command lists object handles of every type and in every process
where the object name contains “explore”:

handle -a explore

Partial output from this object name search includes processes that have file, registry key,
process, and thread handles with “explore” in the names and is shown in Figure 7-20.

FIGURE 7-20 Partial output from handle –a explore.

The following contrived example demonstrates searching for an object name that contains
a space and includes the user name in the output. It shows all object types that contain the
search name, including registry keys, but it limits the search to processes that begin with c:

handle -a -p c -u "session manager"

The output from this command is shown in Figure 7-21.

Handle requires administrative privilege to run. Because some objects grant full access only
to System but not to Administrators, you can generally get a more complete view by running
Handle as System, using PsExec (discussed in Chapter 6). If Handle.exe and PsExec are both in
the system Path, this can be accomplished with the following simple command:

psexec -s handle -accepteula -a

 Chapter 7 Process and Diagnostic Utilities 259

FIGURE 7-21 Output from handle –a –p c –u “session manager”.

Handle Counts
To see how many objects of each type are open, add –s to the Handle command line.
Handle will list all object types for which there are any open handles systemwide, and the
number of handles for each. At the end of the list, Handle shows the total number of handles.

To limit the handle count listing to handles held by specific processes, add –p followed by a
full or partial process name, or a process ID:

handle -s [-p process|PID]

Using the same process name-matching algorithm described in the “Handle List and Search”
section earlier, Handle shows the counts of the object handles held by the specified process
or processes and by object type, followed by the total handle count. This command lists the
handle counts for all Explorer processes on the system:

handle -s -p explorer

The output looks like the following:

Handle type summary:
 ALPC Port : 44
 Desktop : 5
 Directory : 5
 EtwRegistration : 371
 Event : 570
 File : 213
 IoCompletion : 4
 Key : 217
 KeyedEvent : 4
 Mutant : 84
 Section : 45
 Semaphore : 173
 Thread : 84

260 Part II Usage Guide

 Timer : 7
 TpWorkerFactory : 8
 UserApcReserve : 1
 WindowStation : 4
 WmiGuid : 1
Total handles: 1840

Closing Handles
As described earlier, a process can release its handle to an object when it no longer needs
that object, and its remaining handles are also closed when the process exits. You can use
Handle to close handles held by a process without terminating the process. This is typically
risky. Because the process that owns the handle is not aware that its handle has been closed,
using this feature can lead to data corruption or can crash the application; closing a handle in
the System process or a critical user-mode process such as Csrss can lead to a system crash.
Also, a subsequent resource allocation by the same process could be assigned the old handle
value because it is no longer in use. If the program tried to access the now-closed object, it
could end up operating on the wrong object.

With those caveats in mind, the command-line syntax for closing a handle is

handle -c handleValue -p PID [-y]

The handle value is interpreted as a hexadecimal number, and the owning process must be
specified by its PID. Before closing the handle, Handle displays information about the handle,
including its type and name and ask for confirmation. You can bypass the confirmation by
adding –y to the command line.

Note that Windows protects some object handles so that they cannot be closed except
 during process termination. Attempts to close these handles fail silently, so Handle will report
that the handle was closed even though it was not.

 261

Chapter 8

Security Utilities
This chapter describes a set of Sysinternals utilities focused on Microsoft Windows security
management and operations:

■ SigCheck is a console utility for verifying file digital signatures, listing file hashes, and
viewing version information

■ AccessChk is a console utility for searching for objects—such as files, registry keys,
and services—that grant permissions to specific users or groups, as well as providing
 detailed information on permissions granted.

■ AccessEnum is a GUI utility that searches a file or registry hierarchy and identifies
where permissions might have been changed.

■ ShareEnum is a GUI utility that enumerates file and printer shares on your network and
who can access them.

■ ShellRunAs is a shell extension that restores the ability to run a program under a
 different user account on Windows Vista.

■ Autologon is a GUI utility that lets you configure a user account for automatic logon
when the system boots.

■ LogonSessions is a console utility that enumerates active Local Security Authority
(LSA) logon sessions on the current computer.

■ SDelete is a console utility for securely deleting files or folder structures and erasing
data in unallocated areas of the hard drive.

SigCheck
SigCheck is a multipurpose console utility for performing security-related functions on one
or more files or a folder hierarchy. Its primary purpose is to verify whether files are digitally
signed with a trusted certificate. As Figure 8-1 shows, SigCheck can also report catalog and
image signer information, calculate file hashes using several hash algorithms, and display
extended version information. It can also display a file’s embedded manifest, scan folders for
unsigned files, and report results in comma-separated value (CSV) format.

262 Part II Usage Guide

FIGURE 8-1 Output from sigcheck –a –i –h c:\windows\explorer.exe.

A digital signature associated with a file helps to ensure the file’s authenticity and integrity.
A verified signature demonstrates that the file came from the owner of the code-signing
certificate and that the file has not been modified since its signing. The assurance provided
by a code-signing certificate depends largely on the diligence of the certification authority
(CA) that issued the certificate to authenticate the proposed owner, on the diligence of the
certificate owner to protect the certificate’s private key from disclosure, and on the verifying
system not allowing the installation of rogue root CA certificates.

As part of the cost of doing business and providing assurance to customers, most legitimate
software publishers will purchase a code-signing certificate from a legitimate CA, such as
VeriSign or Thawte, and sign the files they distribute to customer computers. The lack of a
valid signature on an executable file that purports to be from a legitimate publisher is reason
for suspicion.

Note In the past, malware was rarely signed. As the sophistication of malware publishers has
increased, however, even this is no longer a guarantee. Some malware publishers are now setting
up front organizations and purchasing code-signing certificates from legitimate CAs. Others are
stealing poorly-protected private keys from legitimate businesses and using those keys to sign
malware.

SigCheck’s command-line parameters provide numerous options for performing verifications,
specifying the files to scan, and formatting output. The syntax is shown here, followed by
Table 8-1, which provides a summary of the parameters:

sigcheck.exe [-e] [-s] [-i] [-r] [-u] [-c catalogFile] [-a] [-h] [-m] [-n] [-v] [-q] target

 Chapter 8 Security Utilities 263

TABLE 8-1 SigCheck Command-Line Parameters

Parameter Description
target Specifies the file or directory to process. It can include wildcard characters.

Signature Verification
–i Shows the catalog name and image signers.

–r Checks for certificate revocation.

–u Reports unsigned files only, including files that have invalid signatures.

–c Looks for a signature in the specified catalog file.

Which Files to Scan
–e Scans executable files only. (It looks at the file headers, not the extension, to

 determine whether a file is an executable.)

–s Recurses subdirectories.

Additional File Information
–a Shows extended version information.

–h Shows file hashes.

–m Shows the manifest.

–n Shows the file version number only.

Output Format
–v CSV output (not compatible with –i or –m).

–q Quiet (suppresses the banner).

The target parameter is the only required one. It can specify a single file, such as explorer.
exe; it can specify multiple files using a wildcard, such as *.dll; or it can specify a folder, using
relative or absolute paths. If you specify a folder, SigCheck scans every file in the folder. The
following command scans every file in the current folder:

sigcheck .

Signature Verification
Without further parameters, SigCheck reports the following for each file scanned:

■ Verified If the file has been signed with a code-signing certificate that derives from a
root certification authority that is trusted on the current computer, and the file has not
been modified since its signing, this field reports Signed. If it has not been signed, this
field reports Unsigned. If it has been signed but there are problems with the signature,
those problems are noted. Problems can include the following: the signing certificate
was outside its validity period at the time of the signing; the root authority is not
trusted (which can happen with a self-signed certificate, for example); the file has been
modified since signing.

264 Part II Usage Guide

■ Signing date Shows the date on which the file was signed. This field shows n/a if the
file has not been signed.

■ Publisher The Company Name field from the file’s version resource, if found.

■ Description The Description field from the file’s version resource, if found.

■ Product The Product Name field from the file’s version resource, if found.

■ Version The Product Version field from the file’s version resource, if found. Note that
this is from the string portion of the version resource, not the binary value that is used
for version comparison.

■ File version The File Version field from the file’s version resource, if found. Note that
this, too, is from the string portion of the version resource.

To show additional signature details, add –i to the command line. Using this parameter shows
the following two additional fields if the file’s signature is valid:

■ Catalog Reports the file in which the signature is stored. In many cases, the
file indicated will be the same as the file that was signed. However, if the file was
 catalog-signed, the signature will be stored in a separate, signed catalog file. Many files
that ship with Windows are catalog-signed. Catalog-signing can improve performance
in some cases, but it’s particularly useful for signing nonexecutable files that have a file
format that does not support embedding signature information.

■ Signers Shows the Subject CN name from the code-signing certificate and from the
CA certificates in its chain.

By default, SigCheck does not check whether the signing certificate has been revoked by
its issuer. To verify that the signing certificate and the certificates in its chain have not been
revoked, add –r to the command line. Note that revocation checking can add significant net-
work latency to the signature check, because SigCheck has to query certificate revocation list
(CRL) distribution points.

To focus your search only for unsigned files, add –u to the command line. SigCheck then
scans all specified files, but it reports only those that are not signed or that have signatures
that cannot be verified.

Windows maintains a database of signature catalogs to enable quick lookup of signature
information based on a file hash. If you want to verify a file against a catalog file that is not
registered in the database, specify the catalog file on the SigCheck command line with the
–c option.

Which Files to Scan
Most nonexecutable files are not digitally signed with code-signing certificates. Some
 nonexecutable files that ship with Windows and that are never modified might be

 Chapter 8 Security Utilities 265

 catalog-signed, but data files that can be updated—including initialization files, registry
hive backing files, document files, and temporary files—are never code-signed. If you scan
a folder that contains a large number of such files, you might have difficulty finding the
 unsigned executable files that are usually of greater interest. To filter out these false positives,
you could search just for *.exe, then *.dll, then *.ocx, then *.scr, and so on. The problem with
that approach isn’t all the extra work or that you might miss an important extension. The
problem is that an executable file with a .tmp extension, or any other extension, or no exten-
sion at all can still be launched! And malware authors often hide their files from inspection by
 masquerading under apparently innocuous file extensions.

So instead of filtering on file extensions, add –e to the SigCheck command line to scan only
executable files. When you do, SigCheck will verify whether the file is an executable before
verifying its signature and ignore the file if it’s not. Specifically, SigCheck checks whether
the first two bytes are MZ. All 16-bit, 32-bit, and 64-bit Windows executables—including
 applications, DLLs, and system drivers—begin with these bytes. SigCheck ignores the file
 extension, so executables masquerading under other file extensions still get scanned.

To search a folder hierarchy instead of a single folder, add –s to the SigCheck command line.
SigCheck then scans files matching the target parameter in the folder specified by target
 parameter (or in the current folder if target doesn’t specify a folder) and in all subfolders. The
following command scans all *.dll files in and under the C:\Program Files folder:

sigcheck -s "c:\program files*.dll"

Additional File Information
Add the –a option to extract additional information from every file scanned. Adding –a
 augments the SigCheck output with these fields:

■ Strong Name If the file is a .NET assembly and has a strong-name signature, this
field reports Signed; otherwise, it shows Unsigned. (.NET’s strong-name signing is
 independent of certificate-based code-signing and does not imply any level of trust.

■ Original Name The Original Name field from the file’s version resource, if found.

■ Internal Name The Internal Name field from the file’s version resource, if found.

■ Copyright The Copyright field from the file’s version resource, if found.

■ Comments The Comments field from the file’s version resource, if found.

A hash is a statistically unique value generated from a block of data using a cryptographic
 algorithm, such that a small change in the data results in a completely different hash.
Because a good hash algorithm makes it computationally infeasible using today’s technology
to modify the data without modifying the hash, hashes can be used to detect changes
to data from corruption or tampering. If you add the –h option, SigCheck calculates and

266 Part II Usage Guide

 displays hashes for the files it scans, using the MD5, SHA1 and SHA256 algorithms. These
hashes can be compared to hashes calculated on a known-good system to verify file
 integrity. Hashes are useful for files that are unsigned, but that have known master versions.
Also, some file-verification systems rely on hashes instead of signatures.

Application manifests are XML documents that can be embedded in application files. They
were first introduced in Windows XP to enable the declaration of required side-by-side
 assemblies. Windows Vista and Windows 7 each extended the manifest file schema to enable
an application to declare its compatibility with Windows versions and whether it requires
 administrative rights to run. The presence of a Windows Vista-compatible manifest also
 disables file and registry virtualization for the process. To dump a file’s embedded manifest,
add –m to the SigCheck command line. Here is the output from SigCheck reporting its own
manifest:

c:\program files\sysinternals\sigcheck.exe:
 Verified: Signed
 Signing date: 19:14 6/7/2010
 Publisher: Sysinternals - www.sysinternals.com
 Description: File version and signature viewer
 Product: Sysinternals Sigcheck
 Version: 1.70
 File version: 1.70
 Manifest:
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
 <trustInfo xmlns="urn:schemas-microsoft-com:asm.v3">
 <security>
 <requestedPrivileges>
 <requestedExecutionLevel level="asInvoker" uiAccess="false"></
requestedExecutionLevel>
 </requestedPrivileges>
 </security>
 </trustInfo>
</assembly>

To output only the file’s version number, add –n to the SigCheck command line. SigCheck
displays only the value of the File Version field in the file’s version resource, if found, and
it displays n/a otherwise. This option can be useful in batch files, and it’s best used when
 specifying a single target file.

Command-line options, of course, can be combined. For example, the following command
searches the system32 folder hierarchy for unsigned executable files, displaying hashes and
detailed version information for those files:

sigcheck -u -s -e -a -h c:\windows\system32

 Chapter 8 Security Utilities 267

Output Format
SigCheck normally displays its output as a formatted list, as shown in Figure 8-1. To report
output as comma-separated values (CSVs) to enable import into a spreadsheet or database,
add –v to the SigCheck command line. SigCheck outputs column headers according to the
file information you requested through other command-line options, followed by a line of
comma-separated values for each file scanned. Note that the –v option cannot be used with
the –i or –m option.

You can suppress the display of the SigCheck banner with the –q option. Removing these
lines can help with batch-file processing of SigCheck output as well as with CSV output.

AccessChk
AccessChk is a console utility that reports effective permissions on securable objects, account
rights for a user or group, or token details for a process. It can search folder or registry
 hierarchies for objects with read or write permissions granted (or not granted) to a user or
group, or it can display the raw access control list for securable objects.

What Are “Effective Permissions”?
Effective permissions are permissions that a user or group has on an object, taking into
 account group memberships, as well as permissions that might be specifically denied. For
example, consider the C:\Documents and Settings folder on a Windows 7 computer, which
is actually a junction that exists for application compatibility purposes. It grants full control
to Administrators and to System, and Read permissions to Everyone. However, it also
 specifically denies List Folder permissions to Everyone. If MYDOMAIN\Abby is a member of
Administrators, Abby’s effective permissions include all permissions except for List Folder;
if MYDOMAIN\Abby is a regular user, and thus an implicit member of Everyone, Abby’s
 permissions include just the Read permissions except List Folder.

Windows includes the Effective Permissions Tool in the Advanced Security Settings dialog
box that is displayed by clicking the Advanced button in the permissions editor for some
 object types. The Effective Permissions Tool calculates and displays the effective permis-
sions for a specified user or group on the selected object. AccessChk uses the same APIs as
Windows and can perform the same calculations, but for many more object types and in a
scriptable utility. AccessChk can report permissions for files, folders, registry keys, processes,
and any object type defined in the Windows object manager namespace, such as directories,
sections and semaphores.

268 Part II Usage Guide

Note that the “effective permissions” determination in Windows is only an approximation
of the actual permissions that a logged-on user would have. Actual permissions might be
 different because permissions can be granted or denied based on how a user logs on (for
 example, interactively or as a service); logon types are not included in the effective permis-
sions calculation. Share permissions, and local group memberships and privileges are not
taken into account when calculating permissions on remote objects. In addition, there can be
anomalies with the inclusion or exclusion of built-in local groups (See Knowledge Base article
323309 at http://support.microsoft.com/kb/323309.) In particular, I recently came across an
undocumented bug involving calculation of permissions for the Administrators group. And
 finally, effective permissions can depend on the ability of the user performing the calcula-
tions to read information about the target user from Active Directory. (See Knowledge Base
article 331951 at http://support.microsoft.com/kb/331951.)

Using AccessChk
The basic syntax of AccessChk is

accesschk [options] [user-or-group] objectname

The objectname parameter is the securable object to analyze. If the object is a container,
such as a file system folder or a registry key, AccessChk will report on each object in that
 container instead of on the object itself. If you specify the optional user-or-group parameter,
AccessChk will report the effective permissions for that user or group; otherwise it will show
the effective access for all accounts referenced in the object’s access control list (ACL).

By default, the objectname parameter is interpreted as a file system object, and can include
? and * wildcards. If the object is a folder, AccessChk reports the effective permission for all
files and subfolders within that folder. If the object is a file, AccessChk reports its effective
permissions. For example, here are the effective permissions for c:\windows\explorer.exe on a
Windows 7 computer:

c:\windows\explorer.exe
 RW NT SERVICE\TrustedInstaller
 R BUILTIN\Administrators
 R NT AUTHORITY\SYSTEM
 R BUILTIN\Users

For each object reported, AccessChk summarizes permissions for each user and group
 referenced in the ACL, displaying R if the account has any Read permissions, W if the account
has any Write permissions, and nothing if it has neither.

Named pipes are considered file system objects; use the “\pipe\” prefix to specify a named
pipe path, or just “\pipe\” to specify the container in which all named pipes are defined:
accesschk \pipe\ reports effective permissions for all named pipes on the computer;
 accesschk \pipe\srvsvc reports effective permissions for the srvsvc pipe, if it exists.

 Chapter 8 Security Utilities 269

Note that wildcard searches such as \pipe\s* are not supported because of limitations in
Windows’ support for named-pipe directory listings.

Volumes are also considered file system objects. Use the syntax \\.\X: to specify a local
 volume, replacing X with the drive letter. For example, accesschk \\.\C: reports the permis-
sions on the C volume. Note that permissions on a volume are not the same as permissions
on its root directory. Volume permissions determine who can perform volume maintenance
tasks using the disk utilities described in Chapter 12, for example.

The options let you specify different object types, which permission types are of interest,
whether to recurse container hierarchies, how much detail to report, and whether to report
effective permissions or the object’s ACL. Options are summarized in Table 8-2, and then
 described in greater detail.

TABLE 8-2 AccessChk Command-Line Options

Parameter Description
Object Type
–d Object name represents a container; reports permissions on that object rather

than on its contents

–k Object name represents a registry key

–c Object name represents a Windows service

–p Object name is the PID or (partial) name of a process

–f Used with –p, shows full process token information for the specified process

–o Object name represents an object in the Windows object manager namespace

–t Used with –o, –t type specifies the object type
Used with –p, reports permissions for the process’ threads

–a Object name represents an account right

Searching for Access Rights
–s Recurses container hierarchy

–n Shows only objects that grant no access (usually used with user-or-group)

–w Shows only objects that grant Write access

–r Shows only objects that grant Read access

–e Shows only objects that have explicitly set integrity levels (Windows Vista and
newer)

Output
–l Shows ACL rather than effective permissions

–u Suppresses errors

–v Verbose

–q Quiet (suppresses the banner)

270 Part II Usage Guide

Object Type
As mentioned, if the named object is a container—such as a file system folder, a registry key,
or an object manager directory—AccessChk reports on the objects within that container
rather than on the container itself. To have AccessChk report on the container object, add
the –d option to the command line. For example, accesschk c:\windows reports effective
permissions for every file and subfolder in the Windows folder; accesschk -d c:\windows
reports the permissions on the Windows folder. Similarly, accesschk . reports permissions
on everything in the current folder, while accesschk -d . reports permissions on the current
folder only. As a final example, accesschk * reports permissions on all objects in the current
folder, while accesschk -d * reports permissions only on subfolder objects in the current
folder.

To inspect permissions on a registry key, add –k to the command line. You can specify the
root key with short or full names (for example, HKLM or HKEY_LOCAL_MACHINE), and you
can follow the root key with a colon (:), as Windows PowerShell does. (Wildcard characters
are not supported.) All of the following equivalent commands report the permissions for the
subkeys of HKLM\Software\Microsoft:

accesschk -k hklm\software\microsoft

accesschk -k hklm:\software\microsoft

accesschk -k hkey_local_machine\software\microsoft

Add –d to report permissions just for HKLM\Software\Microsoft but not for its subkeys.

To report the permissions for a Windows service, add –c to the command line. Specify * as
the object name to show all services, or scmanager to check the permissions of the Service
Control Manager. (Partial name or wildcard matches are not supported.) For example,
 accesschk –c lanmanserver reports permissions for the Server service on a Windows 7
computer, and this is its output:

lanmanserver
 RW NT AUTHORITY\SYSTEM
 RW BUILTIN\Administrators
 R NT AUTHORITY\INTERACTIVE
 R NT AUTHORITY\SERVICE

This command reports the permissions specifically granted by each service to the
“Authenticated Users” group:

accesschk -c "authenticated users" *

In the context of services, W can refer to permissions such as Start, Stop, Pause/Continue,
and Change Configuration, while R includes permissions such as Query Configuration and
Query Status.

 Chapter 8 Security Utilities 271

To view permissions on processes, add –p to the command line. The object name can be
either a process ID (PID) or a process name, such as “explorer.” AccessChk will match partial
names: accesschk –p exp will report permissions for processes with names beginning with
“exp”, including all instances of Explorer. Specify * as the object name to show permissions
for all processes. Note that administrative rights are required to view the permissions of
 processes running as another user or with elevated rights. The following output is what you
can expect to see for an elevated instance of Cmd.exe on a Windows 7 computer, using
 accesschk –p 3048:

[3048] cmd.exe
 RW BUILTIN\Administrators
 RW NT AUTHORITY\SYSTEM

Combine –p with –t to view permissions for all the threads of the specified process. (Note
that the t option must come after p in the command line.) Looking at the same elevated
 instance of Cmd.exe, accesschk –pt 3048 reports:

[3048] cmd.exe
 RW BUILTIN\Administrators
 RW NT AUTHORITY\SYSTEM
 [3048:7148] Thread
 RW BUILTIN\Administrators
 RW NT AUTHORITY\SYSTEM
 R Win7-x86-VM\S-1-5-5-0-248063-Abby

The process has a single thread with ID 7148, with permissions similar to that of the
 containing process.

Combine –p with –f to view full details of the process token. For each process listed,
AccessChk will show the permissions on the process token, and then show the token user,
groups, group flags, and privileges.

You can view permissions on objects in the object manager namespace—such as events,
semaphores, sections and directories—with the –o command line switch. To limit output
to a specific object type, add –t and the object type. For example, the following command
 reports effective permissions for all objects in the \BaseNamedObjects directory:

accesschk -o \BaseNamedObjects

The following command reports effective permissions only for Section objects in the
\BaseNamedObjects directory:

accesschk -o -t section \BaseNamedObjects

If no object name is provided, the root of the namespace directory is assumed. WinObj,
 described in Chapter 14, “System Information Utilities,” provides a graphical view of the
 object manager namespace.

272 Part II Usage Guide

Although they aren’t securable objects per se, privileges and account rights can be reported
by AccessChk with the –a option. Privileges grant an account a systemwide capability not
associated with a specific object, such as SeBackupPrivilege, which allows the account to
bypass access control to read an object. Account rights determine who can or cannot log on
to a system and how. For example, SeRemoteInteractiveLogonRight must be granted to
an account in order to log on via Remote Desktop. Privileges are listed in access tokens, while
account rights are not.

I’ll demonstrate usage of the –a option with examples. Note that AccessChk requires
 administrative rights to use the option. Use * as the object name to list all privileges and
 account rights and the accounts to which they are assigned:

accesschk -a *

An account name followed by * lists all the privileges and account rights assigned to that
account. For example, the following command displays those assigned to the Power Users
group (it is interesting to compare the results of this from a Windows XP system and a
Windows 7 system):

accesschk -a "power users" *

Finally, specify the name of a privilege or account right to list all the accounts that have it.
(Again, you can use accesschk –a * to list all privileges and account rights.) The following
command lists all the accounts that are granted SeDebugPrivilege:

accesschk -a sedebugprivilege

Searching for Access Rights
One of AccessChk’s most powerful features is its ability to search for objects that grant access
to particular users or groups. For example, you can use AccessChk to verify whether anything
in the Program Files folder hierarchy can be modified by Users, or whether any services grant
Everyone any Write permissions.

The –s option instructs AccessChk to search recursively through container hierarchies, such
as folders, registry keys, or object namespace directories. The –n option lists objects that
grant no access to the specified account. The –r option lists objects that grant Read permis-
sions, and –w lists objects that grant Write permissions. Finally, on Windows Vista and newer,
–e shows objects that have an explicitly set integrity label, rather than the implicit default of
Medium integrity and No-Write-Up.

 Chapter 8 Security Utilities 273

Let’s consider some examples:

■ Search the Windows folder hierarchy for objects that can be modified by Users:

accesschk -ws Users %windir%

■ Search for global objects that can be modified by Everyone:

accesschk -wo everyone \basenamedobjects

■ Search for registry keys under HKEY_CURRENT_USER that have an explicit integrity
label:

accesschk -kse hkcu

■ Search for services that grant Authenticated Users any Write permissions:

accesschk -cw "Authenticated Users" *

■ List all named pipes that grant anyone Write permissions:

accesschk -w \pipe*

■ List all object manager objects under the \sessions directory that do not grant any
 access to Administrators:

accesschk -nos Administrators \sessions

This last example points out another powerful feature of AccessChk. Clearly, to view the
permissions of an object, you must be granted the Read Permissions permission for that
object. And just as clearly, there are many objects throughout the system that do not grant
any access to regular users; for example, each user’s profile contents are hidden from other
nonadministrative users. To report on these objects, AccessChk must be running with
 elevated/administrative rights. Yet there are some objects that do not grant any access to
Administrators but only to System. So that it can report on these objects when an adminis-
trative token is insufficient, AccessChk duplicates a System token from the Smss.exe process
and impersonates it to retry the access attempt. Without that feature, the previous example
would not work.

Output Options
Instead of reporting just R or W to indicate permissions, you can view verbose permissions
by adding –v to the AccessChk command line. Beneath each account name, AccessChk lists
the specific permissions using the symbolic names from the Windows SDK. These are the

274 Part II Usage Guide

 effective permissions reported with the –v option for %SystemDrive%\ on a Windows 7
system:

C:\
 Medium Mandatory Level (Default) [No-Write-Up]
 RW BUILTIN\Administrators
 FILE_ALL_ACCESS
 RW NT AUTHORITY\SYSTEM
 FILE_ALL_ACCESS
 R BUILTIN\Users
 FILE_LIST_DIRECTORY
 FILE_READ_ATTRIBUTES
 FILE_READ_EA
 FILE_TRAVERSE
 SYNCHRONIZE
 READ_CONTROL
 W NT AUTHORITY\Authenticated Users
 FILE_ADD_SUBDIRECTORY

The verbose output shows that Administrators and System have full control, Users have Read
access, and Authenticated Users additionally have the ability to create subfolders within that
folder.

Instead of showing effective permissions, you can display the object’s actual access control
list (ACL) with the –l (lower case L) option. Here is the ACL for the “C:\Documents and
Settings” junction on Windows 7 that was described at the beginning of the AccessChk
 section. Each access control entry (ACE) is listed in order, identifying a user or group, whether
access is allowed or denied, and which permissions are allowed or denied. If present, ACE
flags are shown in square brackets, indicating inheritance settings. If [INHERITED_ACE] is not
present, the ACE is an explicit ACE.

C:\Documents and Settings
 Medium Mandatory Level (Default) [No-Write-Up]
 [0] Everyone
 ACCESS_DENIED_ACE_TYPE
 FILE_LIST_DIRECTORY
 [1] Everyone
 ACCESS_ALLOWED_ACE_TYPE
 FILE_LIST_DIRECTORY
 FILE_READ_ATTRIBUTES
 FILE_READ_EA
 FILE_TRAVERSE
 SYNCHRONIZE
 READ_CONTROL
 [2] NT AUTHORITY\SYSTEM
 ACCESS_ALLOWED_ACE_TYPE
 FILE_ALL_ACCESS
 [3] BUILTIN\Administrators
 ACCESS_ALLOWED_ACE_TYPE
 FILE_ALL_ACCESS

 Chapter 8 Security Utilities 275

AccessChk reports any errors that occur when enumerating objects or retrieving security
 information. Add –u to the command line to suppress these error messages. Objects that
trigger errors will then go unreported. Finally, to omit the AccessChk banner text, add –q to
the command line.

AccessEnum
AccessEnum is a GUI utility that makes it easy to identify files, folders, or registry keys that
might have had their permissions misconfigured. Instead of listing the permissions on every
object it scans, AccessEnum identifies the objects within a file or registry hierarchy that have
permissions that differ from those of their parent containers. This lets you focus on the point
at which the misconfiguration occurred, rather than on every object that inherited that
setting.

For example, sometimes in an effort to get an application to work for a nonadministrative
user, someone might grant Full Control to Everyone on the application’s subfolder under
Program Files, which should be read-only to nonadministrators. As shown in Figure 8-2,
AccessEnum identifies that folder and shows which users or groups have been granted access
that differs from that of Program Files. In the example, the first line shows the permissions
on C:\Program Files; the second line shows a subfolder that grants Everyone at least some
read and write permissions (possibly full control), while the last two items do not grant
Administrators any Write access.

FIGURE 8-2 AccessEnum.

In the text box near the top of the AccessEnum window, enter the root path of the folder or
registry subkey that you want to examine. Instead of typing a path, you can pick a folder by
clicking the Directory button, or pick a registry key by clicking the Registry button. Click the
Scan button to begin scanning.

AccessEnum abstracts Windows’ access-control model to just Read, Write and Deny
 permissions. An object is shown as granting Write permission whether it grants just a single
write permission (such as Write Owner) or the full suite of write permissions via Full Control.
Read permissions are handled similarly. Names appear in the Deny column if a user or group

276 Part II Usage Guide

is explicitly denied any access to the object. Note that the legacy folder junctions described
in the AccessChk section deny Everyone the List Folder permission. AccessEnum reports
Access Denied if it is unable to read an object’s security descriptor.

When AccessEnum compares an object and its parent container to determine whether their
permissions are equivalent, it looks only at whether the same set of accounts are granted
Read, Write and Deny access, respectively. If a file grants just Write Owner access and its
 parent just Delete access, the two will still be considered equivalent because both allow some
form of writing.

AccessEnum condenses the number of accounts displayed as having access to an object
by hiding accounts with permissions that are duplicated by a group to which the account
belongs. For example, if a file grants Read access to both user Bob and group Marketing,
and Bob is a member of the Marketing group, then only Marketing will be shown in the list
of accounts having Read access. Note that with UAC’s Admin-Approval Mode on Windows
Vista and newer, this can hide cases where non-elevated processes run by a member
of the Administrators group have more access. For example, if Abby is a member of the
Administrators group, AccessEnum will report objects that grant Full Control explicitly to
Abby as well as to Administrators as granting access only to Administrators, even though
Abby’s non-elevated processes also have full control.

By default, AccessEnum shows only objects for which permissions are less restrictive than
those of their parent containers. To list objects for which permissions are different from their
parents’ in any way, choose File Display Options from the Options menu and select Display
Files With Permissions That Differ From Parent.

Because access granted to the System account and to other service accounts is not usually of
interest when looking for incorrect permissions, AccessEnum ignores permissions involving
those accounts. To consider those permissions as well, select Show Local System And Service
Accounts from the Options menu.

Click a column header to sort the list by that column. For example, to simplify a search for
rogue Write permissions, click on the Write column, and then look for entries that list the
Everyone group or other nonadministrator users or groups. You can also reorder columns by
dragging a column header to a new position.

When you find a potential problem, right-click the entry to display AccessEnum’s context
menu. If the entry represents a file or folder, clicking Properties displays Explorer’s Properties
dialog box for the item; click on the Security tab to examine or edit the object’s permissions.
Clicking Explore in the context menu opens a Windows Explorer window in that folder. If the
entry represents a registry key, clicking Explore opens Regedit and navigates to the selected
key, where you can inspect or edit its permissions. Note that on Windows Vista and newer,
AccessEnum’s driving of the navigation of Regedit requires that AccessEnum run at the same
or a higher integrity level than Regedit.

 Chapter 8 Security Utilities 277

You can hide one or more entries by right-clicking an entry and choosing Exclude. The
 selected entry and any others that begin with the same text will be hidden from the display.
For example, if you exclude C:\Folder, then C:\Folder\Subfolder will also be hidden.

Click the Save button to save the list contents to a tab-delimited Unicode text file. Choose
Compare To Saved from the File menu to display the differences in permissions between the
current list against a previously saved file. You can use this feature to verify the configuration
of one system against that of a baseline system.

ShareEnum
An aspect of Windows network security that is often overlooked is file shares. Lax security
settings are an ongoing source of security issues because too many users are granted
 unnecessary access to files on other computers. If you didn’t specify permissions when
 creating a file share in Windows, the default used to be to grant Everyone Full Control. That
was later changed to grant Everyone just Read access, but even that might expose sensitive
information to more people than those who should be authorized.

Windows provides no utilities to list all the shares on a network and their security settings.
ShareEnum fills that void, giving you the ability to enumerate all the file and printer shares in
a domain, an IP address range, or your entire network to quickly view the share permissions
in a table view, and to change the permissions on those shares.

Because only a domain administrator has the ability to view all network resources,
ShareEnum is most effective when you run it from a domain administrator account.

ShareEnum is a GUI utility and doesn’t accept any command line parameters (other than
 / accepteula). From the drop-down list, select <All domains>, which scans your entire
 network, <IP address range>, which lets you select a range of addresses to scan, or the name
of a domain. Click Refresh to scan the selected portion of your network. If you selected
<IP address range>, you will be prompted to enter a range of IP addresses to scan.

ShareEnum displays share information in a list view, as shown in Figure 8-3.

FIGURE 8-3 ShareEnum.

278 Part II Usage Guide

Click on a column header to sort the list by that column’s data, or drag the column headers
to reorder them. ShareEnum displays the following information about each share:

■ Share Path The computer and share name

■ Local Path The location in the remote computer’s file system that the share exposes

■ Domain The computer’s domain

■ Type Whether the share is a file share (Disk), a printer share (Printer), or Unknown.

■ Everyone Permissions that the share grants to the Everyone group, categorized as
Read, Write, Read/Write, or blank if no permissions are granted to the Everyone group

■ Other Read Entities other than the Everyone group that are granted Read permission
to the share

■ Other Write Entities other than the Everyone group that are granted Change or Full
Control permissions to the share

■ Deny Any entities that are explicitly denied access to the share

Click the Export button to save the list contents to a tab-delimited Unicode text file. Choose
Compare To Saved from the File menu to display the differences in permissions between the
current list and a previously exported file.

To change the permissions for a share, right-click it in the list and choose Properties.
ShareEnum displays a permissions editor dialog box for the share. To open a file share in
Windows Explorer, right-click the share in the list and choose Explore from the popup menu.

ShellRunAs
In Windows XP and Windows Server 2003, you could run a program as a different user by
right-clicking the program in Windows Explorer, choosing Run As from the context menu,
and entering alternate credentials in the Run As dialog box. This feature was often used to
run a program with an administrative account on a regular user’s desktop. Beginning with
Windows Vista, the Run As menu option was replaced with Run As Administrator, which
 triggers UAC elevation. For those who had used the Run As dialog box to run a program
under a different account without administrative rights, the only remaining option was the
less-convenient Runas.exe console utility. To restore the capabilities of the graphical RunAs
interface with added features, I co-wrote ShellRunAs with Jon Schwartz of the Windows team.

Note Some features of ShellRunAs were restored in Windows 7. Holding down Shift while
 right-clicking a program or shortcut adds Run As A Different User to the context menu.

ShellRunAs lets you start a program with a different user account from a context menu
 entry, displaying a dialog box to collect a user name and password (shown in Figure 8-4) or

 Chapter 8 Security Utilities 279

a smartcard PIN on systems configured for smartcard logon. You can also use ShellRunAs
similarly to Runas.exe but with a more convenient graphical interface. None of ShellRunAs’
features require administrative rights, not even the registering of context menu entries.
ShellRunAs can be used on Windows XP or newer.

FIGURE 8-4 ShellRunAs prompting for user credentials.

ShellRunAs also supports the Runas.exe netonly feature, which was never previously available
through a Windows GUI. With the netonly option, the target program continues to use the
launching user’s security context for local access, but it uses the supplied alternate creden-
tials for remote access. (See Figure 8-5.) Note that a console window might flash briefly when
ShellRunAs starts a program with netonly.

FIGURE 8-5 ”Run As Different User” options added to the Explorer context menu.

The valid command-line syntax options for ShellRunAs are listed next, followed by
 descriptions of the command-line switches:

ShellRunAs /reg [/quiet]

ShellRunAs /regnetonly [/quiet]

ShellRunAs /unreg [/quiet]

■ /reg Registers Run As Different User as an Explorer context menu option for the
 current user. (See Figure 8-5.)

■ /regnetonly Registers Run As Different User (Netonly) as an Explorer context menu
option for the current user.

■ /unreg Unregisters any registered ShellRunAs context menu options for the
current user.

■ /quiet Does not show a result dialog box for registration or unregistration.

280 Part II Usage Guide

ShellRunAs [/netonly] program [arguments]

This syntax allows the direct launching of a program from the ShellRunAs command
line. With /netonly, you can specify that the credentials collected should be used only
for remote access.

Autologon
The Autologon utility enables you to easily configure Windows’ built-in autologon
 mechanism, which automatically logs on a user at the console when the computer starts
up. To enable autologon, simply run Autologon, enter valid credentials in the dialog box,
and click the Enable button. You can also pass the user name, domain, and password as
 command-line arguments, as shown in the following example:

autologon Abby MYDOMAIN Pass@word1

The password is encrypted in the registry as an LSA secret. The next time the system starts,
Windows will try to use the entered credentials to log on the user at the console. Note that
Autologon does not verify the submitted credentials, nor does it verify that the specified user
account is allowed to log on to the computer. Also note that although LSA Secrets are en-
crypted in the registry, a user with administrative rights can easily retrieve and decrypt them.

To disable autologon, run Autologon and click the Disable button or press the Escape key. To
disable autologon one time, hold down the Shift key during startup at the point where the
logon would occur. Autologon can also be prevented via Group Policy.

Autologon is supported on Windows XP and newer, and requires administrative privileges.

LogonSessions
The LogonSessions utility enumerates active logon sessions created and managed by the
Local Security Authority (LSA). A logon session is created when a user account or service
 account is authenticated to Windows. Authentication can occur in many ways. Here are some
examples:

■ Via an interactive user logon at a console or remote desktop dialog box

■ Through network authentication to a file share or a Web application

■ By the service control manager using saved credentials to start a service

■ Via the Secondary Logon service using Runas.exe

■ Simply “asserted” by the operating system, as is done with the System account and for
NT AUTHORITY\ANONYMOUS LOGON, which is used when performing actions on
 behalf of an unauthenticated user or an “identify” level impersonation token.

 Chapter 8 Security Utilities 281

An access token is created along with the logon session to represent the account’s security
context. The access token is duplicated for use by processes and threads that run under
that security context, and it includes a reference back to its logon session. A logon session
 remains active as long as there is a duplicated token that references it.

Each logon session has a locally-unique identifier (LUID). A LUID is a system-generated 64-bit
value guaranteed to be unique during a single boot session on the system on which it was
generated. Some LUIDs are predefined. For example, the LUID for the System account’s logon
session is always 0x3e7 (999 decimal), the LUID for Network Service’s session is 0x3e4 (996),
and Local Service’s is 0x3e5 (997). Most other LUIDs are randomly generated.

There are a few resources that belong to logon sessions. These include SMB sessions and
network drive letter mappings (for example, NET USE), and Subst.exe associations. You can
see these in the Windows object manager namespace using the Sysinternals WinObj utility
(discussed in Chapter 14), under \Sessions\0\DosDevices\LUID. Resources belonging to the
System logon session are in the global namespace.

Note that these LSA logon sessions are orthogonal to terminal services (TS) sessions. TS
 sessions include interactive user sessions at the console and remote desktops, and “session
0”, in which all service processes run. A process’ access token identifies the LSA logon session
from which it derived, and (separately) the TS session in which it is running. Although most
processes running as System (logon session 0x3e7) are associated with session 0, there are
two System processes running in every interactive TS session (an instance of Winlogon.exe
and Csrss.exe). You can see these by selecting the Session column in Process Explorer.

LogonSessions is supported on Windows XP and newer, and it requires administrative
 privileges. Run LogonSessions at an elevated command prompt and it will list information
about each active logon session, including the LUID that is its logon session ID, the user
name and SID of the authenticated account, the authentication package that was used, the
logon type (such as Service or Interactive), the ID of the terminal services session with which
the logon session is primarily associated, when the logon occurred (local time), the name of
the server that performed the authentication, the DNS domain name, and the User Principal
Name (UPN) of the account. If you add /p to the command line, LogonSessions will list under
each logon session all of the processes with a process token associated with that logon
 session. Here is sample output from LogonSessions:

 [0] Logon session 00000000:000003e7:
 User name: MYDOMAIN\WIN7-X64-VM$
 Auth package: Negotiate
 Logon type: (none)
 Session: 0
 Sid: S-1-5-18
 Logon time: 6/9/2010 23:02:35
 Logon server:
 DNS Domain: mydomain.lab
 UPN: WIN7-X64-VM$@mydomain.lab

282 Part II Usage Guide

[1] Logon session 00000000:0000af1c:
 User name:
 Auth package: NTLM
 Logon type: (none)
 Session: 0
 Sid: (none)
 Logon time: 6/9/2010 23:02:35
 Logon server:
 DNS Domain:
 UPN:

[2] Logon session 00000000:000003e4:
 User name: MYDOMAIN\WIN7-X64-VM$
 Auth package: Negotiate
 Logon type: Service
 Session: 0
 Sid: S-1-5-20
 Logon time: 6/9/2010 23:02:38
 Logon server:
 DNS Domain: mydomain.lab
 UPN: WIN7-X64-VM$@mydomain.lab

[3] Logon session 00000000:000003e5:
 User name: NT AUTHORITY\LOCAL SERVICE
 Auth package: Negotiate
 Logon type: Service
 Session: 0
 Sid: S-1-5-19
 Logon time: 6/9/2010 23:02:39
 Logon server:
 DNS Domain:
 UPN:

[4] Logon session 00000000:00030ee4:
 User name: NT AUTHORITY\ANONYMOUS LOGON
 Auth package: NTLM
 Logon type: Network
 Session: 0
 Sid: S-1-5-7
 Logon time: 6/9/2010 23:03:32
 Logon server:
 DNS Domain:
 UPN:

[5] Logon session 00000000:0006c285:
 User name: MYDOMAIN\Abby
 Auth package: Kerberos
 Logon type: Interactive
 Session: 1
 Sid: S-1-5-21-124525095-708259637-1543119021-20937
 Logon time: 6/9/2010 23:04:06
 Logon server:
 DNS Domain: MYDOMAIN.LAB
 UPN: abby@mydomain.lab

 Chapter 8 Security Utilities 283

[6] Logon session 00000000:000709d3:
 User name: MYDOMAIN\Abby
 Auth package: Kerberos
 Logon type: Interactive
 Session: 1
 Sid: S-1-5-21-124525095-708259637-1543119021-20937
 Logon time: 6/9/2010 23:04:06
 Logon server:
 DNS Domain: MYDOMAIN.LAB
 UPN: abby@MYDOMAIN.LAB

Because the System and Network Service accounts can authenticate with the credentials
of the computer account, the names for these accounts appear as domain\computer$ (or
workgroup\computer$ if they’re not domain-joined). The logon server will be the computer
name for local accounts and can be blank when logging on with cached credentials.

Also note that on Windows Vista and newer with User Account Control (UAC) enabled,
two logon sessions are created when a user interactively logs on who is a member of the
Administrators group,1 as you can see with MYDOMAIN\Abby in entries [5] and [6] in the
preceding sample. One logon session contains the token representing the user’s full rights,
and the other contains the filtered token with powerful groups disabled and powerful
 privileges removed. This is the reason that when an administrator elevates, the drive-letter
mappings that are present for the non-elevated processes aren’t defined for the elevated
ones. You can see these and other per-session data by navigating to \Sessions\0\DosDevices\
LUID in WinObj, described in Chapter 14. (Also see Knowledge Base article 937624
 (available at http://support.microsoft.com/kb/937624) for information about configuring
EnableLinkedConnections.)

SDelete
Object reuse protection is a fundamental policy of the Windows security model. This means
that when an application allocates file space or virtual memory it is unable to view data that
was previously stored in that space. Windows zero-fills memory and zeroes the sectors on
disk where a file is placed before it presents either type of resource to an application. Object
reuse protection does not dictate that the space that a file occupies be zeroed when it is
 deleted, though. This is because Windows is designed with the assumption that the operating
system alone controls access to system resources. However, when the operating system is not
running it is possible to use raw disk editors and recovery tools to view and recover data that
the operating system has deallocated. Even when you encrypt files with Windows’ Encrypting
File System (EFS), a file’s original unencrypted file data might be left on the disk after a new
encrypted version of the file is created. Space used for temporary file storage might also not
be encrypted.

1 More accurately, two logon sessions are created if the user is a member of a well-known “powerful” group or is
granted administrator-equivalent privileges such as SeDebugPrivilege.

284 Part II Usage Guide

The only way to ensure that deleted files, as well as files that you encrypt with EFS, are safe
from recovery is to use a secure delete application. Secure delete applications overwrite a
deleted file’s on-disk data using techniques that are shown to make disk data unrecover-
able, even if someone is using recovery technology that can read patterns in magnetic
 media that reveal weakly deleted files. SDelete (Secure Delete) is such an application. You
can use SDelete both to securely delete existing files, as well as to securely erase any file
data that exists in the unallocated portions of a disk (including files you have already deleted
or encrypted). SDelete implements the U.S. Department of Defense clearing and sanitizing
 standard DOD 5220.22-M, to give you confidence that after it is deleted with SDelete, your
file data is gone forever. Note that SDelete securely deletes file data, but not file names
 located in free disk space.

Using SDelete
SDelete is a command-line utility. It works on Windows XP and newer and does not require
administrative rights. It uses a different command-line syntax for secure file deletion and
for erasing content in unallocated disk space. To securely delete one or more files or folder
 hierarchies, use this syntax:

sdelete [-p passes] [-a] [-s] [-q] file_spec

The file_spec can be a file or folder name, and it can contain wildcard characters. The –p
 option specifies the number of times to overwrite each file object. The default is one pass.
The –a option is needed to delete read-only files. The –s option recurses subfolders to
 delete files matching the specification or to delete a folder hierarchy. The –q option (quiet)
 suppresses the listing of per-file results. Here are some examples:

REM Securely deletes secret.txt in the current folder
sdelete secret.txt

REM Securely deletes all *.docx files in the current folder and subfolders
sdelete -s *.docx

REM Securely deletes the C:\Users\Bob folder hierarchy
sdelete -s C:\Users\Bob

To securely delete unallocated disk space on a volume, use this syntax:

sdelete [-p passes] [-z|-c] [d:]

There are two ways to overwrite unallocated space: the –c option overwrites it with random
data, while the –z option overwrites it with zeros. The –c option supports DoD compliance;
the –z option makes it easier to compress and optimize virtual hard disks. The –p option
specifies the number of times to overwrite the disk areas. If the drive letter is not specified,
the current volume’s unallocated space is cleansed. Note that the colon must be included in
the drive specification.

 Chapter 8 Security Utilities 285

Note The Windows Cipher /W command is similar in purpose to SDelete –c, writing random
data over all hard drive free space outside of the Master File Table (MFT).

Note that during free-space cleaning, Windows might display a warning that disk space is
running low. This is normal, and the warning can be ignored. (The reason this happens will be
explained in the next section.)

How SDelete Works
Securely deleting a file that has no special attributes is relatively straightforward: the secure
delete program simply overwrites the file with the secure delete pattern. What is trickier is
to securely delete compressed, encrypted, or sparse files, and securely cleansing disk free
spaces.

Compressed, encrypted and sparse files are managed by NTFS in 16-cluster blocks. If a
 program writes to an existing portion of such a file, NTFS allocates new space on the disk to
store the new data, and after the new data has been written NTFS deallocates the clusters
previously occupied by the file. NTFS takes this conservative approach for reasons related to
data integrity, and (for compressed and sparse files) in case a new allocation is larger than
what exists (for example, the new compressed data is larger than the old compressed data).
Thus, overwriting such a file will not succeed in deleting the file’s contents from the disk.

To handle these types of files SDelete relies on the defragmentation API. Using the
 defragmentation API, SDelete can determine precisely which clusters on a disk are occupied
by data belonging to compressed, sparse and encrypted files. When SDelete knows which
clusters contain the file’s data, it can open the disk for raw access and overwrite those
clusters.

Cleaning free space presents another challenge. Because FAT and NTFS provide no means
for an application to directly address free space, SDelete has one of two options. The first
is that—like it does for compressed, sparse and encrypted files—it can open the disk for
raw access and overwrite the free space. This approach suffers from a big problem: even if
SDelete were coded to be fully capable of calculating the free space portions of NTFS and
FAT drives (something that’s not trivial), it would run the risk of collision with active file oper-
ations taking place on the system. For example, say SDelete determines that a cluster is free,
and just at that moment the file system driver (FAT, NTFS) decides to allocate the cluster for
a file that another application is modifying. The file system driver writes the new data to the
cluster, and then SDelete comes along and overwrites the freshly written data: the file’s new
data is gone. The problem is even worse if the cluster is allocated for file system metadata
because SDelete will corrupt the file system’s on-disk structures.

286 Part II Usage Guide

The second approach, and the one SDelete takes, is to indirectly overwrite free space. First,
SDelete allocates the largest file it can. SDelete does this using noncached file I/O so that
the contents of the NT file system cache will not be thrown out and replaced with use-
less data associated with SDelete’s space-hogging file. Because noncached file I/O must be
sector (512-byte) aligned, there might be some left over space that isn’t allocated for the
SDelete file even when SDelete cannot further grow the file. To grab any remaining space,
SDelete next allocates the largest cached file it can. For both of these files, SDelete performs
a secure overwrite, ensuring that all the disk space that was previously free becomes securely
cleansed.

On NTFS drives, SDelete’s job isn’t necessarily through after it allocates and overwrites the
two files. SDelete must also fill any existing free portions of the NTFS MFT (Master File Table)
with files that fit within an MFT record. An MFT record is typically 1 KB in size, and every file
or directory on a disk requires at least one MFT record. Small files are stored entirely within
their MFT record, while files that don’t fit within a record are allocated clusters outside the
MFT. All SDelete has to do to take care of the free MFT space is allocate the largest file it can;
when the file occupies all the available space in an MFT record, NTFS will prevent the file
from getting larger, because there are no free clusters left on the disk (they are being held by
the two files SDelete previously allocated). SDelete then repeats the process. When SDelete
can no longer even create a new file, it knows that all the previously free records in the MFT
have been completely filled with securely overwritten files.

To overwrite the file name of a file that you delete, SDelete renames the file 26 times, each
time replacing each character of the file’s name with a successive alphabetic character. For
instance, the first rename of sample.txt would be to AAAAAA.AAA.

The reason that SDelete does not securely delete file names when cleaning disk free space
is that deleting them would require direct manipulation of directory structures. Directory
 structures can have free space containing deleted file names, but the free directory space is
not available for allocation to other files. Hence, SDelete has no way of allocating this free
space so that it can securely overwrite it.

 287

Chapter 9

Active Directory Utilities
Sysinternals publishes three utilities to help manage Active Directory, and to diagnose and
troubleshoot issues involving Active Directory.

■ AdExplorer is an advanced Active Directory viewer and editor.

■ AdInsight is a real-time monitor that traces Lightweight Directory Access Protocol
(LDAP) API calls.

■ AdRestore enumerates tombstoned Active Directory objects and lets you restore
those objects.

AdExplorer
Active Directory Explorer (AdExplorer) is an advanced, low-level Active Directory viewer
and editor. AdExplorer provides much of the same functionality as Windows’ ADSI Edit, but
its many features and ease of use make AdExplorer more powerful and convenient. You
can use AdExplorer to navigate an Active Directory database; quickly view object attributes
 without having to open dialog boxes; edit object properties, attributes, and permissions;
navigate directly from an object to its schema; define favorite locations; execute sophisti-
cated searches and save them for later re-use; and save snapshots of an Active Directory
database for offline viewing and comparing. AdExplorer also opens all Active Directory
naming contexts that it can find automatically, so you don’t have to connect separately to
Configuration, Schema, and so forth.

Connecting to a Domain
AdExplorer can display multiple domains and previously-saved snapshots simultaneously
in its tree view. The Connect To Active Directory dialog box, shown in Figure 9-1, lets you
connect to a live directory server or open a saved snapshot. You can display this dialog box
with the Open toolbar icon or from the File menu. AdExplorer also displays this dialog box
on startup unless you saved previous connections or added –noconnectprompt to the
 command line.

288 Part II Usage Guide

FIGURE 9-1 The AdExplorer Connect To Active Directory dialog box.

Directory services that AdExplorer works with include Active Directory, Active Directory
Lightweight Directory Services (LDS), and Active Directory Application Mode (ADAM). To
connect to a live directory server, type the Active Directory domain name or the name or IP
address of the directory server and the user name and password of an authorized account.
You can connect to the default Active Directory domain using the credentials of the account
in which you are running by selecting the first radio button and leaving the text fields blank.

To open a previously-saved snapshot, select the second radio button in the dialog box and
browse to the snapshot file. Note that snapshots are read-only; objects and their attributes
and permissions cannot be modified or deleted. We’ll discuss snapshots in more detail in a
later section.

The Save This Connection check box saves the information for the connection or snapshot so
that when you run AdExplorer again it reestablishes the connection to the domain or snap-
shot. Note that for security reasons, AdExplorer does not save your password when saving a
connection to a domain, so you must re-enter it every time you reconnect. To delete a saved
connection, select the connection in the tree and choose Remove from the File menu or the
context menu.

To remove a directory from the AdExplorer display, right-click its root node and choose
Remove from the context menu. You can also remove a connection by selecting any object in
its tree and choosing Remove from the File menu.

The AdExplorer Display
AdExplorer displays information in two panes: the left pane shows the Active Directory object
tree, and the right pane lists the attributes defined for the object selected in the left pane. As

 Chapter 9 Active Directory Utilities 289

shown in Figure 9-2, each object in the tree is labeled with its name (for example, CN=Abby)
and an icon provided by Active Directory. The object’s distinguished name (DN) can be
 derived by walking up the tree from the object to the root, appending the names of the
 intervening objects; the DN is also shown in the Path text box immediately above the panes.
You can copy the object’s DN to the clipboard by selecting it and choosing Copy Object
Name from the Edit menu, or by right-clicking and choosing that option from the context
menu.

The selected object’s attributes are listed in the right pane in a four-column table, sorted in
alphabetical order by name. The Syntax column indicates the data type for the attribute. The
Count column indicates how many values the attribute has (attributes can be multivalued).
The Value(s) column shows the attribute’s value or values.

FIGURE 9-2 The AdExplorer main window.

AdExplorer maintains a history as you navigate through objects. You can go forward and
backward through the navigation history by using the Back and Forward entries in the
History menu or the corresponding toolbar buttons. To view the full navigation history, click
the History toolbar button or choose History | All. You can jump to a particular object in the
history by choosing it from the displayed list.

To remember the currently-selected object in the Active Directory hierarchy, choose Add To
Favorites from the Favorites menu and specify a name of your choosing. You can later return
to this object by selecting it from the Favorites menu. To rename or remove an entry in the
Favorites list, open the Favorites menu, right-click on the name, and then choose Rename or
Delete from the popup menu.

290 Part II Usage Guide

Objects
You can view additional information about an object by right-clicking it and selecting
Properties from the context menu. The content on the tabs of the Properties dialog box
 depends on whether it is a root node for a connection and, if so, whether it is an active
 connection or a snapshot.

The Properties dialog box for a root node includes tabs listing basic information about the
connection and schema statistics such as the number of classes and properties. If the node is
a RootDSE node (the root node of an active connection), the dialog box includes a RootDSE
Attributes tab listing data about the directory server, such as defaultNamingContext and
 configurationNamingContext. The Properties dialog box for the root node of a saved snap-
shot includes the path to the snapshot file, when it was captured, and any description saved
with the snapshot.

The Properties dialog box for non-root objects has three tabs: Object Properties, Security,
and Attributes. The Object Properties tab displays the object’s name, DN, object class, and
schema. Click the Go To button next to the schema, and AdExplorer’s main window will
 navigate to and select that schema object, where you can inspect or modify the schema
 definition for that object. The Security tab is a standard permissions editor that lets you view
or modify the object’s permissions. The Attributes tab lists the objects attributes, displaying
the value or values in a separate list rather than in a single line as it does in the Attributes
pane.

You can rename or delete an object by selecting the object, and then choosing Rename or
Delete from the context menu or from the Edit menu. You can also rename it by clicking the
object again after having selected it and then typing a new name.

To create a new object, right-click a parent container, choose New Object from the context
menu, and then select an object class for the new object from the New Object dialog box’s
drop down list, shown in Figure 9-3.

FIGURE 9-3 Selection of object class for a new object.

AdExplorer then displays the New Object – Advanced dialog box, shown in Figure 9-4.

 Chapter 9 Active Directory Utilities 291

FIGURE 9-4 Creation of a new object: The New Object – Advanced dialog box.

In the New Object – Advanced dialog box, type a name in the Name text box. The name
must begin with CN= and must be unique within the container. The Attributes list is
 prepopulated with attributes that are mandatory for the selected class. These need to be
edited before you can create the object. To add other attributes to the object, select from
the All Attributes drop-down list and click Add. You can remove a nonmandatory attribute
that you have added by selecting it in the list and clicking Remove. To edit an attribute in the
list, double-click it to display the Modify Attribute dialog box, which is described in the next
section.

Attributes
AdExplorer lists an object’s attributes in the main window’s right pane when you select the
object in the left pane. The object’s attributes are also listed on the Attributes tab of the
 object’s Properties dialog box. Right-click any attribute and choose Copy Attributes from the
context menu to copy the content of the list to the clipboard as tab-delimited values. (You
can also select any attribute and choose Copy Attributes from the Edit menu.) The Display
Integers As option in the same menus offers the option to display all integer values as
 decimal, as hexadecimal, or as an AdExplorer-determined default.

You can open an attribute’s Properties dialog box, shown in Figure 9-5, by double-clicking on
the attribute or by selecting it and choosing Properties from the Edit menu. The Properties
dialog box displays the attribute’s name, the DN of the object to which it belongs, its syntax
(the attribute type), its schema, and its values. The same dialog box is used to display single-
value and multi-value attributes, so the values are shown in a list box with one value per row.
Click the Go To button next to the attribute’s schema, and AdExplorer will navigate to the
directory location where that schema is defined.

292 Part II Usage Guide

FIGURE 9-5 The Attribute Properties dialog box.

The Attribute Properties dialog box is read only. To delete an attribute, right-click the
 attribute from the right pane and choose Delete from the context menu. To edit an attri-
bute’s value, right-click the attribute and choose Modify from the context menu. To define a
new attribute for the object, right-click any existing attribute and choose New Attribute from
the context menu. To add a new attribute or modify an existing attribute, use the Modify
Attribute dialog box, described in the next paragraph. Note that the Delete, Modify, and
New Attribute operations can also be found by selecting an attribute and then choosing the
desired option from the Edit menu.

The Modify Attribute dialog box, shown in Figure 9-6, supports the creating and editing of
single-value and multivalue attributes, and it treats them the same. To add an attribute to an
object, select the attribute you want to define from the Property drop-down list. To edit an
existing attribute, select it in the list. A new attribute has no initial value; click Add to enter a
new value. Take care not to add multiple values for a single-value attribute. You can modify
or remove an existing value by selecting it in the list and clicking Modify or Remove, respec-
tively. Note that the Modify Attribute dialog box can create or modify only one attribute
at a time. You must click OK after establishing the attribute’s value or values to commit
those changes. Choose New Attribute or Modify again to add or edit another attribute,
respectively.

 Chapter 9 Active Directory Utilities 293

FIGURE 9-6 The Modify Attribute dialog box.

Searching
AdExplorer has rich search functionality that allows you to search a selected object container
for objects that have attribute values matching flexible search criteria. Search definitions can
be saved for later use.

To start a general search, choose Search Container from the Search menu to display the
Search Container dialog box, shown in Figure 9-7. To search within a particular container
object, right-click the container and choose Search Container from the context menu. This
method initializes the search criteria with a distinguishedName restriction that limits results to
the selected object and its subtree.

FIGURE 9-7 The AdExplorer Search Container dialog box.

294 Part II Usage Guide

The current search criteria are displayed in a list in the middle of the dialog box. To add a
search criterion, specify the attribute for which you want to search in the Attribute combo
box, specify a relational operation and a value, and then click Add. To remove a search
 criterion, select it in the list and click Remove.

The list of available attributes is extensive. To make it easier to find an attribute, select the
class to which it belongs in the Class drop-down list. The attributes list is then limited only to
attributes that are allowed by that class’ schema. If any of the attributes have display names,
those are shown first, with the remaining attributes listed under --Advanced--. Note that the
class name is not used by the filter—it is used only to help find attributes more quickly in the
drop-down list.

After specifying the search criteria, click the Search button. The results pane will populate
with the paths to objects that match, and by double-clicking a result you can navigate to its
object in the main window.

To save a search criteria, click the Save button. The name you assign the search will appear
in the Search menu. You can rename or delete a saved search from the context menu that
 appears when you right-click on the saved search entry in the Search menu.

Snapshots
You can use AdExplorer to save a snapshot of an Active Directory database that you can
open later in AdExplorer to perform off-line inspection and searches of Active Directory
 objects and attributes. You can also compare two snapshots to see what objects, attributes,
or permissions are different. Note that AdExplorer snapshots only the default, configuration,
and schema naming contexts.

To save a snapshot, click the Save toolbar button or choose Create Snapshot from the File
menu. The Snapshot dialog box lets you add a comment to the snapshot, specify where to
save the snapshot, and apply a throttle to slow the rate at which AdExplorer will scan the
Active Directory object tree to reduce the impact to the target domain controller.

When you load a saved snapshot (using the Connect To Active Directory dialog box
 described earlier), you can browse and search it as you would a live database. Note that
snapshots are read only; you cannot make any changes to a snapshot.

After you load a snapshot, you can compare it against another snapshot file. Select any
object within a snapshot, and then choose Compare Snapshot from the Compare menu to
display the Compare Snapshots criteria setup dialog box, shown in Figure 9-8. Select an-
other snapshot to compare with the one loaded. You can limit which classes and attributes
to compare by selecting them in the classes and attributes lists. If you want to remember the
class and attribute selections for later comparisons, click the Save button and enter a name to
remember it by; this name will then appear in the Compare menu. Click the Compare button
to initiate the comparison.

 Chapter 9 Active Directory Utilities 295

FIGURE 9-8 The Compare Snapshots criteria setup dialog box.

Differences are listed when the comparison completes, as shown in Figure 9-9. Double-
clicking on a difference causes AdExplorer to navigate within the loaded snapshot to the
 object. To modify the comparison, click the New Compare button to return to the criteria
setup dialog box.

FIGURE 9-9 The Compare Snapshots results dialog box.

Choose Compare Snapshot Security from the Compare menu to compare the permissions
settings of objects in a loaded snapshot against those of another snapshot on disk. After
running the comparison, double-click on a difference to display the Effective Permissions
Comparison dialog box, which shows which permissions are different, as well as the complete
permissions for the object from Snapshot 1 and Snapshot 2.

296 Part II Usage Guide

You can script AdExplorer to create a snapshot by starting it with the –snapshot command-
line option. The option requires two parameters: the connection string and the snapshot
path. Connection string is just the server name, or you can use a pair of double quotes to
specify the default directory server. It is not possible to specify alternate credentials for the
connection. To snapshot the default domain using current credentials, use this command:

adexplorer -snapshot "" c:\snapshots\snapshot1.dat

AdExplorer Configuration
AdExplorer’s configuration settings are stored in two separate registry keys. The EulaAccepted
value is stored in HKCU\Software\Sysinternals\Active Directory Explorer. The rest of
AdExplorer’s settings—including Favorites, snapshot paths, and other dialog box settings—
are stored in HKCU\Software\MSDART\Active Directory Explorer.

AdInsight
AdInsight is a real-time monitoring utility that tracks LDAP API calls. Because LDAP is the
communication protocol used by Active Directory, AdInsight is ideal for troubleshooting
Active Directory client applications.

AdInsight uses DLL injection techniques to intercept calls that applications make in the
Wldap32.dll library, which is the standard Windows library that implements low-level LDAP
functionality, and upon which higher-level libraries such as ADSI (Active Directory Service
Interfaces) rely. Unlike network monitoring tools, AdInsight intercepts and interprets all
 client-side APIs, including those that do not result in transmission to a server.

AdInsight monitors any process into which it can load its tracing DLL. It works most reliably
when it is executed in the same security context and on the same desktop as the applica-
tion being monitored. If the client application does not have administrative rights, AdInsight
should not either.

To monitor Windows services, AdInsight needs to execute in Terminal Services session 0. On
Windows XP and Windows Server 2003, this is typically the case when the AdInsight user
has logged on at the console. However, on Windows Vista and newer, the interactive user
 desktop is never in session 0. You can start AdInsight in session 0 by running the following
PsExec command with administrative rights:

psexec -d -i 0 adinsight.exe

AdInsight will then be able to inject its tracing DLL into other processes in session 0, including
Windows services.

 Chapter 9 Active Directory Utilities 297

Note that the DLL that AdInsight injects into other processes cannot unload without risking
a process crash, so the DLL remains in a process until the process exits. Although the DLL
shouldn’t cause any problems for host processes, it is advisable to reboot after you are done
using AdInsight.

AdInsight Data Capture
AdInsight starts with capture mode on, so it immediately begins tracing LDAP API calls in
other processes and displaying information about them in its main window. As shown in
Figure 9-10, AdInsight’s upper pane—the Event Pane—consists of a table, with each row
 representing a separate LDAP event. The Details Pane below it contains detailed parameter
information for the event selected in the Event Pane. Autoscroll is on by default, so the dis-
play is scrolled to show new events as they are captured. Autoscroll can be toggled from the
View menu by pressing Ctrl+A or by clicking the Autoscroll toolbar button. Similarly, capture
mode can be toggled on and off from the File menu by pressing Ctrl+E or by clicking the
Capture toolbar button.

FIGURE 9-10 AdInsight.

Columns in both the Event Pane and Details Pane can be resized by dragging the right
 border of the column header, or they can be moved by dragging the column header to a
new position. If data in a column is larger than the column can display, hover the cursor over
the displayed portion and the full text will be displayed in a tooltip.

You can choose which columns appear in the display by choosing Select Columns from the
Options menu or from the context menu that appears when you right-click on the table
header in the top or bottom pane. Select the columns you want the Event Pane and Details
Pane to show in the Select Columns dialog box (shown in Figure 9-11).

298 Part II Usage Guide

FIGURE 9-11 AdInsight’s Select Columns dialog box.

The meaning of each column is described in the following list. These are the columns that
can be displayed in the Event Pane:

■ ID The unique sequence number assigned by AdInsight to the event. Gaps in
 sequence numbers might indicate dropped events resulting from heavy activity or from
filtering that prevents some items from appearing in the display.

■ Time The time that the event occurred. By default, the time is represented as the
amount of time since AdInsight began monitoring. Other time-display options are
 described later in the chapter.

■ Process The name and PID of the process making the LDAP call, and the icon from
the process’ image file.

■ Request The name of the LDAP function call. By default, AdInsight displays a simple
name representing the function, such as open, search, or get values. To display the
 actual LDAP function name, such as ldap_open, ldap_search_s, or ldap_get_values,
 deselect Show Simple Event Name in the Options menu.

■ Type Indicates whether the request is synchronous or asynchronous.

■ Session The LDAP session handle.

■ Event ID The LDAP event handle.

■ Domain Controller The name of the domain controller, if any, to which the request
was directed. If a domain controller (DC) was not specified, the request was directed to
all DCs within the site.

■ User The user account used to access the LDAP server. This column is empty if the
server was not contacted.

■ Input Data passed from the process to the LDAP server as part of the request. If
 multiple pieces of data were passed to the server, AdInsight selects one to be displayed
in this column. The Details Pane shows all input data sent to the server.

 Chapter 9 Active Directory Utilities 299

■ Output Data passed from the LDAP server to the process as a result of the request.
If the operation returned multiple data items, AdInsight selects one to be displayed in
this column. The Details Pane shows all output data returned from the server.

■ Result The result code returned by the request. To make it easier to see failure results,
success results are not displayed by default. To display success results as well, deselect
Suppress Success Status from the Options menu.

■ Duration The elapsed time from the start of the API call to its completion. See the
upcoming section on time display options.

The Details Pane shows the input and output parameters for the event selected in the Event
Pane. You can select any of the following columns to appear in the Details Pane:

■ Parameter The parameter names for the selected LDAP call

■ In/Out Whether the parameter is being sent to the LDAP server (“[IN]”) or received by
the application (“[OUT]”)

■ Value The parameter value sent or received by the process

To view more information about a request, right-click the event and choose Event
Information. A pop-up window appears, showing the LDAP function name, a one-sentence
description of the function, and a hyperlink that opens your browser to search for more
 information about the function on the MSDN Library Web site.

To view more information about an Active Directory object, right-click an event associated
with that object and choose Explore. AdInsight will launch AdExplorer and navigate to the
object in the AdExplorer view.

To view more information about a process, right-click the event and choose Process
Information. A dialog box like the one shown in Figure 9-12 displays process informa-
tion including the path to the executable, the command line that launched it, the current
 directory, and the user account under which the process is running.

FIGURE 9-12 AdInsight Process Information dialog box.

300 Part II Usage Guide

To view information about all processes for which requests were captured, choose Processes
from the View menu. The Processes dialog box lists the name, PID and image path for each
process in the report. Double-click a process name to display the Process Information dialog
box for that process.

To clear the Event Pane, click the Clear toolbar button or press Ctrl+X. Clearing events also
resets the sequence number to 0. It also resets the values displayed in the Time column if
relative time is selected.

By default, AdInsight retains the most recent 50,000 events and discards older lines. To
change this history depth, choose History Depth on the View menu and specify a different
number. If you specify 0, AdInsight will retain all event data and never discard older events.
Note that turning off Autoscroll disables the History Depth limit so as to stop new items
pushing the currently viewable items out of the list.

Display Options
In addition to changing the font AdInsight uses and making AdInsight appear Always On Top
(both on the Options menu), you can decide whether AdInsight uses “friendly” or technical
terms and customize their format.

Setting Time Display Options
By default, the Time column shows the amount of time since AdInsight began monitoring
(which is reset when Clear Display is invoked). Select Clock Time from the Options menu if
you prefer to show the actual local time when the event occurred. With Clock Time enabled,
the Options menu also offers the choice whether to Show Milliseconds in that representation.

The Time column (when not showing Clock Time) and the Duration column show their values
formatted as simple time. That is, they are represented as a number of seconds, milliseconds,
or microseconds so that there are always one to three digits to the left of the decimal. If
you deselect Show Simple Time on the Options menu, these values display as seconds, with
eight digits to the right of the decimal point. For example, a Duration can be represented as
“25.265ms” (simple time) or as “0.025265”.

Display Names
By default, AdInsight displays a simple name representing the LDAP function, such as
open, search, or get values. To display the actual LDAP function name, such as ldap_open,
ldap_search_s, or ldap_get_values, deselect Show Simple Event Name on the Options menu.

AdInsight represents distinguished names in an easier-to-read format, such as mydomain.lab\
Users\Abby. To view the actual distinguished names (for example, CN=Abby,CN=Users,DC=
mydomain,DC=lab), select Show Distinguished Name Format from the Options menu.

 Chapter 9 Active Directory Utilities 301

When AdInsight shows LDAP filter strings in the Details Pane, it uses an easier-to-read infix
notation, like the following:

((NOT((showInAdvancedViewOnly=TRUE)) AND (samAccountType=805306368)) AND
 ((name=rchase-2k8*) OR (sAMAccountName=rchase-2k8*)))

If you prefer to view the standard (prefix) LDAP syntax, deselect Show Simple LDAP Filters in
the Options menu. This is what the previous query filter looks like in standard syntax:

(&(&(!(showInAdvancedViewOnly=TRUE))(samAccountType=805306368)) (|(name=rchase-2k8*)
 (sAMAccountName=rchase-2k8*)))

Finding Information of Interest
AdInsight offers several ways to find information of interest. These include text search, visual
highlighting, and navigation options.

Finding Text
To search for an occurrence of text in the Event Pane, press Ctrl+F or click the Find toolbar
icon to open the Find dialog box, shown in Figure 9-13. In addition to providing the usual
options to match whole words only, make the search case sensitive, and specify direction, the
Find dialog box lets you specify in which of the visible columns to search for the text. If the
text you entered is found in the Event Pane, the matching event will be selected and Auto
Scroll will be turned off to keep the line in the window.

FIGURE 9-13 AdInsight Find dialog box.

The Find dialog box is modeless, meaning that you can switch back to the AdInsight main
window without closing the Find dialog box. After performing a search and with focus on the

302 Part II Usage Guide

AdInsight main window, you can repeat the previous search down the event list by pressing
F3; press Shift+F3 to repeat the previous search up the event list.

Highlighting Events
Highlighting calls attention to information of interest visually. By default, events with error
results are highlighted in red, and events that took more than 50 ms to complete are high-
lighted in dark blue. To toggle all highlighting on or off, choose Enable Highlighting from the
Highlight menu. To customize highlighting, choose Highlight Preferences from the Highlight
menu; this displays the Highlight Preferences dialog box, shown in Figure 9-14.

FIGURE 9-14 AdInsight Highlight Preferences dialog box.

In the Event Item Highlighting group, Sessions and Related Items highlight items similar to
the selected event. When you select an item in the Event Pane, the highlighting is updated
to identify associated events. If Sessions is selected, all events with the same session handle
as the selected event are highlighted with that option’s color (black text on light blue by
default). If Related Items is selected, all events with the same event handle are highlighted
(black text on yellow, by default).

To highlight events belonging to particular processes by name, select Process and type a text
expression matching the process name or names in the Process Name Filter list. Events with
a process name that contains the specified text will be highlighted (by default, black text on
green). Filter expression rules apply to text in the Process Name Filter list. For example, to
highlight ldp.exe and svchost.exe, you can type a filter like this: ldp;svchost.

 Chapter 9 Active Directory Utilities 303

The Error Highlighting group identifies events that reported error results or that took longer
than a specified amount of time to complete. You can enable these highlights indepen-
dently, and specify the time threshold in seconds at which an event gets highlighted. Note
that the feature that navigates to the next or previous error event requires that Error Result
 highlighting be enabled.

To change a highlight color, click the Color button corresponding to the highlight option.
This opens the Highlight Color dialog box, which lets you set both foreground and
 background colors for that highlight.

Viewing Associated Events
AdInsight offers two options to open a new AdInsight window listing just events associated
with the selected event. Select the event of interest in the main AdInsight window, and then
choose View Related Events or View Session Events from the View menu or from the right-
click context menu.

View Related Events opens the Related Transaction Events window. It lists all events from the
main window with the same event handle as the selected event. View Session Events opens
the Related Session Events window. This lists all events from the main window with the same
LDAP session handle as the selected event.

The Related Events windows are very similar to the main AdInsight window. The window is
divided into an Events Pane and a Details Pane. The column sets that appear in these panes
are the same as those of the main window. These columns can be resized and reordered, but
the column selection cannot be changed from here.

Finding Event Errors
Click the Goto Next Event Error toolbar button to find and select the next event in the
Event Pane that returned an error result. To find and select the previous error, click the Goto
Previous Event Error toolbar button. These features can also be found by right-clicking an
event and choosing Next Event Error or Previous Event Error from the context menu.

Note that these toolbar buttons and context menu items are enabled only when highlighting
is on and Error Result highlighting is selected.

Filtering Results
To reduce the amount of information to analyze, you can configure filters that apply while
data is collected. Filtering allows you to display or hide events based on process name or on
specific LDAP functions. Note that filters are applied only during data capture; changing a
filter does not affect the list of events that have already been captured.

304 Part II Usage Guide

To configure the data capture filter, click the Filter toolbar button or choose Event Filter from
the View menu. This opens the Event Filters dialog box, shown in Figure 9-15. The Process
Filter group lets you specify filter match strings to include or exclude events based on
 process name. By default, all processes are included: the Include filter is set to the wildcard
character (*), and the Exclude filter is empty. You can specify one or more matching strings in
the Include or Exclude text box, separated by semicolons. If an event’s process contains one
or more of the text substrings in the Exclude filter, the event will not be displayed; otherwise,
if the Include filter is *, the event will be displayed. If the Include filter is set to one or more
other text substrings, the event will be displayed only if its process name includes one of the
substrings. Text comparisons are case insensitive. Do not include spaces in the text filters
 unless you want the spaces to be part of the filter.

FIGURE 9-15 AdInsight Event Filters dialog box.

The Transactions list in the lower left of the Event Filters dialog box specifies which LDAP
functions (transactions) will be displayed in the AdInsight Event Pane. Note that the default
filter does not select all events. You can select or unselect individual low-level functions by
name in this list. To select or clear the entire list, click the Select All or Clear All button. To
 select or unselect entire sets of related APIs at once, select or unselect the corresponding
check boxes in the Transaction Groups group. For example, to view only functions involved
with connecting, binding, or disconnecting from the server, click the Clear All button and
then select the Connect check box. To display events not commonly used for troubleshooting
and configuration, select Show Advanced Events.

To reset all filters to their default values, click the Reset To Default button. Note that when
you start AdInsight with a process filter applied from a previous session, the Event Filters
 dialog box opens to confirm your filter settings. To start the console without opening the
Filter dialog box, add the –q parameter to your startup command.

 Chapter 9 Active Directory Utilities 305

Saving and Exporting AdInsight Data
To save all data captured by AdInsight, choose Save or Save As from the File menu. The
 default extension for AdInsight’s native file format is .wit; this file format preserves all the
data that was captured with full fidelity so that it can be loaded into AdInsight on the same
system or on a different one at a later time. To open a saved AdInsight file, press Ctrl+O or
choose Open from the File menu.

To save AdInsight data as a text file, press Ctrl+Alt+S or choose Export To Text File from the
File menu. AdInsight exports the data as a tab-delimited ANSI text file with column headers,
with each row representing one event. AdInsight asks whether you want to export all column
data or only data from the columns selected for display. If you select the Include Detailed
Information option, data from the Details Pane is appended to the event as additional tab-
delimited fields. Note that only the first of these additional columns will have a column
header.

To copy a row of text from the Event Pane or the Details Pane to the Windows clipboard,
select the row and press Ctrl+C. Data in the visible columns is copied to the clipboard as
 tab-delimited text.

Finally, you can use AdInsight to view HTML-formatted reports of the captured events in your
Web browser. Choose HTML Reports in the View menu and then one of the following report
types:

■ Events This report produces an HTML report containing data from the visible columns
in the Event Pane, with one row per event. Data in the Request column is rendered as
a hyperlink to documentation about the function on the MSDN Library Web site. Note
that if you have a significant amount of data, this report can be quite large and can
take a long time for a browser to render.

■ Events with Details This report shows the same information as the Events report, but
it adds a table beneath each event row showing the content of the Details Pane for that
event.

■ Event Time Results This report produces a histogram report of the LDAP calls in the
Event Pane, the number of times each one was called, the total time for all the calls,
the longest duration of any one of the calls, and the average time per call. To include
all LDAP functions in the report, including those that were not called and captured by
AdInsight, choose Preferences from the Options menu and deselect Suppress Uncalled
Functions In Reports.

■ Highlighted Events This report is the same as the Events With Details report, but it
includes only events that are currently highlighted.

306 Part II Usage Guide

AdInsight creates these reports in your TEMP folder. To save them to another location, you
can use your browser’s Save As function, or copy or move them directly from your TEMP
folder. (The file location should be in your browser’s address bar.)

Command-Line Options
You can use command-line parameters to set AdInsight startup options from a batch file or
command window. The AdInsight command-line syntax is

adinsight [-fi IncludeFilter] [-fe ExcludeFilter] [-f SavedFile] [-q] [-o] [-t]

Here is an explanation of the items shown in the preceding command line:

■ –fi IncludeFilter Sets the text for an Include process name filter. See the “Filtering
Results” section earlier in this chapter for more information.

■ –fe ExcludeFilter Sets the text for an Exclude process name filter. See the “Filtering
Results” section earlier in this chapter for more information.

■ –f SavedFile Opens a saved AdInsight file for viewing.

■ –q Starts AdInsight without opening the Filter dialog box. By default, the Filter dialog
box is displayed at startup if any process filters are applied.

■ –o Turns off event capture at startup.

■ –t Displays a notification icon on the Taskbar.

AdRestore
Windows Server 2003 Active Directory introduced the ability to restore deleted (tombstoned)
objects. AdRestore is a simple command-line utility that enumerates deleted objects in a do-
main and gives you the option of restoring each one.

AdRestore’s command-line syntax is

adrestore [-r] [searchfilter]

Without any command-line options, AdRestore enumerates the deleted objects in the
 current domain, showing the CN, DN, and last-known parent container for each object. With
the –r option, AdRestore displays objects one at a time, prompting the user to enter y or n
after each one to restore or not restore the object.

 Chapter 9 Active Directory Utilities 307

You can specify any text as the search filter to list an object only if its CN contains that text.
Search-filter comparison is case insensitive and should be enclosed in quotes if it contains
spaces. The following example looks for deleted objects with the name “Test User” in its CN
and prompts the user to restore those objects:

adrestore -r "Test User"

By default, only domain administrators can enumerate or restore deleted objects, though this
capability can be delegated to others. If you do not have permission to enumerate deleted
objects, Active Directory (and therefore AdRestore) returns 0 entries rather than an error. In
addition, the following limitations apply to restoring deleted objects:

■ A tombstone retains only a subset of the original object’s attributes, so AdRestore can-
not fully restore a deleted object. A restored user object requires that its password be
set again.

■ An object cannot be restored when the tombstone lifetime for the object has expired
because when the tombstone lifetime has expired, the object is permanently deleted.

■ Objects that exist at the root of the naming context, such as a domain or application
partition, cannot be restored.

■ Schema objects cannot be restored. Schema objects should never be deleted because
that can lead to invalid Active Directory objects.

■ An object cannot be restored if its parent container has been deleted and not restored.

■ It is possible to restore deleted containers, but the restoration of the deleted objects
that were in the container before the deletion is difficult because the tree structure
 under the container must be manually reconstructed.

 309

Chapter 10

Desktop Utilities
Unlike most of the Sysinternals utilities, the ones described in this chapter are not primarily
for diagnostic or troubleshooting purposes. BgInfo displays computer configuration informa-
tion as desktop wallpaper. Desktops lets you run applications on separate virtual desktops
and to switch between those desktops. And ZoomIt is a screen magnification and annotation
utility that I use in all my presentations.

BgInfo
How many times have you walked up to a system that you manage and needed to run
 several console commands or click through several diagnostic windows to identify important
aspects of its configuration such as its name, IP address, or operating system version?
Sysinternals BgInfo can automatically display this information and much more on the desktop
wallpaper. By running BgInfo from your startup folder, you can always ensure that this infor-
mation is immediately visible and up to date when you log on. (See Figure 10-1.) In addition
to displaying a wealth of data, BgInfo offers many options for customizing its appearance.
And because BgInfo creates the wallpaper image and then exits, you don’t have to worry
about it consuming system resources or interfering with other applications.

FIGURE 10-1 Desktop wallpaper created by BgInfo.

310 Part II Usage Guide

When you start BgInfo without command-line options, it displays its configuration editor
with a 10-second Time Remaining indicator in the upper right portion of the dialog box, as
shown in Figure 10-2. You can stop the timer by clicking on something within the window.
If the timer expires, BgInfo sets the wallpaper according to the displayed configuration and
then exits.

FIGURE 10-2 BgInfo editor window, with 10 seconds remaining until the displayed configuration is applied.

Configuring Data to Display
The BgInfo editor lets you position and shape the data to display in the wallpaper. You can
combine text of your choosing with data fields referenced within angle brackets. BgInfo’s
default configuration lists labels and data fields for all its built-in fields in alphabetical order.
For example, when the configuration shown in Figure 10-2 is used to generate a wallpaper
image, the text “Boot Time:” will appear in the wallpaper, and to its right “<Boot Time>” will
be replaced with the actual boot time of the computer.

To change which fields are displayed, simply change the text in the editor window. For
 example, to have the CPU information appear first in Figure 10-2, select the entire line
 containing “CPU” in the editor window, press Ctrl+X to cut it, move the insertion point to
the top of the editor window, and press Ctrl+V to paste it as the top line. You can also insert
a label and a corresponding angle-bracketed data field at the current insertion point in the
editor window by selecting an entry in the Fields list and clicking the Add button, or simply
by double-clicking the entry in the list.

The labels are optional. For example, to show the logged-on user in DOMAIN\USER format,
specify two data fields separated by a backslash: <Logon Domain>\<User Name>.

Table 10-1 lists the data fields that BgInfo defines.

 Chapter 10 Desktop Utilities 311

TABLE 10-1 BgInfo Data Fields

Name of Field Description
Operating System Attributes
OS Version The name of the operating system, such as Windows 7. If BgInfo doesn’t

 recognize the operating system, it displays the Windows version number instead.

Service Pack The service pack number, such as Service Pack 1 or No Service Pack.

System Type The type of system, such as Workstation or Domain Controller. On Microsoft
Windows XP and newer, BgInfo also reports “Terminal Server” because terminal
services are now a core feature of Windows.

IE Version The Internet Explorer version, as reported by the Version value in the HKLM\
Software\Microsoft\Internet Explorer registry key.

Host Name The computer name.

Machine Domain The domain or workgroup to which the computer belongs.

Hardware Attributes
CPU The CPU type—for example, Dual 2.50 GHz Intel Core2 Duo T9300.

Memory The amount of physical RAM visible to Windows.

Volumes Lists the fixed volumes by drive letter, showing the total space and file system on
each.

Free Space Lists the fixed volumes by drive letter, showing the free space and file system on
each.

Network Attributes
IP Address Lists the IP address for each network interface on the computer.

Subnet Mask Lists the subnet mask associated with the IP addresses listed in the preceding
field.

DNS Server Lists the DNS server (or servers) for each network interface on the computer.

DHCP Server Lists the DHCP server for each network interface on the computer.

Default Gateway Lists the default gateway for each network interface on the computer.

MAC Address List the MAC address for each network interface on the computer.

Network Card Identifies the network card name for each network interface on the computer.

Network Speed Shows the network speed for each network card—for example, 100 Mb/s.

Network Type Shows the network type for each network card—for example, Ethernet.

Logon Attributes
User Name The account name of the user running BgInfo.

Logon Domain The account domain of the user running BgInfo.

Logon Server The name of the server that authenticated the user running BgInfo.

Timestamps
Boot Time The date and time that the computer was last started.

Snapshot Time The date and time that the BgInfo wallpaper was created.

312 Part II Usage Guide

In addition to using BgInfo’s 24 built-in fields, you can add your own items to the Fields list
and then insert them into a wallpaper configuration. BgInfo offers a variety of potential
 information sources, shown in Table 10-2.

TABLE 10-2 BgInfo Information Sources

Name of Field Description
Custom (User-Defined) Fields
Environment
variable

The value of an environment variable

Registry value The text value of any registry value

WMI query The text output of any Windows Management Instrumentation (WMI) query

File version The file version of a file

File timestamp The date and time that a file was last modified

File content The text content of a file

VBScript file The text output from executing a VBScript file

To define and manage custom fields, click the Custom button to open the User Defined
Fields dialog box. Figure 10-3 shows the dialog box with some examples of custom fields,
including a field called Num CPUs that displays the value of the NUMBER_OF_PROCESSORS
environment variable, a Legal Notice Text field that displays the same policy-mandated text
in the registry that appears before a user logs on, and the BIOS version reported by a WMI
query.

FIGURE 10-3 Management of user-defined fields.

Click the New button to define a new custom field. Select an existing custom field in the list,
and click the Edit or Remove button to modify or remove that custom field. When you click
OK, BgInfo updates the Fields list in its main window.

Figure 10-4 shows the Define New Field dialog box used to create or modify a custom field.
BgInfo uses the identifier you enter as the default label to use when you add it to a wallpaper
configuration, as well as the data field name to use between angle brackets. For example, the

 Chapter 10 Desktop Utilities 313

data field for a field named Num CPUs would be <Num CPUs>. Identifiers can contain only
letters, numbers, spaces, and underscores.

FIGURE 10-4 Defining a new user-defined field.

Select one of the seven types of information sources, and then type the name of the source
in the Path field. The Browse button displays a different dialog box based on the information
type. If you select the Environment option, clicking Browse displays a list of environment vari-
ables from which to choose. For the WMI Query option, clicking Browse displays a dialog box
that helps you build and evaluate a valid WMI query. For the four file-based source types,
clicking Browse displays a standard file chooser. The Registry Value option is the one type
for which the Browse button does not work; for this type, enter the full path to the registry
value—for example:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\CurrentBuildNumber

On a 64-bit system, selecting 64-Bit Registry View ensures that the specified registry path
will not be redirected to the Wow6432Node subkey.

Appearance Options
The BgInfo wallpaper editor is a rich text editor with full undo/redo support. You can select
part or all of the text and change its font face, size, style, alignment, and bulleting using
the toolbar or the Format menu. Rich text pasted from the clipboard retains its formatting.
Dragging the anchor in the horizontal ruler changes the first tab stop for the selected para-
graphs so that text can be lined up in columns. You can also add a bitmap image inline with
the text by choosing Insert Image from the Edit menu.

Click the Background button to select the wallpaper background. As shown in Figure 10-5,
BgInfo can integrate its data display with the user’s current wallpaper settings, or you can
specify a background bitmap and position (center, tile or stretch), or select a solid back-
ground color. The NT 4.0, 2000, and XP buttons set the background color to the default
wallpaper colors for those versions of Windows. With Make Wallpaper Visible Behind Text

314 Part II Usage Guide

selected, BgInfo writes its text directly on the background bitmap. If you deselect that option,
BgInfo puts the text inside a solid rectangle with the selected background color, and it places
that rectangle over the background bitmap.

FIGURE 10-5 The BgInfo Background dialog box.

Click the Position button to specify where to place the text on the screen. Select one of the
nine positions in the Locate On Screen group shown in the Set Position dialog box (shown
in Figure 10-6) to position the text in that area of the display. If some items are very long
(for example, some network card names), you can use the Limit Lines To option to line-wrap
them. Selecting the Compensate For Taskbar Position option ensures that the text area will
not be obscured by the taskbar. If you have a more than one monitor connected to your
 system, click the Multiple Monitor Configuration button to choose whether to display the
text on all display monitors, only on the primary monitor, or on any single monitor.

FIGURE 10-6 The BgInfo Set Position dialog box.

You can set the color depth of the resulting wallpaper on the Bitmap menu. Select from 256
Colors (8-bit color), 16-bit color, 24-bit color, or Match Display, which sets the color depth
according to the color quality of the current display.

 Chapter 10 Desktop Utilities 315

Choose Location from the Bitmap menu to specify where the resulting wallpaper bitmap
should be created. By default the bitmap will be created in the user’s temporary files folder.
Note that administrative rights are required to create the file in the Windows folder. You can
incorporate environment variables in the path and specify the target file name if you select
Other Directory.

To see what the BgInfo-generated background would look like without actually changing
the wallpaper, click the Preview toggle button. While Preview is selected, BgInfo shows the
background in a full-screen window on the primary display. You can continue changing the
background’s content and format and see the changes immediately in the preview. Choose
Refresh from the File menu or press F5 to update the data in the preview.

Saving BgInfo Configuration for Later Use
Choose Save As from the File menu to save the current BgInfo configuration settings to a
file. After you’ve created it, you can apply the configuration to other users’ desktops or on
other computers simply by specifying the file on the BgInfo command line. You can open the
configuration file for further editing by choosing File, Open. You can also open it by double-
clicking it in Explorer—when you run BgInfo for the first time, it creates a BgInfo file associa-
tion for .bgi.

When you start BgInfo with an initial configuration file on the command line, the BgInfo
 editor appears with its 10-second Time Remaining indicator, applying the configuration only
after the timer expires. Adding /timer:0 to the command line makes BgInfo apply the con-
figuration immediately and without displaying its window. For example, to display updated
information on the desktop whenever any user logs on, you can create a shortcut with a
command line like the following in the all-users Startup folder:

Bginfo.exe c:\programdata\bginfo.bgi /timer:0 /silent

The /silent option suppresses the display of any error messages.

In addition to a visual layout, the configuration file includes custom field definitions, which
desktops to update, and alternate output options (which are described next). Choose Reset
Default Settings from the File menu to remove all configuration information and to restore
BgInfo to its initial state. BgInfo’s current settings are stored in the registry in
HKCU\Software\Winternals\BgInfo, except for the EulaAccepted value, which is stored in
HKCU\Software\Sysinternals\BgInfo.

Other Output Options
Because BgInfo collects so much useful information, it seemed natural to us to add the
 capability to save that information to destinations other than bitmap files. BgInfo can write

316 Part II Usage Guide

the data it collects to a variety of file formats or to a Microsoft SQL Server database. It can
also display its information in a separate window that you can bring to the foreground. To
use these options without also updating the wallpaper, click the Desktops button and select
Do Not Alter This Wallpaper for all desktops.

To save data to a plain-text comma-separated values (CSV) file, a Microsoft Excel spreadsheet
or Access database, choose Database from the File menu to display the Database Settings
dialog box shown in Figure 10-7, and type the full path to a file with a .txt, .xls, or .mdb
 extension, respectively. BgInfo will create or update the target file according to the extension
that you specify. The File button displays a file-picker dialog box that you can use to help
set the path correctly. To append records to an existing file, choose Create A New Database
Record For Every Run. To retain only a single record for the current computer, choose Record
Only The Most Recent Run For Each Computer. You can save this configuration to a .bgi file
and apply it at a later time, or just click OK or Apply in the BgInfo main window. Note that
the output includes all default and custom fields, not just those that are selected for display.

FIGURE 10-7 BgInfo Database Settings dialog box.

To write the data to a SQL Server database, choose Database from the File menu, click the
SQL button, select a SQL Server instance and then select Use Trusted Connection (to use your
Windows logon) or type a value in the Logon ID and Password (for the legacy SQL Standard
Authentication) text boxes. You need to pick an existing database in the Options portion
of the SQL Server Login dialog box, as shown in Figure 10-8. The first time it logs informa-
tion, BgInfo creates and configures a table in the database with the name you specify in
the Application Name field. BgInfo configures a datetime column with the timestamp, and
an nvarchar(255) column corresponding to each default and custom field. These one-time
operations require that the first caller have the CREATE TABLE and ALTER permissions. After
the table has been created, callers need CONNECT permission to the database, and SELECT,
INSERT, and UPDATE permissions on the table.

 Chapter 10 Desktop Utilities 317

FIGURE 10-8 BgInfo configuration to write to a SQL Server database table.

To write the data to a Rich Text File (.RTF) document, run BgInfo with /rtf:path on the
 command line, along with a BgInfo configuration file (.bgi). Note that this feature incorpo-
rates the formatting of the text, but not of the background. Therefore, you should change
the text color from the default white. You will probably also want to include /timer:0 on the
command line to bypass the 10-second timer.

Finally, to display the BgInfo data in a popup window instead of as wallpaper, add /popup to
the BgInfo command line. Add /taskbar to the command line to display a BgInfo icon in the
taskbar notification area, which you can click to display the BgInfo popup window.

Updating Other Desktops
On Windows XP and Windows Server 2003, BgInfo can change the desktop wallpaper that
appears prior to user logon. Click the Desktops button to display the Desktops dialog box,
shown in Figure 10-9. You can individually select whether to update the wallpaper for the
current user desktop, the logon desktop for console users, and the logon desktop for termi-
nal services (remote desktop) users. You can also choose to set the wallpaper for any of those
desktops to None. Note that changing the logon desktops requires administrative privileges
and that the feature does not work on Windows Vista and newer. You can opt to have BgInfo
display an error message if permissions problems prevent it from updating a logon desktop.

318 Part II Usage Guide

FIGURE 10-9 The Desktops dialog box.

On a computer with multiple interactive sessions, including disconnected remote desktop or
Fast User Switching sessions, you can update the wallpaper of all interactive users’ desktops
with the /all command-line option. When you add /all, BgInfo starts a service that enumer-
ates the current interactive sessions and launches an instance of BgInfo within each session,
running as the user who owns the session. Because each instance of BgInfo launches in a
different user context, you should specify the configuration file with an absolute path and
in a location that all users can read. You should also add /accepteula and /timer:0 to the
 command line.

Desktops
Sysinternals Desktops allows you to organize your applications on up to four virtual desktops.
Read e-mail on one, browse the Web on the second, and do work in your productivity soft-
ware on the third—without the clutter of the windows you’re not using. After you configure
hotkeys for switching desktops, you can create and switch desktops either by clicking on
the notification area icon to open a desktop preview and switching window or by using the
hotkeys.

Unlike other virtual desktop utilities that implement their virtual desktops by showing the
windows that are active on a desktop and hiding the rest, Sysinternals Desktops uses a
Windows desktop object for each desktop. Application windows are bound to a desktop
object when they are created, so Windows maintains the connection between windows and
desktops and knows which ones to show when you switch a desktop. That makes Sysinternals
Desktops very lightweight and free from bugs that the other approach is prone to, where
the utility’s view of active windows becomes inconsistent with the visible windows. (See
“Sessions, Window Stations, Desktops, and Window Messages” in Chapter 2, “Windows Core
Concepts.”)

 Chapter 10 Desktop Utilities 319

When you run Desktops for the first time, it displays its configuration dialog box, shown in
Figure 10-10. Use this dialog box to configure the hotkeys that will be used to switch be-
tween desktops and to specify whether Desktops should run automatically whenever you
log on. You can display the configuration dialog box again by right-clicking on the Desktops
notification area icon and choosing Options.

FIGURE 10-10 Desktops configuration dialog box.

To switch between desktops, click the Desktops notification area icon. Desktops will display
the desktop switch window shown in Figure 10-11. The desktop switch window shows
thumbnails of the four available desktops. When you first run Desktops, only Desktop 1 has
been created. When you click one of the other three thumbnails, Desktops creates a new
Windows desktop, starts Explorer on that desktop, and switches to that desktop. A quicker
way to switch to another desktop is to press its hotkey (for example, Alt+3 for Desktop 3).
After you have switched to a desktop, you can start applications on that desktop. Desktop’s
notification area icon highlights which desktop is the one you’re currently viewing and dis-
plays its name in a tooltip. Note that themes or wallpaper set on any desktop apply to all four
desktops.

FIGURE 10-11 The Desktops switch window, with applications running on three of the four desktops.

Desktops’ reliance on Windows desktop objects means that it cannot provide some of
the functionality of other virtual desktop utilities, however. For example, Windows doesn’t

320 Part II Usage Guide

 provide a way to move a window from one desktop object to another, and because a
 separate Explorer process must run on each desktop to provide a taskbar and start menu,
most notification area icons are visible only on the first desktop. Currently, Aero works only
on the first desktop. Further, there is no way to delete a desktop object, so Desktops does
not provide a way to close a desktop—doing so would result in orphaned windows and pro-
cesses. The recommended way to exit Desktops, therefore, is to log off. Logging off from any
desktop logs off all desktops.

Sysinternals Desktops is compatible with all supported versions of Windows and is fully
 compatible with remote desktop sessions.

ZoomIt
ZoomIt is a screen magnification and annotation utility. I originally wrote it to fit my specific
needs in my presentations, both with my Microsoft PowerPoint slides and with application
demonstrations. I also frequently use it outside of presentations to quickly magnify a portion
of my screen and to capture magnified and annotated screen shots.

ZoomIt runs in the background and activates with customizable hotkeys to zoom in on an
area of the screen and to draw and write text on the magnified image. It also includes a
break timer that I use during longer training sessions to let attendees know when the session
will resume.

ZoomIt has two zooming modes. The normal zoom mode takes a snapshot of the desktop
when the zoom hotkey is pressed, and LiveZoom magnifies the desktop while programs
 continue to update the display in real time.

ZoomIt works on all supported versions of Windows, and you can use pen input for ZoomIt
drawing on Tablet PCs.

Using ZoomIt
The first time you run ZoomIt, it presents a configuration dialog box. (See Figure 10-12.) The
configuration dialog box describes how to use the features and lets you specify alternate
 hotkeys for its various actions. Whether you press OK to confirm any changes or Cancel,
ZoomIt will continue to run in the background. To display the configuration dialog box again,
click the ZoomIt icon in the notification area and choose Options from the menu. Another
 alternative, if you have opted not to show the notification area icon, is to start another
 instance of ZoomIt.

 Chapter 10 Desktop Utilities 321

FIGURE 10-12 The Zoom tab of the ZoomIt configuration dialog box.

By default, Ctrl+1 zooms, Ctrl+2 starts drawing mode without zooming, Ctrl+3 starts the
break timer, and Ctrl+4 starts LiveZoom. For the remainder of this discussion, I will assume
that the defaults have been retained. On multimonitor systems, ZoomIt operates on the
“ current” display—that is, the one in which the mouse cursor points when the hotkey is
pressed. Other monitors will continue to operate normally.

In all the ZoomIt modes except for LiveZoom, you can copy the current display content,
 including annotations, to the clipboard by pressing Ctrl+C. You can also save the display
 content to a Portable Network Graphic (PNG) file—press Ctrl+S and ZoomIt will prompt for a
file location to save the image.

Zoom Mode
To use the normal zoom mode, press Ctrl+1. ZoomIt captures a screen shot of the desktop of
the current monitor and doubles the screen magnification, zooming to the current location
of the mouse cursor. You can increase or decrease the magnification level by pressing the
Up or Down arrow keys or by scrolling the mouse wheel. You can move the zoom focus to
 another part of the screen by moving the mouse.

While in normal zoom mode, you can enter drawing mode by pressing the left mouse
 button, or enter typing mode by pressing the T key.

To exit the normal zoom mode, press the Escape key or the right mouse button.

322 Part II Usage Guide

Drawing Mode
Drawing mode lets you draw shapes, straight lines, or free form on the screen in various
colors and various pen widths. (See Figure 10-13). You can also clear the screen to a white or
black sketch pad.

FIGURE 10-13 ZoomIt drawing mode.

To draw free-form lines on the screen, move the mouse cursor to where you want to be-
gin drawing, and then hold the left mouse button and move the cursor. Release the mouse
 button to stop drawing. ZoomIt will remain in drawing mode. To exit drawing mode, click the
right mouse button.

To draw a straight line, move the cursor to where you want the line to begin. Press and hold
the Shift button, and then hold the left mouse button and move the cursor to the line’s
endpoint. The proposed line displays on the screen as you move the cursor until you release
the mouse button, at which point the line will remain drawn on the screen. If the line is close
to horizontal (or vertical), ZoomIt automatically adjusts it to make it horizontal (or vertical).
Similarly, to draw an arrow, move the cursor to where you want the head of the arrow to
 appear, hold down Shift+Ctrl, hold the left mouse button, and move the cursor to the arrow’s
starting point.

To draw a rectangle, move the cursor to where you want the upper left or lower right corner
of the rectangle to begin. Press and hold the Ctrl key, and then hold the left mouse but-
ton and move the cursor. The proposed rectangle resizes as you move the cursor until you
release the mouse button, at which point the rectangle will remain drawn on the screen.
Similarly, to draw an ellipse, hold down the Tab key instead of the Ctrl key. The starting and
ending points that you drag define the rectangle within which the ellipse will be drawn.

To undo the last drawing item, press Ctrl+Z. To erase all drawn or typed annotations, press e.

To clear the screen to a white sketch pad for drawing or typing, press w. To clear the screen
to a black sketch pad, press k. To enter typing mode, press t.

While in drawing mode, you can change the color of the pen. Press r for red, g for green, b
for blue, o for orange, y for yellow or p for pink. The pen color is also used for typing mode.

 Chapter 10 Desktop Utilities 323

You can change the pen width by pressing the left Ctrl button with the Up and Down arrow
keys or with the mouse wheel.

Typing Mode
While in zoom or drawing mode, press t to enter typing mode. The cursor changes to a
 vertical line indicating the size, position, and color of the text. Move the mouse cursor to
change the position, and move the mouse wheel or press the Up and Down arrow keys to
change the font size. The font face can be changed from the Type tab of the ZoomIt Options
dialog box. To fix the starting location for the text, click the left mouse button or just begin
typing. Typed text will appear in the current location, as shown in Figure 10-14. To exit typing
mode, press Esc.

FIGURE 10-14 An example of ZoomIt’s typing mode.

Break Timer
Start the Break Timer by pressing Ctrl+3. By default, the timer will count down 10 minutes.
You can change the counter while the timer is running by pressing the Up and Down arrows,
which adjust the minutes, or by pressing the Left and Right arrows, which increase or
 decrease by 10-second intervals. You can change the default timer start from the Break tab
of the ZoomIt Options dialog box. The break timer font is the same as that for typing mode.

The Show Time Elapsed After Expiration option determines whether the counter stops when
it reaches zero or continues to count negative time. The Advanced button lets you set ad-
vanced options, including playing a sound on timer expiration, changing the opacity and
screen position of the timer, and indicating whether to show a background bitmap or the
current desktop behind the timer instead of the default white background.

324 Part II Usage Guide

LiveZoom
Whereas normal zoom mode takes a snapshot of the current desktop and then lets you
zoom in and out and annotate that screen shot, LiveZoom magnifies the live desktop, while
applications continue to update the display in real time. LiveZoom mode is supported on
Windows Vista and newer, and it works best when Aero is enabled.

Because your mouse and keyboard actions need to be able to interact with the live system
rather than a snapshot, drawing and typing mode are not operational while in LiveZoom
mode. And because you are likely to want to use arrow keys and the Esc key while interacting
with applications, LiveZoom uses the Ctrl+Up Arrow and Ctrl+Down Arrow keys to change
the zoom level, and it uses the LiveZoom hotkey to exit LiveZoom mode. Also, moving the
mouse changes what portion of the zoomed screen is displayed only when the mouse is
moved close to one of the edges of the display.

When in LiveZoom mode, you can quickly switch to drawing mode by pressing Ctrl+1. When
you are done drawing, press Esc to return to LiveZoom mode. Again, this works best when
Aero is enabled.

 325

Chapter 11

File Utilities
This chapter describes a set of Sysinternals utilities focused on file management and
 manipulation. All of the utilities described in this chapter are console utilities:

■ Strings searches files for embedded ASCII or Unicode text.

■ Streams identifies file system objects that have alternate data streams and, optionally,
deletes those streams.

■ Junction and FindLinks report on and manipulate directory junctions and hard links,
which are two types of NTFS links.

■ DU reports the logical and on-disk sizes of a directory hierarchy.

■ PendMoves and MoveFile report on and register file operations to take place during
the next system boot.

Strings
In computer programming, the term “string” refers to a data structure consisting of a
 sequence of characters, usually representing human-readable text. There are numerous
utilities that search files for embedded strings. However, many of them, such as Microsoft
Windows’ findstr, search only for ASCII text and ignore Unicode text, and others, like
Windows’ find, do not search binary files correctly. Sysinternals Strings does not have these
limitations, which makes it useful for searching for specific files and looking inside unknown
image files for strings that might reveal information about their origin and purpose.

Strings’ command-line syntax is

strings [-a] [-b bytes] [-n length] [-o] [-q] [-s] [-u] file_or_directory

The file_or_directory parameter is mandatory and accepts wildcards (for example, *.dll). All
matching files are searched, and by default all embedded ASCII or Unicode strings of more
than three characters are written to Strings’ standard output in the order in which they
are found in the file. To search only for ASCII or only for Unicode strings, use the –a or –u
 option, respectively. The –s option searches directories recursively. To set a minimum string
length other than the default of 3, specify it with the –n option. With the –o option, Strings
also reports the offset within the file where the string begins. To search only the beginning
of a file, use –b to limit the number of bytes that Strings will examine. Finally, the –q (quiet)
 option omits the Strings banner from the output; this is particularly useful when Strings’
 output will be processed by another utility, such as a sort.

326 Part II Usage Guide

The following command searches the first 850,000 bytes of explorer.exe for Unicode strings
of at least 20 characters, omitting the Strings banner text. Those strings are then sorted
 alphabetically. Figure 11-1 shows partial results.

strings -b 850000 -u -n 20 -q explorer.exe | sort

FIGURE 11-1 Strings extracting text from explorer.exe.

Streams
Sysinternals Streams reports file system objects that have alternate data streams and,
 optionally, allows you to delete them. NTFS provides the ability for files and directories to
have alternate data streams (ADSes). By default, a file has no ADSes and its content is stored
in its main unnamed stream. But by using the syntax filename:streamname, you are able
to read and write to alternate streams. Not all applications are designed to handle alter-
nate streams, but you can easily demonstrate them. Open a command prompt, change to a
 writable directory on an NTFS volume, and then type this command:

echo hello > test.txt:altdata

You have just created a stream named altdata that is associated with the file test.txt. Note
that when you look at the size of test.txt with the DIR command or in Explorer, the file size is
reported as zero (assuming that test.txt didn’t exist before you ran that command) and the
file appears to be empty when opened in a text editor. (On Windows Vista and newer, DIR /R
reports ADSes and their sizes.) To see the alternate stream content, type this command:

more < test.txt:altdata

 Chapter 11 File Utilities 327

The type and more commands do not accept stream syntax, but Cmd.exe and its redirection
operators do.

The most apparent use of alternate data streams by Windows is with downloaded files.
Windows’ Attachment Execution Service adds a Zone.Identifier stream that specifies the
 security zone from which a file was downloaded so that Windows can continue to treat the
file as from that zone. One way to remove that indicator from a file is to open its Properties
dialog box in Explorer and click the Unblock button. However, that button and other user
interfaces to remove security zone information are often hidden from users by Group Policy.

Sysinternals Streams examines files and directories you specify and reports the names and
sizes of any alternate streams it encounters. You can search directory structures and list
all the files and directories with ADSes. Optionally, you can also delete those streams—for
 example, to unblock downloaded content. Its command-line syntax is

streams [-s] [-d] file_or_directory

The file_or_directory parameter is mandatory and accepts wildcards. For example, the
 command streams *.exe examines all file system objects ending in “.exe” in the current
 directory and lists those that have ADSes with output like the following:

C:\Users\Abby\Downloads\msvbvm50.exe:
 :Zone.Identifier:$DATA 26

In this example, the file msvbvm50.exe has a 26-byte ADS called “Zone.Identifier”. You
can see that stream’s content by running more < msvbvm50.exe:Zone.Identifier at a
 command prompt.

The –s option examines directories recursively, and the –d option deletes ADSes that it finds.
For example, the command

streams -s -d C:\Users\Abby\Downloads

searches in and under Abby’s Downloads folder, reporting on and deleting any ADSes it
finds. Streams reports the names of alternate streams that it deletes.

Figure 11-2 shows Streams identifying the Zone.Identifier ADS on a downloaded
SysinternalsSuite.zip, and then deleting that stream. Deleting the Zone.Identifier stream
before extracting the utilities allows them to run without security warnings and allows the
Compiled HTML (.chm) files to display help content.

328 Part II Usage Guide

FIGURE 11-2 Streams identifying and deleting alternate data streams.

NTFS Link Utilities
NTFS supports both hard links and soft links, also known as symbolic links. Hard links are
 supported only for files, while symbolic links can be used with files or directories.

A hard link allows multiple paths to refer to the same file on a single volume. For
example, if you create a hard link named C:\Docs\Spec.docx that refers to the existing file
C:\Users\Abby\Documents\Specifications.docx, the two paths link to the same on-disk
 content and you can make changes to either path. NTFS implements hard links by keeping
a reference count on the file data on disk. Each time a hard link is created, NTFS adds a file
name reference to the data. Because the file data is not deleted until the reference count is
zero, you can delete the original file (C:\Users\Abby\Documents\Specifications.docx in our
example) and continue to use other hard links (C:\Docs\Spec.docx). The file data shared by
hard links includes not only the file’s content and alternate stream data, but also the file’s
security descriptor, time stamps, and attributes such as whether the file is read-only, system,
hidden, encrypted, or compressed.

By contrast, symbolic links are strings that are interpreted dynamically and can be relative or
absolute paths that refer to file or directory locations on any storage device, including ones
on a different local volume or even a share on a different system. This means that a sym-
bolic link does not increase the reference count of the original file system object. Deleting
the original object deletes the data and leaves the symbolic link pointing to a nonexistent
object. File and directory symbolic links have their own permissions and other attributes,
 independent of the target file system object.

Junctions are very similar to directory symbolic links, except that they can only point to local
volumes. Junctions are widely used by Windows Vista and newer for application compatibil-
ity. For example, on a default US English installation of Windows 7, the name “C:\Documents
and Settings” is a junction to C:\Users. This allows many programs that have hard-coded

 Chapter 11 File Utilities 329

legacy file paths to continue to work. The permissions on these application-compatibility
junctions do not allow listing of the junction content, so that backup programs that are not
junction-aware do not back up the same files multiple times. These junctions are also marked
Hidden and System, so they do not normally appear in directory listings.

You can create hard links, symbolic links, and junctions in Windows Vista and newer with
the mklink command built into Cmd.exe. Non-administrators can create hard links and
 junctions using mklink. Creation of file or directory symbolic links requires the Create
Symbolic Links privilege, granted by default only to administrators. Note that mklink is not
available in Windows XP or Windows Server 2003. Hard links can also be created using the
fsutil hardlink command, and fsutil reparsepoint can display detailed information about
or delete existing junctions and symbolic links. However, fsutil always requires administrative
rights.

Sysinternals offers two utilities that fill in some of the gaps in link management left by
Windows: Junction and FindLinks.

Junction
Junction lets you create, delete, search for, and display information about junctions. As
long as you have the necessary rights in the directory where the junction is being created
or deleted, Junction does not require administrative rights, and it works on all supported
 versions of Windows.

The syntax for creating a junction is

junction JunctionName JunctionTarget

where JunctionName is the path name of the new junction and JunctionTarget is the
 existing directory that the new junction points to.

The syntax for deleting a junction is

junction -d JunctionName

Note that you can also delete a junction with the rd command built into Cmd.exe. Deleting a
junction with rd does not delete files or subdirectories in the target directory as long as you
don’t use the /S option.

To determine whether a directory is a junction and, if so, to display its target, use this syntax:

junction [-s] [-q] JunctionName

where JunctionName is a path specification, which can include wildcard characters. Junction
reports “No reparse points found” if the name does not specify a junction. Use –s to recurse

330 Part II Usage Guide

into subdirectories matching the specification. Use –q to specify not to report errors. For
 example, this command lists all junctions found on the C drive:

junction -s -q C:\

This command lists the junctions in the user’s profile folder:

junction %USERPROFILE%*

This command lists all junctions beginning with “My” that are found anywhere in the user’s
profile:

junction -s -q %USERPROFILE%\My*

In Figure 11-3, Junction lists all the application-compatibility junctions in the ProgramData
folder.

FIGURE 11-3 Junction.

FindLinks
FindLinks lists other hard links pointing to a file’s data. Simply run findlinks filename; if
the file you specify is referenced from other hard links, FindLinks will list them. For example,
Windows 7 x64 has one copy of the 64-bit version of Notepad.exe, hard-linked from multiple
locations. Figure 11-4 shows the output from findlinks System32\Notepad.exe, and then
from findlinks SysWOW64\notepad.exe.

 Chapter 11 File Utilities 331

FIGURE 11-4 FindLinks.

As you can see, the four instances of Notepad.exe in the Windows and System32 directories
and in two winsxs directories are in fact just one file. In addition, there is a 32-bit version
in the SysWOW64 folder, linked to a copy in a winsxs folder. FindLinks also shows the file’s
 index, a 64-bit identifier that NTFS assigns to each unique file and directory on the volume.

Beginning with Windows 7, you can find other hard links associated with a file using the
 fsutil hardlink list filename command, but again, fsutil always requires administrative
rights.

DU (Disk Usage)
You might think that calculating the size of a directory would be as simple as enumerating
its contents, recursing through subdirectories, and adding up file sizes. However, it is much
more complex than that, because if you want to be accurate at all, you have to consider hard
links, directory and file symbolic links, junctions, compressed and sparse files, alternate data
streams, and unused cluster space.

DU reports the disk space usage for a directory hierarchy, taking those factors into account.
By default, it recurses directories but does not traverse junctions or directory symbolic links,
and it ignores file symbolic links. It includes the sizes of content found in alternate data
streams, including ADSes associated with directory objects. Files that are referenced through
multiple hard links are counted only once. Finally, DU reports both logical size and actual
size on disk to account for compressed and sparse files and for unused cluster space. For
 example, if a directory contains just one 10-byte file, DU reports the size as 10 bytes, and
“size on disk” as 4096 bytes to account for the entire cluster consumed by the file.

DU’s command line syntax is

du [-n | -l levels | -v] [-q] directory

332 Part II Usage Guide

By default, DU recurses the entire target directory structure and displays summary results,
 including the numbers of files and directories processed, the total file sizes, and the
amount of actual disk space consumed. Figure 11-5 shows the results from running
du –q “C:\Program Files” on my computer. (The –q option omits the DU banner.)

FIGURE 11-5 Results of du –q “C:\Program Files”.

The –n, –l, and –v options are mutually exclusive. With the –n option, DU does not recurse
into subdirectories and considers only the files and directories that reside in the target direc-
tory itself. With the –v option, DU shows the size in KB of intermediate directories as they
are processed. Figure 11-6 shows partial results when I run the same DU command as shown
previously, except with the –v option.

FIGURE 11-6 Running du with the –v option.

The –l option is just like the –v option and scans the entire directory hierarchy, but it reports
the intermediate results only for the number of directory levels that you specify. Figure 11-7
shows partial results of the same DU example, but using –l 1 instead of –v.

 Chapter 11 File Utilities 333

FIGURE 11-7 A du example showing intermediate results for one directory level.

Post-Reboot File Operation Utilities
Installation programs often find that they cannot replace, move, or delete files because
those files are in use. Windows therefore provides a way for applications to register these
operations to be performed by the Session Manager process (Smss.exe), the first user-
mode process to start during the boot process, early in the next system boot before any
applications or services start that might prevent a file from being modified. Specifically,
applications running with administrative rights can invoke the MoveFileEx API with the
MOVEFILE_DELAY_UNTIL_REBOOT flag, which appends the move or delete requests to the
PendingFileRenameOperations and PendingFileRenameOperations2 REG_MULTI_SZ values in
the HKLM\System\CurrentControlSet\Control\Session Manager key.

PendMoves
PendMoves reads the PendingFileRenameOperations and PendingFileRenameOperations2
values and lists any pending file rename or deletion operations that will take place on the
next reboot. PendMoves also verifies the presence of the original file and displays an error
if it is not accessible. Finally, PendMoves displays the date and time that content in the
Session Manager key was last modified. This can provide a clue about when rename or delete
 operations were registered.

334 Part II Usage Guide

This sample PendMoves output shows a pending file deletion and two pending file moves,
the source for one of which is not present:

Source: C:\Config.Msi\3ec7bbbf.rbf
Target: DELETE

Source: C:\Windows\system32\spool\DRIVERS\x64\3\New\mxdwdrv.dll
Target: C:\Windows\system32\spool\DRIVERS\x64\3\mxdwdrv.dll

Source: C:\Windows\system32\spool\DRIVERS\x64\3\New\XPSSVCS.DLL
 *** Source file lookup error: The system cannot find the file specified.
Target: C:\Windows\system32\spool\DRIVERS\x64\3\XPSSVCS.DLL

Time of last update to pending moves key: 8/29/2010 11:55 PM

MoveFile
MoveFile allows you to schedule file move, rename, or delete operations for the next re-
boot. Simply specify the name of the existing directory or file, followed by target name. Use
two double-quotes as the target name to delete the file on reboot. You can use MoveFile
to delete a directory only if it is empty. Move operations can be performed only on a single
 volume, and they require that the target directory already exists. Note that a rename is
 simply a move where the directory does not change.

MoveFile requires administrative rights. See Microsoft Knowledge Base article 948601
(http://support.microsoft.com/kb/948601)for information about limited cases where delayed
file operations might not succeed.

The following example moves sample.txt from c:\original to c:\newdir after reboot, assuming
that c:\newdir exists at that time:

movefile c:\original\sample.txt c:\newdir\sample.txt

This example both relocates and renames sample.txt:

movefile c:\original\sample.txt c:\newdir\renamed.txt

And this two-line example deletes c:\original\sample.txt and then the c:\original directory,
assuming it is empty at that point.

movefile c:\original\sample.txt ""
movefile c:\original ""

 335

Chapter 12

Disk Utilities
The utilities described in this chapter focus on disk and volume management:

■ Disk2Vhd captures a VHD image of a physical disk.

■ Diskmon is a real-time monitoring utility that logs sector-level hard disk activity.

■ Sync flushes unwritten changes from disk caches to the physical disk.

■ DiskView displays a cluster-by-cluster graphical map of a volume, letting you find what
file is in particular clusters and which clusters are occupied by a given file.

■ Contig lets you defragment specific files or see how fragmented a particular file is.

■ PageDefrag defragments system files at boot time that cannot be defragmented while
Microsoft Windows is running.

■ DiskExt displays information about disk extents.

■ LDMDump displays detailed information about dynamic disks from the Logical Disk
Manager (LDM) database.

■ VolumeID lets you change a volume’s ID, also known as its serial number.

Disk2Vhd
Disk2Vhd captures an image of a physical disk as a virtual hard disk (VHD). VHD is the file
format for representing a physical disk to virtual machines (VMs) running under Microsoft
Hyper-V, Virtual PC, or Virtual Server. The difference between Disk2Vhd and other physical-
to-virtual utilities is that Disk2Vhd can capture an image of a Windows system while it is
running. Disk2Vhd uses Windows’ Volume Snapshot capability, introduced in Windows XP,
to create consistent point-in-time snapshots of the disks you want to include in a conversion.
You can even have Disk2Vhd create the VHDs on local disks, even the ones being converted
(although performance is better when the VHD is written to a disk other than the ones being
converted).

Disk2Vhd runs on all supported versions of Windows and requires administrative rights.

The Disk2Vhd user interface lists the volumes present on the system, as shown in Figure 12-1,
and how much space is required to convert each to a VHD. To create a VHD, simply select the
volumes to capture, specify the VHD path and file name to write them to, and click Create.

336 Part II Usage Guide

FIGURE 12-1 Disk2Vhd.

Disk2Vhd creates one VHD for each disk on which selected volumes reside. It preserves the
partitioning information of the disk, but copies the data contents only for volumes on the
disk that are selected. This enables you to capture just system volumes and exclude data
 volumes, for example. To optimize VHD creation, Disk2Vhd does not copy paging or hiberna-
tion files into the VHD.

To use VHDs produced by Disk2Vhd, create a virtual machine with the desired characteristics
and add the VHDs to the VM’s configuration as IDE disks. On first boot, a VM booting a
 captured copy of Windows will detect the VM’s hardware and automatically install drivers,
if any are present in the image. If the required drivers are not present, install them via the
Virtual PC or Hyper-V integration components. You can also attach to VHDs using the
Windows 7 or Windows Server 2008 R2 Disk Management or Diskpart utilities.

If you create a VHD from a Windows XP or Windows Server 2003 system and plan to boot
the VHD in Virtual PC, select the Prepare For Use In Virtual PC option (shown in Figure 12-2),
which ensures that the Windows Hardware Abstraction Layer (HAL) installed in the VHD is
compatible with Virtual PC. This option is offered only when you run Disk2Vhd on Windows
XP or Windows 2003.

FIGURE 12-2 Disk2Vhd’s Prepare For Use In Virtual PC option on Windows XP.

 Chapter 12 Disk Utilities 337

Disk2Vhd includes command-line options that enable you to script the creation of VHDs. The
syntax is as follows:

disk2vhd [-h] drives vhdfile

The meanings of the command-line parameters are

■ –h When capturing Windows XP or Windows Server 2003 system volumes, –h fixes up
the HAL in the VHD to be compatible with Virtual PC.

■ drives This is one or more drive letters with colons (for example, c: d:) indicating
which volumes to convert. Or you can use “*” to indicate all volumes.

■ vhdfile This is the full path to the VHD file to be created.

Here’s an example:

disk2vhd c: e:\vhd\snapshot.vhd

Note that Microsoft Virtual PC supports a maximum virtual disk size of 127 GB. If you create
a VHD from a larger disk, even if you include only data from a smaller volume on that disk, it
will not be accessible from a Virtual PC VM.

Note also you should not attach a VHD to the same instance of Windows in which you
 created it if you plan to boot from that VHD. Windows assigns a unique signature to each
mounted disk. If you attach the VHD to the system that includes the VHD’s original source
disk, Windows will assign the virtual disk a new disk signature to avoid a collision with the
original. Windows references disks in the boot configuration database (BCD) by disk signa-
ture, so when the VHD is assigned a new one, Windows instances booted in a VM will fail to
locate the boot disk identified in the BCD.

Note P2V Migration for Software Assurance uses the Microsoft Deployment Toolkit, Sysinternals
Disk2VHD and, optionally, System Center Configuration Manager 2007 to convert a user’s
 existing Windows XP or newer client environment to a virtual hard disk. Then it automates
the delivery of an updated and personalized Windows 7 operating system containing a virtual
 machine with the user’s previous Windows environment, applications, and Web browser. The
user’s previous virtual desktop retains its existing management components, domain member-
ship, and policies. The process also publishes applications and the browser for the user to access
them seamlessly within Windows 7’s Start menu.

Diskmon
Diskmon is a GUI application that logs and displays all sector-level hard disk activity on
a Windows system in real time. Unlike Process Monitor, which captures logical file events
(including requests that are satisfied from cache or cached in memory for later writing to

338 Part II Usage Guide

disk), Diskmon reports events that involve the physical disk. For every disk read and write,
Diskmon identifies the disk and sector numbers, the amount of data read or written, and the
duration of the operation. You can also run Diskmon as a taskbar notification area icon where
it acts as a disk activity light, appearing as a green LED when there is disk read activity and as
a red LED when there is disk write activity.

Diskmon requires administrative rights, and it works on all supported versions of Windows.

As you can see in Figure 12-3, Diskmon assigns a sequence number to each event and
 displays it in the first column. If Diskmon’s internal buffers are overflowed during extremely
heavy activity, this will be reflected with gaps in the sequence numbers.

FIGURE 12-3 Diskmon.

The Time column indicates the number of seconds elapsed between the start of the trace
and when the request was initiated. This trace start is reset when you clear the results by
pressing Ctrl+X or clicking the Clear toolbar button. You can choose to display clock time
in this column instead (with or without milliseconds) from the Options menu. The Duration
 column indicates how long the requested read or write operation took to complete, in
seconds.

Note that the Disk column reports the zero-based disk number, not a partition or volume
number, and that a hard disk can have multiple volumes associated with it. The Length
 column indicates the number of sectors that were read or written. Most hard disk sectors are
512 bytes.

The menu and toolbar buttons work the same as in many other Sysinternals monitoring
 utilities. Press Ctrl+E to toggle data capture on and off. Choose Save or Save As from the File
menu to write the displayed results to a tab-delimited text file. Toggle Autoscroll on to keep
the most recently captured events displayed. Search for specific text in the results by press-
ing Ctrl+F, and repeat searches with F3. Limit how many events to retain and discard older
events by setting the History Depth. Select one or more rows and copy their contents to the

 Chapter 12 Disk Utilities 339

 clipboard by pressing Ctrl+C, or delete them from the results by pressing Del. And change
the font or keep Diskmon “always on top” via the Options menu.

To have Diskmon appear as a disk activity LED in your taskbar notification area, choose
Minimize To Tray Disk Light from the Options menu, or start Diskmon with a /l (lowercase
L) command-line parameter. The icon appears gray during disk inactivity, green during disk
reads, and red during disk writes. Note that Diskmon does not capture event details for dis-
play in the main window when running in this mode. To display the full Diskmon window and
resume capturing event data, double-click the Diskmon notification area icon.

Sync
Most UNIX systems come with a utility called sync, which is used to direct the operating
system to flush all modified data in file system buffers to disk. This ensures that data in file
system cache memory is not lost in case of system failure. I wrote an equivalent, also called
Sync, that works on all versions of Windows. Sync requires Write permissions on the volume
device being flushed. Write permissions are granted only to administrators in most cases. See
the “Volume Permissions” sidebar in this chapter for more information.

Note After writing to an NTFS-formatted removable drive, you should dismount the volume
before removing the drive. Whenever possible, it is best to use the Safe Removal applet before
you remove any external storage device from the system.

Sync’s command-line syntax is

sync [-r | -e | drive_letters]

Without command-line options, Sync enumerates and flushes fixed drives. If you specify
–r or –e, Sync enumerates and flushes removable drives in addition to fixed drives; with the
–e option, Sync also ejects the removable drives. To flush specific drives, specify their drive
 letters. To flush drives C and E, for example, run sync c e as shown in Figure 12-4.

FIGURE 12-4 Sync used to flush drives C and E.

340 Part II Usage Guide

Volume Permissions
Several of the utilities in this chapter depend on the permissions on the target volume.
For example, the command sync e requires that the caller have Write permissions on
the E drive. Volume permissions are distinct from those on the volume’s root directory,
and these permissions can apply restrictions even on volumes with file systems such as
FAT that do not support access control.

Write permissions are granted only to administrators for all volumes on Windows
XP and all versions of Windows Server. Beginning with Windows Vista, interactively
logged-on users are granted Write permissions for removable volumes such as flash
drives.

Windows does not provide any utilities that show the permissions on volume objects.
You can use AccessChk for this purpose, using the syntax accesschk \\.\x:, where x is
the drive letter of the volume you want to inspect. See Chapter 8, “Security Utilities,” for
more information about AccessChk.

FIGURE 12-5 The effects of volume permissions.

Figure 12-5 shows Sync attempting to flush the disk caches for C and E while running
as a standard user on Windows 7. Sync, which requires Write permissions, fails for C but
succeeds for E. The example then shows AccessChk displaying the effective permissions
for the two volumes. On C, standard users have only the Read permissions granted to
Everyone, but on E interactive users (NT AUTHORITY\INTERACTIVE) are granted Read
and Write permissions.

 Chapter 12 Disk Utilities 341

DiskView
DiskView shows you a cluster-oriented graphical map of an NTFS-formatted volume, allowing
you to determine which clusters a file is located in and whether it is fragmented, or to deter-
mine what file occupies any particular sector. DiskView requires administrative privileges and
works on all supported versions of Windows.

Run DiskView, select a volume from the Volume drop-down list in the lower left area of
the DiskView window, and then click the Refresh button. DiskView scans the entire volume,
 filling in the two colored graphical regions as shown in Figure 12-6. The lower graphical
area displays a horizontally-oriented, color-coded representation of the entire volume, with
 cluster 0 to the left. Choose Legend from the Help menu to see the meanings of the color
codes. In the lower graph, blue indicates contiguous file clusters, red indicates fragmented
file clusters, green indicates system file clusters, and white indicates free clusters.

FIGURE 12-6 DiskView.

The upper graph represents a portion of the volume, which you can select by clicking on
the corresponding area in the lower graph or by scrolling it vertically. The portion shown in
the upper graph is marked in the lower graph with black brackets. I suggest maximizing the
DiskView window to see as large a portion of the volume as possible.

Note After scanning a volume, DiskView might display a File Errors dialog box listing objects
that could not be accessed. Figure 12-7 shows a typical example, in which the pagefile cannot
be accessed because it is in use, and the System Volume Information folder cannot be accessed
because of permissions.

342 Part II Usage Guide

FIGURE 12-7 DiskView File Errors dialog box.

Each cell in the upper graph represents a volume cluster. (The default cluster size on NTFS
volumes of 2 GB or more is 4096 bytes.) Clicking the Zoom up-arrow increases the cells’ size,
which makes it easier to distinguish individual clusters and to click on a specific cell. If you
scroll to the top of the upper graph, the top row represents the first clusters on the disk, with
cluster number zero represented in the upper left cell, and cluster 1 to its right. The second
row represents the next set of clusters, and so on.

The default color coding in the upper graph shows the arrangement of files on the disk. A
dark blue cell indicates the first of a set of clusters associated with a file, with the subsequent
blue cells representing the clusters of the file that are contiguous with the first one. A red
cell indicates the start of a file’s second or later fragment, with the subsequent blue cells
 representing the other clusters in that fragment.

If you deselect Show Fragment Boundaries from the Options menu, these first-cluster
 markers are not displayed, and fragment cells show entirely in red. Although this is how
defragmenters have historically displayed file fragmentation, it is an overly pessimistic
view. Indeed, the defragmentation algorithm in Windows 7 does not attempt to coalesce
 fragments that are over 64 MB, because the benefits become insignificant while the costs of
moving the fragment data increase.

If you click on a colored cell in the upper graph, DiskView displays the name of the file
 occupying that cluster in the text area at the top of the DiskView window and highlights
all clusters belonging to the same file in yellow. Double-click the cell to display the Cluster
Properties dialog box. In addition to showing the selected disk cluster number and the name
of the file occupying that cluster, this lists the file fragments showing contiguous cluster
numbers relative to the file, with file cluster 0 being the first cluster in the file, and the
 corresponding disk cluster numbers. In the example shown in Figure 12-8, the file occupies
568 clusters, of which the selected cluster is the 114th.

 Chapter 12 Disk Utilities 343

FIGURE 12-8 DiskView Cluster Properties.

To locate a particular file’s clusters, click the ellipsis button to the right of the text area and
select the file. The first fragment belonging to the file will be selected and visible in the
 upper graph. Click the Show Next button to select and move the display to view subsequent
fragments. Note that very small files can be stored in the Master File Table (MFT) itself, and
because DiskView does not analyze files in the MFT, if you select one of these files, DiskView
will report “The specified file does not occupy any clusters.”

Choose Statistics from the File menu to display the Volume Properties dialog box, shown in
Figure 12-9. In this dialog box, Files shows the total number of files on the volume, including
those in the MFT, while Fragments reports the number of file fragments belonging to files
outside of the MFT.

FIGURE 12-9 DiskView Volume Properties.

The Export button dumps the scanned data to a text file, which you can import into a
 database for advanced analysis. Note that this file can be very large because it has a separate
line of text for every file and for every cluster on the disk. The dump format is

■ One line containing the number of files on the disk

■ For each file, one space-delimited line containing the following:

■ The number of clusters in the file

■ The number of fragments in the file

■ The file path

344 Part II Usage Guide

■ One line containing the number of clusters on the disk

■ For each cluster, one space-delimited line containing the following:

■ The index of the file (in the preceding list) the cluster belongs to

■ The index of the cluster within the file

■ The type of cluster: 0=data, 1=directory, 2=metadata, 3=unused

Contig
Most disk-defragmentation solutions defragment an entire volume at a time. Contig is a
console utility that lets you defragment one file or a set of files, as well as see file fragmenta-
tion levels. The ability to target a specific file can be helpful if you have one that continually
becomes fragmented through frequent updates. You can also use Contig to create a new file
that is guaranteed to be in one set of contiguous clusters.

Contig works on all versions of Windows. It uses the standard Windows defragmentation
APIs, so it won’t cause disk corruption, even if you terminate it while it is running. Contig
requires Write permissions on the target volume to defragment a file; it requires only Read
permissions to report the amount of fragmentation. Contig requires Write permissions in the
target directory to create a new contiguous file. See the “Volume Permissions” sidebar earlier
in this chapter for more information.

Note Defragmentation is not needed on solid state drives. In fact, they can reduce the usable
lifetime of such drives.

To work with existing files, use Contig as follows:

contig [-v] [-q] [-s] [-a] filename

The filename parameter accepts wildcards. If you don’t use the –a option and the target file
is not in one contiguous block, Contig searches for a free disk block large enough to accom-
modate the entire file, and if it finds one, moves the file’s fragments to that block. Files that
are already contiguous are left alone. At the end of the defragmentation operation, Contig
reports the number of files processed and the number of fragments per file before and after
the defragmentation.

The –a option analyzes the file or files, reporting the number of fragments but not moving
them. The –v (verbose) option displays additional detail while performing operations. The
–q (quiet) option processes files in silent mode, displaying only the summary at the end. The
–s option performs a recursive search of subdirectories when you specify a file name with

 Chapter 12 Disk Utilities 345

wildcards. For example, the following command analyzes fragmentation of all .bin files in the
ProgramData hierarchy:

contig -a -s C:\ProgramData*.bin

To create a new file of a fixed size that is guaranteed to be in one contiguous block, use
Contig as follows:

contig -n filename length

Figure 12-10 demonstrates the creation of a 1-GB contiguous file.

FIGURE 12-10 Contig creating a contiguous file.

PageDefrag
One of the limitations of the Windows defragmentation interface is that it is not possible
to defragment files that are open for exclusive access. Thus, event logs, registry hives, and
 paging and hibernation files cannot be defragmented while Windows is running. PageDefrag
(PageDfrg.exe) is a utility I wrote that overcomes this limitation. It shows the current amount
of fragmentation for these files and enables you to schedule their defragmentation early in
the Windows boot cycle.

Note PageDefrag works only on the x86 editions of Windows XP and Server 2003, and it
 requires administrative rights.

When you run PageDefrag (shown in Figure 12-11), it presents a list of system files that
 cannot be defragmented while Windows is running and indicates how many clusters they
occupy and in how many fragments. You can then choose to defragment these files the next
time the system boots or every time the system boots by selecting the appropriate radio
button and clicking OK. You can also configure a timeout period before the defragmentation
begins, during which you can press any key to skip the defrag operations.

346 Part II Usage Guide

FIGURE 12-11 Configuring PageDefrag.

If you choose to defragment, PageDefrag registers a native executable to be launched by the
Windows Session Manager process as a BootExecute program immediately after Autochk.
The defragmentation status output appears on the Windows bootup screen as shown in
Figure 12-12.

FIGURE 12-12 PageDefrag running.

You can also script PageDefrag with the following command-line syntax:

pagedfrg { -e | -o | -n }

where –e schedules defrag on every boot, –o schedules a one-time defrag on the next boot,
and –n (never) cancels any scheduled defrags.

 Chapter 12 Disk Utilities 347

DiskExt
DiskExt is a console utility that displays information about what disks the partitions of a
 volume are located on and the physical locations of the partitions on a disk. (Volumes can
span multiple disks.) Run DiskExt without parameters to enumerate and report on all vol-
umes. Name one or more volumes on the DiskExt command line to report only on those
volumes—for example:

diskext c e

Figure 12-13 shows the output from DiskExt (without parameters) on one of my laptops.

FIGURE 12-13 DiskExt.

Per MSDN, “A disk extent is a contiguous range of logical blocks exposed by the disk. For
 example, a disk extent can represent an entire volume, one portion of a spanned volume,
one member of a striped volume, or one plex of a mirrored volume.” Each extent begins at
an offset measured in bytes from the beginning of the disk, and has a length, also measured
in bytes.

DiskExt works on all supported versions of Windows and does not require administrative
rights.

LDMDump
LDMDump is a console utility that displays detailed information about the contents of the
Logical Disk Manager (LDM) database. Windows has the concept of basic and dynamic disks.
Dynamic disks implement a more flexible partitioning scheme than that of basic disks. The
dynamic scheme supports the creation of multipartition volumes that provide performance,

348 Part II Usage Guide

sizing, and reliability features not supported by simple volumes. Multipartition volumes
include mirrored volumes, striped arrays (RAID-0), and RAID-5 arrays. Dynamic disks are
partitioned using LDM partitioning. The LDM maintains one unified database that stores
partitioning information for all the dynamic disks on a system and that resides in a 1-MB
 reserved space at the end of each dynamic disk.

Note See Windows Internals: Including Windows Server 2008 and Windows Vista, 5th Edition
(Microsoft Press, 2009) for more information on volume management and the LDM database.

LDMDump takes a zero-based disk number with the /d# command-line switch like this:

ldmdump /d0

Note that there is no space between the /d and the disk number.

The following example shows excerpts of LDMDump output. The LDM database header dis-
plays first, followed by the LDM database records that describe a 12-GB volume with three
4-GB dynamic disks. The volume’s database entry is listed as Volume1 (E:). At the end of the
output, LDMDump lists the partitions and definitions of volumes stored in the database.

PRIVATE HEAD:
Signature : PRIVHEAD
Version : 2.12
Disk Id : b5f4a801-758d-11dd-b7f0-000c297f0108
Host Id : 1b77da20-c717-11d0-a5be-00a0c91db73c
Disk Group Id : b5f4a7fd-758d-11dd-b7f0-000c297f0108
Disk Group Name : WIN-SL5V78KD01W-Dg0
Logical disk start : 3F
Logical disk size : 7FF7C1 (4094 MB)
Configuration start: 7FF800
Configuration size : 800 (1 MB)
Number of TOCs : 2
TOC size : 7FD (1022 KB)
Number of Configs : 1
Config size : 5C9 (740 KB)
Number of Logs : 1
Log size : E0 (112 KB)

TOC 1:
Signature : TOCBLOCK
Sequence : 0x1
Config bitmap start: 0x11
Config bitmap size : 0x5C9
Log bitmap start : 0x5DA
Log bitmap size : 0xE0
...
VBLK DATABASE:
0x000004: [000001] <DiskGroup>
 Name : WIN-SL5V78KD01W-Dg0
 Object Id : 0x0001

 Chapter 12 Disk Utilities 349

 GUID : b5f4a7fd-758d-11dd-b7f0-000c297f010
0x000006: [000003] <Disk>
 Name : Disk1
 Object Id : 0x0002
 Disk Id : b5f4a7fe-758d-11dd-b7f0-000c297f010

0x000007: [000005] <Disk>
 Name : Disk2
 Object Id : 0x0003
 Disk Id : b5f4a801-758d-11dd-b7f0-000c297f010

0x000008: [000007] <Disk>
 Name : Disk3
 Object Id : 0x0004
 Disk Id : b5f4a804-758d-11dd-b7f0-000c297f010

0x000009: [000009] <Component>
 Name : Volume1-01
 Object Id : 0x0006
 Parent Id : 0x0005

0x00000A: [00000A] <Partition>
 Name : Disk1-01
 Object Id : 0x0007
 Parent Id : 0x3157
 Disk Id : 0x0000
 Start : 0x7C100
 Size : 0x0 (0 MB)
 Volume Off : 0x3 (0 MB)

0x00000B: [00000B] <Partition>
 Name : Disk2-01
 Object Id : 0x0008
 Parent Id : 0x3157
 Disk Id : 0x0000
 Start : 0x7C100
 Size : 0x0 (0 MB)
 Volume Off : 0x7FE80003 (1047808 MB)

0x00000C: [00000C] <Partition>
 Name : Disk3-01
 Object Id : 0x0009
 Parent Id : 0x3157
 Disk Id : 0x0000
 Start : 0x7C100
 Size : 0x0 (0 MB)
 Volume Off : 0xFFD00003 (2095616 MB)

0x00000D: [00000F] <Volume>
 Name : Volume1
 Object Id : 0x0005
 Volume state: ACTIVE
 Size : 0x017FB800 (12279 MB)
 GUID : b5f4a806-758d-11dd-b7f0-c297f0108
 Drive Hint : E:

350 Part II Usage Guide

VolumeID
While Windows provides numerous interfaces to change the label of a disk volume, it does
not provide any means for changing the volume ID, which is the 8 hex digit value reported as
the Volume Serial Number in directory listings:

C:\>dir
 Volume in drive C has no label.
 Volume Serial Number is 48A6-8C4B
[...]

VolumeID is a console utility that lets you change the ID number on FAT or NTFS drives,
including flash drives. VolumeID works on all versions of Windows and uses the following
syntax:

volumeid d: xxxx-xxxx

where d is the drive letter and xxxx-xxxx is the new 8 hex digit ID value. Figure 12-14 shows
VolumeID changing the ID on drive E to DAD5-1337.

FIGURE 12-14 VolumeID.

Changes on FAT drives take effect immediately, but changes on NTFS drives require
r emounting the drive or rebooting. Note that VolumeID does not work on exFAT volumes.

VolumeID requires Write permissions on the target volume, which in many cases is granted
only to administrators. See the “Volume Permissions” sidebar in this chapter for more
information.

 351

Chapter 14

System Information Utilities
The utilities in this chapter show system information that doesn’t fit into the categories of the
earlier chapters in this book:

■ RAMMap provides in-depth detail about the allocation of physical memory from
 several different perspectives.

■ CoreInfo shows the mapping between logical processors and the physical processor,
the NUMA node, and the socket on which they reside, the caches assigned to each
logical processor, and internode access costs on NUMA systems.

■ ProcFeatures reports whether the processor and Microsoft Windows support various
features such as No-Execute memory pages.

■ WinObj lets you navigate Windows’ Object Manager namespace and view information
about objects it contains.

■ LoadOrder shows the approximate order in which Windows loads device drivers and
starts services.

■ PipeList lists the named pipes on the local computer.

■ ClockRes displays the current resolution of the system clock.

RAMMap
RAMMap is an advanced physical memory usage analysis utility that shows how Windows
 allocates physical memory, also known as random access memory or RAM. RAMMap pres-
ents RAM usage information from different perspectives, including by usage type, page list,
process, file, priority, and physical address. You can also use RAMMap to purge portions of
RAM to test memory-management scenarios from a consistent start point. Finally, RAMMap
provides support for saving and loading memory snapshots. RAMMap runs on Windows
Vista and newer and requires administrative rights.

All user-mode processes, and most kernel-mode software, access code and data through
virtual memory addresses. That code and data might be in physical memory or in a backing
file on disk, but it must be mapped into the process’ working set1—the physical memory that
the memory manager assigns to the process—when the process actually reads, writes, or
 executes it. VMMap, described in Chapter 7, “Process and Diagnostic Utilities,” shows memory
from the perspective of one process’ virtual address space: how much is consumed by

1 This is usually but not always true: Address Windowing Extension (AWE) and large page memory is not part of the
working set even while it is being accessed.

352 Part II Usage Guide

 executables and other mapped files; how much is consumed by stacks, heaps, and other data
regions; how much of its virtual memory is mapped in the process’ working set; and how
much is unused. RAMMap focuses on RAM as a systemwide resource shared by all processes.
Process virtual memory that is not committed and paged in is not shown in RAMMap.
Figure 14-1 shows RAMMap with the Use Counts tab selected.

FIGURE 14-1 RAMMap’s Use Counts tab.

RAMMap’s seven tabs analyze RAM along different dimensions, including by allocation type
and page list, by per-process usage, by priority, by mapped file, and more. Several of the
tabs can contain a great deal of information. You can quickly find the next row containing
 specific text, such as a file or process name, by pressing Ctrl+F to open the Find dialog box,
and you can repeat the previous search by pressing F3. You can refresh the data at any time
by pressing F5.

For more information about the concepts described here, see the “Memory Management”
and “Cache Manager” chapters of Windows Internals: Including Windows Server 2008 and
Windows Vista (Microsoft Press, 2009).

Use Counts
The table and graphs in RAMMap’s Use Counts tab, shown in Figure 14-1, display RAM usage
by allocation type and by page list. The table columns and the summary graph above the
table indicate how much RAM is in each of the memory manager’s page lists. The table rows
and the summary graph to the left of the table indicate RAM assignment by allocation type.
The colored blocks in the row and column headers serve as keys to their respective graphs.
You can reorder columns by dragging a header to a new position, and you can sort the table
by a column’s data by clicking the column’s header. Clicking a column header multiple times
toggles the items between ascending and descending order.

 Chapter 14 System Information Utilities 353

The page lists shown on the Use Counts tab are

■ Active Memory that is immediately available for use without incurring a fault. This
includes memory that is in the working set of one or more processes or one of the
system working sets (such as the system cache working set), as well as nonpageable
memory such as nonpaged pool and Address Windowing Extension (AWE) allocations.

■ Standby Cached memory that has been removed from a working set but that can be
soft-faulted back into active memory. It can be repurposed without incurring a disk I/O.

■ Modified Memory that has been removed from a working set and that was modified
while in use but has not yet been written to disk. It can be soft-faulted back into the
working set from which it had been removed, but it must otherwise be written to disk
before it can be reused.

■ Modified no write The same as Modified, except that the page has been marked at
the request of file system drivers not to be automatically written to disk—for example,
with NTFS transaction logging.

■ Transition A temporary state for a page that has been locked into memory by a driver
to perform an I/O to or from it.

■ Zeroed Memory that has been initialized to all zeros and that is available for
allocation.

■ Free Memory that is not in use and has not been initialized to zeros. Free memory is
available for kernel allocation or for user-mode allocation if initialized from a disk read.
If necessary, the memory manager can zero pages from the free list before giving them
to a user process. The zero page thread, which runs at lower priority than all other
threads, fills free pages with zeros and moves them to the Zeroed list, which is why
there are typically very few pages on this list.

■ Bad Memory that has generated parity or other hardware errors and cannot be used.
The Bad list is also used by Windows for pages transitioning from one state to another
or are on internal look-aside lists.

The memory allocation types shown in the table’s rows are

■ Process Private Memory that can be used only by a single process.

■ Mapped File Shareable memory that represents a file on disk. Executable images and
resource DLLs are examples of mapped files.

■ Shared Memory Memory that can be shared by multiple processes and that can be
paged out to a paging file.

■ Page Table Kernel-mode memory that describes processes’ virtual address spaces.

■ Paged Pool Kernel-allocated memory that can be paged out to disk.

■ Nonpaged Pool Kernel-allocated memory that must always remain in physical
 memory. Nonpaged pool is always represented only in the Active column.

354 Part II Usage Guide

■ System PTE Memory used by system page table entries (PTEs), which are used to
dynamically map system pages such as I/O space, kernel stacks, and the mapping for
memory descriptor lists.

■ Session Private Memory allocated by Win32k.sys or session drivers (for example,
video, keyboard, or mouse) for use by a single terminal services session.

■ Metafile Memory used to represent file system metadata, including directories,
 paging files, and NTFS metadata files such as the MFT.

■ AWE Memory used by Address Windowing Extensions. AWE is a set of functions that
programs can use to control the data kept in RAM.

■ Driver Locked Memory allocated by a driver, charged to system commit and always
in active pages. Microsoft Hyper-V and Virtual PC make use of driver locked memory to
provide RAM to virtual machines.

■ Kernel Stack Memory assigned to kernel thread stacks.

■ Unused Memory that is not in use. Unused memory is always in the Zeroed, Free, or
Bad page lists.

Processes
The Processes tab (shown in Figure 14-2) shows the breakdown of physical memory pages
that can be associated with a single process. These include each process’ private user-mode
allocations as well as the kernel memory containing the process’ page tables. The Private,
Standby, and Modified columns show the amount of process private RAM on the Active,
Standby, and Modified page lists, respectively. The Page Table column shows the sum of
page table kernel-mode allocation for the process on any of the page lists.

FIGURE 14-2 RAMMap’s Processes tab.

 Chapter 14 System Information Utilities 355

Priority Summary
The Priority Summary tab (shown in Figure 14-3) lists the amount of RAM currently on each
of the prioritized standby lists. The Repurposed column shows the amount of RAM that has
been removed from each standby list to satisfy new allocation requests since system start,
rather than being soft-faulted back into a working set. High repurpose counts for priorities 5
and higher are a possible sign that the system is or was under memory pressure and might
benefit from having more RAM added.

FIGURE 14-3 RAMMap’s Priority Summary tab.

Physical Pages
The Physical Pages tab breaks down memory to the individual page level. The columns in the
Physical Pages tab are

■ Physical Address The page’s physical address.

■ List The page list to which the page is assigned.

■ Use The allocation type, such as Process Private, Kernel Stack, or Unused.

■ Priority The memory priority currently associated with the page.

■ Image Marked “Yes” if the page contains all or part of a mapped image file.

■ Offset Identifies the offset within a page table or a mapped file that the page
represents.

■ File Name Identifies the name of the mapped file backing the physical page.

356 Part II Usage Guide

■ Process Identifies the owning process if the memory is directly attributable to a
single process.

■ Virtual Address For Process Private allocations, shows the corresponding virtual
 address in the process’ address space. For kernel-mode allocations such as System PTE,
it shows the corresponding virtual address in the system space.

■ Pool Tag For paged and nonpaged pool, shows the tag (if any) associated with the
memory. The tag is shown only for pages that are entirely within a single allocation.

The two drop-down lists at the bottom of the Physical Pages tab allow you to filter which
physical pages to display in the table. Select the column on which to filter in the first drop-
down list and the value to show in the second. Note that you can simplify further analysis
by clicking a column header to sort the filtered results. For example, to show only the pages
that are at priority 7, select Priority in the first drop-down list and 7 from the second. Click on
the Use column to make it easier to see what kinds of allocations are assigned priority 7, as
 demonstrated in Figure 14-4.

FIGURE 14-4 RAMMap’s Physical Pages tab.

Physical Ranges
The Physical Ranges tab (shown in Figure 14-5) lists the valid ranges of physical memory
 addresses. Discontinuities in the sequences typically indicate physical addresses assigned to
device memory.

 Chapter 14 System Information Utilities 357

FIGURE 14-5 RAMMap’s Physical Ranges tab.

File Summary
The File Summary tab (shown in Figure 14-6) lists the path of every mapped file that has data
in RAM. For each file, it shows the total amount of RAM the file occupies, and then how much
of that amount is Active (in one or more working sets) and how much is on the Standby,
Modified, and Modified No-Write page lists. As with other RAMMap tables, the columns can
be sorted or reordered by clicking or dragging the column headers.

Windows can map files into memory for several reasons, including the following:

■ Executables and DLLs are mapped by the loader when they are loaded for execution.

■ An application can map a file explicitly using the MapViewOfFile API.

■ The cache manager can map a file when an application performs cached I/O on it.

■ The Superfetch service can prefetch executables and other files into the standby list.

358 Part II Usage Guide

FIGURE 14-6 RAMMap’s File Summary tab.

File Details
Like the File Summary tab, the File Details tab (shown in Figure 14-7) lists the path of every
mapped file that has data in RAM and the total amount of RAM each file occupies. Clicking
the “plus” icon next to a file expands the entry to list every physical page the file occupies
on a separate row. For each page, RAMMap shows the page’s physical address, to what list
the page is assigned, the allocation type (which is always Mapped File), the memory priority,
whether it is loaded as an executable image, and the offset within the mapped file that the
page represents.

FIGURE 14-7 RAMMap’s File Details tab.

 Chapter 14 System Information Utilities 359

Purging Physical Memory
RAMMap gives you the ability to purge working sets and paging lists. This can be useful
for measuring the memory usage of applications after they have started or when specific
 application features are exercised. For example, you can compare the physical memory
 impact of different features by emptying all working sets prior to exercising each feature and
then capturing a new snapshot after exercising each one.

Choose one of the selections described in the following list from the Empty menu and
RAMMap will immediately purge that portion of memory. Note that RAMMap does not
 automatically refresh its data, so you can purge multiple areas of memory before pressing F5
to update RAMMap’s data.

■ Empty Working Sets Removes memory from all user-mode and system working sets
to the Standby or Modified page lists. Note that by the time you refresh RAMMap’s
data, processes that run any code will necessarily populate their working sets to do so.

■ Empty System Working Set Removes memory from the system cache working set.

■ Empty Modified Page List Flushes memory from the Modified page list, writing
 unsaved data to disk and moving the pages to the Standby list.

■ Empty Standby List Discards pages from all Standby lists, and moves them to the
Free list.

■ Empty Priority 0 Standby List Flushes pages from the lowest-priority Standby list to
the Free list.

Saving and Loading Snapshots
You can save all the details of a RAMMap snapshot to a file for viewing at a later time and
on a different computer by choosing Save from the File menu. By default, RAMMap uses the
.RMP extension to signify a RAMMap file, but does not create an actual file association. The
RAMMap snapshot file format is XML but with encoded portions. To view a saved snapshot,
choose Open from the File menu and select the saved snapshot.

CoreInfo
CoreInfo is a command-line utility that shows you the mapping between logical processors
and the physical processor, NUMA node, processor group (on Windows 7 and newer), and
socket on which they reside, as well as the caches assigned to each logical processor. It uses
the Windows GetLogicalProcessorInformation or GetLogicalProcessorInformationEx functions,
depending on the operating system version, to obtain this information and prints it to
the screen, representing a mapping to a logical processor with an asterisk. In addition to
 dumping NUMA topology information, CoreInfo measures and displays the internode access

360 Part II Usage Guide

costs on NUMA systems. CoreInfo is useful for gaining insight into the processor and cache
 topology of your system.

CoreInfo runs on Windows XP Service Pack 3 and newer, and Windows Server 2003 and
 newer, including IA-64 systems. It does not require administrative rights.

Without command-line options, CoreInfo outputs all the information it gathers. To limit
CoreInfo’s output to only portions of that information, specify one or more of the following
options on the CoreInfo command line:

■ –c Dump information on cores.

■ –g Dump information on groups.

■ –l Dump information on caches.

■ –n Dump information on NUMA nodes.

■ –s Dump information on sockets.

■ –m Dump the NUMA access cost.

The following output is from a two-socket, quad-core AMD Opteron system. Note how each
socket corresponds to a NUMA node, and each CPU has its own L1 instruction and data
cache, an L2 unified cache, and a shared L3 unified cache:

Coreinfo v2.11 - Dump information on system CPU and memory topology
Copyright (C) 2008-2010 Mark Russinovich
Sysinternals - www.sysinternals.com

Logical to Physical Processor Map:
*------- Physical Processor 0
-*------ Physical Processor 1
--*----- Physical Processor 2
---*---- Physical Processor 3
----*--- Physical Processor 4
-----*-- Physical Processor 5
------*- Physical Processor 6
-------* Physical Processor 7

Logical Processor to Socket Map:
****---- Socket 0
----**** Socket 1

Logical Processor to NUMA Node Map:
****---- NUMA Node 0
----**** NUMA Node 1

Approximate Cross-NUMA Node Access Cost (relative to fastest):
 00 01
00: 1.0 1.4
01: 1.5 1.2

 Chapter 14 System Information Utilities 361

Logical Processor to Cache Map:
*------- Data Cache 0, Level 1, 64 KB, Assoc 2, LineSize 64
*------- Instruction Cache 0, Level 1, 64 KB, Assoc 2, LineSize 64
*------- Unified Cache 0, Level 2, 512 KB, Assoc 16, LineSize 64
-*------ Data Cache 1, Level 1, 64 KB, Assoc 2, LineSize 64
-*------ Instruction Cache 1, Level 1, 64 KB, Assoc 2, LineSize 64
-*------ Unified Cache 1, Level 2, 512 KB, Assoc 16, LineSize 64
--*----- Data Cache 2, Level 1, 64 KB, Assoc 2, LineSize 64
--*----- Instruction Cache 2, Level 1, 64 KB, Assoc 2, LineSize 64
--*----- Unified Cache 2, Level 2, 512 KB, Assoc 16, LineSize 64
---*---- Data Cache 3, Level 1, 64 KB, Assoc 2, LineSize 64
---*---- Instruction Cache 3, Level 1, 64 KB, Assoc 2, LineSize 64
---*---- Unified Cache 3, Level 2, 512 KB, Assoc 16, LineSize 64
****---- Unified Cache 4, Level 3, 2 MB, Assoc 1, LineSize 64
----*--- Data Cache 4, Level 1, 64 KB, Assoc 2, LineSize 64
----*--- Instruction Cache 4, Level 1, 64 KB, Assoc 2, LineSize 64
----*--- Unified Cache 5, Level 2, 512 KB, Assoc 16, LineSize 64
-----*-- Data Cache 5, Level 1, 64 KB, Assoc 2, LineSize 64
-----*-- Instruction Cache 5, Level 1, 64 KB, Assoc 2, LineSize 64
-----*-- Unified Cache 6, Level 2, 512 KB, Assoc 16, LineSize 64
------*- Data Cache 6, Level 1, 64 KB, Assoc 2, LineSize 64
------*- Instruction Cache 6, Level 1, 64 KB, Assoc 2, LineSize 64
------*- Unified Cache 7, Level 2, 512 KB, Assoc 16, LineSize 64
-------* Data Cache 7, Level 1, 64 KB, Assoc 2, LineSize 64
-------* Instruction Cache 7, Level 1, 64 KB, Assoc 2, LineSize 64
-------* Unified Cache 8, Level 2, 512 KB, Assoc 16, LineSize 64
----**** Unified Cache 9, Level 3, 2 MB, Assoc 1, LineSize 64

Logical Processor to Group Map:
******** Group 0

ProcFeatures
ProcFeatures is a simple command-line utility that uses the Windows
IsProcessorFeaturePresent function to determine whether the processor and Windows
 support various features such as No-Execute memory pages, Physical Address Extensions
(PAE), and a real-time cycle counter. Its primary purpose is to identify systems running the
PAE version of the kernel and that can support hardware-based Data Execution Prevention.
ProcFeatures runs on all supported versions of Windows and does not require administrative
rights.

Figure 14-8 shows example output from an Intel Core2 Duo system running on Windows 7
64-bit edition.

362 Part II Usage Guide

FIGURE 14-8 ProcFeatures.

WinObj
WinObj is a GUI utility that lets you navigate Windows’ Object Manager namespace and
view information about the objects it contains. The Object Manager provides a directory
structure and a common, consistent interface for creating, deleting, securing, and accessing
objects of many different types. For more information about the Windows Object Manager,
see the “Object Manager” section of Chapter 3, “System Mechanisms,” in Windows Internals:
Including Windows Server 2008 and Windows Vista Fifth Edition.

WinObj runs on all versions of Windows and does not require administrative rights. However,
WinObj can display more information when run with administrative rights, because several
areas in the Object Manager namespace require administrative rights even to view. And
 because some objects grant access to the System account but not to Administrators, running
WinObj as System generally provides the most complete view. (PsExec, described in Chapter
6, “PsTools,” can help with this.) On Windows Vista and newer, you can restart WinObj with
elevated rights by choosing File, Run As Administrator.As shown in Figure 14-9, WinObj
shows the Object Manager directory hierarchy as an expandable tree structure in the left
pane. The root directory is named with simply a backslash. When you select a directory in
the left pane, the right pane lists the objects contained in that directory. When you select a
directory in the left pane or an object in the right pane, the status bar shows the item’s full
path. You can refresh the view at any time by pressing F5.

 Chapter 14 System Information Utilities 363

FIGURE 14-9 WinObj.

The sortable table in the right pane lists each object’s name and type; for symbolic links, the
SymLink column identifies the link target. Click any column header to sort the object list by
that column. Next to each object’s name is an icon corresponding to the object type:

■ Mutexes (mutants) are indicated with a padlock.

■ Sections (Windows file-mapping objects) are shown as a memory chip.

■ Events are shown as an exclamation point in a triangle.

■ KeyedEvents have the same icon as Events with a key overlaid.

■ Semaphores are indicated with an icon that resembles a traffic signal.

■ Symbolic links are indicated with a curved arrow.

■ Devices are represented with a desktop computer icon.

■ Drivers are represented with gears on a page (like the standard icon for .sys files).

■ Window Stations are represented with a video monitor icon.

■ Timers are represented with a clock.

■ Gears indicate other objects, such as ALPC ports and jobs.

To view more information about a directory or an object, right-click it and choose
Properties. Double-clicking an object will also display its Properties dialog box (as shown in
Figure 14-10), unless it is a Symbolic Link: double-clicking a symbolic link navigates to the
link target.

364 Part II Usage Guide

FIGURE 14-10 A WinObj object property dialog box.

The Details tab of the WinObj Properties dialog box, shown in Figure 14-10, shows the
 following information for all object types:

■ The object’s name and type.

■ Whether the object is “permanent”—an object that is not automatically deleted when it
is no longer referenced.

■ Reference and handle counts. Because each handle includes a reference to the object,
the reference count is never smaller than the handle count. The difference between the
two figures is the number of direct references to the object structure from within kernel
mode rather than indirectly through a handle.

■ Quota charges—how much paged and nonpaged pool is charged to the process’ quota
when it creates the object.

The bottom portion of the Details tab shows object-specific information, where possible. For
example, a SymbolicLink shows its creation time and the directory path to its target object,
while an Event object shows the event type and whether it is in a signaled state.

The Security tab of the Properties dialog box shows the generic permissions on the object.
Note, however, that not all object types can be opened, and that permissions on a specific
object might also prevent viewing its properties.

 Chapter 14 System Information Utilities 365

Some directories of interest within WinObj are

■ \BaseNamedObjects Objects such as events and semaphores created in the Global
namespace appear in this object directory, as do objects created in a Local namespace
by a process running in terminal services session 0.

■ \Sessions\n Contains data private to the terminal services or Fast User Switching
 session identified by the number n, where n is 1 or higher.

■ \Sessions\n\BaseNamedObjects Objects such as events and semaphores created in
the Local namespace of processes running in a terminal services or Fast User Switching
session identified by the number n.

■ \Sessions\0\DosDevices\LUID Contains data private to an LSA logon session
 indicated by the locally-unique ID (LUID) in the directory name, including SMB
 connections, network drive letter mappings, and SUBST mappings.

■ \GLOBAL?? This object directory contains symbolic links that map global names—
including globally defined drive letters and other legacy MS-DOS device names such as
AUX and NUL—to devices.

■ \KnownDLLs and \KnownDlls32 Section names and paths for DLLs that are mapped
by the system at startup. \KnownDlls32 exists only on 64-bit versions of Windows and
lists 32-bit versions of known DLLs.

LoadOrder
LoadOrder (Loadord.exe) is a simple applet that shows the approximate order in which
Windows loads device drivers and starts services. LoadOrder runs on all versions of Windows
and does not require administrative rights.

LoadOrder determines load order for drivers and services based on start value, group name,
tag ID, and dependencies. As shown in Figure 14-11, LoadOrder lists all those attributes
 except for dependencies. Boot start drivers are loaded first, then System start drivers, and
then Automatic start drivers and services. Note that LoadOrder does not list demand start
(also known as Manual start) drivers and services. Within a start phase, Windows loads
 drivers by group, and within a group sorted by Tag ID. Windows loads groups in the order
they are listed in HKLM\System\CurrentControlSet\Control\ServiceGroupOrder, and it orders
tags in the order listed for the respective group in HKLM\System\CurrentControlSet\Control\
GroupOrderList. Groups or tags that are not specified in those keys are ignored when
 determining load order, and LoadOrder marks those with an asterisk. In addition to Start
value, Group Name, and Tag, LoadOrder shows the internal and display name and the image
path for each driver or service.

366 Part II Usage Guide

FIGURE 14-11 LoadOrder.

Click the Copy button to copy LoadOrder’s data to the clipboard as tab-delimited text.

Some drivers and services might load in a different order from that shown by LoadOrder.
Plug-and-Play drivers are typically registered as demand-start and are therefore not listed,
but they will load during device detection and enumeration. Also, LoadOrder does not
 distinguish between “Automatic” and “Automatic (Delayed Start)” services. Delayed-start
 services start after Automatic start services.

For more information on how Windows loads and starts drivers and services, see Windows
Internals: Including Windows Server 2008 and Windows Vista, Fifth Edition.

PipeList
Named pipes are implemented on Windows by a file system driver called NPFS.sys, which
stands for Named Pipe File System. PipeList is a console utility that lists all the named pipes
on the local computer by performing a directory listing of that file system. As shown in
Figure 14-12, PipeList also shows the number of instances that have been created for a name
and the maximum number of instances allowed. A Max Instances value of –1 means that
there is no upper limit on the number of instances allowed.

PipeList works on all versions of Windows and does not require administrative rights.

 Chapter 14 System Information Utilities 367

FIGURE 14-12 PipeList.

ClockRes
ClockRes is a simple command-line utility that displays the current resolution of the system
clock, as well as the minimum and maximum interval between clock ticks. It does not require
administrative rights.

The current resolution is typically higher than the maximum when a process, such as one
hosting a multimedia application, increases the resolution to deliver audio or video. Use the
Windows Powercfg.exe tool on Windows 7 with the /energy command to generate an HTML
report that includes the names of processes that have changed the timer resolution.

FIGURE 14-13 ClockRes.

 369

Chapter 13

Network and Communication
Utilities

The utilities described in this chapter focus on network and device connectivity. TCPView is
like a GUI version of the Windows Netstat utility, showing TCP and UDP endpoints on your
system. Whois is a command-line utility for looking up Internet domain registration infor-
mation or for performing reverse DNS lookups from IP addresses. And Portmon is a utility
for monitoring serial and parallel port I/O in real time. This chapter does not cover Process
Explorer or Process Monitor, although both include network monitoring functionality. They
are covered in chapters 3 and 4, respectively.

TCPView
TCPView, shown in Figure 13-1, is a GUI program that shows up-to-date and detailed listings
of all TCP and UDP endpoints on your system, including IPv4 and IPv6 endpoints. For each
endpoint, it shows the owning process name and process ID (PID), the local and remote
 addresses and ports, and the states of TCP connections. When run with administrative rights,
it also shows the numbers of packets sent and received via those endpoints. Click on any
 column header to sort the view by that column.

FIGURE 13-1 TCPView.

By default, TCPView automatically refreshes once per second. You can set the update speed
to two or five seconds via the View menu or turn off automatic refreshing altogether.
Press the space bar to toggle between automatic and manual refresh mode, and press F5
to refresh the view. New endpoints since the previous update are highlighted in green,

370 Part II Usage Guide

and endpoints that have been removed since the previous update are highlighted in red.
Endpoints that have changed state are highlighted in yellow.

TCPView’s Resolve Addresses option is on by default, which has TCPView resolve the domain
names of IP addresses and the service names of port numbers. For example, 445 is shown as
“microsoft-ds” and 443 as “https”. Turn the option off to display only IP addresses and port
numbers. You can toggle Resolve Addresses by pressing Ctrl+R or clicking the “A” toolbar
button. Toggling this option does not refresh the data.

TCPView shows all endpoints by default. To show only connected endpoints, deselect Show
Unconnected Endpoints on the Options menu or click the corresponding toolbar button.
Note that toggling this option refreshes the data.

If the remote address is a fully-qualified domain name, you can try to perform a “whois”
lookup of the domain’s registration information by right-clicking the connection and
 choosing Whois from the context menu. If its lookup is successful, TCPView displays the
 information in a dialog box as shown in Figure 13-2.

FIGURE 13-2 Results from TCPView’s Whois lookup.

You can close an established TCP connection by right-clicking it and choosing Close
Connection from the context menu. This option is available only for IPv4 TCP connections,
not IPv6. You can also view additional information about a process by double-clicking on it
or choosing Process Properties from its context menu, or you can terminate the process by
choosing End Process from that menu.

 Chapter 13 Network and Communication Utilities 371

Choose Save or Save As from the File menu to save the displayed data to a tab-delimited
ASCII text file. You can also copy data from one or more rows to the Windows clipboard by
selecting those rows and pressing Ctrl+C.

Whois
Unix installations typically include a whois command-line utility to look up domain
 registration information and to perform reverse DNS lookups of IP addresses. Because
Windows doesn’t include one, I created a Whois utility. The syntax is simple:

whois domainname [whois-server]

The domainname parameter can be either a DNS name such as sysinternals.com or an IPv4
address. You can optionally specify the particular whois lookup server to query. Otherwise,
Whois starts by querying tld.whois-servers.net (for example, com.whois-servers.net for .com
domains and uk.whois-servers.net for .uk domains) on the standard whois port (TCP 43) and
following referrals to other whois servers. Whois lists all the servers queried before output-
ting the returned registration data.

Portmon
Portmon logs all serial and parallel port input/output control (IOCTL) commands and displays
them in real-time along with interesting information regarding their associated parameters.
For read and write requests, Portmon displays a portion of the data that was read or
 written. By default, this data is shown as ASCII characters, using “.” to represent nonprintable
 characters, but you can choose to display the data in hexadecimal format instead.

Portmon works on all x86 versions of Windows and requires administrative rights.

Note Portmon displays only “Error 2” if you run it on a 64-bit version of Windows.

Portmon works like many of the other Sysinternals real-time monitors. Start Portmon and
it immediately begins capturing commands and data sent to all serial (COMn) and parallel
(LPTn) ports defined on the system, as shown in Figure 13-3.

372 Part II Usage Guide

FIGURE 13-3 Portmon.

You can toggle data capture on and off by pressing Ctrl+E or clicking the Capture icon in the
toolbar, and you can enable Autoscroll to scroll new events into the display as they arrive.
Each event appears in the Portmon window as a separate row with resizable columns. If data
in a particular column is wider than that column can accommodate, hover the cursor over the
displayed text and Portmon will display the full column text in a tooltip.

The first column is a Portmon-assigned event counter that gets reset to zero when you
clear the display. Gaps in this sequence can occur if the amount of incoming data exceeds
Portmon’s ability to keep up, or if filters (described later) exclude events from the display.
The Time column shows how long the request took to complete. You can have this column
display the time of day of the event instead by selecting Clock Time on the Options menu.
Note that this change affects the display only for subsequently captured data. You can also
hide the Time column by deselecting Show Time Column on the Options menu.

The Process column identifies the name of the process that made the request.

The Request column shows the symbolic name of the control code sent to the port. The
names are mostly self-explanatory (assuming you know something about port communica-
tions). IOCTL stands for input/output control, and IRP stands for input/output request packet,
with MJ used to define major functions. IOCTLs are for configuring the device’s behavior,
while IRPs typically request or contain data.

The Port column identifies the name of the port to which the request was sent. By default,
Portmon monitors all serial ports listed in HKLM\Hardware\DeviceMap\SerialComm and all
parallel ports listed in HKLM\Hardware\DeviceMap\Parallel Ports. You can selectively disable
the monitoring of specific ports via the Ports submenu of the Capture menu, as shown in
Figure 13-4. Portmon remembers your selections and reapplies them the next time it runs.

 Chapter 13 Network and Communication Utilities 373

FIGURE 13-4 Portmon port selection.

The Result column shows the result of the request.

Finally, the Other column shows additional relevant data about the request. For example, for
a “set baud rate” IOCTL, Portmon shows the requested baud rate in the Other column. For
read and write operations, Portmon displays the data length and then at least some of the
data. By default, Portmon displays up to 64 bytes of data in ASCII form, using “.” to represent
nonprintable characters. You can change the amount of data that is shown by choosing Max
Output Bytes from the Options menu and setting a different number in the Max Bytes dialog
box. You can also choose to show the data in hexadecimal form instead of ASCII by select-
ing Show Hex from the Options menu. Both of these options take effect on subsequently
 captured data. Portmon doesn’t change the display of data that has already been captured.

Portmon monitors system memory usage and suspends its data capture if it detects that
memory is running low, resuming capture only when the low-memory condition has eased.
One way to limit Portmon’s own memory consumption is to set the History Depth to a non-
zero value. This setting, on the Options menu, limits the number of events Portmon displays,
discarding older events.

You can increase the display space for output by selecting Hide Toolbar on the Options
menu. You can also increase the number of visible rows by selecting a smaller font size.
Choose Font from the Options menu to change the font.

Unlike most Sysinternals utilities, which store their settings under HKCU\Software\
Sysinternals, Portmon’s settings are stored in HKCU\Software\Systems Internals\Portmon,
 except the EulaAccepted flag, which is in HKCU\Software\Sysinternals\Portmon.

Searching, Filtering, and Highlighting
If you want to search for a line containing text of interest, press Ctrl+F to display the Find
 dialog box. If the text you specify matches text in the output window, Portmon selects the
next matching line and turns off the Autoscroll feature to keep the line in the window. Press
F3 to repeat a successful search.

Another way to isolate output that you are interested in is to use Portmon’s filtering
 capability. Click the Filter button in the Portmon toolbar to display the Filter dialog box,
shown in Figure 13-5. Filter and Highlight rules are automatically saved on exit and can be
reapplied the next time you run Portmon.

374 Part II Usage Guide

FIGURE 13-5 Portmon filter dialog box.

Enter expressions in the Include field to identify column content that you want Portmon to
display, in the Exclude field to specify content that should cause a line not to be displayed,
or in the Highlight field to identify content that should be emphasized with color coding.
You can enter multiple expressions, separating each with a semicolon. Do not include spaces
in the filter expression unless you want the spaces to be part of the filter. Note that the “*”
 character is interpreted as a wildcard, and that filters are interpreted in a case-insensitive
manner. The default rules include everything (“*”) and exclude nothing.

An expression must completely match a column value for the rule to apply. For example, if
you want to match lines that contain the word “baud” in the middle of other text (such as
IOCTL_SERIAL_GET_BAUD_RATE), you need to use “*” to account for the text before and after
the word “baud”. Use *baud* as your filter expression.

As an example, say you want Portmon to display all events except those that have a field
ending with “_WRITE” and to highlight events that include the word “baud”. You would apply
this filter:

Include: *

Exclude: *_write

Highlight: *baud*

Filtering is applied only to new events as they are captured. New text lines that match the
rules that are in effect are displayed; those that don’t are dropped and cannot be “unhidden”
by changing the filter rules after the fact. Also, changing the filter rules does not remove lines
that are already displayed by Portmon.

Highlighting is applied when you set the highlighting rules. The default colors for highlighted
rows are white text on a red background. You can change these colors by choosing Highlight
Colors from the Filter menu.

 Chapter 13 Network and Communication Utilities 375

If any Include or Exclude filter rules are in effect when you exit Portmon, Portmon will display
them in a dialog box the next time you start it. Simply click OK to continue using those rules,
or change them first. You can edit them in place, or click Reset to remove the filter.

Saving, Logging, and Printing
You can select one or more rows from the Portmon list and copy them as tab-delimited text
to the Windows clipboard by pressing Ctrl+C. Note that the Time column is always included
even if the Show Time Column option is deselected, while the sequence number column is
not included. Portmon supports standard Windows methods of selecting multiple rows such
as holding down Shift while pressing the Up or Down arrow keys to select consecutive rows,
or holding down Ctrl while clicking nonconsecutive rows.

You can save the data captured by Portmon as a text file by choosing Save or Save As from
the File menu. Portmon uses the .LOG extension by default. The file format is tab-delimited
ASCII text and always includes the sequence number and Time columns.

To have Portmon log output to a file as it displays it, choose Log To File from the File menu.
The first time you choose that menu item or click the Log To File button on the toolbar,
Portmon displays the Log-To-File Settings dialog box shown in Figure 13-6, prompting you
for a file location. From that point forward, the Log To File menu option and toolbar button
toggle logging to that file on or off. To log to a different file or to change other log file set-
tings, choose Log To File As from the File menu. (If log-to-file is currently enabled, choosing
Log To File As has the same effect as toggling Log To File off.) The Settings dialog box also
lets you configure a maximum size beyond which the log file will not grow, and whether to
overwrite or append to an existing log file. After the log file grows beyond the max log size,
Portmon disables logging to the file but continues to display new events as they come in. A
max log size of 0 indicates no limit.

FIGURE 13-6 The Portmon Log-To-File Settings dialog box.

When logging to a file, Portmon writes two lines of output with the same sequence number
for each event. The first line of each pair includes the process, request, port, and other infor-
mation supplied by the process with the request. The second line includes the event duration
(if the Clock Time option is not selected) and the result. Note that related lines may not be

376 Part II Usage Guide

adjacent if an operation completes asynchronously and also that columns are separated by
two spaces, not by tabs. Here is an example of data written to a Portmon log file:

0 0.00000000 spoolsv.exe IRP_MJ_CREATE Serial1 Options: OpenIf Sequential
0 0.00065288 SUCCESS
1 0.00000000 spoolsv.exe IRP_MJ_SET_INFORMATION Serial1 -1699359072
1 0.00000587 SUCCESS
2 0.00000000 spoolsv.exe IRP_MJ_SET_INFORMATION Serial1 -1699359044
2 0.00000223 SUCCESS
3 0.00000000 spoolsv.exe IOCTL_SERIAL_GET_BAUD_RATE Serial1
3 0.00000615 SUCCESS
4 0.00000000 spoolsv.exe IOCTL_SERIAL_GET_LINE_CONTROL Serial1
4 0.00000279 SUCCESS

Choose Print or Print Range from the File menu to print the captured data to a printer.
Choose Print Range if you want to print only a subset of the sequence numbers displayed, or
choose Print if you want to print all the output records. Note that capture must be disabled
prior to printing.

The Print Range dialog box (shown in Figure 13-7) also lets you specify whether or not data
from the sequence number and Time columns will be included in the output. Omitting these
fields can save page space if they are not necessary. The settings you choose are used in all
subsequent print operations.

FIGURE 13-7 The Portmon Print Range dialog box.

To prevent wrap-around when output lines are wider than a page, consider using landscape
mode instead of portrait when printing.

 377

Chapter 15

Miscellaneous Utilities
The utilities in this chapter are not for diagnostic or troubleshooting purposes. They
are simple utilities I wrote for my own needs or amusement and later published to the
Sysinternals Web site.

■ RegJump launches RegEdit and navigates to the registry path you specify.

■ Hex2Dec converts numbers from hexadecimal to decimal and vice versa.

■ RegDelNull searches for and deletes registry keys with embedded null characters in
their names.

■ Bluescreen Screen Saver is a screen saver that realistically simulates a “Blue Screen of
Death.”

■ Ctrl2Cap is a keyboard filter driver that converts Caps Lock keypresses to Control
 keypresses for those of us who are used to keyboards where the Control key is located
immediately to the left of the A key.

RegJump
RegJump is a command-line utility that takes a registry path, opens the Windows RegEdit
 applet, and navigates RegEdit to the path you specify. You can specify the root key in stan-
dard or abbreviated form, or even in Microsoft Windows PowerShell drive-specifier format.
Note that it is not necessary to quote registry paths that contain spaces. The following
 commands are all equivalent:

regjump HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control

regjump HKLM\SYSTEM\CurrentControlSet\Control

regjump HKLM:\SYSTEM\CurrentControlSet\Control

RegJump works by programmatically sending keystrokes to RegEdit. This means that on
Windows Vista and newer, RegJump must run with at least as high an integrity level as that
of RegEdit. Also note that if you are a member of the Administrators group, RegEdit requires
elevation, so RegJump must also run elevated. If you are logged on as a standard user,
 neither RegJump nor RegEdit require elevation.

378 Part II Usage Guide

Hex2Dec
If you spend a lot of time in a command prompt or Windows PowerShell console, Hex2Dec
is a handy way to convert numbers from hexadecimal to decimal and vice versa without
 having to open the Windows Calculator. Simply enter the number you want to convert on the
 command line, using the prefix x or 0x to indicate a hex number. Hex2Dec interprets input as
64-bit (qword) integers, treating decimal values as signed 64-bit integers. Figure 15-1 shows
examples.

FIGURE 15-1 Hex2Dec.

RegDelNull
Because of the way that the Windows native APIs and the Windows kernel handle string
values, the native APIs make it possible to create and access registry keys and values with
embedded null characters in their names. Because the Win32 APIs use a null character to
 indicate the end of a string value, it is impossible to access or delete such keys or values using
the Win32 APIs, or with standard registry-editing tools such as RegEdit that use those APIs.

RegDelNull searches for and allows you to delete registry keys that contain embedded null
characters. Specify the key to search, and add –s to recurse into subkeys. If RegDelNull finds
any keys with embedded nulls, it displays the path with an asterisk replacing the null, and
it prompts you to specify whether to delete the key, as shown in Figure 15-2. Note that
 deleting registry keys might cause the applications that use those keys to fail.

 Chapter 15 Miscellaneous Utilities 379

FIGURE 15-2 RegDelNull.

Bluescreen Screen Saver
This one is just for fun. The Bluescreen Screen Saver realistically simulates an endless cycle
of “Blue Screen of Death” (BSOD) crashes and system restarts. For each simulated crash,
Bluescreen randomly picks a bugcheck code and displays realistic data corresponding to that
code. For the restarts, Bluescreen displays a Windows XP startup splash screen with a prog-
ress bar (it has not been updated to display a Windows Vista or Windows 7 splash screen),
and then “crashes” again.

To install the Bluescreen Screen Saver, copy SysinternalsBluescreen.scr to your System32
 folder and select it from the Windows screen saver dialog box. Alternately, copy it to any
folder on your computer, right-click it in Windows Explorer and choose Install from the
 context menu. Note that the Bluescreen Screen Saver is not included in the Sysinternals Suite
but can be downloaded separately from the Sysinternals Web site.

Note The Bluescreen Screen Saver configuration dialog box offers a Fake Disk Activity check
box, but this option has no effect when used on any operating system newer than Windows NT
4.0, after which BSOD screens underwent significant streamlining.

The Bluescreen Screen Saver works on all versions of Windows and does not require
 administrative rights. However, because it needs to change the display mode, Bluescreen will
not work in a remote desktop session; and because it also requires DirectX, it might not work
in a virtual machine.

Be careful when using the Bluescreen Screen Saver! We have heard stories of unwitting
 victims power-cycling their computers to “recover” from the endless simulated crashes. We
also heard about one Bluescreen user whose screen saver appeared during a presentation.
He nonchalantly pressed a key and resumed his demonstration, not realizing the effect on

380 Part II Usage Guide

his audience. They ignored the rest of his presentation and reported to upper management,
“We have a quick blue screen recovery mechanism! We’ll make a fortune!”

Ctrl2Cap
Before I began working on Windows systems, I spent all my time on UNIX computers on
which the Control key was located where the Caps Lock key is on standard PC keyboards.
Rather than unlearn that muscle memory, I chose to learn about Windows’ extensibility
and built a kernel-mode driver that converts Caps Lock keypresses into Control keypresses.
Ctrl2Cap was the first Sysinternals utility I wrote. I still use it to this day and have never missed
having Caps Lock.

Ctrl2Cap works on all x86 and x64 versions of Windows. Installing or uninstalling Ctrl2Cap
requires administrative privileges.

To install Ctrl2Cap, run the command ctrl2cap /install from the folder into which you
have unzipped the Ctrl2Cap files. To uninstall it, run ctrl2cap /uninstall. Unlike every other
Sysinternals utility that is packaged as a single executable file that can self-extract any addi-
tional files that it needs, the Ctrl2Cap download includes a Ctrl2Cap.exe file and several *.sys
files. During installation, Ctrl2Cap.exe determines which of its *.sys files is the correct one for
the current system, copies it into the System32\Drivers folder as Ctrl2Cap.sys, and registers it
as a keyboard class filter.

Windows® Sysinternals Administrator’s Reference

 381

Part III

Troubleshooting—”The Case
of the Unexplained . . .”

In this part:
Chapter 16: Error Messages . 383
Chapter 17: Hangs and Sluggish Performance . 405
Chapter 18: Malware . 427

 383

Chapter 16

Error Messages
In this chapter, I’ll demonstrate troubleshooting techniques using the Sysinternals
 utilities when the primary symptom is an error message. In this chapter, Procmon is the
 troubleshooting tool of choice in all but the first two cases:

■ The Case of the Locked Folder highlights a common use case for Procexp.

■ The Case of the Failed AV Update demonstrates Autoruns’ Analyze Offline System
feature to repair an unbootable computer.

■ The Case of the Failed Lotus Notes Backups is interesting to me and will be useful to
many readers because it shows what a search for a missing DLL looks like in Procmon.

■ The Case of the Failed Play-To and The Case of the Crashing Proksi Utility
 highlight different ways in which “Access Denied errors can manifest.

■ The Case of the Installation Failure turned out to be caused by ill-advised security
guidance.

■ The Case of the Missing Folder Association demonstrates comparing a Procmon
trace from a problematic system to one from a working system.

■ The Case of the Temporary Registry Profiles is especially interesting because it
 affected a large number of users and made use of one of Procmon’s lesser-known
 features: boot logging.

The Case of the Locked Folder
While writing up “The Case of the IExplore-Pegged CPU” (in Chapter 17, “Hangs and
Sluggish Performance”), I decided to rename the folder containing the files. However, I ran
into an unexpected error (shown in Figure 16-1) because another program had an open
 handle to the folder or to something in it. After making sure I didn’t have any files open or
command prompts in that folder, I clicked Try Again, but the folder remained in use and
could not be renamed.

384 Part III Troubleshooting—”The Case of the Unexplained . . .”

FIGURE 16-1 File system folder or something in it is open in another program.

I pressed Ctrl+F in Procexp to open the Search dialog box, entered the current name of the
folder, and clicked Search. Procexp pointed to Microsoft Outlook as the program with the
open handle. (See Figure 16-2.)

FIGURE 16-2 Searching for processes with open handles to the IexplorePeggedCPU folder.

I then remembered that I had saved an attachment from an e-mail message into a subfolder
of the folder I was trying to rename. I opened the Outlook.exe process’ Properties dialog
box in Procexp, and on the Image tab verified that the current directory was still set to that
 subfolder. (See Figure 16-3.) I could have made the problem go away by closing Outlook,
but instead I simply saved a random e-mail attachment to a different folder, making it the
 current directory and releasing the handle that was preventing the rename. Problem solved.

 Chapter 16 Error Messages 385

FIGURE 16-3 Outlook’s current directory preventing a rename in that folder hierarchy.

The Case of the Failed AV Update
After “The Case of the Process Killing Malware” was solved (as discussed in Chapter 18,
“Malware”), Aaron’s friend Paul went home and instructed his son to keep all his software
patched and up to date. He then set a good example by doing the same on his own desktop.
Unfortunately, the result was an unbootable computer.

Software must be kept up to date, so Paul updated the free antivirus software on his
Microsoft Windows XP computer. When he rebooted, the computer displayed the Windows
XP startup splash screen progress bar and then blue-screened. Subsequent restarts ended
the same way.

Naturally, Paul called Aaron, who changed into his well-worn “No, I will not fix your
 computer” t-shirt and came over. Aaron could probably have solved the problem in Safe
Mode or with System Restore, but those options must have seemed too easy for him.
(Actually, he wanted to ensure that the failing software did not load.) Instead, he booted
the computer with an old Windows Preinstallation Environment (WinPE) CD. He then ran
Autoruns, chose File | Analyze Offline System, pointing Autoruns to the C:\Windows folder on
the hard drive and to one of the profiles in the C:\Documents and Settings folder.

The old WinPE instance was not able to verify signatures, so Aaron chose to hide Microsoft
and Windows entries without signature verification, simply trusting that in this case no
modules on the system would falsely claim to be from Microsoft. In addition to the failing
antivirus’ Autostart Extensibility Points (ASEPs), Autoruns revealed several other services and
drivers that were no longer needed and were out of date. Aaron disabled all of them, as
shown in Figure 16-4, and restarted the computer.

386 Part III Troubleshooting—”The Case of the Unexplained . . .”

FIGURE 16-4 Autoruns analyzing an offline system, disabling failing antivirus applications and other
 unneeded entries.

The computer restarted without incident. After logging in, Paul was hesitant about risking
another failed update. So he took Aaron’s recommendation to upgrade to another free
 antivirus solution (shown in Figure 16-5) and uninstalled his previous antivirus product.
Case solved.

FIGURE 16-5 Microsoft Security Essentials: “Proven antivirus protection for free? That’s what I need.”

 Chapter 16 Error Messages 387

The Case of the Failed Lotus Notes Backups
A sysadmin reported that Lotus Notes backups began failing, displaying the error shown in
Figure 16-6: “none of the files in the file list exist.”

FIGURE 16-6 Lotus Notes backups failing.

He checked the backup application’s log, which reported a DLL load failure for nnotes.dll.
(See Figure 16-7.) He found it odd that the reported DLL file path was in a folder belonging
to a completely different application.

FIGURE 16-7 Backup application log showing DLL load failure for nnotes.dll.

He ran Procmon and tried to initiate the backup. Applying a filter for the backup application
and all its child processes, he pressed Ctrl+F and searched for the first instances of
“\nnotes.dll” in the trace. He found a sequence of QueryOpen calls (shown in Figure 16-8)
trying to open the file in different folders, each failing with NAME NOT FOUND until it was
finally found in C:\Program Files\BMC Software\MasterCell\server\bin. (The sysadmin says
that some of these folders are in the PATH environment variable and that others are added
by the backup application at runtime.)

FIGURE 16-8 Searching for nnotes.dll in several directories until found in the selected row.

388 Part III Troubleshooting—”The Case of the Unexplained . . .”

Shortly after opening that copy of nnotes.dll, the process mapped the DLL into its virtual
address space, as indicated by the LoadImage event shown in the first row of Figure 16-9.
So why did the DLL load fail? As you can also see in Figure 16-9, immediately after load-
ing nnotes.dll the process searched for but failed to find nxmlproc.dll.in a series of folders
 including all PATH locations in order.

FIGURE 16-9 Backup application successfully loads nnotes.dll and then can’t find nxmlproc.dll.

The sysadmin ran the Microsoft Visual Studio utility “dumpbin” to view the DLL’s import
 dependencies and verified that nnotes.dll statically depends on nxmlproc.dll. This explains
why the search for nxmlproc.dll began immediately after nnotes.dll was loaded, and why the
failure to find nxmlproc.dll resulted in a load failure for nnotes.dll.

He then searched the C and D drives for nxmlproc.dll, ultimately finding it in the D:\Domino
folder (shown in Figure 16-10), which hadn’t been searched. Interestingly, he also found a
copy of nnotes.dll in the same folder. (See Figure 16-11.) He inserted “D:\Domino” into the
PATH variable immediately following the default Windows folders and rebooted. Backups
then worked without issue. Problem solved.

FIGURE 16-10 Searching C and D for nxmlproc.dll.

 Chapter 16 Error Messages 389

FIGURE 16-11 Searching for nnotes.dll.

The Case of the Failed Play-To
A user tried to use Windows 7’s Play To feature to send a song to a media player but got the
ambiguous error message shown in Figure 16-12: “Error occurred on your device.” However,
it would play other songs from the user’s media library.

FIGURE 16-12 Play To fails with “Error occurred on your device.”

The user then reproduced the error, this time while monitoring system activity with Procmon.
Filtering on the song file, the trace showed successful operations from Wmplayer.exe and a
single “ACCESS DENIED” result from Wmpnetwk.exe. (See Figure 16-13.)

FIGURE 16-13 Successful operations from Wmplayer.exe, and failure from Wmpnetwk.exe.

390 Part III Troubleshooting—”The Case of the Unexplained . . .”

He also noticed that other songs that played were in the default Music folder, while the one
that failed was in his Documents folder. He compared the permissions between the songs
that played and the one that failed, and he found that those that played granted “Read &
execute” access to the WMPNetworkSvc service.1 He added that permission to the file that
had failed to play. (See Figure 16-14.) The song then played correctly. Problem solved.

FIGURE 16-14 Granting access to the WMPNetworkSvc service.

The Case of the Crashing Proksi Utility
The user had been using a utility called Proksi for over a year when it started crashing. To
diagnose the issue, he ran Procmon while reproducing the issue. After the utility crashed,
he stopped the trace. Scanning through the results (shown in Figure 16-15), he found an
“ACCESS DENIED” result when attempting to open a file for Generic Write permissions.

FIGURE 16-15 Procmon reports “ACCESS DENIED” right before AeDebug handles the crash.

1 In Windows Vista and newer, services are assigned security identifiers (SIDs), and it becomes possible to grant or
deny access to specific services.

 Chapter 16 Error Messages 391

He opened the Security tab of the file’s Properties dialog box in Windows Explorer, but found
nothing wrong. He then noticed that the Read-Only check box was selected on the General
tab. (See Figure 16-16.) He cleared it, and the program began working correctly.

FIGURE 16-16 “ACCESS DENIED” caused by the Read-Only check box being selected.

The Case of the Installation Failure
A customer that my co-author Aaron was working with had Kodak scanners that came with
CDs containing the required software. When the administrator inserted the CD, Windows
Vista’s Autorun didn’t quite work correctly—the Autorun dialog box appeared but did not
show the Autoplay option to install the software. So the administrator opened the folder in
Explorer and started autorun.exe to start the installation. Shortly after approving the User
Account Control elevation request, the administrator saw an error message with a strange
title that looked like the installer was performing an incorrect operating system version
check. (See Figure 16-17.)

FIGURE 16-17 Application installation error message.

392 Part III Troubleshooting—”The Case of the Unexplained . . .”

The Troubleshooting
Aaron figured that the author of the installation program had believed that because
Windows XP was so perfect Microsoft would never need to release another version of
Windows, there was no reason to check for newer versions. He applied the Windows XP
compatibility mode which, among other things, lies to the program about what the operat-
ing system version actually is and tried again. It failed in exactly the same way. Additionally,
the installation worked perfectly well on freshly installed copies of Windows Vista that didn’t
have the organization’s policies applied to it.

He started Procmon, ran the installation program again to the point of the error message
and then stopped the Procmon trace. He dragged the Procmon crosshairs toolbar icon over
the error message to apply a filter to show only events involving the window owner’s process,
Setup.exe. (See Figure 16-18.)

FIGURE 16-18 Procmon after filtering with “Include Process From Window.”

Because of the “0” in the title in the error message, Aaron thought the problem might
be due to the program searching for something and not finding it, so he right-clicked on
items in the Result column and excluded events with result codes he figured would not be
 interesting: SUCCESS, FAST IO DISALLOWED, FILE LOCKED WITH ONLY READERS, REPARSE,
BUFFER OVERFLOW, and END OF FILE. (Aaron usually excludes “known-good” result codes
rather than including potentially bad results because it is easy to miss some and filter out
 important entries.)

When he looked at the remaining entries, one thing that quickly stood out was the name
“DoesNotExist” appearing in path names near the end of the results. He used Procmon’s
highlighting feature to make them stand out in the context of surrounding events. (See
Figure 16-19.)

 Chapter 16 Error Messages 393

FIGURE 16-19 Highlighting “DoesNotExist” in the filtered results.

Because the surrounding context didn’t give him an idea of what had happened immediately
prior to these failed searches, he took advantage of Procmon’s nondestructive filtering and
removed the filter rule that excluded SUCCESS results. As you can see in Figure 16-20, there
had been a bunch of file accesses to D:\setup.ini and then a few to D:\autorun.inf before the
attempted registry access to HKLM\Software\DoesNotExist\Info.

FIGURE 16-20 Unhiding the SUCCESS results prior to the failed registry opening.

He opened the event properties for the first RegOpenKey event and looked at the call stack
(shown in Figure 16-21) to get an idea of how and why Setup.exe was trying to open that key.
Line 12 of the stack showed that the randomly-named component of the setup program was
calling into GetPrivateProfileStringA, which led (in line 7) to an attempt to open a registry key.

394 Part III Troubleshooting—”The Case of the Unexplained . . .”

FIGURE 16-21 Call stack of a failed attempt to open HKLM\Software\DoesNotExist\Info.

GetPrivateProfileString is one of the APIs Windows programmers can use to read from files
that are formatted like the old .ini files from 16-bit Windows. And as its documentation
points out, those accesses can be redirected to the registry with an IniFileMapping. Aaron
 located the IniFileMapping that redirected autorun.inf to “DoesNotExist” (shown in
Figure 16-22), deleted it, and rebooted—the installation then worked correctly.

FIGURE 16-22 IniFileMapping entry redirecting Autorun.inf to a nonexistent registry key.

The Analysis
Aaron found the technical reason for the installation failure, but he wanted to understand
the root cause and why the IniFileMapping had been configured.

What Is IniFileMapping?
IniFileMapping has been part of Windows since NT 3.1. When programs use the ini-file
APIs to access files, an IniFileMapping entry can redirect the access to the machine or user

 Chapter 16 Error Messages 395

 registry (HKLM or HKCU). IniFileMapping was designed to help older applications that used
.ini files to use the registry instead, to take advantage of the scalability benefits and to enable
 multiple users to have their own copies of settings instead of sharing a single ini file.

What Is Autorun .inf?
When a removable disk, such as a CD or a USB drive, is inserted and Windows detects the
new disk, Windows Explorer checks for an Autorun.inf file in the root folder of the drive. The
Autorun.inf is a text file formatted as an .ini file (that is, section names are in square brackets,
and there are name=value pairs within each section). It can include entries that tell Explorer
what icon to display for the drive and a default Autoplay action to offer to the user, or in
some cases, the program can just begin running. This is the mechanism that allows a pro-
gram installation to automatically start just by inserting a CD. There are registry settings and
group policies that can control whether and how Autorun and Autoplay work. (Microsoft
Knowledge Base article 967715 (http://support.microsoft.com/kb/967715) describes the
 distinction between Autorun and Autoplay.)

A problem with Autoplay is that by default it has also been applied to writable drives such
as thumb drives. Worms such as Conficker were able to propagate through such devices by
writing an Autorun.inf and a copy of itself to the drive. The malware could then infect other
computers simply by inserting the drive. That was compounded by a bug in the implementa-
tion of the settings that were supposed to disable Autoplay. That bug has since been fixed.
Furthermore, updated Windows systems now have Autoplay disabled by default for writable
drives, as described in KB article 971029 (http://support.microsoft.com/kb/971029). Autorun
and Autoplay still work for CDs and DVDs, because the threat of worm propagation through
that avenue is much smaller and (at this time) does not outweigh the benefits.

Why Did This Computer Have an IniFileMapping for Autorun .inf?
A couple of years ago, a blog post described a clever trick to disable Autoplay for all drives.
The trick leveraged the fact that Autorun.inf is formatted as an ini file and that Explorer uses
the ini file APIs to read it. By creating an IniFileMapping for Autorun.inf that redirects access
to a nonexistent registry key, Autoplay entries cannot be read. The author asserted that the
only negative effect was that users must browse for the file to execute. As more malware
began using writable removable drives as a propagation mechanism, Carnegie Mellon
University’s Computer Emergency Response Team (CERT) and other security-conscious
 organizations began recommending this trick, adding the assertion that “This setting appears
to disable Autorun behaviors without causing other negative side effects.” Since then, the
setting has been mandated as part of the standard image for many organizations.

396 Part III Troubleshooting—”The Case of the Unexplained . . .”

Why Did This Application Install Fail?
It turns out that the Autorun.inf on Kodak’s installation CD contained much more than just
Autoplay entries:

[autorun]
open=autorun.exe

[Info]
Dialog=Kodak i610/i620/i640/i660 Scanner
Model=600
ModelDir=kds_i600
ProgramGroup=i610,i620,i640,i660

[Versions]
CD=04040000
FIRMWARE=04000300
ISISDRIVER=2.0.10711.12001
ISISTOOLKIT=57.0.260.2124
KDSMM=01090000
PKG=02010000
SVT=06100000
TWAIN=09250500

[Install]

[SUPPORTEDOSES]
WIN=WINVISTA WINXP WIN2K

[REQUIREDSPS]
WINXP=1
WIN2K=3

Kodak and other vendors use the Autorun.inf not only for Autoplay but as a general-purpose
ini file containing configuration settings for their installation programs. The installation
program of course uses standard APIs to read the file, but the IniFileMapping redirects to a
nonexistent registry location, causing the installer to fail. It needs to be said here that what
Kodak is doing is perfectly legitimate. There are no guidelines that say that the Autorun.inf
cannot contain other application-specific settings.

Could the customer have worked around the problem by copying the CD content to the hard
drive and running it from there? No. The IniFileMapping setting applies to any file called
“Autorun.inf” no matter where it is.

The bottom line is that the installation failed because the assurances of no “negative side
 effects” were not backed with extensive compatibility testing, and it denied legitimate usage
scenarios. Because the new Autoplay defaults and already-available policy settings largely
mitigate the threat of viruses automatically propagating through USB drives, unsupported
hacks such as this IniFileMapping are not warranted. Aaron advised the customer to remove
the registry setting from their systems and rely on the new default behavior.

 Chapter 16 Error Messages 397

The Case of the Missing Folder Association
The user found that any attempt to open any folder in Windows Explorer resulted in an error
message like that shown in Figure 16-23: “This file does not have a program associated with it
for performing this action.” This happened whenever he double-clicked a folder on his desktop
or clicked the Computer, Control Panel, Documents, Pictures, or other folders in his Start menu.

FIGURE 16-23 Error message displayed on any attempt to open a folder.

Program associations are stored in the HKEY_CLASSES_ROOT hive in the registry, so he
 assumed that something was missing or corrupted there. He decided that the best course
of action to identify the problem would be to compare Procmon results on the system
 exhibiting the problem and a similar computer without the problem.

Procmon can capture a lot of data in a short amount of time, so he knew it was important
to narrow down the data set as much as possible. He started Procmon with the / noconnect
 option in order not to begin capturing events until he was ready to reproduce the problem.
He then pressed Ctrl+E to begin capture, double-clicked on a folder, and pressed Ctrl+E to
stop the capture as soon as the error message appeared. Next, he dragged the crosshairs
icon from the Procmon toolbar over the error message to apply a filter limiting the display
only to events from that process. Because Explorer.exe also manages the entire desktop—
including the taskbar, notification area, and more—he decided to narrow down the display
just to the thread that had displayed the error message. He right-clicked on the column
headers, enabled the Thread ID (TID) column, and dragged it next to the PID column.
Guessing that the thread with the most activity was the one he wanted, he used the Count
Occurrences tool to identify the thread (shown in Figure 16-24) and added it to the filter.
Then he saved that trace, selecting the save option that includes only the events displayed
with the current filter.

398 Part III Troubleshooting—”The Case of the Unexplained . . .”

FIGURE 16-24 Identifying the thread with the most activity.

Then he reproduced the steps on a computer that didn’t exhibit the problem. Because there
was no error message, he stopped the capture when the folder window appeared, dragging
the crosshairs toolbar icon to filter on the Explorer.exe process that owned the folder window
and saving the results to a file.

He opened the two result files side by side, adding the TID column to both. The results on
the “good” system had many more events. Assuming that the problem lay in the registry, he
used the event class toggle filters in the toolbar to hide all other event classes. Then he be-
gan looking for patterns in the “good” trace that looked like the events in the “bad” trace to
match up a corresponding thread. He found one and set a filter on that thread in the “good”
trace. When he found the beginning of a series of identical events, he right-clicked the event
in each and chose Exclude Events Before in both so that both traces had a common starting
point. (See Figure 16-25.)

FIGURE 16-25 Side-by-side comparison of Procmon traces.

Paging through the results to find differences, he soon saw a RegOpenKey operation on
HKCR\Folder\shell\open\command that resulted in NAME NOT FOUND in the “bad” trace

 Chapter 16 Error Messages 399

and SUCCESS in the “good” trace. (See Figure 16-26.) Using Regedit, he exported that key
from the good machine and imported it into the registry on the bad machine. That simple fix
solved the problem.

FIGURE 16-26 Identifying differences between Procmon traces.

Visually comparing traces side by side is sometimes necessary when there are enough
 differences between them that a tool like WinDiff wouldn’t be helpful, but in this case
WinDiff could have sped up the investigation. In each instance of Procmon, he would have
first disabled the column display for Time of Day, PID, and TID, because these would always
be different between traces. After saving the displayed events (without profiling events) to
Comma-Separated Values (CSV) files, he could have compared the files with WinDiff and
 immediately zeroed in on the missing registry key. (See Figure 16-27.)

FIGURE 16-27 Comparing Procmon traces with WinDiff.

400 Part III Troubleshooting—”The Case of the Unexplained . . .”

The Case of the Temporary Registry Profiles
The case opened when a customer contacted Microsoft support reporting that several of
their users would occasionally get the “User Environment” error message shown in Figure
16-28 when logging on to their systems. This error caused Windows to create a temporary
profile for the user’s logon session.

FIGURE 16-28 User profile load error at logon.

A user profile consists of a file system folder, %UserProfile%, into which applications
save user-specific configuration and data files, as well as a registry hive file stored in that
folder, %UserProfile%\Ntuser.dat, that the Winlogon process loads when the user logs in.
Applications store user settings in the registry hive by calling registry functions that refer to
the HKEY_CURRENT_USER (HKCU) root key. The users’ loss of access to their profile made the
problem critical because whenever that happened, users would appear to lose all their set-
tings and access to files stored in their profiles. In most cases, users contacted the company’s
support desk, which would ask the user to try rebooting and logging in until the problem
resolved itself.

As with all cases, Microsoft support began by asking about the system configuration,
 inventory of installed software, and any recent changes the company had made to their
 systems. In this case, the fact that stood out was that all the systems on which the problem
had occurred had recently been upgraded to a new version of Citrix Corporation’s ICA client,
a remote desktop application. Microsoft contacted Citrix support to see if they knew of any
issues with the new client. They didn’t, but said they would investigate.

Unsure whether the ICA client upgrade was responsible for the profile problem,
Microsoft support instructed the customer to enable profile logging, which you can do
by configuring a registry key as described in Microsoft Knowledge Base article 221833
(http://support.microsoft.com/221833), “How to enable user environment debug logging in
retail builds of Windows.” The customer pushed a script out to their systems to make the
required registry changes and, shortly after, got another call from a user with the profile
problem. They grabbed a copy of the profile log off the system from %SystemRoot%\Debug\
UserMode\Userenv.log and sent it into Microsoft. The log was inconclusive, but it did provide
an important clue: it indicated that the user’s profile had failed to load because of error 32,
which is ERROR_SHARING_VIOLATION. See (Figure 16-29.)

 Chapter 16 Error Messages 401

FIGURE 16-29 Userenv.log indicating a profile load failure due to a sharing violation.

When a process opens a file, it specifies what kinds of sharing it allows for the file. If it is
writing to the file, it might allow other processes to read from the file, for example, but not
also to write to the file. The sharing violation in the log file meant that another process had
opened the user’s registry hive in a way that was incompatible with the way that the logon
process wanted to open the file.

In the meantime, more customers around the world began contacting Microsoft and Citrix
with the same issue, all of whom had also deployed the new ICA client. Citrix support then
reported that they suspected the sharing violation might be caused by one of the ICA client’s
processes, Ssonvr.exe. During installation, the ICA client registers a Network Provider DLL
(Pnsson.dll) that the Windows Multiple Provider Notification Application (%SystemRoot%\
System32\Mpnotify.exe) calls when the system boots. Mpnotify.exe is itself launched at
logon by the Winlogon process. The Citrix notification DLL launches the Ssonvr.exe process
 asynchronous to the user’s logon, as shown in Figure 16-30. The only problem with the
 theory was that Citrix developers insisted that the process did not attempt to load any user
registry profile or even read any keys or values from one. Both Microsoft and Citrix were
stumped.

Winlogon.exe Winlogon.exe

Mpnotify.exe

Pnsson.dll

Ssonsvr.exe

Load Hive

Time

FIGURE 16-30 Asynchronous launch of Ssonsvr.exe during user logon.

Microsoft created a version of Winlogon and the kernel with additional diagnostic
 information and tried to reproduce the problem on lab systems configured identically to
the client’s, but without success. The customer couldn’t even reproduce the problem with
the modified Windows images, presumably because the images changed the timing of the
 system enough to avoid the problem. At this point, a Microsoft support engineer suggested
that the customer capture a trace of logon activity with Procmon.

402 Part III Troubleshooting—”The Case of the Unexplained . . .”

There are a couple of ways to configure Procmon to record logon operations: one is to use
Sysinternals PsExec to launch it in a noninteractive window station in session 02 so that it
survives the logoff and subsequent logon, and another is to use the boot logging feature
to capture activity from early in the boot, including the logon. The engineer chose the lat-
ter, so he told the customer to run Process Monitor on one of the systems that regularly
 exhibited the problem, select Enable Boot Logging from the Process Monitor Options menu,
and reboot, repeating the steps until the problem reproduced. This procedure configures the
Process Monitor driver to load early in the boot process and log activity to %SystemRoot%\
Procmon.pmb. When the customer next encountered the issue, they were to run Process
Monitor again, at which point the driver would stop logging and Process Monitor would offer
to convert the boot log into a standard Process Monitor log file.

After a couple of attempts, the user captured a boot log file and submitted it to Microsoft.
Microsoft support engineers scanned through the log and came across the sharing violation
error when Winlogon tried to load the user’s registry hive. (See Figure 16-31.) It was obvious
from operations immediately preceding the error that Ssonsvr.exe was the process that had
the hive opened. The question was, why was Ssonsvr.exe opening the registry hive?

FIGURE 16-31 SSonsvr.exe opening Ntuser.dat, leading to a sharing violation when opened by Winlogon.exe.

To answer that question, the engineers turned to Process Monitor’s stack trace functionality.
Process Monitor captures a call stack for every operation, which represents the function call
nesting responsible for the operation. By looking at a call stack, you can often determine an
operation’s root cause when it might not be obvious just from the process that executed it.
For example, the stack shows you if a DLL loaded into the process executed the operation,
and if you have symbols configured and the call originates in a Windows image or other
image for which you have symbols, it will even show you the names of the responsible
functions.

The stack for Ssonsvr.exe’s open of the Ntuser.dat file (shown in Figure 16-32) showed
that Ssonsvr.exe wasn’t actually responsible for the operation: the Windows Logical
Prefetcher was.

2 See Chapter 2, Windows Core Concepts,” for more information about window stations and session 0 and
Chapter 4, “Process Monitor,” for more information about launching it with PsExec.

 Chapter 16 Error Messages 403

FIGURE 16-32 Highlighted Prefetcher code invoking IoCreateFile to open Ntuser.dat.

Introduced in Windows XP, the Logical Prefetcher is a kernel component that monitors
the first 10 seconds of a process launch, recording the directories and portions of files
 accessed by the process during that time to a file it stores in %SystemRoot%\Prefetch. So
that multiple executables with the same name but in different folder get their own prefetch
files, the Logical Prefetcher gives the file a name that’s a concatenation of the executable
 image name and the hash of the path in which the image is stored—for example,
NOTEPAD.EXE-D8414F97.pf. You can actually see the files and folders the Logical Prefetcher
saw in an application reference the last time it launched by using the Sysinternals Strings
 utility to scan a prefetch file like this:

strings prefetch-file

The next time the application launches, the Logical Prefetcher, executing in the context of
the process’s first thread, looks for a prefetch file. If one exists, it opens each directory it lists
to bring the folder’s metadata into memory if it’s not already present. The Logical Prefetcher
then maps each file listed in the prefetch file and references the portions accessed the last
time the application ran so that they also get brought into memory. The Logical Prefetcher
can speed up an application launch because it generates large, sequential I/Os instead
of issuing small random accesses to file data as the application would typically do during
startup.

The implication of the Logical Prefetcher in the profile problem only raised more questions,
however. Why was it prefetching the user’s hive file in the context of Ssonsvr.exe when
Ssonsvr.exe itself never accesses registry profiles? Microsoft support contacted the Logical
Prefetcher’s development team for the answer. The developers first noted that the registry
on Windows XP is read into memory using cached file I/O operations, which means that
the Cache Manager’s read-ahead thread will proactively read portions of the hive. Because
the read-ahead thread executes in the System process, and the Logical Prefetcher associ-
ates System process activity with the currently launching process, a specific timing sequence
of process launches and activity during the boot and log on could cause hive accesses to
be seen by the Logical Prefetcher as being part of the Ssonsvr.exe launch. If the order was
slightly different during the next boot and log on, Winlogon might collide with the Logical
Prefetcher, as seen in the captured boot log.

404 Part III Troubleshooting—”The Case of the Unexplained . . .”

The Logical Prefetcher is supposed to execute transparently to other activities on a system,
but its file references can lead to sharing violations like this on Windows XP systems.
(On server systems, the Logical Prefetcher prefetches only boot activity, and it does so
 synchronously before the boot process proceeds.) For that reason, on Windows Vista and
Windows 7 systems, the Logical Prefetcher makes use of a file system minifilter driver, Fileinfo
(%SystemRoot%\System32\Drivers\Fileinfo.sys) to watch for potential sharing violation
 collisions and prevent them by stalling a second open operation on a file being accessed by
the Logical Prefetcher until the Logical Prefetcher closes the file.

Now that the problem was understood, Microsoft and Citrix brainstormed on workarounds
customers could apply while Citrix worked on an update to the ICA Client that would prevent
the sharing violation. One workaround was to disable application prefetching and another
was to write a logoff script that deletes the Ssonsvr.exe prefetch files. Citrix published the
workarounds in a Citrix Knowledge Base article3 and Microsoft published one in Microsoft
Knowledge Base article 969100 (http://support.microsoft.com/kb/969100). The update to the
ICA Client, which was made available a few days later, changed the network provider DLL
to 10 seconds after Ssonsvr.exe launches before returning control to Mpnotify.exe. Because
Winlogon waits for Mpnotify to exit before logging on a user, the Logical Prefetcher won’t
associate Winlogon’s accesses of the user’s hive with Ssonsvr.exe’s startup.

As I said in the introduction, I find this case particularly interesting because it demonstrates
a little-known Procmon feature, boot logging, and the power of stack traces for root cause
analysis—two key tools for everyone’s troubleshooting arsenal. It also shows how success-
ful troubleshooting sometimes means coming up with a workaround when there is no fix
or when you must wait until a vendor provides one. Another case successfully closed with
Procmon!

3 http://support.citrix.com/article/CTX118226

 405

Chapter 17

Hangs and Sluggish Performance
The cases in this chapter involve application hangs and slow system performance. Call-stack
analysis features prominently in these cases, using Procexp, Procmon, and ProcDump.

■ The Case of the IExplore-Pegged CPU demonstrates the use of thread stacks in
Procexp to identify a root cause.

■ The Case of the Excessive ReadyBoost uses Procexp to establish a hypothesis and
Procmon to confirm it.

■ The Case of the Slow Keynote Demo proves that what can go wrong, will go wrong,
and that the probability of demo failure tends to be proportional with the size of the
audience. It identifies long gaps between events captured by Procmon, which leads to a
diagnosis.

■ The Case of the Slow Project File Opens demonstrates Procmon’s File Summary
 dialog box, which can help you quickly identify the files being accessed the most and
the ones consuming the most time. Call-stack analysis then helps you identify the
 module causing the performance issues.

■ The Compound Case of the Outlook Hangs describes a pair of related cases from
Microsoft support services and highlights the use of ProcDump, which I specifically
wrote for their use.

The Case of the IExplore-Pegged CPU
One day after installing Adobe Reader and closing Internet Explorer, I noticed from the
Procexp icon in my notification area (“the tray”) that CPU usage was abnormally high. When
I hovered my mouse over the icon, the tooltip shown in Figure 17-1 informed me that an
Iexplore.exe process was consuming an even 50 percent. Because I was using a two- processor
system, I hypothesized that one thread in the Iexplore.exe process was caught in an infinite
loop.

FIGURE 17-1 Procexp notification area icon and tooltip reporting high CPU usage in Iexplore.exe.

I opened Procexp, found the Iexplore.exe process, opened its Properties dialog box, and
clicked on the Threads tab. As I expected, a single thread was CPU-bound, as you can see in
Figure 17-2. This demonstrates one of the benefits of multi-CPU systems: a runaway thread

406 Part III Troubleshooting—”The Case of the Unexplained . . .”

can consume only the equivalent of one CPU—a maximum of 50 percent on this system—
leaving plenty of CPU available for other work, including your troubleshooting efforts. On a
single-CPU system, a runaway thread tends to completely bog down the entire system.

FIGURE 17-2 A runaway thread hogging the equivalent of one CPU on a dual-core system.

The start address of the runaway thread didn’t provide any clues—it was just the standard
thread entry point in the Windows C runtime DLL. To get a better idea of what code it was
running, I selected it in the thread list and clicked the Stack button. The call stack showed
code originating in gp.ocx, as shown in frames 21–25 in Figure 17-3.

FIGURE 17-3 Code in the runaway thread originating in gp.ocx.

 Chapter 17 Hangs and Sluggish Performance 407

I had never heard of gp.ocx, so I opened DLL view and searched for it in the Iexplore.exe
process. It describes itself as “getPlus(R) ActiveX Control”, from NOS Microsystems Ltd.
(See Figure 17-4.)

FIGURE 17-4 Finding out about gp.ocx in DLL View.

I Bing-searched for “NOS Microsystems” and found its Web page. (See Figure 17-5.) It looked
like a legitimate downloader, and I vaguely recalled seeing the name “getPlus” on the Adobe
Reader download program. I then ran Autoruns and verified that gp.ocx was not configured
to auto-start and that it would get loaded again only if a Web page specifically invoked
it, which I considered unlikely. I terminated Iexplore.exe in Procexp and restarted Internet
Explorer. After verifying that it hadn’t loaded gp.ocx again, I closed the case.

FIGURE 17-5 NOS Microsystems’ Web page.

408 Part III Troubleshooting—”The Case of the Unexplained . . .”

The Case of the Excessive ReadyBoost
The user had been running Windows 7 on his laptop for over a year with no issues at all,
 often leaving the laptop running for weeks at a time. However, he had recently begun having
problems when bringing the laptop out of sleep mode. Performance was sluggish and the
hard disk light stayed on solid for at least five minutes.

He started Procexp to see what process or processes were consuming CPU cycles and found
the System process consuming about 35 percent, which is a lot for a dual-processor system.
Double-clicking on the System process to open its Properties and clicking on the Threads
tab, he saw that the culprit had a start address in Rdyboost.sys, the ReadyBoost driver.
(See Figure 17-6.)

FIGURE 17-6 A System thread starting in Rdyboost.sys consuming 35 percent of available CPU.

ReadyBoost is a feature of Windows Vista and Windows 7 that offers performance
 advantages by using a solid state drive such as an SD card or USB thumb drive as memory
cache. Such drives are typically faster than traditional disks.

To confirm that the problem was with ReadyBoost, he captured a Procmon trace. At first, he
didn’t see anything interesting, but then he remembered to remove the default filter that
hides System process activity. (See Figure 17-7.)

 Chapter 17 Hangs and Sluggish Performance 409

FIGURE 17-7 Un-hiding System process activity in Procmon by deselecting the Exclude filter.

As shown in Figure 17-8, the trace showed long sequences of reads from the H drive, an 8-GB
flash card he had configured for use with ReadyBoost.

FIGURE 17-8 Long sequences of reads from the ReadyBoost cache file on drive H.

Finally, he looked at the File Summary from the Procmon Tools menu and found that a great
deal of CPU time was spent reading from the ReadyBoost drive. (See Figure 17-9.) Satisfied
that he knew where the root cause of the performance problems lay, he removed the flash
card and the computer immediately settled down. Problems with ReadyBoost like this are
rare; he guessed that something specific in his configuration or the flash card triggered this
anomalous behavior, which was probably due to a bug.

410 Part III Troubleshooting—”The Case of the Unexplained . . .”

FIGURE 17-9 Procmon File Summary shows a lot of time spent reading from the ReadyBoost cache.

The Case of the Slow Keynote Demo
In 2009, I participated in the keynote at Microsoft’s TechEd US conference to a room of over
5000 attendees.1 Bill Veghte, Senior Vice President of Windows marketing, led the keynote
and gave a tour of the user-focused features of Windows 7, Iain McDonald, General Manager
for Windows Server, demonstrated new functionality in Hyper-V and Windows Server 2008
R2, and I demonstrated IT Pro–oriented enhancements in Windows 7 and the Microsoft
Desktop Optimization Pack (MDOP).

I showed features like BitLocker-To-Go Group Policy settings, Windows PowerShell version 2’s
remoting capabilities, PowerShell’s ability to script Group Policy objects, Microsoft Enterprise
Desktop Virtualization (MED-V), and how the combination of App-V, roaming user profiles,
and folder redirection enable a replaceable PC scenario with minimal downtime. One point
I reinforced was the fact that we made every effort to ensure that application-compatibility
fixes (called shims) that IT Pros have developed for Windows Vista applications work on
Windows 7. I also demonstrated Windows 7’s new AppLocker feature, which allows IT Pros to
restrict the software that users can run on enterprise desktops with flexible rules for identify-
ing software.

In the weeks leading up to the keynote, I worked with Jason Leznek, the owner of the IT Pro
portion of the keynote, to identify the features I would showcase and to design the demos.
We used dry runs to walk through the script, tweaking the demos and creating transitions,
trimming content to fit the time allotted to my segment and tightening my narration to
focus on the benefits of the new technologies. For the application-compatibility demo, we
decided to use a sample program called StockViewer that my friend Chris Jackson (The App
Compat Guy) created to demonstrate common bugs that cause compatibility problems on
Windows Vista and Windows 7. (StockViewer is now the demo application that comes with

1 The keynote is available for viewing online at http://www.msteched.com/2009/NorthAmerica/KEY01. My part
 begins at around 42:20.

 Chapter 17 Hangs and Sluggish Performance 411

the Microsoft Application Compatibility Toolkit.) In my demo, I would launch StockViewer
on Windows 7 and show how its Trends function fails with an obscure error message
caused by a compatibility bug. (See Figure 17-10.) Then I would show how I could deploy an
 application-compatibility shim that enables the application to work correctly on Windows
Vista and then rerun the application successfully.

FIGURE 17-10 StockViewer error triggered by a compatibility bug.

We also wanted to show how AppLocker’s Rule Creation wizard makes it easy to allow
 software to run based on the publisher or version if the software is digitally signed.
Originally, we planned on showing AppLocker after the application-compatibility demo and
enabling Adobe Acrobat Reader, an application commonly used in enterprises. We rehearsed
this flow a couple of times but found the transitions a little awkward, so I suggested that we
sign the StockViewer executable and move the AppLocker demo before the shim demo. I’d
be able to enable StockViewer to run with an AppLocker rule and then show how the shim
helps it run correctly, using it for both demos.

I went back to my office, signed StockViewer with the Sysinternals signing certificate and
sent it to Jason. A few hours later he e-mailed me that something was wrong with the
demo system because StockViewer, which had previously launched instantly, now took over
a minute to start. We were counting down to TechEd and he was panicking because we
needed to nail down the demos. I had heard at some point in the past that .NET performs
Authenticode signature checks when it loads digitally signed assemblies, so my first suspicion
was that it was related to that. I asked Jason to capture a Process Monitor trace, and he
e-mailed it back a few minutes later.

After opening the log, the first thing I did was filter events for StockViewer.exe by finding its
first operation and right-clicking to set a quick filter, as shown in Figure 17-11.

412 Part III Troubleshooting—”The Case of the Unexplained . . .”

FIGURE 17-11 Setting a filter for StockViewer.exe with a quick filter.

Then I looked at the time stamps on the first item (2:27:20) and the last item (2:28:32), which
correlated with the one-minute delay Jason had observed. As I scrolled through the trace, I
saw many references to cryptography (crypto) registry keys and file system folders, as well as
references to TCP/IP settings, but I knew that there had to be at least one major gap in the
time stamps to account for the long delay. I scanned the log from the beginning and found a
gap of roughly 10 seconds at 2:27:22. (See Figure 17-12.)

FIGURE 17-12 A 10-second gap between StockViewer events.

The operations immediately before were references to the Rasadhlp.dll, a networking-related
DLL, and a little earlier there were lots of references to Winsock registry keys, with accesses
to crypto registry keys immediately after the 10-second delay. It appeared that the system
was not connected to the Internet and that the application was held up by some networking
timeout of roughly 10 seconds. I looked further down to find the next gap and came across a
12-second interval. (See Figure 17-13.)

FIGURE 17-13 A 12-second gap between StockViewer events.

 Chapter 17 Hangs and Sluggish Performance 413

Again, there was network-related activity before and crypto-related activity after the gap.
The subsequent gap, also of 12 seconds, was identical. (See Figure 17-14.)

FIGURE 17-14 Another 12-second gap between events.

In fact, the next few gaps looked virtually identical. In each case, there was a reference to
HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Connections immedi-
ately before the pause, so I set a filter for that path and for the RegOpenKey operation and,
sure enough, could easily see five gaps of exactly 12 seconds each. (See Figure 17-15.)

{
{
{
{
{

FIGURE 17-15 Five gaps of 12 seconds each.

The sum of the gaps—12 times 5—equaled the delay Jason was seeing. Next, I wanted to
verify that the repeated attempts to access the network were caused by signing verifica-
tion, so I started looking at the call stacks of various events by selecting them and pressing
Ctrl+K to open the Stack Properties dialog box. The stack for events related to the Internet
c onnection settings revealed that crypto was the reason. (See Figure 17-16.)

FIGURE 17-16 Call stack reveals involvement of cryptographic operations.

One final piece of evidence I wanted to check for was that .NET was ultimately responsible
for these checks. I rescanned the log, and I saw events in the trace that confirmed that
StockViewer is a .NET application. (See Figure 17-17.)

414 Part III Troubleshooting—”The Case of the Unexplained . . .”

FIGURE 17-17 Evidence that .NET is involved.

I also looked at the stacks of some of the early events referencing crypto registry keys and
saw that it was the .NET runtime invoking the call to WinVerifyTrust, the Windows function
for checking the digital signature on a file, that started the cascade of attempted Internet
accesses. (See Figure 17-18.)

FIGURE 17-18 .NET Framework invoking WinVerifyTrust.

Confident now that the cause of the startup delay was due to .NET seeing that Stockviewer.
exe was signed and then checking to see if the signing certificate had been revoked, I
 entered Web searches looking for a way to make .NET skip the check, because I knew
that the keynote machines probably wouldn’t be connected to the Internet during the
 actual keynote. After a couple of minutes of reading through articles by others with similar
 experiences, I found Knowledge Base article 936707, “FIX: A .NET Framework 2.0 managed
application that has an Authenticode signature takes longer than usual to start” (available at
http://support.microsoft.com/kb/936707) The article describes exactly the symptoms we were
seeing and notes that .NET 2.0, which is the version of .NET I could see StockViewer was using
based on the paths of the .NET DLLs it accessed during the trace, supports a way to turn off
its obligatory checking of assembly digital signatures: create a configuration file in the ex-
ecutable’s directory with the same name as the executable except with “.config” appended
(for example, StockViewer.exe.config) containing the following XML:

<?xml version=”1.0” encoding=”utf-8”?>
<configuration>
 <runtime>
 <generatePublisherEvidence enabled=”false”/>
 </runtime>
</configuration>

 Chapter 17 Hangs and Sluggish Performance 415

About 15 minutes after I had received Jason’s e-mail, I sent him a reply explaining my
 conclusion with the configuration file attached. Shortly after, he wrote back confirming the
delays were gone and expressing amazement that I had figured out the problem and solu-
tion so quickly. It might have seemed like magic to him, but I had simply used basic Procmon
troubleshooting techniques and the Web to solve the case. Needless to say, the revised demo
flow and transition between AppLocker and application compatibility came off great.

The Case of the Slow Project File Opens
The case opened when the customer, a network administrator, contacted Microsoft support
because a user reported that Microsoft Project files located on a network share were taking
up to a minute to open and about once every 10 times the open resulted in the error shown
in Figure 17-19.

FIGURE 17-19 Error that occurred on Project file opens one time in 10.

The administrator verified the issue and checked networking settings and latency to the file
server, but he could not find anything that would explain the problem. The Microsoft sup-
port engineer assigned to the case asked the administrator to capture Procmon and Network
Monitor traces of a slow file open. After receiving the logs a short time later, he opened the
Procmon log and set a filter to include only operations issued by the Project process and
then another filter to include paths that referenced the target file share. The File Summary
dialog box, which he opened from Procmon’s Tools menu, showed significant time spent in
file operations accessing files on the share, shown in the File Time column in Figure 17-20.

FIGURE 17-20 File Summary dialog box showing time spent in file operations (domain name obscured).

416 Part III Troubleshooting—”The Case of the Unexplained . . .”

The paths in the trace revealed that the user profiles were stored on the file server and that
the launch of Project caused heavy access of the profile’s AppData subdirectory. If many us-
ers had their profiles stored on the same server via folder redirection and were running simi-
lar applications that used stored data in AppData, that would surely account for at least some
of the delays the user was experiencing. It is well known that redirecting the AppData direc-
tory can result ihbn performance problems, so based on this, the support engineer arrived at
his first recommendation: for the company to configure its roaming user profiles not to redi-
rect AppData and to sync the AppData directory only at logon and logoff per the guidance
found in this Microsoft blog post2:

Special considerations for AppData\Roaming folder:

If the AppData folder is redirected, some applications may experience performance
issues because they will be accessing this folder over the network. If that is the case,
it is recommended that you configure the following Group Policy setting to sync the
AppData\Roaming folder only at logon and logoff and use the local cache while the
user is logged on. While this may have an impact on logon/logoff speeds, the user
experience may be better since applications will not freeze due to network latency.

User configuration>Administrative Templates>System>User Profiles>Network
directories to sync at Logon/Logoff.

If applications continue to experience issues, you should consider excluding
AppData from Folder Redirection – the downside of doing so is that it may increase
your logon/logoff time.

Next, the engineer examined the trace to see if Project was responsible for all the traffic
to files such as Global.MPT or if an add-in was responsible. This is where the stack trace
was indispensible. After setting a filter to show just accesses to Global.MPT, the file that
 accounted for most of the I/O time as shown by the summary dialog box, he noticed that
it was opened and had been read multiple times. First, he saw five or six long runs of small,
random reads. (See Figure 17-21.)

FIGURE 17-21 Long runs of small, random reads over the network.

2 User Profiles on Windows Server 2008 R2 Remote Desktop Services, http://blogs.msdn.com/b/rds/
archive/2009/06/02/user-profiles-on-windows-server-2008-r2-remote-desktop-services.aspx

 Chapter 17 Hangs and Sluggish Performance 417

The stacks for these operations showed that Project itself was responsible, however. In
Figure 17-22, frame 25 shows WINPROJ.EXE invoking code in Ole32.dll, which eventually calls
into Kernel32.dll (frame 15), which calls the ReadFile API in Kernelbase.dll—all of which are
Windows DLLs.

FIGURE 17-22 Winproj.exe invokes Windows code to read a file.

He also saw sequences of large, noncached reads. (See Figure 17-23.) The small reads he had
looked at first were cached, so there would be no network access after the first read caused
the data to cache locally. But noncached reads would go to the server every time, making
them much more likely to impact performance:

FIGURE 17-23 Sequences of large, noncached reads over the network.

418 Part III Troubleshooting—”The Case of the Unexplained . . .”

To make matters worse, he saw the same file being re-read over the network multiple times
in the trace. The trace shown in Figure 17-24 is filtered to show the initial file reads, where the
file offset in the Detail column is set to 0.

FIGURE 17-24 Files being re-read over the network; file offset 0 indicates reading from the beginning of
the file.

The stacks for these reads revealed them to be the result of a third-party driver, SRTSP64.SYS.
The first hint that it is a third-party driver is visible in frames 18–21 in the stack trace dialog
box shown in Figure 17-25. With Procmon configured to obtain symbols from Microsoft’s
symbol servers, SRTSP64.SYS has no symbol information and invokes FltReadFile (frame 17).

FIGURE 17-25 Srtsp64.sys in the call stacks of initial file reads.

Further, the stack frames higher up the same stack (shown in Figure 17-26) showed that the
sequence of SRTSP64.SYS reads were being performed within the context of filter manager
callbacks (frame 31) performed when Project opened the file with the CreateFileW call in
frame 50. This behavior is common to on-access virus scanners.

 Chapter 17 Hangs and Sluggish Performance 419

FIGURE 17-26 File open indicated by CreateFileW in frame 50 results in file reads from SRTSP64.SYS.

Sure enough, double-clicking on one of the SRTSP64.SYS lines in the stack displayed the
module’s properties. The dialog box shown in Figure 17-27 confirmed that it was Symantec
AutoProtect that was repeatedly performing on-access virus detection each time Project
opened the file with certain parameters.

FIGURE 17-27 Module Properties dialog box for SRTSP64.SYS.

Typically, administrators configure antivirus on file servers, so there’s no need for clients to
scan files they reference on servers because client-side scanning simply results in duplicative
scans. This led to the support engineer’s second recommendation, which was for the admin-
istrator to set an exclusion filter on their client antivirus deployment for the file share hosting
user profiles.

In less than 15 minutes, the engineer had written up his analysis and recommendations and
sent them back to the customer. The network monitor trace merely served as confirmation of
what he observed in the Procmon trace. The administrator proceeded to implement the sug-
gestions and, a few days later, confirmed that the user was no longer experiencing long file
loads nor the errors he had reported. Another case closed with Procmon and thread stacks.

420 Part III Troubleshooting—”The Case of the Unexplained . . .”

The Compound Case of the Outlook Hangs
This case was shared with me by a friend of mine, Andrew Richards, a Microsoft Exchange
Server Escalation Engineer. It’s a really interesting case because it highlights the use of a
Sysinternals utility I specifically wrote for use by Microsoft support services and it’s actually
two cases in one.

The case unfolds with a systems administrator at a corporation contacting Microsoft support
to report that users across the company’s network were complaining of Outlook hangs last-
ing up to 15 minutes. The fact that multiple users were experiencing the problem pointed at
an Exchange issue, so the call was routed to Exchange Server support services.

The Exchange team has developed a Performance Monitor data collector set that includes
several hundred counters that have proven useful for troubleshooting Exchange issues,
 including LDAP, RPC, and SMTP message activity; Exchange connection counts; memory
usage, and processor usage. Exchange support had the administrator collect a log of the
server’s activity with 12-hour log cycles, the first from 9 p.m. until 9 a.m. the next morning.
When Exchange support engineers viewed the log, two patterns were clear despite the heavy
density of the plots: first and as expected, the Exchange server’s load increased during the
morning when users came into work and started using Outlook; and second, the counter
graphs showed a difference in behavior between about 8:05 and 8:20 a.m., a duration that
corresponded exactly to the long delays users were reporting.

The support engineers zoomed in and puzzled over the counters in the timeframe and
could see Exchange’s CPU usage drop, the active connection count go down, and out-
bound response latency drastically increase, but they were unable to identify a cause. (See
Figure 17-28.)

They escalated the case to the next level of support, and it was assigned to Andrew. Andrew
studied the logs and concluded that he needed additional information about what Exchange
was doing during an outage. Specifically, he wanted a process memory dump of Exchange
when it was in the unresponsive state. This would contain the contents of the process address
space, including its data and code, as well as the register state of the process’ threads. Dump
files of the Exchange process would allow Andrew to look at Exchange’s threads to see what
was causing them to stall.

 Chapter 17 Hangs and Sluggish Performance 421

RPC Latency spikes
after CPU hang

CPU hang

FIGURE 17-28 Performance monitor showing CPU usage drop and RPC latency increase.

One way to obtain a dump is to “attach” to the process with a debugger like Windbg
from the Debugging Tools for Windows package (included with the Windows Software
Development Kit) and execute the .dump command; however, downloading and installing
the tools, launching the debugger, attaching to the right process, and saving dumps is an
involved procedure. Instead, Andrew directed the administrator to download ProcDump.
ProcDump makes it easy to obtain dumps of a process and includes options that create
multiple dumps at a specified interval. Andrew asked the administrator to run ProcDump
the next time the server’s CPU usage dropped so that it would generate five dumps of the
Exchange Server engine process, Store.exe, spaced three seconds apart:

procdump –n 5 –s 3 store.exe c:\dumps\store_mini.dmp

The next day, the problem was reproduced and the administrator sent Andrew the dump files
ProcDump had generated. When a process temporarily hangs, it is often because one thread
in the process acquires a lock protecting data that other threads need to access and holds
the lock while performing some long-running operation. Andrew’s first step, therefore, was
to check for held locks. The most commonly used intraprocess synchronization lock is a criti-
cal section, and the !locks debugger command lists the critical sections in a dump that are

422 Part III Troubleshooting—”The Case of the Unexplained . . .”

locked, the thread ID of the thread owning the lock, and the number of threads waiting to
acquire it. Andrew used a similar command, !critlist from the Sieext.dll debugger extension3.
The output showed that multiple threads were piled up waiting for thread 223 to release a
critical section:

0:000> !sieext.critlist
CritSec at 608e244c. Owned by thread 223.
 Waiting Threads: 43 218 219 220 221 222 224 226 227 228 230 231 232 233

His next step was to see what the owning thread was doing, which might point at the code
responsible for the long delays. He switched to the owning thread’s register context using
the ~ command and then dumped the thread’s stack with the k command:

0:000> ~223s
eax=61192840 ebx=00000080 ecx=0000000f edx=00000074 esi=7c829e37 edi=40100080
eip=7c82860c esp=61191c40 ebp=61191cdc icpl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000202
ntdll!KiFastSystemCallRet:
7c82860c c3 ret

0:223> knL
 # ChildEBP RetAddr
00 61191c3c 7c826e09 ntdll!KiFastSystemCallRet
01 61191c40 77e649ff ntdll!ZwCreateFile+0xc
02 61191cdc 608c6b70 kernel32!CreateFileW+0x377
WARNING: Stack unwind information not available. Following frames may be wrong.
03 61191cfc 7527e1a6 SAVFMSEVSAPI+0x6b70
04 00000000 00000000 0x7527e1a6

As sometimes happens, the debugger was unsure how to interpret the stack when it came
across a stack frame pointing into Savfmsevsapi, an image for which it couldn’t obtain
 symbols. Most Windows images have their symbols posted on the Microsoft symbol server,
so this was likely a third-party DLL loaded into Exchange’s Store.exe process and was there-
fore a suspect in the hangs. The list modules (lm) command dumps version information for
loaded images, and the path of the image made it obvious that Savfmsevsapi was part of
Symantec’s mail security product:

0:000> lmvm SAVFMSEVSAPI
start end module name
608c0000 608e9000 SAVFMSEVSAPI T (no symbols)
 Loaded symbol image file: SAVFMSEVSAPI.dll
 Image path: C:\Program Files\Symantec\SMSMSE\6.0\Server\SAVFMSEVSAPI.dll
 Image name: SAVFMSEVSAPI.dll
 Timestamp: Wed Jul 08 03:09:42 2009 (4A547066)
 CheckSum: 00033066
 ImageSize: 00029000
 File version: 6.0.9.286
 Product version: 6.0.9.286

3 The public version, SieExtPub.dll, can be downloaded from microsoft.com.

 Chapter 17 Hangs and Sluggish Performance 423

 File flags: 0 (Mask 0)
 File OS: 10001 DOS Winl6
 File type: 1.0 App
 File date: 00000000.00000000
 Translations: 0000.04b0 0000.04e4 0409.04b0 0409.04e4

Andrew checked the other dumps, and they all had similar stack traces. With the anecdotal
evidence seeming to point at a Symantec issue, Andrew forwarded the dumps and his
 analysis, with the administrator’s permission, to Symantec technical support. Several hours
later, they reported that the dumps indeed revealed a problem with the mail applica-
tion’s latest antivirus signature distribution and forwarded a patch to the administrator that
would fix the bug. He applied it and continued to monitor the server to verify the fix. Sure
enough, the server’s performance established fairly regular activity levels and the long delays
disappeared.

However, over the subsequent days, the administrator started to receive, albeit at a lower
rate, complaints from several users that Outlook was sporadically hanging for up to a minute.
Andrew asked the administrator to send a correlating 12-hour Performance Monitor capture
with the Exchange data collection set, but this time there was no obvious anomaly.

Wondering whether the hangs would be visible in the CPU usage history of Store.exe, he
removed all the counters except for Store’s processor usage counter. When he zoomed in
on the morning hours when users began to log in and the load on the server increased, he
 noticed three spikes around 8:30 a.m. (See Figure 17-29.)

FIGURE 17-29 CPU spikes in Store.exe around 8:30 a.m.

Because the server has eight cores, the processor usage counter for an individual process has
a possible range between 0 and 800, so the spikes were far from taxing the system, but they
were definitely higher than Exchange’s typical range on that system. Zooming in further and
setting the graph’s vertical scale to make the spikes more distinct, he observed that average
CPU usage was always below about 75 percent of a single core and the spikes were 15–30
seconds long. (See Figure 17-30.)

424 Part III Troubleshooting—”The Case of the Unexplained . . .”

Usual load is < 75%

> 10 seconds

FIGURE 17-30 Zooming in on CPU spikes.

What was Exchange doing during the spikes? They were too short-lived and random for the
administrator to run ProcDump like he had before and reliably capture dumps when they
occurred. Fortunately, I designed ProcDump with this precise scenario in mind. It supports
several trigger conditions that, when met, cause it to generate a dump. For example, you can
configure ProcDump to generate a dump of a process when the process terminates or when
its private memory usage exceeds a certain value, or even to generate one based on the
value of a performance counter you specify. Its most basic trigger, though, is the CPU usage
of the process exceeding a specified threshold for a specified length of time.

The Performance Monitor log gave Andrew the information he needed to craft a ProcDump
command line that would capture dumps for future CPU spikes:

procdump.exe -n 20 -s 10 -c 75 -u store.exe c:\dumps\store_75pc_10sec.dmp

 Chapter 17 Hangs and Sluggish Performance 425

The arguments configure ProcDump to generate a dump of the Store.exe process when
Store’s CPU usage exceeds 75 percent (–c 75) relative to a single core (–u) for 10 seconds
(–s 10), to generate up to 20 dumps (–n 20) and then exit, and to save the dumps in the
C:\Dumps directory with names that begin with store_75pc_10sec. The administrator
 executed the command before leaving work, and when he checked on its progress the
next morning it had finished creating 20 dump files. He e-mailed them to Andrew, who
 proceeded to study them in the Windbg debugger one by one.

When ProcDump generates a dump because the CPU usage trigger is met, it sets the thread
context in the dump file to the thread that was consuming the most CPU at the time of the
dump. Because the debugger’s stack-dumping commands are relative to the current thread
context, simply entering the stack dumping command shows the stack of the thread most
likely to have caused a CPU spike. Over half the dumps were inconclusive, apparently cap-
tured after the spike that triggered the dump had already ended, or with threads that were
executing code that obviously wasn’t directly related to a spike. However, several of the
dumps had stack traces similar to the one in Figure 17-31.

FIGURE 17-31 Store.exe stack trace with store!TWIR::EcFindRow+0xae.

The stack frame that stuck out listed Store’s EcFindRow function, which implied that the
spikes were caused by lengthy database queries, the kind that execute when Outlook
 accesses a mailbox folder with thousands of entries. With this clue in hand, Andrew
 suggested the administrator create an inventory of large mailboxes and pointed him to an
article the Exchange support team had written that describes how to do this for each version
of Exchange (“Finding High Item Count Folders Using the Exchange Management Shell,”
 available at http://msexchangeteam.com/archive/2009/12/07/453450.aspx).

426 Part III Troubleshooting—”The Case of the Unexplained . . .”

Sure enough, the script identified several users with folders containing tens of thousands
of items. The administrator asked the users to reduce their item count to well below 5000
(the Exchange 2003 recommendation—this has been increased in each version, with a
 recommendation of 100,000 in Exchange 2010) by archiving the items, deleting them, or
organizing them into subfolders. Within a couple of days, they had reorganized the problem-
atic folders and user complaints ceased entirely. Ongoing monitoring of the Exchange server
over the following week confirmed that the problem was gone.

With the help of ProcDump, the compound case of the Outlook hangs was successfully
closed.

 427

Chapter 18

Malware
Malware causes more than its fair share of computer problems. Of course, by definition it
always performs actions that are not in your best interest. Sometimes it tries to do so quietly
without your noticing its presence. Other times, it makes itself unavoidably obvious, such as
with the scareware described in “The Case of the Process-Killing Malware” in this chapter. Like
a lot of legitimate software, sometimes malware is just poorly written. Unlike most legitimate
software, though, malware often actively tries to prevent its discovery or removal.

■ The Case of the Sysinternals-Blocking Malware is interesting because it involves
malware that specifically tried to prevent Sysinternals utilities from running. The case
was solved with Sysinternals utilities, of course.

■ The Case of the Process-Killing Malware happened as we were finishing up this
book. A friend of Aaron’s brought his son’s infected laptop over to be cleaned. The
malware did not want to go quietly. It didn’t count on Autoruns in Safe Mode.

■ The Case of the Fake System Component demonstrates the use of the Strings utility
to diagnose malware.

■ The Case of the Mysterious ASEP revealed malware creating its own Auto-start
Extensibility Point (ASEP). It was solved with ListDLLs, Procmon, Procexp, and Autoruns.

The Case of the Sysinternals-Blocking Malware
A friend asked a Sysinternals user to take a look at a system that the friend believed was
 infected with malware. Startup and logon took a long time, and malware scans with
Microsoft Security Essentials would never complete. The user looked for unusual processes in
Task Manager, but nothing jumped out at him.

He then turned to Sysinternals, trying AutoRuns, Procmon, Procexp, and RootkitRevealer1,
but each one exited immediately after starting. As an experiment, he tried opening a text
file named “Process Explorer” with Notepad, and it too terminated right away. At this point,
he had plenty of reason to believe that the system was infected, but he didn’t know how to
identify the cause, let alone remove it.

Looking through the rest of the Sysinternals Suite, he noticed the Desktops utility. His
 experiment with Notepad suggested to him that the malware was monitoring window titles

1 RootkitRevealer is a rootkit detection utility I created several years ago when rootkits were still relatively unknown
and the major anti-malware vendors had not yet taken on the challenge of detecting or removing them.
RootkitRevealer has since been retired.

428 Part III Troubleshooting—”The Case of the Unexplained . . .”

for programs it didn’t like. Because window enumeration returns only the windows on the
same desktop as the caller, he surmised that the malware author probably hadn’t con-
sidered the possibility of programs running on non-default desktops. Sure enough, after
running Desktops and switching to the second desktop, he was able to launch Procmon
and other utilities. (See Figure 18-1.) (For more information about these concepts, see
“Sessions, Window Stations, Desktops, and Window Messages” in Chapter 2, “Windows Core
Concepts.”)

FIGURE 18-1 Running Sysinternals utilities on a different desktop.

First he looked at Procexp. All the process names looked legitimate, so he enabled the
Verify Signers option and the Verified Signer column. He was able to ascertain that all of the
 process’ main executable image files appeared valid.

Next he ran Procmon. He noticed a lot of activity in the Winlogon process. He set a filter
to show only Winlogon.exe activity (shown in Figure 18-2) and saw that it was checking a
strange registry key once every second:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify\acdcacaeaacbafbeaa

FIGURE 18-2 Procmon displaying unusual registry activity from Winlogon.exe.

Now he ran Autoruns, opting to verify image signatures and to hide Microsoft and Windows
entries. With only third-party and unsigned entries displayed, he quickly found the culprit: an
unsigned DLL with a random-looking name registered as a Winlogon notification package

 Chapter 18 Malware 429

that loads a DLL into the Winlogon process. (See Figure 18-3.) He deleted the entry in
Autoruns, but found that it was back when he rescanned.

FIGURE 18-3 Autoruns identifying malware registered as a Winlogon notification package.

At this point, he went back to Microsoft Security Essentials and directed it to scan just the
random-named DLL. (See Figure 18-4.) After cleaning, he was able to delete the entry. The
system returned to normal.

FIGURE 18-4 Microsoft Security Essentials removing the specific threat identified by Sysinternals utilities.

The Case of the Process-Killing Malware
Aaron’s friend Paul called and said that his son’s laptop had recently begun displaying a
 message that the computer was infected and demanding credit card payment to clean it.
Aaron suggested that it might just be a misleading popup from a dishonest Web page ad
and that logging off could make it go away. “No, already tried that.” “Oh. Can you bring it
over?” “Be right there.”

430 Part III Troubleshooting—”The Case of the Unexplained . . .”

When Paul started the laptop and entered his son’s password, a full-screen, always-on-top
window took over the screen. It claimed it was an anti-malware program and listed what it
said were numerous types of malware infecting the computer. It then demanded valid credit
card information before it could remove the “malware” that it had found. However, this
 program was not the reputable anti-malware brand that Paul had purchased and installed
(yet had allowed this particular piece of malware to run).

Aaron popped in a CD containing the Sysinternals utilities and tried to run Procexp, Autoruns,
and others. None would start. Thinking about the “Case of the Sysinternals-Blocking
Malware” (earlier in this chapter), he tried running Desktops, but that failed to launch
also. The malware allowed no new process to run, including Command Prompt, Windows
PowerShell, or Task Manager. At most, the frame of a window would begin to appear, and
then immediately disappear.

Aaron restarted the computer in Safe Mode with Command Prompt, which loads a minimal
set of drivers and runs Cmd.exe instead of Windows Explorer. It also processes very few ASEPs
(described in Chapter 5, “Autoruns”). The malware did not launch at this point, indicating
that it depended on one of those ASEPs. Aaron ran Autoruns, opting to verify signatures
and to hide Microsoft and Windows entries. He found a number of suspicious items, includ-
ing several file-sharing programs, Internet Explorer toolbars, and browser helper objects,
each of which he disabled rather than deleted (shown in Figure 18-5), in case he changed his
mind later. The dates on the folder locations where these items were installed indicated that
they had been there for a long time and were therefore not the likely cause of the current
problem.

FIGURE 18-5 Autoruns in Safe Mode, disabling suspicious entries.

 Chapter 18 Malware 431

The culprit was easy to identify: it had no description or publisher, had the nondescriptive
name “eMpId08200”, launched from the HKCU RunOnce key, was installed under the
C:\ProgramData folder, and to top it all off it had the same icon that the fake anti- malware
displayed. Aaron deleted the ASEP in Autoruns and deleted its files in Cmd.exe. (See
Figure 18-6.) For good measure, he left the unnecessary file-sharing programs and Internet
Explorer extensions disabled. He restarted the computer, which ran without issue.

It is interesting to note that the malware in this case never appears to have used
 administrative rights. It installed itself to a user-writable folder and ensured that it would run
again by hooking one of the user’s ASEPs instead of a global ASEP. In fact, the same malware
infected Aaron’s mother-in-law’s Windows XP computer a few weeks later. Because Aaron
had made sure that she always logged on with a standard user account, Aaron was able to
clean the infection easily by logging on to the administrative account, which the malware
had not been able to infect. From there, he ran Autoruns, selected the infected account from
the User menu, and deleted the offending ASEP entry. (Unfortunately, he failed to capture
any screen shots.) The two lessons here are that malware is increasingly able to cause harm
without requiring administrative rights, and that such malware is much easier to clean than
malware that is able to subvert the integrity of the operating system.

FIGURE 18-6 Deleting the malware from Cmd.exe in Safe Mode.

The Case of the Fake System Component
The next two cases were brought to me by Greg Cottingham, a Senior Support Escalation
Engineer at Microsoft. In September 2010, Greg’s team began receiving reports from several
companies of a new worm that was eventually called Win32/Visal.b. Greg was assigned
one such case and began his investigation of a suspected infected work station by pressing
Ctrl+Shift+Esc to start Task Manager. At first glance, none of the processes shown in Task
Manager in Figure 18-7 might appear suspicious to an untrained observer. However, when
Show Processes From All Users is not selected, there should be only one Csrss.exe listed, but
Task Manager showed two. (Task Manager’s Show Processes From All Users option actually
determines whether Task Manager shows processes only from the current terminal services
session or from all TS sessions. See Chapter 2 for more information about TS sessions.)

432 Part III Troubleshooting—”The Case of the Unexplained . . .”

FIGURE 18-7 Task Manager showing two instances of Csrss.exe in one terminal session.

One of the limitations of Task Manager is that it does not show the full path of executable
images. Malware often hides itself behind legitimate names such as Svchost.exe and Csrss.exe
but is installed in other locations such as %windir% instead of %windir%\System32, where the
actual Windows files are. Procexp overcomes this limitation by showing the executable’s full
path in the tooltip (shown in Figure 18-8) or in a column.

FIGURE 18-8 Procexp establishing the path to the “extra” Csrss.exe.

After establishing that the “extra” Csrss.exe was in %windir% and did not pass signature
verification, Greg ran Strings on it to get an idea of what it was up to. (See Figure 18-9.)
Strings revealed evidence of several malware behaviors, including text for the creation of an
Autorun.inf to copy to a removable drive and trick a user into running malware when the
drive was inserted into another computer, enumeration of computers and file shares, and
copying malware to file shares with misleading file names and extensions.

 Chapter 18 Malware 433

FIGURE 18-9 Strings revealing malware in the fake Csrss.exe.

Greg has also diagnosed malware files with Strings by discovering text such as “UPX0”
(indicating that the file was packed) or references to “non-professional” PDB symbol file
paths such as “d:\hack.86” or “c:\mystuff”.

Having confirmed that this fake Windows component was indeed malicious, Greg and his
team worked with the Microsoft Malware Protection Center to document its behaviors and
recovery steps and to provide an anti-malware solution.

The Case of the Mysterious ASEP
Greg was assigned a case from a customer representing a large US hospital network that
reported it had been hit with an infestation of the Marioforever virus. The customer had dis-
covered the virus when its printers started getting barraged with giant print jobs of garbage
text, causing its network to slow and the printers to run out of paper. Their antivirus software
identified a file named Marioforever.exe in the %SystemRoot% folder of one of the machines
spewing files to the printers as suspicious, but deleting the file just resulted in it reappearing
at the subsequent reboot. Other antivirus programs failed to flag the file at all.

Greg started looking for clues by seeing if there were additional suspicious files in the
%SystemRoot% directory of one of the infected systems. One file, a DLL named Nvrsma.dll,
had a recent time stamp, and although it was named similarly to Nvidia display driver com-
ponents, the computer in question didn’t have an Nvidia display adapter. When he tried to

434 Part III Troubleshooting—”The Case of the Unexplained . . .”

delete or rename the file, he got a sharing violation error, which meant that some process
had the file open and was preventing others from opening it. There are several Sysinternals
tools that will list the processes that have a file open or a DLL loaded, including Process
Explorer and Handle. Because the file was a DLL, though, Greg decided on the Sysinternals
Listdlls utility, which showed that the DLL was loaded by one process, Winlogon:

C:\>listdlls -d nvrsma.dll

ListDLLs v2.25 - DLL lister for Win9x/NT
Copyright (C) 1997-2004 Mark Russinovich
Sysinternals - www.sysinternals.com

--
winlogon.exe pid: 416
Command line: winlogon.exe

 Base Size Version Path
 0x10000000 0x34000 C:\WINDOWS\system32\nvrsma.dll

Winlogon is the core system process responsible for managing interactive logon sessions,
and in this case it was also the host for a malicious DLL. The next step was to determine how
the DLL was configured to load into Winlogon. It had to be via an autostart location, so he
ran both Autoruns and the console-mode AutorunsC. However, there was no sign of Nvrsma.
dll, and all the autostart entries were either Windows components or legitimate third-party
components. That appeared to be a dead end, so he turned to Procmon.

Winlogon starts during the boot process, so Greg enabled Procmon’s boot-logging feature,
rebooted the system, ran Procmon, and loaded the boot log. He then pressed Ctrl+F and
searched for “nvrsma”. Figure 18-10 shows what he found: the first reference occurred when
Winlogon.exe had queried the registry value HKLM\SOFTWARE\Microsoft\Windows NT\
CurrentVersion\Windows\dzpInit_DLLs, which returned the text value “nvrsma”. Several
events later, Winlogon.exe opened and then mapped nvrsma.dll into memory.

FIGURE 18-10 Procmon showing why Winlogon.exe loaded nvrsma.dll.

 Chapter 18 Malware 435

Greg then looked at the call stack for that first registry event. As you can see in Figure 18-11,
the registry read was apparently initiated from User32.dll. Greg knew that the name
“ dzpInit_DLLs” is very similar to that of the well-known and widely-abused “AppInit_DLLs”
ASEP defined in the same registry key and which is also initiated from User32.dll2. But this
wasn’t AppInit_DLLs. Was dzpInit_DLLs a new ASEP that Greg (and Autoruns) had never
heard of?

FIGURE 18-11 Call stack showing a registry event initiated within User32.dll.

Greg now turned his attention to User32.dll. He noticed that on infected machines, the
l ast-modified date for User32.dll in both the System32 and DllCache folders was the date of
the initial infection. Taking a closer look at the Autoruns results, Greg found that User32.dll
failed signature verification (shown in Figure 18-12) and had therefore either been modified
or completely replaced.

Greg ran Procexp on a known-good Windows XP machine and on an infected one. On
both, he selected the Winlogon.exe process, opened DLL View, double-clicked User32.dll
in the lower pane to open its Properties dialog box, and clicked on the Strings tab. He then
 compared the text strings found in each. All but one were completely the same. The dif-
ference was that AppInit_DLLs in the known-good one was replaced with dzpInit_DLLs in
the modified one. (See Figure 18-13.) Performing a binary comparison of the good and bad
User32.dll files with the Windows command fc /b, Greg found that those two bytes were the
only differences between the two files. The malware had created its own ASEP by changing
two bytes in User32.dll so that it loaded DLLs listed in the dzpInit_DLLs registry value instead
of in AppInit_DLLs.

2 When a process on Windows XP and earlier loads User32.dll, it also loads any DLLs named in the AppInit_DLLs
registry value. Autoruns lists these DLLs on its AppInit tab.

436 Part III Troubleshooting—”The Case of the Unexplained . . .”

FIGURE 18-12 Autoruns showing User32 failing signature verification.

FIGURE 18-13 Comparing text strings in a known-good User32.dll (left) and an infected one (right)

With the knowledge of exactly how the malware’s primary DLL activated, Greg set out
to clean the malware off the system. Because User32.dll would be locked by the malware
 whenever Windows was online, he booted the Windows Preinstallation Environment (WinPE)
from a CD-ROM and, from there, copied a clean User32.dll over the malicious version. Then
he deleted the associated malware files he had discovered in his investigation. When he was
done, he rebooted the system and verified that it was clean. He closed the case by giving
the hospital network administrators the cleaning steps he had followed and submitted
the malware to the Microsoft antimalware team so that they could incorporate automated
 cleaning into Forefront and the Malicious Software Removal Toolkit. He had solved a
 seemingly impossible case by applying several Sysinternals utilities and helped the hospital
get back to normal operation.

	 	 437

Symbols
/accepteula command-line

option, 14, 178
–? command-line option, 172
\\computer command-line

option, 172
–e command-line option, 149
/e command-line option, 43
.evt files, 195
/LoadConfig command-line

option, 131
_NT_SYMBOL_PATH

environment variable, 251
/OpenLog command-line

option, 102, 126
–p command-line option, 174
/Run32 command-line option,

125
/savecred option, 17
–64 command-line option, 226
/smartcard option, 17
%TEMP% folder, extracting files

into, 11
/Terminate command, 35
–u command-line option, 174
/WaitForIdle command, 35

A
access checks, with process or

thread tokens, 84
access control entries (ACEs),

274
access control lists, displaying,

267, 274
ACCESS DENIED errors,

troubleshooting, 390–391
access rights

for processes, 74
searching for, 269

access to system resources,
15–20

access tokens, 21
creation of, 281
for logon sessions, 18
for threads, 22

AccessChk, 267–275, 340
access rights, searching for,

272–273
administrative rights for, 272,

273
command-line options, 269
error messages, 275
output options, 273–275
syntax, 268

AccessEnum, 275–277
file display options, 276
hiding entries, 277
saving files, 277
Show Local System And

Service Accounts option,
276

account rights, reporting on,
267–275, 272

ACEs, 274
Active Directory Application

Mode (ADAM), 288
Active Directory databases,

saving snapshots of,
294–296

Active Directory domains
connecting to, 288
deleted objects in, restoring,

306–307
SIDs of, 185

Active Directory Explorer
(AdExplorer), 287–296

attributes of objects, 288–289,
291–293

attributes of objects, adding,
editing, and deleting, 292

configuration settings, 296
database snapshots, 294–296
directories, removing from

display, 288
display, 288–289
domains, connecting to,

287–288
Favorites menu, 289
navigation history, 289
object properties, viewing,

290–291

object tree, 288–289
search functionality, 293–294

Active Directory Lightweight
Directory Services (LDS),
288

Active Directory naming
contexts, opening, 287

Active Directory object tree,
288–289

Active Directory objects
attributes of, 291–293
attributes of, adding, 292–293
creating, 290
distinguished names, 289
information about, viewing,

299
permissions settings, 295
properties of, 290–291
renaming or deleting, 290
searching for, 293–294
viewing information about,

290–291
Active Directory utilities, 5
Active Directory viewer and

explorer. See Active
Directory Explorer
(AdExplorer)

active memory, 361
Active Setup\Installed

Components keys, 153
ADAM, 288
address space fragmentation,

224–225
Address Space Fragmentation

dialog box, 224–225
Address Space Layout

Randomization (ASLR), 55
Address Windowing Extension

(AWE), 359
AdInsight, 287, 296–306

Autoscroll feature, 297
columns, 298–299
command-line parameters,

306
data capture, 297–300

Index

438	

AdInsight (continued)
data, saving and exporting,

305–306
Details Pane, 297
display names, 300–301
display options, 300–301
event errors, finding, 303
Event Pane, 297
events, input and output

parameters, 299
events, viewing, 303
filtering results, 303–304
Find dialog box, 301
highlighting events, 302–303
Highlight Preferences dialog

box, 302
history depth, 300
session 0 execution, 296
text searches, 301–302
time display options, 300

admin approval mode, 18
administrative rights, 15–20

for AccessChk, 272, 273
for Autoruns, 148
for BgInfo, 317
for Disk2Vhd, 335
for Diskmon, 338
for DiskView, 341
for Handle, 258
for ListDLLs, 254
for LogonSessions, 281
malware and, 431
for MoveFile, 334
for Msconfig, 145
on Windows Vista computers,

18–20
on Windows XP and Windows

Server 2003 computers,
16–18

for PageDefrag, 345
for Portmon, 353
for ProcDump, 229
for Process Explorer, 42–43
for Procmon, 102, 126
for PsKill, 189
for PsList, 189
for PsLoggedOn, 191
for PsLogList, 193
for PsService, 197–198

for PsShutdown, 203
for PsTools utilities, 175
for RAMMap, 359
Run As dialog box options, 17
with Runas.exe utility, 17
User Account Control and,

18–20
for VMMap, 213
for WinObj, 370

Administrators
Debug Programs privilege, 43
in Windows Vista, 18

Administrators group
membership, 16

AdRestore, 287, 306–307
ADSes, 8–9, 326–328
ADSI Edit, 287
Advanced Security Settings

dialog box, Effective
Permissions Tool, 267

adware, 157
Allow Service To Interact With

Desktop option, 33
alternate credentials

for PsPasswd, 196
for PsExec, 179
for remote operations, 174
specifying, 171

alternate data streams (ADSes)
creating and writing to,

326–328
removing, 8–9

alternate programs, starting,
161

AlwaysInstallElevated Windows
Installer policy, 16

annotation of desktop screen
shots, 320–324

anonymous authentication, 179
antivirus software

on-access virus scans, 418
updating errors, 385–386

AppData directory, redirecting,
416

AppData\Roaming folder,
special considerations for,
416

AppInit DLLs, 162
AppInit_DLLs registry value, 435

application-compatibility shims,
411

application crashes, crash
dumps, 236–237

application domains
listing of, 87
number of, 60

application feature memory
costs, 211

application hangs,
troubleshooting, 405–426

Application Information
(Appinfo) service, 18

application installation errors,
troubleshooting, 391–396

application manifests, 266
application startup delays,

troubleshooting, 410–415
applications

details about, 108
resource use, 24
starting from VMMap,

213–214
AppLocker feature, 410

Rule Creation wizard, 411
.arn file extension, 166
ASEPs. See Autostart

Extensibility Points (ASEPs)
ASLR, 55
assemblies

loaded, viewing, 60
viewing, 87

At.exe, 158
Attachment Execution Service,

327
Attribute Properties dialog box,

291–292
Audiodg.exe, 43
authentication, 280

anonymous authentication,
179

LSA autostart entries for,
164–165

smartcard authentication,
17–18

Authentication ID (Auth ID), 111
Autologon, 280
Automatic start drivers, load

order, 373

AdInsight

	 	 439

Autoplay, troubleshooting, 395
Autorun, 385

disabling, 395
troubleshooting failures of,

391–396
Autorun.inf, 395

InFileMapping for, 395
redirection of, 394

Autoruns, 4, 35, 146–170
administrative rights for, 148
Analyze Offline System

option, 152
AppInit DLL entries, 162
automating scans, 167
Autoruns Data (*.arn) format,

166–167
autostart categories, 153–165
BootExecute entries, 160
codecs entries, 160
digital signatures, verifying,

149–150
drivers entries, 159
empty locations, including,

152–153
entries, details about, 151
entries, disabling or deleting,

148
Explorer ASEP locations,

155–157
“File not found” entries, 169
fonts, changing, 153
Hide Windows Entries or Hide

Microsoft And Windows
Entries options, 150

Include Empty Locations
option, 152

Internet Explorer ASEP
locations, 157–158

KnownDLLs entries, 162–163
Logon ASEP locations,

153–155
LSA providers entries,

164–165
main window, 146–147
malware and, 168–170
Microsoft autostarts, hiding,

150
network providers entries, 165
offline analysis, 152
other users’ autostarts,

viewing, 151

print monitors entries, 164
results, comparing, 167
results, saving, 166–167
in Safe Mode, 430
scans, canceling, 147
scheduled tasks entries, 158
search capabilities, 147
suspicious entries, 169–170
Verify Code Signatures option,

149
Windows services entries,

158–159
Winlogon entries, 163
Winsock providers entries, 164

AutorunsC, 146, 167–168
command-line options,

167–168
output, 167–168

Autostart Extensibility Points
(ASEPs), 145

baseline of, 146
displaying, 146–147
malicious, 433–436
of offline systems, 152
unused, listing, 152–153
of users, displaying, 151

autostarts, 145
AppInit DLLs, 162
categories of, 153–165
codecs, 160
configuration location,

jumping to, 151
description of, 147
disabling or deleting, 148
drivers, 159
gadgets, 165
Image Hijacks, 161–162
Internet Explorer related,

157–158
KnownDLLs, 162–163
Local Security Authority

related, 164–165
logon entries, 153–155
of Microsoft-published

software, 150
network providers, 165
online search for, 151
path to, 147
print monitor DLLs, 164
publisher of, 147
scheduled tasks, 158

signing certificates, verifying,
149–150

of standard users, 151
viewing, 146. See

also Autoruns
Windows Explorer related,

155–157
Windows native-mode

executables, 160
Windows services, 158–159
Winlogon.exe related, 163
Winsock related, 164

AWE, 359

B
backing files, 130–131

specifying, 128
bad memory, 361
\BaseNamedObjects directory,

373
basic disks, 347–348
batch files, running Procmon as,

102, 132
BgInfo, 309–318

administrative rights for, 317
appearance options, 313–315
bitmaps, creating, 315
color depth, 314
comma-separated values,

saving data as, 316
configuration settings, saving,

315
Database Settings dialog box,

316
data fields, 311
data to display, 310–313
Define New Field dialog box,

312–313
Desktops dialog box, 317–318
Do Not Alter This Wallpaper

option, 316
editor window, 310
information sources, 312
other desktops, changing,

317–318
output options, 315–317
popup window, displaying

data as, 317
positioning text on-screen,

314

BgInfo

440	

BgInfo (continued)
Rich Text File, saving data as,

317
64-Bit Registry View, 313
SQL Server database, saving

data to, 316
Time Remaining indicator, 310
User Defined Fields dialog

box, 312
wallpaper, previewing, 315
wallpaper background,

313–314
binary file format, saving

Autoruns scans in, 166–167
BitLocker-To-Go Group Policy

settings, 410
blogs

Mark’s blog, 12–13
site blog, 12

“Blue Screen of Death” (BSOD)
crashes

from process termination, 188
simulating, 379–380
troubleshooting, 241–242

Bluescreen Screen Saver,
379–380

boot configuration database
(BCD), referencing disks in,
337

boot logging, 127–128,
402–404

filtering and, 129
boot start drivers, load order,

373
boot-start services, 200
BootExecute, 160
buddy system malware, 52
buffer overflow result code,

105–106
buffer overflows, 105
bugs, reporting, 11–12, 14
built-in commands, running,

178
BUILTIN domain, SIDs in, 185
bytes

graph of, 81
in I/O operations, 62
process use of, 58

C
C# applications, 214
cache topology, enumerating,

368
cached memory, 361
Call Site ID numbers, 222
call stacks, 24–30. See also stack

traces
analyzing, 405–426
Call Site ID number, 222
capturing, 27–28
displaying, 90
examining, 393–394, 402–403
memory allocations, 222–224
third-party drivers in, 418
viewing, 112–113

Call Tree dialog box, 223–224
calling sequence, 25
Caps Lock keypresses,

converting to Control
keypresses, 380

Carnegie Mellon University’s
Computer Emergency
Response Team (CERT), 395

carriage returns in debug
output, 239

“Case of the Unexplained”
sessions, 13

catalog signing, 149, 264
CERT, 395
certification authorities (CAs),

legitimacy of, 262
checkpoints, 198
Cipher /W command, 285
Citrix Corporation ICA client,

400–404
classes loaded, viewing, 60
client environments, converting

to virtual hard disk, 337
client-side APIs, intercepting

and interpreting, 296
clock ticks, interval between,

375
ClockRes, 375
Close Handle command, 76
CloseHandle API, 24
Cmd.exe, built-in commands,

178–179
code access, 359

code paths, displaying, 24
code-signing certificates, 262
codecs, autostarts of, 160
Cogswell, Bryce, 3, 39
Column Selection dialog box,

107
column sets

customizing, 107–108
saving, 64–65, 68

COM extension, 26
comma-separated values (CSVs),

225
reporting results as, 188
snapshots, saving as, 225

command-line ASEPs, 161
command-line options

–?, 172
–64, 226
/accepteula, 178
AdInsight, 306
AdRestore, 306
for AutorunsC, 167–168
\\computer, 172
–e, 149
for LiveKd, 250–251
/LoadConfig, 131
logging options, 246
/OpenLog, 102, 126
–p, 174, 179
for ProcDump, 228–229
for Procmon, 132–134
for PsExec, 180–184
for PsLogList, 193–196
for PsShutdown, 203–204
for PsTools utilities, 206–208
remote computer, specifying,

173
/Run32, 125
/savecred option, 17
/smartcard option, 17
–u, 174, 179
of VMMap, 226

command-line switches
/e, 43
in Process Explorer, 98

command processor autorun
keys, 162

command prompt on remote
computers, 176, 178

BgInfo

	 	 441

command shell
escape character (̂), 176
terminating, 178

commit charge, viewing, 94
committed memory, 217

analyzing, 215
graphs of, 93–94

communication utilities, 6
compressed (.zip) files

deleting securely, 285–286
downloading, 7
unblocking, 8–9

computers. See also local
system; remote systems

finding, 202
key information about,

187–188
SIDs of, 185–186

Conficker, 395
config command, 199–200
configuration information

of services and drivers,
199–200

configuration settings
locked down locations, 148
registry key for, 146

Configure Highlighting dialog
box, 45

Connect To Active Directory
dialog box, 287–288, 294

connected endpoints, viewing,
352

connections
closing, 352
timeout for, 205

console applications, remote
enabling, 176

console output, redirected,
178–179

console sessions, 32
console utilities, 171

starting from elevated
command prompt, 19

cont command, 202
container objects, effective

permissions on, 270
containers

deleted, 307
searching within, 293–294

contention metrics, 61

context switches
displaying, 57
tracking, 42

Contig, 344–345
copying event data, 115
CoreInfo, 367–369

output options, 368
Cottingham, Greg, 431
Count Values Occurrences

dialog box, 140
CPU cycles

displaying, 56, 57
measuring, 42

CPU registers, processor state,
22

CPU usage
displaying, 56–57
graphs of, 65, 80, 93
measuring, 41–42
for thread execution, 89

crash dumps, 236–237
CreateFileW calls, 418
Credential Provider interface,

163
credentials. See also alternate

credentials
prompt for, 19–20
for PsExec, 179

cross-process memory
functions, 22

Cross Reference Summary
dialog box, 140

cryptographic providers, 165
Csrss.exe, 431–432
CSV files, 225

reporting results as, 188
snapshots, saving as, 225
traces, saving as, 124

Ctrl2Cap, 380
cycle counter, processor support

of, 369

D
DACLs, human-readable, 201
data, recovering, 283
data capture filters, 304
Data Execution Prevention

(DEP), 55
support of, 369

Database Settings dialog box,
316

Dbghelp.dll, 28–29
updating, 232–233

Dbgview.exe, 238
deadlocks, 162
debug engine DLLs, 28
debug output, 237–238. See

also DebugView
monitoring, 237–249

debug output events, 141–142
Debug Output Profiling

events, 114, 141
Debug Programs privilege, 43
DebugBreak, calling, 231
debuggers

alternate programs as, 161
kernel debuggers, 249–253
specifying, 251

debugging
Hyper-V guest virtual

machines, 249
Miniplus dumps, 234
symbol files, 26

debugging mode, booting in,
249

Debugging Tools for Windows,
233

Dbghelp.dll, 28
LiveKd requirement for, 250
symbol files, downloading, 27
URL for, 29, 250

DebugView, 211, 237–249
agent mode, 247
agent mode, manually

starting in, 248
Always On Top option, 240
Autoscroll feature, 239
Capture Global Win32 option,

241
clearing display, 242
comments, appending to

output, 240
copying output, 239
crash dump file analysis, 242
debug output, 237–238
display, 238–240
display space, increasing, 240
Enable Verbose Kernel Output

option, 241

DebugView

442	

DebugView (continued)
Filter dialog box, 242–243
filter settings, 244
filtering capabilities, 242–243
Force Carriage Returns option,

239
Hide When Minimized option,

240
highlight settings, 244
highlighting capabilities, 244
History Depth dialog box, 244
history depth of output, 244
kernel-mode debug output,

241–242
Log Boot feature, 241
Log-To-File Settings dialog

box, 245–246
logging output, 245–246
pass-through mode, 241
Print Range dialog box, 246
printing output, 246
recovering output, 241–242
Remote Agent window, 248
remote monitoring

capabilities, 247–249
saving output, 245
search capabilities, 242
sequence numbers, 238
services, capturing output of,

240
system memory usage

monitoring, 244
time of capture, 239
user-mode debug output,

240–241
decimal numbers, converting to

hexadecimal, 378
Default desktop, 33
default target architecture, 214
Define New Field dialog box,

312–313
defragmentation, 342

of files, 344–345
solid state drives and, 344
system files, 345–346

defragmentation API, 285
delete operations

on installation programs, 333
listing, 333–334
scheduling, 334

deleted containers, restoring,
307

deleted objects, restoring,
306–307

demand-start services, 200
Deny flag, 84
deny permissions, enumerating,

275–276
DEP, 55, 369
depend command, 200–201
dependencies of drivers and

services, 200–201
Dependency Walker (Depends.

exe) utility, 53, 71
Desktop abstraction, 33
Desktop Gadgets, 165
desktop utilities, 5
desktop wallpaper, system

information displayed as,
309–318

desktops, 33–34
BgInfo wallpaper for, 317
identifying, 34
relationship with sessions and

window stations, 30–31
screen shots of, 320–324
switching among, 318–319
windows, connection

between, 318
Desktops, 33, 318–320

configuration dialog box, 319
desktop switch window, 319
exiting, 320

Desktops dialog box, 317–318
device drivers

kernel-mode operation, 22
load order, 373–374

diagnostic utilities, 4
Difference Highlighting

Duration dialog box, 45
digital signature verification,

91–92, 149–150, 261
verification failures, 169
turning off, 414–415

directories
alternate data streams, 326
disk space usage, 331–333
effective permissions on, 267
information about, viewing,

371

directory servers, connecting
to, 288

disabled privileges, 84
disabled services, 200
discretionary access control list

(DACL), human-readable,
201

disk extents, 347
disk free space, overwriting,

284–286
disk I/O, metrics on, 63–64
disk management utilities, 5,

335–350
Contig, 344–345
DiskExt, 347
Diskmon, 337–339
Disk2Vhd, 335–337
DiskView, 341–344
LDMDump, 347–349
PageDefrag, 345–346
Sync, 339–340
VolumeID, 350

disk space usage, reporting,
331–333

Disk Usage (DU), 331–333
disk volumes, information

about, 187
DiskExt, 347
Diskmon, 337–339

administrative rights for, 338
notification area icon, 339

disks
basic and dynamic disks,

347–348
flushing caches, 339–340
partition information,

displaying, 347
Disk2Vhd, 335–337

administrative rights for, 335
command-line options, 337
Prepare For Use In Virtual PC

option, 336
DiskView, 341–344

administrative rights for, 341
dump format, 343–344
file arrangement, 342
file clusters, finding, 343
File Errors dialog box, 341
fragment cells, 342
Volume Properties dialog box,

343

DebugView

	 	 443

dismounting removable drives,
339

distinguished names (DNs),
finding, 289

DLL extension, 26
DLL injection, 296
DLL load failures,

troubleshooting, 387–389
DLL Properties dialog box, 72
DLL tab, 69–70
DLL view, 39, 67–77

columns in, 70–71
customizing, 69–71

DllMain function, 162
DLLs

AppInit DLLs, 162
description and publisher

information, 169
executable images, loading

as, 255
export tables, 26
finding, 68–69
malicious DLLs, 433–436
mapping, 162
properties of, 72–73, 90
relocated, 71, 255
viewing, 69–73, 253–255

domain account passwords,
setting, 196–197

domain administrators,
enumerating and restoring
deleted objects, 307

domain connections, saving,
288

domain registration lookups,
353

domains
connecting to, 287–288
deleted objects in, restoring,

306–307
SIDs of, 185–186
whois lookups, 352

downloaded content,
unblocking, 327

downloading utilities, 7–8
unblocking .zip files, 8–9

driver files, 11
drivers

autostarting, 159
bugs in, 159

configuration information,
199–200

dependencies, 200, 200–201
disabling or deleting, 159
error control for, 200
searching for, 202
security information, 201
status information, 198–199
types of, 198, 200

Drop Filtered Events option, 129
dump files. See also ProcDump;

process dump files
critical sections in, 421–422
generating, 424
kernel-memory dump files,

249–253
obtaining, 421

dump of processes, 53, 227–237
dynamic attributes, 46
dynamic disks, 347–348

E
effective permissions, 267–268

reporting, 267–275
Effective Permissions Tool, 267
elevation of privilege, 19

window messaging and, 35
elevation-of-privilege attacks,

interactive services and, 199
embedded manifests

displaying, 261–262
dumping, 266

embedded nulls, deleting
registry keys with, 378–379

Encapsulating Security Payload
(ESP), 179

encrypted files, deleting
securely, 285–286

Encrypting File System (EFS),
283

encryption, IPsec with ESP
(Encapsulating Security
Payload) for, 179

End-User License Agreement
(EULA), 13–14

on remote computers, 178
endpoint addresses, resolving,

82
endpoints, viewing, 351–355

environment variables, viewing,
84–85

error messages,
troubleshooting, 383–404

error severity levels, 241
escape character (̂), 176–177
Event Class filters, 117
event data, copying, 115, 140
event errors, viewing, 303
Event Filters dialog box, 304
event IDs, 192, 195
event-log messages, 192, 194
event logs

clearing, 196
defragmenting, 345–346
exporting, 195
registered name, 196
viewing records of, 192–196

Event Properties dialog box,
108–113

Event tab, 109–110
file attribute codes, 109
navigation buttons, 109
Process tab, 111–112
Stack tab, 112–113

event records
comma-delimited fields, 194
displaying, 192–196
event IDs, 195
event sources, 195
event type, 195
filtering, 194–195
hex dump format, 194
most recent, 195
number to display, specifying,

194
order of, 194

event sources, 192, 195
Event Time Results reports, 305
Event Tracing for Windows

(ETW), 128
events

capturing, 103
context menu filter options,

118–119
debug output events, 141–142
details about, viewing, 108–

110, 109
filtered, dropping from log

file, 129

events

444	

events (continued)
filtering and highlighting in

Procmon, 116–122
finding, 115
Load Image events, 104
Process Profiling events, 114
Procmon-captured, 104–116,

138
profiling events, 114
reporting on, 305
searching online, 116
sequence number, 298
Thread Profiling events, 114
time of day, 104
viewing associated events, 303

Events report, 305
Events with Details reports, 305
Exchange Server

CPU spikes, troubleshooting,
423–424

high item count folders, 425
troubleshooting problems

with, 420–426
EXE files, 26

description and publisher
information, 169

hijacks of, 161
executable code, functions,

24–26
executable files, 21

details about, 265
digital signatures on, 262
EXE or DLL, 26
properties of, 90
scanning for, 265
verification of, 72

executable images, 54
DLLs loaded as, 255
path to, 54, 432
in process address space, 112
properties of, 78–79
verifying, 91–92

execution on remote
computers, PsExec for,
176–184

exit codes, 177, 198
of PsInfo, 188

Explorer.exe, autostart entries
related to, 155

export tables, 26

exporting
event logs, 195
from VMMap, 212

external storage devices,
removing, 339

F
F5 key, 46
FAT drives, changing ID number,

350
file access

delays, troubleshooting,
415–419

redirecting, 394–395
file activity

summary of, 136–137
viewing, 102. See also Process

Monitor (Procmon)
file associations, changing, 161
File Errors dialog box, 341
file extensions

of EXEs and DLLs, 26
file and folder operations,

listing by, 137
file fragmentation, display of,

342
file handles, 256–257
file hashes, calculating, 261–286
file locations, jumping to,

115–116
file management utilities,

325–334
file mapping objects, 22, 257
file mappings

listing, 71
mapped views of, 216

Filemon, 102
filtering capabilities, 116

file names, overwriting, 286
“File not found” autostart

entries, 169–170
file objects, sharing mode, 76
file reads

noncached, 417
re-reads, 418

file and registry virtualization,
disabling, 20

file shares
enumerating, 277–278

permissions on, changing, 278
security settings on, 277
violations of, 401–404

file signatures, verifying, 149–
150, 169

File Summary dialog box,
136–137

file system
activity, capturing, 104
autostart locations, 145

file system buffers, flushing to
disk, 339

file system objects, reporting,
326–328

file utilities, 5
files

alternate data streams, 326
attributes of, 109–110
clusters, locating, 343
defragmentation of, 344–345
deleting securely, 284–286
effective permissions on, 267
in-use, identifying, 256–260
mapping into memory, 365
moving, renaming, and

deleting, scheduling, 334
multiple paths to, 328
opened remotely, listing,

184–185
properties of, viewing, 71
searching for, 71
searching for strings in, 325

Filter dialog box, 117–118
filtered access tokens, 18
filtering

AdInsight data, 303–304
advanced output, 120–121
boot logging and, 129
configuring, 117–119
context menu options,

118–119
debug output, 242–243
Drop Filtered Events option,

129
events in Procmon, 116–122
resetting filters, 118
rule sets, importing, 131
rules, adding, 117
rules, editing and removing,

117–118

events

	 	 445

filtering (continued)
rules, ORing and ANDing, 118
saving filters, 121–122

find utility, 325
find command, 202
FindLinks, 330–331
findstr utility, 325
flash cards, troubleshooting

problems with, 409–410
folder activity summary,

136–137
folder association errors,

troubleshooting, 397–399
folder hierarchies

file and folder operations,
listing by, 136

searching, 265
folders

effective permissions on, 267
in-use, identifying, 256–260

forums, 11–12
fragmentation, memory,

224–225
display of, 342

frames
frame number, 112
kernel-mode and user-mode,

112
free memory, 217, 361
fsutil hardlink command, 329
fsutil hardlink list filename

command, 331
fsutil reparsepoint command,

329
full symbol files, 27
functions, 24–25

calling sequence, 25
identifying, 26
names and offsets of, 26

G
gadget software autostart

entries, 165
garbage collection, metrics on,

60–61
GDI objects, displaying

attributes of, 57–59
generation 0, 1, or 2 objects,

garbage collection on, 60

GetLogicalProcessor-
Information function, 367

GetLogicalProcessor-
InformationEx function, 367

GINA DLL interface, 163
global namespace, 32
global objects, 240
\GLOBAL?? directory, 373
Goto Next/Previous Event Error

button, 303
graphs

of processes, viewing, 80–81
in Process Explorer, 65–66
of systemwide metrics, 92–95

group account rights, 267–275
GUI threads, 34

H
HAL, compatibility issues, 336
Handle, 39, 211, 256–260

administrative rights for, 258
all handle types, viewing, 257,

258
command-line syntax, 256,

260
examples of, 257–259
handle counts, 259–260
handles, closing, 260
named Sections, 257
process information, 256
processes in output, limiting,

257
search capabilities, 257

Handle Properties dialog box,
77

HandleEx, 39
Handle tab, 75–77
Handle view, 34, 67–77

customizing, 75–77
handles, 24, 256. See also object

handles
attributes of, 75–76
closing, 76, 260
count of, 57, 372
open, 21
properties, viewing, 76–77
releasing, 24, 384
viewing, 67–77

hard disk activity, logging,
337–339

hard drives, overwriting
unallocated space on,
284–285

hard links
creating, 329
finding, 330–331
NTFS support for, 328

hard resets, 127
hardware attributes, displaying,

311
Harrison, Carl, 253
hashes, 265–266
Heap Allocations dialog box,

224
heaps, 216

bytes allocated in, 61
helper classes, downloading,

142
hexadecimal numbers,

converting to decimal, 378
Hex2Dec, 378
hibernation files,

defragmenting, 345–346
Highlighted Events reports, 305
highlighting

configuring, 119–120
debug output, 244
events and errors in AdInsight,

302–303
events in Procmon, 116–122
saving settings, 121

Highlighting dialog box, 120
histogram report of LDAP calls,

305
History Depth dialog box, 130
HKCU\Software

Internet Explorer per-user
ASEPs under, 157

logon per-user ASEPs under,
154

Windows Explorer per-user
ASEPs under, 156

HKCU\Software\Sysinternals\
Active Directory Explorer
EulaAccepted value, 296

HKLM\System\
CurrentControlSet\Control\
NetworkProvider\Order, 165

HKLM\System\CurrentControlSet\Control\NetworkProvider\Order

446	

HKLM\System\
CurrentControlSet\Control\
Print\Monitors, 164

HKLM\System\
CurrentControlSet\
Control\Session Manager\
KnownDlls, 162

HKLM\System\
CurrentControlSet\Services

drivers in subkeys of, 159
services in subkeys of, 158

HKLM\System\
CurrentControlSet\Services\
EventLog, 195

Host Process for Windows
Services (Svchost.exe), 158

hotfixes, information about, 188
hotkeys

for switching desktops, 318
for ZoomIt, 320–321

HTML-formatted reports of
AdInsight captured events,
305

hung windows, process file
dumps on, 231

Hyper-V guest virtual machines,
debugging, 249, 251

Hyper-V host, running
debugger on, 249

I
iexplore.exe process

infinite loops,
troubleshooting, 405–407

listing, 255
illegal operations, 159
Image File Execution Options

(IFEO) subkeys, 161
image files

searching for strings in, 325
viewing, 69

Image Hijacks, 161–162
Image memory, 216
image names, terminating

processes by, 189
image pages, excluding from

dumps, 234
image signatures, verifying, 72,

91–92

image signer information, 261
image strings, 72, 85
impersonation, 84, 179
in-use files and folders,

identifying, 256–260
Include Process From Window

option, 117
infinite loops, troubleshooting,

405–407
ini-file APIs, 394
IniFileMapping, 394–395
input/output control (IOCTL)

commands, logging,
353–357

insertion strings, 192
installation, Sysinternals utilities

and, 171
installation programs, move and

delete requests, 333
installation type, 187
installer detection, 19
instrumented processes

memory allocations, viewing,
221–224

of memory snapshots,
218–219

symbols and, 222
integrity labels, 272–273
integrity level (IL) of processes,

35, 55
interactive desktops as terminal

server sessions, 238
interactive logon type, 183
interactive services, 199, 204
Interactive Services Detection

service (UI0Detect), 33
interactive sessions, one at a

time, 31
Internet

running utilities from, 10
unblocking downloads from,

8–9
Internet Explorer

autostarts related to, 157–158
extensibility of, 157
Protected Mode, 20, 184

internode access costs, 367
Interrupts pseudo-process, 49,

190
invalid pages, 58

I/O
disk I/O metrics, 63–64
graph of, 65, 81
metrics on, 95
private I/O counts, 61–62

I/O prioritization, 62
ipconfig, running remotely, 176
IPsec with ESP (Encapsulating

Security Payload), 179
IPv4 endpoints, viewing,

351–353
IPv6 endpoints, viewing,

351–353
IsDebuggerPresent API, 231
IsProcessorFeaturePresent

function, 369

J
Jackson, Chris, 410
job objects, 51
jobs, 21–22

details about, viewing, 88
in process list, 44

Jump To feature, 35
Junction, 329–330
junctions, 328–330

K
Kd.exe, 251
kernel build numbers, 187
kernel debuggers, 249–253
kernel memory

dump files, 249–253
metrics on, 94

kernel mode, 22–23
illegal operations in, 159
processes, code access of, 359

kernel-mode core, 23
kernel-mode debug output, 237

capturing, 241–242
at system startup, 241

kernel-mode stack, 22
kernel-mode stack frames, 112
kernel objects, viewing, 67–77
kernel service functions, 23
kernel symbol files,

downloading, 250
keyboard activity, simulating, 35

HKLM\System\CurrentControlSet\Control\Print\Monitors

	 	 447

keyboard shortcuts for Process
Explorer, 98–99

Kill Process button, 52, 79
KnownDLLs, 162–163
\KnownDLLs/\KnownDlls32

directory, 373

L
large applications, dumps of,

233–235
large page memory, 359
Last Known Good option, 128
Launch And Trace A New

Process tab, 212
LDAP calls, 307

histogram reports of, 305
LDAP function names, 298
LDM, 347–349
LDMDump, 347–349
Leznek, Jason, 410
license information, 13–14
limited rights processes,

183–184
List Folder permission, 276
ListDLLs, 211, 253–255

administrative rights for, 254
command-line syntax, 254
output, 254
process information, 255
process name or PID,

specifying, 255
relocated DLLs, 255
search capabilities, 255

Listdlls processes, listing, 434
live directory servers,

connecting to, 288
live systems, examining,

249–253
LiveKd, 211, 249–253

command-line syntax,
250–251

examples of, 251–253
kernel memory dump files,

249
online kernel memory dumps,

252–253
system requirements, 250

LiveKdD.SYS symbols, 251
LiveZoom, 320, 324
Load Driver privilege, 241

Load Image events, 104
load order groups, 199, 200
Load and Unload Device Drivers

privilege for Procmon, 102
LoadLibrary API, 256
LoadOrder (Loadord.exe),

373–374
local accounts for remote

administration, 174, 176
local computers

debug output, monitoring,
247–249

DLLs in processes, 253–255
local groups, SID of, 185
local logons, 191
local namespaces, 32
Local Security Authority (LSA),

18, 30
logon sessions created by, 280

local system
key information about, 187
processes, suspending,

205–206
Windows event logs,

displaying, 192–196
local user account passwords,

setting, 196–197
locally-unique identifiers

(LUIDs), 281
location of code execution, 112
locked folders, troubleshooting,

383–385
locks, checking for, 421–422
.LOG extension, 245
log files

size, controlling, 129–131
of system activity, 123–126

logged-on users, listing,
191–192

logging
boot logging, 127–128
debug output, 245–246
hard disk activity, 337–339
input/output control

commands, 353–357
Portmon data, 357
virtual memory capacity and,

130–131
Logical Disk Manager (LDM)

database, displaying
information about, 347–349

Logical Prefetcher, 403–404
logical processors

mapping to physical
processors, 367–369

sockets assigned to, 367
logoff

debuggers, detachment of,
235

logging activities during and
after, 128–129

logoff scripts, 153
logon

autostart entries for, 153–155
information about, viewing,

191–192
logon attributes, displaying, 311
logon desktops, BgInfo

wallpaper for, 317
logon processes, 49–51
logon scripts, 153
logon sessions

access tokens for, 281
enumerating, 280–283
locally-unique identifiers, 281
resources owned by, 281
User Access Control and, 283

Logon SID group, 84
logon SIDs, 179, 186
LogonSessions, 18, 280–283

administrative rights for, 281
sample output, 281–283

Lotus Notes backup errors,
387–389

low memory, detecting, 355
LSA logon sessions, 18, 30, 280

window station, 32
Lsass.exe, 165
LUIDs, 281

M
machine SIDs, 185
magnification of desktop screen

shots, 320–324
MakeMeAdmin script

(Margosis), 18
malicious files, 157

bogus root certificates of, 152
malware, 145, 427

administrative rights and, 431
AppInit DLLs as, 162

malware

448	

malware (continued)
Autorun.inf worms, 395
Autoruns and, 168–170
bogus services, 159
buddy system, 52
digital signatures on, 262
fake system components,

431–433
Marioforever virus, 433
packed images, 44
process-killing malware,

429–431
PsTools utilities flagged as,

172
rootkits, 152, 159, 169
Sysinternals-blocking

malware, 427–429
telltale signs of, 169
troubleshooting, 427–436
User32.dll modifications,

433–436
Win32/Visal.b worm, 431
writable removable drive

propagation mechanisms,
395

managed heaps, 216
managed (.NET) applications,

Miniplus vs. full dumps of,
235

Mandatory Integrity Control
(MIC), 35

manifests
displaying, 261–262
dumping, 266
for elevation, 19

manual start services, 200
mapped files, 216

strings in, 72–73
validation of, 72

Margosis, Aaron, 7
blog, 18

Marioforever virus, 433
Mark’s blog, 12
Mark’s Webcasts, 13
McDonald, Iain, 410
memory

amount of, 187
committed memory, 215
management of, 224–225

mapping files into, 365
object reuse protection and,

283
private bytes, 215
process dump files triggered

by, 232
purging, 367
shared, viewing, 59
string data in, 220–221
types of, 216–217
working set, 215

memory address of objects, 76
memory allocations

analyzing, 211–227
information about, 217–218
of instrumented processes,

221–224
protection in, 218
snapshots of, 218–220
types of, 361–362

memory blocks, 218
protection of, 218

memory dumps
online, 252–253
from ProcDump, 227–237

memory leaks, bytes usage and,
58, 81

memory-mapped files, viewing,
69

memory priority of pages, 59
memory-related metrics, 94
memory snapshots, saving and

loading, 359
memory strings, 73, 85
memory usage

determining, 211
displaying attributes of, 57–59
monitoring, 355
of processes, 23

methods, just-in-time compiled,
60

MFT records, 286
MIC, 35
Microsoft Desktop Optimization

Pack (MDOP), 410
Microsoft Enterprise Desktop

Virtualization (MED-V), 410
Microsoft public symbol server,

27, 126

configuring systems for, 251
Microsoft public symbols, 30
Microsoft Security Essentials,

386, 427
Microsoft support for

Sysinternals utilities, 14
Microsoft TechEd US

conference, 410
Microsoft TechNet Web site, 3
Microsoft Windows.

See Windows operating
system

MIME filters, 155
Miniplus process dumps, 227,

233–235
debugging, 234
managed (.NET) applications

and, 235
miscellaneous utilities, 6
mklink command, 329
.mmp file format, 225
modes of execution, 22–23
modified memory, 361
Modify Attribute dialog box,

292–293
Module button, 90
modules, properties of, 113
mouse activity, simulating, 35
move operations

on installation programs, 333
scheduling, 334

MoveFile, 334
administrative rights for, 334

MOVEFILE_DELAY_UNTIL_
REBOOT flag, 333

MoveFileEx API, 333
Msconfig, 145–146
MSDN Library Web site, 305
MSVBVM60.DLL, 27
multi-core systems, process

dump thresholds on, 231
multipartition volumes, 347–348
multiple computers, remote

operations on, 173–174
multiprocessor systems,

troubleshooting on, 405

malware

	 	 449

N
named files

options for working with, 71
Procmon data, storing in,

130–131
named objects, viewing type

and name, 75
named pipes

effective permissions on, 268
enumerating, 374–375
listing, 184–185

named Sections, 257
namespace extensions, 155
namespace handlers, 155
namespace service providers,

164
namespaces, global and local,

32
NET FILE command, 184
.NET Framework, assembly

digital signature checking,
turning off, 414–415

.NET processes, 44
performance counters for,

59–61, 87
net session command, 191
.NET tab, 59–61
NET.EXE, 197
network activity

capturing, 104
summary of, 139

network attributes, displaying,
311

network authentication, 280
network and communication

utilities, 6
network events, tracing, 128
network I/O metrics, 63
network loopback, blocking of,

175
network resources,

authenticated access to, 179
network shares, troubleshooting

file access delays, 415–419
Network Summary dialog box,

139
New Object – Advanced dialog

box, 290–291
No-Execute memory pages,

processor support of, 369

noncached reads, performance
impact of, 417–418

nonexecutable files, digital
signing of, 264–265

NOS Microsystems, 407
notification area

Diskmon icon in, 339
displaying graphs in, 66
Process Explorer icon, 95

NPFS.sys, 374
NT AUTHORITY\ANONYMOUS

LOGON, 280
NT AUTHORITY domain, SIDs

in, 185
NTFS, new data management,

285
NTFS drives

graphical display of, 341–342
ID number, changing, 350

NTFS link utilities, 328–331
Ntoskrnl.exe, 23
null characters, deleting registry

keys with, 378–379
NUMA topology information,

367–368
numbers, converting from

hexadecimal to decimal, 378

O
object address, 76
object handles

closing, 260
counts of, 259–260
information about, 256–260
viewing, 73–77

Object Manager namespace,
271

navigating, 370–373
object reuse protection, 283
object types, 23–24
objects

effective permissions on, 267,
271

information about, viewing,
370–373

modifiable by users, 272–273
open, finding, 68–69
operations on, 105
permanent, 372

permissions on, 372
permissions on parent

containers of, 275–276
pointers to, 24
security descriptors of, 77

offline analysis, 152
of system dumps, 251

offline systems, viewing
ASEPs of, 152

on-access virus scans, 418–419
one-hop limitation of

impersonation, 179
online kernel memory dumps,

252–253
open files

closing, 185
on remote systems, 184–185

open handles, list of, 21
operating system attributes,

displaying, 311
operating system components,

kernel-mode operation, 22
operations, information about,

105
Organize Filters dialog box,

121–122
out-of-order loads, 162
Outlook

hangs, troubleshooting,
420–426

high item count folders, 425
OutputDebugString API,

237–238
own processes, 44, 51

P
packed images, 44
PAE, 369–370
page faults, viewing, 58
page level memory, 363–364
page lists, 361

metrics on, 94
page table memory, 217
PageDefrag, 345–346

administrative rights for, 345
scripting, 346

pages
memory priority, 59
mode of access, 23

pages

450	

paging files, defragmenting,
345–346

paging lists, purging, 367
paging metrics, 94
parent-child relationships,

viewing, 189
parent processes, 21
partitioning, LDM, 348
partitions, location information,

347
passwords, for domain and local

user accounts, 196–197
PATH environment

changes to, 177
Path system environment

variable, launching utilities
from, 7–8

paths
cross-references to, 140
of dump files, 229–230
file and folder operations,

listing by, 136
spaces in, 176
types of, 105

pause command, 202
PDB extension, 26
PendMoves, 333–334
per-user ASEPs, 145, 151

Internet Explorer ASEPs,
157–158

logon ASEPs, 154
modification of, 151
Windows Explorer ASEPs, 156

performance, system,
troubleshooting, 405–426

performance counters
counter names, 232
process dump files triggered

by, 232
performance metrics, viewing,

79–80
permissions

actual vs. effective, 268
editing, 276
Everyone Full Control, 277
on file shares, 277–278
misconfiguration of,

identifying, 275–277
on objects, 295, 372
reporting, 267–275

on services, 87
troubleshooting errors with,

390
volume permissions, 340

Permissions button, 84, 87
Physical Address Extensions

(PAE), processor support of,
369–370

physical disks
capturing images of, 335–337
event logging on, 338–339

physical memory
analyzing, 211–227
graphs of, 65, 93–94
metrics on, 94
purging, 367
releasing, 220
usage analysis, 359–367

physical memory addresses,
valid ranges, 364–365

physical processors, mapping to
logical processors, 367–369

PID 0 pseudo-process, 190
PIDs. See process IDs (PIDs)
PipeList, 374–375
Play To feature errors, 389–390
Plug-and-Play drivers, load

order, 374
PML file format, 124
port monitors, 164
Portmon, 353–358

administrative rights for, 353
display options, 354
event counter, 354
filtering capabilities, 355–356
highlighting, 356
logging data, 357
Log-To-File Settings dialog

box, 357
printing data, 358
Print Range dialog box, 358
saving data, 357
search capabilities, 355
settings, storage of, 355

ports, input/output control
commands, 353–357

post-logoff logging, 128–129
postmortem debuggers,

ProcDump as, 236

post-reboot file operation
utilities, 333–334

PowerShell remoting
capabilities, 410

prefetch files, 403–404
print spooler, troubleshooting

problems with, 164
printer shares, enumerating,

277–278
prioritized standby lists, 363
private bytes, 215

graph of, 81
private I/O counts, 61–62
private memory, 216, 217
private symbol files, 27
private virtual address spaces,

21
privileges

disabled, 84
removing, 183
reporting on, 272
user privileges, 16

ProcDump, 211, 227–237
administrative rights for, 229
call-stack analysis features,

405–426
command-line syntax,

228–229
commit charges dumps, 232
crash dumps, 236–237
default thread context, 237
dump criteria, specifying,

230–232
dump file path, specifying,

229–230, 236
dump files, 421, 424–425
dump files, series of, 231
dump options, 232–233
exceptions, dumps on, 231
hung windows, dumps on,

231, 235
list modules command, 422
Miniplus (–mp) dumps,

233–235
as postmortem debugger, 236
process_PID notation, 232
process reflection and, 233
processes to monitor,

specifying, 229
running noninteractively, 235

paging files, defragmenting

	 	 451

ProcDump (continued)
64-bit dump files, 233
thread CPU usage data, 233
thread stack dumps, 422
triggers for dumps, 231–232
viewing dump files, 236–237

process activity
capturing, 104
saving snapshot of, 65
summary of, 134–135
viewing, 39–65, 102. See

also Process Monitor
(Procmon)

Process Activity Summary
dialog box, 134–135

process and diagnostic utilities,
4

Process Disk tab, 63–64
process dump files, 53, 227–237

comments in, 236
commit charges, triggering

with, 232
criteria for, 230–232
DebugView analysis, 242
default thread context, 237
names of, 230
overwriting, 230
path, 229–230, 236
performance counters

triggers, 232
64-bit dumps, 233
unhandled exceptions and,

231
Process Explorer (Procexp), 4, 39

administrative rights for,
42–43, 55, 58

call-stack analysis features,
405–426

command-line options, 98
Configure Symbols dialog

box, 29
CPU usage, 23, 41–42
default configuration settings,

restoring, 98
display options, 95–96
DLL view, 40, 67–77
executable images, full path

of, 432
graphs on toolbar, 65
Handle view, 34, 40, 67–77

image signatures, verifying,
91–92

instances of, 95–96
keyboard shortcuts, 98–99
main window, 40, 43–67
notification area icon, 95
open handles, finding, 384
other user sessions, 97
overview of, 39–43
process activity, saving to text

file, 65
process details, 77–88
process handle table, 74
process list, 40–41, 43–53
processes, creating in, 97
Session column, enabling, 182
shutdown options, 97
status bar, 43, 67
system information, 92–95
vs. Task Manager, 96–97
thread details, 89–91
toolbar, 43, 65–66
updating display, 46
visible window ownership,

displaying, 66–67
x86, x64, and IA64 versions,

40
process handle table, 74
process IDs (PIDs), 21

analyzing processes by, 226
listing processes by, 190
suspending processes by, 206
terminating processes by, 189

Process Image tab, 54–55
Process I/O tab, 61–62
process-killing malware,

429–431
process list, 43–53

color highlighting, 44–45
column configuration, saving,

64–65
columns, customizing display,

53
columns, reordering, 47
columns, resizing, 47
columns, sorting, 47
content, copying, 47
default columns, 46
exited processes, 45
job objects, 51

jobs, 44
logon processes, 49–51
.NET processes, 44
new processes, 45
own processes, 44
packed images, 44
precedence order, 44
process actions, 51–54
Process column, 46, 47
running processes in, 43
services, 44
startup processes, 49–51
suspended processes, 44
system processes, 48
tooltips, 48
tree view, 47
updating display, 46
user processes, 51

Process Memory tab, 57–59
Process menu, 51–53
Process Monitor (Procmon), 4,

101–144
administrative rights for, 102,

126
advanced output, 120
analysis tools, 134–140
Autoscroll feature, 103
backing files, 130–131
boot logging, 127–128, 402–

403, 434
buffer overflow results,

105–107
call-stack analysis features,

405–426
call stack information, 27–28
child processes, searching for,

387
clearing events, 103
column display, customizing,

107–108
column set, default, 104–105
command-line options,

132–134
configuration settings,

importing and exporting,
131

Count Values Occurrences
dialog box, 140

Cross Reference Summary
dialog box, 140

Process Monitor (Procmon)

452	

Process Monitor (Procmon)
(continued)

debug output events in traces,
141–142

display options, 103
event data, copying, 115
Event Properties dialog box,

108–113
events, 104–116
events, finding, 115
features of, 102
File Summary dialog box,

136–137, 415
Filter dialog box, 117–118
filtering options, 116–122,

392, 397, 412
getting started with, 103
Help menu, 132
Highlighting dialog box, 120
highlighting feature, 116–122,

392–393
history depth, 130
History Depth dialog box, 130
installation failures,

troubleshooting with,
392–396

Jump To feature, 35
log file size, controlling,

129–131
logon operations, recording,

402
Network Summary dialog box,

139
Organize Filters dialog box,

121–122
post-logoff logging, 128–129
Process Activity Summary

dialog box, 134–135
process tree, 122–123
Process Tree dialog box,

122–123
profiling events, displaying,

114
RegJump, 35
registry key, configuration

settings in, 131
Registry Summary dialog box,

137–138
result codes, 105–107
Save Filter dialog box, 121

Save To File dialog box, 124
searching online, 116
shortcuts to, 131
shutting down, 128
Stack Summary dialog box,

138–139
stack trace functionality, 402
status bar, 103
symbols, configuring, 113
System process activity,

viewing, 408–409
/Terminate command, 35
toolbar icons, 104, 142–143
traces, comparing side by side,

398–399
traces, saving and opening,

123–126
utility errors, troubleshooting,

390–391
/WaitForIdle command, 35

Process Monitor Backing Files
dialog box, 130–131

process names
analyzing processes by, 226
listing processes by, 190
searching online for, 116

Process Network tab, 62–63
Process Performance tab, 56–57
process_PID notation, 232
process priority, setting, 180
Process Profiling events, 114
Process Properties dialog box,

53, 77–88
Environment tab, 84–85
Image tab, 78–79
Job tab, 88
.NET tabs, 87–88
Performance Graph tab,

80–81
Performance tab, 79–80
Security tab, 83–84
Services tab, 86–87
Strings tab, 85–86
TCP/IP tab, 82
Threads tab, 81, 89–91

process reflection, 233
process termination, closing

handles during, 260
Process Timeline dialog box,

135

process tokens, 84
Process Tree dialog box,

122–123
process trees, terminating, 189
processes, 21–22

access rights, 74
application icons associated

with, 122–123
attributes, displaying, 54–55
bytes used by, 58
cloning, 233
comments, adding, 79
contents of, viewing, 67–77
control, 35
CPU, memory, and thread

information for, 190
CPU usage, 56–57
creating in Process Explorer,

97
cross-references among, 140
definition of, 21
detailed information about,

77–88, 111–112, 122–123,
135, 211–260, 299

dump of, 53
dynamic attributes, 46
effective permissions on, 267,

271
environment variables, 84–85
exit codes, 177
handle table, 24
handles, releasing, 24
handles owned by, 73–77,

256–260
hierarchy of, viewing, 122–123
integrity level, 35, 55
killing, 52, 79
launching and tracing,

213–214
limited rights, 183–184
logon processes, 49–51
memory allocations,

analyzing, 211–227
memory dumps of, 227–237
memory-related information,

190
.NET processes, 44, 59–61
open files of, 184
own processes, 44, 51
parent processes, 21

Process Monitor (Procmon)

	 	 453

processes (continued)
parent/child relationship, 47
performance metrics, viewing,

79–80
physical memory pages, 362
priority of, 52, 57
private bytes, 215
private I/O counts, 61–62
processor affinity, setting, 51
Properties dialog box, 53
restarting, 52
running processes, listing,

189–191
running remotely, 176
runtime information, 108
searching names online, 53
security context, 83–84
start time, 57
startup processes, 49–51
suspended processes, 44
suspending, 52, 205–206
terminating, 178
terminating with PsKill,

188–189
threads, displaying, 57
timelines of, 123, 135
token details, 267–275
tracking information on, 39.

See also Process Explorer
(Procexp)

user-defined comments, 48,
55

user mode and kernel mode,
18, 22, 51

visible windows of, 55, 66–67
window stations, 32
Windows services in, 44

processor access modes, 22–23
processor affinity, setting, 51
processors

details about, 90
feature support, 369–370
modes of execution, 22–23
state of, 22
topology, enumerating, 368

ProcFeatures, 369–370
Procmon Configuration (*.PMC)

files, 131
profile logging, 400
profiling events

capturing, 104
displaying in Procmon, 114

program associations, registry
key for, 397

program start failures,
troubleshooting, 104

programs
conditional copying to remote

systems, 181
definition of, 21
running as different user,

278–280
Project file opens,

troubleshooting, 415–419
Protected Administrator

accounts, 175
Protected Mode Internet

Explorer, 184
protected processes,

information on, 43
protection, for memory blocks,

218
proxying, 164
ps utility (UNIX), 172
PsExec, 171, 176–184. See

also PsTools suite
administrative rights for, 182
alternate credentials, 179
command-line options, 180–

184, 206
exit codes, 177
file copying, 181
runtime environment options,

181–184
-s option, 128
standard output, 177
system timeouts, 181
target process performance

options, 180–181
PsExec -s cmd.exe, 33
PsFile, 171, 184–185. See

also PsTools suite
command-line syntax, 206

PsGetSid, 171, 185–186. See
also PsTools suite

command-line syntax, 206
PsInfo, 171, 187–188. See

also PsTools suite
command-line syntax, 207
exit code, 188

PsKill, 171, 188–189. See
also PsTools suite

administrative rights for, 189
command-line syntax, 207

PsList, 39, 171, 189–191. See
also PsTools suite

administrative rights for, 189
command-line syntax, 207
task manager mode, 190–191
updated memory statistics,

191
PsLoggedOn, 171, 191–192. See

also PsTools suite
administrative rights for, 191
alternate credentials, 171
command-line syntax, 207

PsLogList, 171, 192–196. See
also PsTools suite

administrative rights for, 193
command-line options, 193–

196, 207
continuous mode, 194

PsPasswd, 171, 196–197. See
also PsTools suite

alternate credentials for, 171,
196

command-line syntax, 207
PsService, 171, 197–202. See

also PsTools suite
administrative rights for,

197–198
command-line syntax,

207–208
commands and options, 197
config command, 199–200
cont command, 202
depend command, 200–201
find command, 202
pause command, 202
query command, 198–199
restart command, 202
security command, 201
setconfig command, 202
start command, 202
stop command, 202

PsShutdown, 171, 203–205. See
also PsTools suite

administrative rights for, 203
command-line options, 203–

204, 208

PsShutdown

454	

PsShutdown (continued)
notification and cancellation

dialog box, 204
PsSuspend, 171, 205–206. See

also PsTools suite
command-line syntax, 208

PsTools suite, 4, 171–172
administrative rights for, 175
command-line syntax,

206–208
common features of utilities,

172–176
downloading, 7
malware, flagged as, 172
remote connections,

troubleshooting, 174–177
remote operations, 172–174
remote operations, alternate

credentials for, 174
system requirements, 208–209
utilities in, 171

P2V Migration for Software
Assurance, 337

public symbol files, 27

Q
query command, 198–199

filtering results, 199
quota charges, 372

R
RAMMap, 359–367

administrative rights for, 359
File Details tab, 366
File Summary tab, 365–366
memory allocation types,

361–362
page lists, 361
Physical Pages tab, 363–364
Physical Ranges tab, 364–365
Priority Summary tab, 363
Processes tab, 362
purging physical memory, 367
snapshots, saving, 367
Use Counts tab, 360–362

random access memory (RAM)
allocation type, 360–362
files with data in,

enumerating, 365–366

pages lists, 360–362
prioritized standby lists, 363
usage analysis, 359–367

read permissions
enumerating, 275–276
reporting, 267–275

Read Permissions permission,
273

ReadyBoost driver,
troubleshooting excessive
CPU usage, 408–410

reboots, delete and renaming
operations, 333–334

redirected console output,
178–179

redirections, 161
reference counts, 372
RegDelNull, 378–379
RegEdit

navigating, 377
opening, 276

registered owners, 187
registry

autostart locations, 145
Image File Execution Options

(IFEO) subkeys, 161
Internet Explorer systemwide

ASEPs in, 157–158
logon systemwide ASEPs in,

154–155
user profiles loaded in, 192
Windows Explorer systemwide

ASEPs in, 156–157
registry activity

capturing, 104
summary of, 137–138
viewing, 102. See also Process

Monitor (Procmon)
registry hives, defragmenting,

345–346
registry keys

effective permissions on, 267,
270

nonexistent, redirecting to,
395

null characters in, deleting,
378–379

registry locations, jumping to,
115–116

registry paths, navigating to,
377

registry profiles, temporary,
400–404

Registry Summary dialog box,
137–138

RegJump, 35, 377
Regmon, 102

filtering capabilities, 116
Related Session Events window,

303
Related Transaction Events

window, 303
relative IDs (RIDs), 185
remote computers, debug

output from, 246–249
remote connections,

troubleshooting, 174–177
remote monitoring, DebugView

capabilities, 247–249
remote operations. See

also target processes
alternate credentials for, 174
command-line syntax,

206–208
on multiple computers,

173–174
PsExec for, 176–184
PsTools, 171
PsTools connectivity,

troubleshooting, 174–177
PsTools utilities capabilities,

172–174
remote processes,

impersonation by, 179
Remote Registry service, 191
remote services, creating, 173
remote systems

command prompt on, 176,
178

conditional copying of
programs, 181

files open on, 184–185
listing process information

on, 189
logons, viewing information

about, 191
passwords for local accounts

on, 196

PsShutdown

	 	 455

remote systems (continued)
processes, suspending,

205–206
specifying, 173
Windows event logs,

displaying, 192–196
RemoteComputers syntax, 206
RemoteComputer syntax, 206
removable drives, dismounting,

339
rename operations

listing, 333–334
scheduling, 334

Replace Task Manager option,
96–97

reporting bugs, 11–12, 14
resource share logons, 191
resources

access to, 15–20
creating or opening, 24
of logon sessions, 281
querying or manipulating, 24
type representations, 23
wasted, 42

restart command, 202
Restore Task Manager option,

96
ResumeThread API, 206
return addresses in call stacks,

25
Richards, Andrew, 420
RIDs, 185
.RMP extension, 367
Robbins, John, 142
root nodes Properties dialog

box, 290
RootDSE node, 290
rootkit detection utility, 427
RootkitRevealer, 427
rootkits, 152, 169

drivers in, 159
Run keys, 153
Run As A Different User

command, 278
Run As Administrator button,

148
Run As Administrator command,

19, 278
Run As command, 278
Run As dialog box, 149

starting programs with
administrative rights, 16–17

Run As Different User
command, 279

Run As Limited User option, 97
Runas.exe, 278

netonly feature, 279
starting programs with

administrative rights, 16–17
runaway threads,

troubleshooting, 405–407
running processes

listing, 189–191
runtime characteristics of,

189–191
snapshots of, 218–219
viewing, 213

RunOnce keys, 153
runtime characteristics, of

running processes, 189–191
runtime code access security

checks, metrics on, 61
runtime environment of PsExec,

181–184
Russinovich, Mark, 3, 39

blog, 12
Webcasts, 13

S
Safe Mode, boot logging and,

128
Safe Mode with Command

Prompt, 430
Safe Removal applet, 339
Save Column Set dialog box, 64
Save Filter dialog box, 121
Save This Connection option,

288
Save To File dialog box, 124
SC.EXE, 197
scareware, 427
scheduled tasks, 146

autostart entries, 158
disabling, 158

schema objects, 307
Schwartz, Jon, 278
SCR extension, 26
screen magnification utility,

320–324

Screen-saver desktop, 33
screen savers, autostart entry

for, 163
screen shots, magnifying and

annotating, 320–324
SDelete, 283–286

command-line syntax,
284–285

file name overwriting, 286
functionality of, 285–286

Search Container dialog box,
293

Search dialog box, 69
searching

for DLLs, 68–69
for files, 71
for open objects, 68–69

searching online, for module
information, 113

Secondary Logon (Seclogon)
service, 16–17, 280

sections, effective permissions
on, 267, 271

secure delete applications, 284
secure desktop, 33

running processes in, 182–183
security

Address Space Layout
Randomization, 55

administrative rights, 15–20
Data Execution Prevention, 55
of drivers and services, 201
permissions on services, 87
window messaging

architecture and, 35
security command, 201
security context

impersonated, 179
of processes, 83–84
of threads, 22

security descriptors, 77
of threads, 90

security identifiers (SIDs), 185,
390

names associated with, 185
translating to names, 185–186

security management utilities,
261–286

security policy, disabling UAC
elevation, 19

security policy, disabling UAC elevation

456	

Security Reference Monitor, 23
security utilities, 5
SecurityProviders ASEP, 165
Select Columns dialog box,

53–54, 297–298
DLL tab, 69–70
Handle tab, 75–77
.NET tab, 59–61
Process Disk tab, 63–64
Process Image tab, 54–55
Process I/O tab, 61–62
Process Memory tab, 57–59
Process Network tab, 62–63
Process Performance tab,

56–57
Status Bar tab, 67

Select or Launch Process dialog
box, 212–214

semaphores, effective
permissions on, 267

Server service, files opened by,
184–185

Service Control Manager, 158
authentication through, 280

service processes, endpoints, 82
service provider interface (SPI),

164
services

access to, granting or denying,
390

Allow Service To Interact With
Desktop option, 33

capturing output of, 240
configuration information,

199–200
dependencies, 200–201
error control for, 200
hosted by processes, viewing,

86–87
interactive services, 199
out of date, deleting, 385
permissions on, 87
searching for, 202
security identifiers, 390
security information about,

201
start name, 200
start order, 373–374
start types for, 202
state of, 198

status information, 198–199
threads associated with, 89
tracking information on, 39.

See also Process Explorer
(Procexp)

wait time, 198
Session Manager process (Smss.

exe), 160
DLL mapping, 162
installation programs,

registering, 333
session 0, 240
session 0 isolation, 32, 241
sessions

one at a time, 31
relationship with window

stations, and desktops, 30
session ID, 32
terminal services sessions,

31–32
\Sessions\0\DosDevices\LUID

directory, 373
\Sessions\n directory, 373
\Sessions\n\BaseNamedObjects

directory, 373
setconfig command, 202
severity levels, error, 241
shareable memory, 216
shareable working set, 217
shared memory

private address spaces as, 22
viewing, 59

ShareEnum, 277–278
sharing violations, 401–404
shatter attacks, 35
shell extensions, 155
ShellRunAs, 278–280

command-line syntax,
279–280

Run As Different User
command, 279

shims, 410
Show Details For All Processes

command, 43
Show Profiling Events button,

141
Show Unnamed Handles And

Mappings option, 71, 76
shutdown

cancellation of, 205

PsShutdown, 203–205
Shutdown.exe, 203
shutdown reason options, 203
shutdown scripts, 153
shutdown sequence, logging,

127–129
SID-to-name lookups, 84
Sidebar Gadgets, 165
SIDs, 185–186, 390
SieExtPub.dll, 422
SigCheck, 150, 261–267

additional file information,
265–266

command-line parameters,
262–263

embedded manifests,
displaying, 266

executable files, scanning for,
265

file version number,
displaying, 266

hashes, displaying, 265–266
output format, 267
signature verification,

263–264
unsigned files, searching for,

264
signature catalogs, 264
signature verification, 79, 91–92,

261–267
of autostart files, 149–150
delays with, troubleshooting,

413–415
failures of, 169
turning off, 414–415

signing certificates, verifying,
264

simulated crashes, 379–380
single executable images, 11
site blog, 12
64-bit systems

codecs ASEPs, 160
Internet Explorer ASEPs, 158
logon ASEPs, 155
Windows Explorer ASEPs, 157

smartcard authentication, 17–18
Snapshot dialog box, 294
snapshots, 294–296

comparing, 219–220, 294–295
creating, 296

Security Reference Monitor

	 	 457

snapshots (continued)
of disks, 335
of kernel memory, 249
loading, 226
of memory allocations,

218–220
opening, 288
saving, 225–226
string data and, 220
timelines of, 219

soft links, NTFS support for, 328
software applications

auto-starting, 145. See
also autostarts

information about, 188
software installation failures,

troubleshooting, 391–396
software updates, errors with,

385–386
solid state drives,

defragmentation and, 344
Solomon, David, 43, 101
sparse files, deleting securely,

285–286
SPI, 164
Spooler service, 164
spyware, 157
SQL Server databases, BgInfo

data, writing to, 316
srvsvc named pipe, 184
stack, 22. See also call stacks

viewing, 82
Stack button, 90
stack memory, 217
Stack Summary dialog box,

138–139
stack traces. See also call stacks

examining, 416
saving, 113
summary of, 138–139
symbols, viewing, 126
third-party drivers in, 418

standby memory, 361
Star Wars IV: A New Hope, 150
start command, 202
Start menu, launching utilities

from, 7–8
start types for services, setting,

202
Startup folders, ASEPs of, 153

startup processes, 49–51
startup scripts, 153
Status Bar tab, 67
StockViewer, 410–411
stop command, 202
storage, thread-local, 22
Streams, 326–328

unblocking .zip files with, 9
strings

definition of, 73
image and memory strings, 85
in mapped files, 72–73
saving to text file, 86

Strings, 325–326
command-line syntax, 325
malware behaviors, detecting,

432–433
Strings dialog box, 220–221
subfunctions, 24
SUBST associations, 188
suspend count, 206
suspended processes, 52

in process list, 44
SuspendThread API, 206
suspension of processes,

205–206
Svchost.exe, 158, 159
symbol files, 26–28, 126

building of, 27
default locations, 29
details in, 27
downloading, 27

symbol servers, 27
symbolic links

creating, 329
link targets, navigating to, 371
NTFS support for, 328

symbols, 26–28
configuring, 28–30
instrumented processes and,

222
for kernel memory dump,

252–253
for LiveKdD.SYS, 251

symbols path, 29
Microsoft public symbols, 30

Sync, 339–340
sync utility, 339
.sys file extension, 159
Sysinternals Live, 10

displaying directory, 10
UNC path, 10

Sysinternals Site Discussion
blog, 12

Sysinternals source code, 14
Sysinternals utilities, 7. See

also Autoruns; Process
Explorer (Procexp); Process
Monitor (Procmon); PsTools
suite

AccessChk, 267–275
AccessEnum, 275–277
AdExplorer, 287–296
AdInsight, 296–306
administrative rights for, 16
AdRestore, 306–307
Autologon, 280
benefits of, 3
BgInfo, 309–318
Bluescreen Screen Saver,

379–380
ClockRes, 375
community support forum, 3
Contig, 344–345
CoreInfo, 367–369
Ctrl2Cap, 380
DebugView, 237–249
Desktops, 318–320
Disk2Vhd, 335–337
DiskExt, 347
Diskmon, 337–339
Disk Usage (DU), 331–333
DiskView, 341–344
distribution of, 14
downloading, 7–8
driver files, 11
embedded resources, 11
error message

troubleshooting, 383–404
EULA acceptance, 178
FindLinks, 330–331
Handle, 256–260
Hex2Dec, 378
Junction, 329–330
launching, 7
LDMDump, 347–349
license information, 13–14
ListDLLs, 253–255
LiveKd, 249–253
LoadOrder, 373–374

Sysinternals utilities

458	

Sysinternals utilities (continued)
LogonSessions, 280–283
malware blocking access to,

427–429
Microsoft support, 3, 14
MoveFile, 334
new features, utilities, and

bug fixes, 3
number of copies, 14
overview, 3–6
PageDefrag, 345–346
PendMoves, 333–334
PipeList, 374–375
Portmon, 353–358
ProcDump, 227–237
process state, viewing with,

211–260
ProcFeatures, 369–370
RAMMap, 359–367
RegDelNull, 378–379
RegJump, 377
running from Web, 10
SDelete, 283–286
ShareEnum, 277–278
ShellRunAs, 278–280
SigCheck, 261–267
single executable images, 11
Streams, 326–328
Strings, 325–326
symbolic information, 28–30
Sync, 339–340
TCPView, 351–353
32-bit and 64-bit system

support, 11
VMMap, 211–227
VolumeID, 350
Web site, 6–13
Whois, 353
WinObj, 370–373
ZoomIt, 320–324

Sysinternals Web site, 6–13
SysinternalsBluescreen.scr, 379
System account, executing

programs in, 176, 182
system activity

boot activity, logging,
127–128

log of, 123–126
system clock, current resolution,

375

System Configuration Utility
(msconfig.exe), 145–146

System.Diagnostics.Debug class,
237

System.Diagnostics.Trace class,
237

System event log
displaying records of, 192
PsShutdiown errors, 205

system files, defragmenting,
345–346

system hangs and crashes,
troubleshooting, 127

System Idle Process, 48
system information, 187–188

desktop wallpaper, displaying
as, 309–318

memory usage, monitoring,
355

viewing, 92–95
System Information dialog box,

92–94
system information utilities, 6,

359–376
system performance

KnownDLLs and, 162
noncached reads impact on,

417–418
on-access virus scans and,

418–419
troubleshooting, 405–426

system performance metrics,
92–95

System process
high CPU usage,

troubleshooting, 408–410
logging activity of, 128

system processes, 43, 48
system requirements for PsTools

utilities, 208–209
system resources, access to,

15–20
system shutdown, logging

activity of, 127–129
System start drivers, load order,

373
system-start services, 200
system startup, kernel-mode

debug output at, 241
system uptime, 187

system volumes, capturing
images of, 336

systemwide commit charge, 65

T
tab-delimited text, saving

Autoruns scans as, 166
target processes

directory for, 183
interactive running, 182
limited rights execution, 183
priority of, setting, 180
process tree of, 189
runtime environment,

181–184
scheduling on multiprocessor

systems, 181
secure Winlogon desktop

environment, 182–183
terminating, 188–189
tracing, 214

Task Manager
CPU usage calculation, 41
vs. Process Explorer, 96–97
processes, viewing in, 39
replacing and restoring,

96–97
Show Processes From All Users

option, 431–432
Users tab, 97

Task Scheduler, 146, 158
Taskkill.exe, 189
TCP endpoints, viewing, 82,

351–353
TCP operations, metrics on,

62–63
TCP port 2020 connections, 248
TCPView, 351–353

connected endpoints, viewing,
352

Resolve Addresses option, 352
update options, 351–352
Whois lookups, 352

tdx driver (NetIO Legacy TDI
Support Driver), 200

TechEd presentations, 13
terminal server sessions

capturing output of, 240–241
interactive desktops as, 238

Sysinternals utilities

	 	 459

terminal services, supported
features, 31

terminal services (TS) sessions,
31–32, 281

displaying information on, 55
window stations, 32–33

termination, with PsKill,
188–189

text, searching for in strings
list, 86

text files of AdInsight captured
events, 305

third-party drivers, 159
troubleshooting problems

with, 418
32-bit processes, address space

fragmentation, 224–225
thread identifiers (TIDs), 22, 89
thread-local storage (TLS), 22
Thread Profiling events, 114
Thread Profiling Options dialog

box, 114
thread stacks, 82, 112–113

root cause, identifying with,
405–407

thread tokens, 84
threads, 21–22

activity of, viewing, 102.
See also Process Monitor
(Procmon)

call stack, 90
call stack, viewing, 82,

112–113
components of, 22
contention metrics, 61
context switches, tracking of,

42
CPU-bound, troubleshooting,

405–407
CPU cycles, 42
CPU time, 89
CPU usage data, 233
default thread context, 237
desktops, 34
detailed information about,

81, 89–91
effective permissions on, 271
information about, listing, 190
killing, 91
number of, displaying, 57

processor time consumption,
231

running, 43
security descriptor, 90
services associated with, 89
start address, 89
suspend count, 206
suspending, 91
user-mode and kernel-mode

operation, 23
virtual address space, 22

threads of execution, 21
TIDs, 22, 89
Timeline dialog box, 219
Timelines Cover Displayed

Events Only option, 123
timer resolution, changes in,

375
timestamps, displaying, 311
TMP extension, 26
token details, reporting,

267–275
token filtering, 18, 183
tombstone lifetimes, 307
tombstoned objects, restoring,

306–307. See also AdRestore
tooltips

for Process Explorer graphs,
65–66

in process list, 48
Trace dialog box, 222–223
traces

analyzing, 134–140
debug output events in,

141–142
log file size and, 129–131
opening, 125–126
saving, 123–125
stack traces, 113

transition memory, 361
transport service providers, 164
tree view, listing processes in,

190
troubleshooting

ACCESS DENIED errors,
390–391

application hangs, 405–426
application startup delays,

410–415
blue-screen crashes, 241–242

error messages, 383–404
file access delays, 415–419
folder association errors,

397–399
infinite loops, 405–407
kernel-level, 249
locked folders, 383–385
Lotus Notes backup errors,

387–389
malware, 427–436
Outlook hangs, 420–426
Play To feature errors,

389–390
print spooler problems, 164
with process dump files, 227
Procmon traces, 123
program start failures, 104
Project file open delays and

errors, 415–419
PsTools remote connectivity,

174–177
ReadyBoost driver CPU

consumption, 408–410
runaway threads, 405–407
slow system performance,

405–426
software installation failures,

391–396
software update errors,

385–386
system hangs and crashes,

127
User Environment errors,

400–404
utility errors, 390–391

trusted certificates, verifying,
261

TS sessions, 31–33, 55, 281
Tskill.exe, 189
.txt file format, saving snapshots

as, 226

U
UAC. See User Account Control

(UAC)
UDP/UDPV6 endpoints, viewing,

82, 351–353
unallocated space, overwriting,

284

unallocated space, overwriting

460	

unhandled exceptions, process
dump files and, 231

Universal Naming Convention
(UNC) syntax, 10

unnamed objects, 76
unusual conditions, identifying,

123
Usage Guide, 15
User Account Control (UAC), 16

Admin-Approval Mode, 276
administrative rights and,

18–20
disabling, 20
elevation, triggering, 19
elevation, types of, 19
logon sessions created with,

283
remote operations and, 175

User Account Control (UAC)
elevation

for Process Explorer, 43
for remote operations, 175
triggering, 278

user account profiles, not
loading, 183

user accounts
alternate, credentials for, 174
passwords for, 196
SID of, 185

user-defined comments for
processes, 48

User Defined Fields dialog box,
312

User Environment errors,
troubleshooting, 400–404

User Interface Privilege Isolation
(UIPI), 35–36

user mode, 22–23
user-mode debug output, 237

capturing, 240–241
user-mode processes, code

access, 359
user-mode services, types of,

198
user-mode stack, 22
user-mode stack frames, 112
user names, searching logons

by, 191–192
USER objects, displaying

attributes of, 57–59

user privileges, 16
elevation of, 19. See also User

Account Control (UAC)
elevation

user processes, 51, 153
creation of, 18

user profile load errors,
troubleshooting, 400–404

user profiles, loaded in registry,
192

User rights, 15–16
Userenv.log, 401
User32.dll

AppInit DLLs loaded in, 162
malicious modification of,

435–436
users

account rights of, 267–275
administrative control,

effective, 16
ASEPs of, viewing, 151
autologon for, 280
locally logged on, 191, 192
Write permissions, 340

V
validation, performing, 72
Veghte, Bill, 410
verification

of digital signatures, 149,
261–267

failures of, 169
performing, 79, 91–92
turning off, 414–415

Verify button, 91
version information, displaying,

261
version resource, 91
View A Running Process tab,

212, 213
virtual address space

shared, 23
of threads, 22

virtual desktops, applications
on, 318–320

virtual hard disks (VHDs),
capturing physical disks as,
335–337

virtual machines (VMs),
attaching to VHDs, 336

virtual memory
analyzing, 211–227
displaying attributes of, 57–59
Procmon data in, 130–131

Virtual PC, virtual disk size limit,
337

virtualization, 55
VirtualProtect API, 218
visible windows

bringing to front, 79
ownership, determining,

66–67
Visual Basic 6

MSVBVM60.DLL, 27
.NET applications, 214

VMMap, 211–227
administrative rights for, 213
Call Tree button, 223
command-line options, 226
default font, 216
default settings, restoring, 227
Details View, 215–218
exporting data from, 212
Find feature, 221
Heap Allocations button, 224
instrumented processes,

viewing, 221–223
launching applications from,

213–214
main window, 212, 214–216
memory information, 217–218
memory types, 216–217
native file format, 225
output files, 226
process to analyze, picking,

212
snapshots, 218–220
snapshots, saving and loading,

225–226
starting, 212
Strings dialog box, 220–221
Summary View, 215, 217–218
text, finding and copying, 221
32-bit and 64-bit versions,

213, 214, 226
Timeline dialog box, 219
Trace dialog box, 222–223

unhandled exceptions, process dump files and

	 	 461

VMMap (continued)
View A Running Process tab,

213
VMs, attaching to VHDs, 336
volume clusters, graphical view

of, 342
volume management utilities,

335–350
volume permissions, 340
Volume Properties dialog box,

343
Volume Snapshot, 335
VolumeID, 350

changing, 350
Write permissions for, 350

volumes
effective permissions on, 269
flushing to disk, 339–340
graphical display of, 341–344

W
wait time of services, 198
wallpaper, system information

displayed as, 309–318
Web, running utilities from, 10
WebClient service, starting, 10
Whois, 353
Whois lookups, 352
WinDbg.exe, 421

dump files, viewing in,
236–237

locations of, 251
WinDiff, 399
window manager, 35
window messages, 34–36
window messaging architecture,

35
window stations, 32–33

desktops, 33–34
identifying, 34
relationship with sessions and

desktops, 30–31
window submenu, 51
windows

desktops, connection
between, 318

ownership, determining,
66–67

Windows Attachment Execution
Service, alternate data
stream, 8–9

Windows desktop objects,
318–319

Windows event logs, displaying
records, 192–196

Windows Explorer, autostart
entries, 155–157

Windows Firewall, DebugView
exception in, 248

Windows Hardware Abstraction
Layer (HAL), compatibility
issues, 336

Windows Internals: Including
Windows Server 2008 and
Windows Vista, Fifth Edition
(Russinovich and Solomon),
15, 43, 360, 370, 374

Windows Management
Instrumentation (WMI) job
object, 21

Windows native-mode
executables, autostarting,
160

Windows Object Manager, 370
Windows operating system

administrative rights, 15–20
Autostart Extensibility Points,

145
call stacks, 24–30
core concepts, 15–36
desktops, 33–34
fake system components,

431–433
jobs, 21
kernel-mode core, 23
Last Known Good option, 128
load order of drivers and

services, 373–374
object types, 23–24
offline instances, ASEPs of, 152
processes, 21–22
processor access modes,

22–23
Safe Mode with Command

Prompt, starting in, 430
signature catalog database,

264
64-bit versions, 155

terminal services sessions,
31–32

threads, 21–22
utilities for, 3. See

also Sysinternals utilities
window messages, 34–36
window stations, 32–33

Windows Powercfg.exe tool, 375
Windows PowerShell, redirected

console output and, 178
Windows Preinstallation

Environment (WinPE), 385
Windows process, components

of, 21
Windows Server 2003

administrative rights, running
programs with, 16–18

GINA DLL interface, 163
Run As command, 278
Run As dialog box, 149
VHDs, creating on, 336

Windows Server 2008, process
reflection feature, 233

Windows services. See
also services

autostarting, 158–159
dependencies of, 159
description of, 158
disabling or deleting, 158–159
effective permissions on, 270
listing, 197–202
monitoring, 296
multiple services, hosting, 158
Parameters key, 159
path to, 158–159
in processes, 86–87
processes containing, 44
startup of, 158–159

Windows 7
administrative rights, running

programs with, 18–20
AppLocker feature, 410
compatibility issues,

troubleshooting, 410–415
Desktop Gadgets, 165
IT Pro–oriented

enhancements, 410
Logical Prefetcher, 404
process reflection feature, 233
ReadyBoost, 408

Windows 7

462	

Windows 7 (continued)
Run As A Different User

command, 278
Windows Sockets (Winsock),

164
Windows Sysinternals Forums,

11–12
Windows Sysinternals Web site,

6–7
Utilities Index, 7

Windows Task Scheduler, 158
Windows Vista

administrative rights, running
programs with, 18–20

compatibility issues,
troubleshooting, 410–415

Credential Provider interface,
163

interactive logon type, 183
junctions, 328
Logical Prefetcher, 404
PsList, running remotely, 189
ReadyBoost, 408
Run As Administrator button,

148
Run As Administrator

command, 278
session 0 isolation, 241
shims for, 410
Sidebar Gadgets, 165
startup processes, 49–51
Task Scheduler, 158
token filtering, 183
User Account Control (UAC),

16

Windows Vista Integrity
Mechanism Technical
Reference, 36

Windows XP
administrative rights, running

programs with, 16–18
autologon feature, 280
GINA DLL interface, 163
Logical Prefetcher, 403–404
Run As command, 278
Run As dialog box, 149
startup processes, 49–51
Taskkill.exe and Tskill.exe, 189
VHDs, creating on, 336

Winlogon, 163, 165
malicious DLLs in, 434
notification packages, 163

Winlogon desktop, 33
running processes in, 182–183

WinObj, 23, 370–373
administrative rights for, 370
object properties, 372
running with elevated rights,

370
Win32 services. See also services

listing, 197, 199
Win32/Visal.b worm, 431
WinVerifyTrust function, 414
.wit file format, 305
WMPNetworkSvc service, 390
working set

analyzing, 211–227, 215
code and data mapping to,

359
emptying, 220
locked, 218

purging, 367
shareable, 218
size of, 59
total amount, 217

WOW64, 172
write operations, capturing,

133–134
write permissions, 340

for Contig, 344
enumerating, 275–276
reporting, 267–275
searching for, 272–273
for VolumeID, 350

X
XML, saving traces as, 125

Z
zeroed memory, 361
.zip files

downloading, 7–8
unblocking, 8–9

Zone.Identifier stream, 327
ZoomIt, 320–324

Break Timer, 323
clearing screen, 322
configuration dialog box,

320–321
drawing mode, 321–323
LiveZoom, 324
normal zoom mode, 321
pen color, 322
typing mode, 323
zooming modes, 320

Windows 7

About the Authors
Mark Russinovich is a Technical Fellow in the Windows Azure
group at Microsoft, working on Microsoft’s datacenter operating
system. He is a widely recognized expert in Windows operating
system internals as well as operating system security and design.
He is the author of the recently published cyberthriller Zero Day
and co-author of the Microsoft Press Windows Internals books.
Russinovich joined Microsoft in 2006 when Microsoft acquired
Winternals Software, the company he cofounded in 1996, as
well as Sysinternals, where he authors and publishes dozens of
popular Windows administration and diagnostic utilities. He is a
featured speaker at major industry conferences, including
Microsoft’s TechEd, WinHEC, and Professional Developers
Conference.

You can contact Mark at markruss@microsoft.com and follow him on Twitter at
http://www.twitter.com/markrussinovich.

Aaron Margosis is a Principal Consultant with Microsoft Public
Sector Services where he has worked primarily with U.S. federal
government customers since 1999. He specializes in application
development on Microsoft platforms with an emphasis on secu-
rity and application compatibility in locked-down environments,
and is a highly-regarded speaker at Microsoft conferences. He
is well known for having evangelized running Windows XP as
a non- admin and for publishing utilities and guidance to make
 doing so more feasible. His MakeMeAdmin script pioneered the
concept of a single user account running in both administrative
and non-admin contexts, influencing the design of User Account
Control. Aaron’s several security utilities can be downloaded
through his blog (http://blogs.msdn.com/aaron_margosis) and
his team’s blog (http://blogs.technet.com/fdcc).

You can contact Aaron at aaronmar@microsoft.com.

who literally wrote the book on Windows internals!
SIT DOWN WITH THE EXPERTS

“These videos drill into the core of the platform,
capture its technical essence and present it in a
powerful interactive video format.”–Rob Short,
Vice President Core Technologies,
Microsoft Corporation

If you liked their
book, you’ll love
hearing them in
person. Get one of
their video tutorials
or come to a live
class.

LIVE, INSTRUCTOR LED CLASSES
If you’re an IT professional deploying
and supporting Windows servers and
workstations, you need to be able to
dig beneath the surface when things go
wrong. In our classes, you’ll gain a deep
understanding of the internals of the
operating system and how to leverage
advanced troubleshooting tools to
solve system and application problems
and understand performance issues
more effectively. Attend a public class
or schedule a private on site seminar
at your location. For dates, course de-
tails, pricing, and registration informa-
tion, see www.solsem.com.

“The information given
in this class should be
required for all Windows
engineers/administrators.”

“This course holds the
key to understanding
Windows.”

“Should be required train-
ing for anyone responsible
for Windows software
development, administra-
tion, or design.”

To view video samples or for a detailed outline,
 visit www.solsem.com or email videos@solsem.com

INTERACTIVE DVD TUTORIAL
Sit down with the experts who
literally wrote the book on Win-
dows internals. Windows Internals
COMPLETE consists of 12 hours of
interactive training taking you under
the hood of the operating system to
learn how the kernel components
work. As the ultimate compliment,
Microsoft Corporation licensed these
videos for their corporate training
worldwide.
The Sysinternals Video Library (also
12 hours) covers essential Windows
troubleshooting topics such as crash
dump analysis and memory trouble-
shooting as well as how to leverage key
Sysinternals tools.

To view video samples or
for a detailed outline,
visit www.solsem.com or
email videos@solsem.com

Get Certifi ed—Windows® 7

microsoft.com/mspress

EXAM 70-685
MCITP Self-Paced Training Kit:
Windows 7 Enterprise Desktop
Support Technician
Tony Northrup and J.C. Mackin
ISBN 9780735627093

EXAM 70-680
MCTS Self-Paced Training Kit:
Confi guring Windows 7
Ian McLean and Orin Thomas
ISBN 9780735627086

EXAM 70-686
MCITP Self-Paced Training
Kit: Windows 7, Enterprise
Desktop Administrator
Craig Zacker and Orin Thomas
ISBN 9780735627178

Desktop support technicians and administrators—demonstrate your expertise with Windows 7 by
earning a Microsoft® Certifi cation focusing on core technical (MCTS) or professional (MCITP) skills.
With our 2-in-1 Self-Paced Training Kits, you get a comprehensive, cost-effective way to prepare for
the certifi cation exams. Combining offi cial exam-prep guides + practice tests, these kits are designed
to maximize the impact of your study time.

GREAT FOR ON THE JOB

Windows 7
Inside Out
Ed Bott, Carl Siechert,
Craig Stinson
ISBN 9780735626652

Windows 7
Administrator’s
Pocket Consultant
William R. Stanek
ISBN 9780735626997

Windows 7
Resource Kit
Mitch Tulloch,
Tony Northrup,
Jerry Honeycutt,
Ed Wilson, and the
Windows 7 Team
at Microsoft
ISBN 9780735627000

Win7_ResPg_TK_eVer_02.indd 1 9/21/10 5:11 AM

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs —what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

	Cover
	Copyright page

	Contents at a Glance
	Table of Contents
	Foreword
	Introduction
	Tools the Book Covers
	The History of Sysinternals
	Who Should Read This Book
	Assumptions

	Organization of This Book
	Conventions and Features in This Book
	System Requirements
	Acknowledgments
	Errata & Book Support
	We Want to Hear from You
	Stay in Touch

	Part I:Getting Started
	Chapter 1:Getting Started with the Sysinternals Utilities
	Overview of the Utilities
	The Windows Sysinternals Web Site
	Downloading the Utilities
	Running the Utilities Directly from the Web
	Single Executable Image
	The Windows Sysinternals Forums
	Windows Sysinternals Site Blog
	Mark’s Blog
	Mark’s Webcasts

	Sysinternals License Information
	End User License Agreement and the /accepteula Switch
	Frequently Asked Questions About Sysinternals Licensing

	Chapter 2:Windows Core Concepts
	Administrative Rights
	Running a Program with Administrative Rights on Windows XP and Windows Server 2003
	Running a Program with Administrative Rights on Windows Vista or Newer

	Processes, Threads, and Jobs
	User Mode and Kernel Mode
	Handles
	Call Stacks and Symbols
	What Is a Call Stack?
	What Are Symbols?
	Configuring Symbols

	Sessions, Window Stations, Desktops, and Window Messages
	Terminal Services Sessions
	Window Stations
	Desktops
	Window Messages

	Part II:Usage Guide
	Chapter 3:Process Explorer
	Procexp Overview
	Measuring CPU Consumption
	Administrative Rights

	Main Window
	Process List
	Customizing Column Selections
	Saving Displayed Data
	Toolbar Reference
	Identifying the Process That Owns a Window
	Status Bar

	DLLs and Handles
	Finding DLLs or Handles
	DLL View
	Handle View

	Process Details
	Image Tab
	Performance Tab
	Performance Graph Tab
	Threads Tab
	TCP/IP Tab
	Security Tab
	Environment Tab
	Strings Tab
	Services Tab
	.NET Tabs
	Job Tab

	Thread Details
	Verifying Image Signatures
	System Information
	Display Options
	Procexp as a Task Manager Replacement
	Creating Processes from Procexp
	Other User Sessions

	Miscellaneous Features
	Shutdown Options
	Command-Line Switches
	Restoring Procexp Defaults

	Keyboard Shortcut Reference

	Chapter 4:Process Monitor
	Getting Started with Procmon
	Events
	Understanding the Column Display Defaults
	Customizing the Column Display
	Event Properties Dialog Box
	Displaying Profiling Events
	Finding an Event
	Copying Event Data
	Jumping to a Registry or File Location
	Searching Online

	Filtering and Highlighting
	Configuring Filters
	Configuring Highlighting
	Advanced Output
	Saving Filters for Later Use

	Process Tree
	Saving and Opening Procmon Traces
	Saving Procmon Traces
	Opening Saved Procmon Traces

	Logging Boot, Post-Logoff, and Shutdown Activity
	Boot Logging
	Keeping Procmon Running After Logoff

	Long-Running Traces and Controlling Log Sizes
	Drop Filtered Events
	History Depth
	Backing Files

	Importing and Exporting Configuration Settings
	Automating Procmon: Command-Line Options
	Analysis Tools
	Process Activity Summary
	File Summary
	Registry Summary
	Stack Summary
	Network Summary
	Cross Reference Summary
	Count Occurrences

	Injecting Debug Output into Procmon Traces
	Toolbar Reference

	Chapter 5:Autoruns
	Autoruns Fundamentals
	Disabling or Deleting Autostart Entries
	Autoruns and Administrative Permissions
	Verifying Code Signatures
	Hiding Microsoft Entries
	Getting More Information About an Entry
	Viewing the Autostarts of Other Users
	Viewing ASEPs of an Offline System
	Listing Unused ASEPs
	Changing the Font

	Autostart Categories
	Logon
	Explorer
	Internet Explorer
	Scheduled Tasks
	Services
	Drivers
	Codecs
	Boot Execute
	Image Hijacks
	AppInit
	KnownDLLs
	Winlogon
	Winsock Providers
	Print Monitors
	LSA Providers
	Network Providers
	Sidebar Gadgets

	Saving and Comparing Results
	Saving as Tab-Delimited Text
	Saving in Binary (.arn) Format
	Viewing and Comparing Saved Results

	AutorunsC
	Autoruns and Malware

	Chapter 6:PsTools
	Common Features
	Remote Operations
	Troubleshooting Remote PsTools Connections

	PsExec
	Remote Process Exit
	Redirected Console Output
	PsExec Alternate Credentials
	PsExec Command-Line Options
	Process Performance Options
	Remote Connectivity Options
	Runtime Environment Options

	PsFile
	PsGetSid
	PsInfo
	PsKill
	PsList
	PsLoggedOn
	PsLogList
	PsPasswd
	PsService
	Query
	Config
	Depend
	Security
	Find
	SetConfig
	Start, Stop, Restart, Pause, Continue

	PsShutdown
	PsSuspend
	PsTools Command-Line Syntax
	PsExec
	PsFile
	PsGetSid
	PsInfo
	PsKill
	PsList
	PsLoggedOn
	PsLogList
	PsPasswd
	PsService
	PsShutdown
	PsSuspend

	PsTools System Requirements

	Chapter 7:Process and Diagnostic Utilities
	VMMap
	Starting VMMap and Choosing a Process
	The VMMap window
	Memory Types
	Memory Information
	Timeline and Snapshots
	Viewing Text Within Memory Regions
	Finding and Copying Text
	Viewing Allocations from Instrumented Processes
	Address Space Fragmentation
	Saving and Loading Snapshot Results
	VMMap Command-Line Options
	Restoring VMMap defaults

	ProcDump
	Command-Line Syntax
	Specifying Which Process to Monitor
	Specifying the Dump File Path
	Specifying Criteria for a Dump
	Dump File Options
	Miniplus Dumps
	Running ProcDump Noninteractively
	Capturing All Application Crashes with ProcDump
	Viewing the Dump in the Debugger

	DebugView
	What Is Debug Output?
	The DebugView Display
	Capturing User-Mode Debug Output
	Capturing Kernel-Mode Debug Output
	Searching, Filtering, and Highlighting Output
	Saving, Logging, and Printing
	Remote Monitoring

	LiveKd
	LiveKd Requirements
	Running LiveKd
	LiveKd Examples

	ListDLLs
	Handle
	Handle List and Search
	Handle Counts
	Closing Handles

	Chapter 8:Security Utilities
	SigCheck
	Signature Verification
	Which Files to Scan
	Additional File Information
	Output Format

	AccessChk
	What Are “Effective Permissions”?
	Using AccessChk
	Object Type
	Searching for Access Rights
	Output Options

	AccessEnum
	ShareEnum
	ShellRunAs
	Autologon
	LogonSessions
	SDelete
	Using SDelete
	How SDelete Works

	Chapter 9:Active Directory Utilities
	AdExplorer
	Connecting to a Domain
	The AdExplorer Display
	Objects
	Attributes
	Searching
	Snapshots
	AdExplorer Configuration

	AdInsight
	AdInsight Data Capture
	Display Options
	Finding Information of Interest
	Filtering Results
	Saving and Exporting AdInsight Data
	Command-Line Options

	AdRestore

	Chapter 10:Desktop Utilities
	BgInfo
	Configuring Data to Display
	Appearance Options
	Saving BgInfo Configuration for Later Use
	Other Output Options
	Updating Other Desktops

	Desktops
	ZoomIt
	Using ZoomIt
	Zoom Mode
	Drawing Mode
	Typing Mode
	Break Timer
	LiveZoom

	Chapter 11:File Utilities
	Strings
	Streams
	NTFS Link Utilities
	Junction
	FindLinks

	DU (Disk Usage)
	Post-Reboot File Operation Utilities
	PendMoves
	MoveFile

	Chapter 12:Disk Utilities
	Disk2Vhd
	Diskmon
	Sync
	DiskView
	Contig
	PageDefrag
	DiskExt
	LDMDump
	VolumeID

	Chapter 13:System Information Utilities
	RAMMap
	Use Counts
	Processes
	Priority Summary
	Physical Pages
	Physical Ranges
	File Summary
	File Details
	Purging Physical Memory
	Saving and Loading Snapshots

	CoreInfo
	ProcFeatures
	WinObj
	LoadOrder
	PipeList
	ClockRes

	Chapter 14:Network and Communication Utilities
	TCPView
	Whois
	Portmon
	Searching, Filtering, and Highlighting
	Saving, Logging, and Printing

	Chapter 15:Miscellaneous Utilities
	RegJump
	Hex2Dec
	RegDelNull
	Bluescreen Screen Saver
	Ctrl2Cap

	Part III:Troubleshooting—”The Case of the Unexplained...”
	Chapter 16:Error Messages
	The Case of the Locked Folder
	The Case of the Failed AV Update
	The Case of the Failed Lotus Notes Backups
	The Case of the Failed Play-To
	The Case of the Crashing Proksi Utility
	The Case of the Installation Failure
	The Troubleshooting
	The Analysis

	The Case of the Missing Folder Association
	The Case of the Temporary Registry Profiles

	Chapter 17:Hangs and Sluggish Performance
	The Case of the IExplore-Pegged CPU
	The Case of the Excessive ReadyBoost
	The Case of the Slow Keynote Demo
	The Case of the Slow Project File Opens
	The Compound Case of the Outlook Hangs

	Chapter 18:Malware
	The Case of the Sysinternals-Blocking Malware
	The Case of the Process-Killing Malware
	The Case of the Fake System Component
	The Case of the Mysterious ASEP

	Index
	About the Authors
	Survey page

