

Tkinter GUI Application
Development H TSHOT

Develop exciting and engaging GUI applications in Python
and Tkinter by working on 10 real-world applications

Bhaskar Chaudhary

BIRMINGHAM - MUMBAI

Tkinter GUI Application Development
H TSHOT

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1211013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-794-1

www.packtpub.com

Cover Image by Manu Gangadhar (manug30@gmail.com)

Credits

Author
Bhaskar Chaudhary

Reviewers
Ankur Aggarwal

Mike Driscoll

Anshuman Pandey

Alejandro Rodas de Paz

Acquisition Editor
Pramila Balan

Lead Technical Editor
Chalini Snega Victor

Technical Editors
Jalasha D'costa

Dipika Gaonkar

Kapil Hemnani

Akashdeep Kundu

Mrunmayee Patil

Project Coordinator
Angel Jathanna

Proofreaders
Simran Bhogal

Maria Gould

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinators
Alwin Roy

Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Bhaskar Chaudhary is a professional programmer and information architect. He has
almost 9 years of consulting, contracting, and educating experience in the field of software
development. He has worked with a large set of programming languages on various
platforms over the years.

He is an electronics hobbyist and musician in his free time.

I would like to thank my parents for everything that they have done for me.
Thanks to my wife Sangita who provided valuable support at every stage
of writing of this book. Thanks to my friend Souvik, sisters Priyanki and
Shambhavi, and nephew Praneet and niece Aakansha for being around.
Anurag you are always remembered and a source of inspiration.

I would like to thank Angel Jathanna, the Project Coordinator, for her
timely input and feedback during the course of writing. I'd also like to
thank Pramila Balan, the Acquisition Editor, and Chalini Snega Victor, the
Lead Technical Editor, for making several helpful suggestions with regard
to the book's structure, technical accuracy, and quality control. Thanks to
Reshma Raman, the Author Relations Executive for getting me involved in
the project.

I would also like to thank my reviewers Alejandro Rodas for providing
countless suggestions to improve the code, Michael Driscoll for pointing
out otherwise unnoticeable errors, Anshuman for testing out programs and
pointing errors, and Ankur Aggarwal for providing suggestions for making
the book more reader friendly.

Finally thanks to the Python community for being such a supportive group
and to entire team at Packt Publishing, for publishing great books in the
open source domain.

About the Reviewers

Ankur Aggarwal is currently working in the Education and Research department
of Infosys Limited. He loves to play with Unix and Linux tools. He has created various
automation tools using Python, PHP, and is learning Linux Kernel Development. He is also
an author of various international magazines and portals such as Open Source For You
(previously Linux For You), Ubuntumanual.org, and Richnusgeek. He runs a Linux based blog
too on www.flossstuff.wordpress.com. He loves coding and listening to metal music. He is a
die hard fan of Iron Maiden and loves playing the guitar in his free time.

Mike Driscoll has been programming in Python since Spring 2006. He enjoys writing about
Python on his blog: http://www.blog.pythonlibrary.org/. He also occasionally writes for the
Python Software Foundation, i-Programmer, and Developer Zone. He enjoys photography
and reading a good book. Mike has also been a technical reviewer for Python 3 Object
Oriented Programming, Python 2.6 Graphics Cookbook, and the Python Web Development
Beginner's Guide among others.

I would like to thank my wonderful wife, Evangeline, for always supporting
me. I would also like to thank friends and family for all that they do to help
me. And I would like to thank Jesus Christ for saving me.

Anshuman Pandey holds a Bachelor's Degree in Technology in Computer Science and
Engineering. Being a software developer, he is always eager to learn and build upon new
technologies. He is also an avid blogger, endurance runner, and tennis enthusiast. Currently
employed as an Analyst at a software consulting firm, Anshuman has extensive hands on
experience with data analysis and programming. He picked up Python by himself as an
undergraduate, and has since worked on a variety of Python projects as well as reviewed
books on the subject.

Being enthusiastic about sharing ideas and collaborating with like-minded individuals,
Anshuman is an up-and-coming blogger. He manages his own website "Twisted Thoughts",
where he shares his thoughts on everything from cool new technologies and nifty software
tricks to tennis and life lessons. His blog has proved to be a good portal to network with
young professionals with similar interests.

I would like to thank my parents for being supportive in my first venture
as a book reviewer, my band of friends for encouraging me, and Packt
Publishing for giving me the wonderful opportunity to review this book.

Alejandro Rodas de Paz is a Computer Engineer from the University of Seville (Spain).
He started programming in Python for artificial intelligence and data mining projects,
 and discovered Tkinter as an easy and effective way to develop GUI applications. He
worked at research institutions such as the Web Engineering and Early Testing group,
and the MediaLAB Amsterdam.

I would like to thank my grandmother Crescencia for her unconditional
support, trust, and love during all my life.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1
Project 1: Meet Tkinter 7

Mission Briefing 7
The root window – your drawing board 10
Widgets – building blocks for your GUI program 13
Getting to know core Tkinter widgets 16
Geometry management 19
Events and callbacks – adding life to programs 28
Doing it in style 36
Mission Accomplished 41
A Hotshot Challenge 42

Project 2: Making a Text Editor like Notepad 43
Mission Briefing 43
Setting up the widgets 45
Leveraging the power of built-in Text widget options 51
Indexing and tagging 52
Working with forms and dialogs 59
Working with message boxes 64
The icon toolbar and View menu functions 67
Event handling and the context menu 74
Mission Accomplished 76
A Hotshot Challenge 76

ii

Table of Contents

Project 3: Programmable Drum Machine 77
Mission Briefing 77
Setting up the GUI in OOP 79
Completing the pattern editor 85
Loading drum samples 88
Playing the drum machine 91
Tkinter and threading 94
More beat patterns 97
Object persistence 102
ttk-themed widgets 106
Mission Accomplished 112
A Hotshot Challenge 113

Project 4: Game of Chess 115
Mission Briefing 115
Structuring our program 117
Structuring chessboard-and-pieces-related data 123
Adding pieces on the board 130
Enforcing rules for pieces' movement 133
The chessboard logic 138
Making the chess functional 140
Adding menu and an info frame 150
Mission Accomplished 153
A Hotshot Challenge 153

Project 5: Audio Player 155
Mission Briefing 155
Getting the audio to play 158
Adding a playlist 163
Adding more controls to the player 169
Adding the top display console 173
Looping over tracks 179
Adding the contextual menu 182
Adding a tooltip and finalizing our player 184
Mission Accomplished 187
A Hotshot Challenge 188

iii

Table of Contents

Project 6: Drawing an Application 189
Mission Briefing 189
Developing a bare bone GUI framework 191
Structuring our drawing program 196
Handling mouse events 202
Drawing items on the canvas 205
Setting the options toolbar at the top 209
Adding some more features 214
Mission Accomplished 220
A Hotshot Challenge 221

Project 7: Some Fun Project Ideas 223
Mission Briefing 223
Building a screen saver 224
Building a Snake game 229
Creating a Weather Reporter 239
Creating a phonebook application 245
Graphing with Tkinter 252
Mission Accomplished 257
A Hotshot Challenge 257

Appendix A: Miscellaneous Tips 259
Mission Briefing 259
Tracing Tkinter variables 260
Widget traversal 262
Validating user input 263
Formatting widget data 269
More on fonts 271
Working with Unicode characters 275
Tkinter class's hierarchy 278
Custom-made mixins 281
Tips for code cleanup and program optimization 283
Distributing the Tkinter application 287
Limitations of Tkinter 289
Alternatives to Tkinter 290
Getting interactive help 292
Tkinter in Python 3.x 293
Conclusion 294

iv

Table of Contents

Appendix B: Quick Reference Sheets 297
Options common to widgets 297
Widget-specific options 300
The pack manager 301
The grid manager 302
The place manager 304
The event types 305
The event modifiers 306
The event details 306
Other event-related methods 308
List of available cursors 310
The basic widget methods 311
ttk widgets 320
The Toplevel window methods 325

Index 331

Preface

Tkinter GUI Application Development Hotshot is a step-by-step guide that will walk you
through the process of developing real-world graphical applications using Python and
Tkinter; the built-in GUI module of Python.

This book attempts to highlight features and capabilities of Tkinter, while demonstrating
a few of the myriad ways you can use Tkinter to develop exciting, fun, and useful pieces of
GUI applications with Tkinter and Python.

We hope to take you on a fun journey through more than 10 projects from different
problem domains. As we develop new applications in each project, the book also builds
up a catalogue of some commonly used strategies for developing real-world applications.

What this book covers
Project 1, Meet Tkinter, begins from scratch, providing an overview of Tkinter covering
details on how to create root windows, how to add widgets to a root window, how to handle
layout with geometry managers, and how to work with events.

Project 2, Make a Text Editor like Notepad, develops a text editor in procedural style of
programming. It gives the reader their first taste of several features of Tkinter and what it is
like to develop a real application.

Project 3, Programmable Drum Machine, uses object-oriented programming to develop
a drum machine capable of playing user composed rhythms. The application can also
save those compositions and later edit or replay them. Here, you also learn to write
multithreaded GUI applications.

Preface

2

Project 4, Game of Chess, develops a game of chess, introducing key aspects of structuring a
GUI application as a model-view program. It also teaches the art of taking a real-world object
(chess), and modeling it in notations that your program can manipulate. It also introduces
the reader to the power of Tkinter Canvas widget.

Project 5, Audio Player, takes up the task of building an audio player. This project introduces
the concepts of working with external libraries while showing you how to work with many
different Tkinter widgets.

Project 6, Drawing an Application, develops a drawing and graphic editor. This project also
shows how to develop and work with a GUI framework, thereby creating reusable code for
all of your future programs.

Project 7, Some Fun Project Ideas, works through a series of small but functional projects,
demonstrating problems from different domains such as network programming, database
programming, graphing, basic animation, and multithreaded programming.

Appendix A, Miscellaneous Tips, discusses some vital aspects of GUI programming not
covered in previous projects, but form a common theme in many GUI programs.

Appendix B, Quick Reference Sheets, lists down a handy reference sheet of all Tkinter and ttk
options and methods along with a brief description on their input, usage, and output.

What you need for this book
The programs discussed in this book have been developed on Windows platform. However
given the multi-platform abilities of Tkinter, you can easily work along on other platforms
such as Linux distributions or Mac OS.

The following software is required for this book:

 f Python 2.7 version with Tkinter 8.5 included in the distribution

The link to download and install other project specific modules and software are mentioned
in the respective projects.

Who this book is for
This book assumes that you are familiar with Python programming language, at a beginner
level. However, a motivated Python newbie with a background in writing programs can fill in
gaps in knowledge with a little outside research.

Preface

3

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

from Tkinter import *
class MyFirstGUI():
 def __init__(self):
 self.root = Tk()
 self.root.mainloop()
if __name__ == '__main__':
app = MyFirstGUI()

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

from Tkinter import *
class MyFirstGUI():
 def __init__(self):
 self.root = Tk()
 self.root.mainloop()
if __name__ == '__main__':
app = MyFirstGUI()

Any input on Python interactive shell is written as follows:

>>> import Tkinter

>>> help(Tkinter.Label)

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "When a user specifies
a new number and clicks on the Update Record button it calls a method."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

4

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles
that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we
would be grateful if you would report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata, please
report them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded on our
website, or added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/support.

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Project 1
Meet Tkinter

Welcome to the exciting world of GUI programming with Tkinter. This project aims at
getting you acquainted with Tkinter, the built-in graphical user interface (GUI) interface
for all standard Python distributions.

Tkinter (pronounced tea-kay-inter) is the Python interface to Tk, the GUI toolkit for Tcl/Tk.

Tcl (pronounced "tickle" and is an acronym for Tool Command Language) is a popular
scripting language in the domains of embedded applications, testing, prototyping, and GUI
development. Tk on the other hand is an open source, multiplatform widget toolkit that is
used by many different languages for building GUI programs.

The Tkinter interface is implemented as a Python module, Tkinter.py, which is just a
wrapper around a C-extension that uses Tcl/Tk libraries.

Tkinter is suited for application to a wide variety of areas ranging from small desktop
applications, to use in scientific modeling and research endeavors across various disciplines.

We believe that the concepts you will develop here will enable you to apply and develop GUI
applications in your area of interest. Let's get started!

Mission Briefing
The purpose of this project is to make you comfortable with Tkinter. It aims at introducing
you to various components of GUI programming with Tkinter.

Meet Tkinter

8

By the end of this project, you will have developed several partly functional dummy
applications such as the one shown as follows:

The applications developed in this project are "dummy applications" because they are not fully
functional. In fact, the purpose of each small dummy application is to introduce you to some
specific aspects of programming with Tkinter. This will set up the context for developing some
fun and fully functional project ideas from Project 2, Making a Text Editor, onwards.

Why Is It Awesome?
The ability to program a GUI application (as opposed to a simple console application) opens
a whole world of possibilities for a programmer. It shifts the focus of the program from the
programmer to the end user, enabling the programmer to reach out to a wider audience.

When a person learning Python needs to graduate to GUI programming, Tkinter seems to
be the easiest and fastest way to get the work done. Tkinter is a great tool for programming
GUI applications in Python.

The features that make Tkinter a great choice for GUI programming include:

 f It is simple to learn (simpler than any other GUI package for Python)

 f Relatively little code can produce powerful GUI applications

Project 1

9

 f Layered design ensures that it is easy to grasp
 f It is portable across all operating systems
 f It is easily accessible as it comes pre-installed with standard Python distribution

None of the other GUI toolkits has all of these features at the same time.

Your Hotshot Objectives
The key concepts that we want you to take from this project include:

 f Understanding the concept of root window and main loop
 f Understanding widgets—the building blocks for your programs
 f Acquainting yourself with a list of available widgets
 f Developing layouts using three geometry managers: pack, grid, and place
 f Learning to apply events and callbacks to make your program functional
 f Styling your widgets with styling options and configuring the root widget

Mission Checklist
An elementary knowledge of data structures, syntax, and semantics of Python is assumed.
To work along with this project, you must have a working copy of Python 2.7.3 installed on
your computer.

The Python download package and instructions for downloading for different platforms are
available at http://www.Python.org/getit/releases/2.7.3/.

We will develop our application on the Windows 7 platform. However, since Tkinter is truly
cross-platform, you can follow along on Mac or Linux distributions without any modifications
to our code.

After the installation, open the IDLE window and type:

>>>from Tkinter import *

If you have installed Python 2.7, this shell command should execute without any errors.

If there are no error messages the Tkinter module is installed in your Python distribution.
When working with examples from this book, we do not support any other Python version
except for Python 2.7, which comes bundled with Tkinter Tcl/Tk Version 8.5.

To test if you have the correct Tkinter version on your Python installation, type the following
commands in your IDLE or interactive shell:

>>> import Tkinter

>>>Tkinter._test()

Meet Tkinter

10

This should pop up a window where the first line in the window reads This is Tcl/Tk version
8.5. Make sure it is not 8.4 or any earlier version, as Version 8.5 is a vast improvement over
its previous versions.

You are ready to code your Tkinter GUI applications if your version test confirms it as
Tcl/Tk version 8.5. Let's get started!

The root window – your drawing
board

GUI programming is an art, and like all art, you need a drawing board to capture your ideas.
The drawing board you will use is called the root window. Our first goal is to get the root
window ready.

Engage Thrusters
The following screenshot depicts the root window we are going to create:

Drawing the root window is easy. You just need the following three lines of code:

from Tkinter import *
root = Tk()
root.mainloop()

Save this with the .py file extension or check out the code 1.01.py. Open it in the IDLE
window and run the program from the Run menu (F5 in IDLE). Running this program
should generate a blank root window as shown in the preceding screenshot. This window
is furnished with functional minimize, maximize, and close buttons, and a blank frame.

Project 1

11

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

The description of the code is as follows:

 f The first line imports all (*) classes, attributes, and methods of Tkinter into the
current workspace.

 f The second line creates an instance of the class Tkinter.Tk. This creates what
is called the "root" window that you see in the screenshot provided. By convention,
the root window in Tkinter is usually called "root", but you are free to call it by any
other name.

 f The third line executes the mainloop (that is, the event loop) method of the root
object. The mainloop method is what keeps the root window visible. If you remove
the third line, the window created in line 2 will disappear immediately as the script
stops running. This will happen so fast that you will not even see the window
appearing on your screen. Keeping the mainloop running also lets you keep the
program running until you press the close button, which exits the main loop.

Objective Complete – Mini Debriefing
Congratulations! You have completed your first objective, which was to draw the root
window. You have now prepared your drawing canvas (root window). Now get ready
to paint it with your imagination!

Commit the three lines of code (shown in code 1.01.py) to memory. These
three lines generate your root window, which will accommodate all other
graphical components. These lines constitute the skeleton of any GUI
application that you will develop in Tkinter. All code that will make your GUI
application functional will go between line 2 (new object creation) and line 3
(mainloop) of this code.

Meet Tkinter

12

Classified Intel
This section describes the different styles of importing Tkinter modules.

In the preceding example, we imported Tkinter using the following command:

from Tkinter import *

This method of import eases the handling of methods defined in the module. That is to
say, you can simply access the methods directly. Generally, it is considered a bad practice
to import all (*) methods of a module like we did here. This is because if you import all
methods from some other module with a common method name, it would lead to the
overwriting of methods.

There are several ways to import Tkinter in which this overlapping can be avoided, a
common one being:

import Tkinter

This style of importing does not pollute the namespace with a list of all methods defined
within Tkinter. However, every method within Tkinter will now have to be called using the
format Tkinter.methodA instead of directly calling the method.

Another commonly used import style is as follows:

import Tkinter as Tk

Here too, you do not pollute the current namespace with all Tkinter methods and now you
can access methods such as Tk.methodA. "Tk" is a convenient, easy-to-type alias commonly
used by many developers for importing Tkinter.

The big picture
As a GUI programmer, you will generally be responsible for deciding three aspects of
your program:

 f What components should appear on screen?: This involves choosing the
components that make the user interface. Typical components include things such
as buttons, entry fields, checkboxes, radio buttons, scroll bars, and the like. In
Tkinter, the components that you add to your GUI are called widgets.

 f Where should the components go?: This involves deciding the positioning or
placement of each component in the overall design structure. This includes
decisions to be made on issues of positioning and the structural layout of various
components. In Tkinter, this is referred to as geometry management.

Project 1

13

 f How do components interact and behave?: This involves adding functionality
to each component. Each component or widget does some work. For example, a
button, when clicked on, does something in response; a scrollbar handles scrolling;
and checkboxes and radio buttons enable the user to make some choices. In Tkinter,
the functionality of various widgets is managed by command binding or event
binding using callback functions.

Let us delve deeper into each of these three components in the context of Tkinter.

Widgets – building blocks for your
GUI program

Now that we have our Toplevel window ready, it is time to think over the question,
what components should appear in the window? In Tkinter jargon, these components
are called widgets.

Engage Thrusters
The syntax for adding a widget is as follows:

mywidget = Widget-name (its container window,**configuration options)

In the following example (refer to the code 01.02.py), we add two widgets, a label and a
button, to the root frame. Notice how all widgets are added in between the skeleton code
we defined in the first example.

from Tkinter import *
root = Tk()
mylabel = Label(root,text="I am a label widget")
mybutton = Button(root,text="I am a button")
mylabel.pack()
mybutton.pack()
root.mainloop()

Meet Tkinter

14

The description of the code is listed as follows:

 f This code adds a new instance, mylabel, for the Label widget. The first parameter
defines root as its parent or container. The second parameter configures its text
option as "I am a label widget".

 f We similarly define an instance of a Button widget. This is also bound to the root
window as its parent.

 f We use the pack() method, which is essentially required to position the label and
button widgets within the window. We will discuss the pack() method and several
other related concepts under the Geometry management task. However, you must
note that some sort of geometry specification is essential for the widgets to display
within the Toplevel window.

 f Running this code will generate a window as shown in the following screenshot.
It will have a custom label and a custom button:

Objective Complete – Mini Debriefing
In this iteration, we have learned the following:

 f What widgets are.

 f How widgets are instantiated and displayed within a container window frame.

 f How to set options for the widgets at the time of instantiation.

 f The importance of specifying a geometry option such as pack() to display
a widget. We will discuss more about this in a subsequent task.

Classified Intel
 f All widgets are actually objects derived from their respective widget class.

So, a statement such as mybutton = Button(myContainer), actually
creates the button instance from the Button class.

Project 1

15

 f Each widget has a set of options that decides its behavior and appearance. This
includes attributes such as text labels, colors, font size, and many more. For example,
the Button widget has attributes to manage its label, control its size, change its
foreground and background colors, change the size of the border, and so on.

 f To set these attributes, you can set the values directly at the time of creation of the
widget as we have done in the preceding example. Alternatively, you can later set
or change the options of the widget by using the .config() or .configure()
method. Note that the .config() or .configure() method are interchangeable
and provide the same functionality.

You can also add the pack() method on the same line in which you create
a new instance of the widget. For example, consider the following code:

mylabel = Label(root,text="I am a label widget")

mylabel.pack()

If you are instantiating the widget directly, you can write both the lines
together as follows:

Label(root,text="I am a label widget").pack()

You may keep a reference to the widget created (as in the first example,
mylabel) or you can create a widget without keeping any reference to it
(as in the second example).
You should ideally keep the reference if the widget content is likely to
be modified by some action at a later stage in the program. If the widget
state is to remain static after its creation, you need not keep a reference
for the widget.
Also, note that calls to pack() (or other geometry managers) always
returns None. So, consider you create a widget keeping a reference to it
and add the geometry manager (say pack()) on the same line as shown:

mylabel = Label(…).pack()

In this case, you are actually not creating a reference to the widget but
instead creating a None type object for the variable mylabel.
So, when you later try to modify the widget through the reference, you
get an error as you are actually trying to work on a None type object.
This is one of the most common errors committed by beginners.

Meet Tkinter

16

Getting to know core Tkinter widgets
In this iteration, we will get to know all core Tkinter widgets. We have already seen two of
them in the previous example—the Label and Button widgets. Let's now see all other core
Tkinter widgets.

Prepare for Lift Off
Tkinter includes 21 core widgets. These are as follows:

Toplevel widget Label widget Button widget

Canvas widget Checkbutton widget Entry widget

Frame widget LabelFrame widget Listbox widget

Menu widget Menubutton widget Message widget

OptionMenu widget PanedWindow widget Radiobutton widget

Scale widget Scrollbar widget Spinbox widget

Text widget Bitmap Class widget Image Class widget

Let's write a program to include these widgets on our root window.

Engage Thrusters
The format for adding widgets is the same as we discussed in the previous task. To give you a
flavor, here's some sample code for adding some common widgets:

Label(parent, text=" Enter your Password:")

Button(parent, text="Search")

Checkbutton(parent, text='RememberMe', variable=v, value=True)

Entry(parent, width=30)

Radiobutton(parent, text=Male, variable=v, value=1)

Radiobutton(parent, text=Female, variable=v, value=2)

OptionMenu(parent, var, "Select Country", "USA", "UK", "India", Others")

Scrollbar(parent, orient=VERTICAL, command=mytext.yview)

Can you spot the pattern common to each widget? Can you spot the differences?

As a reminder, the syntax for adding a widget is:

Widget-name (its container window, *configuration options)

Project 1

17

The method for creating all the previously mentioned widgets is the same.
Most of the configuration options will also be similar. However, a few
configuration options vary from widget to widget.
For example, the Button and Label widgets will have an option to configure
their text, but scrollbars do not have a text-configuration option.

Using the same pattern, let's now add all the 21 core Tkinter widgets into a dummy
application (code 01.03.py).

Do not be intimidated by the size of the program. Instead look for a common
pattern that is used to initialize and display all the widgets. To reiterate, the
syntax for adding a widget is:

mywidget = Widget-name (container, all widget-options)

Notice how the configuration options for each widget differ slightly from each
other depending on the type of widget being initialized.

Refer to the code 1.03.py for a demo of all Tkinter widgets. A summarized code
description for 1.03.py is as follows:

 f We create a Toplevel window and create a main loop as seen in the
earlier examples.

 f We add a Frame widget that we named menubar. Note that Frame widgets are just
holder widgets that hold other widgets. Frame widgets are great for grouping widgets
together. The syntax for adding a frame is the same as that of all other widgets:
myframe = Frame(root)
myframe.pack()

 f Keeping the menubar frame as the container, we add two widgets to it, the
Menubutton and Menu widgets.

 f We create another frame and name it myframe1. Keeping myframe1 as the
container/parent widget, we add seven widgets to it:

 � The Label, Entry, Button, Checkbutton, Radiobutton, OptionMenu, and
Bitmap Class widgets.

 f We then proceed to create myframe2, another Frame widget. We add six more
widgets to it:

 � The Image Class, Listbox, Spinbox, Scale, LabelFrame, and Message widgets.

Meet Tkinter

18

 f We then create myframe3, another Frame widget. We add two more widgets to it,
the Text and Scrollbar widgets.

 f Finally we create the last frame, myframe4, another Frame widget. We add two
more widgets to it, the Canvas and PanedWindow widgets.

All these widgets constitute the 21 core widgets of Tkinter.

Read through the code explanation, and find the corresponding piece of code
in the example code 01.03.py. Look at how each widget is created. Try to
identify each widget's class name as used in Tkinter. Look what remains the
same in all widgets, and what changes between one widget and another?
A few minutes spent reading and understanding the code in 1.03.py
will really help you appreciate the simplicity and overall structure of a
Tkinter program.
Finally, note that we have used .pack() on each widget to display it inside its
container frame. We discuss .pack() in the next task. However, for now just
note that we have used something called pack(), without which the widgets
would not have displayed at all.

Objective Complete – Mini Debriefing
You have reached a major milestone in your GUI programming effort.

You now know all the 21 core widgets of Tkinter. You can identify them by their class names,
and you can create them on a root frame or on a subframe within the root. You now know
how to configure options of widgets.

With this you have now seen the first and the most important building block of a Tkinter
program. You have mastered Tkinter widgets.

Classified Intel
Widget options can be set at instantiation time as we have done in the examples so far.
Alternatively, the options can be configured after instantiation using the following syntax:

widget.configure(**options)

This is a very handy tool that lets you change widget options dynamically after the widget
has been created. We will be using this very often in all our projects.

For common widget configuration options, refer to the Options common to widgets section
in Appendix B, Quick Reference Sheets.

Project 1

19

Geometry management
Having seen all the core Tkinter widgets, let us now turn our attention to the second
component of GUI programming—the question of where to place those widgets.

This is taken care of by the geometry manager options of Tkinter. This component of GUI
programming involves deciding the position of the widget, overall layout, and relative
placement of various widgets on the screen.

Prepare for Lift Off
Recall that we used the pack() method for adding widgets to the dummy application
we developed in the previous section. pack() is an example of geometry management
in Tkinter.

pack() is not the only way you can manage the geometry in your interface. In fact,
there are three geometry managers in Tkinter that let you specify the position
of widgets inside a Toplevel or parent window.

The geometry managers are as follows:

 f pack: This is the one we have used so far. Simple to use for simpler layouts
but may get very complex for slightly complex layouts.

 f grid: This is the most commonly used geometry manager that provides a
table-like layout of management features for easy layout management.

 f place: This is least popular, but provides the best control for absolute
positioning of widgets.

Engage Thrusters
Let us now see examples of all three geometry managers in action.

The pack geometry manager
The pack geometry derives its name from the fact that it literally packs widgets on a first-
come-first-serve basis in the space available in the master frame in which widgets are pushed.

The pack geometry manager fits "slave widgets" into "parent spaces". When packing the
slave widgets, the pack manager distinguishes between three kinds of spaces:

 f The unclaimed space

 f The claimed but unused space

 f The claimed and used space

Meet Tkinter

20

The most commonly used options in pack() include:

 f side: LEFT, TOP, RIGHT, and BOTTOM (these decide the alignment of the widget)

 f fill: X, Y, BOTH, and NONE (these decide whether the widget can grow in size)

 f expand :1/0 or Yes/No (corresponding to values respectively)

 f anchor: NW, N, NE, E, SE, S, SW, W, and CENTER (corresponding to the
cardinal directions)

 f Internal padding (ipadx and ipady) and external padding (padx and pady),
which all defaulted to a value of zero

Let's take a look at some demo code that illustrates some of the pack features. Here's the
code snippet (code 1.04.py) that generates a GUI like the following screenshot:

from Tkinter import *

root = Tk()

Button(root, text="A").pack(side=LEFT, expand=YES, fill=Y)

Button(root, text="B").pack(side=TOP, expand=YES, fill=BOTH)

Button(root, text="C").pack(side=RIGHT, expand=YES, fill=NONE, anchor=NE)

Button(root, text="D").pack(side=LEFT, expand=NO, fill=Y)

Button(root, text="E").pack(side=TOP, expand=NO, fill=BOTH)

Button(root, text="F").pack(side=RIGHT, expand=NO, fill=NONE)

Button(root, text="G").pack(side=BOTTOM, expand=YES, fill=Y)

Button(root, text="H").pack(side=TOP, expand=NO, fill=BOTH)

Button(root, text="I").pack(side=RIGHT, expand=NO)

Button(root, text="J").pack(anchor=SE)

root.mainloop()

Project 1

21

The description of the code is listed as follows:

 f When you insert button A in the root frame, it captures the left-most area of the
frame, it expands, and fills the Y dimension. Because expand and fill options are
specified in affirmative, it claims all the area it wants and fills the Y dimension. If you
increase the size of the root window pulling it down, you will notice that the button A
expands in the downward direction (along the Y coordinate) but a side-wise increase
in the window does not result in a horizontal increase in the size of button A.

 f When you insert the next button, B, into the root window, it picks up space from the
remaining area but aligns itself to TOP, expand-fills the available area, and fills both
X and Y coordinates of the available space.

 f The third button, C, adjusts to the right-hand side of the remaining space. But
because fill is specified as NONE, it takes up only that much space as is required to
accommodate the text inside the button. If you expand the root window, the button
C will not change its size.

 f The anchor attribute used in some lines provides a means to position a widget
relative to a reference point. If the anchor attribute is not specified, the pack
manager places the widget in the center of the available space or the packing box.
Other allowed options include the four cardinal directions (N, S, E, and W) and a
combination of any two directions. Therefore, valid values for the anchor attribute
are: CENTER (default), N, S, E, W, NW, NE, SW, and SE.

The description for the rest of the lines is left as an exercise for you to explore. The best way
to study this piece of code would be to comment out all lines of code and introduce each
successive button one after another. At each step, try to resize the window to see the
effect it has on various buttons.

We will use the pack geometry manager in some of our projects, so it would be a
worthwhile exercise to get acquainted with pack and its options.

Meet Tkinter

22

Note that the value for most of the Tkinter geometry manager attributes
can either be specified in capital letters without quotes (like side=TOP,
anchor=SE) or in small letters but within quotes (like side='top',
anchor='se').

For a complete pack manager reference refer to the The pack manager section in
Appendix B, Quick Reference Sheets.

Where should you use the pack() geometry manager?
Using the pack manager is somewhat complicated compared to the
grid method that we will discuss next, but it is a great choice in
situations such as:

 f Having a widget fill the complete container frame
 f Placing several widgets on top of each other or in a side by side

position (as in the previous screenshot). See code 1.05.py.

While you can create complicated layouts by nesting widgets in multiple frames, you can find
the grid geometry manager more suitable for most of the complex layouts.

The grid geometry manager
The grid geometry manager is most easy to understand and, perhaps, the most useful
geometry manager in Tkinter. The central idea of the grid geometry manager is to divide
the container frame into a two-dimensional table divided into a number of rows and
columns. Each cell in the table can then be targeted to hold a widget. In this context, a cell is
an intersection of imaginary rows and columns. Note that in the grid method, each cell can
hold only one widget. However, widgets can be made to span multiple cells.

Within each cell you can further align the position of the widget using the STICKY option.
The sticky option decides how the widget is expanded, if its container cell is larger than
the size of the widget it contains. The sticky option can be specified using one or more of
the N, S, E, and W, or NW, NE, SW, and SE options.

Not specifying stickiness defaults to stickiness to the center of the widget in the cell.

Let us now see a demo code that illustrates some of the features of the grid geometry
manager. The code in 1.06.py generates a GUI-like figure as shown:

Project 1

23

from Tkinter import *

root = Tk()

Label(root, text="Username").grid(row=0, sticky=W)

Label(root, text="Password").grid(row=1, sticky=W)

Entry(root).grid(row=0, column=1, sticky=E)

Entry(root).grid(row=1, column=1, sticky=E)

Button(root, text="Login").grid(row=2, column=1, sticky=E)

root.mainloop()

The description of the code is listed as follows:

 f Take a look at the grid position defined in terms of rows and column positions for
an imaginary grid table spanning the entire frame. See how the use of sticky=W
on both labels makes them stick to the west or left-hand side, resulting in a clean
layout.

 f The width of each column (or height of each row) is automatically decided by the
height or width of the widgets contained in the cell. Therefore, you need not worry
about specifying the row or column width as equal. You may specify the width for
widgets, if you need that extra bit of control.

 f You can use the argument sticky=N+S+E+W to make the widget expandable to fill
the entire cell of the grid.

In a more complex scenario, your widgets may span across multiple cells in the grid.
To enable a grid to span multiple cells, the grid method offers very handy options
such as rowspan and columnspan.

Furthermore, you may often need to provide some padding between cells in the grid.
The grid manager provides padx and pady options to provide padding to place
around the widget in a cell.

Similarly, there are ipadx and ipady options for internal padding. The default value
of external and internal padding is 0.

Let us see an example of the grid manager, where we use most of the common
arguments to the grid method such as row, column, padx, pady, rowspan, and
columnspan in action.

The code 1.08.py is a demonstration of grid() geometry manager options:

from Tkinter import *

top = Tk()

top.title('Find & Replace')

Meet Tkinter

24

Label(top,text="Find:").grid(row=0, column=0, sticky='e')

Entry(top).grid(row=0,column=1,padx=2,pady=2,sticky='we',columnspan=9)

Label(top, text="Replace:").grid(row=1, column=0, sticky='e')

Entry(top).grid(row=1,column=1,padx=2,pady=2,sticky='we',columnspan=9)

Button(top, text="Find").grid(row=0, column=10, sticky='ew', padx=2,
pady=2)

Button(top, text="Find All").grid(row=1, column=10, sticky='ew', padx=2)

Button(top, text="Replace").grid(row=2, column=10, sticky='ew', padx=2)

Button(top, text="Replace All").grid(row=3, column=10, sticky='ew',
padx=2)

Checkbutton(top, text='Match whole word only').grid(row =2, column=1,
columnspan=4, sticky='w')

Checkbutton(top, text='Match Case').grid(row =3, column=1, columnspan=4,
sticky='w')

Checkbutton(top, text='Wrap around').grid(row =4, column=1, columnspan=4,
sticky='w')

Label(top, text="Direction:").grid(row=2, column=6, sticky='w')

Radiobutton(top, text='Up', value=1).grid(row=3, column=6, columnspan=6,
sticky='w')

Radiobutton(top, text='Down', value=2).grid(row=3, column=7,
columnspan=2, sticky='e')

top.mainloop()

Notice how just 14 lines of core grid manager code generates a complex layout such
as the one shown in the following screenshot. In contrast, developing this with the pack
manager would have been much more tedious:

Project 1

25

Another grid option that you can sometimes use is the widget.grid_forget()
method. This method can be used to hide the widget from the screen. When you use this
option, the widget exists in its place but becomes invisible. The hidden widget may be made
visible again but any grid options that you had originally assigned to the widget will be lost.

Similarly, there is a widget.grid_remove() method that removes the widget, except that
in this case when you make the widget visible again, all its grid options will be restored.

For a complete grid() reference, refer to the the The grid manager section in
Appendix B, Quick Reference Sheets.

Where should you use the grid() geometry manager?
The grid manager is a great tool for developing complex layouts.
Complex structures can be easily achieved by breaking the container
widget into grids of rows and columns and then placing the widgets in
grids where they are wanted.
It is also commonly used in developing different kinds of dialog boxes.

Now we will delve into configuring grid column and row sizes.

Different widgets have different heights and widths. So when you specify the position
of a widget in terms of rows and columns, the cell automatically expands to accommodate
the widget.

Normally the height of all grid rows is automatically adjusted to be the height of its tallest
cell. Similarly, the width of all grid columns is adjusted to be equal to the width of the widest
widget cell.

If you then want a smaller widget to fill a larger cell or to stay at any one side of the cell,
you use the sticky attribute on the widget to control that.

You can, however, override this automatic sizing of columns and rows using the
following code:

w.columnconfigure(n, option=value, ...) AND
w.rowconfigure(N, option=value, ...)

Use these to configure the options for a given widget, w, in the column, n, specifying values
for the options, minsize, pad, and weight.

Meet Tkinter

26

The options available here are as mentioned in the following table:

Options Description
minsize The minimum size of column or row in pixels. If there is no widget in the given

column or row, the cell does not appear despite this minsize specification.
pad External padding in pixels that will be added to the specified column or row

over the size of largest cell.
weight This specifies the relative weight of the row or column, then distributes the

extra space. This enables making the row or column stretchable.

For example, the following code distributes two-fifths of the extra space to the
first column and three-fifths to the second column:

w.columnconfigure(0, weight=2)
w.columnconfigure(1, weight=3)

The columnconfigure() and rowconfigure() methods are often used to implement
dynamic resizing of widgets, especially on resizing the root window.

You cannot use grid and pack methods together in the same container
window. If you try doing that, your program will enter into an infinite
negotiation loop.

The place geometry manager
The place geometry manager is the most rarely used geometry manager in Tkinter.
Nevertheless, it has its uses in that it lets you precisely position widgets within
its parent frame using the X-Y coordinate system.

The place manager can be assessed using the place() method on all standard widgets.

The important options for place geometry include:

 f Absolute positioning (specified in terms of x=N or y=N)

 f Relative positioning (key options include relx, rely, relwidth, and relheight)

Other options commonly used with place() include width and anchor (the default is NW).
Refer to the code in 1.09.py for a demonstration of the common place option:

from Tkinter import *
root = Tk()
Absolute positioning

Project 1

27

Button(root,text="Absolute Placement").place(x=20, y=10)
Relative positioning
Button(root, text="Relative").place(relx=0.8, rely=0.2, relwidth=0.5,
width=10, anchor = NE)
root.mainloop()

You may not see much of a difference between absolute and relative positions simply
by looking at the code or the window frame. If, however, you try resizing the window,
you will notice that the button placed absolutely does not change its coordinates, while
the relative button changes its coordinates and size to fit the new size of the root window.

For a complete place() reference, check out the The place manager section in Appendix B,
Quick Reference Sheets.

When should you use the place manager?
The place manager is useful in situations where you have to implement
the custom geometry managers where the widget placement is decided
by the end user.
While pack() and grid() managers cannot be used together in the
same frame, the place() manager can be used with any other geometry
manager within the same container frame.

The place manager is rarely used. This is because if you use it you have to worry about the
exact coordinates. If say you make a minor change for one widget, it is very likely that you
will have to change the X-Y values for other widgets as well, which can be very cumbersome.

We will not use the place manager in our projects. However, knowing that options for
coordinate-based placement exist can be helpful in certain situations.

Meet Tkinter

28

Objective Complete – Mini Debriefing
This concludes our discussion on geometry management in Tkinter.

In this section you implemented examples of pack, grid, and place geometry managers.
You also understood the strength and weaknesses of each geometry manager.

You learned that pack is best for a simple side-wise or top-down widget placement. You also
saw that the grid manager is best suited for handling complex layouts. You saw examples of
the place geometry manager and the reasons why it is rarely used.

You should now be in a position to plan and execute different layouts for your programs
using these geometry managers of Tkinter.

Events and callbacks – adding life to
programs

Now that we have learned how to add widgets to our screen and how to position them
where we want, let's turn our attention to the third component of GUI programming.
This addresses the question of how to make the widgets functional.

Making the widgets functional involves making them responsive to events such as the
pressing of buttons, the pressing keys on keyboards, mouse clicks, and the like. This requires
associating callbacks to specific events.

Engage Thrusters
Callbacks are normally associated with specific widget events using the command binding the
rules, which is elaborated on in the following section.

Command binding
The simplest way to add functionality to a button is called command binding, whereby
the callback function is mentioned in the form of command = some_callback in
the widget option.

Take a look at the following sample code:

def my_callback ():
 # do something

 Button(root,text="Click",command= my_callback)

Note that my_callback is called without parentheses () from within the widget command
option. This is because when the callback functions are set, it is necessary to pass a reference
to a function rather than actually calling it.

Project 1

29

Passing arguments to the callback
If the callback does not take any argument, it can be handled with a simple function like the
one we just used. However, if the callback needs to take some arguments, we can use the
lambda function as shown in the following code snippet:

def my_callback (somearg):
 #do something with argument
 Button(root,text="Click",command=lambda: my_callback
 ('some argument'))

Python borrows syntax from a functional program called the lambda function. The lambda
function lets you define a single-line, nameless function on the fly.

The format for using lambda is lambda arg: #do something with arg in a
single line, for instance:

lambda x: return x^2

Please note that the command option available with the Button
widget is really an alternative function to ease programming the
Button event. Many other widgets do not provide any equivalent
command binding option.

The command button binds by default to the left mouse click and the Space bar. It does not
bind to the Return key. Therefore, if you bind a button using the command function, it will react
to the Space bar and not the Return key. This is counter-intuitive to many Windows users.
What's worse is you cannot change this binding of the command function. The moral is that
command binding, though a very handy tool, does not provide you the the independence to
decide your own bindings.

Event binding
Fortunately, Tkinter provides an alternative form of event binding mechanism called bind()
to let you deal with different events. The standard syntax for binding an event is as follows:

widget.bind(event, handler)

When an event corresponding to the event description occurs in the widget, it calls
the associated handle passing an instance of the event object as the argument, with
the event details.

Let us look at an example of the bind() method (refer to the code file 1.10.py):

from Tkinter import *
root = Tk()

Meet Tkinter

30

Label(root, text='Click at different\n locations in the frame below').
pack()
def mycallback(event):
 print dir(event)
 print "you clicked at", event.x, event.y
myframe = Frame(root, bg='khaki', width=130, height=80)
myframe.bind("<Button-1>", mycallback)
myframe.pack()
root.mainloop()

The description of the code is listed as follows:

 f We bind the Frame widget to the event, <Button-1>, which corresponds to
left-click of the mouse. On the occurrence of this event, it calls the function
mycallback, passing along an object instance as its argument.

 f We define the function mycallback(event). Notice that it takes the event object
generated by the event as the argument.

 f We inspect the event object using dir(event), which returns a sorted list of
attribute names for the event object passed to it. This prints the list:

 � ['__doc__', '__module__', 'char', 'delta', 'height',
'keycode', 'keysym', 'keysym_num', 'num', 'send_event',
'serial', 'state', 'time', 'type', 'widget', 'width',
'x', 'x_root', 'y', 'y_root'].

 f Out of the attributes list generated by the object, we use two attributes, event.x
and event.y, to print the coordinates of the point of click.

When you run this code, it produces a window like the one shown. When you left-click
anywhere in the frame, it outputs messages to the console. A sample message passed
to the console is as follows:

Project 1

31

['__doc__', '__module__', 'char', 'delta', 'height', 'keycode', 'keysym',
'keysym_num', 'num', 'send_event', 'serial', 'state', 'time', 'type',
'widget', 'width', 'x', 'x_root', 'y', 'y_root']

You clicked at 63 36.

Event pattern
In the previous example, you saw how we used the event <Button-1> to denote the left-
click of a mouse. This is a built-in pattern in Tkinter that maps it to the mouse's left-click event.
Tkinter has an exhaustive mapping scheme that exactly identifies events such as this one.

Here are some examples to give you an idea of event patterns:

Event pattern Associated Event
<Button-1> Left-click of the mouse button
<KeyPress-B> Keyboard press of the key B
<Alt-Control-KeyPress- KP_Delete> Keyboard press of Alt + Ctrl + Delete

In general, the mapping pattern takes the following form:

<[event modifier-]...event type [-event detail]>

Typically an event pattern will comprise of:

 f An event type (required): Some common event types include Button,
ButtonRelease, KeyRelease, Keypress, FocusIn, FocusOut, Leave
(mouse leaves the widget), and MouseWheel. For a complete list of event types,
refer to the The event types section in Appendix B, Quick Reference Sheets.

 f An event modifier (optional): Some common event modifiers include Alt, Any
(used like in <Any-KeyPress>), Control, Double (used like in <Double-
Button-1> to denote a double-click of the left mouse button), Lock, and Shift.
For a complete list of event modifiers, refer to the The event modifiers section in
Appendix B, Quick Reference Sheets.

Meet Tkinter

32

 f The event detail (optional): The mouse event detail is captured by number 1 for
a left-click and number 2 for a right-click. Similarly, each keyboard keypress is
either represented by the key letter itself (say B in <KeyPress-B>) or using a key
symbol abbreviated as keysym. For example, the up arrow key on the keyboard is
represented by the keysym value of KP_Up. For a complete keysym mapping, refer
to the The event details section in Appendix B, Quick Reference Sheets.

Let's take a look at a practical example of the event binding on widgets. (See the code in
1.11.py for the complete working example). The following is a modified snippet of code to
give you a flavor of the commonly used the event bindings:

widget.bind("<Button-1>",callback) #bind widget to left mouse click

widget.bind("<Button-2>", callback) # bind to right mouse click

widget.bind("<Return>", callback)# bind to Return(Enter) Key

widget.bind("<FocusIn>", callback) #bind to Focus in Event

widget.bind("<KeyPress-A>", callback)# bind to keypress A

widget.bind("<KeyPress-Caps_Lock>", callback)# bind to CapsLockkeysym

widget.bind("<KeyPress-F1>", callback)# bind widget to F1 keysym

widget.bind("<KeyPress-KP_5>", callback)# bind to keypad number 5

widget.bind('<Motion>', callback) # bind to motion over widget

widget.bind("<Any-KeyPress>", callback) # bind to any keypress

Rather than binding an event to a particular widget, you can also bind it to the Toplevel
window. The syntax remains the same except that now you call it on the root instance of
the root window like root.bind().

Project 1

33

Levels of binding
In the previous section, you saw how to bind an event to an instance of a widget.
This can be called instance level binding.

However, there might be times when you need to bind events to the entire application.
At other times you may want to bind the event to a particular class of widget. Tkinter
provides different levels of binding options for this:

 f An application-level binding: Application-level bindings will let you use the same
binding across all windows and widgets of the application, as long as any one
window of the application is in focus.

The syntax for application-level bindings is:
w.bind_all(event, callback)

The typical usage pattern is as follows:
root.bind_all('<F1>', show_help)

An application-level binding here means that no matter what widget is under the
current focus, a press of the F1 key will always trigger the show_help callback as
long as the application is under active focus.

 f A class-level binding: You can also bind events at a particular class level. This is
normally used to set the same behavior of all instances of a particular widget class.

This syntax for class level binding is as follows:
w.bind_class(className, event, callback)

The typical usage pattern is as follows:
myentry.bind_class('Entry', '<Control-V>', paste)

In the preceding example, all entry widgets will be bound to the <Control-V>
event that would call a method called 'paste (event)'.

Event propagation
Most of the keyboard events and mouse events occur at the operating system
level. It propagates from the source of the event, hierarchically up, until it
finds a window that has a corresponding binding. The event propagation
does not stop there. It propagates itself upwards looking for other bindings
from other widgets until it reaches the root window. If it does reach the root
window and no bindings are discovered by it, the event is disregarded.

Meet Tkinter

34

Handling widget-specific variables
You need variables with a wide variety of widgets. You likely need a string variable to track
what the user enters into the entry widget or text widget. You most probably need Boolean
variables to track whether the user has checked the Checkbox widget. You need integer
variables to track the value entered in a Spinbox or Slider widget.

In order to respond to changes in widget-specific variables, Tkinter offers its own variable
class. The variable that you use to track widget-specific values must be subclassed from this
Tkinter variable class. Tkinter offers some commonly used predefined variables. They are
StringVar, IntVar, BooleanVar, and DoubleVar.

You can use these variables to capture and play with changes in the value of variables from
within your callback functions. You can also define your own variable type, if required.

Creating a Tkinter variable is simple. You simply call the required constructor:

mystring = StringVar()

ticked_yes = BooleanVar()

option1 = IntVar()

volume = DoubleVar()

Once the variable is created, you can use it as a widget option, as follows:

Entry(root, textvariable = mystring)

Checkbutton(root, text="Remember Me", variable=ticked_yes)

Radiobutton(root, text="Option1", variable=option1, value="option1")
#radiobutton

Scale(root, label="Volume Control", variable=volume, from =0, to=10) #
slider

Additionally, Tkinter provides access to the value of variables using
set() and get() methods:

myvar.set("Wassup Dude") # setting value of variable

myvar.get() # Assessing the value of variable from say a callback

Project 1

35

A demonstration of the Tkinter variable class is available in the code file 1.12.py.
The code generates a window like the following screenshot:

Objective Complete – Mini Debriefing
In this lesson, you learned:

 f The command binding to bind simple widgets to certain functions

 f Use of the lambda function, if you need to process arguments

 f The event binding using the widget.bind(event, callback) method to
bind keyboard and mouse events to your widgets and to invoke callbacks
on the occurrence of some events

 f How to pass extra arguments to a callback

 f How to bind events to an entire application or to a particular class of widget
using bind_all() and bind_class()

 f How to use the Tkinter variable class to set and get values of widget
specific variables

In short you now know how to make your GUI program functional!

Classified Intel
In addition to the bind method we previously saw, you might find these two event-related
options useful in certain cases:

 f unbind: Tkinter provides the unbind options to undo the effect of an earlier
binding. The syntax is as follows:
widget.unbind(event)

The following are some examples of its usage:
entry.unbind('<Alt-Shift-5>')
root.unbind_all('<F1>')
root.unbind_class('Entry', '<KeyPress-Del>')

Meet Tkinter

36

 f Virtual events: Tkinter also lets you create your own events. You can give these
virtual events any name you want.

For example, imagine you want to create a new event called <<commit>>, which
is triggered by the F9 key. To create this virtual event on a given widget, use the
syntax:
widget.event_add('<<commit>>', '<F-9>')

You can then bind <<commit>> to any callback using a normal bind() method like:

widget.bind('<<commit>>', callback)

Other event-related methods are listed in the Other event-related methods section in
Appendix B, Quick Reference Sheets.

Now that you are ready to dive into real application development with Tkinter, let's spend
some time exploring a few custom styling options that Tkinter offers. We will also see some
of the configuration options commonly used with the root window.

Doing it in style
 So far, we have have relied on Tkinter to provide specific platform-based styling for our
widgets. However, you can specify your own styling of widgets in terms of their color, font
size, border width, and relief. A brief introduction of styling features available in Tkinter is
covered in the following task.

Prepare for Lift Off
Recall that we could specify widget options at the time of its instantiation as shown:

mybutton = Button(parent, **configuration options)

Alternatively, you could specify widget options using configure ():

mybutton.configure(**options)

Styling options are also specified as options to the widgets, either at the time of
instantiation or later using the configure option.

Engage Thrusters
Under the purview of styling, we will cover how to apply different colors, fonts, border
width, relief, cursor, and bitmap icons to our widgets. We will also look at some of the
root configurations later in the section.

Project 1

37

Let's first see how to specify color options for a widget. You can specify two types
of color for most of the widgets:

 f Background color

 f Foreground color

You can specify the color using hexadecimal color codes using the proportion of red,
green, and blue. Commonly used representations are #rgb (4 bits), #rrggbb (8 bits),
and #rrrgggbbb (12 bits).

For example, #fff is white, #000000 is black, and #fff000000 is red.

Alternatively, Tkinter provides mapping for standard color names. For a list of predefined
colors, open the program titled pynche in the Tools folder within your Python installation
directory (in my case, C:\Python27\Tools\pynche). Within the program click on View |
Color list Window.

Next, the easiest and the most common way to specify a font is to represent it as a tuple.
The standard representation is as follows:

widget.configure(font= 'font family, fontsize, optional style
modifiers like bold, italic, underline and overstrike')

Here are some examples to illustrate the method for specifying fonts:

widget.configure (font='Times, 8')
widget.configure (font = 'Helvetica 24 bold italic')

If you set a Tkinter dimension in a plain integer, the measurements
takes place in units of pixel. Alternatively, Tkinter accepts four other
measurement units which are: m (millimeters), c (centimeters), i
(inches), and p (printer's points, which is about 1/72").

The default border width for most Tkinter widgets is 2 pixels. You can change the
border width of the widgets by specifying it explicitly, as shown in the following line:

button.configure (borderwidth=5)

The relief style of a widget refers to the difference between the highest and lowest
elevations in a widget. Tkinter offers five possible relief styles: flat, raised, sunken,
groove, and ridge.

button.configure (relief='raised')

Meet Tkinter

38

Tkinter lets you change the style of mouse cursor when you hover over a particular widget.
This is done using the option cursor as in the following example:

button.configure (cursor='cross')

For a complete list of available cursors, refer to the List of available cursors section in
Appendix B, Quick Reference Sheets.

While you can specify styling options at each widget level, sometimes it may be cumbersome
to do so individually for each widget. Widget-specific styling has several disadvantages:

 f It mixes logic and presentation into one file making the code bulky and
difficult to manage

 f Any change in styling is to be applied to each widget individually

 f It violates the don't repeat yourself (DRY) principle of effective coding as you
keep specifying the same style for a large number of widgets

Fortunately, Tkinter now offers a way to separate presentation from the logic and to specify
styles in what is called the external "option database". This is nothing but a text file where
you can specify the common styling options.

A typical option database text file may look like the following:

*font: Arial 10
*Label*font: Times 12 bold
*background: AntiqueWhite1
*Text*background: #454545
*Button*foreground:gray55
*Button*relief: raised
*Button*width: 3

The asterisk (*) symbol here means that the particular style applies to all instances
of the given widget.

These entries are placed in an external text (.txt) file. To apply this styling to a
particular piece of code, you simply call it using the option_readfile() call early
in your code, as shown here:

root.option_readfile('optionDB.txt')

Project 1

39

Now that we are done discussing styling options, let us wrap up with a discussion on some
commonly used options for the root window:

Method Description
root.title("title of my program") Specifying the title for the Title bar

root.geometry('142x280+150+200') You can specify the size and location
of a root window using a string of the
form widthxheight + xoffset +
yoffset

self.root.wm_iconbitmap('mynewicon.
ico')

or

self.root.iconbitmap('mynewicon.ico
')

Changing the Title bar icon to
something different from the
default Tk icon

root.overrideredirect(1) Removing the root border frame

Now let's take a look at an example where we apply all the styling options and root window
options as discussed previously (see the code 01.13.py):

from Tkinter import *
root = Tk()

#demo of some important root methods
root.geometry('142x280+150+200') #specify root window size and
position
root.title("Style Demo") #specifying title of the program
self.root.wm_iconbitmap('brush1.ico')#changing the default icon
#root.overrideredirect(1) # remove the root border - uncomment #this
line to see the difference
root.configure(background='#4D4D4D')#top level styling

connecting to the external styling optionDB.txt
root.option_readfile('optionDB.txt')

#widget specific styling

Meet Tkinter

40

mytext = Text(root, background='#101010', foreground="#D6D6D6",
borderwidth=18, relief='sunken', width=16, height=5)
mytext.insert(END, "Style is knowing \nwho you are, what \nyou want to
say, \nand not giving a \ndamn.")
mytext.grid(row=0, column=0, columnspan=6, padx=5, pady=5)

all the below widgets derive their styling from optionDB.txt file
Button(root, text='*').grid(row=1, column=1)
Button(root, text='^').grid(row=1, column=2)
Button(root, text='#').grid(row=1, column=3)
Button(root, text='<').grid(row=2, column=1)
Button(root, text='OK', cursor='target').grid(row=2, column=2)
Button(root, text='>').grid(row=2, column=3)
Button(root, text='+').grid(row=3, column=1)
Button(root, text='v', font='Verdana 8').grid(row=3, column=2)
Button(root, text='-').grid(row=3, column=3)
fori in range(0,10,1):
 Button(root, text=str(i)).grid(column=3 if i%3==0 else (1
 if i%3==1 else 2), row= 4 if i<=3 else (5 if i<=6 else 6))

#styling with built-in bitmap images
mybitmaps = ['info', 'error', 'hourglass', 'questhead', 'question',
'warning']
for i in mybitmaps:
 Button(root, bitmap=i, width=20,
 height=20).grid(row=(mybitmaps.index(i)+1), column=4,
 sticky='nw')

root.mainloop()

The description of the preceding code is listed as follows:

 f The first segment of code uses some important root methods to define the
geometry, title of the program, icon for the program, and method to remove
the border of the root window.

 f The code then connects to an external styling file called optionDB.txt that
defines common styling for the widgets.

 f The next segment of code creates a Text widget and specifies styling on the
widget level.

 f The next segment of code has several buttons, all of which derive their styling
from the centralized optionDb.txt file. One of the buttons also defines
a custom cursor.

 f The last segment of code styles some buttons using built-in bitmap images.

Project 1

41

Running this program would produce a window like the following screenshot:

Objective Complete – Mini Debriefing
In this task, we explored how to use styling options to modify the default styling of Tkinter.
We saw how to specify custom colors, fonts, reliefs, and cursors for our GUI programs.
We also saw how to separate styling from the logic using the option database. Finally,
we explored some of the common options for configuring our root window.

Mission Accomplished
This brings us to end of Project 1, Meet Tkinter. This project aimed to provide a high-level
overview of Tkinter. We have worked our way through all the important concepts that
drive a Tkinter program. We now know:

 f What a root window is and how to set it up

 f What the 21 core Tkinter widgets are and how to set them up

 f How to layout our programs using pack, grid, and place geometry managers

 f How to make our programs functional using events and callbacks

 f How to apply custom styles to our GUI programs

To summarize, we can now start thinking of making interesting, functional, and stylish GUI
programs with Tkinter!

Meet Tkinter

42

A Hotshot Challenge
Time for your first Hotshot challenge! Your task is to build a simple calculator (or if you are
ambitious, a scientific calculator). It should be fully functional and should have custom-styled
buttons and a screen. Try to make it look as close to real physical calculators as you can.

When you are done, we invite you to search in your computer for complex GUI programs.
These can range from your operating system programs such as the search bar, to some
simple dialog-based widgets. Try to replicate any chosen GUIs using Tkinter.

Project 2
Making a Text Editor

like Notepad

In the previous project, we got a fairly high-level overview of Tkinter. Now that we know
some things about Tkinter's core widgets, geometry management, and bindings of command
and events to callbacks, let us apply our skill to make a text editor in this project.

In the process, we will also take a closer look at individual widgets and learn how to tweak
those widgets to our custom needs.

Mission Briefing
In this project, our goal is to build a fully-functional text editing pad with some cool nifty
features. In its final form, the proposed editor should look as follows:

Making a Text Editor like Notepad

44

Some features we intend to include in the notepad are:

 f Creating new documents, opening and editing existing documents,
and saving documents

 f Implementing common editing options such as cut, copy, paste, undo, and redo

 f Searching within a file for a given search term

 f Implementing line numbering and the ability to show/hide line numbers

 f Implementing theme selection to let the user choose custom color themes

 f Implementing about and help windows and more

Why Is It Awesome?
In this project you will build you first real and useful project. This project will provide you with
further insights into the world of Tkinter. It will delve deeper into features of some commonly
used widgets such as Menu, Menubutton, Text, Entry, Checkbutton, and Button widgets.

Particularly, we will go into the finer details of the Menu, Menubar, and Text widgets.
We will also learn to easily handle custom dialogs windows such as the Open, Save,
Error, Warning, and Info dialogs.

Your Hotshot Objectives
The project will be developed in seven consecutive iterations. The goals for each of
these iterations are as follows:

 f Set the user interface using the pack geometry using widgets such as Menu,
Menubar, Text, Entry, Button, Checkbutton, and the like

 f Implement some features using Tkinter's built-in widget options

 f Implement dialogs using ttk dialogs and different types of Toplevel widgets

 f Apply some Text widget features such as text index, tag, and mark to implement
some custom features

 f Apply some features using the Checkbutton and Radiobutton widgets

 f Apply some custom event binding and protocol binding to make the application
more user-friendly

 f Add some miscellaneous features

Project 2

45

Setting up the widgets
Our first goal is to implement the visual elements of the text editor. As programmers, we
have all used notepad or some code editor to edit our code. We are mostly aware of the
common GUI elements of a text editor. So, without much of an introduction, let's get started.

Prepare for Lift Off
The first phase implements the following six widgets:

 f Menu

 f Menubutton

 f Label

 f Button

 f Text

 f Scrollbar

Although we will cover all these in detail, you might find it helpful to look at the widget-
specific options in the documentation of Tkinter maintained by its author Frederick Lundh at
http://effbot.org/tkinterbook/.

You might also want to bookmark the official documentation page of Tck/Tk located at
http://www.tcl.tk/man/tcl8.5/TkCmd/contents.htm.

The latter site includes the original Tcl/Tk reference. While it does not relate to Python,
it provides a more detailed overview of each widget and is an equally useful reference.
(Remember, Tkinter is just a wrapper around Tk)

You can also read the documentation provided with the original source code of Tkinter
by typing these two lines in the interactive Python shell:

>>> import Tkinter

>>>help(Tkinter)

Engage Thrusters
In this iteration, we will complete the implementation of most of the visual elements of the
program.

Making a Text Editor like Notepad

46

We will be using the pack() geometry manager to place all the
widgets. We have chosen the pack manager because it is ideally suited
for placing widgets side by side or in a top-down position. Fortunately
in a text editor, we have all widgets placed either side-by-side or in top-
down locations. Thus, it suits to use the pack manager. We could have
done the same with the grid manager as well.

1. First, we will start by adding the Toplevel window, one that will contain all other
widgets using the following code:
from Tkinter import *
root = Tk()
all our code is entered here
root.mainloop()

2. In this step we add the top menu buttons to our code. See the code in 2.01.py.
Menus offer a very compact way of presenting a large number of choices to the
user without cluttering the interface. Tkinter offers two widgets to handle menus.

 � The Menubutton widget – one that is part of the menu and appears on
the top of application, which is always visible to the end user

 � The Menu widget – one that show a list of choices when the user clicks
on any menu button

To add top-level menu buttons, you use the following command:
mymenu = Menu(parent, **options)

For example, to add a File menu, we use the following code:
Adding Menubar in the widget
menubar = Menu(root)
filemenu = Menu(menubar, tearoff=0) # File menu
root.config(menu=menubar) # this line actually displays menu

Project 2

47

Similarly, we add the Edit, View, and About menus at the top. Refer to step 2
of 2.01.py.

Most of the Linux platforms support tear-off menus. When tearoff is set to 1
(enabled), the menu appears with a dotted line above the menu options. Clicking
on the dotted line enables the user to literally tear off or separate the menu from
the top. However, as this is not a cross-platform feature, we have decided to disable
tear-off, marking it as tearoff = 0.

3. Now we will add menu items within each of the four menu buttons. As previously
mentioned, all drop-down options are to be added within the menu instance. In our
example, we add five drop-down menu choices in the File menu, namely New, Open,
Save, Save As, and Exit menu items. See step 3 of 2.02.py.

Similarly, we add the following menu choices for other menus:

 � Under Edit we have Undo, Redo, Cut, Copy, Paste, Find All, and Select All

 � Under View we have Show Line Number, Show Info Bar at Bottom,
Highlight Current Line, and Themes

 � Under About we have About and Help

The format for adding menu items is as follows:
mymenu.add_command(label="Mylabel", accelerator='KeyBoard
Shortcut', compound=LEFT, image=myimage, underline=0,
command=callback)

For example, you would create the Undo menu item using the following syntax:

mymenu.add_command(label="Undo", accelerator='Ctrl + Z',
compound=LEFT, image=undoimage, command=undocallback)

Making a Text Editor like Notepad

48

4. Next we will add some labels. We will add the top label, which will later hold
the shortcut buttons. We will also add a label to the left-hand side to display
the line numbers:

The top label has been marked in a green background and the side label in a
light cream background for illustration purposes.

When working with the pack geometry manager, it is important to
add widgets in the order they will appear. This is because pack() uses
the concept of available space to fit the widgets. If we do not maintain
the order, the widgets will start occupying places in the order they are
introduced. This is why we cannot introduce the text widget before the
two label widgets as they appear higher up in the display.

Having reserved the space, we can later add shortcut icons or line numbers keeping
the label as the parent widget. Adding labels is easy, we have done that in the past.
See the code in 2.02.py step 4. The code is as follows:
shortcutbar = Frame(root, height=25, bg='light sea green')
shortcutbar.pack(expand=NO, fill=X)
lnlabel = Label(root, width=2, bg = 'antique white')
lnlabel.pack(side=LEFT, anchor='nw', fill=Y)

We have applied a colorful background to these two labels for now to differentiate
it from the body of the Toplevel window.

5. Lastly, let's add the Text widget and Scrollbar widget to our code. Refer to step 5
of the code 2.02.py.

textPad = Text(root)
textPad.pack(expand=YES, fill=BOTH)
scroll=Scrollbar(textPad)
textPad.configure(yscrollcommand=scroll.set)
scroll.config(command=textPad.yview)
scroll.pack(side=RIGHT, fill=Y)

Project 2

49

The code is similar to all other code that we have used so far to instantiate widgets.
Notice, however, that the scrollbar is configured to yview of the Text widget and
the Text widget is configured to connect to the Scrollbar widget. This way, we cross
connected both the widgets to each other.

Now when you go down the Text widget, the scrollbar reacts to it. Alternatively,
when you pull the scrollbar, the Text widget reacts in return.

Some new menu-specific options introduced here are as follows:

 f accelerator: This option is used to specify a string, typically the keyboard
shortcut, which can be used to invoke the menu. The string specified as the
accelerator appears next to the text of the menu item. Please note that this does
not automatically create bindings for the keyboard shortcut. We will have to
manually set them up, as we will see later.

 f compound: Specifying a compound option to the menu item lets you add
images beside the common text label of the menu. A specification such as
Compound=LEFT, label= 'mytext', image=myimage means that the menu
item has a compound label comprising of a text label and an image, where the
image is to be placed on the left-hand side of the text. The images we use here are
stored and referenced from a separate folder called icons.

 f underline: The underline option lets you specify the index of a character in the
menu text to be underlined. The indexing starts at 0, which means that specifying
underline=1 underlines the second character of the text. Besides underlining,
Tkinter also uses it to define the default bindings for keyboard traversal of menus.
This means that we can select the menu either with the mouse pointer, or with the
Alt + <character_at_the_underlined_index> shortcut.

Therefore, to add the New menu item within the File menu, we use the following code:

filemenu.add_command(label="New", accelerator='Ctrl+N', compound=LEFT,
image=newicon, underline=0, command=new_file)

Similarly, we add menu choices for the Edit menu.

Menu separators
Occasionally within your menu items, you will come across code such as
mymenu.add_separator(). This widget displays a separator bar and
is solely used to organize similar menu items in groups, separating groups
by horizontal bars.

Making a Text Editor like Notepad

50

Other than the normal menu type that we implement for the New and Edit menus,
Tkinter offers three more varieties of menu:

 f The Checkbutton menu: This menu lets you make a yes/no choice by checking/
unchecking the menu

 f The Radiobutton menu: This menu lets you choose one from among many
different options

 f The Cascade menu: This menu only opens up to show another list of choices

Our View menu demonstrates all these three types of menus as shown in the
following screenshot:

The first three choices under the View menu let the user select whether or not they want a
certain thing to happen. The user can check/uncheck options against these menus and are
examples of the Checkbutton menu.

The fourth menu choice under View menu reads as Themes. Hovering over this menu opens
another list of choices. This is an example of a Cascade menu as it only serves the purpose of
opening up another list of choices.

Within the Cascade menu, you are presented with a list of choices for your editor theme. You
can, however, select only one of the themes. Selecting one theme unselects any previous
selection. This is an example of the Radiobutton menu.

An example format for adding these three types of menu is as follows:

viewmenu.add_checkbutton(label="Show Line Number", variable=showln)
viewmenu.add_cascade(label="Themes", menu=themesmenu)
themesmenu.add_radiobutton(label="Default White", variable=theme)

Project 2

51

Now that we need to track whether or not a selection has been made, we track it by adding
a variable that can be BooleanVar(), IntVar(), or Stringvar() as we discussed in
Project 1, Meet Tkinter.

For a complete list of configuration options for the Menubutton and Menu widgets, refer to
the The basic widget methods section in Appendix B, Quick Reference Sheets.

Objective Complete – Mini Debriefing
This concludes our first iteration. In this iteration, we have completed laying down the
majority of visual elements of our text editor.

Leveraging the power of built-in Text
widget options

Tkinter's Text widget comes with some handy built-in functionality to handle common text-
related functions. Let's leverage these functionalities to implement some common features
in our text editor.

Engage Thrusters
1. Let's start by implementing the Cut, Copy, and Paste features. We now have our

editor GUI ready. If you open the program and play with the Text widget, you will
notice that you can perform basic functions such as cut, copy, and paste in the text
area using the keyboard shortcuts Ctrl + X, Ctrl + C, and Ctrl + V. All these functions
exist without us having to add a single line of code toward these functionalities.

Clearly the text widget comes built in with these events. Rather than coding these
functions ourselves, let's use the built-in functions to add these features to our
text editor.

The documentation of Tcl/Tk "universal widget methods" tells us that we can
trigger events without any external stimulus using the following command:
widget.event_generate(sequence, **kw)

To trigger the cut event for our textPad widget, all we need is a line of code
such as the following:
textPad.event_generate("<<Cut>>")

Making a Text Editor like Notepad

52

Let's call that using a function cut, and associate it with our cut menu using
the command callback. See the code 2.03.py that bears the following code:
def cut():
 textPad.event_generate("<<Cut>>")
then define a command callback from our existing cut menu like:
editmenu.add_command(label="Cut", compound=LEFT, image=cuticon,
accelerator='Ctrl+X', command=cut)

Similarly, we trigger the copy and paste functions from their respective menu items.

2. Next we will move on to implementing the undo and redo features. The Tcl/Tk
text documentation tells us that the Text widget has an unlimited undo and redo
mechanism, provided we set the -undo option as true. To leverage this option, let's
first set the Text widget's undo option to true as shown in the following screenshot:

textPad = Text(root, undo=True)

Now if you open your text editor and try out the undo and redo features using Ctrl
+ Z and Ctrl + Y, you will see that they work fine. We now only have to associate
the events to functions and callback the functions from our Undo and Redo menus
respectively. This is similar to what we did for cut, copy, and paste. Refer to the code
in 2.03.py.

Objective Complete – Mini Briefing
Taking advantage of some built-in Text widget options, we have successfully implemented
the functionality of cut, copy, paste, undo, and redo into our text editor with minimal coding.

Indexing and tagging
While we managed to leverage some built-in functionality to gain a quick advantage, we
need a more precise control over the text area, so as to bend it to our will. This would
require the ability to target each character or location of the text with precision.

Prepare for Lift Off
The Text widget offers us the ability to manipulate its content using index, tags, and mark,
which lets us target a position or place within the text area for manipulation.

Index
Indexing helps you target a particular place within a text. For example, if you want to mark
a particular word in bold style or in red or in a different font size, you can do so if you know
the index of the starting point and the index of end point to be targeted.

Project 2

53

The index must be specified in one of the following formats:

Index format Description
x.y The yth character on line x.
@x,y The character that covers the x,y coordinate within the text's window.
end The end of the text.
mark The character after a named mark.
tag.first The first character in the text that has been tagged with a given tag.
tag.last The last character in the text that has been tagged with a given tag.
selection (SEL_
FIRST, SEL_LAST)

This corresponds to the current selection. The constants SEL_FIRST
and SEL_LAST refer to the start position and the end position in the
selection. Tkinter raises a TclError exception if there is no selection.

windowname The position of the embedded window whose name is windowname.
imagename The position of the embedded image with the name imageName.
INSERT The position of the insertion cursor.
CURRENT The position of the character closest to the mouse pointer.

Indices can be further manipulated using modifiers and submodifiers. Some examples of
modifiers and submodifers are as follows:

 f end - 1 chars or end - 1 c refers to the index of one character before the end

 f insert +5lines refers to the index of five lines ahead of the insertion cursor

 f insertwordstart - 1 c refers to the character just before the first one in the
word containing the insertion cursor

 f end linestart refers to the index of the line start of the end line

Indexes are often used as arguments to functions. For example, refer to the following list:

 f text.delete(1.0,END): This means you can delete from line 1, column 0
up till the end

 f text.get(0.0, END): This gets the content from 0.0 up till the end

 f text.delete(insert-1c, INSERT): This deletes one character at the
insertion cursor

Tags
Tags are used to annotate text with an identification string that can then be used to manipulate
the tagged text. Tkinter has a built-in tag called SEL, which is automatically applied to the
selected text. In addition to SEL, you can define your own tags. A text range can be associated
with multiple tags, and the same tag can be used for many different text ranges.

Making a Text Editor like Notepad

54

Some examples of tagging are as follows:

mytext.tag_add('sel', '1.0', 'end') # add SEL tag from start(1.0) to
end
mytext.tag_add("danger", "insert linestart", "insert lineend+1c")
mytext.tag_remove("danger", 1.0, "end")
mytext.tag_config('danger', background=red)
mytext.tag_config('outdated', overstrike=1)

You can specify the visual style for a given tag with tag_config using
options such as background(color), bgstipple (bitmap),
borderwidth (distance), fgstipple (bitmap), font
(font), foreground (color), justify (constant),
lmargin1 (distance), lmargin2 (distance), offset
(distance), overstrike (flag), relief (constant),
rmargin (distance), spacing1 (distance), tabs
(string), underline (flag), and wrap (constant).

For a complete reference of text indexing and tagging, type the following command into your
Python interactive shell:

>>> import Tkinter

>>> help(Tkinter.Text)

Engage Thrusters
Equipped with a basic understanding of indexing and tagging, let's implement some more
features in our code editor.

1. The first feature that we will implement is the "Select All" feature. We know that
Tkinter has a built-in SEL tag that applies a selection to a given text range. We want
to apply this sel tag to the complete text contained in our widget.

We simply define a function to handle this. Refer to the code in 2.04.py as shown
in the following code snippet:
def select_all():
 textPad.tag_add('sel', '1.0', 'end')

After this we add a callback to our Select All menu item:
editmenu.add_command(label="Select All", underline=7,
accelerator='Ctrl+A', command=select_all)

Project 2

55

Now, we are done adding the Select All functionality to our code editor. If you now
add some text to the text widget and then click on the menu item select all, it
should select the entire text in your editor. Note that we have not bound the Ctrl + A
accelerator in the menu options. The keyboard shortcut will therefore not work. We
will make the accelerator function in a separate step.

2. Next, let's complete the functioning of the Find menu item.

Here's a quick summary of the desired functionality. When a user clicks on
the Find menu item, a new Toplevel window opens up. The user enters a search
keyword, and specifies if the search is to be case-sensitive. When the user clicks
on the Find All button, all matches are highlighted.

For searching through the document, we will rely on the text.search() method.
The search method takes in the following arguments:
search(pattern, startindex, stopindex=None, forwards=None,
backwards=None, exact=None, regexp=None, nocase=None, count=None)

For our editor, we define a function called on_find and attach it as a callback to
our Find menu item (refer to the code in 2.04.py):
editmenu.add_command(label="Find", underline= 0,
accelerator='Ctrl+F', command=on_find)

We then define our function on_find as follows (refer to the code in 2.04.py):
def on_find():
 t2 = Toplevel(root)
 t2.title('Find')
 t2.geometry('262x65+200+250')

Making a Text Editor like Notepad

56

 t2.transient(root)
 Label(t2, text="Find All:").grid(row=0, column=0, sticky='e')
 v=StringVar()
 e = Entry(t2, width=25, textvariable=v)
 e.grid(row=0, column=1, padx=2, pady=2, sticky='we')
 e.focus_set()
 c=IntVar()
 Checkbutton(t2, text='Ignore Case', variable=c).grid(row=1,
 column=1, sticky='e', padx=2, pady=2)
 Button(t2, text="Find All", underline=0, command=lambda:
 search_for(v.get(), c.get(), textPad, t2, e)).grid(row=0,
 column=2, sticky='e'+'w', padx=2, pady=2)

def close_search():
 textPad.tag_remove('match', '1.0', END)
 t2.destroy()

t2.protocol('WM_DELETE_WINDOW', close_search)#override close

The description of the preceding code is as follows:

 � When a user clicks on the Find menu item, it invokes a callback on_find.

 � The first four lines of the on_find() function creates a new Toplevel
window, adds a title Find, specifies it geometry (size, shape, and location),
and sets it as a transient window. Setting it to transient means that it is
always drawn on top of its parent or root window. If you uncomment this
line and click on the root editor window, the Find window will go behind
the root window.

 � The next eight lines of code are pretty self-explanatory in that they set
the widgets of the Find window. It adds the Label, Entry, Button, and
Checkbutton widgets and provides for two variables, e and c, to track the
value a user enters into the Entry widget, and whether or not the user
has checked the check button. The widgets are arranged using the grid
geometry manager to fit into the Find window.

 � The Find All button has a command option that calls a function, search_
for(), passing the search string as the first argument and whether or not
the search is to be case-sensitive as its second argument. The third, fourth,
and fifth arguments pass the Toplevel window, the Text widget, and the
Entry widget as parameters.

Project 2

57

 � Prior to the search_for() method, we override the Close button of the
Find window and redirect it to a callback named close_search(). The
close_search() method is defined within the on_find() function. This
function takes care of removing the tag match that was added during the
search. If we do not override the Close button and remove these tags, our
matched string will continue to be marked in red and yellow, even after our
searching has ended.

3. Next we have the search_for()function that does the actual searching.
The code is as follows:

def search_for(needle, cssnstv, textPad, t2, e) :
 textPad.tag_remove('match', '1.0', END)
 count =0
 if needle:
 pos = '1.0'
 while True:
 pos = textPad.search(needle, pos, nocase=cssnstv,
 stopindex=END)
 if not pos: break
 lastpos = '%s+%dc' % (pos, len(needle))
 textPad.tag_add('match', pos, lastpos)
 count += 1
 pos = lastpos
 textPad.tag_config('match', foreground='red',
 background='yellow')
 e.focus_set()
 t2.title('%d matches found' %count)

The description of the code is listed as follows:

 � This part of code is the heart of the search function. It searches through
the entire document using the while True loop, breaking out of the
loop only if no more text items remain to be searched.

 � The code first removes any previous search-related match tags as we do
not want to append the results of the new search to previous search results.
The function uses the search() method provided in Tkinter on the Text
widget. The search() function takes the following arguments:

search(pattern, index, stopindex=None, forwards=None,
backwards=None, exact=None, regexp=None, nocase=None, count=None)

Making a Text Editor like Notepad

58

The method returns the starting position of the first match. We store it in
a variable with the name pos and also calculate the position of the last
character in the matched word and store it in the variable lastpos.

 � For every search match that it finds, it adds a tag named match to the
range of text starting from the first position to the last position. After every
match, we set the value of pos to be equal to lastpos. This ensures that
the next search starts after lastpos.

 � The loop also keeps track of the number of matches using the
count variable.

 � Outside the loop, the tag match is configured to be of a red font color and
with a background of yellow. The last line of this function updates the title
of the Find window with the number of matches found.

In the case of event bindings, interaction occurs between your input devices
(keyboard/mouse) and your application. In addition to event binding, Tkinter
also supports protocol handling.
The term "protocol" means the interaction between your application and
the window manager. An example of a protocol is WM_DELETE_WINDOW,
which handles the close window event for your window manager. Tkinter
lets you override these protocols handlers by mentioning your own handler
for the root or Toplevel widget. To override our window exit protocol, we use
the following command:
root.protocol("WM_DELETE_WINDOW", callback)

Once you add this command, Tkinter bypasses protocol handling to your
specified callback/handler.

Objective Complete – Mini Briefing
Congratulations! In this iteration, we have completed coding the Select All and Find
functionality into our program.

More importantly, we have been introduced to indexing and tagging—two very powerful
concepts associated with many Tkinter widgets. You will find yourself using these two
concepts all the time in your projects.

Classified Intel
In the previous code, we used a line that reads: t2.transient(root). Let's understand
what it means here.

Project 2

59

Tkinter supports four types of Toplevel windows:

 f Main Toplevel window: These are the ones that we have constructed so far.

 f Child Toplevel window: These are the ones that are independent of the root.
The child Toplevel behaves independently of its root but it gets destroyed if its
parent is destroyed.

 f Transient Toplevel window: This always appears on top of its parent.
The transient window is hidden if the parent is minimized and it is destroyed
if the parent is destroyed.

 f Undecorated Toplevel window: A Toplevel window is undecorated if it does
not have a window manager decoration around it. It is created by setting the
overrideredirect flag to 1. An undecorated window cannot be resized or moved.

See the code in 2.05.py for a demonstration of all these four types of Toplevel windows.

Working with forms and dialogs
The goal for this iteration is to complete the functioning of the File menu options of Open,
Save, and Save As.

Prepare for Lift Off
We regularly use the Open and Save dialogs. They are common across many programs. We
know how these menu items behave. For instance, when you click on the Open menu, it
opens up a dialog form that lets you traverse to the location of the file you want to open.
When you select a particular file and click on Open, it opens up in your editor. Similarly, we
have the Save dialog.

While we can implement these dialogs using standard Tkinter widgets, it turns out that
they are so commonly used that a specific Tkinter module called tkFileDialog has been
included in the standard Python distribution. We will not try to reinvent the wheel and in
the spirit of less coding, we will use the tkFileDialog module to implement Open and
Save functionality for our text editor as shown in the following screenshot:

Making a Text Editor like Notepad

60

To use the module, we simply import it into the current namespace as given in the code file
of 2.06.py:

import tkFileDialog

You can specify the following additional options for tkFileDialog:

File dialog Configurable options Description
askopenfile
(mode='r', **options)

parent, title, message,
defaultextension,
filetypes, initialdir,
initialfile, and
multiple

Asks for a filename to
open, and then it returns
the opened file

askopenfilename
(**options)

parent, title, message,
defaultextension,
filetypes, initialdir,
initialfile, and
multiple

Asks for a filename
to open but returns
nothing

asksaveasfile
(mode='w', **options)

parent, title, message,
defaultextension,
filetypes, initialdir,
initialfile, and
multiple

Asks for a filename to
save as, and it returns
the opened file

asksaveasfilename
(**options)

parent, title, message,
defaultextension,
filetypes, initialdir,
initialfile, and
multiple

Asks for a filename
to save as but returns
nothing

askdirectory
(**options)

parent, title, initialdir, must
exist

Asks for a directory, and
it returns the filename

Engage Thrusters
1. Let us now develop our Open function using tkDialogBox (refer to code

 2.07.py):
import tkFileDialog
import os

def open_file():
 global filename
 filename = tkFileDialog.askopenfilename(defaultextension=".
txt",filetypes =[("All Files","*.*"),("Text Documents","*.txt")])

Project 2

61

 if filename == "": # If no file chosen.
 filename = None # Absence of file.
 else:
 root.title(os.path.basename(filename) + " - pyPad") #
 #Returning the basename of 'file'
 textPad.delete(1.0,END)
 fh = open(filename,"r")
 textPad.insert(1.0,fh.read())
 fh.close()

We then modify the Open menu to add a command callback to this
newly-defined method:
filemenu.add_command(label="Open", accelerator='Ctrl+O',
compound=LEFT, image=openicon, underline =0, command=open_file)

The description of the code is listed as follows:

 � We import the tkfileDialog and os modules into the current
namespace.

 � We define our function open_file().

 � We declare a variable in the global scope to keep track of the filename of
the opened file. This is required to keep track of whether or not a file has
been opened. We need this variable in the global scope, as we want this
variable to be available to other methods such as save() and save_as().
Not specifying it as global would mean that it is only available within the
function. So our save() and save_as() functions would not be able to
check if a file is already open in the editor.

 � We use tkFileDialog.askopenfilename to fetch the filename of the
opened file. If the user cancels opening the file or if no file is chosen, the
filename returned is None. In that case we do nothing.

 � If, however, tkFileDialog returns a valid filename, we isolate the
filename using the os module and add it as a title of our root window.

 � If the Text widget already contains some previous text, we delete it all.

 � We then open the given file in read mode and insert all its content
into the text area.

 � After this we close the file handle fh.

 � Finally, we add a command callback to our File | Open menu item.

This completes the coding of File | Open. If you now go and click on File | Open
and select a text file and click on Open, the text area will be populated with
the content of the text file.

Making a Text Editor like Notepad

62

Use of global variables is generally considered a bad programming practice
because it is very difficult to understand a program that uses lots of global
variables.
A global variable can be modified or accessed from many different places in
the program, and it therefore becomes difficult to remember or work out
every possible use of the variable.
A global variable is not subject to any access control, which may pose
security hazards in certain situations, say when this program is to interact
with a third party code.
However, when you work on programs in the procedural style like this one,
global variables are sometimes unavoidable.
An alternative approach to programming involves writing code in a class
structure (also called object-oriented programming), where a variable can
only be accessed by members of predefined classes. We will see a lot of
examples of object-oriented programming in the next project.

2. Next we will see how to save a file. There are two components for saving a file:

 � Save File

 � Save As

If the text pad already contains a file, we do not prompt the user for a filename. We
simply overwrite the contents of the existing file. If there is no filename associated
with the current content of the text area, we prompt the user with a Save As
dialog. Moreover, if the text area has an open file, and the user clicks on Save As,
we still prompt them with a Save As dialog to allow them to write the contents to a
different filename.

The code for Save and Save As is as follows (see the code in 2.07.py):
#Defining save method
def save():
 global filename
 try:
 f = open(filename, 'w')
 letter = textPad.get(1.0, 'end')
 f.write(letter)
 f.close()
 except:
 save_as()

#Defining save_as method
def save_as():
 try:

Project 2

63

 # Getting a filename to save the file.
 f = tkFileDialog.asksaveasfilename(initialfile =
 'Untitled.txt', defaultextension=".txt",filetypes=[("All
 Files","*.*"),("Text Documents","*.txt")])
 fh = open(f, 'w')
 textoutput = textPad.get(1.0, END)
 fh.write(textoutput)
 fh.close()
 root.title(os.path.basename(f) + " - pyPad")
 except:
 pass

filemenu.add_command(label="Save", accelerator='Ctrl+S',
compound=LEFT, image=saveicon, underline=0, command=save)
filemenu.add_command(label="Save as", accelerator='Shift+Ctrl+S',
command=save_as)

The description of the code is listed as follows:

 � The save function first tries to locate if a file is open in the text area using
a try block. If a file is open, it simply overwrites the content of the file with
the current content of the text area.

 � If there is no filename associated with the text area, it simply passes the
work to our save_as function.

 � The save_as function opens a dialog using tkFileDialog.
asksaveasfilename and tries to get the filename provided by the user
for the given file. If it succeeds, it opens the new file in the write mode and
writes the content of text into this new filename. After writing, it closes the
current file handler and changes the title of the window to reflect the new
filename.

 � To obtain the new filename, our save_as function makes use of the os
module. We, therefore, need to import the os module into our namespace
before we can use it to extract the current filename.

 � If the user does not specify a filename or if the user cancels the save_as
operation, it simply ignores the process by using a pass command.

 � Finally, we add a command callback from our existing Save and Save As
menu items to invoke these two functions.

We are now done adding Save and Save As functionality to our code editor.

Making a Text Editor like Notepad

64

3. While we are at it, let's complete our functionality of File | New. The code is simple.
For this see the code in 2.07.py:

def new_file():
 root.title("Untitled")
 global filename
 filename = None
 textPad.delete(1.0,END)

 filemenu.add_command(label="New", accelerator='Ctrl+N',
 compound=LEFT, image=newicon, underline=0, command=new_file)

The description for this code is listed as follows:

 � The new_file function begins by changing the title attribute of the root
window to Untitled.

 � It then sets the value of the global variable filename to None. This is
important because our save and save_As functionality uses this global
variable name to track whether or not the file exists or is new.

 � Our function then deletes all the content of the Text widget, creating
a fresh document in its place.

 � Finally, we add a command callback to function from our File | New
menu item.

This completes our coding of File | New into our code editor.

Objective Complete – Mini Briefing
In this iteration, we completed coding functionality for the New, Open, Save, and Save As
submenus, present under the File menu, for our editor.

More importantly, we saw how to use the tkFileDialog module to achieve certain
commonly-used features in our program. We also saw how we could use indexing to
achieve a wide variety of tasks for our programs.

Working with message boxes
In this iteration, let's complete our code for the About and Help menus. The functionality is
simple. When a user clicks on the Help or About menu, it pops up a message window and
waits for the user to respond by clicking on a button. While we can easily code new Toplevel
windows to show our About and Help popup windows, we will instead use a module
called tkMessageBox to achieve this functionality. This is because the module provides an
efficient way to handle this and similar functionalities with minimal coding.

Project 2

65

We will also complete coding the Exit button functioning in this iteration. Currently, when a
user clicks on the Close button, the window is simply closed. We want to ask the user if they
really want to quit or have they clicked on the Close button accidentally.

Prepare for Lift Off
The tkMessageBox module provides ready-made message boxes to display a wide variety
of messages in your applications. Some of these functions are showinfo, showwarning,
showerror, askquestion, askyesno, askokcancel, and askretryignore. These are
illustrated, when in use, in the following screenshot:

To use the module, we simply import it into the current namespace as shown in the
following command:

import tkMessageBox

A demonstration of commonly-used functions of tkMessageBox is illustrated in 2.08.py.
Some common usage patterns are mentioned as follows:

tkMessageBox.showwarning("Beware", "You are warned")
tkMessageBox.showinfo("FYI", "This is FYI")
tkMessageBox.showerror("Err..", "its leaking.")
tkMessageBox.askquestion("?", "Can you read this ?")
tkMessageBox.askokcancel("OK", "Quit Postponing ?")
tkMessageBox.askyesno("Yes or No", " What Say ?")
tkMessageBox.askretrycancel("Retry", "Load Failed")

Using this module to display messages has the following advantages:

 f Minimal coding yields functional features

 f The messages can easily be configured

 f Messages are presented with icons

 f It presents a standardized view of common messages on each platform

Making a Text Editor like Notepad

66

Engage Thrusters
1. Let us now code the about and help functions for our code editor. The use case is

simple. When a user clicks on the About menu, it pops up a message with the OK
button. Similarly, when the user clicks on the Help button, they are also prompted
with a message with the OK button.

To achieve these functionalities, we include the following code in our editor. (See
the code in 2.09.py)

import tkMessageBox
def about(event=None):
 tkMessageBox.showinfo("About","Tkinter GUI Application\n
 Development Hotshot")

def help_box(event=None):
 tkMessageBox.showinfo("Help","For help refer to book:\n
 Tkinter GUI Application\n Development Hotshot ",
 icon='question')

aboutmenu.add_cascade(label="Help", command=help_box)

2. Next, we will look at adding the Quit Confirmation feature. When the user clicks on
File | Exit, it prompts an Ok-Cancel dialog to confirm the quit action.

def exit_editor(event=None):
 if tkMessageBox.askokcancel("Quit", "Do you really want to
 quit?"):
 root.destroy()
root.protocol('WM_DELETE_WINDOW', exit_command) # override close
filemenu.add_command(label="Exit", accelerator='Alt+F4',
command=exit_editor)

The description of the code is listed as follows:

 � First we import tkMessageBox into our current namespace.
 � We then define our about function to display a showinfo message box.
 � Similarly, we define our help_box function to display a showinfo

message box.
 � We then define the exit command with an askokcancel box. If the

user clicks on OK, the exit command destroys the root window to close
the window.

 � We then override the close button protocol and redirect it to be handled
by our definition of the exit command.

 � Finally, we add command callbacks to About, Help, and Exit menu items.

Project 2

67

Objective Complete – Mini Briefing
In this iteration, we completed coding the functionality for the File | Exit, About | About, and
About | Help menu items of our code editor. We also saw how to use the tkMessageBox
module to display different message boxes for some commonly-used message formats.

The icon toolbar and View menu
functions

In this iteration, we will add a few more functionalities to our text editor:

 f Showing the shortcut icon toolbar

 f Displaying line numbers

 f Highlighting the current line

 f Changing the color theme of the editor

In the process, we will see more usage of indexing and tagging.

Engage Thrusters
Let's start with a simple task first. In this step we add the shortcut icon toolbar to our editor.
Recall that we have already created a frame to hold these toolbar icons. Let's add these icons
now.

1. Let's start with adding a shortcut icon toolbar. While adding these icons, we have
followed a convention. All icons have been placed in the icons folder. Moreover,
the icons have been named exactly the same as the corresponding function that
handles them. Following this convention has enabled us to loop through a list,
simultaneously applying the icon image to each button and adding
the command callback from within the loop.

The code has been placed between the shortcut frame we created earlier to place
these icons. The code is as follows (refer to the code in 2.10.py):
shortcutbar = Frame(root, height=25, bg='light sea green')
#creating icon toolbar

Making a Text Editor like Notepad

68

icons = ['new_file', 'open_file', 'save', 'cut', 'copy', 'paste',
'undo', 'redo', 'on_find', 'about']
for i, icon in enumerate(icons):
 tbicon = PhotoImage(file='icons/'+icon+'.gif')
 cmd = eval(icon)
 toolbar = Button(shortcutbar, image=tbicon, command=cmd)
 toolbar.image = tbicon
 toolbar.pack(side=LEFT)
shortcutbar.pack(expand=NO, fill=X)

The description of the code is listed as follows:

 � We have already created a shortcut bar in our first iteration. Now we place
our code between the lines where we created the frame and line and where
we used the pack manager to display it.

 � We create a list of icons, taking care to name them exactly as the name
of icons.

 � We then iterate through a loop with length equal to the number of items
in the icons lists. In every loop, we create a Button widget, taking the
corresponding image and adding the respective command callback.

 � Before adding the command callback, we had to convert the string to an
equivalent expression using the eval command. If we do not apply eval,
it cannot be applied as an expression to our command callback.

This completes our coding of the shortcut icon toolbar. Now, if you run the code
(code 2.10.py), it should show you a shortcut icon toolbar at the top. Moreover,
as we have linked each button to a callback, all these shortcut icons should work as
they should.

2. Let us now work at showing line numbers on the left frame of the Text widget. This
will require us to do a bit if tweaking of code at various places. So, before we start
coding, let's take a look at what we are trying to achieve here:

Project 2

69

 � The View menu has a menu item that lets the user choose whether or
not to show the line numbers. We only want to show line numbers if the
option is selected.

 � If the option is selected, we need to display line numbers in the left frame
that we created earlier.

 � The line number should update every time a user enters a new line, deletes
a line, cuts or pastes text from the line, performs an undo or redo operation,
opens an existing file, or clicks on the new menu item. In short, the line
number should be updated after every activity that may affect line numbers.

Therefore, we need to define a function called update_line_number(). This
function should be called after every keypress, cut, paste, undo, redo, new, and
open definitions to see if lines have been added or removed from the text area and
accordingly update the line numbers. We achieve this using these two strategies
(see the code in 2.10.py):

 � Bind any keypress events to our update_line_number() function:
 textPad.bind("<Any-KeyPress>", update_line_number)

 � Add a call to our update_line_number() function in each of our
definitions of cut, paste, undo, redo, new, and open

Finally, we define our update_line_number() function as follows:
def update_line_number(event=None):
 txt = ''
 if showln.get():
 endline, endcolumn = textPad.index('end-1c').split('.')
 txt = '\n'.join(map(str, range(1, int(endline))))
 lnlabel.config(text=txt, anchor='nw')

The description of the code is listed as follows:

 � Recall that we have assigned a variable showln to our menu item earlier:
 showln = IntVar()
 showln.set(1)
 viewmenu.add_checkbutton(label="Show Line Number",
 variable=showln)
 update_line_number

 � We first mark the text configuration of label as blank.

 � If the showline option is set to 1 (that is to say, it has been tick-marked in
the menu item), we calculate the last line and last column in the text.

Making a Text Editor like Notepad

70

 � We then create a text string consisting of numbers from 1 to the number of
the last line, each number separated by a line break, \n. This string is then
added to the left label using the textPad.config() method.

 � If Show Line Number is unchecked in the menu, the variable text remains
blank, thereby displaying no line numbers.

 � Finally, we update each of our previously defined cut, paste, undo, redo,
new, and open functions to invoke the update_line_number() function
at their end.

We are now done adding the line number functionality to our text editor.

You may have noticed an event=None argument in our function definition
previously given. We need to specify this here, because this function can be
invoked from two places:

 f From the event binding (we bound it to the <Any-KeyPress> event)
 f From other functions such as cut, copy, paste, undo, redo, and more

When the function is invoked from other functions, no arguments are passed.
However, when the function is invoked from an event binding, the event object
is passed as parameter. If we do not specify the event=None argument and
the function is invoked from an event binding, it will give the following error:
TypeError: myfunction() takes no arguments (1 given)

3. Last in this iteration, we will implement a feature where the user can select to add a
highlight on the current line. (See the code in 2.10.py)

The idea is simple. We need to locate the line of the cursor and add a tag to the
line. And finally, we need to configure that tag to appear with a different color
background to highlight it.

Recall that we have already provided a menu choice to our user to decide whether
or not to highlight the current line. We now add a command callback from this menu
item to a function that we define as toggle_highlight:
hltln = IntVar()
viewmenu.add_checkbutton(label="Highlight Current Line",
onvalue=1, offvalue=0, variable=hltln, command=toggle_highlight)

We define three functions to handle this for us:
#line highlighting
def highlight_line(interval=100):

Project 2

71

 textPad.tag_remove("active_line", 1.0, "end")
 textPad.tag_add("active_line", "insert linestart", "insert
 lineend+1c")
 textPad.after(interval, toggle_highlight)

def undo_highlight():
 textPad.tag_remove("active_line", 1.0, "end")

def toggle_highlight(event=None):
 val = hltln.get()
 undo_highlight() if not val else highlight_line()

The description of the code is given as follows:

 � Every time a user checks/unchecks the View | Highlight Current Line, it
invokes our function toggle_highlight. This function checks if the menu
item is checked. If it is checked, it invokes the highlight_line function,
otherwise, if the menu item is unchecked, it invokes the undo highlight
function.

 � Our highlight_line function simply adds a tag called active_line
to our current line, and after every one second it calls the toggle highlight
function to check whether the current line should still be highlighted.

 � Our undo_highlight function is invoked when the user unchecks
highlighting in the View menu. Once invoked, it simply removes the
active_line tag from the entire text area.

 � Finally, we configure our tag named active_line to be displayed with a
different background color:

 textPad.tag_configure("active_line", background="ivory2")

In our code, we used the .widget.after(ms, callback) handler.
Methods like this that let us perform some periodic actions are called alarm
handlers. Some commonly used Tkinter alarm handlers include:

 f after(delay_ms, callback, args...): Registers an
alarm callback to be called after given number of millisecond

 f after_cancel(id): Cancels the given alarm callback
 f after_idle(callback, args...): Calls back only when

there are no more events to process in the mainloop, that is, after
the system becomes idle

Making a Text Editor like Notepad

72

4. The info bar is simply a small area at the bottom-right corner of our Text widget,
which displays the current line number and column number of the position of the
cursor as shown in the following screenshot:

The user can choose to show/hide this info bar from the view menu; refer to the
code in 2.11.py. We begin by creating a Label widget within the Text widget and
pack it in the southeast corner.
infobar = Label(textPad, text='Line: 1 | Column: 0')
infobar.pack(expand=NO, fill=None, side=RIGHT, anchor='se')

In many ways, this is similar to displaying the line numbers. Here, too, the positions
must be calculated after every keypress or after events such as cut, paste, undo,
redo, new, open, or activities that lead to a change in cursor positions. Because this
is so similar to our line number code, we will use the existing bindings and existing
function update_line_number() to update this. To do this, we simply add two
lines to our existing definition of the update_line_number() function:
currline, curcolumn = textPad.index("insert").split('.')
infobar.config(text= 'Line: %s | Column: %s' %(currline,
curcolumn))

This keeps updating the label with the line and column of the current cursor
position.

Finally, if the user unchecks the option from the View menu, we need to hide this
widget. We do this by defining a function called show_info_bar, which depending
upon the user-selected choice, either applies pack or pack_forget to the
infobar label.
def show_info_bar():
 val = showinbar.get()
 if val:
 infobar.pack(expand=NO, fill=None, side=RIGHT,
 anchor='se')
 elif not val:
 infobar.pack_forget()

Project 2

73

This function is then connected to the existing menu item using a command callback:

viewmenu.add_checkbutton(label="Show Info Bar at Bottom",
variable=showinbar ,command=show_info_bar)

5. Recall that while defining our Themes menu, we defined a color scheme dictionary
containing the name and hexadecimal color codes as a key-value pair. Actually,
we need two colors for each theme, one for the background and other for our
foreground color. Let's modify our color definition to specify two colors separated by
the dot character (.). Refer to code 2.11.py:

clrschms = {
'1. Default White': '000000.FFFFFF',
'2. Greygarious Grey': '83406A.D1D4D1',
'3. Lovely Lavender': '202B4B.E1E1FF' ,
'4. Aquamarine': '5B8340.D1E7E0',
'5. Bold Beige': '4B4620.FFF0E1',
'6. Cobalt Blue': 'ffffBB.3333aa',
'7. Olive Green': 'D1E7E0.5B8340',
}

Our theme choice menu has already been defined earlier. Let us now add a
command callback to handle the selected menu:
themechoice= StringVar()
themechoice.set('1. Default White')
for k in sorted(clrschms):
 themesmenu.add_radiobutton(label=k, variable=themechoice,
 command=theme)
 menubar.add_cascade(label="View", menu=viewmenu)

Finally, let's define our theme function to handle the changing of themes:
def theme():
 global bgc,fgc
 val = themechoice.get()
 clrs = clrschms.get(val)
 fgc, bgc = clrs.split('.')
 fgc, bgc = '#'+fgc, '#'+bgc
 textPad.config(bg=bgc, fg=fgc)

The function is simple. It picks up the key-value pair from our defined color scheme
dictionary. It splits the color into its two components and applies one color each to
the Text widget foreground and background using widget.config().

Now if you select a different color from the Themes menu, the background and
foreground colors change accordingly.

Making a Text Editor like Notepad

74

Objective Complete – Mini Briefing
We completed coding our shortcut icon toolbar and all functionality of the View menu in
this iteration. In the process we learned how to handle the Checkbutton and Radiobutton
menu items. We also saw how to make compound buttons, while reinforcing several Tkinter
options covered in previous sections.

Event handling and the context menu
In this last iteration, we will add the following features to our editor:

 f Event handling

 f The context menu

 f The title bar icon

Engage Thrusters
Let us complete our editor in this final iteration.

1. First we will add the event handling features. We have added the accelerator
keyboard shortcuts to a large number of our menu items. However, merely adding
accelerator keys does not add the required functionality. For example, pressing the
keys Ctrl + N should create a new file, but simply adding it as an accelerator does not
make it functional. Let's add these event handling features into our code.

Note that all our functionality is already complete. Now we simply need to
map the events to their related callbacks. (Refer to the code in 2.12.py.)

textPad.bind('<Control-N>', new_file)
textPad.bind('<Control-n>', new_file)
textPad.bind('<Control-O>', open_file)
textPad.bind('<Control-o>', open_file)
textPad.bind('<Control-S>', save)
textPad.bind('<Control-s>', save)
textPad.bind('<Control-A>', select_all)
textPad.bind('<Control-a>', select_all)
textPad.bind('<Control-f>', on_find)
textPad.bind('<Control-F>', on_find)
textPad.bind('<KeyPress-F1>', help_box)

Project 2

75

Simply adding these lines takes care of our event bindings. However, this
introduces a new issue for us. We have already discussed that event bindings
pass the event object as a parameter to the bound callback. None of our
previous functions are equipped to handle the incoming parameters. To do
that we need to add the event=None parameter.
Adding this optional argument allows us to use these functions with or
without the event parameter.
Alternatively, you can also add textPad.bind (event, lambda e:
callback())to ignore the event argument altogether.

Now you can access these functions using your keyboard shortcuts.

Note that we did not bind keyboard shortcuts for cut, copy, and paste. This is
because the Text widget comes with automatic binding for these events. If you
add bindings for these events, it will cause cut, copy, and paste events to take place
twice; once from the built-in widget and once from your own defined event handler.

2. Next we will add the context menu. But before that, we need to understand what a
context menu is.

The menu that pops up on the right-mouse-button click at the location of the mouse
cursor is called the context menu or the o. This is shown in the following screenshot:

Let's code this feature in our text editor. We first define our context menu:
cmenu = Menu(textPad)
for i in ('cut', 'copy', 'paste', 'undo', 'redo'):
 cmd = eval(i)
 cmenu.add_command(label=i, compound=LEFT, command=cmd)
 cmenu.add_separator()
 cmenu.add_command(label='Select All', underline=7,
 command=select_all)

Making a Text Editor like Notepad

76

We then bind the right-click of a mouse with a callback named popup:
textPad.bind("<Button-3>", popup)

Finally, we define the method popup:

def popup(event):
 cmenu.tk_popup(event.x_root, event.y_root, 0)

3. As a final touch to our application, we add a title bar icon for our editor using the
following code:

root.iconbitmap('icons/pypad.ico')

Objective Complete – Mini Briefing
In this iteration we added support for event handling, and added a contextual menu and title
bar icon to our editor program.

Mission Accomplished
We have completed coding our editor in seven iterations. We started by placing all widgets
on our Toplevel window. We then leveraged some built-in features of the Text widget to
code some functionality. We learned some very important concepts of indexing and tagging,
which you will find yourself using frequently in Tkinter projects.

We also saw how to use the tkfileDialog and tkMessageBox modules to quickly code
some common features in our programs.

Congratulations! You have now completed coding your text editor.

A Hotshot Challenge
Here's your Hotshot challenge:

 f Your goal is to turn this text editor into a Python code editor. Your editor should
allow the opening and saving of the .py file extension.

 f If the file has a .py extension, your editor should implement syntax highlighting
and tab indenting.

 f While this can be easily done with external libraries, you should try to implement
these features on your own using built-in Tkinter options that we have seen so far.
For hints you can look at the source code of Python's built-in editor IDLE, which is
written in Tkinter.

Project 3
Programmable
Drum Machine

We built a text editor in the last project. In the process, we looked at some common Tkinter
widgets such as Menu, Buttons, Label, and Text. Now, let us now do some music. Let us build
a cross-platform drum machine using Tkinter and some other Python modules.

Mission Briefing
In this project, we will build a programmable drum machine. The graphical user interface
of the drum machine is based on Tkinter. You will be able to create an unlimited number of
beat patterns using an unlimited number of drum samples. You can then store multiple riffs
in a project and playback or edit the project later on.

Programmable Drum Machine

78

To create your own drum beat patterns, simply load some drum samples using the buttons
on the left. You can change the units that constitute a beat pattern, which in turn decides
the tempo of the rhythm. You can also decide the number of beats per units. Most western
beats have four beats per unit, waltz would have three beats per unit, and some Indian and
Arabic rhythms that I composed on this machine had 3 to 16 beats per unit!

Why Is It Awesome?
Don't be misled by the small size of the GUI. This is a powerful drum machine that can
match features offered by some large commercial drum machine programs. By the end of
this project, you should be in a position to extend it to outdo some of the commercial drum
programs out there.

Some of the key features of the machine include:

 f Large number of beats
 f Large number of patterns to accompany songs
 f Variable number of beats per pattern
 f Use of 16 bit, 44100 kHz WAV samples (mono or stereo)
 f Support for various file formats
 f Ability to save projects comprising of several patterns

A few drum samples are provided in the Loops subdirectory; however, you can load any
other drum sample. You can download a large number of samples for free from the Internet.

In the process of developing this program, we tweak Tkinter further and take a look at
several important concepts and ideas that are normally encountered in GUI programming.

Your Hotshot Objectives
Some of the key objectives for taking up this project include:

 f Understanding how Tkinter is normally applied in context of OOP
 f Working with a few more Tkinter widgets such as Spinbox, Button, Entry,

and Checkbutton
 f Working with the grid geometry manager
 f Working with ttk-themed widgets
 f Understanding threaded programming in relation to Tkinter
 f Working with other common modules from the Python standard library
 f Object persistence with the pickle module

Apart from these key concepts, we discuss several other vital nuggets of GUI programming in
the course of the project.

Project 3

79

Mission Checklist
In this project, we will use some more built-in libraries from the standard Python
distribution. This includes Tkinter, ttk, tkFileDialog, tkMessageBox, os, time,
threading, wave, and pickle modules.

To verify that these modules do exist, simply run the following statement in the IDLE
interactive prompt:

>>> import Tkinter, ttk, os, time, threading, wave, pickle, tkFileDialog,
tkMessageBox

This should not cause an error as the standard Python distribution comes with these
modules built into the distribution.

Other than this, you need to add an extra Python module called pymedia.

The pymedia module can be downloaded at http://pymedia.org/.

After you have installed the module, you can verify it by importing it:

>>> import pymedia

If no errors are reported, you are ready to program the drum machine. Let's start!

Setting up the GUI in OOP
The text editor program that we developed as our previous project was set up in procedural
code. While it offered some benefit of quick coding, it essentially ran as a single process.

We started encountering global variables. The function definitions needed to be defined
above the code that called them and most importantly the code was not reusable.

Therefore, we need some way to ensure that our code is more reusable. This is why
programmers prefer to use Object Oriented Programming (OOP) to organize their
code into classes.

OOP is a programming paradigm that shifts the focus onto the objects we want to
manipulate rather than the logic required to manipulate them.

This is in contrast to procedural programming that views a program as a logical procedure
that takes input, processes it, and produces some output.

OOP provides several benefits such as data abstraction, encapsulation, inheritance, and
polymorphism. In addition, OOP provides a clear modular structure for programs. Code
modification and maintenance is easy as new objects can be created without modifying
the existing ones.

Let us build our drum program using OOP to illustrate some of these features.

Programmable Drum Machine

80

Prepare for Lift Off
An indicative OOP structure for our drum program could be as follows (see the code
in 3.01.py):

from Tkinter import *
class DrumMachine():
 def app(self):
 self.root = Tk()
 # all other code are called from here
 self.root.mainloop()

if __name__ == '__main__':
 dm = DrumMachine()
 dm.app()

The description of the code is listed as follows:

 f We create a class called DrumMachine and define a method app()to initialize the
Toplevel window

 f If the program is run as a standalone program, a new object is created and the app
method is called to create the Toplevel window

 f This code creates a blank Toplevel window

Now that we have our Toplevel window ready, let us add some widgets to it. In this iteration
we will lay the top bar, left bar (the area that lets us upload drum samples), the right bar
(that has buttons to define the beat patterns), and play bar at the bottom (which has a Play
button, a Stop button, and a Loop check button).

The four areas have been demarcated in different squares to group widgets into separate
frames, as shown in the following screenshot:

Project 3

81

Engage Thrusters
1. First we will create the top bar. The top bar is one that holds the Spinbox widgets,

which lets the user change the units and beats per unit in a rhythm pattern. These
two together decide the tempo and the cyclical pattern of a rhythm as follows (see
the code in 3.02.py):
def create_top_bar(self):
 top_bar_frame = Frame(self.root)
 top_bar_frame.config(height=25)
 top_bar_frame.grid(row=0, columnspan=12, rowspan=10, padx=5,
 pady=5)
 Label(top_bar_frame, text='Units:').grid(row=0, column=4)
 self.units = IntVar()
 self.units.set(4)
 self.bpu_widget = Spinbox(top_bar_frame, from_=1, to=10,
 width=5, textvariable=self.units)
 self.bpu_widget.grid(row=0, column=5)
 Label(top_bar_frame, text='BPUs:').grid(row=0, column=6)
 self.bpu = IntVar()
 self.bpu.set(4)
 self.units_widget = Spinbox(top_bar_frame, from_=1, to=8,
 width=5, textvariable=self.bpu)
 self.units_widget.grid(row=0, column=7)

The description of the code is listed as follows:

 � We first create a new method in order to create the top bar. We add
a frame top_bar_frame for the top bar and then add two spin boxes
to keep track of the units and beats per unit values. We do not add
command callbacks now. The callbacks will be added later.

 � We define two Tkinter variables self.units and self.bpu to hold the
current value of both the Spinbox widgets. This is defined as an object
variable (self) because we will need these variables outside the scope
of this method.

 � The widgets are placed using the grid geometry manager.

2. Next we will create the left bar. The left bar is one that will let the user load drum
samples. Each row in the left bar allows for loading one unique drum sample. The
drum samples are normally small .wav or .ogg file samples for different drums
such as bass, snare, tom, bell, claves, or samples that the user decides.

The buttons on the left bar will open an upload file. When the user uploads a drum
sample, the name of the drum sample will automatically populate the Entry widget
adjacent to that button.

Programmable Drum Machine

82

Thus, each row has a Button and an Entry widget (refer to the code in 3.02.py):
MAX_DRUM_NUM = 5
def create_left_pad(self):
 '''creating actual pattern editor pad'''
 left_frame = Frame(self.root)
 left_frame.grid(row=10, column=0,
 columnspan=6, sticky=W+E+N+S)
 tbicon = PhotoImage(file='images/openfile.gif')
 for i in range(0, MAX_DRUM_NUM):
 button = Button(left_frame, image=tbicon)
 button.image = tbicon
 button.grid(row=i, column=0, padx=5, pady=2)
 self.drum_entry = Entry(left_frame)
 self.drum_entry.grid(row=i, column=4, padx=7, pady=2)

The description of the code is listed as follows:

 � The maximum number of drum samples that can be loaded is defined
as a constant MAX_DRUM_NUM

 � We create another frame called left_frame to hold various widgets
in this area

 � Iterating over a loop, we create Button and Entry widgets for as many
drum samples as we need to allow the user to load

3. Next we will create the right bar. The right bar is the area that lets the user define
the beat pattern. This area consists of a series of buttons. The number of row of
buttons is equal to the number of drum samples that can be loaded. The number of
columns of buttons is decided by the number of units and number of beats per unit
selected by the user from the spin boxes in the top bar. The number of columns of
buttons is equal to product of the number of units and beats per unit.

We are not connecting the spin boxes with the buttons right now. For now, let us
place buttons in four columns for each individual drum sample that can be loaded as
follows (refer to the code in 3.02.py):
def create_right_pad(self):
 right_frame = Frame(self.root)
 right_frame.grid(row=10, column=6,sticky=W+E+N+S, padx=15,
 pady=2)
 self.button = [[0 for x in range(4)] for x in
 range(MAX_DRUM_NUM)]
 for i in range(MAX_DRUM_NUM):
 for j in range(4):
 self.button[i][j] = Button(right_frame, bg='grey55')
 self.button[i][j].grid(row=i, column=j)

Project 3

83

The description of the code is listed as follows:

 � We create another frame right_frame to hold these buttons.

 � Using list comprehension, we create an empty list of size 4
*MAX_DRUM_NUM.

 � For now, we simply add four columns of buttons to occupy the place.
The number of rows of buttons are kept equal to the maximum number of
drum samples, to have one row of buttons corresponding to each sample.

There is reason behind grouping widgets into different methods.
For example, we have created the left pad and the right pad using two
separate methods create_left_pad and create_right_pad. If we
had defined these two groups of widgets within the same method, the user
would have to reload the drum samples every time the left buttons changed
due to changes in BPU and units. This would have been counterproductive
for the end user.
As a rule of thumb, it is always advisable to keep related widgets within a
single method. However, the deciding class structure is more of an art than
science to be learned and refined over a lifetime.

4. Next we will create the play bar. The play bar at the bottom includes the Play button,
the Stop button, and a Loop check button. Refer to the code in 3.02.py, as shown
in the following code:
def create_play_bar(self):
 playbar_frame = Frame(self.root, height=15)
 ln = MAX_DRUM_NUM+10
 playbar_frame.grid(row=ln, columnspan=13, sticky=W+E, padx=15,
 pa dy=10)
 button = Button(playbar_frame, text ='Play')
 button.grid(row= ln, column=1, padx=1)
 button = Button(playbar_frame, text ='Stop')='Stop')
 button.grid(row= ln, column=3, padx=1)
 loop = BooleanVar()
 loopbutton = Checkbutton(playbar_frame, text='Loop',
 variable=loop)
 loopbutton.grid(row=ln, column=16, padx=1)

Programmable Drum Machine

84

The description of the code is listed as follows:

 � The code is pretty self-explanatory. It creates a frame playbar_frame
and puts two buttons and one check button within the frame.

 � A Tkinter BooleanVar() is created to track the status of Checkbutton.

5. Now that we have created all the widgets, its now time to actually display them by
explicitly calling the methods that created them. We do that within the main loop of
our program as follows (refer to the code in 3.02.py):

def app(self):
 self.root = Tk()
 self.root.title('Drum Beast')
 self.create_top_bar()
 self.create_left_pad()
 self.create_right_pad()
 self.create_play_bar()
 self.root.mainloop()

Rather than defining a separate method app() to run our main loop,
we could also have run the main loop by creating an initialization method
called __init__.
In that case, we would not have to call the app()method explicitly to run
the program. However, in case someone ever needs to use this class in
another program, it would have needlessly created a GUI.
Calling the mainloop function explicitly from the app() method leaves
us room to use the code as a library for some other program.

Objective Complete – Mini Debriefing
This completes our first iteration. In this iteration we have managed to create the basic
structure of our drum program. This includes creating the top, left, right, and bottom
frames that holds different widgets as per the requirement of the drum program.

We have also seen one of the most common ways of structuring the Tkinter GUI program
in an object-oriented style of programming.

Project 3

85

Completing the pattern editor
In the preceding iteration, we coded a dummy create_right_pad with four columns
of buttons. However, in the scheme of our program, the number of columns of buttons
depends upon the choice of Units and beats per units (BPU) values selected by the end user.

The number of columns of buttons should be equal to:

Number of Units x BPU

Furthermore, to demarcate each unit, each consecutive unit of buttons should be displayed
in different colors. Moreover, when a button is clicked, its color should change to track the
user-defined pattern, as shown in the following screenshot:

Let us add these three features to our drum editor.

Engage Thrusters
1. First, we will start by connecting buttons to the Units and BPU Spinbox widgets.

The code is simple. We add command callbacks from both the Spinbox widgets in the
top bar to call our create_right_pad method. Refer to the code in 3.03.py:
self.units_widget = Spinbox(topbar_frame, from_=1, to=8, width=5,
textvariable=self.units, command= self.create_right_pad)
self.bpu_widget = Spinbox(topbar_frame, from_=1, to=10, width=5,
textvariable=self.bpu, command= self.create_right_pad)

Programmable Drum Machine

86

We then modify our existing create_right_pad method as follows, and in code
3.03.py:
def create_right_pad(self):
 bpu = self.bpu.get()
 units = self.units.get()
 c = bpu * units
 right_frame = Frame(self.root)
 right_frame.grid(row=10, column=6,sticky=W+E+N+S, padx=15,
 pady=2)
 self.button = [[0 for x in range(c)] for x in
 range(MAX_DRUM_NUM)]
 for i in range(MAX_DRUM_NUM):
 for j in range(c):
 color = 'grey55' if (j/bpu)%2 else 'khaki'
 self.button[i][j] = Button(right_frame, bg=color,
 width=1, command=self.button_clicked(i,j,bpu))
 self.button[i][j].grid(row=i, column=j)

The description of the code is listed as follows:

 � Within our frame right_frame, we iterate through a double-nested loop
creating a two-dimensional matrix where the number of rows is equal to
the constant MAX_DRUM_NUM, while the number of columns is equal to the
product of Units and BPU.

 � The color of each button is configured to either grey55 or khaki
depending on whether the factor j/bpu is even or odd.

 � Now if you run the code (code 3.03.py), you will find the number of
buttons changing as per selections you make in the units and bpu spin
boxes. Moreover, each unit will be colored alternately in khaki and gray
colors.

 � Notice how we have defined the grid geometry position of buttons in
terms of variables i and j.

2. Now that the buttons respond to change in units and bpu, it is time that we change
these buttons into toggle buttons. When a user clicks on any of the buttons, the
color of the button should change to green. When the button is clicked again, the
color reverts to its original color. We need this feature to define beat patterns.

We first add a command callback to our buttons, passing the button's row, column,
and bpu as arguments to a new method button_clicked (refer to the code in
3.03.py), as shown in the following code:
self.button[i][j] = (Button(right_frame, bg='grey55', width=1,
command=self.Button_clicked(i,j,bpu)))

Project 3

87

We then define the button_clicked method as follows:
def button_clicked(self,i,j,bpu):
 def callback():
 btn = self.button[i][j]
 color = 'grey55' if (j/bpu)%2 else 'khaki'
 new_color = 'green' if btn.cget('bg') != 'green' else
 color
 btn.config(bg=new_color)
 return callback

The description of the code is listed as follows:

 � Our method button_clicked takes three arguments: i, j, and bpu.

 � The variables i and j let us track which button is clicked. However, note
that the command callback self.Button_clicked(i,j,bpu) makes a
reference to i and j when the button is not yet created. In order to track
the button that is clicked by the user, we enclose a separate callback()
function within our self.button_clicked function, which then returns
a callback. Now our method will return a different value of i and j for each
button record.

 � The bpu argument is needed to calculate the original color of the button.
This is needed to revert the color of button back to its original color if the
button is toggled. Before we change the color of the button to green, we
store its original color in a variable color.

Objective Complete – Mini Debriefing
We have now completed coding the right drum pad. In the process we have created a two-
dimensional list of buttons self.button, where self.button[i][j] refers to the button
at the ith row and jth column.

Each of these buttons can be toggled on or off to represent whether or not a drum sample is
to be played for that particular button.

When a button is on, its color changes to green. If it is switched off, it reverts to its original
color. This structure can be easily used to define a beat pattern.

In the process, we have seen more advanced usage of the Spinbox and Button widget.

Programmable Drum Machine

88

Loading drum samples
Our main objective is to play sound files, in the order of a beat pattern decided by the user.
To do this we need to add sound files to the drum machine.

Our program does not have any preloaded drum files. Instead, we want to let the user select
from a wide variety of drum files. Thus, besides the normal drum, you can play a Japanese
tsuzumi, an Indian tabla, Latin American bongo drums, or just about any other sound that
you want to add to your rhythm. All you need is a small .wav or .ogg file containing that
sound's sample.

Let us code the ability to add this drum sample to our program.

The drum sample is to be loaded on the left bar, as shown in the preceding screenshot. We
have already created buttons with folder icons to the left-hand side of our drum pad. The
desired functionality is simple.

When a user clicks on any of the left buttons, they should open a file dialog letting the user
choose a .wav or .ogg file. When the user selects the file and clicks on Open, the Entry
widget next to that button should be populated with the name of the file. Further, the
location of the drum sample file should be added to a list for playing it later.

Project 3

89

Engage Thrusters
1. First we will import the required modules. To open the sound file, we will use the

tkFileDialog module. We will also use the tkMessageBox module to display
certain pop-up messages. We will also need to extract the filename of the given
sound sample using the os module. Let us begin by importing the three modules
(given in the following code) into our current namespace (refer to the same code
present in 3.04.py):
import tkFileDialog
import tkMessageBox
import os

2. Next, we will add Attributes to track the loaded samples. The user will invariably
load more than one drum sample. Therefore, we need to track the Entry widget
where the drum sample was loaded, the location of each of the drum samples,
and a number indicating the current drum number. Accordingly, we create two lists
called self.widget_drum_name and self.widget_drum_file_name to store
the Entry widget instance and file location respectively.

We also declare a variable self.current_drum_no to track the current
drum number.

We choose to initialize these variables and list under our initialization
method __init__ (refer to the code in 3.04.py):
def __init__(self):
 self.widget_drum_name = []
 self.widget_drum_file_name = [0]*MAX_DRUM_NUM
 self.current_drum_no = 0

We then modify our create_left_pad method to include a line that appends a
list of all drum Entry widgets in our newly-created list self.widget_drum_name:

self.widget_drum_name.append(self.drum_entry)

3. We then add a command callback to the buttons in our create_left_pad method
to load drum samples, as shown in the following code snippet:
button = Button(left_frame, image=tbicon, command=
self.drum_load(i))

Programmable Drum Machine

90

4. Finally, we code our drum_load method as follows (refer to the code in 3.04.py):

def drum_load(self, drum_no):
 def callback():
 self.current_drum_no = drum_no
 try:
 file_name = tkFileDialog.askopenfilename(
 defaultextension=".wav", filetypes=[("Wave
 Files","*.wav"),("OGG
 Files","*.ogg")])Files","*.ogg")])
 if not file_name: return
 try:
 delself.widget_drum_file_name[drum_no]
 except: pass
 self.widget_drum_file_name.insert(drum_no,
 file_name)
 drum_name = os.path.basename(file_name)
 self.widget_drum_name[drum_no].delete(0, END)
 self.widget_drum_name[drum_no].insert(0, drum_name)
 except:
 tkMessageBox.showerror('Invalid', "Error loading
 drum samples")
 return callback

The description of the code is listed as follows:

 � We define a callback function within our function because we need to track
several drum samples.

 � To track the widget, through which a sound sample has been loaded, we set
the self.current_drum_no value to be equal to the drum_num value
received as an argument from the button command callback.

 � In a try block, we use tkFileDialog.askopenfilename to get the
filename of the drum sample. We then check whether a filename already
exists in our filename list. If it does, we delete it.

 � Using os.path.basename from the os module, we obtain the filename
from the file path and insert it into corresponding Entry widget.

 � If askopenfilename fails, we use tkMessageBox.showerror to display
a custom error message.

Project 3

91

Objective Complete – Mini Debriefing
In this iteration, we imported modules to handle dialogs and message boxes. We then added
attributes to track drum samples. Finally, we added command callbacks to buttons which
when clicked open a dialog for the user to select drum samples.

Our code is now capable of loading drum samples and storing all necessary records that we
will require to play beat patterns.

Next, let us turn our attention to playing the beat samples as per a user-defined pattern.

Playing the drum machine
Now that we have a mechanism to load drum samples and a mechanism to define beat
patterns in place, let us add the ability to play these beat patterns. In many ways, this is the
core of our program.

Let us first understand the functionality that we want to achieve here. Once the user has
loaded one or more drum sample and has defined a beat pattern using the toggle buttons,
we need to scan each column of the pattern to see if it finds a green button. If it finds one,
our code should play the corresponding drum sample before moving ahead. Moreover, green
buttons on the same column should play almost together, while there should be some time
gap between each successive column, which would define the tempo of the music.

Prepare for Lift Off
We will use the pymedia module to play the sound files. The pymedia module can play a
wide variety of sound formats such as .wav, .ogg, .mp3, .avi, .divx, .dvd, and .cdda on
multiple operating systems.

Without getting into the details of how pymedia plays the sound files, the official
documentation tells us that we can play audio files using the following code sample:

import time, wave, pymedia.audio.sound as sound
f= wave.open('YOUR FILE NAME', 'rb')
sampleRate= f.getframerate()
channels= f.getnchannels()
format= sound.AFMT_S16_LE
snd= sound.Output(sampleRate, channels, format)
s= f.readframes(300000)
snd.play(s)

Programmable Drum Machine

92

If you run this piece of code as an independent script and supply the file location of
a supported audio file in place of 'YOUR FILE NAME', this should play the media
file on your computer.

Using this code sample, we will implement the play functionality for our drum machine.

Engage Thrusters
1. Let us first import all of the necessary modules into our namespace

(refer to the code in 3.05.py):
import time
import wave
import pymedia.audio.sound as sound

2. Next, we will define the play_sound method as follows:
def play_sound(self, sound_filename):
 try:
 self.s = wave.open(sound_filename, 'rb')
 sample_rate = self.s.getframerate()
 channels = self.s.getnchannels()
 frmt = sound.AFMT_S16_LE
 self.snd= sound.Output(sample_rate, channels, frmt)
 s = self.s.readframes(300000)
 self.snd.play(s)
 except:
 pass

This method simply takes the API provided by pymedia and wraps it into a method
that takes a filename and plays it.

3. Let us now define the play method that actually plays the beat samples:

def play(self):
 for i in range(len(self.button[0])):
 for item in self.button:
 try:
 if item[i].cget('bg') == 'green':
 if not self.widget_drum_file_name
 [self.button.index(item)]:continue
 sound_filename = self.widget_drum_file_name
 [self.button.index(item)]
 self.play_sound(sound_filename)
 except: continue
 time.sleep(3/4.0)

Project 3

93

The description of the code is listed as follows:

 � We loop through all of the buttons scanning each column before moving
to the next column. For every button, we use widget.cget() to check
to see if its color is green.

 � If the color is green, we check if there is a corresponding drum sample
loaded. If not, we ignore the green button and move to the next item
in the loop using continue.

 � If the color is green and there is a corresponding drum sample loaded, we
use the previously-defined pymedia wrapper method for playing audio to
play that sample.

 � Before moving to the next column the code is made to sleep for a small
interval. If the code is not made to sleep for a small duration, the program
would play all the samples at a very rapid succession.

 � We have chosen to make the code sleep for a time period of one-eighth
of a second. You can change this sleep time to vary the tempo.

Objective Complete – Mini Debriefing
In this iteration, we added the capability to play the loaded drum samples.

Our drum machine is now operational. You can load drum samples, define beat patterns,
and when you click on the Play button, the drum machine plays that beat pattern!

In this example, we decided whether or not to play a drum sample based
on the color of the button. This has been used here for demonstration
purposes. However, it is not a good practice to mix logic with appearance.
A better idea would be to implement a data structure for buttons that
would keep track of button state as "clicked" or "not-clicked", and then
play the audio based on this button's state. Implementation of this dual
button states is left as an exercise for you to explore.

Classified Intel
In our previous code, we used widget.cget() to fetch the current value of the button's
bg option to check if it is green. You can use w.cget(key) to return the current value of a
widget option. Also, note that cget() always returns the value as a string even if you give a
nonstring value when configuring the widget option.

Similar to widget.cget()method, Tkinter offers a wide variety of methods for all its
widgets. For a list of basic widget methods, refer to the The basic widget methods section
in Appendix B, Quick Reference Sheets.

Programmable Drum Machine

94

If you want to know all of the options configured for a particular widget, you may use the
widget.config() method instead, as follows: (See the code in 3.06.py)

from Tkinter import *
root = Tk()
widget = Button(root, text="#", bg='green')
widget.pack()
print widget.config()
print widget.config('bg')
root.mainloop()

This code will print a dictionary showing all the key-value pairs for widget options and
their values listed as tuples. For example, in the preceding code the line print widget.
config('bg') prints a tuple:

('background', 'background', 'Background', <border object at
022A1AC8>, 'green')

Tkinter and threading
Our drum machine plays patterns in the way that we want it to. However, there is a small
problem. The play method blocks the main loop of our Tkinter program. It does not
relinquish control back to the main loop until it is done playing all of the sound samples.

This means that if you now want to click on the Stop button or change some other widget,
you will have to wait for the play loop to complete.

You might have noticed that when you hit the Play button, it remains pressed for the time
the sound loops are being played. During that time you cannot access any other widget in
the Toplevel window.

This clearly is a glitch. We need some method to confer back the control to Tkinter main
loop while the play is still in progress.

Prepare for Lift Off
One of the simplest ways that we can achieve this is to use the root.update()method
within our play loop. This updates the root.mainloop() method after each sound
sample is played (see the commented code in 3.07.py).

However, this is an inelegant method because the control is passed to the main loop with
some staggering experienced in the GUI. Thus, you may experience a slight delay
in responses of other widgets in the Toplevel.

Project 3

95

Further, if some other event causes the method to be called, it could result in a nested
event loop.

A better solution would be to run the play method from a separate thread. To do that
let us employ the threading module of Python.

Engage Thrusters
1. Let us first import the threading module into our namespace (refer to the

code in 3.07.py):
import threading

2. Now, let us create a method that calls the self.play() method to run in a
separate thread. This redirects play through the threading model:
def play_in_thread(self):
 self.thread = threading.Thread(None, self.play, None, (), {})
 self.thread.start()

3. Finally, change the command callback for the Play button in the play_bar method
from the existing self.play() method to self.play_in_thread():
button=Button(playbar_frame, text ='Play', command= self.play_in_
thread)

Now if you load some drum samples, define the beat patterns, and hit the Play
button, the sound will play in a separate thread without preventing the main
loop from updating (refer to the code in 3.07.py).

4. The next step would be that of coding the Stop button. The role of the Stop button
is simple; it merely stops the currently playing pattern. To do that, we first add a
command callback to the Stop button calling on a method stop_play as follows
(see the code in 3.07.py):
button=Button(playbar_frame, text='Stop', command= self.stop_play)

Then we define the stop_play method as follows:

def stop_play(self):
 self.keep_playing = False

5. Our thread system now runs the play method from a separate thread. However,
if the user clicks on the button more than once, this will spawn more threads,
which will play the beat. To avoid this, the button should be configured with
state='disabled', and enabled again when the sequence finishes.

Programmable Drum Machine

96

To disable the Play button when the program starts running, we add the following
line to our play_in_thread method (refer to the code in 3.07.py):
self.start_button.config(state='disabled')

Similarly, when the sequence finishes playing or the Stop button is clicked, we want
to enable the Play button again. To enable it, we add the following line to our play
and stop_play methods:
self.start_button.config(state='normal')

Tkinter and thread safety
Tkinter is not thread safe. The Tkinter interpreter is valid only in the thread
that runs the main loop. Any call to widgets must ideally be done from the
thread that created the main loop. Invoking widget-specific commands from
other threads is possible (as we do here), but is not reliable.
When you call a widget from another thread, the events get queued for the
interpreter thread, which executes the command and passes the result back
to the calling thread. If the main loop is running but not processing events, it
sometimes results in unpredictable exceptions.

The only change we make to our existing play method is to include the entire code
in a try-except block. We do this because Tkinter is not thread safe and can cause
some unwanted exceptions when dealing with the play thread. The best we can do
here is ignore those cases using a try-except block.

mtTkinter – a thread-safe version of Tkinter
If you find yourself working on an inherently multithreaded project, you might
consider looking at mtTkinter—a thread-safe version of Tkinter. For more
information on mtTkinter, visit http://Tkinter.unPythonic.net/
wiki/mtTkinter.
For more specialized multiprocessing needs you may also want to take a look
at multiprocessing module or an event model such as Twisted.

6. The last step sees us code the Loop Checkbutton. The role of the Loop checkbox
is simple. If the Loop checkbox is unchecked, the pattern plays only once. If it is
checked, the pattern keeps playing in an endless loop. The pattern stops playing
only if the Loop Checkbutton is unchecked or if the Stop button is pressed.

We add a command callback to the Loop checkbox:
loopbutton = Checkbutton(playbar_frame, text='Loop',
variable=loop, command=lambda: self.LoopPlay(loop.get())))

Project 3

97

We then define the loop_play method as follows:
def loop_play(self, xval):
 self.loop = xval

Equipped with these two variables, we modify our play method to keep playing
while self.keep_playing is equal to True see the code in 3.07.py).

If the value of self.loop is equal to False, we set the value of self.keep_
playing equal to False, which breaks out of the play loop.

Objective Complete – Mini Debriefing
This completes the project iteration. In this round, we refined our play method to play the
audio files from a separate thread.

We used Python's built-in threaded module to play the loops in separate thread.
We looked at some of the threading-related limitations of Tkinter and some ways
in which we can overcome those limitations.

We also coded for the Stop button and Loop checkbox functionality.

More beat patterns
Our drum program is now functional. You can load drum samples and define a beat pattern
and our drum machine will play it out. Let us now extend our drum program so that we are
able to create more than one pattern in the same program.

Rather than a single drum pattern, now we will have a list of patterns. While playing the
patterns, a user will be able to switch between many different beat patterns. This will allow
the drummer to add variations to the performance.

Engage Thrusters
1. The first thing we need to do is add a Spinbox widget in the top bar (as shown in the

following screenshot), which will keep count of the number of patterns. We also add
an Entry widget next to the Spinbox widget to keep track of the pattern name, which
is decided by the number selected in the spin box.

Programmable Drum Machine

98

This is added to the create_top_bar method (refer to the code in 3.08.py):
Label(top_bar_frame, text='Pattern Number:').grid(row=0, column=1)
self.patt = IntVar()
self.patt.set(0)
self.prevpatvalue = 0 # to trace last click
Spinbox(top_bar_frame, from_=0, to=9, width=5,
 textvariable=self.patt, command=self.record_pattern).grid(
 row=0, column=2)
self.pat_name = Entry(top_bar_frame)
self.pat_name.grid(row=0, column=3, padx=7,pady=2)
self.pat_name.insert(0, 'Pattern %s'%self.patt.get())
self.pat_name.config(state='readonly')

The description of the code is listed as follows:

 � The pattern number is stored in a Tkinter integer variable as self.patt.

 � The Entry widget that stores the corresponding pattern name is
called self.pat_name. This widget is marked as "read only",
as we do not want to allow the user to modify the name.

 � The Spinbox widget has a command callback to a new method
record_pattern.

2. Let us now code the record_pattern method. The role of this method is to keep
track of the state of a given pattern. Thus, for every pattern it needs to track the
pattern number, units, BPU, drum samples loaded, and the beat pattern defined
by the user for that pattern number. We will store this information in a list named
self.pattern_list.

Our pattern spin box allows for adding 10 patterns. Therefore, we first initialize
self.pattern_list as an empty list comprising of 10 empty spaces.

We initialize it in our class __init__ method as follows (also seen in the code
3.08.py):
self.pattern_list = [None]*10

Let us now code the record_pattern method:
def record_pattern(self):
 pattern_num, bpu, units = self.patt.get(),self.bpu.get(),
 self.units.get()
 self.pat_name.config(state='normal')
 self.pat_name.delete(0, END)
 self.pat_name.insert(0, 'Pattern %s'%pattern_num)
 self.pat_name.config(state='readonly')
 prevpval = self.prevpatvalue

Project 3

99

 self.prevpatvalue = pattern_num
 c = bpu*units
 self.buttonpickleformat =[[0] * c for x in range
 MAX_DRUM_NUM)]
 for i in range(MAX_DRUM_NUM):
 for j in range(c):
 if self.button[i][j].config('bg')[-1] == 'green':
 self.buttonpickleformat[i][j] = 'active'
 self.pattern_list[prevpval] = {'df':
 self.widget_drum_file_name, 'bl':
 self.buttonpickleformat, 'bpu':bpu,
 'units':units}
 self.reconstruct_pattern(pattern_num, bpu, units)

The description of the code is listed as follows:

 � The first line simply fetches the value of the current pattern number, bout,
and units for the pattern to be recorded.

 � The next four lines of this code do one simple job. For every change
in pattern, it simply updates the corresponding Entry widget with the
new name of the pattern. Since the Entry widget is "read only", we first
configure its state as normal to allow us to enter text into the Entry widget.
We then delete anything that might already be written in the widget
and enter the new pattern name with the Python string formatting of
pattern_num'Pattern %s'%pattern_num. Finally, we restore the entry
widget to a read only state.

 � The next two lines keep track of the last Spinbox widget number.

 � The next four lines of code actually record the state of the user-defined
pattern in a two-dimensional list named self.buttonpickleformat.
The list is first initialized to an empty two-dimensional matrix, taking into
consideration the size of the pattern maker.

 � The loop then goes through every single button in the current pattern. If
the button is not selected (not green), it leaves the value as 0. If the button
is selected (green), the value at the corresponding place is changed from
0 to active. Using this list we can then easily reproduce the user-defined
pattern later on.

 � Finally, all of this pattern-related data is stored as a list of the dictionary:
self.pattern_list[prevpval] = {'df': self.widget_drum_
file_name, 'bl': self.buttonpickleformat, 'bpu':bpu,
'units':units}

Programmable Drum Machine

100

 � The key df stores the list of drum filenames. The key bl stores the pattern
defined by the button. The key bpu stores the BPU for that pattern, and the
key units stores the units for that pattern.

 � Now that all of these items for a pattern are stored as a dictionary, we
can easily use the dictionary to reconstruct the pattern. The last line
calls the method reconstruct_pattern(), which actually does the
reconstruction for us.

3. Now that we have stored pattern records, we need some method to reconstruct
those patterns on our drum board. We define a new method reconstruct_
pattern to handle it, as shown in the following code see the code in 3.08.py):

 def reconstruct_pattern(self,pattern_num, bpu, units):
 self.widget_drum_file_name = [0]*MAX_DRUM_NUM
 try:
 self.df = self.pattern_list[pattern_num]['df']
 for i in range(len(self.df)):
 file_name = self.df[i]
 if file_name == 0:
 self.widget_drum_name[i].delete(0, END)
 continue
 self.widget_drum_file_name.insert(i,
 file_name)
 drum_name =
 os.path.basename(file_name)
 self.widget_drum_name[i].delete(0, END)
 self.widget_drum_name[i].insert(0, drum_name)
 except:
 for i in range(MAX_DRUM_NUM):
 try: self.df
 except:self.widget_drum_name[i].delete(0, END)
 try:
 bpu = self.pattern_list[pattern_num]['bpu']
 units = self.pattern_list[pattern_num]['units']
 except:
 return
 self.bpu_widget.delete(0, END)
 self.bpu_widget.insert(0, bpu)
 self.units_widget.delete(0, END)
 self.units_widget.insert(0, units)
 self.create_right_pad()

Project 3

101

 c = bpu * units
 self.create_right_pad()
 try:
 for i in range(MAX_DRUM_NUM):
 for j in range(c):
 if self.pattern_list[pattern_num]['bl'][i][j]
 == 'active':
 self.button[i][j].config(bg='green')
 except:return

This code can be broken into three broad parts:

 � Reconstructing drum sample uploads

 � Reconstructing BPU and units

 � Reconstructing beat patterns

Having reconstructed these three things, we can easily replay any beat pattern.
A brief description of each of these is as follows:

 � The list of drum filenames for a given pattern can easily be acquired from
the key-value pair of the dictionary item self.pattern_list[pattern_
num]['df']. We then iterate through items in this list and fill up the Entry
widgets with each drum sample's filename.

 � We then fetch the value of BPU and units from the dictionary keys
self.pattern_list[pattern_num]['bpu'] and self.pattern_
list[pattern_num]['units']. We insert these values in their
respective Spinbox widgets and then call the create_right_pad()
method, which places the desired number of buttons on the right pad.

 � In the last iteration, we fetch the value of dictionary key self.pattern_
list[pattern_num]['bl'], which gives us the position of the green
buttons. Iterating through a loop, we check if a particular button is
to be set to active. If yes, we change the color of the button to green.

 � Combined together, we can now load the previously recorded drum
samples, set their Units and BPU values, and reconstruct the beat
pattern as per previously set values.

 � At each stage, the code checks if it cannot reconstruct a particular pattern
because of invalid file markup. If it does find some invalid markup, it breaks
out of the code using appropriate exception handling.

Hit the Play button and the drum machine will start rolling sound. Change the pattern
number and define a new beat pattern. The new pattern will start playing. Revert to older
patterns and the older patterns start playing again (refer to the code in 3.08.py).

Programmable Drum Machine

102

Objective Complete – Mini Debriefing
We've completed coding our drum machine to support the storing of multiple beat patterns,
and the ability to play these patterns simply by changing the pattern number. This gives the
user the ability to make different beats for the intro, verse, chorus, bridge, and other parts of
a song.

In the process, we saw how to use Python's built-in data types to store custom data and to
reproduce them in any required way.

Object persistence
In the preceding iteration, we added the capability to define multiple beat patterns.
However, the beat patterns can be played only on a single script run. When the program is
closed and restarted, all previous pattern data is lost.

We need a way to persist or store the beat patterns beyond a single program run. We need
the ability to store values in some form of file storage and reload, play, and even edit the
patterns. We need some form of object persistence.

Prepare for Lift Off
Python provides several modules for object persistence. The module that we will use for
persistence is called the pickle module. This is a standard library of Python.

An object represented as a string of bytes is called pickle in Python. Pickling, also known as
object serialization, lets us convert our object into a string of bytes. The process reconstructing
of the object back from the string of bytes is called unpickling or deserialization.

More information about the pickle module is available at http://docs.python.org/2/
library/pickle.html.

Let us illustrate it with a simple example:

import pickle
party_menu= ['Bread', 'Salad', 'Bordelaise','Wine', 'Truffles']
pickle.dump(party_menu, open("mymenu.p", "wb"))

First, we serialize or pickle our list PartyMenu using pickle.dump and save it in an external
file mymenu.p.

We later retrieve the object using pickle.load:

import pickle
menu= pickle.load(open("mymenu.p", "rb"))
print menu # ['Bread', 'Salad', 'Bordelaise', 'Wine', 'Truffles']

Project 3

103

Remember that in our previous iteration, we created a list, called self.pattern_list,
where each item of the list is a dictionary that stores information about one single
beat pattern.

If we need to reuse this information, we only need to pickle this self.pattern_list.
Having saved the object, we can later easily unpickle the file to reconstruct our beat
patterns.

Engage Thrusters
1. We first need to add three top menu items to our program, as shown in the

following screenshot:

 � File | Load Project

 � File | Save Project

 � File | Exit

While we are creating our menu items let us also add an About menu item:

 � About | About

Here, we are particularly interested in saving the project (pickling), and loading the
project back (unpickling). The code for menu items is defined in a separate method
called create_top_menu, as shown in the following code (also refer to the code in
3.09.py):
def create_top_menu(self):
 self.menubar = Menu(self.root)
 self.filemenu = Menu(self.menubar, tearoff=0)
 self.filemenu.add_command(label="Load Project",
 command=self.load_project)
 self.filemenu.add_command(label="Save Project",
 command=self.save_project)
 self.filemenu.add_separator()
 self.filemenu.add_command(label="Exit",
 command=self.exit_app)

Programmable Drum Machine

104

 self.menubar.add_cascade(label="File",
 menu=self.filemenu)
 self.aboutmenu = Menu(self.menubar, tearoff=0)
 self.aboutmenu.add_command(label="About",
 command=self.about)
 self.menubar.add_cascade(label="About",
 menu=self.aboutmenu)
 self.root.config(menu=self.menubar)

The code is self-explanatory. We have created similar menu items in our last two
projects. Finally, to display this menu, we call this method from our Main method.

2. To pickle our object, we first import the pickle module into the current namespace
as follows (see the code in 3.09.py):
import pickle

The Save Project menu has a command callback attached to self.save_project,
which is where we define the pickling process:
def save_project(self):
 self.record_pattern() #make sure last pattern is recorded
 file_name = tkFileDialog.asksaveasfilename(filetypes=[('Drum
 Beat File','*.bt')] , title="Save project as...")
 pickle.dump(self.pattern_list,open(file_name, "wb") "wb"))
 self.root.title(os.path.basename(filenamefile_name) + " -
 DrumBeast")

The description of the code is listed as follows:

 � Recall that a pattern is added to self.pattern_list only when the
pattern number is changed by the user. In situations where a user might
have defined a beat pattern but may not have clicked on the pattern
number's Spinbox widget, the pattern is not included in self.pattern_
list. To make sure it is added, we first call self.record_pattern to
capture this beat pattern.

 � The save_project method is called when the user clicks on the Save
Project menu, hence, we need to give the user an option to save the project
in a file. We have chosen to define a new file extension (.bt) to keep track of
our beat patterns.

 � When the user specifies the filename with .bt extension, the data in the
self.pattern_list object is dumped into the file using pickle.dump.

 � Lastly, the title of the Toplevel window is changed to reflect the filename.

Project 3

105

3. We are done pickling the object. Let us now code the unpickling process.

The unpickling process is handled by a method load_project, which is called
from the Load Project menu as follows:
def load_project(self):
 file_name = tkFileDialog.askopenfilename(filetypes=[('Drum Beat
 File','*.bt')], title='Load Project')
 if file_name == '':return
 self.root.title(os.path.basename(file_name) + " - DrumBeast")
 fh = open(file_name,"rb") # open the file in reading mode
 try:
 while True: # load from the file until EOF is reached
 self.pattern_list = pickle.load(fh)
 exceptEOFError:
 pass
 fh.close()
 try:
 self.Reconstruct_pattern(0,
 pattern_listself.pattern_list[0]['bpu'],
 pattern_listself.pattern_list[0]['units'])
 except:
 tkMessageBox.showerror("Error","An unexpected error
 occurred trying to reconstruct patterns")

The description of the code is listed as follows:

 � When a user clicks on the Load Project menu, the first line of the method
prompts him/her with an Open File window. When the user specifies a
previously pickled file with a .bt extension, the filename is stored in a
variable called file_name.

 � If the filename returned is none because the user cancels the Open File
dialog, nothing is done.

 � If filename is supplied, the title of the Toplevel window is changed to add
the filename. The file is then opened in read mode, and the contents of the
file are read into self.pattern_list using pickle.load.

 � The self.pattern_list now contains the list of beat patterns defined
in the previous pickle. The file is closed and the first pattern of self.
pattern_list is reconstructed in the drum machine. If there are more
than one patterns defined in the serialized file, you can view each of the
patterns simply by changing the pattern number Spinbox widget.

 � Try playing any of the patterns, and you should be able to replay the pattern
exactly as it was defined at the time of pickling.

Programmable Drum Machine

106

Pickling, though great for serialization, is vulnerable to malicious or erroneous
data. You may want to use pickle only if the data is from a trusted source, or if
proper validation mechanisms are in place.
You may also find the json module useful for serializing objects in JSON and
ElementTree, or xml.minidom libraries relevant for parsing XML data.

4. Now, let us complete coding our exit and about commands:

def about(self):
 tkMessageBox.showinfo("About", "About Info")

def exit_app(self):
 if tkMessageBox.askokcancel("Quit", "Really Quit?"):
 self.root.destroy()

And add this line to our app method to override the Close button of the
Toplevel window:
self.root.protocol('WM_DELETE_WINDOW', self.exit_app)

This is self-explanatory. We have done similar coding in our previous project.

Objective Complete – Mini Debriefing
In this iteration, we used Python's built-in pickle module to pickle and unpickle the beat
patterns defined by the user.

This now lets us save patterns defined by the user. We have also provided the ability to load,
replay, and edit the project later.

Now, if you define one or more beat patterns in your program you can save the project with
a .bt file extension. You can later load the project and start working on it from the place
where you had last left it.

While we were dealing with the top menu we also completed the code for the About and
Exit menu items.

ttk-themed widgets
We are almost done programming our drum machine. However, we would like to end this
project by introducing you to the ttk-themed widgets.

Project 3

107

Prepare for Lift Off
On many platforms such as Windows and X11, Tkinter does not bind to the native platform
widgets. The Tk toolkit (and Tkinter) originally appeared on X-Window systems, hence, it
adopted the motif look and feel, which was the de facto standard for GUI development on
X-Window systems. When Tk was ported to other platforms, such as Windows and Mac OS,
this Motif style started appearing out of place with the look of these platforms.

Due to this, some even argue that Tkinter widgets are rather ugly and do not integrate well
with such desktop environments.

Another criticism of Tkinter is based on the fact that Tkinter mixes logic and styling by
allowing both to be changed as widget options.

It was also criticized to lack any kind of theming support. While we saw an example of
centralized styling via the option database, the method required styling to be done at the
widget level. It does not allow for selective styling of two button widgets differently, as an
example. This made it difficult for developers to implement visual consistency for similar
groups of widgets while differentiating them from other groups of widgets. As a result of
this, many GUI developers moved to Tkinter alternatives such as wxPython, glade, PyQT,
and others.

With Tkinter 8.5, the makers of Tkinter have tried to address all these concerns by introducing
the ttk module, which may be considered as an advance to the original Tkinter module.

Let us take a look at some of the features offered by the ttk-themed widgets module.

One of the first things that ttk does is that it provides a set of built-in themes that allows
Tk widgets to look like the native desktop environment in which the application is running.

Additionally, it introduces six new widgets: Combobox, Notebook, Progressbar, Separator,
Sizegrip, and Treeview to the list of widgets, in addition to supporting 11 core Tkinter
widgets, which are Button, Checkbutton, Entry, Frame, Label, LabelFrame, Menubutton,
PanedWindow, Radiobutton, Scale, and Scrollbar.

To use the ttk module, we first import it into the current namespace:

import ttk

You can display the ttk widgets as follows see the code in 3.10.py):

ttk.Button(root, text='ttk Button').grid(row=1, column=1)
ttk.Checkbutton(root, text='tkCheckButton').grid(row=2, column=1)

Programmable Drum Machine

108

For a comparison of displays between the normal Tkinter widgets and the counterpart
ttk widgets, see the code in 3.10.py, which produces a window, as shown in the following
screenshot. Notice how the widgets look like more native widgets on your platform.

3.10.py also shows dummy examples of all the new widgets introduced in the ttk module.

You can even override the basic Tkinter widgets by importing ttk after
Tkinter as follows:

from Tkinter import *

from ttk import *

This causes all widgets common to Tk and ttk to be replaced by ttk widgets.
This has the direct benefit of using the new widgets, which gives a better
look and feel across platforms.
However, the disadvantage of this kind of import, is that you cannot
distinguish the module from which the widget classes are imported.
This is important because Tkinter and ttk widget classes are not
completely interchangeable. In this case, an unambiguous solution is
to import them, as shown in the following codeimport Tkinter as tk

import ttk

Project 3

109

While most of the configuration options for Tkinter and ttk widgets are common, ttk-themed
widgets do not support styling options such as fg, bg, relief, border, and more. This is
purposefully removed from ttk in an attempt to keep logic and styling in different controls.

Instead, all styling-related options are handled by the respective style names. In a standard
ttk module, each widget has an associated style name. You can retrieve the default style
name of a widget using the widget.winfo_class() method.

For instance consider a ttk button:

>>> b = ttk.Button()

>>> b.winfo_class()

This prints Tbutton, which is the default style name for ttk.Button. For a list of default ttk
style names for different widgets, refer to the The ttk widgets section in Appendix B, Quick
Reference Sheets.

In addition to the default style, you can assign a custom style class to a widget or group
of widgets. To set up a new style you use:

x = ttk.Style()

To configure the style options for a default style, you use the command:

x.configure('mystyle.Defaultstyle', **styling options)

To use the new style on a widget you use the command:

ttk.Widget(root, style='mystyle.Defaultstyle')

Next we will discuss about ttk theming.

Style is used to control the appearance for individual widgets. Themes, on the other hand,
control the appearance of the entire GUI. More simply put, a theme is a collection of styles.
Grouping styles into themes lets the user switch designs for the entire GUI all at once. Like
styles, all themes are uniquely identified by their name. The list of available themes can be
obtained as follows:

>>> x = ttk.Style()

>>>x.theme_names()

('winnative', 'clam', 'alt', 'default', 'classic', 'xpnative')

To obtain the name of the currently active theme:

>>>x.theme_use()

'xpnative'

Programmable Drum Machine

110

You can change to another theme using:

x.theme_use('yournewthemename')

Let us see various styling- and theming-related options of ttk through a dummy example
(refer to the code in 3.11.py, which produces a window like the one shown in the
following screenshot):

from Tkinter import *
import ttk
root= Tk()
x = ttk.Style()
x.configure('.', font='Arial 14', foreground='brown',
background='yellow')
x.configure('danger.TButton', font='Times 12', foreground='red',
padding=1)
ttk.Label(root, text='global style').pack()
ttk.Button(root, text='custom style', style='danger.TButton').pack()
Different styling for different widget states
x.map("s.TButton", foreground=[('pressed', 'red'), ('active', 'blue')])
ttk.Button(text="state style", style="s.TButton").pack()
Overriding current theme styles
curr_theme = x.theme_use()
x.theme_settings(curr_theme, { "TEntry": { "configure": {"padding":
2}, "map": {"foreground": [("focus", "red")]} }})
ttk.Entry().pack()
root.mainloop()

The description of the code is listed as follows:

 f The first three lines of code imports Tkinter and ttk, and sets up a new
root window.

 f The next line x = ttk.Style() is where you give a name x to your style.

Project 3

111

 f The next line configures a program-wide style configuration using x.configure.
The dot character (.), which is the first argument of configure, means that this
style would apply to the Toplevel window and to all its child elements. This is the
reason why all of our widgets get to have a yellow background.

 f The next line creates an extension (danger) to the default style (TButton).
This is how you create custom styles, which are variations to a base default style.

 f The next line creates a ttk.label widget. Since we have not specified any style
for this widget, it inherits the global style specified for the Toplevel window.

 f The next line creates a ttk.button widget and specifies it to be styled using our
custom style definition of 'danger.TButton.' This is why the foreground color
of this button turns red. Notice how it still inherits the background color, yellow ,
from the global Toplevel style that we defined earlier.

 f The next two lines of code demonstrate how ttk allows for styling different
widget states. In this example we styled different states for a ttk.button widget
to display in different colors. Go ahead and click on this second button to see how
different styles apply to different states of a button. Here we use map(style,
query_options, **kw) to specify dynamic values of style for changes in state of
the widget.

 f The next line fetches the current applicable theme. It then overrides some of the
options for the theme's Entry widget using:

x.theme_settings('themename', ***options)

Now that we know how to make our widgets look more like native platform widgets,
let us change the Play and Stop buttons for our drum machine to ttk.button. Let us
also change the Loop check button from Tkinter Checkbutton to ttk Checkbutton.

Engage Thrusters
1. We first import ttk into our namespace and append ttk to the play and stop

buttons as follows (see the code in 3.12.py):
import ttk

2. We then simply modify the buttons and check button in the create_play_bar
method as follows:
button = ttk.Button()
loopbutton = ttk.Checkbutton(**options)

Note that these changes make the button and checkbutton look
closer to the native widgets of your working platform.

Programmable Drum Machine

112

Also, note that we cannot modify the Tkinter buttons that we have used in
our pattern editor. This is because our code extensively plays on the button's
background color to decide logic. The ttk buttons do not have the configurable
bg option, hence, cannot be used for buttons in our right drum pad.

3. As a quick ending exercise let us add an image in the right-hand side of the play bar.
Let us also add an icon for our Toplevel window (refer to the code in 3.12.py):

To add an image we add this to our create_play_bar method:
photo = PhotoImage(file='images/sig.gif')
label = Label(playbar_frame, image=photo)
label.image = photo
label.grid(row=ln, column=35, padx=1, sticky=E)

To add a Toplevel icon, we add the following line to our Main method:

if os.path.isfile('images/beast.ico'):
 self.root.iconbitmap('images/beast.ico')

Objective Complete – Mini Debriefing
This concludes the last iteration of this project. In this iteration, we first saw how and why
to use ttk-themed widgets to improve the look and feel of our programs.

We then used ttk buttons and ttk checkbuttons in our drum program to improve its look.
We also saw the reasons why certain Tkinter buttons in our program could not be replaced
by ttk buttons.

Mission Accomplished
We have come a long way in our experiments with Tkinter. In this project we made a
highly-functional drum machine with loads of features.

In the process, we touched upon several vital concepts that go into the making of a GUI
program with Tkinter.

To summarize, we touched upon the following vital concepts of Tkinter-based GUI programs:

 f Structuring Tkinter program as classes and objects

 f Working with more Tkinter widgets such as Spinbox, Button, Entry, and Checkbutton

 f Using the grid geometry manager for structuring complex layout

Project 3

113

 f Understanding threaded programming in relation to Tkinter

 f Working with other common modules from the Python standard library

 f Object persistence with the pickle module

 f Working with ttk-themed widgets

A Hotshot Challenge
The drum machine needs your attention. As a part of your Hotshot challenge, add the
following features to your drum machine:

 f The current application checks if the button is green in color to decide whether
the button is in the pressed state. Modify the code so that this logic is not decided
based on the color of the button, but by a separate variable that keeps track of the
selected buttons.

 f Add a tempo scale to your drum machine, which lets the user change the tempo
of the beats using a slider.

 f Add volume control for each drum sample, allowing the user to change the volume
individually for each drum sample.

 f Add a mute button for each drum sample. If the Checkbutton is clicked for a
given drum sample, the sound is not played for that row. This way, a user can
stop a complete row from playing without changing the patterns in that row.

 f Add a time clock to your drum machine, which displays the time elapsed since
the last press of the play button.

Project 4
Game of Chess

Let's now build a game of chess in Tkinter. You do not need to be a master at chess to build
this game. If you have ever played chess and you know the basic rules that govern the chess
pieces, you are ready to write this program.

If you have never played chess and do not know the basic rules, you would better start by
reading those rules from the Internet before you start programming this application.

Mission Briefing
In its final form our chess game would look like the following screenshot:

Game of Chess

116

Our chess game would enforce all standard rules applicable to the game of chess.
Some advanced rules and features are left as an exercise for you to complete.

Why Is It Awesome?
In the process of building our chess application, we get introduced to the Tkinter Canvas
widget, which is considered one of the most powerful and versatile features of Tkinter.

As you will see in the course of this project, the Canvas widget is a really powerful tool for
a GUI programmer. It can be used to sketch compound objects using lines, rectangles, ovals,
and polygons. It will also let you position images on the canvas with great accuracy.

In addition, the Canvas widget will let you place any other widget (such as labels, buttons,
scale, and other widgets) on itself. This makes it an ideal container for accommodating
widgets for a variety of different GUI programs.

In addition to learning about the Canvas widget, you will also get an insight on how
to structure your data using Python built-in types. You will also be introduced to the
concepts involved in selecting pertinent objects and structuring them into classes and
modules at the right granularity.

As the application develops, we are also introduced to several other Python modules that
you will often use in a variety of application development projects.

Your Hotshot Objectives
The following are the key objectives for this project:

 f How to structure a program into its model and view components

 f How to represent a problem domain in a desired notation

 f Peeking into the versatility and power of the Tkinter Canvas widget

 f Basic usage of canvas coordinates, object IDs and tags

 f How to work with newer image formats not supported by the Tkinter
photo image class

 f Typical interaction of logic and presentation layers in a GUI program

Mission Checklist
We will need to process PNG images in our program. The Tkinter photo image class and
other standard libraries of Python do not support PNG processing. We will use the Python
Imaging Library (PIL) to render PNG files.

Project 4

117

To install the PIL package visit:

http://www.pythonware.com/products/pil/

If you are working on windows x64 (64 bit)or MacOSX machine, you may instead need to
install and work with Pillow, which is a replacement for the PIL, from:

http://www.lfd.uci.edu/~gohlke/pythonlibs/#pillow

After you have installed the package, go to your Python interactive prompt and type:

>>from PIL import ImageTk

If this executes without any error message, you are ready to make the chess application.

Structuring our program
All our previous projects have been structured as a single file. However, as programs grow in
complexity, we need to break our programs into modules and class structures.

Development of large applications generally starts with recording the software requirement
specifications (SRS). This is generally followed by a graphical representation of constructs,
such as class, composition, inheritance, and information hiding using several modeling tools.
These tools can be flow charts, unified modeling language (UML), data flow diagrams, Venn
diagrams (for database modeling), and several other tools.

These tools are very useful when the problem domain is not very clear. However, if you have
ever played the game of chess, you are very well acquainted with the problem domain.
Furthermore, our chess program may be classified as a medium-sized program spanning a
few hundred lines of code. Let us, therefore, bypass these visual tools and get to the actual
program design.

Prepare for Lift Off
In this iteration, we decide an overall structure for our program.

In the true spirit of object-oriented programming (OOP), let's first list the kind of objects that
we would encounter in our program. An intuitive look at a chessboard tells us that we have
two sets of objects to handle:

 f Chessboard: It is an 8 x 8 square board with alternatively colored squares

 f Chess pieces: They are the king, queen, bishop, knight, rook, and pawns

Game of Chess

118

As we proceed, we may or may not come across other objects. But we are sure to come
across these two kinds of objects. So, without much further delay, let us create two files
named chessboard.py and pieces.py in our project folder. (See code folder 4.01)

We will use these two files to define the respective classes to keep the logic associated with
these two objects. Note that these files will not display the board or its pieces; it will instead
keep all logic related to board and pieces. In programming parlance, this is broadly referred
to as the model.

The actual display of board and pieces will be kept in a separate file, which will handle all
views related to the program.

The rule of separating logic from presentation should be applied not
only for deciding your file structure, but also when defining methods
within your files.
Every time you write a method, try to separate its presentation
from the logic. If you find a method mixing logic and presentation,
refactor your code to separate the two. Avoid coupling the
presentation and logic into the same method.

It is a good idea to keep the presentation layer (view) separate from logic (model).
So, we will create a new file named gui.py to code all visible components of the program,
including all our widgets. This file will be primarily responsible for generating the view.

In addition to the model and view files, many programs also keep a separate
controller file to decouple behavioral aspects of a program from the logic
(model) and presentation (view). This kind of structural segregation is
named the model-view-controller (MVC) style of programming.
However, our chess program has just one event to handle: mouse click for
moving chess pieces. Creating a separate controller for just one event can
make the program more complex than it should be.
Given this limitation, we will handle the presentation (view) and event
handling (controller) from a single class named GUI.

Project 4

119

Now that we have our file structure ready, let us start our coding. To begin, let's code the
GUI class for our chessboard, as shown in the following screenshot. Because this pertains to
the view section, let's put this code in the gui.py file.

Game of Chess

120

Engage Thrusters

Step 1 – creating the GUI class
We first create a GUI class and assign attributes such as rows, columns, colors of squares,
and the dimension of each square in pixels. We initialize our GUI class to create the canvas
on which we will draw our chessboard, as follows (see code 4.01 gui.py):

from Tkinter import *
class GUI():
 rows = 8
 columns = 8
 color1 = "#DDB88C"
 color2 = "#A66D4F"
 dim_square = 64
 def __init__(self, parent):
 self.parent = parent
 canvas_width = self.columns * self.dim_square
 canvas_height = self.rows * self.dim_square
 self.canvas = Canvas(parent,
 width=canvas_width, height=canvas_height,
 background="grey")
 self.canvas.pack(padx=8, pady=8)
 self.draw_board()

The description of the code is listed as follows:

 f We create a class, GUI, to handle the rendering of our view files. The init method
of the GUI class is called immediately on object instantiation. The init method sets
up a Canvas widget of the required size. This canvas will act as our container for all
objects, such as chess square areas and eventually the chess pieces.

 f We have used the Canvas widget as a container, because it provides us the ability
to handle tasks based on precise location coordinates of events, such as click of the
mouse button.

 f The init method then calls the draw_board() method, which is responsible
for creating square blocks of alternating colors similar to a chessboard.

Project 4

121

Step 2 – creating the chessboard
Now, we draw the squares on the chessboard using the canvas.create_rectangle
method, filling it alternating between the two colors we defined earlier.

def draw_board(self):
 color = self.color2
 for r in range(self.rows):
 color = self.color1 if color == self.color2
 else self.color2 # alternating between two
 colors
 for c in range(self.columns):
 x1 = (c * self.dim_square)
 y1 = ((7-r) * self.dim_square)
 x2 = x1 + self.dim_square
 y2 = y1 + self.dim_square
 self.canvas.create_rectangle(x1, y1, x2, y2,
 fill=color, tags="area")
 color = self.color1 if color == self.color2
 else self.color2

The description of the code is listed as follows:

 f To draw squares on the board we use the canvas.create_rectangle() method,
which draws a rectangle given the x, y coordinates for the two diagonally opposite
corners of the rectangle (coordinates of upper-left and lower-right edges).

 f We will need to target the board. We, therefore, add a tag named area to each
of the squares created on the board. This is similar to tagging of the text widget,
as we had done in our text editor program.

Step 3 – creating Tkinter mainloop
Now, we will create Tkinter mainloop as follows:

def main():
 root = Tk()
 root.title("Chess")
 gui = GUI(root)
 root.mainloop()
if __name__ == "__main__":
 main()

Game of Chess

122

The description of the code is listed as follows:

 f Outside the class, we have a main method that sets the Toplevel window, starts
Tkinter mainloop, instantiates a GUI object, and calls the drawboard() method.

The Tkinter Canvas widget lets you draw line, oval, rectangle, arc, and polygon
shapes at a given coordinate specified location. You can also specify various
configuration options, such as fill, outline, width, and several others for each
of these shapes.
In addition, the Canvas widget has a huge list of methods and configurable
options. For a complete list of canvas-related options, type the following into
Python interactive shell:
>>> import Tkinter

>>> help(Tkinter.Canvas)

You can also access the documentation of Tkinter in your core Python
installation directory. The documentation is located at path\to\python\
installation\Doc\Python273.
This is a compiled HTML help file. Within the help file, search for Tkinter, and
you get a comprehensive reference with details of all widgets.

Objective Complete – Mini Debriefing
This completes our first iteration. In this iteration, we decided the class structure for our
chess program. We created a GUI class and added attributes we would normally expect a
chessboard to have.

We also got our first taste of the Canvas widget. We created a blank canvas, and then added
square areas using the canvas.create_rectangle method to create our chessboard.

We also created out Tkinter mainloop and created an object out of the GUI class from within
our mainloop. Now, if you run code 4.01 gui.py, you will see a chessboard.

Classified Intel
The Canvas widget comes with a rich set of methods and configurable options. However,
there are three important things to note about the Canvas widget:

 f It uses a coordinate system to specify position of objects on the widget. Coordinates
are measured in pixels. The top-left corner of the canvas has coordinates (0,0).

 f It offers methods to add images and to draw basic shapes, such as line, arc, ovals,
and polygons.

 f The objects drawn on the Canvas widget are usually handled through assigning them
an ID or tag.

Project 4

123

Structuring chessboard-and-pieces-
related data

In our drum program, we had decided on a notation to describe a set of beat patterns. We
could then store (pickle) that beat pattern notation and reproduce (unpickle) it later. The
chess program is no different. It too needs a suitable notation for describing chess pieces and
for locating their positions on the board.

Prepare for Lift Off
We can define our own notation for representing chess piece and their positions, but it turns
out that there already exists a globally accepted, simple, compact, and standard notation for
representing a chessboard. The notation is called Forsyth-Edwards notation (FEN) available
at http://en.wikipedia.org/wiki/Forsyth-Edwards_Notation.

We might have decided to define our notation, but we preferred not to reinvent the
wheel here.

The FEN record for starting position of a chess game is written as:

rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1

The key things to note about the notation are as follows:

 f The notation displays six records for a chess game. Each record is separated
by a blank space.

 f The first record shows the positions of pieces on a chessboard. Each row of the
chessboard (rank) is represented in a section demarcated by the / symbol.

 f Within the first record, each piece is identified by a single letter (pawn = p, knight =
n, bishop = b, rook = r, queen = q and king = k).

 f White pieces are represented using uppercase letters (PNBRQK), but black pieces
are represented by lowercase letters (pnbrqk).

 f Squares with no pieces on it are represented using digits 1 through 8 (the number
of blank squares).

 f The second record denotes the turn of a player. Letter w denotes white turn, and
letter b denotes black turn.

 f The third record KQkq indicates whether or not castling feature is available.
If neither castle, this is -. Otherwise, this has one or more letters: K (white can
castle kingside), Q (white can castle queenside), k (black can castle kingside),
and/or q (black can castle queenside).

Game of Chess

124

 f The fourth record_captures En passant details for the game. We will not be
implementing castling and En passant features in our game, so we can safely
disregard these two records for now.

 f The fifth record keeps track of half-move clock for the game. The half-move clock
keeps track of number of turns played since the last pawn advance or last capture.
This is used to determine if a draw can be claimed under the fifty-move rule.

 f The sixth record tracks the full-move number, which is incremented by 1 after each
move of black. This is used to track the overall length for which a game was played.

The notation as previously stated can be represented pictorially along x and y axis as follows:

x-axis

y-
a
xi

s

1

2

3

4

5

7

8

6

r n b q k b n r

p p p p pp p p

R N B Q K B N R

P P P P P P P P

A B C D E F G HA1

A8

C3 E8

Using this notation, we can accurately represent any particular square on the chessboard.

The color of piece depends on whether the alphabet is in small letters (black) or capital
letters (white).

Thus A1 denotes the bottom and left-most square on the chessboard. Currently, it is
occupied by a white rook. The C3 position is currently empty, and E8 has black king
and A8 has a black rook.

Following these rules, here is how the FEN notation would change after the following
indicative turns played (http://en.wikipedia.org/wiki/Forsyth-Edwards_
Notation):

After first move, P to e4:

rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1

After second move, p to c5:

rnbqkbnr/pp1ppppp/8/2p5/4P3/8/PPPP1PPP/RNBQKBNR w KQkq c6 0 2

Project 4

125

After third move, N to f3:

rnbqkbnr/pp1ppppp/8/2p5/4P3/5N2/PPPP1PPP/RNBQKB1R b KQkq - 1 2

All our chessboard and piece related logic will use the preceding notation. It is, therefore,
very important that we fully understand this notation before we proceed to code our game.

Now that we are clear about the preceding notation, let's apply the notation to represent
our chessboard. The key idea here is that, given a FEN notation, we should be able to
represent it on the board.

Engage Thrusters

Step 1 – creating a Piece superclass
Let's now first code the model code for pieces.py (see code 4.02 pieces.py) by creating a
Piece super class as follows:

class Piece():
 def __init__(self, color):
 if color == 'black':
 self.shortname = self.shortname.lower()
 elif color == 'white':
 self.shortname = self.shortname.upper()
 self.color = color

 def ref(self, board):
 ''' Get a reference of chessboard instance'''
 self.board = board

The description of the code is listed as follows:

 f We define a class, Piece (). It's __init__ method, which takes a color as an
argument. In accordance with our FEN notation, it changes the shortname to
lowercase letter for black and uppercase letter for white. The color handling is
done in the superclass, Piece, because it is a common feature for all chess pieces.

 f We also define a method named ref. Its only purpose is to get an instance of the
chessboard into the object namespace for the board and pieces to interact. We need
this method, because our pieces will ultimately be interacting with the chessboard.
Accordingly, we need a reference of the chessboard instance within the Piece class.

Game of Chess

126

Step 2 – creating individual child classes for all pieces
We can create individual child classes for all pieces as follows:

class King(Piece): shortname = 'k'
class Queen(Piece): shortname = 'q'
class Rook(Piece): shortname = 'r'
class Knight(Piece): shortname = 'n'
class Bishop(Piece): shortname = 'b'
class Pawn(Piece): shortname = 'p'

The description of the code is listed as follows:

 f We define classes for each of the pieces found on a chessboard. So, we have classes
named King, Queen, Rook, Knight, Bishop, and Pawn. These classes are derived
from the Piece super class.

 f For now, these child classes merely define the shortname associated with them.
We will later expand these child classes to define and enforce rules for movement
of each of these pieces.

Step 3 – defining a method to return the piece instance
We will define a method to return the piece instance as follows:

import sys
SHORT_NAME = {'R':'Rook', 'N':'Knight', 'B':'Bishop',
'Q':'Queen', 'K':'King', 'P':'Pawn'}
def create_piece(piece, color='white'):
 if piece in (None, ''): return
 if piece.isupper(): color = 'white'
 else: color = 'black'
 piece = SHORT_NAME[piece.upper()]
 module = sys.modules[__name__]
 return module.__dict__[piece](color)

The description of the code is listed as follows:

 f The code defines a dictionary with pieces shortname and full name as key-value pair.

 f We then define a method piece which takes a piece shortname and returns the
corresponding piece instance.

Project 4

127

Step 4 – creating the Board class
Now that we have a basic model ready for pieces, let's code the model to deal with their
placement on the chessboard. We code this in chessboard.py.(see code 4.02 chessboard.
py) by creating a Board class as follows:

import pieces
import re
START_PATTERN = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/
RNBQKBNR w 0 1'
class Board(dict):
 y_axis = ('A', 'B', 'C', 'D', 'E', 'F', 'G', 'H')
 x_axis = (1,2,3,4,5,6,7,8)
 def __init__(self, patt = None):
 self.process_notation(START_PATTERN)

The description of the code is listed as follows:

 f Our code begins with defining the starting pattern as per the FEN notation discussed
earlier. We do not include the castle and En passant related notation, because we
will not be coding that in our program.

 f We then define our Board class as a subclass of built-in dict type. This is because
we will store the pattern as a dictionary.

 f We then define x_axis and y_axis for our chessboard as nonimmutable tuples.

 f The __init__ method of our class simply calls the process_notation method of
the class.

Step 5 – displaying pieces on board for a given FEN notation
Pieces on Board for a given FEN notation can be displayed as follows:

def process_notation(self, patt):
 self.clear()
 patt = patt.split('')
 # expand_whitespaces blanks

def expand_whitespaces(match): return '' * int(match.group(0))
 patt[0] = re.compile(r'\d').sub(expand_whitespaces, patt[0])
 for x, row in enumerate(patt[0].split('/')):
 for y, alphabet in enumerate(row):
 if alphabet == '': continue

Game of Chess

128

 xycoord = self.alpha_notation((7-x,y))
 self[xycoord] = pieces.piece(alphabet)
 self[xycoord].ref(self)
 if patt[1] == 'w': self.player_turn = 'white'
 else: self.player_turn = 'black'

The description of the code is listed as follows:

 f The job of the process_notation method is to first expand the blank spaces
represented by integers into actual spaces. It uses Python built-in regular expression
module (re) to expand white spaces in a given FEN notation.

 f The code, expand_whitespaces, does something that might be tricky for Python
beginners. It replaces each digit by the corresponding number of whitespaces, so
you can later assume that a whitespace is an empty square. It then converts the FEN
notation into a string corresponding to x and y alphanumeric coordinate for every
piece. For doing this, it calls another method named alpha_notation, which is
defined in step 7.

 f The final two lines keep a track of turns taken by the players.

Step 6 – checking if a given coordinate is on the board
Finally, let's end this iteration by defining a method to check if a given coordinate is on the
board, as follows (see code 4.02 chessboard.py):

def is_on_board(self, coord):
 ifcoord[1] < 0 or coord[1] > 7
 or coord[0] < 0 or coord[0] >7:
 return False
 else: return True

Step 7 – generating alphabetic and numeric notation
We need a way to convert the x and y coordinates for a piece to its alphabetic equivalent
notation for example, A1, D5, E3, and so on. We accordingly define the alpha_notation
method as follows:

def alpha_notation(self,xycoord):
 if not self.is_on_board(xycoord): return
 return self.y_axis[xycoord[1]] +
 str(self.x_axis[xycoord[0]])

Project 4

129

Similarly, we define a method that takes in an x,y coordinate as input and returns its
equivalent numerical notation, as follows:

def num_notation(self, xycoord):
 return int(xycoord[1])-1,
 self.y_axis.index(xycoord[0])

Step 8 – checking places occupied on the board
Before every move, we will need to check all the places occupied by all the pieces of a given
color. This is required not only to calculate valid moves, but to also ensure that move by
some other piece does not cause a check on the king.

Accordingly, let's define a method to return a list of coordinates occupied by a given color
(see code 4.02 chessboard.py) as follows:

def occupied(self, color):
 result = []
 for coord in self:
 if self[coord].color == color:
 result.append(coord)
 return result

Step 9 – handling errors and exceptions
For handling errors and exceptions, we define a custom exception class named ChessError,
and all other exceptions will later be subclassed to it, as follows:

classChessError(Exception): pass

Objective Complete – Mini Debriefing
In this iteration, we created a basic Piece class and dummy child classes for each of the
pieces found on the chessboard. The individual piece classes inherit from the parent Piece
class. We handle color identification in the parent class because it is something we need to
do for all child classes.

We then defined our Board class and added some methods that we will surely need every
time we want to move a piece on the board.

We are yet to display those pieces on the board. We do that in the next iteration.

Game of Chess

130

Adding pieces on the board
We now have a code that converts the FEN notation to its expanded coordinate-based
representation. Now, let's code to actually display chess pieces on the board, based
on a given FEN notation, as shown in the following screenshot:

Prepare for Lift Off
We will use PNG images for displaying pieces on the board. We have provided PNG images
for each piece in a folder named pieces_image. The images have been named by
appending the shortname of each piece followed by the color of the piece. For instance,
black queen is saved as qblack.png, and white knight is saved as nwhite.png.

We have chosen PNG over GIF because unlike GIF, PNG allows for alpha channels (variable
transparency), automatic gamma correction on different platforms, and color correction.

Project 4

131

However, the TkinterPhotoImage class does not support the PNG format. We, therefore,
use the PIL to process PNG files.

Currently, the TkinterPhotoImage class supports images in GIF,
PPM, XBM, and PGM formats only. None of these formats are in vogue
currently. Unfortunately, support for new formats can only be added if
the Tcl/Tk starts supporting those formats.
Up till then, you may find it handy to use the PIL, which supports most
of the popular image formats including PNG, JPEG, GIF, TIFF, and BMP.
In addition to displaying images in Tkinter, the PIL module can
also be used for image processing, such as size transformations,
format conversions, thumbnail creation, and several other image
manipulation requirements.

We will add code for displaying chess pieces in our view file, gui.py.

Engage Thrusters

Step 1 – importing PIL
Because we will use the PIL module to display PNG images for our pieces, we start by
importing ImageTk from the PIL module as follows:

from PIL import ImageTk

Step 2 – defining method to draw pieces on chessboard
The code for adding pieces on the board is as follows (see code 4.03: gui.py):

def draw_pieces(self):
 self.canvas.delete("occupied")
 for xycoord, piece in self.chessboard.iteritems():
 x,y = self.chessboard.num_notation(xycoord)
 if piece is not None:
 filename = "../pieces_image/%s%s.png" %
 (piece.shortname.lower(), piece.color)
 piecename = "%s%s%s" % (piece.shortname, x, y)
 if (filename not in self.images):
 self.images[filename] =
 ImageTk.PhotoImage(file=filename)
 self.canvas.create_image(0,0, image=self.images[filename],
 tags=(piecename, "occupied"), anchor="c")
 x0 = (y * self.dim_square) + int(self.dim_square/2)
 y0 = ((7-x) * self.dim_square) + int(self.dim_square/2)
 self.canvas.coords(piecename, x0, y0)

Game of Chess

132

The description of the code is listed as follows:

 f We begin by importing ImageTk from the PIL module. We need this to handle
PNG images.

 f We define our draw_pieces() method, whose role is to draw the pieces on
a board for a given FEN notation. Because the FEN notation is available to all
class methods, we need not pass it as an argument.

 f Recall that we have created an instance of the chessboard which produces
a dictionary comprising of the coordinate-based location of a piece and the
corresponding piece instance as the key-value pair.

 f We loop through the dictionary using iteritems(), and break down the
x and y coordinate string into corresponding x-and-y-based number notation.

 f If there exists a piece for a given coordinate, we add it to the Canvas widget
using canvas.create_image().

 f One of the most important things to note here is that we have added two tags
to each of the pieces: the name of the piece and a static string name occupied.
Tags are the most important tool that you can use to operate on objects within
the Canvas widget.

 f The next two lines create the x, y coordinate for a given board size.

 f The final line of the method uses self.canvas.coords to place the piece
at the calculated coordinate.

 f Finally, we need to call our newly defined method. We do that from our show()
method to invoke the pieces.

Let's wrap this iteration by analyzing the two canvas-related methods
used here.
canvas.create_image(x, y, *options): The create_image method takes two
arguments that specify x and y coordinates for positioning the image. After the
coordinates, you may specify any number of option-value pairs. In our example,
we have used the anchor="c" option to keep the image in the center.
canvas.coords(tag/id, x0, y0, x1, y1, ..., xn, yn): The coords() method
decides or modifies the coordinates for items attached to a given tag or ID. If
coordinates are not specified, it returns a tuple specifying the coordinates of
the item referenced by given tag or ID. If coordinates are specified, then they
replace the current coordinates for the named item. If the tag or ID is attached
to multiple items, only the first item is used.

We will learn about the Canvas widget in greater detail as we progress. However, you may
find it useful to look at the interactive help for the Canvas widget, or a list of available
methods and configurable options.

Project 4

133

Objective Complete – Mini Debriefing
Our code can now take a FEN notation and display the images for corresponding pieces on
the chessboard. If you modify the FEN notation, the pieces on the chessboard will change
their places accordingly.

In the process, we got acquainted with the basic features of the Canvas widget. We also saw
two canvas-related methods to create image and to change the coordinates.

Finally, we saw how to overcome a Tkinter limitation on image handling by using the PIL
module to handle formats not supported by Tkinter.

Enforcing rules for pieces' movement
Before we get these chess pieces to move on click of mouse, we need to know how many
squares a given piece can move. We need to enforce rules for each of the chess pieces.

Prepare for Lift Off
Before we start coding the rules, let's quickly recap the rules of chess:

 f King can move only one square in any direction: up, down, to the sides,
and diagonally.

 f Queen can move in any one straight direction: forward, backward, sideways,
or diagonally; as far as possible as long as she does not move through any of
her own pieces.

 f Rook can move as far as it wants, but only forward, backward, and to the sides

 f Bishop can move as far as it wants, but only diagonally.

 f Knights are different from others. They must move two squares in one direction,
and then one more move at a 90 degree angle, following the shape of L. Knights
are also the only pieces that can jump over other pieces.

 f Pawns move forward, but capture diagonally. Pawns can only move forward one
square at a time, except for their very first move where they can move forward
two squares. Pawns can only capture one square diagonally in front of them.

The bottom line here is that we need to track three common things for each of the piece:

 f Its current position

 f Allowed directions for movement

 f Distance that a piece can move

Game of Chess

134

Engage Thrusters

Step 1 – tracking moves available for all pieces from Pieces
superclass
Because the preceding things can be tracked at a central place, let's define a method named
moves_available in our superclass, Pieces (see code 4.04: pieces.py), for tracking
moves available for all pieces as follows:

 def moves_available(self, pos, diagonal, orthogonal,
 distance):
 board = self.board
 allowed_moves = []
 orth = ((-1,0),(0,-1),(0,1),(1,0))
 diag = ((-1,-1),(-1,1),(1,-1),(1,1))
 piece = self
 beginningpos = board.num_notation(pos.upper())
 if orthogonal and diagonal:
 directions = diag+orth
 elif diagonal:
 directions = diag
 elif orthogonal:
 directions = orth

 for x,y in directions:
 collision = False
 for step in range(1, distance+1):
 if collision: break
 dest = beginningpos[0]+step*x,
 beginningpos[1]+step*y
 if self.board.alpha_notation(dest) not in
 board.occupied('white') +
 board.occupied('black'):
 allowed_moves.append(dest)
 elif self.board.alpha_notation(dest) in
 board.occupied(piece.color):
 collision = True
 else:
 allowed_moves.append(dest)
 collision = True
 allowed_moves = filter(board.is_on_board, allowed_moves)
 return map(board.alpha_notation, allowed_moves)

Project 4

135

The description of the code is listed as follows:

 f The method accepts four arguments: the current position of a piece, two Boolean
values representing whether or not diagonal and orthogonal movements are
allowed for a piece, and the number of squares a piece can move at one time.

 f Depending upon these arguments, the method collects all allowed moves for a given
piece in a list, allowed_moves.

 f Having collected all directions of movements, the code iterates through all locations
to detect any possible collision. If collision is detected, it breaks out of the loop, else
it appends the coordinate to allowed_moveslist.

 f collision = True is our way to break out of the loop. We need to break out of
the loop in two cases: when the destination is occupied, and when it is not occupied,
and we have already appended that position into our list of possible moves.

 f The second last line filters out those moves that fall out of the board, and the last
line returns the equivalent board notations for all allowed moves.

Having defined our moves_available method, we now simply need
to call it from different pieces class.(see code 4.04: pieces.py).

Step 2 – rules for the king, queen, rook and bishop class
King, queen, rook, and bishop pieces on the chessboard have relatively simple rules
governing them. These pieces can capture only in the direction in which they move.

Moreover, they move in either orthogonal, diagonal, or a combination of these two
directions. We have already coded moves_available in our superclass to handle
these directions.

Accordingly, deciding their available moves is just a matter of passing the right arguments
to our moves_available method.

class King(Piece):
 shortname = 'k'
 def moves_available(self,pos):
 return super(King, self).moves_available(pos.upper(), True,
 True, 1)
class Queen(Piece):
 shortname = 'q'
 def moves_available(self,pos):
 return super(Queen,self).moves_available(pos.upper(), True,
 True, 8)

Game of Chess

136

class Rook(Piece):
 shortname = 'r'
 def moves_available(self,pos):
 return super(Rook, self).moves_available(pos.upper(),
 False, True, 8)
class Bishop(Piece):
 shortname = 'b'
 def moves_available(self,pos):
 return super(Bishop,self).moves_available(pos.upper(), True,
 False, 8)

Step 3 – rules for knight
Knight is a different beast because it does not move orthogonally or diagonally.
It can also jump over pieces.

Let's, therefore override the moves_available method from our Knight class.

The Knight class is defined as follows (see code 4.04: pieces.py):

class Knight(Piece):
 shortname = 'n'
 def moves_available(self,pos):
 board = self.board
 allowed_moves = []
 beginningpos = board.num_notation(pos.upper())
 piece = board.get(pos.upper())
 changes=((-2,-1),(-2,1),(-1,-2),(-1,2),(1,-2),(1,2),
 (2,-1),(2,1))
 for x,y in changes:
 dest = beginningpos[0]+x, beginningpos[1]+y
 if(board.alpha_notation(dest) not in
 board.occupied(piece.color)):
 allowed_moves.append(dest)
 allowed_moves = filter(board.is_on_board, allowed_moves)
 return map(board.alpha_notation, allowed_moves)

The description of the code is listed as follows:

 f The method is quite similar to our previous super class method. However, unlike the
super class method, the changes are represented to capture moves two squares in
one direction, and then one more move at a 90 degree angle.

 f Similarly, unlike the super class, we do not need to track collisions, because knights
can jump over other pieces.

Project 4

137

Step 4 – rules for pawn
Pawn too has a unique movement, in that it moves forward, but captures diagonally.

Let's similarly override the moves_available class from within the Pawn class as
follows (see code 4.04: pieces.py):

class Pawn(Piece):
 shortname = 'p'
 def moves_available(self, pos):
 board = self.board
 piece = self
 if self.color == 'white':
 startpos, direction, enemy = 1, 1, 'black'
 else:
 startpos, direction, enemy = 6, -1, 'white'
 allowed_moves = []
 prohibited = board.occupied('white') +
 board.occupied('black')
 beginningpos = board.num_notation(pos.upper())
 forward = beginningpos[0] + direction, beginningpos[1]
 # Can a piece move forward?
 if board.alpha_notation(forward) not in prohibited:
 allowed_moves.append(forward)
 if beginningpos[0] == startpos:
 # If pawn in starting pos allow a double move
 double_forward = (forward[0] + direction,
 forward[1])
 if board.alpha_notation(double_forward) not in
 prohibited:
 allowed_moves.append(double_forward)
 # Check for Capturing Moves Available
 for a in range(-1, 2, 2):
 attack = beginningpos[0] + direction, beginningpos[1]
 + a
 if board.letter_notation(attack) in
 board.occupied(enemy):
 allowed_moves.append(attack)
 allowed_moves = filter(board.is_on_board, allowed_moves)
 return map(board.alpha_notation, allowed_moves)

The description of the code is listed as follows:

 f We first assign variables startpos, direction, and enemy depending on
whether the pawn is black or white.

Game of Chess

138

 f Similar to our previous moves_allowed methods, this method also collects all
allowed moves in a blank list, allowed_moves.

 f We then collect a list of all prohibited moves by concatenating two lists of squares
occupied by all black and white pieces.

 f We define a list, forward, which holds the position of the one square immediately
ahead of the current position of pawn.

 f A pawn cannot move forward if there is a piece in front of it. If the forward position
is not prohibited, the position is appended to our allowed_moves list.

 f A pawn can move two places forward from its starting position. We check to see if
the current position is the starting position, and if true, we append the double move
to our allowed_moves list.

 f A pawn can capture only diagonally adjacent pieces in front of it. We, therefore,
assign a variable attack to track the diagonally adjacent positions on the board.
If the diagonally adjacent square is occupied by an enemy, that position qualifies
to be appended to our list, allowed_moves.

 f We then filter our list to remove all positions which may fall off the board.

 f The last line returns all allowed moves as a list of corresponding letter notations,
as we had done in all our previous definitions.

Objective Complete – Mini Debriefing
In this iteration, we coded the logic for enforcing rules related to movement of chess pieces
on the board.

The chessboard logic
Before we allow chess pieces to move on click of the mouse button, we must have a record
of all possible movement options on the board. At every move, we also need to check that
it is a legitimate turn for a given player, and that the proposed move should not cause a
check on the king.

Now a check may occur on the king, not only from a piece that was moved, but from any
other piece on the board as a consequence of such movement. Thus, after every move,
we need to calculate the possible moves for all the pieces of the opponent.

Project 4

139

Accordingly we will need two methods to:

 f Keep track of all available moves for a player

 f Verify if there is a check on the king

Let's add the code for the preceding methods into our Board class. (See code 4.05:
chessboard.py)

Engage Thrusters

Step 1: Tracking all Available Moves
The code for keeping track of all available moves for a player is as follows:

def all_moves_available(self, color):
 result = []
 for coord in self.keys():
 if (self[coord] is not None) and self[coord].color == color:
 moves = self[coord].moves_available(coord)
 if moves: result += moves
 return result

The description of the code is listed as follows:

 f We have already coded our moves_available method in the previous iteration.
This method simply iterates through every item in the dictionary and appends the
moves_available result for each piece of a given color in a list named result.

Step 2: Getting Current Position of King
Before we code the method to verify if a king is in check, we first need to know the exact
position of the king. Let's define a method to get the current position of the king, as follows
(see code 4.05: chessboard.py):

def position_of_king(self, color):
 for pos in self.keys():
 if is instance(self[pos], pieces.King) and
 self[pos].color == color:
 return pos

The preceding code simply iterates through all items in the dictionary. If a given position is
an instance of the King class, it simply returns its position.

Game of Chess

140

Step 3: Verifying if King is under Check
Finally, we define a method to verify if the king is under check from the opponent as follows:

def king_in_check(self, color):
 kingpos = self.position_of_king(color)
 opponent = ('black' if color =='white' else 'white')
 for pieces in self.iteritems():
 if kingpos in self.all_moves_available(opponent):
 return True
 else:
 return False

The description of the code is listed as follows:

 f We first obtain the current position of the king, and the color of the opponent.

 f We then iterate through all possible moves for all pieces of the opponent. If the
position of the king coincides with any position from all possible moves, the king
is under check, and we return True, else we return False.

Objective Complete – Mini Debriefing
This completes our objectives for the iteration. We are now in a position to check for all
available moves for a player at a given point in the game. We can also verify if a king is
under check from the opponent team.

Making the chess functional
Now that we have all pieces and board-related validation rules in place, let's now add life to
our chess. In this iteration, we will make our chess game fully functional.

Project 4

141

In a game between two players, our chessboard would be like one shown in the
following screenshot:

The objective for this iteration is to move pieces on click of the left mouse button. When a
player clicks on a piece, our code should first check if it is a legitimate turn for that piece.

On the first click, the piece to be moved is selected, and all allowed moves for that piece are
highlighted on the board. The second click should happen on the destination square. If the
second click is done on a valid destination square, the piece should move from the source
square to the destination square.

We also need to code the events of capturing of pieces and check on king. Other attributes
to be tracked include list of captured pieces, halfmove clock count, fullmove number count,
and history of all previous moves.

Game of Chess

142

Engage Thrusters

Step 1 – updating the board for change in FEN notation
So far, we have the ability to take the original FEN notation and display it on board. However,
we need a way that takes any FEN notation and updates the display on the board. We define
a new method named show() to do this, as follows:

def show(self, pat):
 self.clear()
 pat = pat.split(' ')
 def expand(match): return ' ' * int(match.group(0))
 pat[0] = re.compile(r'\d').sub(expand, pat[0])
 for x, row in enumerate(pat[0].split('/')):
 for y, letter in enumerate(row):
 if letter == ' ': continue
 coord = self.alpha_notation((7-x,y))
 self[coord] = pieces.create_piece(letter)
 self[coord].place(self)
 if pat[1] == 'w': self.player_turn = 'white'
 else: self.player_turn = 'black'
 self.halfmove_clock = int(pat[2])
 self.fullmove_number = int(pat[3])

Step 2 – binding mouse click event
The pieces need to move on click of the mouse. So, we need to track the mouse click event.
We only need to track mouse clicks on the Canvas widget. Let us, therefore, add an event
handler to our GUI class immediately after the code that created the Canvas widget in the
init method as follows (see code 4.06: gui.py, __init__ method):

self.canvas.bind("<Button-1>", self.square_clicked)

This will bind the left mouse click event to a new method, square_clicked. However,
before we sit down and define this method, let's pause and think about the attributes we
need to keep tracking our program.

Project 4

143

Step 3 – adding attribute to track selected piece and remaining
pieces
First of all, we need to track all pieces remaining on the board after every move. So we
will create a dictionary pieces to keep track of this. We also need to track the name of the
piece selected by the mouse click. We store that in an attribute, selected_piece. When
a player clicks on a piece, we need to highlight all valid moves for that piece. We store all
valid moves for that piece in a list named focused. Let's define these three attributes in
our GUI class before defining any of the methods. We modify our GUI class to include these
attributes as follows:

class GUI:
 pieces = {}
 selected_piece = None
 focused = None
 #other attributes from previous iterations

Step 4 – identifying square clicked
We will code our square_clicked method that gets called from the event handler we
defined earlier.

The desired functionality of this method is twofold. We should be able to locate the
coordinate of a piece being clicked. The first click should select a given piece. The second
click should move the piece from the source square to the destination square.

The method is defined as follows(see code 4.06: gui.py):

def square_clicked(self, event):
 col_size = row_size = self.dim_square
 selected_column = event.x / col_size
 selected_row = 7 - (event.y / row_size)
 pos = self.chessboard.alpha_notation((selected_row,
 selected_column))
 try:
 piece = self.chessboard[pos]
 except:
 pass
 if self.selected_piece:
 self.shift(self.selected_piece[1], pos)
 self.selected_piece = None
 self.focused = None
 self.pieces = {}
 self.draw_board()
 self.draw_pieces()
 self.focus(pos)
 self.draw_board()

Game of Chess

144

The description of the code is listed as follows:

 f The first part of code calculates the coordinates for the piece clicked. Based on
the calculated coordinates, it stores the corresponding letter notation in a variable
named pos.

 f It then tries to assign the variable piece to the corresponding piece instance.
If there is no piece instance on the clicked square, it simply ignores the click.

 f The second part of the method checks if this is the second click intended to move a
piece to a destination square. If this is the second click, it calls the shift method,
passing in the source and destination coordinates as its two arguments.

 f If shift succeeds, it sets back all previously set attributes to their original empty
values and calls our draw_board and draw_pieces method to redraw the
board and pieces.

 f If this is the first click, it calls a method named focus to highlight all available
moves for the first click, followed by a call to draw the fresh board.

While coding the desired functionality for the square_clicked method, we called several
new methods from within it. We need to define those new methods.

Step 5 – getting the source and destination position
We have called the shift method from the square_clicked method. The following shift
code implemented is simply responsible for collecting the necessary arguments required for
the shift operation.

In the spirit of keeping logic separate from presentation, we do not process shift-related
rules in this view class. Instead, we delegate the shift method work from the GUI to Board
class. Once the logic or validation for shift has been implemented, the visible part of the shift
of pieces again takes place in the draw_board method of our GUI class.

Although this may seem like overkill at first, structuring logic and presentation in different
layers is very important for code reuse, scalability, and maintainability.

The code is as follows:

def shift(self, p1, p2):
 piece = self.chessboard[p1]
 try:
 dest_piece = self.chessboard[p2]
 except:
 dest_piece = None
 if dest_piece is None or dest_piece.color != piece.color:

Project 4

145

 try:
 self.chessboard.shift(p1, p2)
 except:
 pass

The code first checks if there exists a piece on the destination. If a piece does not exist at the
destination square, it calls on a method, shift, from chessboard.py.

Step 6 – collecting list of moves to highlight
We have also called the focus method from square_clicked method. The purpose of this
method is to collect all possible moves for a given piece in a list named focused. The actual
focusing of available moves takes place in the draw_board method of our GUI class.

The code is as follows (see code 4.06: gui.py):

def focus(self, pos):
 try:
 piece = self.chessboard[pos]
 except:
 piece=None
 if piece is not None and (piece.color ==
 self.chessboard.player_turn):
 self.selected_piece = (self.chessboard[pos], pos)
 self.focused = map(self.chessboard.num_notation,
 (self.chessboard[pos].moves_available(pos)))

Step 7 – modifying draw_board to highlight allowed moves
In the square_clicked method, we called the draw_board method to take care of
redrawing or changing the coordinates for our pieces. Our current draw_board method is
not equipped to handle this, because we had designed it in the first iteration only to provide
us with a blank board. Let's first modify our draw_board method to handle this, as follows
(see code 4.06: gui.py):

highlightcolor ="khaki"
def draw_board(self):
 color = self.color2
 for row in range(self.rows):
 color = self.color1 if color == self.color2 else self.color2
 for col in range(self.columns):
 x1 = (col * self.dim_square)
 y1 = ((7-row) * self.dim_square)
 x2 = x1 + self.dim_square
 y2 = y1 + self.dim_square

Game of Chess

146

 if(self.focused is not None and (row, col) in
 self.focused):
 self.canvas.create_rectangle(x1, y1, x2, y2,
 fill=self.highlightcolor, tags="area")
 else:
 self.canvas.create_rectangle(x1, y1, x2, y2,
 fill=color, tags="area")
 color = self.color1 if color == self.color2 else
 self.color2
 for name in self.pieces:
 self.pieces[name] = (self.pieces[name][0],
 self.pieces[name][1])
 x0 = (self.pieces[name][1] * self.dim_square) +
 int(self.dim_square/2)
 y0 = ((7-self.pieces[name][0]) * self.dim_square) +
 int(self.dim_square/2)
 self.canvas.coords(name, x0, y0)
 self.canvas.tag_raise("occupied")
 self.canvas.tag_lower("area")

The description of the code is listed as follows:

 f The additions made to our existing draw_board method are highlighted in the
preceding code. We first define an attribute named highlightcolor, and assign it
a color.

 f In essence, the code has been modified to handle the clicks. The first section of
highlighted code fills a different color to highlight all available moves.

 f The second section of highlighted code changes the coordinates of the
piece instance to be located on new coordinates. Note the use of canvas.
coords(name, x0, y0) to change the coordinates.

 f The last two lines change the precedence of options specified by tags.

If an object on the canvas is tagged to multiple tags, options defined for tags
at the top of the stack have higher precedence. You can, however, change the
precedence of tags by using tag_raise(name) or tag_lower(name).
For a complete list of canvas-related options, refer to interactive help for the
Canvas widget using help(Tkinter.Canvas) in the command line.

Project 4

147

Step 8 – defining attributes to keep game statistics
As a consequence of adding mobility to our pieces, we need to add the following new
attributes to our Board class to keep game statistics, as follows (see code 4.06: chessboard.py):

Class Board(dict):
 #other attributes from previous iteration
 captured_pieces = { 'white': [], 'black': [] }
 player_turn = None
 halfmove_clock = 0
 fullmove_number = 1
 history = []

Step 9 – preshift validations
For that, we will code the shift method of our Board class, as follows (see code 4.06:
chessboard.py):

 def shift(self, p1, p2):
 p1, p2 = p1.upper(), p2.upper()
 piece = self[p1]
 try:
 dest = self[p2]
 except:
 dest = None
 if self.player_turn != piece.color:
 raise NotYourTurn("Not " + piece.color + "'s turn!")
 enemy = ('white' if piece.color == 'black' else 'black')
 moves_available = piece.moves_available(p1)
 if p2 not in moves_available:
 raise InvalidMove
 if self.all_moves_available(enemy):
 if self.is_in_check_after_move(p1,p2):
 raise Check
 if not moves_available and self.king_in_check(piece.color):
 raise CheckMate
 elif not moves_available:
 raise Draw
 else:
 self.move(p1, p2)
 self.complete_move(piece, dest, p1,p2)

Game of Chess

148

The description of the code is listed as follows:

 f The code first checks if there exists a piece on the destination.

 f It then checks if it is a valid turn for the player. If not, it raises an exception.

 f It then checks if the move is proposed to occur to a valid location. If a player
attempts to move a piece to an invalid location, it raises a corresponding exception.

 f It then checks if there is a check on the king. To do that, it calls a method named
is_in_check_after_move, which is defined as follows:
def is_in_check_after_move(self, p1, p2):
 temp = deepcopy(self)
 temp.unvalidated_move(p1,p2)
 returntemp.king_in_check(self[p1].color)

 f This method creates a deep temporary copy of the object and tries to move the
piece on the temporary copy. As a note, shallow copy of a collection is a copy of
the collection structure, not the elements. When you do a shallow copy, the two
collections now share the individual elements, so a modification at one place affects
the other as well. In contrast, deep copies makes copy of everything, the structure
as well as the elements. We need to create a deep copy of the board, because we
want to check if the king makes a valid move before it actually moves and we want
to do that without modifying the original object state in any way.

 f After executing the move on the temporary copy, it checks if the king is in check to
return True or False. If the king is in check on the temporary board, it raises an
exception, not allowing such a move on our actual board.

 f Similarly, it checks for possible occurrence of checkmate or draw and raises
exceptions accordingly.

 f If no exceptions are made, it finally calls a method named move, which actually
executes the move.

Step 10 – actual movement of pieces
Actual movement of pieces can be coded as follows:

def move(self, p1, p2):
 piece = self[p1]
 try:
 dest = self[p2]
 except:
 pass

 del self[p1]
 self[p2] = piece

Project 4

149

Step 11 – Post movement updates
After the move has actually been executed, it calls another method named
complete_move, which updates game statistics as follows:

 def complete_move(self, piece, dest, p1, p2):
 enemy = ('white' if piece.color == 'black' else 'black')
 if piece.color == 'black':
 self.fullmove_number += 1
 self.halfmove_clock +=1
 self.player_turn = enemy
 abbr = piece.shortname
 if abbr == 'P':
 abbr = ''
 self.halfmove_clock = 0
 if dest is None:
 movetext = abbr + p2.lower()
 else:
 movetext = abbr + 'x' + p2.lower()
 self.halfmove_clock = 0
 self.history.append(movetext)

The preceding method does the following tasks:

 f Keeps track of statistics, such as number of moves, halfmove clock

 f Changes the player's turn

 f Checks if a pawn has been moved so as to reset the halfmove clock

 f And finally, appends the last move to our history list

Step 12 – classes to handle exceptions and errors
Finally, we add the following empty classes for various exceptions raised by us:

class Check(ChessError): pass
classInvalidMove(ChessError): pass
classCheckMate(ChessError): pass
class Draw(ChessError): pass
classNotYourTurn(ChessError): pass

Game of Chess

150

Objective Complete – Mini Debriefing
Let's summarize things that we did in this iteration

 f We started by binding a mouse click event to a method named square_clicked.

 f We added attributes to track selected piece and remaining pieces on the board.

 f We then identified the square clicked, followed by collecting the source and
destination position.

 f We also collected a list of all possible moves for the selected piece, and then
highlighted them.

 f We then defined attributes to keep vital game statistics.

 f We then did some preshift validations, followed by actual movement of pieces
on the board.

 f After a piece had been moved, we updated statistics about the game.

 f We had defined several exceptions in this iteration. We simply defined empty
classes to handle them silently.

Our chess game is now functional. Two players can now play a game of chess on
our application.

Adding menu and an info frame
Though our game is fully functional, let's add two small features to it.

Let's add a top menu item by navigating to File | New Game. When clicked, it should reset
the board to a new game.

Additionally, let's add a small frame at the bottom to display game-related information, such
as the last move, next turn, check, draw, and checkmate.

Project 4

151

Engage Thrusters

Step 1 – creating top menu
Our Canvas widget was set up in the the __init__ method of our GUI class.

Let's modify it to include the top menu, as follows (see code 4.06: gui.py):

def __init__(self, parent, chessboard):
 self.chessboard = chessboard
 self.parent = parent
 self.menubar = Menu(parent)
 self.filemenu = Menu(self.menubar, tearoff=0)
 self.filemenu.add_command(label="New Game",
 command=self.new_game)
 self.menubar.add_cascade(label="File", menu=self.filemenu)
 self.parent.config(menu=self.menubar)

Step 2 – adding the bottom frame to display game statistics
Let's also add a bottom frame to display game statistics to the same __init__ method,
as follows:

self.btmfrm = Frame(parent, height=64)
self.info_label = Label(self.btmfrm, text=" White to Start the
 Game ", fg=self.color2)
self.info_label.pack(side=RIGHT, padx=8, pady=5)
self.btmfrm.pack(fill="x", side=BOTTOM)

The modification to existing init method is highlighted. The code is self-explanatory.
We have done similar things in all our previous projects.

Step 3 – starting a new game from File | New game menu
The File | New game menu item calls on our method, new_game(). The code for new_
game() is as follows (see code 4.06: gui.py):

def new_game(self):
 self.chessboard.show(chessboard.START_PATTERN)
 self.draw_board()
 self.draw_pieces()
 self.info_label.config(text="White to Start the Game",
 fg='red')

Game of Chess

152

Step 4 – updating bottom label after every move
Finally, after every move, we want to update the label with details of the move and
information about the next players turn. We also want to update the frame to display
any error or exception that may have occurred during the move attempt. We accordingly
modify the shift method of our GUI class to do this update for us as follows:

def shift(self, p1, p2):
 piece = self.chessboard[p1]
 try:
 dest_piece = self.chessboard[p2]
 except:
 dest_piece = None
 if dest_piece is None or dest_piece.color != piece.color:
 try:
 self.chessboard.shift(p1,p2)
 exceptchessboard.ChessError as error:
 self.info_label["text"] = error.__class__.__name__
 else:
 turn = ('white' if piece.color == 'black' else 'black')
 self.info_label["text"] = '' + piece.color.capitalize() +" :
 "+ p1 + p2 + '' + turn.capitalize() + '\'s turn'

The description of the code is listed as follows:

 f The modifications to our shift method are highlighted. We have simply included
the shift method of our Board class in a try except block. If the shift is successful,
the Label widget is updated to show the current move and the next players turn.

 f If the shift is not successful, either because of invalid move or a check on the
king, the corresponding error class name is displayed in the label with error.__
class__.__name__.

Objective Complete – Mini Debriefing
This completes our goal for the iteration. The application now displays some useful
information to the players during the course of a chess game.

We also added a File | New menu item, which can be used to reset the board to
starting position.

Project 4

153

Mission Accomplished
We now come to the end of the project.

So what is it that we have achieved here? Let's list all the key learning from
this project:

 f How to structure a program into its model and view components

 f How to represent a problem domain in a desired notation

 f Peek into the versatility and power of the Tkinter Canvas widget

 f Basic usage of Canvas coordinates, object IDs and tags

 f How to work with newer image formats

 f Typical interaction of logic and presentation layers in a GUI program

Next project onwards, we take a look at different Tkinter widgets in greater detail.

A Hotshot Challenge
Here are the two hotshot challenges for you:

1. Add and implement the following menu items:

 � File | Save: Save a game state

 � File | Open: Loads a previously saved game

 � Edit| Undo: To let the players undo the turns played

 � Edit |Redo: To let the players redo any previous undo

 � View | Moves History: Opens a new Toplevel window to display the
history of the game

 � About| About: Displays information about the game

2. Implement castling and En passant features in the game.

Project 5
Audio Player

Let's now build an audio media player!

Our application should have features offered by typical media players, such as play, pause,
fast forward, rewind, next, mute, volume updates, and more. Our player should let the
listener easily access individual media files or media library from his or her local drive.

In addition to this, our player should be able to scan entire directories for a song and
accordingly, auto update the playlist with all supported formats. All this and more.

Let us start our project!

Mission Briefing
On completion our player will look as follows:

Audio Player

156

Our audio player will be capable of playing audio files in AU, MP2, MP3, OGG/Vorbis, WAV,
and WMA formats. It will have all the controls that you would expect of a small media player.

We will use cross-platform modules to write our code. This will ensure that our player can
play audio files on Windows, Mac OS X, and Linux platforms.

Why Is It Awesome?
In addition to getting to hear good music while testing our code, this project will introduce us
to several new ideas related to GUI programming with Tkinter.

For one, we get to work with new sets of widgets, such as the Listbox, Progressbar, Scale,
Radiobutton, and PMW Balloon widget.

We also take a look at the power of the Canvas widget in accommodating and precise
positioning of other widgets within it.

Towards the end of the project, we take a look at a Tkinter extension named PMW. We also
discuss some more Tkinter extensions that we do not use here, but are good to have in our
GUI programming arsenal.

Though not a topic for this book, we also get a brief insight into the world of audio
programming with Python, which necessarily looks at how to work with external
libraries and API implementations.

Your Hotshot Objectives
Some of the key objectives outlined for this project include:

 f Reinforcing our experiences and learning from previous projects

 f Working with new set of widgets, such as Listbox, Scale, Progressbar, and
Radiobutton

 f Getting to know more of the Canvas widget

 f Working with external APIs

 f Getting to know about some common Tkinter extensions, such as PMW, WCK,
Tix, and others

 f Learning to refactor code at each stage of development

Project 5

157

Mission Checklist
We will use the following additional libraries for this project:

Pyglet for audio manipulation
Window users can download and install binary packages for pyglet from:

http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet

Mac OS X and Linux users should download and compile pyglet from the source ZIP file
available at:

http://www.pyglet.org/download.html

When installing from source, you will also need to add the AVbin.dll to your current
program directory. The link to the DLL file is also available at the preceding download page.

PMW Tkinter extension
We will be using Python mega widgets (PMW) Tkinter extension to code some widgets
features not available in core Tkinter. PMW must be installed from the source package for
all platforms. The package can be downloaded at:

http://sourceforge.net/projects/pmw/files/Pmw/Pmw.1.3.3/

We use Version 1.3.3 in our application, and other versions of PMW may not
be compatible with our code.

Additional font
This is an optional component meant only to augment our styling. We install a font to mimic
the font of a digital clock. We have used the following font for this project:

http://www.dafont.com/ds-digital.font

After you have installed pyglet and PMW, execute the following command from your
Python shell:

>>> import pyglet, Pmw

If the command executes without any error message, you are ready to code your
media player.

Audio Player

158

Getting the audio to play
The first goal of our project is to add the ability to play the audio file. As usual, we will keep
the audio related logic separate from our GUI section. Therefore, we create two separate
files: main-gui.py and player.py. (See code 5.01)

Prepare for Lift Off
We first code a basic GUI, which includes a Play button (which toggles between play and
stop functionality) and an Add File button. At the end of this iteration, we should be able
to load a file, play it, and stop it. By the end of this section, our application will look like the
following screenshot:

Engage Thrusters

Step 1 – creating the GUI class
Let's create the GUI class. The code for main-gui.py is as follows (see code 5.01
main-gui.py):

from Tkinter import *
import tkFileDialog
import player
class GUI:
 def __init__(self, player):
 self.player = player
 player.parent = self
 self.root = Tk()
 self.create_button_frame()
 self.create_bottom_frame()
 self.root.mainloop()

Project 5

159

The description of the code is listed as follows:

 f We create a class named GUI, and run the Tkinter mainloop from within
its __init__ method.

 f We will separate the actual audio manipulation logic such as play, pause, rewind,
forward, and others in a separate class to be defined later. However, because
we want those functionalities to be available in this GUI class, we pass an object
instantiated out of that player class as an argument to our __init__ method.

 f The line self.player = player within our __init__ method ensures that the
player class instance is available throughout the GUI class.

 f Just like we want to access the properties and methods of the player class from
this GUI class, we also want the methods and attributes of the GUI class to be
available within our player class. We, therefore, use the line player.parent
= self in the __init__ method. This creates a reference to self so that all
its methods can be assessed inside the player class using the syntax parent.
attribute and parent.method().

 f With these two lines of code, we have ensured that all properties of the GUI class
will be available in the player class and vice versa; all properties of the player
class will be available in the GUI class.

Step 2 – creating the Play button and Add File button
For this, we add two methods: create_button_frame and create_bottom_frame. The
create_button_frame method holds the Play button, and the create_bottom_frame
method holds the Add File button, as follows:

def create_button_frame(self):
 buttonframe= Frame(self.root)
 self.playicon = PhotoImage(file='../icons/play.gif')
 self.stopicon = PhotoImage(file='../icons/stop.gif')
 self.playbtn=Button(buttonframe, text ='play',
 image=self.playicon, borderwidth=0,
 command=self.toggle_play_pause)
 self.playbtn.image = self.playicon
 self.playbtn.grid(row=3, column=3)
 buttonframe.grid(row=1, pady=4, padx=5)

def create_bottom_frame(self):
 bottomframe = Frame(self.root)
 add_fileicon = PhotoImage(file='../icons/add_file.gif')

Audio Player

160

 add_filebtn=Button(bottomframe,
 image=add_fileicon, borderwidth=0, text='Add File',
 command=self.add_file)
 add_filebtn.image = add_fileicon
 add_filebtn.grid(row=2, column=1)
 bottomframe.grid(row=2, sticky='w', padx=5)

The description of the code is listed as follows:

 f Each of the two buttons is associated with a TkinterPhotoImage class icon.
We have provided a set of icons in a separate folder named icons.

Step 3 – toggling between play and pause
The Play button has a command callback that toggles the button between play and
stop functionality. The toggle method is defined as follows:

def toggle_play_pause(self):
 if self.playbtn['text'] =='play':
 self.playbtn.config(text='stop', image=self.stopicon)
 self.player.start_play_thread()
 elif self.playbtn['text'] =='stop':
 self.playbtn.config(text ='play', image=self.playicon)
 self.player.pause()

The description of the code is listed as follows:

 f The method, toggle_play_pause, changes the icon alternatively between a play
and pause icon. It also calls the play and pause methods of the player class to
play and pause the songs.

Step 4 – add file dialog
The Add File button opens tkFileDialog, which associates the file opened with a class
attribute named currentTrack, as follows:

def add_file(self):
 tfile = tkFileDialog.askopenfilename(filetypes=
 [('All supported', '.mp3 .wav .ogg'),
 ('All files', '*.*')])
 self.currentTrack = tfile

Step 5 – creating the Player class
Now, let's code the basic player class. For now, we will only add play and pause
functionality to the class. The code for our player class is built upon the pyglet library.

Project 5

161

Pyglet provides an object-oriented interface for developing rich media
applications, such as games, audio and video tools, and others. It is
a popular choice with Python programmers for media manipulation,
because it has no external dependencies, supports a large number of
formats, and is available on all major operating systems.

Before we proceed further, you might want to look at the API documentation of
the pyglet player available at:

http://www.pyglet.org/doc/api/pyglet.media.Player-class.html

The documentation tells us that we can play an audio file using the following code:

myplayer= pyglet.media.Player()
source = pyglet.media.load(<<audio file to be played>>)
myplayer.queue(source)
myplayer.play()
pyglet.app.run()

We will use this code snippet to play the audio file. Accordingly, the code for our Player
class is as follows(see code 5.01 player.py):

import pyglet
from threading import Thread
class Player():
 parent = None
 def play_media(self):
 try:
 self.myplayer= pyglet.media.Player()
 self.source = pyglet.media.load(self.parent.currentTrack)
 self.myplayer.queue(self.source)
 self.myplayer.play()
 pyglet.app.run()
 except:
 pass

 def start_play_thread(self):
 player_thread = Thread(target=self.play_media)
 player_thread.start()

 def pause(self):
 try:
 self.myplayer.pause()
 self.paused = True
 except: pass

Audio Player

162

The description of the code is listed as follows:

 f We create a class named Player and initialize its parent class as None. Recall that
in our GUI class, we have defined a reference player.parent = self, so as to be
able to assess our GUI class properties from within our player class.

 f We then define our play_media method, which is responsible for actually playing
the sound. The method accesses the currentTrack attribute of the GUI class and
tries to play it.

 f Although this code can play audio files, pyglet requires running its own event loop to
play the audio. This means it will return control to our GUI mainloop only after it has
completed playing the entire sound, while freezing the Tkinter mainloop if run directly.

 f We, therefore, need to call the play method in a separate thread. We use the
threading module to define a new method named start_play_thread, which
simply calls our play_media method in a separate thread, thus preventing freezing
out of GUI.

 f Lastly, we define the pause method, which pauses or stops the audio file being
currently played. Pyglet does not differentiate between pause and stop functions.
Therefore, we are typically stopping the audio using the pause command.

Step 6 – running the application
We finally run the application by creating an object out of our GUI class. Because this GUI
class requires an object from the player class, we also instantiate a player object and pass it
as an argument to our GUI class, as follows:

if __name__ == '__main__':
 playerobj = player.Player()
 app = GUI(playerobj)

The description of the code is listed as follows:

 f The last section of code creates an object from the player class that we are yet to
define. The player class will take care of all audio manipulation using pyglet.

 f We first create an object out of the player class and pass it as an argument to the
__init__ method of our GUI class. This ensures that all attributes and methods
of the player class are available within the GUI class using the syntax player.
attribute and player.method().

Project 5

163

Objective Complete – Mini Debriefing
This completes our first iteration.

In this section, we created a GUI class, added a button that toggles between play and pause.
We added another button to add a file using tkFileDialog.

We also created a Player class, which uses pyglet for playing audio files. The files are played
in a separate thread to avoid freezing of the Tkinter mainloop while the audio is playing.

Finally, we ran our application by first creating a player object and passing it as an argument
to another object created by our GUI class.

We now have a functional audio player, where you can load a single file using
tkFileDialog. After loading, you can press the Play button and the audio file starts
playing. You can stop the audio by clicking the Play button, which toggles alternatively
between play and pause functions.

Adding a playlist
We now have the capability to play a single audio file, but what is an audio player if it does
not allow for a playlist?

Let's add a playlist feature to our player. Once a playlist is added, we accordingly need to
provide buttons to add files to the playlist, delete files from it, and add all supported files
from a chosen directory and the ability to delete all items in the list at once.

At the end of this iteration, we will have a player that looks like the following screenshot:

Audio Player

164

Prepare for Lift Off
We will use Tkinter Listbox widget to provide a playlist. Let's look at some of the key features
of the Listbox widget:

 f You create a Listbox like you create any other widget as follows:
mylist = ListBox(parent, **configurable options)

 f When you initially create the Listbox widget, it is empty. To insert one or more lines
of text into the Listbox, you use the insert() method, which takes two arguments:
an index of the position where the text is to be inserted and the actual string to be
inserted as follows:
mylist.insert(0, "First Item")
mylist.insert(END, "Last Item")

 f The curselection() method returns the index of all items selected in the list,
and the get() method returns the list item for a given index as follows:
mylist.curselection() # returns a tuple of all selected
items
mylist.curselection()[0] # returns first selected item
mylist.get(1) # returns second item from the list
mylist.get(0, END) # returns all items from the list

 f In addition, the Listbox widget has several other configurable options. For a complete
Listbox widget reference, type the following into your Python interactive shell:

>>> import Tkinter

>>> help(Tkinter.Listbox)

Engage Thrusters

Step 1 – adding an empty Listbox widget
Let's first add an empty Listbox widget, as follows (see code 5.02 main-gui.py):

def create_list_frame(self):
 list_frame = Frame(self.root)
 self.Listbox = Listbox(list_frame, activestyle='none',
 cursor='hand2', bg='#1C3D7D', fg='#A0B9E9',
 selectmode=EXTENDED, width=60, height =10)
 self.Listbox.pack(side=LEFT, fill=BOTH, expand=1)
 self.Listbox.bind("<Double-Button-1>",
 self.identify_track_to_play)

Project 5

165

 scrollbar = Scrollbar(list_frame)
 scrollbar.pack(side=RIGHT, fill=BOTH)
 self.Listbox.config(yscrollcommand=scrollbar.set)
 scrollbar.config(command=self.Listbox.yview)
 list_frame.grid(row=4, padx=5)

The description of the code is listed as follows:

 f We create a new frame, list_frame, to hold our List widget.

 f We create a Listbox widget within this frame and set some styling options, such as
background color, foreground color, and mouse cursor. The styling of active line is
set using the Listbox option, activestyle, which means that we do not want to
underline the selected item.

 f The selectmode option is configured as extended. See the following information
box for a list of choices available and their meaning. We will use the EXTENDED
select mode, because even though a single file can be played at once, we want to
allow the user to select more than one file together at once for deletion.

 f We add a scrollbar to the Listbox, similar to the way we did in our text editor project.

 f We bind the double-click of mouse to another method named identify_track_
to_play.

The Listbox widget offers four selection modes using the selectmode option
as follows:
SINGLE: It allows only a single row to be selected at one time.
BROWSE (Default mode): It is similar to SINGLE but allows for moving the
selection by dragging the mouse.
MULTIPLE: It allows for multiple selections by clicking on items one at a time.
EXTENDED: It allows for selection of multiple range of items using Shift and
Control keys.

Step 2 – identify track to play
Our program was simpler in the first iteration, where we had only song to play. However,
given a playlist, now we have to identify which song needs to be played from the given list.

The rule is simple. If a user clicks on a given song, it becomes our selected track. If the user
has made no selection and hits the Play button, the first song in the playlist should be played.
Put in code this would look like as follows (see code 5.02 main-gui.py):

def identify_track_to_play(self, event=None):
 try:
 indx = int(self.Listbox.curselection()[0])

Audio Player

166

 if self.Listbox.get(indx) == "":
 self.del_selected()
 except:
 indx = 0
 self.currentTrack =self.Listbox.get(indx)

 self.player.start_play_thread()

Step 3 – adding items to the list
Now that we have a Listbox and we can play any item by double-clicking on it, let's add
methods to populate and remove items from the list.

However, even before we do any modifications to our list, let's first define an empty list
named alltracks to keep track of all items in the playlist. We will need to update this
list after any changes are done to the list, as follows(see code 5.02 main-gui.py):

alltracks = []

We had already created an add file method in the last section. Let's modify it slightly
so that the file selected does not become the selected track, instead it gets added to the
playlist, as follows (see code 5.02 main-gui.py):

def add_file(self):
 filename = tkFileDialog.askopenfilename(filetypes=
 [('All supported', '.mp3 .wav'),
 ('.mp3 files', '.mp3'), ('.wav files', '.wav')])
 if filename:
 self.Listbox.insert(END, filename)
 self.alltracks = list(self.Listbox.get(0, END))

The description of the code is listed as follows:

 f The file selected through tkFileDialog is inserted at the end of the list box, and
our attribute, alltracks, is updated with all elements in the Listbox widget.

 f Notice that the get() method returns a tuple of all items. Because tuples
are immutable, we explicitly convert the tuple into a list by using the list
type declaration.

Step 4 – deleting items from the list
Let's add a new button to delete selected files. This is added to our existing
create_bottom_frame method, as follows (see code 5.02 main-gui.py):

del_selectedicon = PhotoImage(file='../icons/del_selected.gif')

Project 5

167

del_selectedbtn=Button(bottomframe, image=del_selectedicon, padx=0,
 borderwidth=0, text='Delete',
 command=self.del_selected)
del_selectedbtn.image = del_selectedicon
del_selectedbtn.grid(row=5, column=2)

This button has a command callback to a method named del_selected. The code for del_
selected is as follows:

def del_selected(self):
 whilelen(self.Listbox.curselection())>0:
 self.Listbox.delete(self.Listbox.curselection()[0])
 self.alltracks = list(self.Listbox.get(0, END))

As usual, we update our alltracks list after deletion of items from the Listbox widget.

Now, you can make a selection from your list box and click on the Delete button to remove
all selected items from the list box.

Step 5 – adding multiple items to the list
Adding individual audio files to a playlist can become tedious. We want to allow the users to
select a directory, and our list should get populated with all supported media formats from
that directory.

We, therefore, add a new button to allow for adding all media files from a given directory.
This is also added to our existing create_bottom_frame method, as follows (see code 5.02
main-gui.py):

add_diricon = PhotoImage(file='../icons/add_dir.gif')
add_dirbtn=Button(bottomframe, image=add_diricon,
 borderwidth=0, padx=0, text='Add Dir',
 command=self.add_dir)
add_dirbtn.image = add_diricon
add_dirbtn.grid(row=5, column=3)

We need to use the os module to grab all supported types. Let's first import the os module
into the current namespace, as follows:

import os

Now the associated command callback is as follows:

 def add_dir(self):
 path = tkFileDialog.askdirectory()
 if path:

Audio Player

168

 tfileList = []
 for (dirpath, dirnames, filenames) in os.walk(path):
 for tfile in filenames:
 if tfile.endswith(".mp3") or tfile.endswith(".wav")
 or tfile.endswith(".ogg"):
 tfileList.append(dirpath+"/"+tfile)
 for item in tfileList:
 self.listbox.insert(END, item)
 self.alltracks = list(self.listbox.get(0, END))

The description of the code is listed as follows:

 f The add_dir method first creates a temporary list, tfilelist.

 f It then iterates through all filenames fetched through the tkFileDialog.
askdirectory() method. If it encounters a supported file format, it appends the
file to the temporary list.

 f It then iterates through all items in the tfilelist, inserting them into our Listbox.

 f It finally updates our alltracks attribute with all items in the newly modified list.

Step 6 – deleting all items
Finally, we add a button to delete all items from the playlist. The associated button is added
to the create_bottom_frame method, as follows:

delallicon = PhotoImage(file='../icons/delall.gif')
delallbtn = Button(bottomframe, image=delallicon,
 borderwidth=0, padx=0, text='Clear All',
 command=self.clear_list)
delallbtn.image = delallicon
delallbtn.grid(row=5, column=4)

Now its associated command callback is as follows:

def clear_list(self):
 self.Listbox.delete(0, END)
 self.alltracks =list(self.Listbox.get(0, END))

Objective Complete – Mini Debriefing
This completes our second iteration.

In this iteration, we saw how to work with the Listbox widget. In particular, we learned to
add Listbox, add items to he Listbox widget, select a particular item from the Listbox widget,
and delete one or more items from it.

Project 5

169

You now have a playlist where you can add and delete items.

The Listbox widget has an event binding for double-click of the mouse button on an item.
This associated event callback selects the clicked item, and sends it across to be played on
a separate thread.

In the process, we saw a list of common operations done on the Listbox widget.

Adding more controls to the player
Now that we have a playlist, we need to ensure that songs play in a queue. We also need
to add a few more controls typically found in audio players, such as Next, Previous, Fast
Forward, Rewind, and Mute buttons. We also need to provide a method to change the
volume of playback.

At the end of this iteration, our player would have the following additional controls in
the top-button frame:

The pyglet API documentation provides simple interfaces for all these controls.
For your reference, the documentation is available at:

http://www.pyglet.org/doc/api/pyglet.media.Player-class.html

Let's begin by adding methods to handle these in our Player class.

Engage Thrusters

Step 1 – fast forwarding a track
We can fast forward a track as follows (see code 5.03 player.py):

FWDREWNDTIME = 20
#time to seek ahead or backwards in seconds
def fast_fwd(self):

Audio Player

170

 try:
 current_time = self.myplayer.time
 self.myplayer.seek(current_time+FWDREWNDTIME)
 except:pass

Step 2 – rewinding a track
We can rewind a track as follows:

def rewind(self):
 try:
 current_time = self.myplayer.time
 self.myplayer.seek(current_time-FWDREWNDTIME)
 except:pass

Step 3 – pausing a track
We can pause a track as follows:

def pause(self):
 try:
 self.myplayer.pause()
 self.paused = True
 except: pass

Step 4 – setting the volume of playback
We can set the volume of playback as follows:

def set_vol(self, vol):
 try:
 self.myplayer.volume = vol
 except:pass

Step 5 – muting and unmuting a track
We can mute and unmute a track as follows:

def mute(self):
 try:
 self.myplayer.volume = 0.0
 self.parent.volscale.set(0.0)
 except:pass

def unmute(self):
 self.set_vol(self.vol)
 self.parent.volscale.set(0.3)

Project 5

171

We will not discuss the code here in detail. For coding these functionalities, we have used
the API documentation for pyglet available at:

http://www.pyglet.org/doc/api/pyglet.media.Player-class.html

You can also access this documentation for the pyglet media player class by typing these two
lines in your Python interactive shell:

>>> import pyglet

>>> help (pyglet.media.Player)

We have been indiscriminately using try/except blocks in this program
to hide all errors emanating from the player class.
This might not be the best programming practice, but we ignore all
player class errors so as not to deviate from our discussion on Tkinter.
In a normal case, you would handle all different kind of errors using
different except blocks.

Step 6 – adding the control buttons
Now that we have the backend code to handle events, such as fast forward, rewind, volume
change, mute, and others, it is simply time to add buttons for each of these controls to our
GUI class. We link each of the buttons to its respective command callback.

So, we modify our create_button_frame widget to add buttons for these new controls.

We have added hundreds of buttons so far in our previous project. So, we do not reproduce
the entire code here for sake of brevity. Rather, we simply show the implementation of the
Previous Track button as one of its sample, and how it calls the associated command callback
to the previous() method of the player class as follows (see code 5.03 GUI.py):

previcon = PhotoImage(file='../icons/previous.gif')
prevbtn=Button(buttonframe, image=previcon,
 borderwidth=0, padx=0, command=self.prev_track)
prevbtn.image = previcon
prevbtn.grid(row=3, column=1, sticky='w')

Step 7 – changing volume with the ttk Scale widget
In addition to these buttons, we also use the ttk Scale widget to allow the users to change
the volume. The native Scale widget implementation in core Tkinter looks rather old
fashioned and we instead settle for the ttk Scale widget, which has same set of configurable
options as the core Tkinter Scale widget, as follows:

self.volscale = ttk.Scale(buttonframe, from_=0.0,
 to =1.0 , command=self.vol_update)

Audio Player

172

self.volscale.set(0.6)
self.volscale.grid(row=3, column=7, padx=5)

As per the pyglet documentation, the volume of playback must be specified as a float
ranging from 0.0 (no sound) to 1.0 (maximum sound), and our updateVolume method
uses this as the basis.

This has an attached callback to another method, vol_update, in the GUI class,
which simply delegates the task to the player method to handle volume changes.

def vol_update(self, e):
 vol = float(e)
 self.player.set_vol(vol)

The description of the code is listed as follows:

 f The pyglet Player class expects volume to be specified as a float, but the command
here receives the new value of scale as a string. We, therefore, first convert it to
float, and then pass it to the set_vol method of the player class.

Objective Complete – Mini Debriefing
This completes the second iteration where we added playback control features to
our program.

This section was more about sticking to the API documentation of pyglet and trusting
it as a blackbox to deliver what it says: namely, to be able to play and control audio.

We also saw how to use the ttk Scale widget in a practical demonstration of building
our volume control.

Classified Intel
When it came to choosing an external implementation (as we did for audio API here),
we first searched through the Python Standard Library at:

http://docs.python.org/library/

Because the Standard Library does not have a suitable package for us, we turned our
attention to Python Package Index to see if there exists another high-level audio
interface implementation. The Python package index lives at:

http://pypi.python.org/

Project 5

173

Fortunately, we came across several audio packages. After comparing the packages against
our needs and seeing how active its community was, we settled for pyglet. The same
program could have been implemented with several other packages, though with varying
levels of complexity.

In general, the lower you go down the protocol stack, the more complex your
programs would get.
However, at lower layers of the protocol, you get a finer control over the
implementation at the cost of increasing learning curves.
For instance, because the pyglet player class does not differentiate between
pause and stop functionality, we had to altogether do away with the pause
functionality and settle for a simpler implementation where pause and stop
mean the same.
For a finer control of audio source, we will have to go deeper into the protocol
stacks, which we will avoid for now, so as not to digress from our topic.

Adding the top display console
In this iteration, we will add a display console at the top of our player. This console will
display the time counter for our music player. It will also display the currently played track.

We will also code a progress bar, which will show the progress of the current track
being played.

At the end of this iteration, the top frame of our player will look like the following
screenshot:

Audio Player

174

Prepare for Lift Off
We need to precisely place our timer clock text and the currently playing track text on the
top of an image.

Recall that the Canvas widget allows for a deep nested placement of other widgets inside
it with precise coordinate-based control. This is all that we want to display the console. We
will, therefore, use the Canvas widget as the container for our console.

Engage Thrusters

Step 1 – creating the top console and progress bar
We accordingly define a new method named create_console_frame in our GUI class,
which holds our image, clock text, and currently playing text for creating the top console
and progress bar as follows(see code 5.04 GUI.py):

def create_console_frame(self):
 consoleframe = Frame(self.root)
 self.canvas = Canvas(consoleframe, width=370, height=90)
 self.canvas.grid(row=1)
 photo = PhotoImage(file='../icons/glassframe.gif')
 self.canvas.image = photo
 self.console = self.canvas.create_image(0, 10, anchor=NW,
 image=photo)
 self.clock = self.canvas.create_text(32, 34, anchor=W,
 fill='#CBE4F6', font="DS-Digital 20", text="00:00")
 self.songname = self.canvas.create_text(115, 37, anchor=W,
 fill='#9CEDAC', font="Verdana 10",
 text='\"Currently playing: none [00.00] \"')
 self.progressBar = ttk.Progressbar(consoleframe, length =1,
 mode="determinate")
 self.progressBar.grid(row=2, columnspan=10, sticky='ew',
 padx=5)
 consoleframe.grid(row=1, pady=1, padx=0)

The description of the code is listed as follows:

 f The code defines a new frame, consoleframe, and adds a Canvas widget of
desired height and width to the frame.

 f We use canvas.create_image to add the background image. The background
image is provided in the icons folder.

Project 5

175

 f We use canvas.create_text to add one text for displaying the clock and
another text to display the currently playing track. The desired location of each of
these texts is specified using x, y coordinates.

 f We also specify a special font for displaying our clock. If this font is installed on
a computer, the text is displayed in the specified font. If the font is not installed,
display occurs in the default font.

 f Finally, we display a ttkProgressbar widget, which shall be used to display the
progress of track as it plays. We use the determinate mode of the progress bar,
because we want to display the completion of track relative to its overall length. For
now, the overall length of track is initialized to 1. It will be updated as the song starts
to play.

A ttkProgressbar widget displays the status of progress of an operation.
The progress bar can run in two modes:
Determinate: This mode shows the amount of work completed
relative to the total amount of work.
Indeterminate: This provides an animated show of the progress,
but does not show the relative amount of work completed.

Step 2 – getting the total duration of a track
The contents of the display panel and the progress on the progress bar need to be updated
every time a new song starts playing. In our current code, a new song starts playing when
a user clicks on the Play button or double-clicks on a particular track, or when the Next or
Previous button is clicked.

Before we update the clock or the progress bar, we need to know two things:

 f Total length of current track

 f Duration for which a current track has been played

Fortunately, pyglet provides API calls to determine both these things. As per its
documentation, the total length of a song currently playing can be obtained from
the code: source.duration.

Similarly, the current duration of play can be obtained using myplayer.time.

Audio Player

176

Let's, therefore, define two new methods in our Player class to get the value of these two
variables, as follows (code 5.04player.py):

def song_len(self):
 try:
 self.song_length = self.source.duration
 except:
 self.song_length = 0
 return self.song_length
def current_time(self):
 try:
 current_time = self.myplayer.time
 except:
 current_time = 0
 return current_time

Now, we slightly modify our start_play_thread method to call our song_len method
so that our song_length attribute is updated with the value of the song length.

def start_play_thread(self):
 player_thread = Thread(target=self.play_media)
 player_thread.start()
 time.sleep(1)
 self.song_len()

Notice that we made the method to sleep for one second, so as to enable to length
metadata to populate. If we do not make it sleep for a second, the code would execute
so fast that it would end even before the song_length variable is updated by pyglet.

Now, we have access to the total length and current duration of play. We now want to
update the current track every time a new track is played.

Step 3 – updating console at launch of play
A new track is played when a user hits the Play button, or when he or she double-clicks a
particular song, or when he or she clicks the Next or Previous button.

If you look at the code from previous iteration (code 5.03 GUI.py), all these methods call the
self.player.start_play_thread()functionality to start the playback. However, now
we need to update the console display every time a new player thread is started.

We, therefore, need to refactor our code. For one, we will route all calls to player.
start_play_thread()through a single method, which will update the display as
the player thread starts.

Project 5

177

Step 4 – updating timer clock and progress bar at regular
intervals
We, therefore, define a new method named launch_play, and replace all instances
of player.start_play_thread()from previous code to now call our launch_play
method, as follows (see Code 5.04.py main-gui.py):

def launch_play(self):
 try:
 self.player.pause()
 except:
 pass
 self.player.start_play_thread()
 song_lenminute = str(int(self.player.song_length/60))
 song_lenseconds = str (int(self.player.song_length%60))
 filename = self.currentTrack.split('/')[-1] + '\n
 ['+ song_lenminute+':'+song_lenseconds+']'
 self.canvas.itemconfig(self.songname, text=filename)
 self.progressBar["maximum"]=self.player.song_length
 self.update_clock_and_progressbar()

The description of the code is listed as follows:

 f The code first tries to stop any other track that might be playing at that time,
because we don't want multiple tracks playing at a given time.

 f It then starts to play the next track in a separate thread. The thread method
automatically updates the song length, and now we have access to the song
length in the variable self.player.song_len.

 f The next two lines break the song length into equivalent minutes and seconds.

 f The next line breaks the file name and gets hold of the song name from the
complete path. It then appends the time calculated in minutes and seconds
to the file name.

 f We set the maximum value for our progress bar, which is a floating point number
specifying the maximum value of the progress bar. For viewing all configurable
options for ttk Progressbar, enter the following into your Python interactive console:
>>> import ttk

>>> help(ttk.Progressbar)

 f The next line uses canvas.itemconfig to update the song name and song length
in the display console.

Audio Player

178

Just like we use config to change value of widget related options, the
Canvas widget uses itemconfig to change the options for individual
items within the canvas.
The format for itemconfig is as follows: itemconfig(itemid,
**options).

In this step, we will learn to update timer clock and progress bar at regular intervals.
Although song name and song length are to be updated just once for a given song, the play
duration and progress bar need to be updated at small intervals. We, therefore, handle it in a
separate method named update_clock_and_progressbar().

We want to display time in the format you normally find in a digital clock. We accordingly
define a string format named timepattern, as follows:

timepattern = '{0:02d}:{1:02d}'.

Now, let us turn our attention to updating the display clock and the progress bar. We have
already made a call to update_clock_and_progressbar()which is supposed to take
care of this work. Let's now code this method, as follows(see Code 5.04.py main-gui.py):

def update_clock_and_progressbar(self):
 current_time = self.player.current_time()
 song_len = (self.player.song_len())
 currtimeminutes = int(current_time/60)
 currtimeseconds = int(current_time%60)
 currtimestrng = self.timepattern.format(currtimeminutes,
 currtimeseconds)
 self.canvas.itemconfig(self.clock, text= currtimestrng)
 self.progressBar["value"] = current_time
 self.root.update()
 if current_time == song_len: #track is over
 self.canvas.itemconfig(self.clock, text= '00:00')
 self.timer=[0,0]
 self.progressBar["value"] = 0
 else:
 self.canvas.after(1000, self.update_clock_and_progressbar)

This code runs itself every 1000 ms, forces a root update, and changes the time and progress
bar value. To keep running regularly, it calls back itself after every 1000 ms.

Project 5

179

When a track is over, it resets the values of clock and progress bar to zero, and exits out of
the update loop.

We used the canvas.after method to call the same method at
intervals of one second. Thus, this method would get to be called at one
second interval throughout playing of the current track. We also kept a
condition to break out of the loop when the current track ended playing.

Objective Complete – Mini Debriefing
This completes this iteration. In this iteration, we built a functional display console and a
progress bar to display time and information about the current track.

We started by creating a blank canvas in the top area of our root window. We then added
an image that resembles a display console. We then used canvas.create_text to
precisely position the timer clock, name of currently playing track, and the total track
length in the console.

We also created a ttk progress bar.

We then calculated the track length using the pyglet API. Next, we made all calls to play
the track to be routed through an intermediate method which updated the console with
information about the currently playing track.

We also added a method to update the clock and progress bar at regular intervals.

Looping over tracks
So now we have a functional player. It though lacks a vital feature. There is no tracking over
loop. That means every time a user listens to a track, the player stops after playing that track.
It does not jump to the next track in our playlist.

Let's provide some radio buttons to let the user choose the looping structure. By the end
of this iteration, we will add the following to our player:

Audio Player

180

In essence, our player should provide choice amongst:

 f No loop: Playing a track and ending there

 f Loop Current: Playing a single track repeatedly

 f Loop All: Playing through the entire playlist, one after another

Let's code this feature.

Engage Thrusters

Step 1 – creating the radio buttons
The corresponding code for creating radio buttons in the GUI class is as follows
(see Code 5.05 main-gui.py):

#radio buttons added to create_bottom_frame
self.loopv = IntVar()
self.loopv.set(3)
for txt, val in self.loopchoices:
 Radiobutton(bottomframe, text=txt, variable=self.loopv,
 value=val).grid(row=5, column=4+val, pady=3)

Step 2 – on end of song callback
Let's look at the player end logic first when a song ends. We need a way to call a method
once a song has completed playing. Luckily, the pyglet player allows for an on_eos (on end
of song) callback.

We first modify our existing play_media method in the player class to include this
callback.(See Code 5.05 player.py)

self.myplayer.push_handlers(on_eos=self.what_next)

This callback is executed on end of a given song. We add the callback to a method named
what_next.

Step 3 – what next?
This what_next method essentially looks for the selected choice on looping and
accordingly takes some action. The code for what_next is as follows:

def what_next(self):
 if self.stopped:
 self.stopped = False

Project 5

181

 return None
 if self.parent.loopv.get() == 1:
 # No Loop
 return None
 if self.parent.loopv.get() == 2:
 # Loop current
 self.parent.launch_play()
 if self.parent.loopv.get() == 3:
 # Loop All
 self.fetch_next_track()

The description of the code is listed as follows:

 f The on_eos callback is also called just in case a track is stopped in the middle.
That means that if a stop action occurs, we don't want to do anything next. We,
therefore, break out of the method by calling a blank return.

 f The code then checks the value of self.parent.selectedloopchoice.

 f If the selected loop value is 1(No Loop), it does not play the next song, but breaks
out of the method with a return statement.

 f If the loop value is 2 (loop over the current song), it again calls the launch_play
method without changing the current track.

 f If the loop value is 3 (Loop All), it calls another method named fetch_next_
track.

Step 4 – fetching the next track
The code of fetch_next_track to fetch the next track is as follows:

def fetch_next_track(self):
 try:
 next_trackindx = self.parent.alltracks.index(
 self.parent.currentTrack) +1
 self.parent.currentTrack =
 self.parent.alltracks[next_trackindx]
 self.parent.launch_play()
 except:pass
 # end of list – do nothing

The description of the code is listed as follows:

 f This code simply increments index by one, sets the current track variable to the next
item in the list of all songs, and calls launch_play() to play the next track.

Audio Player

182

Objective Complete – Mini Debriefing
This completes the coding of looping in our player.

This iteration relied on the fact that pyglet allows an on_oes (on end of song) callback. At
the end of a track, we use this callback to check the looping choice specified by the user.

If the user does not want to loop through the playlist, we pass a blank return statement. If
the user wants to loop over the current song, we call the launch_play method without
incrementing the current track. If the user wants to loop through the entire list, we call a
method named fetch_next_track, which increments the index of song by one, and then
calls the launch_play method to play the next song.

In this iteration, we also saw a sample usage of radio buttons.

Our player is now equipped to loop over a playlist based on preferences provided by
the user.

Adding the contextual menu
In this quick iteration, we add a contextual pop-up menu or the right-click menu with
shortcuts to some common operations on the player.

For now, we will add just two functions to the right-click menu: Play and Delete.

After completion, the right-click menu will open, as shown in the following screenshot:

Engage Thrusters

Step 1 – creating the contextual menu
We have done similar contextual menus in our text editor, so we do a quick round up.

Project 5

183

We add a new method, context_menu, and call it from the GUI __init__ method, as
follows (see Code 5.06 main-gui.py):

def create_context_menu(self):
 self.context_menu = Menu(self.root, tearoff=0)
 self.context_menu.add_command(label="Play",
 command=self.identify_track_to_play)
 self.context_menu.add_command(label="Delete",
 command=self.del_selected)

We also define a show_context_menu method and bind it to right-click of
mouse<<Button-3>> from within our create_list_frame, immediately
next to where the Listbox widget is defined, as follows:

def show_context_menuContext_menu(self,event):
 self.context_menu.tk_popup(event.x_root+45, event.y_root+10,0)

Step 2: overriding the close button
While we are at it, let us code a little overlooked function. Now that we have the capability
to loop over entire playlists, we do not want the player to close without stopping the songs
being played. Let us, therefore, override the root.destroy() method to stop tracks
before exiting.

To override the destroy method, we first add a protocol override method to our GUI __
init__ method, as follows (see Code 5.06 main-gui.py):

self.root.protocol('WM_DELETE_WINDOW', self.close_player)

Finally let's define our close_player method, as follows:

def close_player(self):
 if tkMessageBox.askokcancel("Quit", "Really want to quit?"):
 try:
 self.player.pause()
 except:
 pass
 self.root.destroy()

Objective Complete – Mini Debriefing
The contextual menu is now added to our program. A user can now right-click on an item
and select to play or delete it.

We have also overridden our close button to ensure that any playing track is stopped before
we exit the player.

Audio Player

184

Adding a tooltip and finalizing our
player

In this iteration, we add tooltip also named the Balloon widget to all the buttons in our
player.

A tooltip is a small popup, which shows up when you hover your mouse over the Bound
widget (buttons in our case). A typical tooltip on our application would look as shown in
the following screenshot:

Prepare for Lift Off
Although core Tkinter has many useful widgets, it is far from complete. For us, the tooltip
or Balloon widget is not provided as a core Tkinter widget. We, therefore, look for these
widgets in what are named Tkinter extensions.

These extensions are nothing but modified Tkinter widgets to act and behave with new
functionalities not offered by Tkinter.

There are literally hundreds of Tkinter extensions. In fact, we could write our own Tkinter
extensions. However, some of the popular Tkinter extensions are as follows:

 f Python Mega Widgets (PMW) available at http://pmw.sourceforge.net

 f Tix available at http://wiki.Python.org/moin/Tix

 f TkZinc available at http://wiki.Python.org/moin/TkZinc

 f Widget Construction Kit(WCK) available at http://effbot.org/zone/wck.htm

PMW list of extensions
Talking about PMW, here is a quick list of widget extensions from the package:

Widgets
 f ButtonBox

 f ComboBox

 f Counter

Project 5

185

 f EntryField

 f Group

 f HistoryText

 f LabeledWidget

 f MainMenuBar

 f MenuBar

 f MessageBar

 f NoteBook

 f OptionMenu

 f PanedWidget

 f RadioSelect

 f ScrolledCanvas

 f ScrolledField

 f ScrolledFrame

 f ScrolledListBox

 f ScrolledText

 f TimeCounter

Dialogs
 f AboutDialog

 f ComboBoxDialog

 f CounterDialog

 f Dialog

 f MessageDialog

 f PromptDialog

 f SelectionDialog

 f TextDialog

Miscellaneous
 f Balloon

 f Blt(used for graph generation)

 f Color Module functions

Audio Player

186

PMW offers a large list of extended widgets. For a demonstration of all
these widgets, browse into the PMW package that you installed earlier, and
look for a directory named demo. Within demo, look for a file, all.py,
which demonstrates all PMW extensions with sample working code.

Engage Thrusters

Step 1 – importing PMW
PMW provides the Balloon widget implementation, but it is not part of standard Tkinter
library. We need to add it. To add PMW, refer to our discussion under the Mission Checklist
section. Once added, you need to import PMW into your namespace, as follows (see Code
5.07 main-gui.py):

import Pmw

Step 2 – instantiating the Balloon widget
We then instantiate the Balloon widget within the mainloop from our __init__ method
as follows:

 self.balloon = Pmw.Balloon(self.root)

Step 3 – adding Balloon tooltips to all buttons in our player
Finally, we bind the Balloon widget to each of the button widgets in our player. We will not
reproduce the code for each button. However, the format is as follows:

balloon.bind(name of widget, 'Description for the balloon')

So our Add File button would have a balloon binding as follows:

self.balloon.bind(add_filebtn, 'Add New File')

We add similar code for each button in 5.07 main-gui.py.

Before we end this iteration, let us add a title to our player and add a title bar icon as well,
as follows:

self.root.title('Media Player')
self.root.iconbitmap('../icons/mp.ico')

Project 5

187

Objective Complete – Mini Debriefing
This completes the iteration. We added Balloon tooltips to our player buttons using PMW
Tkinter extension.

Most importantly, we got to know about Tkinter extensions and when to use them.

When you come across a widget implementation need that is not available
as a core widget, try looking for implementations of it in PMW or Tix. If you
don't find one that suits your need, search the Internet for some other Tkinter
extension.
If you still don't find your desired implementation, try out WCK, which lets
you implement all types of custom widgets. However, note that WCK is not
under active development for long.

Mission Accomplished
This brings us to the end of this project. Our audio media player is ready!

Let us recap the things that we touched upon in this project.

Some of the topics we covered in this project could be summarized as follows:

 f We reinforced a lot of GUI programming techniques that we discussed during
previous projects

 f We learned how to work with more widgets, such as Listbox, ttk Scale, Progressbar,
and Radiobutton

 f We got further insight into the power of the Canvas widget

 f We saw how to work with external APIs to ease program development

 f We got to know about some common Tkinter extensions, such as PMW, WCK, Tix,
and others

 f We also saw how to refactor code at each stage of development

Audio Player

188

A Hotshot Challenge
Here are some hotshot challenges on which you can work:

 f Currently, our code adds each button separately. This makes the program long
and adds unnecessary boilerplates. Refactor this code to add all buttons using
loops. This should considerably shorten the length of our GUI class, while
streamlining the buttons to be handled from a small loop.

 f Currently, the program keeps record of songs only during a single program run.
The songs need to be loaded in subsequent runs. Try to incorporate auto-playlist
load based on last run playlist history using object persistence.

 f Find a Python package that lets you extract useful metadata from your audio files:
things such as its author, genre or frequencies, and number of channels. Use these
metadata to display more information about the current track in the display console.

 f Add skinning ability to the player, letting the user select a different skin for
the player.

 f Look out for some network related packages to support streaming of online audio.
Incorporate the feature of being able to tune in to online radio stations.

Project 6
Drawing an Application

We are now on to developing our last major Tkinter application. In this project, we will
develop a drawing application, making extensive use of the Tkinter Canvas widget while
applying everything else that we have learned so far.

Mission Briefing
Our drawing program will enable the user to draw basic shapes such as lines, circles,
rectangles, and polygons. It will also let the user draw with the brush tool using different
colors that can be chosen from the color palette.

In its final form, our drawing program will look like the following screenshot:

Drawing an Application

190

Why Is It Awesome?
While the application itself is rudimentary, it is sufficient to demonstrate some important
aspects related to GUI programming.

This project aims to drive home two important lessons. First, we will experience the power
of the Canvas widget. Second, we will learn how to develop higher-level custom GUI
frameworks for our applications.

As we shall see, custom GUI frameworks enable us to develop programs rapidly with minimal
amount of code repetition.

By the end of this project, you should not only be in a position to extend this application to
add many more features, but you should also be able to take up and implement GUI projects
of increasing complexity.

Your Hotshot Objectives
The key learning objectives for this project can be outlined as follows:

 f Learning to build custom GUI frameworks for rapid application development

 f Writing small unit tests for our code

 f Understanding how to use inheritance in our projects

 f Getting to know of other Tkinter modules, such as tkColorChooser

 f Creating and manipulating items on the Canvas widget

 f Working with the tk ComboBox widget

 f Getting to know the available winfo methods

 f Working with mouse events on the Canvas widget

 f Reinforcing things that we have learned in previous projects

Mission Checklist
If you have developed the game of chess, you might have installed the Python Imaging
Library (PIL) to render PNG files. This is the only external dependency for our program.
If you haven't already done so, download and install PIL from:

http://www.pythonware.com/products/pil/

If you are working on windows x64 (64 bit) or MacOSX machine, you may instead need to
install and work with Pillow, which is a replacement for PIL available at:

http://www.lfd.uci.edu/~gohlke/pythonlibs/#pillow

Project 6

191

After you have installed the package, go to your Python interactive prompt and type:

>>from PIL import ImageTk

If this executes without any error messages, you are ready to make our drawing application.

Developing a bare bone GUI
framework

One of the most important lessons aimed in this project is to learn to develop custom
GUI frameworks. Tkinter in itself is a GUI framework. However, the kind of framework we
intend to build here is a higher-level framework, built on top of Tkinter to suit our custom
programming needs.

We will not develop a full-blown framework. Rather, we will develop only a small segment
of it to give you a flavor of building a custom framework.

Prepare for Lift Off
So why do we need another framework on top of Tkinter?

Consider a large program which has say 10 different menus, each menu having say 10 menu
items. We will have to then write 100 lines of code simply to display these 100 menu items.

You not only need to make each widget by hand, but also have to link each of them manually
to other commands besides having to set tons of options for each of them.

If we keep doing this for all our widgets, our GUI programming becomes an exercise in typing.
Every extra line of code that you write adds to the program complexity, in a sense that it
becomes more difficult for someone else to read, maintain, modify, and/or debug the code.

This is where developing a custom framework comes to our aid. Let's see what it means.

Assume that we anticipate that our drawing program will have a large number of menu
items. Now we know how to add menu and menu items. Each new menu item would take
at least one line of code to display.

To avoid writing so many lines of code, let's first make a framework to address this.

To ease the process of menu creation, we will write a piece of code that takes menu items
listed as a tuple, and converts it to an equivalent menu code.

Drawing an Application

192

So given a tuple as follows:

menuitems = ('File- &New/Ctrl+N/self.new_file,
 &Open/Ctrl+O/self.open_file',
 'Edit- Undo/Ctrl+Z/self.undo, Sep',
 'About- About//self.about')

should produce the corresponding menu items, where the first item of the string (before dash
(-)) represents the menu button, and each subsequent part of string separated by commas
represents one menu item, its accelerator key, and the attached command callback. The
position of ampersand symbol (&) represents the position of the shortcut key to be underlined.

We also need to take care of adding separators between our menu items. To add a separator,
we would add the string Sep at positions where it is required. More precisely, the string Sep
must be capitalized.

In short, passing this tuple through our method should produce a GUI, as shown in the
following screenshot:

To extend our menu items, all we would need to do is to extend the preceding tuple and
simultaneously adding the corresponding command callback method.

Engage Thrusters

Step 1 – creating the GUI framework class
We build our framework in a file named framework.py, where we define a new class
named GUIFramework as follows:

import Tkinter as tk
class GUIFramework(object):
 menuitems = None
 def __init__(self, root):
 self.root = root
 if self.menuitems is not None:
 self.build_menu()

Project 6

193

Step 2 – creating menu builder
The two methods of GUIFramework that are used to create menu builder are as follows:

def build_menu(self):
 self.menubar = tk.Menu(self.root)
 for v in self.menuitems:
 menu = tk.Menu(self.menubar, tearoff=0)
 label, items = v.split('-')
 items = map(str.strip, items.split(','))
 for item in items:
 self.__add_menu_command(menu, item)
 self.menubar.add_cascade(label=label, menu=menu)
 self.root.config(menu=self.menubar)

 def __add_menu_command(self, menu, item):
 if item == 'Sep':
 menu.add_separator()
 else:
 name, acc, cmd = item.split('/')
 try:
 underline = name.index('&')
 name = name.replace('&', '', 1)
 except ValueError:
 underline = None
 menu.add_command(label=name, underline=underline,

 accelerator=acc, command=eval(cmd))

The description of the code is listed as follows:

 f The method, build_menu, operates on a tuple by the name self.menubar, which
must specify all desired menu and menu items in the exact format, as previously
discussed.

 f It iterates through each item in the tuple, splitting the item based on -delimiter,
building the top-menu button for each item left to the - delimiter.

 f It then splits the second part of the string based on ,(comma) delimiter.

 f It then iterates through this second part, creating menu items for each of the parts,
adding the accelerator key, command callback, and underline key using another
method, __add_menu_command.

Drawing an Application

194

 f The __add_menu_command method iterates through the string and adds a
separator if it finds the string Sep. If not, it next searches for ampersand (&) in the
string. If it finds one, it calculates its index position and assigns it to the underline
variable. It then replaces ampersand value with an empty string, because we do not
want to display the ampersand in our menu item.

 f If ampersand is not found in a string, the code assigns None to the
underline variable.

 f Finally, the code adds command callback, accelerator key, and underline value
to the menu item.

The logic that we used to define the menu builder is a completely arbitrary
representation. We could have as well used a dictionary or a list. We could
also have a separate logic altogether to represent our menu items, as long
as it served the purpose of generating the menu items for us.

Step 3 – testing our new framework
Finally, we add a TestThisFramework class to our file to test if our framework in general
and our build_menu method in particular, works as expected.

The code for the TestThisFramework class is as follows(framework.py):

class TestThisFramework(GUIFramework):
 menuitems = (
 'File- &New/Ctrl+N/self.new_file,
 &Open/Ctrl+O/self.openFile',
 'Edit- Undo/Ctrl+Z/self.undo, Sep',
 'About- About//self.about'
)
 def new_file(self):
 print 'newfile tested OK'
 def openFile(self):
 print 'openfile tested OK'
 def undo(self):
 print 'undo tested OK'
 def about(self):
 print 'about tested OK'

if __name__ == '__main__':
 root= tk.Tk()
 app = TestThisFramework(root)
 root.mainloop()

Project 6

195

The description of the code is listed as follows:

 f Our TestThisFramework class inherits from the GUIFramework class, thus
being in a position to use the build_menu method defined in the parent class.

 f It then adds a list of menu items, menuitems, and calls the method, build_
menu(). It is important that the tuple be defined by the name, menuitems,
because our build_menu() method is structured in the parent GUIFramework
class to build menu only on the tuples named menuitems.

 f The test class also adds dummy commands to handle command callbacks for each
of the menu items.

 f Running this test builds menu items as specified in the tuple. Try extending the tuple
to add more menu items, and the framework will successfully include those items in
the menu.

Like we added code to generate menus for us, we could have added similar
code for other widgets that we foresee to be repeatedly used in our
program. But we will leave the framework development there itself and
proceed to developing our drawing application.
Developing a framework for smaller programs may be overkill, but they are
invaluable assets for longer programs. Hopefully, you should now be able
to appreciate the benefits of writing your own custom frameworks for
larger programs.

Objective Complete – Mini Debriefing
Now that we have our build_menu ready, we can extend it to add as many menu items
as required without having to write repetitive and similar code for each of them.

This ends our first iteration, where we laid the foundations for our custom GUI framework.
We will not extend the framework further, but hopefully, you should now be in a position to
extend it for other widgets, if required.

Classified Intel
In this section, you also saw how our TestThisFramework class inherited features from
our GUIFramework class. This is the first time we have used inheritance in our program.

So far, we have always passed objects created as classes as arguments to other classes, and
then used them using the.(dot) notation. This is named composition.

With inheritance, we do not need to access methods of another class using the dot notation.
We can use the methods of a superclass in the subclass as though they belong to the subclass.

Drawing an Application

196

Inheritance brings in the advantage of dynamic binding and polymorphism.

Dynamic binding means the method to be invoked is decided at runtime, thus providing
greater flexibility to design of our code. Polymorphism implies that variables of a superclass
hold a reference to an object created from itself or from any of its subclasses.

Inheritance is fit for situations where the object of the subclass is of the
same type as the superclass. In our example, menu items will remain the
same whether you define them from the superclass or from the subclass.
We, therefore, defined it in our superclass and inherited it in our subclass.
If, however, the object needs to appear or behave differently depending on
an object's condition or state, composition is preferable.

Structuring our drawing program
Let's now get down to setting the basic structure for our drawing program. We want to
achieve a structure, as shown in the following screenshot:

The structure here primarily consists of a top menu, which inherits from the GUI framework
build_menu method that we created in the last iteration.

Project 6

197

In addition, we create a top-bar frame towards the top(marked in yellow) with a method,
create_top_bar(), and a toolbar frame to the left (marked with dark grey background)
with create_tool_bar(). We also create a Canvas widget on the right side using the
create_drawing_canvas() method, which is to serve as our drawing area.

We will not be reproducing the code for making the frames and canvas area, because we
have done similar things in our previous projects and you should be comfortable making
them by now. However, you can check the actual code in the file, 6.01.py.

Engage Thrusters

Step 1 – importing framework
The first thing to note here is that we import our previously created framework module
here and inherit its property in our main class, as follows:

import framework
class GUI(framework.GUIFramework):

This enables us to use the build_menu method that we had defined in the framework
as though it belongs to the child class.

Step 2: building the top menu
Next, we define the actual menu items to build the top menu in a method defined create_
menu, as follows:

def create_menu(self):
 self.menubar = Menu(self.root)
 self.menuitems = (
 'File- &New/Ctrl+N/self.new_file,
 &Open/Ctrl+O/self.open_file,
 Save/Ctrl+S/self.save,
 SaveAs//self.save_as,
 Sep,
 Exit/Alt+F4/self.close',
 'Edit- Undo/Ctrl+Z/self.undo, Sep',
 'About- About//self.about')
 self.build_menu()
 self.root.config(menu=self.menubar)

Drawing an Application

198

The description of the code is listed as follows:

 f This actually creates three menu buttons: File, Edit, and About, adding menu items
to each of them as per preceding provided tuple.

 f Creating the menu also necessitates the creation of their associated command
callbacks again, as defined in the preceding tuple. Accordingly, we create the
methods associated with these command callbacks.

 f We will not reproduce the code for functionalities, such as new_file, open_file,
close, undo, and about, because we have done similar coding in our previous
projects. However, let's take a look at the undo and save operations.

Step 3 – undo operation on the Canvas widget
Recall that the Tkinter text widget has built-in support for unlimited undo/redo functionality.
The Canvas widget, however, does not have this built-in feature.

Here, we implement a very basic undo operation, which lets us delete the last drawn item on
the canvas as follows:

def undo(self, event=None):
 self.canvas.delete(self.currentobject)

The description of the code is listed as follows:

 f The Canvas widget provides a widget.delete(items) method that deletes a
given item from the canvas.

However, once you delete a canvas item, it is gone forever. You cannot
restore it unless you have implemented a method which stores all the
configurable options for that item before deleting.
While it is possible to implement fully-featured undo/redo operation by
storing all configurations for an item being deleted in an undo stack, we will
not implement it here, because it would be a deviation from our core topic.

Step 4 – saving canvas objects
Tkinter lets you save canvas objects as a postscript file using the command postscript(),
as follows (see code 6.01.py):

def actual_save(self):
 self.canvas.postscript(file=self.filename, colormode='color')
 self.root.title(self.filename)

Note, however, that this command does not include the images and embedded widgets on
the canvas.

Project 6

199

Step 5 – creating buttons in the left tool bar
Having coded command callbacks for all our menu items, let's now create buttons on the
left toolbar. As per our original plan, we will need eight buttons on the toolbar. For now, let's
show the button text as 0 through 7 as follows:

def create_tool_bar_buttons(self):
 for i in range(8):
 self.button = Button(self.toolbar, text=i,
 command=lambda i=i:self.selected_tool_bar_item(i))
 self.button.grid(row=i/2, column=1+i%2, sticky='nsew')

This creates eight buttons, arranging them in two columns depending on whether the button
number is odd or even.

Step 6 – adding command callback to buttons
All buttons are attached to the same command callback, selected_tool_bar_item,
which takes the button number as its argument. The callback method will be taken forward
in the next iteration. However, for now, let's simply define the callback to print the number
of the button that is clicked on, as follows:

def selected_tool_bar_item(self, i):
 print'You selected button {}'.format(i)

Step 7 – creating color palettes and color selection dialog
Lastly, let's create two color palettes to keep track of two colors named background
and foreground color.

Tkinter provides a tkColorChooser module that pops up a color
chooser dialog. When a user selects a color and clicks the OK button, the
module returns a tuple of the form:

((r,g,b), 'hex color code')

The first element of the returned tuple is itself a tuple specifying the
RGB coordinates for the given color, while the second element is the
hexadecimal color code for the selected color.

Drawing an Application

200

The idea here is that clicking on a palette should open a color chooser. When a user selects
a given color, it should update the foreground and background color attributes of the object,
as shown in the following screenshot:

The code to achieve this functionality is as follows(see code 6.01.py):

from tkColorChooser import askcolor
 def create_color_pallete(self):
 self.colorpallete= Canvas(self.toolbar, height=55,
 width =55)
 self.colorpallete.grid(row=10, column=1, columnspan=2,
 pady=5, padx=3)
 self.backgroundpallete =
 self.colorpallete.create_rectangle (15,
 15,48,48,tags="backgroundpallete",
 outline=self.background, fill=self.background)
 self.foregroundpallete =
 self.colorpallete.create_rectangle
 (1,1,33,33,tags="foregroundpallete",
 outline=self.foreground, fill=self.foreground)
 self.colorpallete.tag_bind(self.backgroundpallete,
 "<Button-1>", self.set_background_color)
 self.colorpallete.tag_bind(self.foregroundpallete,
 "<Button-1>", self.set_foreground_color)

Project 6

201

The description of the code is listed as follows:

 f We add two different tags to each of the square pieces, and then use the tag_bind
command to bind them to the click of mouse button over them. Take a note of
the difference between widget-level binding(widget.bind) and the item-specific
binding using the tag_bind method

 f To create the color palettes, we first create a Canvas widget within the toolbar
frame. Within this canvas, we create two square areas using canvas.create_
rectangle and bind them to a single mouse click event to call set_background_
color and set_foreground_color respectively.

Step 8 – setting color of background and foreground palette
Color of the background and foreground palette can be set as follows:

def set_background_color(self, event=None):
 self.background = askcolor()[-1]
 self.colorpallete.itemconfig(self.backgroundpallete,
 outline=self.background, fill=self.background)

def set_foreground_color(self, event=None):
 self.foreground = askcolor()[-1]
 self.colorpallete.itemconfig(self.foregroundpallete,
 outline=self.foreground, fill=self.foreground)

Step 9 – displaying x and y coordinates of mouse movement
Finally, we add a static label to our toolbar frame to track the x and y coordinates of mouse
movement. The actual tracking function will be created later but let's reserve the space by
putting a static label for now, as follows:

self.curcoordlabel = Label(self.toolbar, text='x: 0\ny:0')
self.curcoordlabel.grid(row=13, column=1, columnspan=2, pady=5,
 padx=1, sticky='w')

Objective Complete – Mini Debriefing
This completes our second iteration. In this iteration, we set the basic structure for our
drawing program.

Importantly, we saw how to inherit features from our previously created framework to
create menu items with minimal coding.

We also added the color selection dialog using the tkColorChooser module, which sets in
two attributes, self.background and self.foreground, to be used application-wide.

Drawing an Application

202

Handling mouse events
Before we let the user draw on the canvas, we need to bind the canvas event to mouse
movements and mouse click.

Drawing or adding any item on to the Canvas widget first requires that we know the
coordinates of the location where the item is to be placed.

The Canvas widget uses two coordinate systems to track positions:
Window coordinate system: Coordinate as expressed in relation to root window
Canvas coordinate system: Coordinate as expressed as position of item within
the canvas
You can convert from window coordinates to canvas coordinates using the
canvasx and canvasy methods as follows:

canx = canvas.canvasx(event.x)

cany = canvas.canvasy(event.y)

Engage Thrusters

Step 1 – binding mouse down, mouse motion, and mouse release
over the canvas
Drawing any item on the canvas would begin when the user clicks the mouse button.
The drawing needs to continue till the mouse is moved with the button pressed and up
to the time the mouse button is released.

Thus, we need to track the position of initial mouse down event. This is to be followed
by tracking the mouse movement while the button is clicked on, up to the final button
release event.

Accordingly, we add the following widget binding to our canvas (see code 6.02.py):

self.canvas.bind("<Button-1>", self.mouse_down)
self.canvas.bind("<Button1-Motion>",
self.mouse_down_motion)
self.canvas.bind("<Button1-ButtonRelease>", self.mouse_up)

Project 6

203

Step 2 – calculating coordinates of mouse movement
Having bound the mouse click, mouse movement, and mouse release events, it's now time
to define their corresponding callback methods.

In particular, we want the mouse_down method to give us the x and y coordinates for the
first mouse click event, as follows:

def mouse_down(self, event):
 self.currentobject = None
 self.lastx = self.startx =
 self.canvas.canvasx(event.x)
 self.lasty = self.starty =
 self.canvas.canvasy(event.y)

We want to keep updating the lastx and lasty coordinates up till the mouse stops
moving, as follows:

def mouse_down_motion(self, event):
 self.lastx = self.canvas.canvasx(event.x)
 self.lasty = self.canvas.canvasy(event.y)

Our mouse_up method should make the final update to our lastx and lasty coordinates,
as follows:

def mouse_up(self, event):
 self.lastx = self.canvas.canvasx(event.x)
 self.lasty = self.canvas.canvasy(event.y)

The description of the code is listed as follows:

 f The mouse_down method simply initializes the values of startx, starty, lastx,
and lasty to the coordinates of the mouse click position.

 f The mouse_down_motion method changes the value of lastx and lasty as the
mouse motion keeps happening.

 f Finally, the mouse_up method sets the value of lastx and lasty as coordinates
of the point where the mouse button is released.

 f Thus, using the three events: mouse_down, mouse_down_motion, and mouse_up,
we manage to get the coordinates for starting point, coordinates for points through
which the mouse pointer traverses, and the coordinates for the end point.

 f Now we can use these values to place any item on the canvas at the given coordinates.

Drawing an Application

204

Step 3 – updating the current mouse position label in the
left tool bar
In addition, we would also like to track the motion of the mouse over the canvas, even when
the mouse button is not clicked down. We need to track this to update the current mouse
position in the left toolbar. This is simple, as shown in the following code snippet:

self.canvas.bind("<Motion>", self.show_current_coordinates)

def show_current_coordinates(self, event = None):
 lx = self.canvas.canvasx(event.x)
 ly = self.canvas.canvasy(event.y)
 cord = 'x: %d \ny: %d '%(lx, ly)
 self.curcoordlabel.config(text = cord)

This code will ensure that any mouse movement over the canvas updates the label in the left
toolbar with the current position of mouse.

Objective Complete – Mini Debriefing
Now our Canvas widget has become responsive to mouse movements and mouse clicks.
Every time we click the mouse button over the canvas and drag the mouse pointer to a
new place, the values of startx, starty, lastx and lasty get updated to reflect the
coordinates for the mouse movement.

Together, these coordinates constitute what is called the bounding box
for an item. In fact, if there are items on a canvas, you can retrieve the
coordinates for any given item using the API:

canvas.bbox(item=itemName)

This returns the coordinates as a four-item tuple.
If the item name is not specified, this method returns the bounding box
for all elements on the canvas.

Now that we have the coordinates available, we can think of drawing items on the canvas.
We do some drawing in the next iteration.

Project 6

205

Drawing items on the canvas
Let's now draw some items on the canvas. The Canvas widget natively supports drawing the
following items:

Item Code for adding the item

Arc w.create_arc(bbox, **options)

Bitmap w.create_bitmap(bbox, **options)

Image w.create_image(bbox, **options)

Line w.create_line(bbox, **options)

Oval w.create_oval(bbox, **options)

Polygon w.create_ploygon(bbox, **options)

Rectangle w.create_rectangle(bbox, **options)

Text w.create_text(bbox, **options)

Window w.create_window(bbox, **options)

Let us add the ability to draw lines, rectangles, and ovals to our drawing program. We will
also add a brush stroke feature to our program, as shown in the following screenshot:

Drawing an Application

206

Engage Thrusters
Step 1 – creating a tuple of methods
We first create a tuple of methods that we intend to define here as follows:

all_toolbar_functions = ('draw_line', 'draw_rectangle',
'draw_oval', 'draw_brush')

Doing so ensures that we do not have to call each method explicitly from our code. We can
instead use the index of the tuple to retrieve the method name and call it dynamically using:

getattr(self, self.all_toolbar_functions[index])

This makes sense here, because we would eventually add more features to our drawing
program by simply extending our all_toolbar_functions.

Step 2 – add icons to our toolbar buttons
Our next task here is to add icons on the left toolbar for drawing these items.

We add the icons to our icons folder. We also ensure to rename each icon file to the name
of the method called by it. This naming again helps in calling the methods dynamically,
and this style of programming is what you could call programming using conventions over
configuration.

Our current create_tool_bar_buttons()method creates eight buttons using a for
loop. However, we will now modify our create_tool_bar_buttons()method to use the
enumerate() method to loop overall items in our all_toolbar_functions tuple to add
icons for each of the methods, as follows (see code 6.03.py):

def create_tool_bar_buttons(self):
 for i, item in enumerate(self.all_toolbar_functions):
 tbicon = PhotoImage(file='icons/'+item+'.gif')
 self.button = Button(self.toolbar, image=tbicon,
 command=lambda i=i:self.selected_tool_bar_item(i))
 self.button.grid(row=i/2, column=1+i%2, sticky='nsew')
 self.button.image = tbicon

Step 3 – keeping a tab on currently selected button
Next, we modify the method, selected_tool_bar_item(i); the only purpose of which
is to keep a tab on the currently selected button. Having this information, we can later call
the associated method from all_toolbar_functions by using this index, as follows (see
code 6.03.py):

def selected_tool_bar_item(self, i):
 self.selected_toolbar_func_index = i

Project 6

207

Step 4 – code for drawing line, rectangle, and oval shapes
Now is the time to code the methods to draw these basic shapes. Note that this will not
automatically create the drawings. Eventually, these methods will have to be called from
somewhere to actually make the drawings. We will do that in step 6.

def draw_line(self, x, y, x2, y2):
 self.currentobject = self.canvas.create_line(x, y, x2, y2, fill=
 self.foreground)

def draw_rectangle(self, x, y, x2, y2):
 self.currentobject = self.canvas.create_rectangle(x, y, x2,
 y2, fill= self.foreground)
def draw_oval(self, x, y, x2, y2):
 self.currentobject= self.canvas.create_oval(x, y, x2,
 y2, fill= self.foreground)

Step 5 – code for drawing in continuous stroke
Drawing in a continuous stroke is similar to drawing lines, but the fresh lines are redrawn
after every small change in coordinates. In the current state of things, the value of lastx
and lasty are only updated when the mouse button is released. But here we need to
update the value of lastx and lasty, not on mouse release, but on mouse motion. To
achieve this, we bind the mouse motion to a newly defined method draw_brush_update_
xy, which updates the x and y coordinate in every subsequent loop turn.

Earlier, we had bound mouse down motion to another method named mouse_down_
motion. For drawing continuous stroke, we will now bind it to a method named draw_
brush_update_xy.

Adding an event binding to more than one method wipes away the previous
binding, whereby the new binding replaces any existing binding. Thus, when you
exit out of the draw_brush loop, you need to rebind the event back to the
mouse_down_motion method.
Alternatively, you can use add="+" as an additional argument to keep more
than one binding to the same event as follows:

mywidget.bind("<SomeEvent>", method1, add="+")
mywidget.bind("<SameEvent>", method2, add="+")

Thus, we create a loop where the draw_brush method calls another method, draw_
brush_update_xy, on successive mouse motions to update the x and y coordinates as
follows (see code 6.03.py):

def draw_brush(self, x, y, x2, y2):
 if not self.all_toolbar_functions[
 self.selected_toolbar_func_index] == 'draw_brush':

Drawing an Application

208

 self.canvas.bind("<Button1-Motion>",
 self.mouse_down_motion)
 return# if condition to break out of draw_brush loop
 self.currentobject =
 self.canvas.create_line(x,y,x2,y2,fill=self.foreground)

self.canvas.bind("<B1-Motion>", self.draw_brush_update_xy)

def draw_brush_update_xy(self, event):
 self.startx, self.starty = self.lastx, self.lasty
 self.lastx, self.lasty = event.x, event.y
 self.draw_brush(self.startx, self.starty,self.lastx,
 self.lasty)

If the Draw Brush button is unselected, we break out of the loop and rebind the mouse
motion back to the canvas mouse_down_motion.

Step 6 – executing code dynamically
We have planned to execute methods dynamically, based on index from the names of
methods given in a tuple named all_toolbar_functions. However, the names are
stored as strings, and we just cannot take a piece of string and expect Python to evaluate
it. In order to that, we will use Python's built-in getattr()method.

We now define a method that takes a string and makes it suitable for execution as a method,
as follows:

def execute_method():
 fnc = getattr(self, self.all_toolbar_functions
 [self.selected_toolbar_func_index])
 fnc(self.startx, self.starty,self.lastx, self.lasty)

Step 7 – doing the actual drawing
Having defined methods to draw line, rectangle, oval, and brush strokes, we need to call
them from somewhere for the drawing to happen. Intuitively, the drawings must begin on
the first mouse down movement and the drawing must be deleted and redrawn up till the
mouse button release.

Accordingly, these methods must be called from our mouse_down_motion method. We,
therefore, modify our mouse_down_motion and mouse_up methods to do this, as follows:

def mouse_down_motion(self, event):
 self.lastx = self.canvas.canvasx(event.x)
 self.lasty = self.canvas.canvasy(event.y)
 if self.selected_toolbar_func_index:
 self.canvas.delete(self.currentobject)
 self.execute_method()

Project 6

209

def mouse_up(self, event):
 self.lastx = self.canvas.canvasx(event.x)
 self.lasty = self.canvas.canvasy(event.y)
 self.canvas.delete(self.currentobject)
 self.currentobject = None
 self.execute_method()

Objective Complete – Mini Debriefing
This completes our objective for the iteration.

We began by creating a tuple of method names so as to be able to call a method dynamically
by specifying its index in the tuple.

We then added icons for our toolbar buttons. We then associated a button click to a method
that keeps tab on currently selected button by assigning its index to the variable, self.
selected_toolbar_func_index. We then defined methods to draw line, rectangle, and
oval shapes on our canvas. We also showed how to utilize the ability to draw lines to draw in
continuous strokes.

Finally, we called all the draw methods from mouse_down_motion and mouse_release
method to do the actual drawing.

A user can now draw basic shapes, such as lines, rectangles, ovals, and brush strokes on to
the canvas. The shapes are drawn in the currently set foreground color.

Setting the options toolbar at the top
Although our program can draw basic shapes, these shapes are currently filled with the
foreground color and the outline of the shape is done in black.

The Canvas widget lets you specify the fill color, outline color, and border width for most of
the shapes as its configurable options.

In addition to these, the Canvas widget also has several other configurable options for many
of these basic shapes. For instance, for a line, you can specify if it will have an arrow head
shape at the end or if it will be dashed.

Drawing an Application

210

Let's accordingly modify our program to allow the user to select configurable options for
each of the four basic shapes, as shown in the following screenshot:

Engage Thrusters
Step 1 – showing the selected button icon at the top
Let's start with a simple thing first. When a user clicks on a button in the left toolbar, the
top frame should display the text Selected Tool: followed by the icon representation for the
selected button.

Because this event must occur on click of any button, we modify our selected_tool_bar_
item method to include a call to two methods, as highlighted in the following code
(see code 6.04.py):

def selected_tool_bar_item(self, i):
 self.selected_toolbar_func_index = i
 self.remove_options_from_topbar()
 self.show_selected_tool_icon_in_topbar()

def remove_options_from_topbar(self):
 for child in self.topbar.winfo_children():
 child.destroy()

def show_selected_tool_icon_in_topbar(self):
 Label(self.topbar,text='Selected Tool:').pack(side=LEFT)
 photo = PhotoImage(file='icons/'+
 'self.all_toolbar_functions[self.selected_toolbar_func_index]+
 '.gif')
 label = Label(self.topbar, image=photo)
 label.image = photo
 label.pack(side=LEFT)

The description of the code is listed as follows:
 f The remove_options_from_topbar method ensures that when a new button is

clicked, options for the previous button are deleted. The show_selected_tool_
icon_in_topbar method actually displays the icon for the currently selected
button.

Project 6

211

widget.winfo_children() returns a list of all children for a given
widget, in their stacking order from bottom to top.
You can extract a lot of window-related information using one of the many
winfo methods. For a complete list of the winfo methods, refer to the
The basic widget methods section in Appendix B, Quick Reference Sheets.
Alternatively, each widget has also its own children attribute, which is
a dictionary where the keys are the IDs and the values are the widgets.
So if the order is not relevant, this is the same as widget.children.
values().

Step 2 – adding the Combobox widget to let user select different
fill options
Next, we need to define the selection combobox for a user to select options for fill, outline,
width, arrow, and dash. We will use ttk Combobox to allow the user to make a selection, and
as such, we import it into our current file, as follows:

import ttk

We will not reproduce the entire code here. However, for each of the preceding options, we
define two methods: one that displays the combobox and the other sets the value of the
current selection made by the user.

Thus, we set the following two definitions for fill option, as follows (see code 6.04.py):

def fill_options_combobox(self):
 Label(self.topbar,text='Fill:').pack(side=LEFT)
 self.fillcmbobx = ttk.Combobox(self.topbar,
 state='readonly', width=5)
 self.fillcmbobx.pack(side=LEFT)
 self.fillcmbobx['values'] = ('none', 'fg', 'bg', 'black',
 'white')
 self.fillcmbobx.bind('<<ComboboxSelected>>', self.set_fill)
 self.fillcmbobx.set(self.fill)

def set_fill(self, event=None):
 fl = self.fillcmbobx.get()
 if fl == 'none': self.fill = '' #transparent
 elif fl == 'fg': self.fill = self.foreground
 elif fl == 'bg': self.fill = self.background
 else: self.fill = fl

Drawing an Application

212

We similarly define other pair of methods for each of the sets, namely (see code 6.04.py):

 � outline_options_combobox:set_outline

 � width_options_combobox:set_width

 � arrow_options_combobox:set_arrow

 � dash_options_combobox:set_dash

Step 3 – modifying draw methods to add configurable options
Now that we have ways to set different values for fill, outline, arrow, and dash configurable
options, let's modify our drawing code to include these in the actual drawing, as follows (see
code 6.04.py):

def draw_line(self, x, y, x2, y2):
 self.currentobject = self.canvas.create_line(x, y, x2, y2,
 fill= self.fill, arrow=self.arrow, width=self.width,
 dash=self.dash)

def draw_rectangle(self, x, y, x2, y2):
 self.currentobject = self.canvas.create_rectangle(x, y,x2,
 y2, outline=self.outline, fill=self.fill,
 width=self.width)

def draw_oval(self, x, y, x2, y2):
 self.currentobject= self.canvas.create_oval(x, y, x2,
 y2, outline=self.outline, fill=self.fill,
 width=self.width)

def draw_brush(self, x, y, x2, y2):
 if not self.all_toolbar_functions[
 self.selected_toolbar_func_index]=='draw_brush':
 self.canvas.bind("<Button1-Motion>",
 self.mouse_down_motion)
 return
 self.currentobject = self.canvas.create_line(x,y,x2,y2,
 fill=self.fill, width=self.width)

self.canvas.bind("<B1-Motion>", self.draw_brush_update_xy)

Having defined all these methods, it is now time to call them from somewhere.

Project 6

213

While the fill combobox would be applicable to all the four basic shapes, the arrow
option would only be applicable to drawing lines. Because there will be a different set of
comboboxes for different selections, we define the following methods (see code 6.04.py):

def draw_line_options(self):
 self.fill_options_combobox()
 self.width_options_combobox()
 self.arrow_options_combobox()
 self.dash_options_combobox()

def draw_rectangle_options(self):
 self.fill_options_combobox()
 self.outline_options_combobox()
 self.width_options_combobox()

def draw_oval_options(self):
 self.fill_options_combobox()
 self.outline_options_combobox()
 self.width_options_combobox()

def draw_brush_options(self):
 self.fill_options_combobox()
 self.width_options_combobox()

Finally, these methods have to be called from somewhere, depending on the selection
made. So we modify our selected_tool_bar_item method to call a method
dynamically, named by appending the string _options to the name of selected method
as follows (see code 6.04.py):

def selected_tool_bar_item(self, i):
 self.selected_toolbar_func_index = i
 self.remove_options_from_topbar()
 self.show_selected_tool_icon_in_topbar()
 opt = self.all_toolbar_functions[self.selected_toolbar_func_
 index] +'_options'
 fnc = getattr(self, opt)
 fnc()

Drawing an Application

214

Objective Complete – Mini Debriefing
The program user can now select from the various options provided for each of the toolbar
buttons (see code 6.04.py).

More importantly, we saw some of the configuration options available for items drawn on
the Tkinter Canvas widget. We were also introduced to the winfo methods. These methods
can be used to extract a lot of data about a widget and are a useful tool to have when
programming a GUI application in Tkinter.

Adding some more features
Next in line, let's add a few more features to our drawing program. In particular, we will
add the ability to delete objects from the canvas, add a paint bucket, the ability to move
items up and down the stack, and the ability to drag items on the canvas, as shown in the
following screenshot:

Engage Thrusters

Step 1 – extending our methods tuple
As a first thing, let us extend our all_toolbar_functions method to make provisions
for the new methods that we will define here, as follows (see code 6.05.py):

all_toolbar_functions = ('draw_line', 'draw_rectangle',
'draw_oval', 'draw_brush',
'delete_object', 'fill_object',
'move_to_top', 'drag_item')

As usual, we have added icons to the icon folder by the same name as the method that
would handle it. The buttons are automatically displayed in our left toolbar merely by adding
new methods to this tuple and by adding corresponding icons to our icon folder because of
the way we have designed the create_tool_bar_buttons method.

Project 6

215

Step 2 – targeting a given item on the canvas
Before define the methods for handling the new features, let's pause and think about the
kind of work we need to do here.

The operations that we want to do now are slightly different from their predecessors.
Earlier, we were creating items on the canvas. Now we have to target items already
present on the canvas.

The items that need to be targeted are the ones on which the user clicks on with his or
her mouse.

We, therefore, need to identify the item on which mouse has been clicked before we can
do any modification to the item itself. To do that, we modify our mouse_down method as
follows (see code 6.05.py):

def mouse_down(self, event):
 self.currentobject = None
 self.lastx = self.startx = self.canvas.canvasx(event.x)
 self.lasty = self.starty = self.canvas.canvasy(event.y)
 if self.all_toolbar_functions[
 self.selected_toolbar_func_index]
 in ['fill_object', 'delete_object', 'move_to_top',
 drag_item']:
 try:
 self.selected_object =
 self.canvas.find_closest(self.startx,
 self.starty)[0]
 except:
 self.selected_object = self.canvas

The description of the code is listed as follows:

 f This small modification to the mouse_down method means that if any of the
last four buttons are clicked, the code locates the item located closest to the click
position and assigns it to our newly defined attribute, selected_object, which
stands for the current selected object.

 f If there are no items on the canvas, the entire canvas is set to the selected_
object attribute.

Drawing an Application

216

The canvas method has a method named: find_closest(x, y,
halo=None, start=None).
It returns the identifier for item closest to the given position on the canvas.
This means that if there is only one item on the canvas, it will be selected
regardless of how near or how far you click from it.
If on the other hand, you want that objects only within a certain distance
are selected, the Canvas widget provides an alternate implementation
named find_overlapping.
You will, however, have to place a small rectangle centered on the position
to use this.

Now that we have a hold on the item to be manipulated, we can proceed to do whatever
we want to do with the item.

Step 3 – deleting items from the canvas
The first method to delete items from canvas is delete_object, which simply deletes the
selected item. So our delete_object method is defined as follows (see code 6.05.py):

def delete_object(self, x0, y0, x1, y1):
 self.canvas.delete(self.selected_object)

And, because our earlier code needed that for every method for which we define an options
method, we define the method, delete_object_options, here. However, because we
do not want to display anything in the option bar at the top, we simply ignore it with a pass
statement, as follows:

def delete_object_options(self):
 pass

Step 4 – paint bucket feature
Next, we code our fill_object method, which acts somewhat like a paint bucket in
common drawing programs.

This again is simple. You simply need to fill the color on the background of the selected item.
If there is no item on the canvas, it simply fills the color on to the entire canvas, as follows:

def fill_object(self,x0,y0,x1,y1):
 if self.selected_object == self.canvas:
 self.canvas.config(bg=self.fill)
 else:
 self.canvas.itemconfig(self.selected_object,
 fill=self.fill)

Project 6

217

And here, we want to let the user choose the fill color for the paint bucket. Hence, we
call our previously defined method, fill_options_combobox, from within our fill_
object_options method.

def fill_object_options(self):
 self.fill_options_combobox()

Step 5 – moving items on top of each other
Let's now define the methods for the next button. The button marked with a small hand icon
can be used to raise items on top of others.

When you draw multiple items on the canvas, the items are placed in a stack.
By default, new items get added on top of items previously drawn on the
canvas. You can, however, change the stacking order using: canvas.tag_
raise(item).
If multiple items match, they are all moved, with their relative order preserved.
However, this method will not change the stacking order for any new window
item that you draw within the canvas.
Then there are find_above and find_below methods that you can use
to find items above or below an item in the canvas stacking order.
In addition, there is a find_all method that returns a tuple containing
identifiers for all items on the canvas.

Accordingly, the code for moving items to the top of stack is as follows (see code 6.05.py):

def move_to_top(self,x0,y0,x1,y1):
 self.canvas.tag_raise(self.selected_object)
def move_to_top_options(self):
 pass # no items to display on the top bar

Step 6 – dragging items on the canvas
Finally, let's add drag-and-drop feature for items on the canvas. The ability to drag an item on
the canvas requires that after selection of the object to be dragged, we recalculate the x and
y coordinates for mouse movement, and move the object to the new coordinates provided
by the mouse movement at small intervals.

In many ways the concept here is similar to one that we used for defining our paint brush.

The idea is to call our drag_items method after every small mouse movement using
another method, drag_item_update_xy, which recalculates x and y coordinates after
small mouse motion, moving the item to the newly calculated coordinates every time.

Drawing an Application

218

Then, we have a condition check, which breaks out of this loop if any other button is selected
from the toolbar, as follows (see code 6.05.py):

def drag_item(self,x0,y0,x1,y1):
 if not self.all_toolbar_functions[
 self.selected_toolbar_func_index] == 'drag_item':
 self.canvas.bind("<Button1-Motion>",
 self.mouse_down_motion)
 return # break out of loop
 self.currentobject = self.canvas.move(
 self.selected_object, x1-x0, y1- y0)
 self.canvas.bind("<B1-Motion>", self.drag_item_update_xy)

def drag_item_update_xy(self, event):
 self.startx, self.starty = self.lastx, self.lasty
 self.lastx, self.lasty = event.x, event.y
 self.drag_item(self.startx, self.starty,self.lastx,
 self.lasty)

def drag_item_options(self):
 pass # we want no options to be displayed at the top

The Canvas widget provides a method: canvas.move(item, dx, dy).
The preceding method moves any matching item by a horizontal and vertical
offset (dx and dy).

Objective Complete – Mini Debriefing
This brings us to the end of this iteration. We have now successfully added four new features
to our drawing program, namely: delete_object, fill_object, move_to_top, and
drag_item.

In the process, we saw some of the methods provided by the Canvas widget for item
manipulation. We also saw the strategy that one might adopt when working on existing
items on the Canvas widget.

Classified Intel
In this program, we extensively used the item identifier ID to target a particular item on the
canvas. Recall that item identifier is the unique integer ID returned by the canvas method
that creates the object.

Project 6

219

So, for instance, when you create an oval item on your canvas, it returns an integer ID after
creating the object. This is referred to its item identifier or the item handle, as follows:

my_item_identifier = self.canvas.create_oval(x, y, x2, y2)

Now you can act upon this oval using the handle, my_item_identifier.

However, this is not the only method by which you can identify an item on the canvas.
Additionally, you can add tags to items, and then use these tags to identify the object for
manipulation.

Working with item tags
Let's now look at some of the common operations involved in working with Canvas tags.

Adding a tag
To add a tag to an item, you specify the tag (which is a string) as its configurable option
either at the time of creating the object or later using the itemconfig method, or add
them using the addtag_withtag method, as follows:

rectid = canvas.create_rectangle(10, 10, 50, 50, tags="myshiny")
canvas.itemconfig(rectid, tags="shiv")
canvas.addtag_withtag("shiv", "takeonemore")

The same tag can be applied to more than one item on the canvas.

You can add multiple tags to an item together by passing in the tags as a tuple of strings,
as follows:

canvas.itemconfig(rectid, tags=("tagA", "tagB"))

Using tags to identify items to be manipulated is especially useful when
you need to manipulate more than one item at one time, or if you want
to manipulate items based on certain conditionals.

Retrieving tags
To get all tags associated with a specific item handle, use gettags as follows:

printcanvas.gettags(rectid)

This returns a tuple of all tags associated with that item handle, as follows:

("myshiny", "shiv", "takeonemore", "tagA", "tagB")

Drawing an Application

220

Getting items with a given tag
To get the item handles for all items having a given tag, use find_withtag as follows:

print canvas.find_withtag("shiv")

This returns the item handles for all items as a tuple.

Built-in tags
The canvas widget provides two built-in tags:

 f ALL or all: It matches all items on the canvas

 f CURRENT or current: It returns the item under the mouse pointer, if any

Mission Accomplished
There you have your own drawing program! You can easily extend it to add many more
features.

Here's a quick summary of things we have seen in this project:

 f Building custom GUI frameworks for rapid application development

 f Understanding how to use inheritance in our projects

 f Getting to know the tkColoChooser module

 f Learning to create and manipulate items on the Canvas widget

 f Working with the tk ComboBox widget

 f Getting to know the available winfo methods

 f Working with mouse events on the Canvas widget

 f Reinforcing things that we have learned in previous projects

Project 6

221

A Hotshot Challenge
Add the following features to your drawing program:

 f The accelerator keys don't work for our menu items because we have not bound
them to key events. Bind the menu-item accelerator keys to their associated
command callback.

 f Create an Eraser button and add its associated features.

 f We have not implemented drawing of some other basic shapes, such as arc and
polygons, even though the Canvas widget provides for methods to draw them. Add
the ability to draw arcs and polygons to the drawing program.

 f Create a new toolbar on the right side. Utilizing the stacking order for canvas items,
display each item as a separate layer in the toolbar.

 f Go through all the available Canvas widget options in your IDE by using Python's
interactive help feature. Try adding more features to the program utilizing one or
more of the options.

 f We have already included the ability to add images to our program by navigating to
File | Open. Add a few menu items to manipulate those images. Using some imaging
library, add image manipulation features, such as color adjustment, brightness,
contrast, grayscale, and other facilities for image manipulation provided by the
imaging library that you choose to use.

 f The Canvas widget is often used to draw custom widgets. Make a Progress Meter
widget using the Canvas widget. Attach it to some function and run it to see that the
oval should get filled with some color as the function progresses. You can use the fill
option of the Canvas widget to show increase in progress.

Project 7
Some Fun

Project Ideas

In the previous projects, we have explored most of the important features of Tkinter.
Developing new projects is now about extending what we have learned so far. In this
project, we will build several partly-functional applications that you can take forward.

Mission Briefing
In this project, we will develop "bare bone structures" for several applications from different
domains. The applications we will build here include:

 f Screen saver

 f Snake game

 f Weather Reporter

 f Phonebook application

 f Graphing with Tkinter

Why Is It Awesome?
You will find this project useful as we will delve further in to learning about the power of
Tkinter Canvas widget, and develop some basic animations for our screen saver program.

When developing the Snake game, we will learn to develop a multithreaded Python
application efficiently using the Queue implementation. As you will see, this is a handy tool
to have when working on multithreaded applications.

Some Fun Project Ideas

224

The Weather Reporter application will introduce you to the basics of network programming.
You will learn how to mine into the seemingly infinite resource that is available to us over
the Internet.

The phonebook application will show you how to work with databases. This is vital for
developing any large-scale application where persistence is required.

Finally, we look at basic graphing abilities of Tkinter. We also look at ways of embedding
matplotlib graphs in Tkinter.

Your Hotshot Objectives
The key objectives outlined for this project include developing and understanding
the followings:

 f Basic animations with Tkinter canvas

 f Queue implementation for a multithreaded Tkinter application

 f Network programming and tapping into resources over the Internet

 f Working with data interchange formats like JSON and XML

 f Database programming and basic CRUD operations on a database

 f Graphing with Tkinter

Building a screen saver
We will start by building a screen saver for our desktop. The screen saver will consist of
several random-colored and random-sized balls bouncing all over the screen at random
velocity, as shown in the following screenshot:

Project 7

225

Engage Thrusters
Carry out the following steps to create the screen saver:

1. Let's create a class to generate balls with random attributes. Accordingly, we define
a new class named RandomBall to achieve this (refer to the 7.01 screensaver.
py Python file, available in the code bundle):
from random import randint
class RandomBall:
 def __init__(self, canvas, scrnwidth, scrnheight):
 self.canvas = canvas
 self.xpos = randint(10, int(scrnwidth))
 self.ypos = randint(10, int(scrnheight))
 self.xvelocity = randint(6,12)
 self.yvelocity = randint(6,12)
 self.scrnwidth = scrnwidth
 self.scrnheight = scrnheight
 self.radius = randint(40,70)
 r = lambda: randint(0,255)
 self.color = '#%02x%02x%02x' % (r(),r(),r())

The description of the code is as follows:

 � The __init__ method takes three arguments, an instance of the Canvas
widget, the screen width and the screen height. It then initializes the initial
x and y positions for a ball as random numbers, starting from 0 up to the
maximum screen coordinates.

 � It also initializes the velocity of the ball in x and y directions, the radius
and color of the ball changes in a random fashion.

 � Because the hexadecimal color coding system uses two hexadecimal digits
for each of red, green and blue colors, there are 16^2 (256) possibilities for
each color. We therefore create a lambda function that generates a random
number from 0-255, and use this function to generate three random numbers.
We convert this decimal number to its two-digit equivalent hexadecimal
notation using the format %02x to generate a random color for the balls.

2. The second method creates the actual ball using the canvas create_oval method
(refer to the 7.01 screensaver.py Python file available in the code bundle):
def create_ball(self):
 x1 = self.xpos-self.radius
 y1 = self.ypos-self.radius

Some Fun Project Ideas

226

 x2 = self.xpos+self.radius
 y2 = self.ypos+self.radius
 self.itm = canvas.create_oval(x1, y1, x2, y2,
 fill=self.color, outline=self.color)

3. Let's now code the method to handle ball movement on the screen.

The method also checks if the ball has reached the end of the screen on any of the
sides. If the ball has actually reached the end of the screen, it simply changes the
direction by appending a negative sign to the velocity of the ball.

The method finally moves the ball using the canvas.move method (refer to 7.01
screensaver.py):
def move_ball(self):
 self.xpos += self.xvelocity
 self.ypos += self.yvelocity
 #Check if the Direction of ball movement is to be
 changed
 if self.ypos>= self.scrnheight - self.radius:
 self.yvelocity = - self.yvelocity # change
 direction
 if self.ypos<= self.radius :
 self.yvelocity = abs(self.yvelocity)
 if self.xpos>= self.scrnwidth- self.radius or
 self.xpos<= self.radius:
 self.xvelocity = -self.xvelocity # change
 direction
 self.canvas.move(self.itm, self.xvelocity,
 self.yvelocity)

That is all to our RandomBall class. We can use this class to create as many
ball objects as we want to display in our screen saver.

4. Now, that we have coded methods to generate balls and to move them, let's create
our screen saver. We now create a class named ScreenSaver that will show the
actual screen saver:
class ScreenSaver:
balls = []

def __init__(self, num_balls):
 self.root = Tk()
 w, h = self.root.winfo_screenwidth(),
 self.root.winfo_screenheight()

Project 7

227

 self.root.overrideredirect(1)
 self.root.geometry("%dx%d+0+0" % (w, h))
 self.root.attributes('-alpha', 0.3)
 self.root.bind('<Any-KeyPress>', quit)
 self.root.bind('<Any-Button>', quit)
 self.root.bind('<Motion>', quit)
 self.canvas = Canvas(self.root, width=w, height=h)
 self.canvas.pack()
 for i in range(num_balls):
 ball = RandomBall(self.canvas, scrnwidth=w,
 scrnheight=h)
 ball.create_ball()
 self.balls.append(ball)
 self.run_screen_saver()
 self.root.mainloop()

The description of the code is as follows:

 � The __init__ method of the ScreenSaver class takes the number of
balls (num_balls) as its argument.

 � We then create a root window and calculate the height and width of the
screen using the winfo method.

 � We use root.overrideredirect(1) to remove the enclosing frame
from the parent window.

 � We then specify the geometry of the parent window to fill the entire
screen.

 � We make the parent window transparent using root.attributes('-
alpha', 0.3). We add a transparency of 0.3 to make the window
translucent.

 � We then bind the root to call our quit command on the event of clicking
the mouse button, pressing any keyboard button, or mouse motion. This
is to ensure that our program behaves like a screen saver, exiting on any
interactions from the user's end.

 � We then create a canvas to cover the entire screen with Canvas(self.
root, width=w, height=h).

 � We create several random ball objects outs of the RandomBall class,
passing along the Canvas widget instance, the width, and the height of the
screen as its arguments.

 � We finally make a call to run the screen saver with the run_screen_
saver() method within the ScreenSaver class, which is discussed
in the following.

Some Fun Project Ideas

228

5. In this step, we will run the ScreenSaver class:
def run_screensaver():
 for ball in balls:
 ball.move_ball()
 canvas.after(20, runScreenSaver)

The description of the code is as follows:

 � The run_screensaver() method simply moves each ball by calling
itself at a regular interval of 20 milliseconds

 � We also define the quit method in our ScreenSaver class to quit
from the main loop and exit the program:

 def quit(event):
 root.destroy()

 � To run the screen saver, we instantiate an object from our ScreenSaver
class, passing the number of balls as its argument:

if __name__ == "__main__":
 ScreenSaver(18) ##18 is the number of balls

We have used two Toplevel window methods root.
overrideredirect and root.attributes, in the previous code.
For a complete list of methods that can be applied to the Toplevel
window, refer to the The Toplevel window methods section in Appendix B,
Quick Reference Sheets.

Objective Complete – Mini Debriefing
Our screen saver is ready!

In fact, if you are working on a Windows platform, and when you learn to create an
executable program from Python programs (discussed in Appendix A, Miscellaneous Tips),
you can create an executable file with .exe extension for this screen saver. So then, you can
change its extension from .exe to .scr and right-click, and select Install to add it to your
list of screensavers!

Project 7

229

Building a Snake game
Let's now build a simple Snake game. As usual, we will be making use of the Canvas widget
to provide the platform for our Snake program.

We will use canvas.create_line to draw our snake, and canvas.create_rectangle
to draw the snake-food.

Prepare for Lift Off
One of the primary objectives for this project is to introduce the Queue implementation in
Python as we used it in conjunction with the threading module.

So far, we have built single-threaded applications. However, threading can be difficult to
handle when there is more than one thread in an application, and these threads need
to share attributes or resources among them. In this case, you cannot predict the thread
execution order at all. OS does it very randomly and swiftly each time.

To handle this complexity, threading module provides some synchronization tools,
such as locks, join, semaphores, events, and condition variables. However, it is—in most
cases—safer and simpler to use queues. Simply put, a queue is a compound memory
structure that is thread-safe; queues effectively channel access to a resource to multiple
threads in a sequential order, and are a recommended design pattern that uses threads
for most of the scenarios that require concurrency.

The Queue module provides a way to implement different kinds of queuing, such as FIFO
(default implementation), LIFO queue, and Priority queue, and this module comes with a
built-in implementation of all locking semantics required for running multithreaded programs.

More information about the Queue module can be found in the following link:
http://docs.Python.org/2/library/queue.html

Here's a quick roundup of the basic usage of the Queue module:

myqueue = Queue() #create empty queue
myqueue.put(data)# put items into queue
task = myqueue.get () #get the next item in the queue
myqueue.task_done() # called when a queued task has completed
myqueue.join() # called when all tasks in queue get completed

Some Fun Project Ideas

230

Let's see a simple demonstration of using queue to implement a multithreaded application
(refer to 7.02 threading with queue.py available in the code bundle):

import Queue
import threading
class Worker(threading.Thread):
 def __init__(self, queue):
 threading.Thread.__init__(self)
 self.queue = queue

 def run(self):
 while True:
 task = self.queue.get()
 self.taskHandler(task)

 def taskHandler(self, job):
 print'doing task %s'%job
 self.queue.task_done()
 def main(tasks):
 queue = Queue.Queue()
 for task in tasks:
 queue.put(task)
 # create some threads and assign them queue
 for i in range(6):
 mythread = Worker(queue)
 mythread.setDaemon(True)
 mythread.start()
 queue.join()
 print'all tasks completed'

 if __name__ == "__main__":
 tasks = 'A B C D E F'.split()
 main(tasks)

The description of the code is as follows:

 f We first create a Worker class, which inherits from the threading module of
Python. The __init__ method takes in a queue as its argument.

 f We then override the run method of the threading module to get each item
from the queue using queue.get(), which is then passed on to the taskHandler
method, which actually executes the task specified in the current queue item. In our
example, it does nothing useful but printing the name of the task.

Project 7

231

 f After the work is done on a particular thread by our taskHandler method, it sends
a signal to the queue telling that the task has been completed using the queue.
task_done() method.

 f Outside our Worker class, we create an empty queue in our main() method. This
queue is populated with a list of tasks using queue.put(task).

 f We then create six different threads and pass this populated queue as its argument.
Now that the tasks are handled by the queue, all threads automatically ensure
that the tasks are completed in a sequence in which they are encountered by the
threads, without causing any deadlocks or two different threads trying to work on
the same queued task.

 f At the time of creating each thread, we also create a pool of daemon threads
using the mythread.setDaemon(True) method. Doing this passes control
to our main program once all threads have completed execution. If you comment
out the line, the program would still run, but would fail to exit after all threads have
completed executing the tasks in the queue. Without the daemon threads, you'd
have to keep track of all the threads and tell them to exit before your program
could completely quit.

 f Finally, the queue.join() method ensures that the program flow waits there until
the queue is empty.

Now that we know how to use queues to handle multithreaded applications effectively,
let's build our Snake game. In its final form, the game would be like the one shown in the
following screenshot (refer to the 7.03 game of snake.py Python file available in the
code bundle):

Some Fun Project Ideas

232

Engage Thrusters
1. Let's start coding our game, by first creating a basic GUI class.

class GUI(Tk):
 def __init__(self, queue):
 Tk.__init__(self)
 self.queue = queue
 self.is_game_over = False
 self.canvas = Canvas(self, width=495, height=305,
 bg='#FF75A0')
 self.canvas.pack()
 self.snake = self.canvas.create_line((0, 0),
 (0,0), fill='#FFCC4C', width=10)
 self.food = self.canvas.create_rectangle(0, 0, 0,
 0, fill='#FFCC4C', outline='#FFCC4C')
 self.points_earned = self.canvas.create_text(455,
 15, fill='white', text='Score: 0')
 self.queue_handler()

The description of the code is as follows:

 � This code should be mostly familiar to you by now, because we
have created similar GUI classes several times in the past.

 � However, rather than passing the root instance as an argument to
its __init__ method, our GUI class now inherits from the Tk class.
The line Tk.__init__(self)ensures that the root window is available
to all methods of this class. This way we can avoid writing root attribute
on every line by referencing self.root simply as self.

 � We then initialize the canvas, line (snake), rectangle (food) and text
(to display score).

 � We then call the function queueHandler(). This yet to be defined
method would be similar to main method defined in the previous queue
example. This would be the central method which will process all tasks in
the queue. We will come back to define this method once we have added
some tasks to the queue.

2. Now, we will create the Food class, as shown in the following code snippet:
class Food():
 def __init__(self, queue):
 self.queue = queue
 self.generate_food()

 def generate_food(self):

Project 7

233

 x = random.randrange(5, 480, 10)
 y = random.randrange(5, 295, 10)
 self.position = x, y
 self.exppos = x - 5, y - 5, x + 5, y + 5
 self.queue.put({'food': self.exppos})

The description of the code is as follows:

 � Because we want to process all data centrally from within a queue, we pass
the queue as an argument to the __init__ method of the Food class.
We choose to run this from the main program thread to demonstrate how
a code which is being executed in the main thread can communicate with
attributes and methods from other threads.

 � The __init__ method calls another method called generate_food(),
which is responsible for generating the snake-food at random positions
on the canvas.

 � The generate_food method generates a random (x, y) position on the
canvas. However, because the place where the coordinates coincide is just a
small point on the canvas, it would be barely visible. We therefore generate
an expanded coordinate (self.exppos) ranging from five values less than
the (x,y) coordinate up to five values higher than the same coordinate.
Using this range, we can create a small rectangle on the canvas which
would be easily visible and would represent our food.

However, we do not create the rectangle here. Instead, we pass the
coordinates for the food (rectangle) into our queue using queue.
put. Because this queue is to be made available to all our classes, we
will have a centralized worker named queue_handler(), which
will process this queue to generate the rectangle from our GUI class
later. This is the central idea behind a Queue implementation.

3. Let's now create the Snake class. We have already passed a task to generate our
food to the central queue. However, no thread was involved in the task. We could
also generate our Snake class without using threads. However, because we are talking
about ways to implement multithreaded applications, let's implement our Snake class
to work from a separate thread (refer to 7.03 game of snake.py):
class Snake(threading.Thread):
 def __init__(self, gui, queue):
 threading.Thread.__init__(self)
 self.gui = gui

Some Fun Project Ideas

234

 self.queue = queue
 self.daemon = True
 self.points_earned = 0
 self.snake_points = [(495, 55), (485, 55), (475, 55),
 (465, 55), (455, 55)]
 self.food = Food(queue)
 self.direction = 'Left'
 self.start()

def run(self):
 while not self.gui.is_game_over:
 self.queue.put({'move':self.snake_points})
 time.sleep(0.1)

 self.move()

The description of the code is as follows:

 � First, we create a class named Snake to run from a separate thread.
This class takes the GUI and queue as its input arguments.

 � We initialize the points earned by the player from zero and set the initial
location of the snake using the attribute self.snake_points.

 � Finally, we start the thread and create an infinite loop to call the move()
method at small intervals. During every run of the loop, the method
populates the queue with a dictionary having the key as 'move' and
the value equal to the updated position of the snake through the self.
snake_points attribute.

4. In this step, we will be making the snake move.

The thread initialized above calls the Snake class move() method to move the
snake around on the canvas. However, before we can move the snake, we need to
know the direction in which the snake should move. This obviously depends on the
particular key pressed by the user (Left/Right/Top/Down key).

Accordingly, we need to bind these four events to the Canvas widget. We will
do the actual binding later. However, we can now create a method named called
key_pressed, which takes the key_press event itself as its argument and sets
the direction value according to the key that is pressed.
def key_pressed(self, e):
 self.direction = e.keysym

Project 7

235

Now that we have the directions, let's code the move method:
def move(self):
 new_snake_point = self.calculate_new_coordinates()
 if self.food.position == new_snake_point:
 self.points_earned += 1
 self.queue.put({'points_earned':self.points_earned })
 self.food.generate_food()
 else:
 self.snake_points.pop(0)
 self.check_game_over(new_snake_point)
 self.snake_points.append(new_snake_point)

def calculate_new_coordinates(self):
 last_x, last_y = self.snake_points[-1]
 if self.direction == 'Up':
 new_snake_point = last_x, (last_y - 10)
 elif self.direction == 'Down':
 new_snake_point = last_x, (last_y + 10)
 elif self.direction == 'Left':
 new_snake_point = (last_x - 10), last_y
 elif self.direction == 'Right':
 new_snake_point = (last_x + 10), last_y
 return new_snake_point

def check_game_over(self, snake_point):
 x,y = snake_point[0], snake_point[1]
 if not -5 < x < 505 or not -5 < y < 315 or
 snake_point in self.snake_points:
 self.queue.put({'game_over':True})

The description for the code is as follows:

 � First, the move method obtains the latest coordinates for the snake
depending on the keyboard event. It uses a separate method called
calculate_new_coordinates to get the latest coordinates.

 � It then checks if the location of the new coordinates coincide with the
location of the food. If they match, it increases the score of the player by
one and calls the Food class generate_food method to generate a new
food at a new location.

Some Fun Project Ideas

236

 � If the current point does not coincide with the food coordinates,
it deletes the last item from the snake coordinates using self.
snake_points.pop(0).

 � Then, it calls another method named check_game_over to check
if the snake collides against the wall or against itself. If the snake does
collide, it appends a new dictionary item in the queue with the value
'game_over':True.

 � Finally, if the game is not over, it appends the new position of the snake to
the list self.snake_points. This is automatically added to the queue,
because we have defined self.queue.put({'move':self.snake_
points}) in the Snake class's run() method to update every 0.1 seconds
as long as the game is not over.

5. Now, let's create the Queue handler.

We now have a Food class feeding the centralized queue from the main program
thread. We also have the Snake class adding data to the queue from one thread
and a GUI class running the queue_handler method from another thread. So, the
queue is the central point of interaction between these three threads.

Now, it is time to handle these data to update the content on the canvas. We
accordingly define the queue_handler() method in our GUI class to work on
items in the queue.
def queue_handler(self):
 try:
 while True:
 task = self.queue.get(block=False)
 if task.has_key('game_over'):
 self.game_over()
 elif task.has_key('move'):
 points = [x for point in task['move'] for
 x in point]
 self.canvas.coords(self.snake, *points)
 elif task.has_key('food'):
 self.canvas.coords(self.food,
 *task['food'])
 elif task.has_key('points_earned'):
 self.canvas.itemconfigure(self.points_earned
 , text='Score:{}'.format(task
 ['points_earned']))
 self.queue.task_done()
 except Queue.Empty:
 if not self.is_game_over:
 self.canvas.after(100, self.queue_handler)

Project 7

237

The description for the code is as follows:

 � The queue_handler method gets into an infinite loop looking for tasks in
the queue using task = self.queue.get(block=False). If the queue
becomes empty, the loop is restarted using canvas.after.

 � Once a task is fetched from the queue, the method checks its key.

 � If the key is 'game_over', it calls another method named game_over()
that we defined next.

 � If the key of task is 'move', it uses canvas.coords to move the line
to its new position.

 � If the key is 'points_earned', it updates the score on the canvas.

 � When execution of a task completes, it signals the thread with the
task_done() method.

queue.get can take both block=True (default) and block=False as
its argument.
When the block is set to False, it removes and returns an item from the
queue, if available. If the queue is empty, it raises Queue.Empty. When
the block is set to True, queue.get fetches an item from the queue by
suspending the calling thread, if required, until an item is available.

6. In this step, we will code the method to handle the game_over feature for
the game.

The queue_handler method calls the game_over method in case of a
matching queue key:
def game_over(self):
 self.is_game_over = True
 self.canvas.create_text(200, 150, fill='white',
 text='Game Over')
 quitbtn = Button(self, text='Quit', command =
 self.destroy)
 self.canvas.create_window(200, 180, anchor='nw',
 window=quitbtn)

The description for the code is as follows:

 � We first set the game_over attribute to True. This helps us exit out of
the infinite loop of queue_handler. Then, we add a text on the canvas
displaying the content Game Over.

 � We also add a Quit button inside the canvas, which has a command callback
attached to quit the root window.

Some Fun Project Ideas

238

Take a note of how to attach other widgets inside the canvas widget.

7. Let's Run the game. The game is now ready. To run the game, we create a function
outside all other classes named main():
def main():
 queue = Queue.Queue()
 gui = GUI(queue)
 snake = Snake(gui, queue)
 gui.bind('<Key-Left>', snake.key_pressed)
 gui.bind('<Key-Right>', snake.key_pressed)
 gui.bind('<Key-Up>', snake.key_pressed)
 gui.bind('<Key-Down>', snake.key_pressed)
 gui.mainloop()

if __name__ == '__main__':
 main()

We create an empty queue, and pass it as an argument to all three of our classes
so that they can feed tasks into the queue. We also bind the four directional keys
to the key_pressed method, which is defined earlier within our Snake class.

Objective Complete – Mini Debriefing
Our game is now functional. Go try your hands at controlling the snake, while keeping its
stomach filled.

To summarize, we created three classes such as Food, Snake, and GUI. These three classes
feed information about the task related to their class to a centralized queue which is passed
as an argument to all the classes.

Then, we create a centralized method named queue_handler, which handle tasks from the
queue by polling tasks one at a time and completing it in a non-blocking manner.

The game could have been implemented without threads and queues, but it would have
been slower, longer, and more complex. By using queues to manage data from multiple
threads effectively, we have been able to contain the program to less than 150 lines of code.

Hopefully, you should now be able to implement queues for managing other programs that
you design at your work.

Project 7

239

Creating a Weather Reporter
Let's now build a simple Weather Reporter application. The goal of this project is to
introduce you to the basics of network programming, as used in conjunction with Tkinter.

Prepare for Lift Off
Python has great support for network programming. At the lowest level, Python provides
a socket module that lets you connect and interact with the network using a simple-to-use
object-oriented interface.

For those unaware of network programming, sockets are the fundamental concept behind
any kind of network communications done by your computer. This is the lowest level at
which a programmer can access the network. Underneath the socket layer lie raw UDP
and TCP connections, which are handled by your computer's operating system with no
direct access points for the programmers. For instance, when you type www.packtpub.
com in your browser, the operating system on your computer opens a socket and connects
to packtpub.com to fetch the web page and show it to you. Same happens with any
application that needs to connect to the network.

Let's take a brief look at some of the APIs available in the socket module:

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # create a
#socket
socket.gethostbyname(host) # resolving host IP from host name
s.connect((ip , port)) #Connect to remote server
s.sendall(message)
s.recv(message_size)

If you look at the 7.04 socket demo.py Python file in the code bundle of this project,
you'll find that it sends a very obscure looking GET request to fetch the contents from
the URL in the following line of code:

message = "GET / HTTP/1.1\r\n\r\n"

The data received from the server is also sent in packets, and it is our task to
collect all the data and assemble them at our end. All these make direct socket
programming a tedious approach. We do not want to be writing code for all that
to fetch data from the network.

Some Fun Project Ideas

240

We will therefore use a higher-level module named urllib, which is built on top of sockets
module but is easier to use. The urllib module forms a part of Python standard library.
With this protocol, fetching contents of a web page turns into a four-line code (see the code
in 7.05 urllib demo.py):

import urllib
data = urllib.urlopen('http://www.packtpub.com')
print data.read()
data.close()

This prints the entire HTML source code or whatever is the response from the web page
http://www.packtpub.com. This is, in essence, the core of mining the Web for data
and information.

Now that we know how to get data from a URL, let's apply it to build a small Weather
Reporter application.

This application should take the location as an input from the user, and fetch relevant
weather-related data.

Project 7

241

Engage Thrusters
1. First, we will create the GUI of the application. This should now be easy for you.

We create a class WeatherReporter, and call it from outside the class within the
main loop. See the code of 7.06 weather reporter.py:
def main():
 root=Tk()
 WeatherReporter(root)
 root.mainloop()

if __name__ == '__main__':
 main()

The GUI component of the WeatherReporter class consists of two methods:
top_frame() and display_frame(). The top_frame() method creates an
entry widget and a button that says Show Weather Info.

The display_frame() method creates a canvas where the actual weather data
would be displayed:

class WeatherReporter:
 def __init__(self, root):
 self.root = root
 self.top_frame()
 self.display_frame()

 def top_frame(self):
 topfrm = Frame(self.root)
 topfrm.grid(row=1, sticky='w')
 Label(topfrm, text='Enter Location').grid(row=1,
 column=2, sticky='w')
 self.enteredlocation = StringVar()
 Entry(topfrm, textvariable=self.enteredlocation)
 .grid(row=1, column=2, sticky='w')
 ttk.Button(topfrm, text='Show Weather Info', command=
 self.show_weather_button_clicked).grid(row=1,
 column=3, sticky='w')

Some Fun Project Ideas

242

 def display_frame(self):
 displayfrm = Frame(self.root)
 displayfrm.grid(row=2, sticky='ew', columnspan=5)
 self.canvas = Canvas(displayfrm, height='410',
 width='300', background='black',
 borderwidth=5)
 self.canvas.create_rectangle(5, 5, 305, 415,
 fill='#F6AF06')
 self.canvas.grid(row=2, sticky='w', columnspan=5)

2. In the second step, we are going to fetch the weather data from a website.

There are two ways to fetch data from a website. The first method involves getting
an HTML response from a website, and then parsing the received HTML response for
data that is relevant to us. This type of data extraction is called site scraping.

Site scraping is a rather crude method which is employed only when a given
website does not provide a structured way to retrieve data. On the other hand,
some websites are willing to share data through a set of APIs, provided you query
it for data using the specified URL structure. This is clearly more elegant than site
scraping, because data is interchanged in a reliable and "mutually agreed" format.

For our Weather Reporter application, we want to query some weather channel for
a given location, and in turn retrieve and display the data in our canvas. Fortunately,
there are several weather APIs which lets us do that.

In our example, we will use the weather data provided by a the
following website:
http://openweathermap.org/

The OpenWeatherMap service provides free weather data and forecast APIs. This
site collates weather data from more than 40,000 weather stations across the globe,
and the data can be assessed by city name and geographic coordinates or their
internal city ID.

The website provides weather data in two data formats:

 � JSON (JavaScript Object Notation)

 � XML

Project 7

243

XML and JSON are two popular interchangeable data serialization formats
widely used for data-interchanging among different applications, which
may be running on different platforms and using different programming
languages, thus providing the benefit of interoperability.
JSON is simpler than XML, because its grammar is simpler and it maps more
directly onto the data structures used in modern programming languages.
JSON is better suited for data exchanging, but XML is good for document
exchanging.

The API documentation for the website tells us that a query, such as api.
openweathermap.org/data/2.5/weather?q=London,uk returns us
weather data for London in a JSON format as follows:

{"coord":{"lon":-0.12574,"lat":51.50853},"sys":{"country":"GB","s
unrise":1377147503,"sunset":1377198481},"weather":[{"id":500,"mai
n":"Rain","description":"light rain","icon":"10d"}],"base":"gdps
stations","main":{"temp":294.2,"pressure":1020,"humidity":88,"te
mp_min":292.04,"temp_max":296.48},"wind":{"speed":1,"deg":0},"rain
":{"1h":0.25},"clouds":{"all":40},"dt":1377178327,"id":2643743,"na
me":"London","cod":200}

The syntax of JSON is simple. Any JSON data is a name/value pair where each
data is separated from the others by commas. JSON uses curly braces {} to hold
objects and square brackets [] to hold arrays. We accordingly define a method
to get the weather data in JSON format in our application (refer to 7.06 weather
reporter.py available in the code bundle of this project):
def get_weather_data(self):
 try:
 apiurl = 'http://api.openweathermap.org/data
 /2.5/weather?q=%s'%self.enteredlocation.get()
 data = urllib.urlopen(apiurl)
 jdata= data.read()
 returnjdata
 except IOError as e:
 tkMessageBox.showerror('Unable to connect', 'Unable to
 connect %s'%e)

This method uses urllib to retrieve responses from the website. It returns the
response in JSON format.

3. Now, we'll start processing the JSON data. The weather data returned using API is
encoded in JSON format. We need to convert this data into Python data type. Python
provides a built-in json module that eases the process of "encoding-decoding" JSON
data. We therefore import the json module into our current namespace.

Some Fun Project Ideas

244

Then, we'll use this module to convert the retrieved JSON data into Python
dictionary format (refer to 7.06 weather reporter.py):

def json_to_dict(self, jdata):
 mydecoder = json.JSONDecoder()
 decodedjdata = mydecoder.decode(jdata)
 flatteneddict = {}
 for key, value in decodedjdata.items():
 if key == 'weather':
 forke,va in value[0].items():
 flatteneddict[str(ke)] = str(va).upper()
 continue
 try:
 fork,v in value.items():
 flatteneddict[str(k)] = str(v).upper()
 except:
 flatteneddict[str(key)] = str(value).upper()
 returnflatteneddict

4. Finally, we'll display the retrieved weather data. Now that we have a dictionary of
all weather-related information provided by the API, let's add a command callback
to the button:

def show_weather_button_clicked(self):
 if not self.enteredlocation.get():
 return
 self.canvas.delete(ALL)
 self.canvas.create_rectangle(5, 5,305,415,
 fill='#F6AF06')
 data = self.get_weather_data()
 data =self.json_to_dict(data)
 self.display_final(data)

The display_final method simply takes each item from the dictionary and
displays it on the canvas using create_text. We do not include the code for
display_final because it merely displays the data on the canvas, and this
idea should be self-explanatory by now. The API also provides an icon-related
data. The icons are stored in a folder named weatherimages (refer to the folder
with the same name provided in the code bundle) and an appropriate icon is
displayed using canvas.create_image.

Project 7

245

Objective Complete – Mini Debriefing
Our Weather Reporter application is now functional. In essence, the application uses the
urllib module to query the weather API provided by our data provider. The data is fetched
in JSON format. The JSON data is then decoded into a Python-readable format (dictionary).

The converted data is then displayed on the canvas using create_text and
create_image methods.

Classified Intel
When you access a server from your Python program, it is very important to send requests
after small time gaps.

A typical Python program is capable of running several million instructions per second.
However, the server that sends you the data at the other end is never equipped to work
at that speed.

If you knowingly or unknowingly send large number of requests to a server within a short
time-span, you may hamper it from servicing its routine requests from normal web users.
This constitutes what is called the denial of service (DOS) attack on the server. You may
be banned or, in worse case, sued for disrupting a server, if your program does not make a
limited number of well-behaved requests.

Creating a phonebook application
Let's now build a simple phonebook application that allows the user to store names and
phone numbers. The user should be able to create new records, read existing records,
update existing records, and delete records from the database using this application.
Together, these activities constitute what is known as CRUD (Create, Read, Update and
Delete) operations on a database.

The main learning objective for this project relates to being able to use a relational database
with Tkinter to store and manipulate records.

We have already seen some basic examples of object persistence with serialization.
Relational databases extend this persistence using rules of relational algebra to store
data into tables.

Python provides database interfaces for a wide range of database engines. In addition,
Python provides a generic interface standard that can be used to access database engines,
but it is not natively available as a Python module.

Some Fun Project Ideas

246

Some of the commonly-used database engines include MySQL, SQLite, PostgreSQL, Oracle,
Ingres, SAP DB, Informix, Sybase, Firebird, IBM DB2, Microsoft SQL Server, Microsoft Access,
and so on.

We will use SQLite to store data for our phonebook application.

Prepare for Lift Off
SQLite is a server-less, zero-configuration, self-contained SQL database engine suitable for
developing embedded applications. The source code for SQLite is in the public domain, which
makes it freely available for use in all sorts of commercial and non-commercial projects.

Unlike many other SQL databases, SQLite does not require running a separate server process.
Instead, SQLite stores all the data directly onto flat files which get stored on a computer disk.
These files are easily portable across different platforms, making it a very popular choice for
smaller and simpler database implementation requirements.

Python 2.7 comes with a built-in standard library for sqlite3 support. However, we need to
download the sqlite3 command-line tool that lets us create, modify, and access the database
using a command-line tool. The command-line shell for Windows, Linux, and Mac OS X can
be downloaded from http://sqlite.org/download.html.

Following the instruction on the website, install the SQLite command shell into any location
of your choice.

Let us now implement our phonebook application. The application will look like the
screenshot shown in the following. The application will demonstrate some of the
common operations involved in database programming, as follows:

Project 7

247

Engage Thrusters
1. In order to create the database, we open the command-line tool of our operating

system. On Windows, we generally invoke the command line by typing cmd in the
run console.

Within the command line, we first navigate to the directory where we need to create
the new database file. In order to create the database, we simply use this command:
sqlite3 phonebook.db

This creates a database file named phonebook.db in the folder from which we
execute the command. It also displays a message similar to the one shown below:

SQLite version 3.7.17 2013-05-20 00:56:22
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite>

We have now created a database named phonebook.db. However, the database
file is currently empty. It does not contain any tables or any data. So, we get no
results if we run the command:
sqlite> .tables

Let's for now exit the command-line tool by typing:
sqlite> .exit

2. We want to store contacts in our database, and that is why we need to create the
contacts table. Intuitively, our database table should store a person's name and
phone number. In addition, it is a good practice to keep a unique identification
number for each person or each entry in the table. This is because multiple people
might have the same name or same contact number.

To create a table within our phonebook.db database, we again open the command-
line tool and navigate to the directory where we had created the database. We again
get into the sqlite3 terminal by typing:

sqlite3 phonebook.db

This time a new database is not created. Rather, the command now opens the
existing phonebook.db database, because it is already present on the disk.

Some Fun Project Ideas

248

Next, we create a table named contacts, and add three columns to the table from
the command line:
sqlite> CREATE TABLE contacts

(

contactid INTEGER PRIMARY KEY AUTOINCREMENT,

name STRINGNOT NULL,

contactnumber INTEGER NOT NULL

);

You can verify if the contacts table was created by typing the following command:
sqlite>.table

This prints the name of all the tables present in the currently open database. You
will get the following output:

sqlite>.table

contacts

3. Let's first begin by creating a basic GUI that would let us add, view, delete, and
modify the records. We create a class named PhoneBook and create all GUI widgets
from within its __init__ method (refer to 7.07 phonebook.py):
class PhoneBook:
def __init__(self, master):
 # all widgets created here

We do not rewrite the code here, because we have created similar widgets in all our
previous projects.

4. Let's start creating the records in the database file we created. A new record is to
be created every time a user enters a new name and a phone number in the entry
widgets provided, and clicks on the Add Record button.
def create_record(self):
 name = self.namefield.get()
 num = self.numfield.get()
 if name == "":
 self.msg["text"] = "Please Enter name"
 return
 if num == "":

Project 7

249

 self.msg["text"] = "Please Enter Number"
 return
 conn = sqlite3.connect('phonebook.db')
 c = conn.cursor()
 c.execute("INSERT INTO contacts VALUES(NULL,?, ?)", (name,
 num))
 conn.commit()
 c.close()
 self.namefield.delete(0, END)
 self.numfield.delete(0, END)
 self.msg["text"] = "Phone Record of %s Added" %name

The description of the code is as follows:

 � The create_record method, as defined above, is attached as a command
callback to the Add Record button.

 � When the create_record method is called, it retrieves the name and
number values entered in the Name and Contact Number entry field.

 � If the name or number field is empty, it prints an error message and exits.

 � If name and number fields are valid, the method establishes connection to
the phonebook.db database we had created earlier.

 � The next line, c = conn.cursor(), creates a cursor object. The cursor is
a control structure that is required as per SQL standards, and it enables us
to traverse over the records in a database.

 � The next line, c.execute(query) is the line that actually inserts the name
and phone number into database. Note that it includes three insertion
values: the first is the NULL value corresponding to autoincrement contact
ID which is added through that we had created in our contacts table.

 � The line conn.commit() actually commits these changes to the database
and line c.close() closes the connection to the database.

5. After the above steps are carried out, we will view the records stored in the
database. This method is responsible for fetching all the records from the
database and displaying them in the tree widget.

def view_records(self):
 x = self.tree.get_children()
 for item in x:
 self.tree.delete(item)

Some Fun Project Ideas

250

 conn = sqlite3.connect('phonebook.db')
 c = conn.cursor()
 list = c.execute("SELECT * FROM contacts ORDER BY name
 desc")
 for row in list:
 self.tree.insert("",0,text=row[1],values=row[2])
 c.close()

The description of the code is as follows:

 � The view_records method first deletes all existing items being displayed
in the tree widget

 � It then establishes a database connection and queries the database to
fetch all the data sorted by name in descending order

 � Finally, it iterates over the fetched record to update the tree widget with
the content

6. Now, on the phonebook application we'll delete some records. The delete_
record method is simply responsible for deleting a row from the database based
on a given name criterion:

def delete_record(self):
 self.msg["text"] = ""
 conn = sqlite3.connect('phonebook.db')
 c = conn.cursor()
 name = self.tree.item(self.tree.selection())['text']
 query = "DELETE FROM contacts WHERE name = '%s';" %name
 c.execute(query)
 conn.commit()
 c.close()
 self.msg["text"] = "Phone Record for %s Deleted" %name

Although we have created this deletion query based on name, this method
runs the risk of deleting multiple entries if two or more person have the
same name. A better approach would be to delete the entries based on
the primary key or contact id, which is unique for every entry in the table.

7. The final operation in the phonebook application is modifying the records. When a
user selects a particular record and clicks on the Modify Selected button, it opens a
new Toplevel window like the one shown here:

Project 7

251

This window is created using the open_modify_window method, as defined in the
7.07 phonebook.py Python file. We will not reproduce the code for this method,
because you should be comfortable making such windows by now.

When a user specifies a new number and clicks the Update Record button,
it calls the update_record method, which is defined in the following:

def update_record(self, newphone,oldphone, name):
 conn = sqlite3.connect('phonebook.db')
 c = conn.cursor()
 c.execute("UPDATE contacts SET contactnumber=? WHERE
 contactnumber=? AND name=?", (newphone, oldphone, name))
 conn.commit()
 c.close()
 self.tl.destroy()
 self.msg["text"] = "Phone Number of %s modified" %name

Objective Complete – Mini Debriefing
We have completed coding a basic phonebook application.

More importantly, we have seen how to work with databases. Our phonebook application
has demonstrated how to execute basic create, read, update, and delete (CRUD) operations
on a database.

We have seen how to create database, add tables to the database, and query the database
to add, modify, delete, and view items in the database.

Furthermore, due to similarity of basic database operations, you can now consider working
with other database systems, such as MySQL, PostgreSQL, Oracle, Ingres, SAP DB, Informix,
Sybase, Firebird, IBM DB2, Microsoft SQL Server, and Microsoft Access.

Some Fun Project Ideas

252

Graphing with Tkinter
Let us wrap up this project by looking at the graphing abilities of the Tkinter canvas widget.

Engage Thrusters
In this recipe we will see how we can plot:

 f Pie chart

 f Scatter chart

 f Bar graph

 f Embedding matplotlib graphs

Let's look at the pie chart first:

1. You can easily create pie charts in Tkinter using the Canvas widget's create_arc
method. A sample Pie Chart code is provided in 7.08 pie chart.py:
import Tkinter
root = Tkinter.Tk()
def prop(n):
 return 360.0 * n / 1000

Tkinter.Label(root, text='Pie Chart').pack()
c = Tkinter.Canvas(width=154, height=154)
c.pack()
c.create_arc((2,2,152,152), fill="#FAF402", outline="#FAF402",
start=prop(0), extent = prop(200))
c.create_arc((2,2,152,152), fill="#00AC36", outline="#00AC36",
start=prop(200), extent = prop(400))

Project 7

253

c.create_arc((2,2,152,152), fill="#7A0871", outline="#7A0871",
start=prop(600), extent = prop(50))
c.create_arc((2,2,152,152), fill="#E00022", outline="#E00022",
start=prop(650), extent = prop(200))
c.create_arc((2,2,152,152), fill="#294994", outline="#294994",
start=prop(850), extent = prop(150))
root.mainloop()

The description of the code is as follows:

 f Each portion of the pie chart is drawn by changing the two following
create_arc options:

start: This option specifies the start angle. Default is 0.0.

extent: This option specifies the size of arc relative to the start
angle. Default is 90.0.

2. Next, we'll plot a sample scatter chart:

Similarly, we can use create_line to draw the x and y axes and create_oval to
draw the scatter plots, as shown in the preceding screenshot here. A sample scatter
plot code is provided in the 7.09 scatter plot.py Python file:

import Tkinter
import random
root = Tkinter.Tk()

Some Fun Project Ideas

254

c = Tkinter.Canvas(root, width=350, height=280, bg='white')
c.grid()
#create x-axis
c.create_line(50, 250, 300, 250, width=3)
for i in range(12):
 x = 50 + (i * 20)
c.create_text(x, 255, anchor='n', text='%d'% (20*i))
create y-axis
c.create_line(50, 250, 50, 20, width=3)
for i in range(12):
 y = 250 - (i * 20)
c.create_text(45, y, anchor='e', text='%d'% (20*i))
#create scatter plots from random x-y values
for i in range(35):
 x,y = random.randint(100,210), random.randint(50,250)
 c.create_oval(x-3, y-3, x+3, y+3, width=1, fill='red')
root.mainloop()

3. Now, let's plot a sample bar graph:

A bar graph can be easily generated using the Canvas widget's create_rectangle
method. A sample bar graph code is provided in 7.10 bar graph.py:
import Tkinter
import random
root = Tkinter.Tk()
cwidth = 250
cheight = 220

Project 7

255

barWidth = 20
canv = Tkinter.Canvas(root, width=cwidth, height=cheight,
bg= 'white')
canv.pack()

plotdata= [random.randint(0,200) for r in xrange(12)]

for x, y in enumerate(plotdata):
 x1 = x + x * barWidth
 y1 = cheight - y
 x2 = x + x * barWidth + barWidth
 y2 = cheight
 canv.create_rectangle(x1, y1, x2, y2, fill="blue")
 canv.create_text(x1+3, y1, text=str(y), anchor='sw')

root.mainloop()

4. Finally, we're going to look at how to embed matplotlib graphs in Tkinter
Toplevel window.

Using Tkinter Canvas to draw graphs may work fine for trivial cases. However,
Tkinter may not be the best library when it comes to drawing more sophisticated
and interactive graphs.

In fact, matplotlib is used in conjunction with the NumPy module is the preferred
choice when it comes to producing professional-quality graphs with Python.

Some Fun Project Ideas

256

Although a detailed discussion on matplotlib is beyond the scope of this book, we
will take a brief look at embedding matplotlib-generated graphs on a Tkinter canvas.

If you are interested in exploring advanced graphing with Python, you can
install matplotlib and NumPy (a dependency for matplotlib) with the help of
the installation instructions available at
http://matplotlib.org/users/installing.html

import Tkinter as Tk
from numpy import arange, sin, pi
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg,
NavigationToolbar2TkAgg
from matplotlib.figure import Figure
root = Tk.Tk()
#creating the graph
f = Figure(figsize=(5,4), dpi=100)
a = f.add_subplot(111)
t = arange(-1.0,1.0,0.001)
s = t*sin(1/t)
a.plot(t,s)
embedding matplotlib figure 'f' on a tk.DrawingArea
canvas = FigureCanvasTkAgg(f, master=root)
canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
#creating toolbar
toolbar = NavigationToolbar2TkAgg(canvas, root)
toolbar.update()
root.mainloop()

Objective Complete – Mini Debriefing
This completes our brief discussion on the graphing abilities of Tkinter.

In this iteration, we saw how to use Tkinter Canvas to draw basic graphs such as pie chart,
scatter plots, and bar graphs.

We also saw how to embed more sophisticated matplotlib graphs, on the
Tkinter drawing area.

Project 7

257

Mission Accomplished
This brings us to the end of this project. In this project, we took a deeper look into
some of the many things that can be done with Tkinter Canvas widget.

We also learned how to use the Queue implementation to program a multithreaded
application.

The Weather Reporter application introduced us to the basics of network programming
and how to tap into the Internet for our data needs.

The phonebook application showed us how to work with databases.

Finally, we looked at basic graphing abilities of Tkinter, and we also looked at ways of
embedding matplotlib graphs in Tkinter.

A Hotshot Challenge
 f Screen saver challenge: We have used the create_oval method of the Canvas

widget to create multiple balls in our screen saver program. Try to experiment by
replacing the oval with other canvas-supported shapes, such as lines, rectangles,
and arcs.

In fact, because you can use the create_image method on Canvas, how about
creating an aquarium brimming with different varieties of fishes, snails, aquatic
animals, and plants? You can even add sky divers bubbling their way through the
marine life!

 f Snake game challenge: Implement different levels of the Snake game by introducing
mazes on the canvas.

 f Network programming challenge: Implement any other program that leverages the
data available on the Internet to provide some value to the end user.

 f Database challenge: Revisit your media player program and implement a database
to store playlists and automatically populate the media player when it is run.

 f Graphing challenge: Explore advanced graphing capabilities of matplotlib.

A
Miscellaneous Tips

We are now into the final section of the book. Let's conclude by discussing concepts that do
form a common theme in many GUI applications but did not appear in our applications.

Mission Briefing
The topics covered here include:

 f Tracing Tkinter variables

 f Widget traversal

 f Validating user input

 f Formatting widget data

 f More on fonts

 f Working with Unicode characters

 f Tkinter class hierarchy

 f Custom-made mixins

 f Tips for code cleanup and program optimization

 f Distributing the Tkinter application

 f Limitations of Tkinter

 f Tkinter alternatives

 f Getting interactive help

 f Tkinter in Python 3.x

Miscellaneous Tips

260

Tracing Tkinter variables
When you specify a Tkinter variable as a textvariable for a widget (textvariable =
myvar), the widget automatically gets updated whenever the value of the variable changes.
However, there might be times when, in addition to updating the widget, you need to do
some extra processing at the time of reading or writing (or modifying) the variable.

Tkinter provides a method to attach a callback method that would be triggered every
time the value of a variable is accessed. Thus, the callback acts as a variable observer.
The callback method is named trace_variable(self, mode, callback), or simply
trace(self, mode, callback).

The mode argument can take any one of 'r', 'w', 'u' values, which stand for read, write,
or undefined. Depending upon the mode specifications, the callback method is triggered if
the variable is read or written.

The callback method gets three arguments by default. The arguments in order of their
position are:

 f Name of the Tkinter variable

 f The index of the variable, if the Tkinter variable is an array, else an empty string

 f The access modes ('w', 'r', or 'u')

Note that the triggered callback function may also modify the value of the variable.
This modification does not, however, trigger any additional callbacks.

Let's see a small example of variable tracing in Tkinter, where writing into the Tkinter variable
into an entry widget triggers a callback function (refer to the 8.01 trace variable.py
Python file available in the code bundle):

from Tkinter import *
root = Tk()
myvar = StringVar()
def trace_when_myvar_written(var,indx,mode):
 print"Traced variable %s"%myvar.get()

myvar.trace_variable("w", trace_when_myvar_written)
Label(root, textvariable=myvar).pack(padx=5, pady=5)
Entry(root, textvariable=myvar).pack(padx=5, pady=5)

root.mainloop()

Appendix A

261

The description of the preceding code is as follows:

 f This code creates a trace variable on the Tkinter variable myvar in the
write ("w") mode

 f The trace variable is attached to a callback method named trace_when_myvar_
written (this means that every time the value of myvar is changed, the callback
method will be triggered)

Now, every time you write into the entry widget, it modifies the value of myvar. Because
we have set a trace on myvar, it triggers the callback method, which in our example, simply
prints the new value into the console.

The code creates a GUI window similar to the one shown here:

It also produces a console output in IDLE, which shows like the following once you start
typing in the GUI window:

Traced variable T
Traced variable Tr
Traced variable Tra
Traced variable Trac
Traced variable Traci
Traced variable Tracin
Traced variable Tracing

The trace on a variable is active until it is explicitly deleted. You can delete
a trace using:
trace_vdelete(self, mode, callbacktobedeleted)

The trace method returns the name of the callback
method. This can be used to get the name of the
callback method that is to be deleted.

Miscellaneous Tips

262

Widget traversal
When a GUI has more than one widget, a given widget can come under focus by an explicit
mouse-click on the widget. Alternatively, the focus can be shifted to another given widget by
pressing the Tab key on the keyboard in the order the widgets were created in the program.

It is therefore vital to create widgets in the order we want the user to traverse through them,
or else the user will have a tough time navigating between the widgets using the keyboard.

Different widgets are designed to behave differently to different keyboard strokes. Let's
therefore spend some time trying to understand the rules of traversing through widgets
using the keyboard.

Let's look at the code of the 8.02 widget traversal.py Python file to understand the
keyboard traversal behavior for different widgets. Once you run the mentioned .py file,
it shows a window something like the following:

The code is simple. It adds an entry widget, a few buttons, a few radio buttons, a text
widget, and a scale widget. However, it also demonstrates some of the most important
keyboard traversal behaviors for these widgets.

Here are some important points to note (refer to 8.02 widget traversal.py):

 f The Tab key can be used to traverse forward, and Shift + Tab can be used to
traverse backwards.

 f The text widget cannot be traversed using the Tab key. This is because the text
widget can contain tab characters as its content. Instead, the text widget can be
traversed using Ctrl + Tab.

Appendix A

263

 f Buttons on the widget can be pressed using the spacebar. Similarly, check buttons
and radio buttons can also be toggled using the spacebar.

 f You can go up and down the items in a Listbox widget using the up and
down arrows.

 f The Scale widget responds to both the left and right keys or up and down keys.
Similarly, the Scrollbar widget responds to both the left/right or up/down keys,
depending on their orientation.

 f Most of the widgets (except Frame, Label, and Menus) get an outline by default
when they have the focus set on them. This outline normally displays as a thin black
border around the widget. You can even set the Frame and Label widgets to show
this outline by specifying the highlightthickness option to a non-zero Integer
value for these widgets.

 f We change the color of the outline using highlightcolor= 'red' in our code.

 f Frame, Label, and Menu are not included in the tab navigation path. However,
they can be included in the navigation path by using the takefocus = 1 option.
You can explicitly exclude a widget from the tab navigation path by setting the
takefocus= 0 option.

 f The Tab key traverses widgets in the order they were created. It visits a parent
widget first (unless it is excluded using takefocus = 0) followed by all its
children widgets.

 f You can use widget.focus_force() to force the input focus to the widget.

Validating user input
Let's now discuss input data validation.

Most of the applications we have developed in our book are point and click-based
(drum machine, chess, drawing application), where validation of user input is not required.

However, data validation is a must in programs like our phonebook application, where the
user enters some data, and we store it in a database.

Ignoring the user input validation can be dangerous in such applications because input data
can be misused for SQL injection. In general, any application where an user can enter textual
data, is a good candidate for validating user input. In fact, it is almost considered a maxim
not to trust user inputs.

A wrong user input may be intentional or accidental. In either case, if you fail to validate
or sanitize the data, you may cause unexpected error in your program. In worst cases, user
input can be used to inject harmful code that may be capable of crashing a program or
wiping out an entire database.

Miscellaneous Tips

264

Widgets such as Listbox, Combobox, and Radiobuttons allow limited input options, and
hence, cannot normally be misused to input wrong data. On the other hand, widgets such
as Entry widget, Spinbox widget, and Text widget allow a large possibility of user inputs,
and hence, need to be validated for correctness.

To enable validation on a widget, you need to specify an additional option of the form
validate = 'validationmode' to the widget.

For example, if you want to enable validation on an entry widget, you begin by specifying
the validate option as follows:

Entry(root, validate="all", validatecommand=vcmd)

The validation can occur in one of the following validation modes:

Validation Mode Explanation
none This is the default mode. No validation occurs if validate is set to

"none"

focus When validate is set to "focus", the validate command is called
twice; once when the widget receives focus and once when the focus
is lost

focusin The validate command is called when the widget receives focus

focusout The validate command is called when the widget loses focus

key The validate command is called when the entry is edited

all The validate command is called in all the above cases

The code of the 8.03 validation mode demo.py file demonstrates all these validation
modes by attaching them to a single validation method. Note the different ways different
Entry widgets respond to different events. Some Entry widgets call the validation method on
focus events while others call the validation method at the time of entering key strokes into
the widget, while still others use a combination of focus and key events.

Although we did set the validation mode to trigger the validate method, we need some
sort of data to validate against our rules. This is passed to the validate method using
percent substitution. For instance, we passed the mode as an argument to our validate
method by performing a percent substitution on the validate command, as shown in
the following:

vcmd = (self.root.register(self.validate), '%V')

Appendix A

265

We followed by passing the value of v as an argument to our validate method:

def validate(self, v)

In addition to %V, Tkinter recognizes the following percent substitutions:

Percent
substitutions

Explanation

%d Type of action that occurred on the widget—1 for insert, 0 for
delete, and -1 for focus, forced, or textvariable validation.

%i Index of char string inserted or deleted, if any, else it will be -1.

%P The value of the entry if the edit is allowed. If you are configuring
the Entry widget to have a new textvariable, this will be the value
of that textvariable.

%s The current value of entry, prior to editing.

%S The text string being inserted/deleted, if any, {} otherwise.

%v The type of validation currently set.

%V The type of validation that triggered the callback method (key,
focusin, focusout, and forced).

%W The name of the Entry widget.

These validations provide us with the necessary data we can use to validate the input.

Let's now pass all these data and just print them through a dummy validate method just
to see the kind of data we can expect to get for carrying out our validations (refer to the
code of 8.04 percent substitutions demo.py):

Take particular note of data returned by %P and %s, because they pertain
to the actual data entered by the user in the Entry widget.
In most cases, you will be checking either of these two data against your
validation rules.

Now that we have a background of rules of data validation, let's see two practical examples
that demonstrate input validation.

Miscellaneous Tips

266

Key Validation
Let's assume that we have a form that asks for a user's name. We want the user to input only
alphabets or space characters in the name. Thus, any number or special character is not to
be allowed, as shown in the following screenshot of the widget:

This is clearly a case of 'key' validation mode, because we want to check if an entry is
valid after every key press. The percent substitution that we need to check is %S, because
it yields the text string being inserted or deleted in the Entry widget. Accordingly, the code
that validates the entry widget is as follows (refer to 8.05 key validation.py):

import Tkinter as tk
class KeyValidationDemo():
 def __init__(self):
 root = tk.Tk()
 tk.Label(root, text='Enter your name').pack()
 vcmd = (root.register(self.validate_data), '%S')
 invcmd = (root.register(self.invalid_name), '%S')
 tk.Entry(root, validate="key", validatecommand=vcmd,
 invalidcommand=invcmd).pack(pady=5, padx=5)
 self.errmsg = tk.Label(root, text= '', fg='red')
 self.errmsg.pack()
 root.mainloop()

def validate_data(self, S):
 self.errmsg.config(text='')
 return (S.isalpha() or S =='') # always return True or False

def invalid_name(self, S):
 self.errmsg.config(text='Invalid characters \n name can
 only have alphabets'%S)

app= KeyValidationDemo()

Appendix A

267

The description of the preceding code is as follows:

 f We first register two options validatecommand (vcmd) and invalidcommand
(invcmd).

 f In our example, validatecommand is registered to call the validate_data
method, and the invalidcommand option is registered to call another method
named invalid_name.

 f The validatecommand option specifies a method to be evaluated which would
validate the input. The validation method must return a Boolean value, where a
True signifies that the data entered is valid, and a False return value signifies
that data is invalid.

 f If the validate method returns False (invalid data), no data is added to the Entry
widget and the script registered for invalidcommand is evaluated. In our case, a
False validation would call the invalid_name method. The invalidcommand
method is generally responsible for displaying error messages or setting back the
focus to the Entry widget.

Let's look at the code register(self, func, subst=None,
needcleanup=1).
The register method returns a newly created Tcl function. If this function
is called, the Python function func is executed. If an optional function subst
is provided it is executed before func.

Focus Out Validation
The previous example demonstrated validation in 'key' mode. This means that the
validation method was called after every key press to check if the entry was valid.

However, there are situations when you might want to check the entire string entered into
the widget, rather than checking individual key stroke entries.

For example, if an Entry widget accepts a valid e-mail address, we would ideally like to check
the validity after the user has entered the entire e-mail address, and not after every key
stroke entry. This would qualify as validation in 'focusout' mode.

Miscellaneous Tips

268

Check out the code of 8.06 focus out validation.py for a demonstration on e-mail
validation in the focusout mode:

import Tkinter as tk
import re
class FocusOutValidationDemo():
 def __init__(self):
 self.master = tk.Tk()
 self.errormsg = tk.Label(text='', fg='red')
 self.errormsg.pack()
 tk.Label(text='Enter Email Address').pack()
 vcmd = (self.master.register(self.validate_email), '%P')
 invcmd = (self.master.register(self.invalid_email), '%P')
 self.emailentry = tk.Entry(self.master, validate =
 "focusout", validatecommand=vcmd,
 invalidcommand=invcmd)
 self.emailentry.pack()
 tk.Button(self.master, text="Login").pack()
 tk.mainloop()

 def validate_email(self, P):
 self.errormsg.config(text='')
 x = re.match(r"[^@]+@[^@]+\.[^@]+", P)
 return (x != None)# True(valid email)/False(invalid email)

 def invalid_email(self, P):
 self.errormsg.config(text='Invalid Email Address')
 self.emailentry.focus_set()

app = FocusOutValidationDemo()

The description of the preceding code is as follows:

The code has a lot of similarities to the previous validation example. However, note the
following differences:

 f The validate mode is set to 'focusout' in contrast to the 'key' mode in the
previous example. This means that the validation would be done only when the
Entry widget loses focus.

 f This program uses data provided by the %P percentage substitution, in contrast to
%S, as used in the previous example. This is understandable as %P provides the value
entered in the Entry widget, but %S provides the value of the last key stroke.

Appendix A

269

 f This program uses regular expressions to check if the entered value corresponds to
a valid e-mail format. Validation usually relies on regular expressions and a whole
lot of explanation to cover this topic, but it is out of the scope of this project and the
book. For more information on regular expression modules, visit the following link:

http://docs.python.org/2/library/re.html

This concludes our discussion on input validation in Tkinter. Hopefully, you should now be
able to implement input validation to suit your custom needs.

Formatting widget data
Several input data such as date, time, phone number, credit card number, website URL,
IP number, and so on have an associated display format. For instance, date is better
represented in a MM/DD/YYYY format.

Fortunately, it is easy to format the data in the required format as the user enters them in
the widget (refer to 8.07 formatting entry widget to display date.py). The
mentioned Python file formats the user input automatically to insert forward slashes at the
required places to display user-entered date in the MM/DD/YYYY format.

from Tkinter import *
class FormatEntryWidgetDemo:
 def __init__(self, root):
 Label(root, text='Date(MM/DD/YYYY)').pack()
 self.entereddata = StringVar()
 self.dateentrywidget =
 Entry(textvariable=self.entereddata)
 self.dateentrywidget.pack(padx=5, pady=5)
 self.dateentrywidget.focus_set()
 self.slashpositions = [2, 5]
 root.bind('<Key>', self.format_date_entry_widget)

 def format_date_entry_widget(self, event):

Miscellaneous Tips

270

 entrylist = [c for c in self.entereddata.get() if c != '/']
 for pos in self.slashpositions:
 if len(entrylist) > pos:
 entrylist.insert(pos, '/')
 self.entereddata.set(''.join(entrylist))
 # Controlling cursor
 cursorpos = self.dateentrywidget.index(INSERT)
 for pos in self.slashpositions:
 if cursorpos == (pos + 1): # if cursor is on slash
 cursorpos += 1
 if event.keysym not in ['BackSpace', 'Right', 'Left',
 'Up', 'Down']:
 self.dateentrywidget.icursor(cursorpos)
root = Tk()
FormatEntryWidgetDemo(root)
root.mainloop()

The description of the preceding code is as follows:

 f The Entry widget is bound to the key press event, where every new key press calls
the related callback format_date_entry_widget method.

 f First, the format_date_entry_widget method breaks down the entered text
into an equivalent list by the name entrylist, also ignoring any slash '/' symbol
if entered by the user.

 f It then iterates through the self.slashpositions list and inserts the slash
symbol at all required positions in the entrylist argument. The net result of this is
a list that has slash inserted at all the right places.

 f The next line converts this list into an equivalent string using join(), and then sets
the value of our Entry widget to this string. This ensures that the Entry widget text is
formatted into the aforementioned date format.

 f The remaining pieces of code simply control the cursor to ensure that the cursor
advances by one position whenever it encounters a slash symbol. It also ensures
that key presses, such as 'BackSpace', 'Right', 'Left', 'Up', and 'Down'
are handled properly.

Note that this method does not validate the date value and the user may add any invalid
date. The method defined here will simply format it by adding forward slash at third and sixth
positions. Adding date validation to this example is left as an exercise for you to complete.

This concludes our brief discussion on formatting data within widgets. Hopefully, you
should now be able to create formatted widgets for a wide variety of input data that
can be displayed better in a given format.

Appendix A

271

More on fonts
Many Tkinter widgets let you specify custom font specifications either at the time of widget
creation or later using the configure() option. For most cases, default fonts provide a
standard look and feel. However, should you want to change font specifications, Tkinter lets
you do so. There is one caveat though.

When you specify your own font, you need to make sure it looks good on all platforms where
the program is intended to be deployed. This is because a font might look good and match
well on a particular platform, but may look awful on another. Unless you know what you are
doing, it is always advisable to stick to Tkinter's default fonts.

Most platforms have their own set of standard fonts that are used by the platform's native
widgets. So, rather than trying to reinvent the wheel on what looks good on a given platform
or what would be available for a given platform, Tkinter assigns these standard platform-
specific fonts into its widget, thus providing a native look and feel on every platform.

Tkinter assigns nine fonts to nine different names, which you can therefore
use in your programs. The font names are as follows:

 f TkDefaultFont

 f TkTextFont

 f TkFixedFont

 f TkMenuFont

 f TkHeadingFont

 f TkCaptionFont

 f TkSmallCaptionFont

 f TkIconFont

 f TkTooltipFont

Accordingly, you can use them in your programs in the following way:

Label(text="Sale Up to 50% Off !", font="TkHeadingFont 20")

Label(text="**Conditions Apply", font="TkSmallCaptionFont 8")

Using these kinds of fonts mark up, you can be assured that your font will look native across
all platforms.

Miscellaneous Tips

272

Finer Control over Font
In addition to the above method on handling fonts, Tkinter provides a separate Font
class implementation. The source code of this class is located at the following link:
<Python27_installtion_dir>\Lib\lib-tk\tkfont.py.

To use this module, you need to import tkFont into your namespace.(refer to 8.08
tkfont demo.py):

from Tkinter import Tk, Label, Pack
import tkFont
root=Tk()
label = Label(root, text="Humpty Dumpty was pushed")
label.pack()
currentfont = tkFont.Font(font=label['font'])
print'Actual :' + str(currentfont.actual())
print'Family :' + currentfont.cget("family")
print'Weight :' + currentfont.cget("weight")
print'Text width of Dumpty : %d' %currentfont.measure("Dumpty")
print'Metrics:' + str(currentfont.metrics())
currentfont.config(size=14)
label.config (font=currentfont)
print'New Actual :' + str(currentfont.actual())
root.mainloop()

The console output of this program is as follows:

Actual :{'family': 'Segoe UI', 'weight': 'normal', 'slant': 'roman',
'overstrike': 0, 'underline': 0, 'size': 9}

Family : Segoe UI

Weight : normal

Text width of Dumpty : 43

Metrics:{'fixed': 0, 'ascent': 12, 'descent': 3, 'linespace': 15}

As you can see, the tkfont module provides a much better fine-grained control over various
aspects of fonts, which are otherwise inaccessible.

Appendix A

273

Font Selector
Now that we have seen the basic features available in the tkfont module, let's use it to
implement a font selector. The font selector would look like the one shown here:

The code for the font selector is as follows (refer to 8.09 font selector.py):

from Tkinter import *
import ttk
import tkFont
class FontSelectorDemo():
 def __init__(self):
 self.currentfont = tkFont.Font(font=('Times New Roman',
 12))
 self.family = StringVar(value='Times New Roman')
 self.fontsize = StringVar(value='12')
 self.fontweight =StringVar(value=tkFont.NORMAL)
 self.slant = StringVar(value=tkFont.ROMAN)
 self.underlinevalue = BooleanVar(value=False)
 self.overstrikevalue= BooleanVar(value=False)
 self.gui_creator()

The description of the preceding code is as follows:

 f We import Tkinter (for all widgets), ttk (for the Combobox widget), and tkfont
for handling font-related aspects of the program

 f We create a class named FontSelectorDemo and use its __init_ method to
initialize al attributes that we intend to track in our program.

 f Finally, the __init__ method calls another method named gui_creator(),
which is be responsible for creating all the GUI elements of the program

Miscellaneous Tips

274

Creating the GUI
The code represented here is a highly abridged version of the actual code (refer to 8.09
font selector.py). Here, we removed all the code that creates basic widgets, such as
Label and Checkbuttons, in order to show only the font-related code:

def gui_creator(self):
 # create the top labels – code removed
 fontList = ttk.Combobox(textvariable=self.family)
 fontList.bind('<<ComboboxSelected>>', self.on_value_change)
 allfonts = list(tkFont.families())
 allfonts.sort()
 fontList['values'] = allfonts
 # Font Sizes
 sizeList = ttk.Combobox(textvariable=self.fontsize)
 sizeList.bind('<<ComboboxSelected>>', self.on_value_change)
 allfontsizes = range(6,70)
 sizeList['values'] = allfontsizes
 # add four checkbuttons to provide choice for font style
 # all checkbuttons command attached to self.on_value_change
 #create text widget
 sampletext ='The quick brown fox jumps over the lazy dog'
 self.text.insert(INSERT,'%s\n%s'%
 (sampletext,sampletext.upper()),'fontspecs')
 self.text.config(state=DISABLED)

The description of the preceding code is as follows:

 f We have highlighted the code that creates two Combobox widgets; one for the Font
Family, and the other for the Font Size selection.

 f We use tkfont.families() to fetch the list of all the fonts installed on a
computer. This is converted into a list format and sorted before it is inserted into the
fontList Combobox widget.

 f Similarly, we add a font size range of values from 6 to 70 in the Font Size combobox.

 f We also add four Checkbutton widgets to keep track of font styles bold, italics,
underline, and overstrike. The code for this has not been shown previously,
because we have created similar check buttons in some of our previous programs.

 f We then add a Text widget and insert a sample text into it. More importantly,
we add a tag to the text named fontspec.

 f Finally, all our widgets have a command callback method connecting back to a
common method named on_value_change. This method will be responsible for
updating the display of the sample text at the time of changes in the values of any
of the widgets.

Appendix A

275

Updating Sample Text
def on_value_change(self, event=None):
 try:
 self.currentfont.config(family=self.family.get(),
 size=self.fontsize.get(), weight=self.fontweight.get(),
 slant=self.slant.get(),
 underline=self.underlinevalue.get(),
 overstrike=self.overstrikevalue.get())
 self.text.tag_config('fontspecs', font=self.currentfont)
 except ValueError:
 pass ### invalid entry - ignored for now. You can use a
 tkMessageBox dialog to show an error

The description of the preceding code is as follows:

 f This method is called at the time of a state change for any of the widgets

 f This method simply fetches all font data and configures our currentfont attribute
with the updated font values

 f Finally, it updates the text content tagged as fontspec with the values of the
current font

Working with Unicode characters
Computers only understand binary numbers. Therefore, all that you see on your computer,
for example, texts, images, audio, video, and so on need to be expressed in terms of binary
numbers.

This is where encoding comes into play. An encoding is a set of standard rules that assign
unique numeral values to each text character.

Python 2.x default encoding is ASCII (American Standard Code for Information Interchange).
The ASCII character encoding is a 7-bit encoding that can encode 2 ^7 (128) characters.

Because ASCII encoding was developed in America, it encodes characters from the English
alphabet, namely, the numbers 0-9, the letters a-z and A-Z, some common punctuation
symbols, some teletype machine control codes, and a blank space.

It is here that Unicode encoding comes to our rescue. The following are the key features of
Unicode encoding:

 f It is a way to represent text without bytes

 f It provides unique code point for each character of every language

Miscellaneous Tips

276

 f It defines more than a million code points, representing characters of all major
scripts on the earth

 f Within Unicode, there are several Unicode Transformation Formats (UTF)

 f UTF-8 is one of the most commonly used encodings, where 8 means that 8-bit
numbers are used in the encoding

 f Python also supports UTF-16 encoding, but it's less frequently used, and UTF-32 is
not supported by Python 2.x

Say you want to display a Hindi character on a Tkinter Label widget. You would intuitively try
to run a code like the following:

from Tkinter import *
root = Tk()
Label(root, text = "भारतमेंआपकास्वागतहै").pack()
root.mainloop()

If you try to run the previous code, you will get an error message as follows:

SyntaxError: Non-ASCII character '\xe0' in file 8.07.py on line 4, but
no encoding declared; see http://www.Python.org/peps/pep-0263.html for
details.

This means that Python 2.x, by default, cannot handle non-ASCII characters. Python standard
library supports over 100 encodings, but if you are trying to use anything other than ASCII
encoding you have to explicitly declare the encoding.

Fortunately, handling other encodings is very simple in Python. There are two ways in which
you can deal with non-ASCII characters. They are described in the following sections:

Declaring line encoding
The first way is to mark a string containing Unicode characters with the prefix u explicitly,
as shown in the following code snippet (refer to 8.10 line encoding.py):

from Tkinter import *
root = Tk()
Label(root, text = u"भारतमेंआपकास्वागतहै").pack()
root.mainloop()

Appendix A

277

When you try to run this program from IDLE, you get a warning message similar to the
following one:

Simply click on Ok to save this file as UTF-8 and run this program to display the
Unicode label.

Declaring file encoding
Alternatively, you can explicitly declare the entire file to have UTF-8 encoding by including a
header declaration in your source file in the following format:

-*- coding: <encoding-name> -*-

More precisely, the header declaration must match the regular expression:

coding[:=]\s*([-\w.]+)

This declaration must be included in either the first or second line of your
program. If you add some other declaration or comments in the first two
lines, Python won't recognize this as a header declaration.

So, if you are dealing with UTF-8 characters, you will add the following header declaration in
the first or second line of your Python program:

-*- coding: utf-8 -*-

Simply by adding this header declaration, your Python program can now recognize Unicode
characters. So, our code can be rewritten as (refer to 8.11 file encoding.py):

-*- coding: utf-8 -*-
from Tkinter import *
root = Tk()
Label(root, text = "भारतमेंआपकास्वागतहै").pack()
root.mainloop()

Miscellaneous Tips

278

Both of the above code examples generate an interface similar to the one shown here:

The default encoding in Python 3.x is Unicode (UTF-8). This means
that you don't need an explicit Unicode declaration in Python 3.x to
display non-ASCII characters.

Tkinter class's hierarchy
As programmers, we hardly need to understand the class hierarchy of Tkinter. After all,
we have been able to code all the applications so far without bothering about the overall
class hierarchy.

However, knowing about class hierarchy enables us to trace the origin of a method within
the source code or source documentation of a method. A brief review of the class hierarchy
will also help us prevent accidental overriding of methods in our programs.

In order to understand the class hierarchy of Tkinter, let us take a look at the source code of
Tkinter. On Windows installation, the source code of Tkinter is located at C:\Python27\
Lib\lib-tk\Tkinter.py.

When we open this file in a code editor and look at its list of class definitions, we can see the
following structure:

Appendix A

279

So, what do we notice here? We have class definitions for each of the core Tkinter widgets.
In addition, we have class definitions for different geometry managers and different variable
types defined within Tkinter. These class definitions are what you would normally expect to
be there.

However, in addition to these, we notice some strange-looking class names, such as
BaseWidget, Misc, Tk, Toplevel, Widget, and Wm. All these classes are circled in
the above screenshot. So what services do these classes provide, and where do they fit in
the larger scheme of things?

Let's use the inspect module to look at the class hierarchy of Tkinter. We will first inspect
the class hierarchy of the Frame widget as a representation of class hierarchies for all
other widgets. We will also look at the class hierarchy of the Tk and Toplevel classes to
estimate their role in the overall class hierarchy of Tkinter (refer to 8.12 tkinter class
hierarchy.py):

import Tkinter
import inspect
print 'Class Hierarchy for Frame Widget'
for i, classname in enumerate(inspect.getmro(Tkinter.Frame)):
 print'%s: %s'%(i, classname)

print 'Class Hierarchy for Toplevel'
for i, classname in enumerate(inspect.getmro(Tkinter.Toplevel)):
 print '%s: %s'%(i, classname)

print 'Class Hierarchy for Tk'
for i, classname in enumerate(inspect.getmro(Tkinter.Tk)):
 print'%s: %s'%(i, classname)

The output of the preceding program is as follows:

Class Hierarchy for Frame Widget
0: Tkinter.Frame
1: Tkinter.Widget
2: Tkinter.BaseWidget
3: Tkinter.Misc
4: Tkinter.Pack
5: Tkinter.Place
6: Tkinter.Grid
Class Hierarchy for Toplevel
0: Tkinter.Toplevel
1: Tkinter.BaseWidget
2: Tkinter.Misc
3: Tkinter.Wm

Miscellaneous Tips

280

Class Hierarchy for Tk
0: Tkinter.Tk
1: Tkinter.Misc
2: Tkinter.Wm

The description of the preceding code is as follows:

 f The getmro(classname) function from the inspect module returns a tuple,
consisting of all the ancestors of classname in the order specified by the Method
Resolution Order (MRO). Method Resolution Order refers to the order in which base
classes are searched when looking for a given method.

 f By inspecting the MRO and the source code, we come to know that the Frame class
inherits from the Widget class, which in turn inherits from the BaseWidget class.

 f In addition, the Frame class also inherits from the Misc class, which is a generic
mixin that provides a lot of functionality that we have used in our applications.

 f For a list of functionalities provided by the Misc class, run the following commands
into your Python interactive shell:
>>> import Tkinter

>>> help(Tkinter.Misc)

 f Finally, all our widgets get properties from the geometry mixins—Pack, Grid,
and Place.

 f Next, let us take a look at the Tk and Toplevel classes.

 f The Tk class represents the Toplevel widget of Tkinter, which represents the
main window of an application. The Toplevel class provides several methods for
constructing and managing a Toplevel widget with a given parent.

 f For a list of methods provided by the Toplevel and Tk classes, run the following
commands into your Python interactive shell:
>>>help(Tkinter.Toplevel)

>>>help(Tkinter.Tk)

 f In addition to inheriting from the Misc mixin class, the Toplevel and Tk classes
also inherit methods from the Wm mixin class.

 f The Wm (window manager) mixin class provides a lot of functions to communicate
with the window manager. For a list of functions provided by the Wm class, run the
following command into your Python interactive shell:

>>>help(Tkinter.Wm)

Appendix A

281

After translating the class hierarchy—as obtained from the previous program—into an
image, we get a hierarchy image similar to the one shown in the following:

BaseWidget

Widget

Frame
(similarly all other widgets)

Pack

Grid

Place

Inheritance

Mixins

Misc

Toplevel Tk

Wm

In addition to the normal inheritance relation (shown in the preceding diagram by unspotted
lines), Tkinter provides a list of mixins (or helper classes). A mixin is a class that is designed
not to be used directly, but to be combined with other classes using multiple inheritances.

Tkinter mixins can be broadly classified into two categories:

 f Geometry mixins, which includes the Grid, Pack, and Place classes

 f Implementation mixins, which includes:

 � The Misc class, which is used by the root window and widget classes,
provides several Tk and window-related services

 � The Wm class, which is used by the root window and the Toplevel widget,
provides several window manager services.

Custom-made mixins
We created a "bare bone" GUI framework in order to avoid repetition of the code that creates
widgets. Similar to this concept, there is another way to avoid writing boilerplate code by using
what are named custom GUI mixins. Take for example, the code of 8.13 creating custom
mixins.py. This program creates an interface similar to the one shown here:

Miscellaneous Tips

282

Let's look at the code of 8.13 creating custom mixins.py:

from Tkinter import *

def frame(parent, row, col):
 widget = Frame(parent)
 widget.grid(row= row, column=col)
 return widget

def label(parent, row, col, text):
 widget = Label(parent, text=text)
 widget.grid(row=row, column=col, sticky='w', padx=2)
 return widget

def button(parent, row, col, text, command):
 widget = Button(parent, text=text, command=command)
 widget.grid(row= row, column=col, sticky='e', padx=5, pady=3)
 return widget

def entry(parent, row, col, var):
 widget = Entry(parent,textvariable= var)
 widget.grid(row= row, column=col, sticky='w', padx=5)
 return widget

def button_pressed(uname, pwd):
 print'Username: %s' %uname
 print'Password: %s'%pwd

if __name__ == '__main__':
 root = Tk()
 frm = frame(root, 0, 0)
 label(frm, 1, 0, 'Username:')
 uname= StringVar()
 entry(frm, 1, 1, uname)
 label(frm, 2, 0, 'Password:')
 pwd= StringVar()
 entry(frm, 2, 1, pwd)
 button(frm, 3, 1, 'login', lambda:
 button_pressed(uname.get(), pwd.get()))
 root.mainloop()

Appendix A

283

The description of the preceding code is as follows:

 f This program first creates functions for different widgets, such as Frame, Label,
Button, and Entry. Each method can be named a mixin, because it takes care of both
widget creation and its geometry management using the grid method. These
are essentially convenience functions to help us avoid writing similar code for
a similar set of widgets.

 f Now, in the main section of the program, we can create a widget in a single line
of code without having to add a separate line for handling its geometry. The end
result of this is fewer lines of code in our actual program. This strategy can reduce
the size of your program by many lines if there are a large number of widgets in
your program.

However, mixins are highly case specific. A mixin defined for one particular
case scenario or application may not be applicable to another application.
For instance, while defining the earlier mentioned mixins, we made a few
assumptions, such as all our widgets will use the grid geometry manager,
and similarly, buttons would stick to east and entries would stick to the
west side. These assumptions may not hold for a different application.

Tips for code cleanup and program
optimization

Let's now spend some time discussing the tips and tricks that will help improve the
performance of our Python program. In a normal case scenario of GUI programming,
this generally involves speeding up sections of program that contribute to improving the
overall user experience.

Program optimization is often obsessively taken as an exercise in reducing code execution
time. For programs where timing is a crucial factor, this obsession is genuine. However, if you
are developing a simple GUI application, a correct and consistent user experience is generally
more important than mere fast user experience.

Trying to optimize a code even before it is functional is premature optimization and
should be avoided. However, a GUI program with correct but considerably long
response time probably needs to be optimized, and this is the subject of discussion
of the following sections.

Miscellaneous Tips

284

Choose the right data structure
Selecting the right data structure can have a profound impact on the performance of a
program. If your program is to spend considerable time on lookups, use a dictionary, if
feasible. When all you need is to traverse over a collection, prefer to choose a list over
dictionaries, because dictionaries take more space.

When your data is immutable, prefer to choose tuples over lists, because tuples can be
traversed faster than lists.

Working with Variables
The way you select variables in your program can considerably affect the speed of the
execution of your program. For instance, if you do not need to change the content or
attributes of a widget after its instantiation, do not create a class-wide instance of the
widget.

For example, if a Label widget is to remain static, use Label(root, text='Name').
pack(side=LEFT), instead of using the following snippet:

self.mylabel = Label(root, text='Name')

self.mylabel.pack(side=LEFT)

Similarly, do not create local variables if you are not going to use them more than once.
For example, use mylabel.config (text= event.keysym) instead of first creating
a local variable key and then using it only once:

key = event.keysym
mylabel.config (text=key)

If the local variable is to be used more than once, it may make sense to create a
local variable.

Using Exceptions
Now here is a small caveat. In order to concentrate on illustrating core Tkinter concepts,
we have deliberately ignored the clean exception handling in all our examples in this book.

We have implemented a "catch all errors" exception using simple try-except blocks in most
of our projects. However, when programming your applications, you would ideally want to
be as specific as possible about the exception you want to handle.

Python follows the EAFP (easier to ask for forgiveness than permission) style of
coding, as opposed to the LBYL (look before you leap) style followed by most other
programming languages.

Appendix A

285

Thus, using exception handling similar to the following one is normally cleaner in Python
than checking conditions using the if-then block:

try:
 doSomethingNormal()
except SomethingWrong:

 doSomethingElse()

An example of an if-then block is shown in the following code snippet:

if SomethingWrong:
 doSomethingElse()
else:

 doSomethingNormal()

Filter and map
Python provides two built-in functions named filter and map to manipulate lists directly,
rather than having to directly iterate over each item in the list. The filter, map, and
reduce functions are faster than using loops, because a lot of the work is done by the
underlying code written in C.

 f Filter: The filter(function, list) function returns a list (iterators in Python
3.x) that contains all the items for which the function returns a true value.
For example:
print filter(lambda num: num>6, range(1,10))# prints [7, 8, 9]

This is faster than running a conditional if-then check against the list.

 f Map: The map(func, list) function applies func to each item in the list
and returns the values in a new list (returns iterators instead of lists in Python 3.x).
For example:
print map(lambda num: num+5, range(1,5)) #prints [6, 7, 8, 9]

This again is faster than running the list through a loop, adding 5 to each element.

Profiling
Profiling involves generating detailed statistics to show how often and for how long various
routines of a program execute. This helps is isolating offending parts of a program, and those
parts probably need redesigning.

Miscellaneous Tips

286

Python 2.7.x provides a built-in module named cProfile, which enables generation of
detailed statistics about a program. The module gives details such as the total program-
running time, time taken to run each function, and the number of times each function is
called. These statistics make it easy to determine the parts of code that need optimization.

In particular, cProfile provides the following data for a function or script:
 f ncalls: The number of times a function is called
 f tottime: The time spent on a function, excluding time spent on

calling other functions
 f percall: tottime divided by ncalls
 f cumtime: The time spent on a function, including calls to

other functions
 f percall: cumtime divided by tottime

You can profile an individual function with the help of this:

import cProfile

cProfile.run('spam()','spam.profile')

You can then view the results of profiling using another module called pstats:

import pstats
stats = pstats.Stats('spam.profile')

stats.strip_dirs().sort_stats('time').print_stats()

More importantly, you can profile an entire script. Let's say you want to profile a
script named myscript.py. You simply navigate to the directory of the script using
a command-line tool, and then type and run:

Python -m cProfilemyscript.py

This produces an output similar to the following:

1014 function calls in 0.093 CPU seconds

Ordered by: standard name

ncallstottimepercallcumtimepercallfilename:lineno(function)

1 0.000 0.000 0.000 0.000 Tkinter.py:3686(Studbutton)

1 0.000 0.000 0.000 0.000 Tkinter.py:3694(Tributton)

416 0.001 0.000 0.002 0.000 Tkinter.py:74(_cnfmerge)

1 0.011 0.011 0.028 0.028 myscript.py:19(<module>)

2 0.058 0.029 0.086 0.043 myscript.py:20(setAge)

Appendix A

287

7520.105 0.0000.257 0.129 myscript.py:23(findAudio)

10.001 0.001 0.013 0.013 myscript.py:25(createGUI)

1 40.004 0.000 0.005 0.005 myscript.py:4(saveAudio)

1 0.000 0.000 0.000 0.000 myscript.py:49(<module>)

After this, you can analyze the code to see the functions that take more time to execute. In
our hypothetical example in the preceding output, we notice that the functions findAudio
and saveAudio take the maximum time to execute. We can then analyze these two
functions to see if they can be optimized.

In addition to the cProfile module, there are other modules, such as PyCallGraph and
objgraph, and they provide visual graphs for profile data.

Other Optimization Tips
Optimization is a vast topic and there is a lot that you can do. If you are interested
in knowing more about code optimization, you might start with the official Python
optimization tips at the following link:

http://wiki.python.org/moin/PythonSpeed/PerformanceTips

Distributing the Tkinter application
So, you have your new application ready and now you want to share it with the rest of the
world. How do you do that?

Of course, you need Python installation for your program to run. Windows does not come
with preinstalled Python. Most modern Linux distributions and Mac OS X come preinstalled
with Python, but you don't just need any version of Python. You need a version of Python
that is compatible with the version on which the program was originally written.

And then, if your program uses third-party modules, you need the appropriate module
installed for the required Python version. Sure this is too much diversity to handle.

Fortunately, we have tools, such as Freeze tools, which allows us to distribute Python
programs as standalone applications.

Given the diversity of platforms to be handled, there is a large number of Freeze tool
options from which to choose. Therefore, a detailed discussion on any one of the
tools is beyond the scope of this book.

We will list some of the most evolved freezing tools in the following sections. If you find
a tool fitting into your distribution requirement, you can look at its documentation for
more information.

Miscellaneous Tips

288

py2exe
If you only need to distribute your Python application on Windows, py2exe is perhaps the
most hardened tool. It converts Python programs into executable Windows programs that
can run without requiring a Python installation. More information, a download link, and
tutorials are available at http://www.py2exe.org/.

py2app
py2app performs the same tasks in Mac OS X that py2exe does for Windows. If you just
need to distribute your Python application on Mac OS X, py2app is a time-tested tool. More
information is available at http://svn.pythonmac.org/py2app/py2app/trunk/doc/
index.html.

PyInstaller
PyInstaller has gained popularity as a freezing tool in the last few years partly because it
supports a wide variety of platforms, such as Windows, Linux, Mac OS X, Solaris, and AIX.

In addition, executables created using PyInstaller are claimed to take less space than other
freezing tools because it uses transparent compression. Another important feature of
PyInstaller is its out of the box compatibility with a large number of third-party packages.

The full list of features, downloads, and documentation can be assessed at
http://www.pyinstaller.org/.

Other Freezing Tools
Other freezing tool include:

 f Freeze: This tool ships with standard Python distribution. Freeze can be used to
compile executables only on Unix systems. However, the program is overly simplistic,
as it fails to handle even the common third-party libraries. More information is
available at this link:

http://wiki.python.org/moin/Freeze

 f cx_Freeze: This tool is similar to py2exe and py2app, but claims to be portable
across all platforms on which that Python itself works. More information is
available at this link:

http://cx-freeze.sourceforge.net/index.html

Appendix A

289

If you're distributing a small program, a freeze tool might be just what
you need. However, if you have a large program, say, with lots of external
third-party library dependencies or dependencies not supported by any
existing freezing tool, your application might be the right candidate for
bundling the Python interpreter with your application.

Limitations of Tkinter
We have already explored the power of Tkinter. Perhaps the greatest power of Tkinter lies in
its ease of use and a lightweight footprint.

However, ease of use and lightweightiness of Tkinter also result in some limitations.

Limited number of core widgets
Tkinter provides only a small number of basic widgets, and lacks a collection of more modern
widgets. It needs ttk, Pmw, Tix, and other extensions to provide some really useful widgets.
Even with these extensions, Tkinter fails to match the range of widgets provided by other
GUI tools, such as wxPython advanced widget set and PyQt.

For instance, wxPython's HtmlWindow widget lets the user display HTML content with ease.
There have been attempts to provide similar extensions in Tkinter, but they are far from
satisfactory. Similarly, there are other widgets from Advanced User Interface Library and
mixins in wxPython, such as floating/docking frames, perspective loading and saving, and
others, which Tkinter users can only hope to be included in future releases.

Tkinter supporters often tend to refute this criticism by citing how easily you can construct
new widgets from a collection of basic widgets.

No Support for printing
Tkinter is rightfully criticized for providing no support for printing features. Compare this to
wxPython, which provides a complete printing solution in the form of a printing framework.

No support for newer image formats
Tkinter natively does not support image formats such as JPEG and PNG. The PhotoImage
class of Tkinter can read images only in GIF and PGM/PPM formats.

Although there are workarounds, such as using ImageTk and Image submodules from the PIL
module, it would have been better if Tkinter natively supported the popular image formats.

Miscellaneous Tips

290

Inactive development community
Tkinter is often criticized as having a relatively inactive development community. This is true
to a large extent. The documentation of Tkinter has remained a work-in-progress for many
years now.

A large number of Tkinter extensions appeared over the years, but most of them have not
been under active development for a long time.

Tkinter supporters refute this with the logic that Tkinter is a stable and mature technology
that does not need frequent revisions like some other GUI modules that are being
newly developed.

Alternatives to Tkinter
In addition to Tkinter, there are several other popular Python GUI toolkits. Most popular
ones include wxPython, PyQt, PySide, and PyGTK. Here's a brief discussion on these toolkits.

wxPython
wxPython is aPython interface to wxWidgets, a popular open source GUI library. Code
written in wxPython is portable across most major platforms such as Windows, Linux,
and Mac OS X.

The wxPython interface is generally considered better than Tkinter at building more complex
GUIs primarily because it has a large base of natively supported widgets. However, Tkinter
supporters do contest this claim.

The wxWidgets interface is originally written in C++ programming language, and hence,
wxPython inherits a large portion of the complexity that is typical of C++ programs.
wxPython provides a very large base of classes, and it often takes more code to produce
the same interface than it would take in Tkinter. However, in exchange for this complexity,
wxPython provides a larger base of built-in widgets than Tkinter. Moreover, some people
prefer the appearance of wxPython widgets over that rendered by Tkinter.

Owing to its inherent complexity, wxPython has seen the emergence of several GUI builder
toolkits, such as wxGlade, wxFormBuilder, wxDesigner, and so on.

The wxPython installation comes with demo programs that can help you get started with
the toolkit quickly. To download the toolkit or for more information on wxPython, visit the
following link:

http://wxpython.org/

Appendix A

291

PyQt
PyQt is a Python interface of the cross-platform GUI toolkit Qt, a project currently developed
and maintained by British firm Riverbank Computing.

PyQt, with several hundred classes and thousands of functions is perhaps the most
fully-featured GUI library that is currently available for GUI programming in Python.
However, this feature load brings in a lot of complexity and a steep learning curve.

Qt (and hence pyQt) has a very rich set of supported widgets. In addition, it includes
built-in support for network programming, SQL databases, threads, multimedia framework,
regular expressions, XML, SVG, and much more. The designer feature of Qtletsus generates
GUI code from a WYSIWYG (What You See Is What You Get) interface.

PyQt is available under variety of licenses including GNU, General Public License (GPL),
and commercial license. However, its greatest disadvantage is that unlike Qt, it is unavailable
under the LGPL.

PySide
If you are looking for a LGPL version of Qt bindings for Python, you may want to explore
PySide. PySide was originally released under the LGPL in August 2009 by Nokia, the former
owners of the Qttoolkit. It is now owned by Digia. More information on PySide can be
obtained from the following link:

http://qt-project.org/wiki/PySide

PyGTK
PyGTK is a collection of Python bindings for the GTK + GUI library. PyGTK applications are
cross-platform, and can run on Windows, Linux, MacOS X, and others. PyGTK is a free
software and licensed under the LGPL. You can therefore use, modify, and distribute it
with very little restrictions.

More information about PyGTK can be obtained at the following link:

http://www.pygtk.org/

Miscellaneous Tips

292

Other Options
Besides these most popular toolkits, there is a range of toolkits available for GUI
programming in Python.

Java programmers who are comfortable with Java GUI libraries, such as swing and AWT,
can seamlessly access these libraries by using Jython. Similarly C# programmers can use
IronPython to access GUI construction features from the .NET framework.

For a comprehensive list of other GUI tools available to a Python developer visit this link:

http://wiki.python.org/moin/GuiProgramming

Getting interactive help
This section is not just true about Tkinter, but for any Python object for which you need help.

Let's say you need a reference on Tkinter Pack geometry manager, you can get interactive
help in your Python interactive shell using the help command, as shown in the following
command lines:

>>> import Tkinter

>>> help(Tkinter.Pack)

This provides a detailed help documentation on all the methods defined under the Pack
class in Tkinter.

You can similarly view help for all other individual widgets. For instance, you can check
comprehensive and authoritative help documentation for Label widget in the interactive
shell by typing:

>>>help(Tkinter.Label)

This provides a list of:

 f All methods defined in class Label

 f All standard and widget specific options for Label widget

 f All methods inherited from other classes

Finally, when in doubt about a method, look into the source file located at <location-of-
python-installation>\lib\lib-tk\Tkinter.py.

Appendix A

293

The lib-tk directory is the home to some great Tkinter code that you can
study. In particular, you may also want to take a look at the source code of:

 f turtle.py: A popular way to introduce programming to kids. It
includes some cool animated effects

 f Tkdnd.py: An experiment code that lets you drag and drop items
on the Tkinter window.

You might also find it useful to look at the source code implementation of
various other modules, such as the color chooser, file dialogs, ttk module,
and others.

Tkinter in Python 3.x
In 2008, Guido van Rossum, the author of Python, forked the language into two branches—
2.x, and 3.x. This was done to clean up and make the language more consistent.

Python 3.x broke backward compatibility with the Python 2.x. For example, the print
statement in Python 2.x was replaced by print() function that would now take arguments
as parameters.

We coded all our Tkinter programs in Python Version 2.7, because it has a richer set of third-
party libraries than Python 3.x, which is still considered a developing version.

The core functionality of Tkinter remains the same between 2.x, and 3.x. The only significant
change to Tkinter when moving from Python 2.x to Python 3.x involves changing the way
Tkinter modules are imported.

Tkinter has been renamed to tkinter in Python 3.x (capitalization has been removed). Note
that in 3.x, the directory lib-tk was renamed to tkinter. Inside the directory, the file
Tkinter.py was renamed to __init__.py, thus making tkinter an importable module.

Accordingly, the biggest major difference lies in the way you import the Tkinter module into
your current namespace:

from Tkinter import * # for Python2
from tkinter import * # for Python3

Miscellaneous Tips

294

Further, take a note of the following changes:

Python 2.x Python 3.x

import ttk import tkinter.ttk OR

from tkinter import ttk

import tkMessageBox import tkinter.messagebox

import tkColorChooser import tkinter.colorchooser

import tkFileDialog import tkinter.filedialog

import tkSimpleDialog import tkinter.simpledialog

import tkCommonDialog import tkinter.commondialog

import tkFont import tkinter.font

import ScrolledText import tkinter.scrolledtext

import Tix import tkinter.tix

Conclusion
To conclude, let's summarize some of the key steps involved in designing an application:

 f Depending on what you want to design, choose a suitable data structure to
represent your needs logically.

 f If required, combine primitive data structures to form complex structures like, say, a
list of dictionaries or a tuple of dictionaries.

 f Create classes for objects that constitute your application. Add attributes that need
to be manipulated and methods to manipulate those attributes.

 f Manipulate attributes using different API provided by a rich set of Python standard
and external libraries.

We tried to build several partly-functional applications in this book. And then we put up an
explanation for the code. However, when you try to explain a software development process
in a sequential text, you sometimes mislead your readers to imply that development of
software programs is a linear process. This is hardly true.

Actual programming doesn't usually work this way. In fact, small-to-medium-sized programs
are normally written in an incremental trial and error process where assumptions get
changed and structures modified throughout the course of application development.

Appendix A

295

Here is how you would develop a small to medium application:

1. Start with a simple script.

2. Set a small achievable goal, implement it, and then think of adding the next feature
to your program in an incremental fashion.

3. You may or may not introduce a class structure initially. If you are clear about
the problem domain, you may introduce the class structure right from the very
beginning.

4. If you are not sure about the class structure initially, start with simple procedural
code. As your program starts to grow, you will probably start getting lot of global
variables. It is here that you will start getting a glimpse of the structural dimensions
of your program. It is now time to refactor and restructure your program to
introduce a class structure.

If you are writing a small program, the evolutionary trial and error
strategy works well.
If, however, you get into developing medium to large-scale applications, it
is better to do some serious upfront planning before you sit down to write
your code, because the cost of failure of a large program is way higher
than what we can generally afford.
An analogy would explain this better. You can build a small shed on a trial
and error basis, but you would not attempt to build a skyscraper without
some serious planning.

It is also important not to be unnecessarily bogged down by ever evolving jargons in the
technical world. Programming is less about knowing a particular API or even a particular
programming language. You can literally get to know the basic constructs of a programming
language in a small sitting. Programming is rather a tool for finding solution to your
immediate problems.

That brings us to the end of the book. I hope this book has taught you something about GUI
programming with Python and Tkinter.

Beyond reading books, there is really no substitute for doing some original GUI
programming. So, take up an original programming challenge and execute it for the
fun of it.

How you implement it is a matter of individual experiences and taste. Do what feels
comfortable to you, but keep yourself open to the idea of continuous refactoring at
every stage of development.

B
Quick Reference

Sheets

Large portions of the appendix have been generated from the built-in Tkinter
documentation, and are accordingly copyright of Python Software Foundation
(Copyright © 2001-2013 Python Software Foundation; All Rights Reserved).

Options common to widgets
The following table consists options common to most of the widgets their functionalities and
the list of widgets to which the options are not applicable:

Widget option Function
Not applicable
to widgets

background (bg) Picks background color.

borderwidth (bd) Defines width of border in pixel.

cursor
It is the mouse cursor to be used for the
widget.

relief It specifies the border style for a widget.

takefocus
If window accepts focus during keyboard
traversal.

width
An integer specifying the relative width of a
widget. Menu

font It specifies font family and font size.

Toplevel, Canvas,
Frame, and
Scrollbar

Quick Reference Sheets

298

Widget option Function
Not applicable
to widgets

foreground (fg) It specifies foreground color.

Toplevel, Canvas,
Frame, and
Scrollbar

highlightbackground color Menu

highlightcolor color Menu

highlightthickness It is measured in pixels. Menu

relief

Specifies the 3D effect to be applied to a
given widget. Valid values are RAISED,
SUNKEN, FLAT, RIDGE, SOLID, and
GROOVE.

takefocus

Specified as 1 or 0 representing whether or
not a widget takes focus during keyboard
tab-based traversal.

width Integer specifying the width of a widget. Menu

The following table consists options common to most of the widgets their functionalities and
the list of widgets to which the options are applicable:

Widget Option Function Applicable to

activebackground
Color of background when widget is
active.

Menu, Menubutton,
Button, Checkbutton,
Radiobutton, Scale, and
Scrollbar

activeforeground
Color of foreground when widget is
active.

Menu, Menubutton,
Button, Checkbutton, and
Radiobutton

anchor

Indicates where text or a bitmap
would be displayed on a widget. Valid
values are n, ne, e, se, s, sw, w, nw,
or center.

Menubutton, Button,
Checkbutton, Radiobutton,
Label, and Message

bitmap
Indicates a bitmap to display in the
widget.

Menubutton, Button,
Checkbutton, Radiobutton,
and Label

command

Indicates a command callback to
associate with the widget, which
would be normally invoked on mouse
button 1 release over the widget.

Button, Checkbutton,
Radiobutton, Scale, and
Scrollbar

Appendix B

299

Widget Option Function Applicable to

disabledforeground

Indicates the foreground color to
display when a widget is in disabled
state.

Menu, Menubutton,
Button, Checkbutton, and
Radiobutton

height

Indicates height of widget, in units in
which the font has been specified for
the given widget.

Toplevel, Menubutton,
Button, Checkbutton,
Radiobutton, Label, Frame,
Listbox, and Canvas

image
Indicates an image to display in the
widget.

Menubutton, Button,
Checkbutton, Radiobutton,
and Label

justify

Applicable when multiple lines of
text are displayed in a widget. This
determines how the text lines line up
with each other. Must be one of LEFT,
CENTER, or RIGHT.

Menubutton, Button,
Checkbutton, Radiobutton,
Label, Entry, and Message

selectbackground
Indicates the background color to
show when displaying selected items.

Text, Listbox, Entry, and
Canvas

selectborderwidth
Indicates the border width to show
when displaying selected items.

Text, Listbox, Entry, and
Canvas

selectforeground
Indicates the foreground color to
show when displaying selected items.

Text, Listbox, Entry, and
Canvas

state

Indicates one of two or three
states that a widget may be under.
Valid values normal, active, or
disabled.

Menubutton, Button,
Checkbutton, Radiobutton,
Text, Entry, and Scale

text
Indicates a string to be displayed
inside the widget.

Menubutton, Button,
Checkbutton, Radiobutton,
Label, and Message

textvariable

Indicates the name of a variable. The
value of the variable is changed to
string in order to be displayed in the
widget. The widget automatically
updates as and when the variable
value changes.

Menubutton, Button,
Checkbutton, Radiobutton,
Label, Entry, and Message

underline
Indicates the integer index of a
character to underline in the widget.

Menubutton, Button,
Checkbutton, Radiobutton,
and Label

wraplength
Indicates the maximum line length
for widgets that have word wrapping.

Menubutton, Button,
Checkbutton, Radiobutton,
and Label

Quick Reference Sheets

300

Widget-specific options
We do not reproduce all widget-specific options. You can obtain all available options for a
given widget in the Python interactive shell using the help command.

To obtain help on any Tkinter class, you first import Tkinter into the namespace like:

>>>import Tkinter

The following commands can then be used to get information on a particular widget:

Widget Name Getting Help

Label help(Tkinter.Label)

Button help(Tkinter.Button)

Canvas help(Tkinter.Canvas)

CheckButton help(Tkinter.Checkbutton)

Entry help(Tkinter.Entry)

Frame help(Tkinter.Frame)

LabelFrame help(Tkinter.LabelFrame)

Listbox help(Tkinter.Listbox)

Menu help(Tkinter.Menu)

Menubutton help(Tkinter.Menubutton)

Message help(Tkinter.Message)

OptionMenu help(Tkinter.OptionMenu)

PanedWindow help(Tkinter.PanedWindow)

RadioButton help(Tkinter.Radiobutton)

Scale help(Tkinter.Scale)

Scrollbar help(Tkinter.Scrollbar)

Spinbox help(Tkinter.Spinbox)

Text help(Tkinter.Text)

Bitmap Class help(Tkinter.BitmapImage)

Image Class help(Tkinter.Image)

Appendix B

301

The pack manager
The pack geometry manager is the oldest geometry manager available with Tk and Tkinter.
The pack geometry manager places slave widgets in a master widget, adding them one at a
time in the order in which slaves are introduced. Following table shows the available pack()
methods and options:

Methods Description

config =
configure
= pack_
configure(self,
cnf={}, **kw)

Pack a widget in the parent widget. Use as options:

 f after=widget: pack it after you have packed widget

 f anchor=NSEW (or subset): position widget according to given
direction

 f before=widget: pack it before you will pack widget

 f expand=bool: expand widget if parent size grows

 f fill=NONE (or X or Y or BOTH): fill widget if widget grows

 f in=master: use master to contain this widget

 f in_=master: see 'in' option description

 f ipadx=amount: add internal padding in x direction

 f ipady=amount: add internal padding in y direction

 f padx=amount: add padding in x direction

 f pady=amount: add padding in y direction

 f side=TOP (or BOTTOM or LEFT or RIGHT): where to add
this widget

forget = pack_
forget(self)

Unmap this widget and do not use it for the packing order.

info = pack_
info(self)

Return information about the packing options for this widget.

propagate
=pack_
propagate(self,
flag=['_
noarg_']) from
Tkinter.Misc

Set or get the status for propagation of geometry information.

A Boolean argument specifies whether the geometry information of
the slaves will determine the size of this widget. If no argument is
given, the current setting will be returned.

slaves = pack_
slaves(self)
from Tkinter.
Misc

Return a list of all slaves of this widget in its packing order.

Quick Reference Sheets

302

The grid manager
The grid is easy to implement and equally easy to modify, making it the most popular
choice for most use cases. Following is a list of methods and options available for layout
management with the grid() geometry manager:

Methods defined here Description
bbox = grid_
bbox(self,
column=None,
row=None, col2=None,
row2=None) from
Tkinter.Misc

Return a tuple of integer coordinates for the bounding box of this
widget controlled by the geometry manager grid.

If column, row is given, the bounding box applies from the cell
with row and column 0 to the specified cell. If col2 and row2
are given, the bounding box starts at that cell.

The returned integers specify the offset of the upper left corner
in the master widget and the width and height.

columnconfigure =
grid_columnconfigure
(self, index,
cnf={}, **kw) from
Tkinter.Misc

Configures column index of a grid.

Valid resources are minsize (minimum size of the column),weight
(how much does additional space propagate to this column), and
pad (how much space to let additionally).

grid = config =
configure = grid_
configure(self,
cnf={}, **kw)

Position a widget in the parent widget in a grid. Use as options:

 f column=number: use cell identified with given column
(starting with 0)

 f columnspan=number: this widget will span several
columns

 f in=master: use master to contain this widget

 f in_=master: see 'in' option description

 f ipadx=amount: add internal padding in x direction

 f ipady=amount: add internal padding in y direction

 f padx=amount: add padding in x direction

 f pady=amount: add padding in y direction

 f row=number: use cell identified with given row (starting
with 0)

 f rowspan=number: this widget will span several rows

 f sticky=NSEW: if cell is larger on which sides will this
widget stick to the cell boundary

forget = grid_
forget(self)

Un-map this widget.

Appendix B

303

Methods defined here Description
info = grid_
info(self)

Return information about the options for positioning this widget
in a grid.

grid_location(self,
x, y) from Tkinter.
Misc

Return a tuple of column and row which identify the cell at which
the pixel at position X and Y inside the master widget is located.

grid_propagate(self,
flag=['_noarg_'])
from Tkinter.Misc

Set or get the status for propagation of geometry information.

A Boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no
argument is given, the current setting will be returned.

grid_remove(self) Un-map this widget, but remember the grid options.

grid_
rowconfigure(self,
index, cnf={}, **kw)
from Tkinter.Misc

Configure row index of a grid.

Valid resources are minsize (minimum size of the row),weight
(how much does additional space propagate to this row), and
pad (how much space to let additionally) .

size = grid_
size(self) from
Tkinter.Misc

Return a tuple of the number of column and rows in the grid.

slaves = grid_
slaves(self,
row=None,
column=None) from
Tkinter.Misc

Return a list of all slaves of this widget in its packing order.

location = grid_
location(self, x, y)
from Tkinter.Misc

Return a tuple of column and row which identify the cell at which
the pixel at position X and Y inside the master widget is located.

propagate = grid_
propagate(self,
flag=['_noarg_'])
from Tkinter.Misc

Set or get the status for propagation of geometry information.

A Boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no
argument is given, the current setting will be returned.

rowconfigure = grid_
rowconfigure(self,
index, cnf={}, **kw)
from Tkinter.Misc

Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),weight
(how much does additional space propagate to this row), and
pad (how much space to let additionally).

Quick Reference Sheets

304

The place manager
The place() geometry manager allows for precise positioning of widgets based on absolute
or relative coordinates for a given window. The following table lists methods and options
available under place geometry manager:

Methods defined here Description
config =
configure
= place_
configure(self,
cnf={}, **kw)

Place a widget in the parent widget. Use as options:

 f in=master: master relative to which the widget is placed

 f in_=master: see 'in' option description

 f x=amount: locate anchor of this widget at position x of
master

 f y=amount: locate anchor of this widget at position y of
master

 f relx=amount: locate anchor of this widget between 0.0 and
1.0 relative to width of master (1.0 is right edge)

 f rely=amount: locate anchor of this widget between 0.0 and
1.0 relative to height of master (1.0 is bottom edge)

 f anchor=NSEW (or subset): position anchor according to
given direction

 f width=amount: width of this widget in pixel

 f height=amount: height of this widget in pixel

 f relwidth=amount: width of this widget between 0.0 and
1.0 relative to width of master (1.0 is the same width as the
master)

 f relheight=amount: height of this widget between 0.0 and
1.0 relative to height of master (1.0 is the same height as the
master)

 f bordermode="inside" (or "outside"): whether to
take border width of master widget into account

forget = place_
forget(self)

Un-map this widget.

info = place_
info(self)

Return information about the placing options for this widget.

slaves = place_
slaves(self)
from Tkinter.
Misc

Return a list of all slaves of this widget in its packing order.

Appendix B

305

The event types
The general format for representing an event is as follows:

<[event modifier-]...event type [-event detail]>

It is compulsory to specify the event types for any event binding. Also note that event types,
event modifier, and event details vary across platforms. The following table represents event
types with their description:

Event type Description

Activate Change in the state option of a widget from inactive (grayed out) to active.

Button Press of a mouse button. The event detail part specifies which button.

ButtonRelease Release of a pressed mouse button.

Configure Change of size of a widget.

Deactivate Change in the state option of a widget from active to inactive (grayed out).

Destroy Destruction of a widget using the widget.destroy method.

Enter Mouse pointer enters a visible part of a widget.

Expose
At least some part of widget becomes visible after remaining covered by
another window.

FocusIn
Widget gets input focus either due to a user event (like using the Tab key or
mouse click) or on call of .focus_set() on a widget

FocusOut Focus moved out of a widget.

KeyPress/Key Press of a key on the keyboard. The event-detail part specifies which key.

KeyRelease Release of a pressed key.

Leave Mouse pointer moves out of a widget.

Map
Widget is mapped (made visible). Occurs say when you call a geometry
manager on a widget.

Motion Mouse pointer moves entirely within a widget.

Un-map
Widget is unmapped (made invisible). For example, when you use the
remove() method.

Visibility At least a part of the window becomes visible.

Quick Reference Sheets

306

The event modifiers
The event modifiers are an optional component for creating an event binding. A list of
event modifiers is listed as follows. However, note that most of the event modifiers are
platform-specific and may not work across all platforms.

Modifier Description

Alt True when Alt key is pressed.

Any
Generalizes an event type. For example <Any-KeyPress> is True when
any key is pressed.

Control True when Ctrl (Control) key is pressed.

Double
Specifies two events occurring in rapid succession. For example,
<Double-Button-1>is double-click of mouse button 1.

Lock True if Caps Lock/Shift lock is pressed

Shift True if Shift key is pressed

Triple Similar to Double (three events occurring in rapid succession)

The event details
Event details are optional components for creating an event binding. They generally denote
the mouse button or details of a key stroke on the keyboard using a key symbol abbreviated
as keysym.

List of all
available event
details is as
follows:.keysym

.keycode .keysym_num Key

Alt_L 64 65513 Left Alt key

Alt_R 113 65514 Right Alt key

BackSpace 22 65288 Backspace

Cancel 110 65387 Break

Caps_Lock 66 65549 CapsLock

Control_L 37 65507 Left Ctrl key

Control_R 109 65508 Right Ctrl key

Delete 107 65535 Delete

Down 104 65364 Down arrow key

Appendix B

307

List of all
available event
details is as
follows:.keysym

.keycode .keysym_num Key

End 103 65367 End

Escape 9 65307 Esc

Execute 111 65378 SysRq

F1 – F11 67 to 95 65470 to 65480 Function key F1 to F11

F12 96 65481 Function key F12

Home 97 65360 Home

Insert 106 65379 Insert

Left 100 65361 Left side arrow key

Linefeed 54 106 Linefeed/Ctrl + J

KP_0 90 65438 0 on keypad

KP_1 87 65436 1 on keypad

KP_2 88 65433 2 on keypad

KP_3 89 65435 3 on keypad

KP_4 83 65430 4 on keypad

KP_5 84 65437 5 on keypad

KP_6 85 65432 6 on keypad

KP_7 79 65429 7 on keypad

KP_8 80 65431 8 on keypad

KP_9 81 65434 9 on keypad

KP_Add 86 65451 + on keypad

KP_Begin 84 65437
Center key on keypad (same as
key 5)

KP_Decimal 91 65439 Decimal (.) key on keypad

KP_Delete 91 65439 Delete (Del) key on keypad

KP_Divide 112 65455 / on keypad

KP_Down 88 65433 Down arrow key on keypad

KP_End 87 65436 End on keypad

KP_Enter 108 65421 Enter on keypad

KP_Home 79 65429 Home on keypad

Quick Reference Sheets

308

List of all
available event
details is as
follows:.keysym

.keycode .keysym_num Key

KP_Insert 90 65438 Insert on keypad

KP_Left 83 65430 Left arrow key on keypad

KP_Multiply 63 65450 * on keypad

KP_Next 89 65435 Page Down on keypad

KP_Prior 81 65434 Page Up on keypad

KP_Right 85 65432 Right arrow key on keypad

KP_Subtract 82 65453 - on keypad

KP_Up 80 65431 Up arrow key on keypad

Next 105 65366 Page Down

Num_Lock 77 65407 Num Lock

Pause 110 65299 Pause

Print 111 65377 Prt Scr

Prior 99 65365 Page Up

Return 36 65293 Enter key / Ctrl + M

Right 102 65363 Right arrow key

Scroll_Lock 78 65300 Scroll Lock

Shift_L 50 65505 Left Shift key

Shift_R 62 65506 Right Shift key

Tab 23 65289 Tab key

Up 98 65362 Up arrow key

Other event-related methods
Binding of a handler to an event can happen at various levels using bind, bind_all, bind_
class, and tag_bind.

Appendix B

309

If an event binding is registered to a callback function, the callback function is called with an
Event as its first argument. The event argument has the following attributes:

Attribute Description Valid for event types

event.serial Serial number of event. All
event.num Mouse button pressed. ButtonPress and

ButtonRelease

event.focus Whether the window has the
focus.

Enter and Leave

event.height Height of the exposed window. Configure and Expose
event.width Width of the exposed window. Configure and Expose
event.keycode Keycode of the pressed key. KeyPress and KeyRelease
event.state State of the event as a number. ButtonPress,

ButtonRelease, Enter,
KeyPress, KeyRelease,
Leave, and Motion

event.state State as a string. Visibility

event.time When the event occurred. All
event.x It gives the x-position of the

mouse.
All

event.y It gives the y-position of the
mouse.

All

event.x_root It gives the x-position of the
mouse on the screen.

ButtonPress,
ButtonRelease,
KeyPress, KeyRelease,
and Motion

event.y_root It gives the y-position of the
mouse on the screen.

ButtonPress,
ButtonRelease, KeyPress,
KeyRelease, and Motion

event.char It gives the pressed character. KeyPress and KeyRelease
event.keysym It gives the keysym of the event

as a string.
KeyPress and KeyRelease

event.keysym_
num

It gives the keysym of the event
as a number.

KeyPress and KeyRelease

event.type Type of the event as a number. All
event.widget Widget in which the event

occurred.
All

event.delta Delta of wheel movement. MouseWheel

Quick Reference Sheets

310

List of available cursor
The cursor widget option allows a Tk programmer to change the mouse cursor for a
particular widget. The cursor names recognized by Tk on all platforms are:

X_cursor arrow based_
arrow_
down

based_
arrow_up

boat bogosity

bottom_
left_
corner

bottom_
right_
corner

bottom_
side

box_
spiral

center_
ptr

circle

clock coffee_
mug

cross cross_
reverse

crosshair diamond
_cross

dot dotbox double_
arrow

draft_
large

draft_
small

draped_
box

exchange fleur gobbler gumby hand1 hand2

heart icon iron_
cross

left_ptr left_side left_tee

leftbutton ll_angle lr_angle man bottom_
tee

middle
button

mouse pencil pirate plus question_
arrow

right_ptr

right_side right_
tee

right
button

rtl_logo sailboat sb_down_
arrow

sb_h_
double_
arrow

sb_left_
arrow

sb_right_
arrow

sb_up_
arrow

sb_v_
double_
arrow

shuttle

sizing spider spraycan star target tcross

top_left_
arrow

top_
left_
corner

top_
right_
corner

top_side top_tee trek

ul_angle umbrella ur_angle watch xterm

See 9.01 all cursor demo.py for a demonstration of all cross platform cursors.

Potability issues
 f Windows: The cursors that have native mapping on Windows are, arrow, center_

ptr, crosshair, fleur, ibeam, icon, sb_h_double_arrow, sb_v_double_
arrow, watch, and xterm.

Appendix B

311

And the following additional cursors available are, no, starting, size,
size_ne_sw, size_ns, size_nw_se, size_we, uparrow, wait.

The no cursor can be specified to eliminate the cursor.

 f Mac OS X: The cursors that have native mapping on Mac OS X systems are, arrow,
cross, crosshair, ibeam, plus, watch, xterm.

And the following additional native cursors available are, copyarrow, aliasarrow,
contextualmenuarrow, text, cross-hair, closedhand, openhand,
pointinghand, resizeleft, resizeright, resizeleftright, resizeup,
resizedown, resizeupdown, none, notallowed, poof, countinguphand,
countingdownhand, countingupanddownhand, spinning.

The basic widget methods
These methods are provided under class Widget in module Tkinter. You can view the
documentation for these methods in your interactive shell using the following commands:

>>> import Tkinter

>>>help(Tkinter.Widget)

A list of available methods under Widgets class is as follows:

Method Description
after(self, ms,
func=None, *args)

Calls function once after given time. MS specifies the time
in milliseconds. FUNC gives the function, which shall be
called. Additional parameters are given as parameters to
the function call. Return: identifier to cancel scheduling
with after_cancel.

after_cancel(self, id) Cancel scheduling of function identified with ID. Identifier
returned by after or after_idle must be given as first
parameter.

after_idle(self, func,
*args)

Call FUNC once if the Tcl main loop has no event to
process. Return an identifier to cancel the scheduling with
after_cancel.

bbox = grid_bbox(self,
column=None, row=None,
col2=None, row2=None)

Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager
grid. If COLUMN, ROW are given, the bounding box applies
from the cell with row and column 0 to the specified cell. If
COL2 and ROW2 are given, the bounding box starts at that
cell. The returned integers specify the offset of the upper
left corner in the master widget and the width and height.

Quick Reference Sheets

312

Method Description
bind(self,
sequence=None,
func=None, add=None)

Bind to this widget at event SEQUENCE a call to function
FUNC. SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form <MODIFIER-
MODIFIER-TYPE-DETAIL>. An event pattern can
also be a virtual event of the form <<AString>> where
AString can be arbitrary. This event can be generated
by event_generate. If events are concatenated, they
must appear shortly after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC
is "break", no further bound function is invoked.

An additional Boolean parameter ADD specifies whether
FUNC will be called additionally to the other bound
function or whether it will replace the previous function.
Bind will return an identifier to allow deletion of the
bound function with unbind without memory leak.

If FUNC or SEQUENCE is omitted, the bound function or
list of bound events are returned.

bind_all(self,
sequence=None,
func=None, add=None)

Bind to all widgets at an event SEQUENCE a call to
function FUNC. An additional Boolean parameter ADD
specifies whether FUNC will be called additionally to
the other bound function, or whether it will replace the
previous function. See bind for the return value.

bind_class(self,
className,
sequence=None,
func=None, add=None)

Bind to widgets with bind tag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional Boolean
parameter ADD specifies whether FUNC will be called
additionally to the other bound function or whether it
will replace the previous function. See bind for the return
value.

bindtags(self,
tagList=None)

Set or get the list of bindtags for this widget. With no
argument, return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags
are set to this list. The bindtags determine in which order
events are processed (see bind).

cget(self, key) Return the resource value for a Key given as string.

clipboard_append(self,
string, **kw)

Append String to the Tk clipboard. A widget specified
at the optional display of keyword argument specifies
the target display. The clipboard can be retrieved with
selection_get.

clipboard_clear(self,
**kw)

Clear the data in the Tk clipboard. A widget specified for
the optional display of keyword argument specifies the
target display.

Appendix B

313

Method Description
clipboard_get(self,
**kw)

Retrieve data from the clipboard on window's display.
The window keyword defaults to the root window of the
Tkinter application. The type keyword specifies the form in
which the data is to be returned, and should be an atom
name, such as STRING or FILE_NAME. Type defaults to
String. This command is equivalent to: selection_
get(CLIPBOARD).

columnconfigure
= grid_columnconfigure
(self, index,
cnf={}, **kw)

Configure column Index of a grid. Valid resources are
minsize (minimum size of the column),weight (how much
does additional space propagate to this column), and pad
(how much space to let additionally).

config =
configure(self,
cnf=None, **kw)

Configure resources of a widget. The values for resources
are specified as keyword arguments. To get an overview
about the allowed keyword arguments, call the method
keys.

event_add(self,
virtual, *sequences)

Bind a virtual event virtual (of the form <<Name>>)
to an event sequence such that the virtual event is
triggered whenever SEQUENCE occurs.

event_delete(self,
virtual, *sequences)

Unbind a virtual event virtual from sequence.

event_generate(self,
sequence, **kw)

Generate an event sequence. Additional keyword
arguments specify parameter of the event(for example, x,
y, rootx, and rooty).

event_info(self,
virtual=None)

Return a list of all virtual events or the information

about the sequence bound to the virtual event
virtual.

focus = focus_set(self) Direct input focus to this widget. If the application
currently does not have the focus, this widget will get the
focus if the application gets the focus through the window
manager.

focus_displayof(self) Return the widget which has currently the focus on the
display where this widget is located. Return None if the
application does not have the focus.

focus_force(self) Direct input focus to this widget even if the application
does not have the focus. Use with caution!

focus_get(self) Return the widget which has currently the focus in the
application. Use focus_displayof to allow working
with several displays. Return None if application does not
have the focus.

focus_lastfor(self) Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

Quick Reference Sheets

314

Method Description
focus_set(self) Direct input focus to this widget. If the application

currently does not have the focus this widget will get
the focus if the application gets the focus through the
window manager.

getboolean(self, s) Return a Boolean value for Tclboolean values true and
false given as parameter.

getvar(self, name='PY_
VAR')

Return value of Tcl variable name.

grab_current(self) Return widget which has currently the grab in this
application or None.

grab_release(self)) Release grab for this widget if currently set.
grab_set(self) Set grab for this widget. A grab directs all events to this

and descendant widgets in the application.
grab_set_global(self) Set global grab for this widget. A global grab directs all

events to this and descendant widgets on the display.
Use with caution - other applications do not get events
anymore.

grab_status(self) Return None, "local" or "global" if this widget has no, a
local or a global grab.

grid_bbox(self,
column=None, row=None,
col2=None, row2=None)

Return a tuple of integer coordinates for the bounding box
of this widget controlled by the geometry manager grid. If
column, row is given, the bounding box applies from the
cell with row and column 0 to the specified cell. If col2
and row2 are given, the bounding box starts at that cell.
The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

grid_
columnconfigure(self,
index, cnf={}, **kw)

Configure column index of a grid. Valid resources are
minsize (minimum size of the column), weight (how much
does additional space propagate to this column), and pad
(how much space to let additionally).

grid_location(self, x,
y)

Return a tuple of column and row which identify the cell
at which the pixel at position x and y inside the master
widget is located.

grid_propagate(self,
flag=['_noarg_'])

Set or get the status for propagation of geometry
information. A Boolean argument specifies whether the
geometry information of the slaves will determine the size
of this widget. If no argument is given, the current setting
will be returned.

Appendix B

315

Method Description
grid_rowconfigure(self,
index, cnf={}, **kw)

Configure row index of a grid. Valid resources are
minsize (minimum size of the row),weight (how much
does additional space propagate to this row), and pad
(how much space to let additionally).

grid_size(self) Return a tuple of the number of column and rows in the
grid.

grid_slaves(self,
row=None, column=None)

Return a list of all slaves of this widget in its packing order.

image_names(self) Return a list of all existing image names.
image_types(self) Return a list of all available image types (e.g. photo

bitmap).
keys(self) Return a list of all resource names of this widget.

lift = tkraise(self,
aboveThis=None)

Raise this widget in the stacking order.

lower(self,
belowThis=None)

Lower this widget in the stacking order.

mainloop(self, n=0) Call the mainloop of Tk.
nametowidget(self,
name)

Return the Tkinter instance of a widget identified by its Tcl
name NAME.

option_add(self,
pattern, value,
priority=None)

Set a value (second parameter) for an option PATTERN
(first parameter). An optional third parameter gives the
numeric priority (defaults to 80).

option_clear(self) Clear the option database. It will be reloaded if option_
add is called.

option_get(self, name,
className)

Return the value for an option NAME for this widget with
classname. Values with higher priority override lower
values.

option_readfile(self,
fileName,
priority=None)

Read file filename into the option database. An
optional second parameter gives the numeric priority.

propagate =pack_
propagate(self,
flag=['_noarg_'])

Set or get the status for propagation of geometry
information. A Boolean argument specifies whether the
geometry information of the slaves will determine the size
of this widget. If no argument is given, the current setting
will be returned.

pack_slaves(self) Return a list of all slaves of this widget in its packing order.
quit(self) Quit the Tcl interpreter. All widgets will be destroyed.

Quick Reference Sheets

316

Method Description
register = _
register(self,
func, subst=None,
needcleanup=1)

Return a newly created Tcl function. If this function is
called, the Python function func will be executed. An
optional function subst can be given, which will be
executed before func.

rowconfigure = grid_
rowconfigure(self,
index, cnf={}, **kw)

Configure row index of a grid. Valid resources are
minsize (minimum size of the row), weight (how much
does additional space propagate to this row), and pad
(how much space to let additionally).

selection_clear(self,
**kw)'

Clear the current X selection.

selection_get(self,
**kw)

Return the contents of the current X selection. A keyword
parameter selection specifies the name of the selection
and defaults to PRIMARY. A keyword parameter display of
specifies a widget on the display to use.

selection_handle(self,
command, **kw)

Specify a function command to call if the X selection
owned by this widget is queried by another application.
This function must return the contents of the selection.
The function will be called with the arguments OFFSET
and LENGTH, which allows the chunking of very long
selections. The following keyword parameters can be
provided: selection - name of the selection (default
PRIMARY), type - type of the selection (for example,
string, FILE_NAME).

selection_own(self,
**kw)

Become owner of X selection. A keyword parameter
selection specifies the name of the selection (default
PRIMARY).

selection_own_get(self,
**kw)

Return owner of X selection. The following keyword
parameter can be provided: selection - name of the
selection (default PRIMARY), type - type of the selection
(e.g. STRING, FILE_NAME).

send(self, interp, cmd,
*args)

Send Tcl command CMD to different interpreter INTERP to
be executed.

setvar(self, name='PY_
VAR', value='1')

Set Tcl variable NAME to VALUE.

size = grid_size(self) Return a tuple of the number of column and rows in the
grid.

slaves = pack_
slaves(self)

Return a list of all slaves of this widget in its packing order.

tk_focusFollowsMouse
(self)

The widget under mouse will get automatically focus.
Cannot be disabled easily.

Appendix B

317

Method Description
tk_focusNext(self) Return the next widget in the focus order which follows

widget which has currently the focus. The focus order first
goes to the next child, then to the children of the child
recursively and then to the next sibling which is higher
in the stacking order. A widget is omitted if it has the
takefocus resource set to 0.

tk_focusPrev(self) Return previous widget in the focus order.
See tk_focusNext for details.

tk_setPalette(self,
*args, **kw)

Set a new color scheme for all widget elements.
A single color as argument will cause that all colors of
Tk widget elements are derived from this. Alternatively,
several keyword parameters and its associated colors
can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground,
selectBackground, background,
highlightColor, selectForeground,
disabledForeground, insertBackground,
and troughColor.

tkraise(self,
aboveThis=None)

Raise this widget in the stacking order.

unbind(self, sequence,
funcid=None)

Unbind for this widget for event SEQUENCE the function
identified with FUNCID.

unbind_all(self,
sequence)'

Unbind for all widgets for event SEQUENCE all functions.

unbind_class(self,
className, sequence)

Unbind all widgets with bindtag classname for event
sequence all functions.

update(self) Enter event loop until all pending events have been
processed by Tcl.

update_idletasks(self) Enter event loop until all idle callbacks have been called.
This will update the display of windows, but not process
events caused by the user.

wait_variable(self,
name='PY_VAR')

Wait until the variable is modified. A parameter of type
IntVar, StringVar, DoubleVar, or BooleanVar
must be given.

wait_visibility(self,
window=None)

Wait until the visibility of a Widget changes(for example,
it appears).If no parameter is given self is used.

wait_window(self,
window=None)

Wait until a Widget is destroyed. If no parameter is given,
self is used.

Quick Reference Sheets

318

Method Description
waitvar = wait_
variable(self,
name='PY_VAR')

Wait until the variable is modified. A parameter of type
IntVar, StringVar, DoubleVar, or BooleanVar
must be given.

winfo_atom(self, name,
displayof=0)

Return integer which represents atom name.

winfo_atomname(self,
id, displayof=0)

Return name of atom with identifier ID.

winfo_cells(self) Return number of cells in the colormap for this widget.

winfo_children(self) Return a list of all widgets which are children of this
widget.

winfo_class(self) Return window class name of this widget.
winfo_
colormapfull(self)

Return true if at the last color request the colormap was
full.

winfo_containing(self,
rootX, rootY,
displayof=0)

Return the widget which is at the root coordinates rootX,
rootY.

winfo_depth(self) Return the number of bits per pixel.

winfo_exists(self) Return true if this widget exists.
winfo_fpixels(self,
number)

Return the number of pixels for the given distance
NUMBER (e.g. "3c") as float.

winfo_geometry(self) Return geometry string for this widget in the form
"widthxheight+X+Y".

winfo_height(self) Return height of this widget.
winfo_id(self) Return identifier ID for this widget.
winfo_interps(self,
displayof=0)

Return the name of all Tcl interpreters for this display.

winfo_ismapped(self) Return true if this widget is mapped.
winfo_manager(self) Return the window manager name for this widget.

winfo_name(self) Return the name of this widget.
winfo_parent(self) Return the name of the parent of this widget.
winfo_pathname(self,
id, displayof=0)

Return the pathname of the widget given by ID.

winfo_pixels(self, num) Rounded integer value of winfo_fpixels.
winfo_pointerx(self) Return the x coordinate of the pointer on the root window.
winfo_pointerxy(self) Return a tuple of x and y coordinates of the pointer on the

root window.
winfo_pointery(self) Return the y coordinate of the pointer on the root window.

Appendix B

319

Method Description
winfo_reqheight(self) Return requested height of this widget.

winfo_reqwidth(self) Return requested width of this widget.

winfo_rgb(self, color) Return tuple of decimal values for red, green, blue for
color in this widget.

winfo_rootx(self) /
winfo_rooty(self)

Return x/y coordinate of upper left corner of this widget
on the root window.

winfo_screen(self) Return the screen name of this widget.
winfo_screencells(self) Return the number of the cells in the colormap of the

screen of this widget.
winfo_screendepth(self) Return the number of bits per pixel of the root window of

the screen of this widget.
winfo_
screenheight(self)

Return the number of pixels of the height of the screen of
this widget in pixel.

winfo_
screenmmheight(self)

Return the number of pixels of the height of the screen of
this widget in mm.

winfo_screenmmwidth

(self)

Return the number of pixels of the width of the screen of
this widget in mm.

winfo_screenwidth(self) Return the number of pixels of the width of the screen of
this widget in pixel.

winfo_toplevel(self) Return the Toplevel widget of this widget.
winfo_viewable(self) Return true if the widget and all its higher ancestors are

mapped.
winfo_visual(self)
= winfo_
screenvisual(self)

Return one of the strings directcolor, grayscale,
pseudocolor, staticcolor, staticgray, or
truecolor for the colormodel of this widget.

winfo_visualid(self) Return the X identifier for the visual for this widget.

winfo_
visualsavailable(self,
includeids=0)

Return a list of all visuals available for the screen of
this widget.

winfo_vrootheight(self) Return the height of the virtual root window associated
with this widget in pixels. If there is no virtual root
window, return the height of the screen.

winfo_vrootwidth(self) Return the width of the virtual root window associated
with this widget in pixel. If there is no virtual root window,
return the width of the screen.

winfo_vrootx(self) Return the x offset of the virtual root relative to the root
window of the screen of this widget.

Quick Reference Sheets

320

Method Description
winfo_vrooty(self) Return the y offset of the virtual root relative to the root

window of the screen of this widget.
winfo_width(self) Return the width of this widget.
winfo_x(self) Return the x coordinate of the upper left corner of this

widget in the parent.
winfo_y(self) Return the y coordinate of the upper left corner of this

widget in the parent.

ttk widgets
The ttk widget is based on a revised and enhanced version of TIP #48 (http://tip.tcl.
tk/48) specified style engine.

FILE: path\to\python27\\lib\lib-tk\ttk.py

The basic idea is to separate, to the extent possible, the code implementing a widget's
behavior from the code implementing its appearance. Widget class bindings are primarily
responsible for maintaining the widget state and invoking callbacks, and all aspects of the
widgets appearance lies under themes.

You can substitute some Tkinter widgets with their corresponding ttk widgets (Button,
Checkbutton, Entry, Frame, Label, LabelFrame, Menubutton, PanedWindow, Radiobutton,
Scale, and Scrollbar).

However, Tkinter and ttk widgets are not completely compatible. The main difference is that
Tkinter widget styling options like fg, bg, relief, and others are not supported options for
ttk widgets. These styling options are instead moved to ttk.Style().

Here's a small Tkinter code sample:

Label(text="Who", fg="white", bg="black")
Label(text="Are You ?", fg="white", bg="black")

And here's its equivalent code in ttk:

style = ttk.Style()
style.configure("BW.TLabel", foreground="white",
background="black")
ttk.Label(text="Who", style="BW.TLabel")
ttk.Label(text="Are You ?", style="BW.TLabel")

http://docs.python.org/2/library/ttk.html#module-ttk

Appendix B

321

ttk also provides six new widget classes which are not available in Tkinter. These are
Combobox, Notebook, Progressbar, Separator, Sizegrip, and Treeview.

ttk style names are as follows:

Widget class Style name

Button TButton

Checkbutton TCheckbutton

Combobox TCombobox

Entry TEntry

Frame TFrame

Label TLabel

LabelFrame TLabelFrame

Menubutton TMenubutton

Notebook TNotebook

PanedWindow TPanedwindow (note window is not capitalized!)
Progressbar Horizontal.TProgressbar or Vertical.TProgressbar,

based on the orient option.
Radiobutton TRadiobutton

Scale Horizontal.TScale or Vertical.TScale, based on the orient
option.

Scrollbar Horizontal.TScrollbar or Vertical.TScrollbar, based on
the orient option.

Separator TSeparator

Sizegrip TSizegrip

Treeview Treeview (note only single 'T' meaning notTTreview!)

Options available to all ttk widgets are as follows:

Option Description
class Specifies the window class. The class is used when querying the option

database for the window's other options, to determine the default bindtags
for the window, and to select the widget's default layout and style. This is a
read-only option which may only be specified when the window is created.

cursor specifies mouse cursor to be displayed for the widget

http://docs.python.org/2/library/ttk.html#ttk.Combobox
http://docs.python.org/2/library/ttk.html#ttk.Combobox
http://docs.python.org/2/library/ttk.html#ttk.Notebook
http://docs.python.org/2/library/ttk.html#ttk.Progressbar
http://docs.python.org/2/library/ttk.html#ttk.Treeview
http://docs.python.org/2/library/ttk.html#module-ttk

Quick Reference Sheets

322

Option Description
takefocus Determines whether the window accepts the focus during keyboard traversal.

0, 1 or an empty string is returned. If 0, the window should be skipped
entirely during keyboard traversal. If 1, the window should receive the input
focus as long as it is viewable. An empty string means that the traversal scripts
make the decision about whether or not to focus on the window.

style May be used to specify a custom widget style.

Options accepted by all scrollable ttk widgets are as follows:

Option Description

xscrollcommand Used to communicate with horizontal scrollbars. When the view
in the widget's window changes, the widget will generate a Tcl
command based on the scrollcommand. Usually, this option consists
of the Scrollbar.set() method of some scrollbar. This will cause the
scrollbar to be updated whenever the view in the window changes.

yscrollcommand Command for vertical scrollbars.

Methods from ttk.Widget class with their description are as follows:

Method Description

identify(self,
x, y)

Returns the name of the element at position x, y, or the empty
string if the point does not lie within any element. x and y are pixel
coordinates relative to the widget.

instate(self,
statespec,
callback=None,
*args, **kw)

Test the widget's state. If callback is not specified, returns True if
the widget state matches statespec and False otherwise. If callback
is specified, then it will be invoked with *args, **kw if the
widget state matches statespec. statespec is expected to
be a sequence.

state(self,
statespec=None)

Modify or inquire widget state. Widget state is returned if
statespec is None, otherwise it is set according to the statespec
flags, and then a new state spec is returned, indicating which flags
were changed. statespec is expected to be a sequence.

We will not show all ttk widget specific options here. To obtain a list of available options for a
ttk widget, use the help command.

Appendix B

323

To obtain help on any ttk widget/class, import ttk into the namespace using
following command:

>>>import ttk

The following commands can then be used to get information on a particular widget:

Widget Name Getting Help

Label help(ttk.Label)

Button help(ttk.Button)

CheckButton help(ttk.Checkbutton)

Entry help(ttk.Entry)

Frame help(ttk.Frame)

LabelFrame help(ttk.LabelFrame)

Menubutton help(ttk.Menubutton)

OptionMenu help(ttk.OptionMenu)

PanedWindow help(ttk.PanedWindow)

RadioButton help(ttk.Radiobutton)

Scale help(ttk.Scale)

Scrollbar help(ttk.Scrollbar)

Combobox help(ttk.Combobox)

Notebook help(ttk.Notebook)

Progressbar help(ttk.Progressbar)

Separator help(ttk.Separator)

Sizegrip help(ttk.Sizegrip)

Treeview help(ttk.Treeview)

The following given are some ttkVirtual events and situation when they are triggered:

Virtual Event Triggered when
<<ComboboxSelected>> The user selects an element from the list of values in the

Combobox widget
<<NotebookTabChanged>> A new tab is selected in the Notebook widget
<<TreeviewSelect>> Selection changes in the Treeview widget.
<<TreeviewOpen>> Just before settings the focus item to open = True.
<<TreeviewClose>> Just after setting the focus item to open = False.

Quick Reference Sheets

324

Each widget in ttk is assigned a style, which specifies the set of elements making up the widget
and how they are arranged, along with dynamic and default settings for element options.

By default, the style name is the same as the widget's class name, but it may be overridden
by the widget's style option. If the class name of a widget is unknown, use the method
Misc.winfo_class() (somewidget.winfo_class()). Following given are few methods
with their description of ttk styling:

Method Description
configure(self,
style, query_
opt=None, **kw)

Query or sets the default value of the specified option(s) in style.
Each key in kw is an option, and each value is either a string or a
sequence identifying the value for that option.

element_
create(self,
elementname,
etype, *args,
**kw)

Create a new element in the current theme of given etype.

element_
names(self)

Returns the list of elements defined in the current theme.

element_
options(self,
elementname)

Return the list of elementname options.

layout(self,
style,
layoutspec=None)

Define the widget layout for given style. If layoutspec is
omitted, return the layout specification for given style.

layoutspec is expected to be a list or an object different than
None that evaluates to False if you want to "turn off" that style. If
it is a list (or tuple, or something else), each item should be a tuple,
where the first item is the layout name, and the second item should
have the format described below

A layout can be just None, if it takes no options, or a dictionary of options specifying how to
arrange the element. The layout mechanism uses a simplified version of the pack geometry
manager: given an initial cavity, each element is allocated a parcel.

Valid options: Values Description
side: whichside Specifies which side of the cavity to place the element; one of

top, right, bottom or left. If omitted, the element occupies the
entire cavity.

sticky: nswe Specifies where the element is placed inside its allocated parcel.
children:
[sublayout...]

Specifies a list of elements to place inside the element. Each
element is a tuple (or other sequence) where the first item is
the layout name, and the other is a layout.

http://docs.python.org/2/library/ttk.html#module-ttk

Appendix B

325

Valid options: Values Description
lookup(self,
style, option,
state=None,
default=None)

Returns the value specified for option in style. If state is
specified, it is expected to be a sequence of one or more states.
If the default argument is set, it is used as a fallback value in
case no specification for option is found.

map(self, style,
query_opt=None,
**kw)

Query or sets dynamic values of the specified option(s) in style.
Each key in kw is an option, and each value should be a list or
a tuple (usually) containing statespecs grouped in tuples,
or list, or something else of your preference. A statespec is
compound of one or more states, and then a value.

theme_
create(self,
themename,
parent=None,
settings=None)

Creates a new theme. It is an error if themename already exists.
If parent is specified, the new theme will inherit styles, elements
and layouts from the specified parent theme. If settings are
present, they are expected to have the same syntax used for
theme_settings.

theme_
names(self)

Returns a list of all known themes.

theme_
settings(self,
themename,
settings)

Temporarily sets the current theme to themename, apply
specified settings, and then restores the previous theme. Each
key in settings is a style and each value may contain the keys
configure, map, layout, and element create and
they are expected to have the same format as specified by
the methods configure, map, layout, and element_
create respectively.

theme_use(self,
themename=None)

If themename is None, returns the theme in use; otherwise,
set the current theme to themename, refreshes all widgets
and emits a <<ThemeChanged>> event.

The Toplevel window methods
These methods enable communication with the window manager. They are available on the
root window (Tk), and also on Toplevel instances.

Note that different window managers behave in different ways. For example, some window
managers don't support icon windows; some don't support window groups, and so on.

aspect = wm_
aspect(self,
minNumer=None,
minDenom=None,
maxNumer=None,
maxDenom=None)

Instruct the window manager to set the aspect ratio
(width/height) of this widget to be between minNumer/
minDenom and maxNumer/maxDenom. Return a tuple
of the actual values if no argument is given.

Quick Reference Sheets

326

attributes = wm_
attributes(self,
*args)

This subcommand returns or sets platform-specific
attributes. The first form returns a list of the platform
specific flags and their values. The second form returns the
value for the specific option. The third form sets one or
more of the values. The values are as follows:

On Windows, -disabled gets or sets whether the window
is in a disabled state. -toolwindow gets or sets the style of
the window

totoolwindow (as defined in the MSDN). -topmost gets or
sets whether this is a topmost window (displays above all
other windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.
client = wm_client
(self, name=None)

Store name in WM_CLIENT_MACHINE property of this
widget. Return current value.

colormapwindows
= wm_colormapwindows
(self, *wlist)

Store list of window names (wlist) into WM_
COLORMAPWINDOWS property of this widget. This list
contains windows whose colormaps differ from their
parents. Return current list of widgets if wlist is empty.

command = wm_
command(self,
value=None)

Store value in WM_COMMAND property. It is the
command which shall be used to invoke the application.
Return current command if value is None.

deiconify = wm_
deiconify(self)

deiconify this widget. If it was never mapped, it will
not be mapped. On Windows, it will raise this widget and
give it the focus.

focusmodel = wm_
focusmodel(self,
model=None)

Set focus model to model, "active" means that this
widget will claim the focus itself, "passive" means that the
window manager shall give the focus. Return current focus
model if model is None.

frame = wm_frame
(self)

Return identifier for decorative frame of this widget if
present.

geometry = wm_
geometry(self,
newGeometry=None)

Set geometry to newgeometry of the form
=widthxheight+x+y. Return current value if None is
given.

grid = wm_grid(self,
baseWidth=None,
baseHeight=None,
widthInc=None,
heightInc=None)

Instruct the window manager that this widget shall
only be resized on grid boundaries. widthInc and
heightInc are the width and height of a grid unit in
pixels. baseWidth and baseHeight are the number of
grid units requested in Tk_GeometryRequest.

group = wm_group(self,
pathName=None)

Set the group leader widgets for related widgets to
pathName. Return the group leader of this widget if
None is given.

Appendix B

327

iconbitmap = wm_
iconbitmap(self,
bitmap=None,
default=None)

Set bitmap for the iconified widget to BITMAP. Return the
bitmap if None is given. Under Windows, the DEFAULT
parameter can be used to set the icon for the widget and
any descendants that don't have an icon set explicitly.
DEFAULT can be the relative path to a .ico file (example:
root.iconbitmap(default='myicon.ico')).
See Tkdocumentation for more information.

iconify = wm_
iconify(self)

Display widget as icon.

iconmask = wm_
iconmask(self,
bitmap=None)

Set mask for the icon bitmap of this widget. Return the
mask if None is given.

iconname = wm_
iconname(self,
newName=None)

Set the name of the icon for this widget. Return the name
if None is given.

iconposition = wm_
iconposition(self,
x=None, y=None)

Set the position of the icon of this widget to X and Y.
Return a tuple of the current values of X and Y if None is
given.

iconwindow = wm_
iconwindow(self,
pathName=None)

Set widget pathName to be displayed instead of icon.
Return the current value if None is given.

maxsize = wm_
maxsize(self,
width=None,
height=None)

Set max width and height for this widget. If the
window is gridded, the values are given in grid units.
Return the current values if None is given.

minsize = wm_
minsize(self,
width=None,
height=None)

Set min width and height for this widget. If the
window is gridded, the values are given in grid units.
Return the current values if None is given.

overrideredirect
= wm_overrideredirect
(self, boolean=None)

Instruct the window manager to ignore this widget if
Boolean is given with 1. Return the current value if None
is given.

positionfrom = wm_
positionfrom(self,
who=None)

Instruct the window manager that the position of this
widget shall be defined by the user if who is "user", and by
its own policy if who is "program".

protocol = wm_
protocol(self,
name=None, func=None)

Bind function func to command name for this widget.
Return the function bound to name if None is given.
name could be for example, WM_SAVE_YOURSELF or
WM_DELETE_WINDOW.

resizable = wm_
resizable(self,
width=None,
height=None)

Instruct the window manager whether this width can be
resized in width or height. Both values are Boolean
values.

Quick Reference Sheets

328

sizefrom = wm_
sizefrom(self,
who=None)

Instruct the window manager that the size of this widget
shall be defined by the user if who is "user", and by its
own policy if who is "program".

state = wm_state(self,
newstate=None)

Query or set the state of this widget as one of normal,
icon, iconic (see wm_iconwindow), withdrawn, or
zoomed (Windows only).

title = wm_title(self,
string=None)

Set the title of this widget.

transient = wm_
transient(self,
master=None)

Instruct the window manager that this widget is transient
with regard to widget master.

withdraw = wm_
withdraw(self)

Withdraw this widget from the screen such that it is
unmapped and forgotten by the window manager. Re-
draw it with wm_deiconify.

wm_aspect(self,
minNumer=None,
minDenom=None,
maxNumer=None,
maxDenom=None)

Instruct the window manager to set the aspect ratio
(width/height) of this widget to be between minNumer/
minDenom and maxNumer/maxDenom. Return a tuple
of the actual values if no argument is given.

wm_attributes(self,
*args)

This subcommand returns or sets platform-specific
attributes. The first form returns a list of the platform
specific flags and their values. The second form returns the
value for the specific option. The third form sets one or
more of the values. The values are as follows:

On Windows, -disabled gets or sets whether the
window is in a disabled state. -toolwindow gets or sets
the style of the window

totoolwindow (as defined in the MSDN). -topmost gets
or sets whether this is a topmost window (displays above
all other windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.
wm_client(self,
name=None)

Store name in WM_CLIENT_MACHINE property of this
widget. Return current value.

wm_
colormapwindows(self,
*wlist)

Store list of window names (wlist) into WM_
COLORMAPWINDOWS property of this widget. This list
contains windows whose colormaps differ from their
parents. Return current list of widgets if wlist is empty.

wm_command(self,
value=None)

Store value in WM_COMMAND property. It is the
command which shall be used to invoke the application.
Return current command if value is None.

Appendix B

329

wm_deiconify(self) Deiconify this widget. If it was never mapped, it will not be
mapped. On Windows, it will raise this widget and give it
the focus.

wm_focusmodel(self,
model=None)

Set focus model to model. "active" means that this
widget will claim the focus itself, "passive" means that the
window manager shall give the focus. Return current focus
model if model is None.

wm_frame(self) Return identifier for decorative frame of this widget if
present.

wm_geometry(self,
newGeometry=None)

Set geometry to newgeometry of the form
=widthxheight+x+y. Return current value if None is
given.

wm_grid(self,
baseWidth=None,
baseHeight=None,
widthInc=None,
heightInc=None)

Instruct the window manager that this widget shall
only be resized on grid boundaries. widthInc and
heightInc are the width and height of a grid unit in
pixels. baseWidth and baseHeight are the number of
grid units requested in Tk_GeometryRequest.

wm_group(self,
pathName=None)

Set the group leader widgets for related widgets to
pathname. Return the group leader of this widget if
None is given.

wm_iconbitmap(self,
bitmap=None,
default=None)

Set bitmap for the iconified widget to bitmap. Return the
bitmap if None is given.

Under Windows, the default parameter can be used
to set the icon for the widget and any descendants
that don't have an icon set explicitly. DEFAULT can
be the relative path to a .ico file (example: root.
iconbitmap(default='myicon.ico')). See
Tkdocumentation for more information.

wm_iconify(self) Display widget as icon.
wm_iconmask(self,
bitmap=None)

Set mask for the icon bitmap of this widget. Return the
mask if None is given.

wm_iconname(self,
newName=None)

Set the name of the icon for this widget. Return the name
if None is given.

wm_iconposition(self,
x=None, y=None)

Set the position of the icon of this widget to X and Y.
Return a tuple of the current values of X and X if None is
given.

wm_iconwindow(self,
pathName=None)

Set widget pathname to be displayed instead of icon.
Return the current value if None is given.

wm_maxsize(self,
width=None,
height=None)

Set max width and height for this widget. If the
window is gridded, the values are given in grid units.
Return the current values if None is given.

Quick Reference Sheets

330

wm_minsize(self,
width=None,
height=None)

Set min width and height for this widget. If the
window is gridded the values are given in grid units.
Return the current values if None is given.

wm_
overrideredirect(self,
boolean=None)

Instruct the window manager to ignore this widget if
Boolean is given with 1. Return the current value if None
is given.

wm_positionfrom(self,
who=None)

Instruct the window manager that the position of this
widget shall be defined by the user if who is "user", and by
its own policy if who is "program".

wm_protocol(self,
name=None, func=None)

Bind function func to command name for this widget.
Return the function bound to name if None is given.
Name could be for example, WM_SAVE_YOURSELF or
WM_DELETE_WINDOW.

wm_resizable(self,
width=None,
height=None)

Instruct the window manager whether this width can be
resized in width or height. Both values are Boolean
values.

wm_sizefrom(self,
who=None)

Instruct the window manager that the size of this widget
shall be defined by the user if who is "user", and by its
own policy if who is "program".

wm_state(self,
newstate=None)

Query or set the state of this widget as one of normal,
icon, iconic (see wm_iconwindow), withdrawn,
or zoomed (Windows only).

wm_title(self,
string=None)

Set the title of this widget.

wm_transient(self,
master=None)

Instruct the window manager that this widget is transient
with regard to widget master.

wm_withdraw(self) Withdraw this widget from the screen such that it is
unmapped and forgotten by the window manager. Re-
draw it with wm_deiconify.

Index
Symbols
<<ComboboxSelected>>, ttkVirtual events 323
<<NotebookTabChanged>>, ttkVirtual events

323
<<TreeviewClose>>, ttkVirtual events 323
<<TreeviewOpen>>, ttkVirtual events 323
<<TreeviewSelect>>, ttkVirtual events 323

A
accelerator, menu-specific options 49
Activate, event types 305
activebackground 298
activeforeground 298
after_cancel(self, id) method 311
after_idle(self, func, *args) method 311
after(self, ms, func=None, *args) method 311
alarm handlers 71
Alt, event modifiers 306
anchor 298
Any, event modifiers 306
application-level binding 33
app()method 84
aspect = wm_aspect(self, minNumer=None,

minDenom=None, maxNumer=None,
maxDenom=None) method 325

attributes = wm_attributes(self, *args) method
326

audio file
playing 158-163
playlist, adding 163-168

audio media player
additional font 157
building 155, 156
contextual menu, adding 182, 183
controls, adding 169-172

diagram 155
finalizing 184-187
hotshot challenges 188
key objectives 156
over tracks looping 179-182
PMW Tkinter extension, using 157
pyglet 157
tooltip, adding 184-187
top display console, adding 173-179

B
background (bg) 297
bare bone GUI framework

developing 191-196
basic widget methods

after_cancel(self, id) 311
after_idle(self, func, *args) 311
after(self, ms, func=None, *args) 311
bbox = grid_bbox(self, column=None,

row=None , col2=None, row2=None) 311
bind_all(self, sequence=None, func=None,

add=None) 312
bind_class(self, className, sequence =None,

func=None, add=None) 312
bind(self, sequence=None, func=None,

add=None) 312
bindtags(self, tagList=None) 312
cget(self, key) 312
clipboard_append(self, string, **kw) 312
clipboard_clear(self, **kw) 312
clipboard_get(self, **kw) 313
columnconfigure = grid_columnconfigure

(self, index, cnf={}, **kw) 313
config = configure(self, cnf=None, **kw) 313
event_add(self, virtual, *sequences) 313
event_delete(self, virtual, *sequences) 313

332

event_generate(self, sequence, **kw) 313
event_info(self, virtual=None) 313
focus_displayof(self) 313
focus = focus_set(self) 313
focus_force(self) 313
focus_get(self) 313
focus_lastfor(self) 313
focus_set(self) 314
getboolean(self, s) 314
getvar (self, name=’PY_VAR’) 314
grab_current(self) 314
grab_release(self) 314
grab_set_global(self) 314
grab_set(self) 314
grab_status(self) 314
grid_bbox(self, column=None, row=None,

col2=None, row2=None) 314
grid_columnconfigure(self, index, cnf={}, **kw)

314
grid_location(self, x, y) 314
grid_propagate(self, flag=[‘_noarg_’] 314
grid_rowconfigure(self, index, cnf={}, **kw) 315
grid_size(self) 315
grid_slaves(self, row=None, column=None) 315
image_names(self) 315
image_types(self) 315
keys(self) 315
lift = tkraise(self, aboveThis=None) 315
lower(self, belowThis=None) 315
mainloop(self, n=0) 315
nametowidget(self, name) 315
option_add(self, pattern, value, priority=None)

315
option_clear(self) 315
option_readfile(self, fileName, priority=None)

315
pack_slaves(self) 315
propagate =pack_propagate(self, flag= [‘_

noarg_’]) 315
quit(self) 315
register = _register(self, func, subst=None,

needcleanup=1) 316
rowconfigure = grid_rowconfigure(self, index,

cnf={}, **kw) 316
selection_clear(self, **kw)’ 316
selection_get(self, **kw) 316
selection_handle(self, command, **kw) 316

selection_own_get(self, **kw) 316
selection_own(self, **kw) 316
send(self, interp, cmd, *args) 316
setvar(self, name= ‘PY_VAR’, value=’1’) 316
size = grid_size(self) 316
slaves = pack_slaves(self) 316
tk_focusFollowsMouse(self) 316
tk_focusNext(self) 317
tk_focusPrev(self) 317
tkraise(self, aboveThis=None) 317
tk_setPalette(self, *args, **kw) 317
unbind_all(self, sequence)’ 317
unbind_class(self, className, sequence) 317
unbind(self, sequence, funcid=None) 317
update_idletasks(self) 317
update(self) 317
wait_variable(self, name=’PY_VAR’) 317
waitvar = wait_variable(self, name=(‘PY_VAR’)

318
wait_visibility(self, window=None) 317
wait_window(self, window=None) 317
winfo_atomname(self, id, displayof=0) 318
winfo_atom(self, name, displayof=0) 318
winfo_cells(self) 318
winfo_children(self) 318
winfo_class(self) 318
winfo_colormapfull(self) 318
winfo_containing(self, rootX, rootY, displayof=0)

318
winfo_depth(self) 318
winfo_exists(self) 318
winfo_fpixels(self, number) 318
winfo_geometry(self) 318
winfo_height(self) 318
winfo_interps(self, displayof=0) 318
winfo_ismapped(self) 318
winfo_manager(self) 318
winfo_name(self) 318
winfo_parent(self) 318
winfo_pathname(self, id, displayof=0) 318
winfo_pixels(self, num) 318
winfo_pointerx(self) 318
winfo_pointerxy(self) 318
winfo_pointery(self) 318
winfo_reqheight(self) 319
winfo_reqwidth(self) 319
winfo_rgb(self, color) 319

333

winfo_rootx(self) 319
winfo_rooty(self) 319
winfo_screencells(self) 319
winfo_screendepth(self) 319
winfo_screenheight(self) 319
winfo_screenmmheight(self) 319
winfo_screenmmwidth 319
winfo_screenwidth(self) 319
winfo_toplevel(self) 319
winfo_viewable(self) 319
winfo_visualid(self) 319
winfo_visualsavailable(self, includeids=0) 319
winfo_visual(self) = winfo_screenvisual(self)

319
winfo_vrootheight(self)) 319
winfo_vrootwidth(self) 319
winfo_vrootx(self) 319
winfo_vrooty(self) 320
winfo_width(self) 320
winfo_x(self) 320
winfo_y(self) 320

bbox = grid_bbox(self, column=None, row=None,
col2=None , row2=None) from Tkinter.
Misc 302

bbox = grid_bbox(self, column=None, row=None,
col2=None, row2=None) method 311

beat pattern
creating 97-101
pickling 102-106
unpickling 102-106

bind_all(self, sequence=None, func=None,
add=None) method 312

bind_ class(self, className, sequence=None,
func=None, add=None) method 312

bind method 35
bind(self, sequence=None, func=None,

add=None) method 312
bindtags(self, tagList=None) method 312
bitmap 298
Bitmap Class 300
borderwidth (bd) 297
built-in text widget options

leveraging 51, 52
Button command 300, 323
Button, event types 305
ButtonRelease, event types 305

C
callback functions 13
callbacks

arguments, passing to 29
command binding 28
using 28

Canvas 300
canvas.coords(tag/id, x0, y0, x1, y1, ..., xn, yn)

132
canvas.create_image(x, y, *options) 132
Canvas widget 122
cell 22
cget(self, key) method 312
CheckButton command 300, 323
chessboard

moves, calculating 138, 140
pieces, adding 130, 132
pieces related data, structuring 123-129
structuring 123

chess game
checklist 116
features 116
hotshot challenges 153
info frame, adding 150-152
key objectives 116
menu, adding 150-152
playing 140-150
screenshot 115

chess pieces rules
enforcing 133-138

class-level binding 33
class option 321
client = wm_client(self, name=None)

method 326
clipboard_clear(self, **kw method 312
clipboard_get(self, **kw) method 313
colormapwindows = wm_colormapwindows(self,

*wlist) method 326
columnconfigure = grid_columnconfigure(self,

index , cnf={}, **kw) from Tkinter.Misc
302

columnconfigure = grid_columnconfigure(self,
index, cnf={}, **kw) method 313

Combobox 107
Combobox command 323
command 298

334

command binding 28
command = wm_command(self, value=None)

method 326
common widget options

activebackground 298
activeforeground 298
anchor 298
background (bg) 297
bitmap 298
borderwidth (bd) 297
command 298
cursor 297
disabledforeground 299
font 297
foreground (fg) 298
height 299
highlightbackground 298
highlightcolor 298
highlightthickness 298
image 299
justify 299
relief 297, 298
selectbackground 299
selectborderwidth 299
selectforeground 299
state 299
takefocus 297, 298
text 299
textvariable 299
underline 299
width 297, 298
wraplength 299

composition 195
compoud, menu-specific options 49
config = configure(self, cnf=None, **kw method

313
Configure, event types 305
context menu

adding 75, 76
contextual menu

adding 182, 183
Control, event modifiers 306
conventions over configuration

using 206
core Tkinter widgets

about 16, 17
Bitmap Class widget 16

Button widget 16
Canvas widget 16
Checkbutton widget 16
Entry widget 16
Frame widget 16
Image Class widget 16
LabelFrame widget 16
Label widget 16
Listbox widget 16
Menubutton widget 16
Menu widget 16
Message widget 16
OptionMenu widget 16
PanedWindow widget 16
Radiobutton widget 16
Scale widget 16
Scrollbar widget 16
Spinbox widget 16
Text widget 16
Toplevel widget 16

cProfile 286
create_arc method 252
create_bottom_frame method 168
create_play_bar method 112
create_record method 249
create_rectangle method 254
create_right_pad() method 101
create_tool_bar_buttons()method 206
CRUD (Create, Read, Update and Delete) 245
cursor

about 297
bottom_left_corner 310
clock 310
dot 310
exchange 310
heart 310
leftbutton 310
mouse 310
right_side 310
sb_h_double_arrow 310
sizing 310
top_left_arrow 310
ul_angle 310
X_cursor 310

cursor option 321
custom GUI mixins 281-283

335

D
Deactivate, event types 305
deiconify = wm_deiconify(self) method 326
denial of service (DOS) 245
deserialization 102
Destroy, event types 305
dialogs

askdirectory(**options) 60
askopenfile(mode=’r’, **options) 60
askopenfilename(**options) 60
asksaveasfile(mode=’w’, **options) 60
asksaveasfilename(**options) 60
working with 59-64

disabledforeground 299
display_final method 244
display_frame() method 241
do not repeat yourself (DRY) 38
Double, event modifiers 306
drag_items method 217
drawing application

checklist 190
developing 189
features 190
features, adding 214-218
hotshot challenge 221
objectives 190

drawing board. See root window
drawing program

structuring 196-201
draw_pieces() method 132
drum samples

loading 88-91

E
ElementTree 106
encoding 275
Enter, event types 305
Entry command 300, 323
event_add(self, virtual, *sequences) method

313
event binding 29, 30
event details

about 32, 306
Alt_L 306
Alt_R 306
BackSpace 306

Cancel 306
Caps_Lock 306
Control_L 306
Control_R 306
Delete 306
Down 306
End 307
Escape 307
Execute 307
F1 - F11 307
F12 307
Home 307
Insert 307
keysym 306
KP_0 307
KP_1 307
KP_2 307
KP_3 307
KP_4 307
KP_5 307
KP_6 307
KP_7 307
KP_8 307
KP_9 307
KP_Add 307
KP_Begin 307
KP_Decimal 307
KP_Delete 307
KP_Divide 307
KP_Down 307
KP_End 307
KP_Enter 307
KP_Home 307
KP_Insert 308
KP_Left 308
KP_Multiply 308
KP_Next 308
KP_Prior 308
KP_Right 308
KP_Subtract 308
KP_Up 308
Left 307
Linefeed 307
Next 308
Num_Lock 308
Pause 308
Print 308

336

Prior 308
Return 308
Right 308
Scroll_Lock 308
Shift_L 308
Shift_R 308
Tab 308
Up 308

event_generate(self, sequence, **kw)
method 313

event handling features
adding 74, 75

event_info(self, virtual=None) method 313
event modifiers

Alt 306
Any 306
Control 306
Double 306
Lock 306
Shift 306
Triple 306

event pattern
<Alt-Control-KeyPress- KP_Delete> 31
<Button-1> 31
event detail 32
event modifier 31
event type 31
<KeyPress-B> 31

event propagation 33
event related methods

event.char 309
event.delta 309
event.focus 309
event.height 309
event.keycode 309
event.keysym 309
event.keysym_num 309
event.num 309
event.serial 309
event.state 309
event.time 309
event.type 309
event.widget 309
event.width 309
event.x 309
event.x_root 309
event.y 309

event.y_root 309
events

binding 29
binding, levels 33
pattern 31
using 28
widgets-specific variables, handling 34

event types
about 31
Activate 305
Button 305
ButtonRelease 305
Configure 305
Destroy 305
Enter 305
Expose 305
FocusIn 305
FocusOut 305
KeyPress/Key 305
KeyRelease 305
Leave 305
Map 305
Motion 305
Un-map 305
Visibility 305

Expose, event types 305

F
FIFO 229
filter 285
find_all method 217
focus_displayof(self) method 313
focus = focus_set(self) method 313
focus_force(self) method 313
focus_get(self) method 313
FocusIn, event types 305
focus_lastfor(self) method 313
focusmodel = wm_focusmodel(self,

model=None) method 326
FocusOut, event types 305
focus_set(self) method 314
fonts

about 271, 297
fine controlling 272
font selector 273
GUI, creating 274

337

Sample Text, updating 275
foreground (fg) 298
forget = grid_forget(self) 302
forget = pack_forget(self) 301
forget = place_forget(self) 304
forms

working with 59-64
Forsyth-Edwards notation (FEN) 123
Frame 300
frame = wm_frame(self) method 326

G
generate_food method 233
geometry management

about 19
grid 19
grid geometry manager 22-25
pack 19
pack geometry manager 19-21
place 19
place geometry manager 26-28

geometry managers
grid 19
pack 19
place 19

geometry = wm_geometry(self,
newGeometry=None) method 326

getboolean(self, s) method 314
getvar(self, name=’PY_VAR’ method 314
glade 107
GNU, General Public License (GPL) 291
grab_current(self) method 314
grab_release(self) method 314
grab_set_global(self) method 314
grab_set(self) method 314
grab_status(self) method 314
graphical user interface (GUI) 7
graphing, Tkinter

about 252-256
hotshot challenge 257
pie charts, creating 252-256

grid_bbox(self, column=None, row= None,
col2=None, row2=None method 314

grid_bbox(self, column=None, row=None,
col2=None, row2=None) method 314

grid_columnconfigure(self, index, cnf={}, **kw

method 314
grid = config = configure = grid_configure

(self, cnf={}, **kw) 302
grid() geometry 23
grid geometry manager 22-25
grid() geometry manager 302

bbox = grid_bbox(self, column=None,
row=None, col2=None , row2=None)
from Tkinter.Misc 302

columnconfigure = grid_columnconfigure
(self, index , cnf={}, **kw) from Tkinter.
Misc 302

forget = grid_forget(self) 302
grid = config = configure = grid_configure

(self, cnf={}, **kw) 302
grid_location(self, x, y) from Tkinter.Misc 303
grid_propagate(self flag=[‘_noarg_’]) from

Tkinter.Misc 303
grid_remove(self) 303
grid_rowconfigure(self, index, cnf ={}, **kw)

from Tkinter.Misc 303
info = grid_info(self) 303
location = grid_location(self, x, y) from Tkinter.

Misc 303
propagate = grid_propagate(self, flag=’_

noarg_’]) from Tkinter.Misc 303
rowconfigure = grid_rowconfigure(self, index,

rowconfigure = grid_rowconfigure(self,
index, cnf={}, **kw) from Tkinter.Misc 303

size = grid_size(self) from Tkinter.Misc 303
slaves = grid_slaves (self, row=None,

column=None) from Tkinter.Misc 303
grid_grid_rowconfigure(self, index, cnf={}, **kw)

method 315
grid_location(self, x, y) from Tkinter.Misc 303
grid_location(self, x, y) method 314
grid_propagate(self flag=[‘_noarg_’]) from

Tkinter.Misc 303
grid_ propagate(self, flag=[‘_noarg_’]) method

314
grid_remove(self) 303
grid_rowconfigure(self, index, cnf ={}, **kw)

from Tkinter.Misc 303
grid_size(self) method 315
grid_slavesimage_names(self) method 315
grid_slaves(self, row=None, column=None)

method 315

338

grid = wm_grid(self, baseWidth=None,
baseHeight=None, widthInc=None,
heightInc=None method 326

group = wm_group(self, pathName=None)
method 326

GUI
setting up, in OOP 79-84

H
height 299
highlightbackground 298
highlightcolor 298
highlightthickness 298
HtmlWindow widget 289

I
iconbitmap = wm_iconbitmap(self,

bitmap=None, default=None)
method 327

iconify = wm_iconify(self) method 327
iconmask = wm_iconmask(self, bitmap=None)

method 327
iconname = wm_iconname(self,

newName=None) method 327
iconposition = wm_iconposition(self, x=None,

y=None) method 327
icon toolbar

adding 67-73
iconwindow = wm_iconwindow(self,

pathName=None) method 327
identify(self, x, y method 322
image 299
Image Class 300
image_types(self) method 315
index

about 52, 53
formats 53

index formats
@x,y 53
CURRENT 53
end 53
imagename 53
INSERT 53
mark 53
selection (SEL_FIRST, SEL_LAST) 53
tag.first 53

tag.last 53
windowname 53
x.y 53

info = grid_info(self) 303
info = pack_info(self) 301, 304
instance level binding

about 33
application-level binding 33
class-level binding 33

instate(self, statespec, callback=None, *args,
**kw) method 322

items, drawing on canvas
arc 205
Bitmap 205
image 205
line 205
Oval 205
Polygon 205
Rectangle 205
steps 205-209
text 205
Window 205

item tags
adding 219
built-intags, ALL or all 220
built-intags, CURRENT or current 220
item handles, getting 220
retrieving 219

J
JSON 243
justify 299

K
KeyPress/Key, event types 305
KeyRelease, event types 305
keys(self) method 315

L
Label command 300, 323
LabelFrame command 300, 323
launch_play method 182
Leave, event types 305
LIFO 229
lift = tkraise(self, aboveThis=None) method 315

339

Listbox 300
location = grid_location(self, x, y) from Tkinter.

Misc 303
Lock, event modifiers 306
Loop check button 111
lower(self, belowThis=None) method 315

M
mainloop method 11
mainloop(self, n=0) method 315
Main method 112
map 285
Map, event types 305
mark 52
maxsize = wm_maxsize(self, width=None,

height=None) method 327
medium application

developing 295
Menu 300
Menubutton command 300, 323
Menubutton widget 46
Menu widget

about 46
Cascade menu 50
Checkbutton menu 50
menu-specific options 49
Radiobutton menu 50
setting up 49, 50

Message 300
message boxes

working with 64-66
Method Resolution Order (MRO) 280
minsize option 26
minsize = wm_minsize(self, width=None,

height=None) method 327
model 118
model-view-controller (MVC) 118
Modify Selected button 251
Motion, event types 305
mouse_down_motion method 208
mouse events

handling 202-204
mouse_up method 203
moves_available method 139
mtTkinter 96

N
nametowidget(self, name) method 315
Notebook 107
Notebook command 323
NumPy module 255

O
Object-oriented programming 62
Object Oriented Programming. See OOP
object persistence 102
object serialization 102
objgraph 287
OOP

about 79
GUI, setting up 79

option_add(self, pattern, value, priority=None)
method 315

option_clear(self) method 315
option_get(self, name, className) method 315
OptionMenu command 300, 323
option_readfile(self, fileName, priority=None)

method 315
options toolbar

setting, at top 209-214
overrideredirect = wm_overrideredirect

(self, boolean=None) method 327
over tracks looping 179-182

P
pack = config = configure = pack_configure(self,

cnf={}, **kw 301
pack geometry manager

about 19, 20, 301
pack() method 301

packing box 21
pack() method

about 15
forget = pack_forget(self) 301
info = pack_info(self) 301
pack = config = configure = pack_configure(self,

cnf={}, **kw 301
propagate =pack_propagate(self, flag =[‘_

noarg_’]) from Tkinter.Misc 301
slaves = pack_slaves(self) from Tkinter.Misc 301

pack_slaves(self) method 315

340

pad option 26
PanedWindow command 300, 323
partly-functional applications project

building 223
objective 224
phonebook application, creating 245-251
screen saver, building 225-228
Snake game 223
Snake game, building 229, 230
Weather Reporter, creating 239-244

pattern editor
completing 85-87

percent substitution
%d 265
%i 265
%P 265
%s 265
%S 265
%v 265
%V 265
%W 265
about 264

phonebook application
creating 245-251

pickle 102
pickle module 102
Pickling 102
place = config = configure = place_ place = config

= configure = place_configure(self, cnf={},
**kw) 304

place geometry manager 26-28
place() geometry manager

about 304
forget = place_forget(self) 304
info = place_info(self) 304
place = config = configure = place_ place =

config = configure = place_configure(self,
cnf={}, **kw) 304

slaves = place_slaves(self) from Tkinter.Misc
304

platform-based styling
about 36-41
Widget-specific styling, disadvantages 38

playlist
adding, to audio file 163-168

play method 94
PMW

about 157
dialogs extensions 185
miscellaneous extensions 185
URL 184
widget extensions 184

pop-up menu. See context menu
positionfrom = wm_positionfrom(self,

who=None) method 327
Priority queue 229
profiling 285
program

structuring 117-122
programmable drum machine

about 77
checklist 79
hotshot challenge 113
key features 78
key objectives 78
playing 91-94
screenshot 77, 78

program optimization
tips 283

program optimization, tips
exceptions, using 284
filter 285
map 285
profiling 285, 287
right data structure, choosing 284
variables, working 284

Progressbar 107
Progressbar command 323
propagate = grid_propagate(self, flag=’_noarg_’])

from Tkinter.Misc 303
propagate =pack_propagate(self, flag =[‘_

noarg_’]) from Tkinter.Misc 301
propagate =pack_propagate (self, flag=[‘_

noarg_’]) method 315
protocol = wm_protocol(self, name=None,

func=None) method 327
py2app 288
py2exe 288
PyCallGrap 287
pyglet 157, 161
PyGTK 291
PyInstaller 288
pymedia module 79
PyQt 291

341

PyQT 107
PySide 291
Python 3.x

Tkinter 293, 294
Python Imaging Library (PIL 116, 190
Python mega widgets. See PMW

Q
Qttoolkit 291
queue 229
Queue model 229
queue_handler method 237
Queue implementation 223
quit(self) method 315

R
RadioButton 300
reconstruct_pattern() method 100
record_pattern method 98
relief 297, 298
remove_options_from_topbar method 210
resizable = wm_resizable(self, width=None,

height=None) method 327
root.destroy() method 183
root.geometry() method 39
root.mainloop() method 94
root.overrideredirect(1) method 39
root.title(“title of my program”) 39
root window

about 10
creating 10, 11
program aspects, deciding 12
screenshot 10

rowconfigure = grid_rowconfigure (self, index,
cnf={}, **kw) method 316

rowconfigure = grid_rowconfigure(self, index,
rowconfigure = grid_rowconfigure(self,
index, cnf={}, **kw) from Tkinter.Misc
303

run_screen_saver() method 227
run_screensaver() method 228

S
save function 63
Scale command 300, 323

screen saver
building 224-228

Scrollbar command 300, 323
selectbackground 299
selectborderwidth 299
selectforeground 299
selection_clear(self, **kw)’ method 316
selection_get(self, **kw) method 316
selection_handle(self, command, **kw)

method 316
selection_own_get(self, **kw) method 316
selection_own(self, **kw) method 316
self.play() method 95
self.root.iconbitmap() method 39
self.root.wm_iconbitmap() method 39
send(self, interp, cmd, *args) method 316
Separator 107
Separator command 323
setvar(self, name=’PY_VAR’, value= method 316
Shift, event modifiers 306
shift method 152
site scraping 242
sizefrom = wm_sizefrom(self, who=None)

method 328
size = grid_size(self) from Tkinter.Misc 303
size = grid_size(self) method 316
Sizegrip 107
Sizegrip command 323
slaves = grid_slaves (self, row=None,

column=None) from Tkinter.Misc 303
slaves = pack_slaves(self) from Tkinter.Misc 301
slaves = pack_slaves(self) method 316
slaves = place_slaves(self) from Tkinter.Misc 304
Snake game

building 229-238
hotshot challenge 257

software requirement specifications (SRS) 117
song_len method 176
Spinbox 300
square_clicked method 144
start_play_thread method 176
state 299
state = wm_state(self, newstate=None) method

328
Stop button 94
stop_play method 95

342

T
tags

using 53-58
takefocus option 297, 298, 322
Tcl 7
tear-off menus 47
text 299
text editing pad project

features 44
goals 44
hotshot challenge 76
screenshot 43

textPad.config() method 70
textvariable 299
threading module

about 229
employing 95, 96

title = wm_title(self, string=None) method 328
Tix 184
Tkdnd.py 293
tk_focusFollowsMouse(self) method 316
tk_focusNext(self) method 317
tk_focusPrev(self) method 317
tkinter. See Tkinter
Tkinter

about 7
alternatives 290
class hierarchy 278-281
fonts 271
graphing 252
help 292
in Python 3.x 293, 294
limitations 289
mtTkinter 96
platform-based styling 36
thread-safety 96
Toplevel windows 59

Tkinter alternatives
IronPython 292
Jython 292
PyGTK 291
PyQt 291
PySide 291
wxPython 290

Tkinter application
distributing 287

freezing tools 288
freezing tools,cx_ freeze 288
freezing tools, freeze 288
py2app 288
py2exe 288
PyInstaller 288

Tkinter extensions
about 184
PMW 184
Tix 184
TkZinc 184
Widget Construction Kit(WCK) 184

Tkinter,limitations
core widgets 289
inactive development community 290
newer image formats 289
printing widget 289

Tkinter project
about 7, 8
accomplishing 41
checklists 9
features 8, 9
objective 9

Tkinter variables
tracking 260, 261

tkraise(self, aboveThis=None method 317
tk_setPalette(self, *args, **kw method 317
tk_setPalette(self, *args, **kw) method 317
TkZinc 184
Tool Command Language. See Tcl
tooltip

about 184
adding 184

top display console
adding, to audio media player 173-179

Toplevel window methods
aspect = wm_aspect(self, minNumer=None,

minDenom=None, maxNumer=None,
maxDenom=None) 325

attributes = wm_attributes(self, *args) 326
client = wm_client(self, name=None) 326
colormapwindows = wm_

colormapwindows(self, *wlist) 326
command = wm_command(self, value=None)

326
deiconify = wm_deiconify(self) 326
focusmodel = wm_focusmodel(self,

343

model=None) 326
frame = wm_frame(self) 326
geometry = wm_geometry(self,

newGeometry=None) 326
grid = wm_grid(self, baseWidth=None,

baseHeight=None, widthInc=None,
heightInc=None)) 326

group = wm_group(self, pathName=None) 326
iconbitmap = wm_iconbitmap(self,

bitmap=None, default=None) 327
iconify = wm_iconify(self) 327
iconmask = wm_iconmask(self, bitmap=None)

327
iconname = wm_iconname(self,

newName=None) 327
iconposition = wm_iconposition(self, x=None,

y=None) 327
iconwindow = wm_iconwindow(self,

pathName=None) 327
maxsize = wm_maxsize(self, width=None,

height=None) 327
minsize = wm_minsize(self, width=None,

height=None) 327
overrideredirect = wm_overrideredirect(self,

boolean=None) 327
positionfrom = wm_positionfrom(self,

who=None) 327
protocol = wm_protocol(self, name=None,

func=None) 327
resizable = wm_resizable(self, width=None,

height=None) 327
sizefrom = wm_sizefrom(self, who=None) 328
state = wm_state(self, newstate=None) 328
title = wm_title(self, string=None) 328
transient = wm_transient(self, master=None)

328
withdraw = wm_withdraw(self) 328
wm_aspect(self, minNumer=None,

minDenom=None, maxNumer=None,
maxDenom=None) 328

wm_attributes(self, *args) 328
wm_client(self, name=None) 328
wm_colormapwindows(self, *wlist) 328
wm_command(self, value=None) 328
wm_deiconify(self) 329
wm_focusmodel(self, model=None) 329
wm_frame(self) 329

wm_geometry(self, newGeometry=None) 329
wm_grid(self, baseWidth=None,

baseHeight=None, widthInc=None,
heightInc=None) 329

wm_group(self, pathName=None) 329
wm_iconbitmap(self, bitmap=None,

default=None) 329
wm_iconify(self) 329
wm_iconmask(self, bitmap=None) 329
wm_iconname(self, newName=None) 329
wm_iconposition(self, x=None, y=None) 329
wm_iconwindow(self, pathName=None) 329
wm_maxsize(self, width=None, height=None)

329
wm_minsize(self, width=None, height=None)

330
wm_overrideredirect(self, boolean=None) 330
wm_positionfrom(self, who=None) 330
wm_protocol(self, name=None, func=None)

330
wm_resizable(self, width=None, height=None)

330
wm_sizefrom(self, who=None) 330
wm_state(self, newstate=None) 330
wm_title(self, string=None) 330
wm_transient(self, master=None) 330
wm_withdraw(self) 330

transient = wm_transient(self, master=None)
method 328

Treeview 107
Treeview command 323
Triple, event modifiers 306
ttk-themed widgets

about 106
Combobox 107
Notebook 107
Progressbar 107
Separator 107
Sizegrip 107
Treeview 107
using 107-112

ttk widgets
about 320
Button 323
CheckButton 323
children* [sublayout...] 324
class 321

344

Combobox 323
configure(self, style, query_opt=None, **kw)

324
element_create(self, elementname, etype,

*args, **kw) 324
element_names(self) 324
element_options(self, elementname) 324
Entry 323
Frame 323
identify(self, x, y) 322
instate(self, statespec, callback=None, *args,

**kw) 322
Label 323
LabelFrame 323
layout(self, style, layoutspec=None) 324
lookup(self, style, option, state=None,

default=None) 325
map(self, style, query_opt=None, **kw) 325
Menubutton 323
Notebook 323
OptionMenu 323
options 321
PanedWindow 323
Progressbar 323
RadioButton 323
Scale 323
Scrollbar 323
Separator 323
side* whichside 324
Sizegrip 323
state(self, statespec=None) 322
sticky* nswe 324
theme_create(self, themename, parent=None,

settings=None) 325
theme_names(self) 325
theme_settings(self, themename, settings) 325
theme_use(self, themename=None) 325
Treeview 323
virtual events 323

ttk widgets, class
Button 321
Checkbutton 321
Combobox 321
Entry 321
Frame 321
Label 321
LabelFrame 321

Menubutton 321
Notebook 321
PanedWindow 321
Progressbar 321
Radiobutton 321
Scale 321
Scrollbar 321
Separator 321
Sizegrip 321
Treeview 321

ttk widgets, options
class 321
cursor 321
style 322
takefocus 322
xscrollcommand 322
yscrollcommand 322

turtle.py 293
Twisted 96

U
unbind_all(self, sequence method 317
unbind_class(self, className, sequence) method

317
unbind(self, sequence, funcid=None) method

317
underline 299
underline, menu-specific options 49
Unicode characters

encoding 275
file encoding 277, 278
line encoding 276
working with 276

Unicode encoding
key features 275

Unicode Transformation Formats (UTF) 276
unified modeling language (UML) 117
Un-map, event types 305
unpickling 102
update_idletasks(self) method 317
update_line_number() function 69
Update Record button 251
update(self) method 317
updateVolume method 172
user input

focusout mode validation 267, 268

345

key validation 266, 267
validating 263-265
validating, modes 264

V
validation modes

all 264
focus 264
focus in 264
focusout 264
key 264
none 264

variable observer 260
View menu

functions 69-73
view_records method 250
Virtual events 36
virtual events, ttk widgets

<<ComboboxSelected>> 323
<<NotebookTabChanged>> 323
<<TreeviewClose>> 323
<<TreeviewOpen>> 323
<<TreeviewSelect>> 323

Visibility, event types 305

W
wait_variable(self, name=’PY_VAR’ method 317
wait_visibility(self, window=None) method 317
wait_window(self, window=None method 317
Weather Reporter

creating 239-245
weight option 26
what_next method 180
widget.cget()method 93
widget class 14
Widget Construction Kit(WCK) 184
widget data

formatting 269, 270
widgets

about 13
adding 13, 15
adding, syntax 13
Button widget 14
Label widget 14
Menubutton widget 46
Menu widget 46

setting up 45-49
widget specific options

Bitmap Class 300
Button 300
Canvas 300
CheckButton 300
Entry 300
Frame 300
Label 300
LabelFrame 300
Listbox 300
Menu 300
Menubutton 300
Message 300
OptionMenu 300
PanedWindow 300
RadioButton 300
Scale 300
Scrollbar 300
Spinbox 300
Text 300

widgets-specific variables
handling 34, 35

widget traversal
steps 262, 263

width 297, 298
winfo_atomname(self, id, displayof=0) method

318
winfo_atom(self, name, displayof=0) method

318
winfo_cells(self) method 318
winfo_children(self) method 318
winfo_class(self) method 318
winfo_colormapfull(self) method 318
winfo_containing(self, rootX, rootY, displayof=0)

method 318
winfo_depth(self) method 318
winfo_exists(self) method 318
winfo_fpixels(self, number) method 318
winfo_geometry(self) method 318
winfo_height(self) method 318
winfo_interps(self, displayof=0) method 318
winfo_ismapped(self) method 318
winfo_manager(self) method 318
winfo_name(self) method 318
winfo_parent(self) method 318
winfo_pixels(self, num) method 318

346

winfo_pointerx(self) method 318
winfo_pointerxy(self) method 318
winfo_pointery(self) method 318
winfo_reqheight(self) method 319
winfo_reqwidth(self) method 319
winfo_rgb(self, color) method 319
winfo_rootx(self) method 319
winfo_screencells(self) method 319
winfo_screendepth(self) method 319
winfo_screenheight(self) method 319
winfo_screenmmheight(self) method 319
winfo_screenmmwidth method 319
winfo_screen(self) method 319
winfo_screenwidth(self) method 319
winfo_toplevel(self) method 319
winfo_viewable(self) method 319
winfo_visualid(self) method 319
winfo_visualsavailable(self, includeids=0 method

319
winfo_visual(self) = winfo_screenvisual(self

method 319
winfo_vrootheight(self) method 319
winfo_vrootwidth(self) method 319
winfo_vrootx(self) method 319
winfo_vrooty(self) method 320
winfo_width(self) method 320
winfo_x(self) method 320
winfo_y(self) method 320
withdraw = wm_withdraw(self) method 328
wm_ aspect(self, minNumer=None,

minDenom=None, maxNumer=None,
maxDenom=None) method 328

wm_attributes(self, *args) method 328
wm_client(self, name=None) method 328
wm_colormapwindows(self, *wlist) method 328
wm_command(self, value=None) method 328
wm_deiconify(self) method 329
wm_focusmodel(self, model=None) method 329
wm_frame(self) method 329
wm_geometry(self, newGeometry=None)

method 329
wm_ grid(self, baseWidth=None,

baseHeight=None, widthInc=None,
heightInc=None) method 329

wraplength 299
wxPython

about 107, 290

wxDesigner 290
wxFormBuilder 290
wxGlade 290

X
xml.minidom 106
xscrollcommand option 322

Y
yscrollcommand option 322

Thank you for buying
Tkinter GUI Application
Development HOTSH T

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss
it first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Building Machine Learning
Systems with Python
ISBN: 978-1-782161-40-0 Paperback: 290 pages

Master the art of machine learning with Python and build
effective machine learning systems with this intensive
hands-on guide

1. Master Machine Learning using a broad set of
Python libraries and start building your own
Python-based ML systems

2. Covers classification, regression, feature
engineering, and much more guided by
practical examples

3. A scenario-based tutorial to get into the right
mind-set of a machine learner (data exploration)
and successfully implement this in your new or
existing projects

CoffeeScript Application
Development
ISBN: 978-1-782162-66-7 Paperback: 258 pages

Write code that is easy to read, effortless to maintain,
and even more powerful than JavaScript

1. Learn the ins and outs of the CoffeeScript language,
and understand how the transformation happens
behind the scenes

2. Use practical examples to put your new skills to
work towards building a functional web application,
written entirely in CoffeeScript

3. Understand the language concepts from short,
easy-to-understand examples which can be practised
by applying them to your ongoing project

Please check www.PacktPub.com for information on our titles

Python Geospatial
Development Second Edition
ISBN: 978-1-782161-52-3 Paperback: 508 pages

Learn to build sophisticated mapping applications from
scratch using Python tools for geospatial development

1. Build your own complete and sophisticated
mapping applications in Python.

2. Walks you through the process of building
your own online system for viewing and
editing geospatial data

3. Practical, hands-on tutorial that teaches
you all about geospatial development
in Python

Python Data Visualization
Cookbook
ISBN: 978-1-782163-36-7 Paperback: 254 pages

Over 60 recipes that will enable you to learn how to
create attractive visualizationss using Python's most
popular libraries

1. Learn how to set up an optimal Python environment
for data visualization

2. Understand the topics such as importing data for
visualization and formatting data for visualization

3. Understand the underlying data and how to use
the right visualizations

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Project 1: Meet Tkinter
	Mission Briefing
	The root window – your drawing board
	Widgets – building blocks for your GUI program
	Getting to know core Tkinter widgets
	Geometry management
	Events and callbacks – adding life to programs
	Doing it in style
	Mission Accomplished
	A Hotshot Challenge

	Project 2: Making a Text Editor like Notepad
	Mission Briefing
	Setting up the widgets
	Leveraging the power of built-in Text widget options
	Indexing and tagging
	Working with forms and dialogs
	Working with message boxes
	The icon toolbar and View menu functions
	Event handling and context menu
	Mission Accomplished
	A Hotshot Challenge

	Project 3: Programmable Drum Machine
	Mission Briefing
	Setting up the GUI in OOP
	Completing the pattern editor
	Loading drum samples
	Playing the drum machine
	Tkinter and threading
	More beat patterns
	Object persistence
	ttk-themed widgets
	Mission Accomplished
	A Hotshot Challenge

	Project 4: Game of Chess
	Mission Briefing
	Structuring our program
	Structuring chessboard and pieces related data
	Adding pieces on the board
	Enforcing rules for pieces movement
	The chessboard logic
	Making the chess functional
	Adding menu and info frame
	Mission Accomplished
	A Hotshot Challenge

	Project 5: Audio Player
	Mission Briefing
	Getting the audio to play
	Adding a playlist
	Adding more controls to the player
	Adding the top display console
	Looping over tracks
	Adding contextual menu
	Adding tooltip and finalizing our player
	Mission Accomplished
	A Hotshot Challenge

	Project 6: Drawing Application
	Mission Briefing
	Developing a bare bone GUI framework
	Structuring our drawing program
	Handling mouse events
	Drawing items on the canvas
	Setting the options toolbar at top
	Adding some more features
	Mission Accomplished
	A Hotshot Challenge

	Project 7: Some Fun Project Ideas
	Mission Briefing
	Building a screen saver
	Building a Snake game
	Creating a Weather Reporter
	Creating a phonebook application
	Graphing with Tkinter
	Mission Accomplished
	A Hotshot Challenge

	Appendix A: Miscellaneous Tips
	Mission Briefing
	Tracing Tkinter variables
	Widget traversal
	Validating user input
	Formatting widget data
	More on fonts
	Working with Unicode characters
	Tkinter class hierarchy
	Custom-made Mixins
	Tips for code cleanup and program optimization
	Distributing Tkinter application
	Limitations of Tkinter
	Tkinter alternatives
	Getting interactive help
	Tkinter in Python 3.x
	Conclusion

	Appendix B: Quick Reference Sheets
	Options common to widgets
	Widget-specific options
	The pack manager
	The grid manager
	The place manager
	The event types
	The event modifiers
	The event details
	Other event related methods
	List of available cursor
	The basic widget methods
	ttk widgets
	The Toplevel Window methods

	Index

