
os — Miscellaneous operating
system interfaces
Source code: Lib/os.py

This module provides a portable way of using operating system
dependent functionality. If you just want to read or write a file
see open(), if you want to manipulate paths, see the os.path
module, and if you want to read all the lines in all the files on the
command line see the fileinput module. For creating temporary
files and directories see the tempfile module, and for high-level
file and directory handling see the shutil module.

Notes on the availability of these functions:

The design of all built-in operating system dependent mod-
ules of Python is such that as long as the same functionality
is available, it uses the same interface; for example, the
function os.stat(path) returns stat information about path
in the same format (which happens to have originated with
the POSIX interface).
Extensions peculiar to a particular operating system are also
available through the os module, but using them is of
course a threat to portability.
All functions accepting path or file names accept both bytes
and string objects, and result in an object of the same type,
if a path or file name is returned.
On VxWorks, os.fork, os.execv and os.spawn*p* are not
supported.

Note: All functions in this module raise OSError (or subclass-
es thereof) in the case of invalid or inaccessible file names and
paths, or other arguments that have the correct type, but are
not accepted by the operating system.

https://github.com/python/cpython/tree/3.8/Lib/os.py
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/os.path.html#module-os.path
https://docs.python.org/3/library/fileinput.html#module-fileinput
https://docs.python.org/3/library/tempfile.html#module-tempfile
https://docs.python.org/3/library/shutil.html#module-shutil
https://docs.python.org/3/library/exceptions.html#OSError

exception os.error
An alias for the built-in OSError exception.

os.name
The name of the operating system dependent module im-
ported. The following names have currently been registered:
'posix', 'nt', 'java'.

See also: sys.platform has a finer granularity.
os.uname() gives system-dependent version information.

The platform module provides detailed checks for the sys-
tem’s identity.

File Names, Command Line Arguments,
and Environment Variables
In Python, file names, command line arguments, and environ-
ment variables are represented using the string type. On some
systems, decoding these strings to and from bytes is necessary
before passing them to the operating system. Python uses the
file system encoding to perform this conversion (see
sys.getfilesystemencoding()).

Changed in version 3.1: On some systems, conversion using the
file system encoding may fail. In this case, Python uses the sur-
rogateescape encoding error handler, which means that unde-
codable bytes are replaced by a Unicode character U+DCxx on
decoding, and these are again translated to the original byte on
encoding.

The file system encoding must guarantee to successfully decode
all bytes below 128. If the file system encoding fails to provide
this guarantee, API functions may raise UnicodeErrors.

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/sys.html#sys.platform
https://docs.python.org/3/library/platform.html#module-platform
https://docs.python.org/3/library/sys.html#sys.getfilesystemencoding
https://docs.python.org/3/library/codecs.html#surrogateescape

Process Parameters
These functions and data items provide information and operate
on the current process and user.

os.ctermid()
Return the filename corresponding to the controlling terminal
of the process.

Availability: Unix.

os.environ
A mapping object representing the string environment. For
example, environ['HOME'] is the pathname of your home
directory (on some platforms), and is equivalent to
getenv("HOME") in C.

This mapping is captured the first time the os module is im-
ported, typically during Python startup as part of processing
site.py. Changes to the environment made after this time
are not reflected in os.environ, except for changes made by
modifying os.environ directly.

If the platform supports the putenv() function, this mapping
may be used to modify the environment as well as query the
environment. putenv() will be called automatically when the
mapping is modified.

On Unix, keys and values use sys.getfilesystemencoding()
and 'surrogateescape' error handler. Use environb if you
would like to use a different encoding.

Note: Calling putenv() directly does not change
os.environ, so it’s better to modify os.environ.

Note: On some platforms, including FreeBSD and Mac OS

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-mapping
https://docs.python.org/3/library/sys.html#sys.getfilesystemencoding

X, setting environ may cause memory leaks. Refer to the
system documentation for putenv().

If putenv() is not provided, a modified copy of this mapping
may be passed to the appropriate process-creation functions
to cause child processes to use a modified environment.

If the platform supports the unsetenv() function, you can
delete items in this mapping to unset environment variables.
unsetenv() will be called automatically when an item is
deleted from os.environ, and when one of the pop() or
clear() methods is called.

os.environb
Bytes version of environ: a mapping object representing the
environment as byte strings. environ and environb are syn-
chronized (modify environb updates environ, and vice
versa).

environb is only available if supports_bytes_environ is
True.

New in version 3.2.

os.chdir(path)
os.fchdir(fd)
os.getcwd()

These functions are described in Files and Directories.

os.fsencode(filename)
Encode path-like filename to the filesystem encoding with
'surrogateescape' error handler, or 'strict' on Windows;
return bytes unchanged.

fsdecode() is the reverse function.

New in version 3.2.

https://docs.python.org/3/glossary.html#term-mapping
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/stdtypes.html#bytes

Changed in version 3.6: Support added to accept objects im-
plementing the os.PathLike interface.

os.fsdecode(filename)
Decode the path-like filename from the filesystem encoding
with 'surrogateescape' error handler, or 'strict' on Win-
dows; return str unchanged.

fsencode() is the reverse function.

New in version 3.2.

Changed in version 3.6: Support added to accept objects im-
plementing the os.PathLike interface.

os.fspath(path)
Return the file system representation of the path.

If str or bytes is passed in, it is returned unchanged. Other-
wise __fspath__() is called and its value is returned as long
as it is a str or bytes object. In all other cases, TypeError is
raised.

New in version 3.6.

class os.PathLike
An abstract base class for objects representing a file system
path, e.g. pathlib.PurePath.

New in version 3.6.

abstractmethod __fspath__()
Return the file system path representation of the object.

The method should only return a str or bytes object,
with the preference being for str.

os.getenv(key, default=None)
Return the value of the environment variable key if it exists,

https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/glossary.html#term-abstract-base-class
https://docs.python.org/3/library/pathlib.html#pathlib.PurePath
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

or default if it doesn’t. key, default and the result are str.

On Unix, keys and values are decoded with
sys.getfilesystemencoding() and 'surrogateescape' er-
ror handler. Use os.getenvb() if you would like to use a dif-
ferent encoding.

Availability: most flavors of Unix, Windows.

os.getenvb(key, default=None)
Return the value of the environment variable key if it exists,
or default if it doesn’t. key, default and the result are bytes.

getenvb() is only available if supports_bytes_environ is
True.

Availability: most flavors of Unix.

New in version 3.2.

os.get_exec_path(env=None)
Returns the list of directories that will be searched for a
named executable, similar to a shell, when launching a
process. env, when specified, should be an environment vari-
able dictionary to lookup the PATH in. By default, when env is
None, environ is used.

New in version 3.2.

os.getegid()
Return the effective group id of the current process. This cor-
responds to the “set id” bit on the file being executed in the
current process.

Availability: Unix.

os.geteuid()
Return the current process’s effective user id.

https://docs.python.org/3/library/sys.html#sys.getfilesystemencoding
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

Availability: Unix.

os.getgid()
Return the real group id of the current process.

Availability: Unix.

os.getgrouplist(user, group)
Return list of group ids that user belongs to. If group is not
in the list, it is included; typically, group is specified as the
group ID field from the password record for user.

Availability: Unix.

New in version 3.3.

os.getgroups()
Return list of supplemental group ids associated with the
current process.

Availability: Unix.

Note: On Mac OS X, getgroups() behavior differs some-
what from other Unix platforms. If the Python interpreter
was built with a deployment target of 10.5 or earlier,
getgroups() returns the list of effective group ids associ-
ated with the current user process; this list is limited to a
system-defined number of entries, typically 16, and may be
modified by calls to setgroups() if suitably privileged. If
built with a deployment target greater than 10.5,
getgroups() returns the current group access list for the
user associated with the effective user id of the process;
the group access list may change over the lifetime of the
process, it is not affected by calls to setgroups(), and its
length is not limited to 16. The deployment target value,
MACOSX_DEPLOYMENT_TARGET, can be obtained with
sysconfig.get_config_var().

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/sysconfig.html#sysconfig.get_config_var

os.getlogin()
Return the name of the user logged in on the controlling ter-
minal of the process. For most purposes, it is more useful to
use getpass.getuser() since the latter checks the environ-
ment variables LOGNAME or USERNAME to find out who the user
is, and falls back to pwd.getpwuid(os.getuid())[0] to get
the login name of the current real user id.

Availability: Unix, Windows.

os.getpgid(pid)
Return the process group id of the process with process id
pid. If pid is 0, the process group id of the current process is
returned.

Availability: Unix.

os.getpgrp()
Return the id of the current process group.

Availability: Unix.

os.getpid()
Return the current process id.

os.getppid()
Return the parent’s process id. When the parent process has
exited, on Unix the id returned is the one of the init process
(1), on Windows it is still the same id, which may be already
reused by another process.

Availability: Unix, Windows.

Changed in version 3.2: Added support for Windows.

os.getpriority(which, who)
Get program scheduling priority. The value which is one of
PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is inter-

https://docs.python.org/3/library/getpass.html#getpass.getuser
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

preted relative to which (a process identifier for
PRIO_PROCESS, process group identifier for PRIO_PGRP, and a
user ID for PRIO_USER). A zero value for who denotes (re-
spectively) the calling process, the process group of the call-
ing process, or the real user ID of the calling process.

Availability: Unix.

New in version 3.3.

os.PRIO_PROCESS
os.PRIO_PGRP
os.PRIO_USER

Parameters for the getpriority() and setpriority()

functions.

Availability: Unix.

New in version 3.3.

os.getresuid()
Return a tuple (ruid, euid, suid) denoting the current
process’s real, effective, and saved user ids.

Availability: Unix.

New in version 3.2.

os.getresgid()
Return a tuple (rgid, egid, sgid) denoting the current
process’s real, effective, and saved group ids.

Availability: Unix.

New in version 3.2.

os.getuid()
Return the current process’s real user id.

Availability: Unix.

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

os.initgroups(username, gid)
Call the system initgroups() to initialize the group access list
with all of the groups of which the specified username is a
member, plus the specified group id.

Availability: Unix.

New in version 3.2.

os.putenv(key, value)
Set the environment variable named key to the string value.
Such changes to the environment affect subprocesses started
with os.system(), popen() or fork() and execv().

Availability: most flavors of Unix, Windows.

Note: On some platforms, including FreeBSD and Mac OS
X, setting environ may cause memory leaks. Refer to the
system documentation for putenv.

When putenv() is supported, assignments to items in
os.environ are automatically translated into corresponding
calls to putenv(); however, calls to putenv() don’t update
os.environ, so it is actually preferable to assign to items of
os.environ.

os.setegid(egid)
Set the current process’s effective group id.

Availability: Unix.

os.seteuid(euid)
Set the current process’s effective user id.

Availability: Unix.

os.setgid(gid)
Set the current process’ group id.

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

Availability: Unix.

os.setgroups(groups)
Set the list of supplemental group ids associated with the
current process to groups. groups must be a sequence, and
each element must be an integer identifying a group. This
operation is typically available only to the superuser.

Availability: Unix.

Note: On Mac OS X, the length of groups may not exceed
the system-defined maximum number of effective group
ids, typically 16. See the documentation for getgroups()
for cases where it may not return the same group list set by
calling setgroups().

os.setpgrp()
Call the system call setpgrp() or setpgrp(0, 0) depending
on which version is implemented (if any). See the Unix manu-
al for the semantics.

Availability: Unix.

os.setpgid(pid, pgrp)
Call the system call setpgid() to set the process group id of
the process with id pid to the process group with id pgrp. See
the Unix manual for the semantics.

Availability: Unix.

os.setpriority(which, who, priority)
Set program scheduling priority. The value which is one of
PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is inter-
preted relative to which (a process identifier for
PRIO_PROCESS, process group identifier for PRIO_PGRP, and a
user ID for PRIO_USER). A zero value for who denotes (re-
spectively) the calling process, the process group of the call-

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

ing process, or the real user ID of the calling process. priority
is a value in the range -20 to 19. The default priority is 0;
lower priorities cause more favorable scheduling.

Availability: Unix.

New in version 3.3.

os.setregid(rgid, egid)
Set the current process’s real and effective group ids.

Availability: Unix.

os.setresgid(rgid, egid, sgid)
Set the current process’s real, effective, and saved group ids.

Availability: Unix.

New in version 3.2.

os.setresuid(ruid, euid, suid)
Set the current process’s real, effective, and saved user ids.

Availability: Unix.

New in version 3.2.

os.setreuid(ruid, euid)
Set the current process’s real and effective user ids.

Availability: Unix.

os.getsid(pid)
Call the system call getsid(). See the Unix manual for the
semantics.

Availability: Unix.

os.setsid()
Call the system call setsid(). See the Unix manual for the

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

semantics.

Availability: Unix.

os.setuid(uid)
Set the current process’s user id.

Availability: Unix.

os.strerror(code)
Return the error message corresponding to the error code in
code. On platforms where strerror() returns NULL when
given an unknown error number, ValueError is raised.

os.supports_bytes_environ
True if the native OS type of the environment is bytes (eg.
False on Windows).

New in version 3.2.

os.umask(mask)
Set the current numeric umask and return the previous
umask.

os.uname()
Returns information identifying the current operating system.
The return value is an object with five attributes:

sysname - operating system name
nodename - name of machine on network (implementa-
tion-defined)
release - operating system release
version - operating system version
machine - hardware identifier

For backwards compatibility, this object is also iterable, be-
having like a five-tuple containing sysname, nodename,
release, version, and machine in that order.

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/exceptions.html#ValueError

Some systems truncate nodename to 8 characters or to the
leading component; a better way to get the hostname is
socket.gethostname() or even
socket.gethostbyaddr(socket.gethostname()).

Availability: recent flavors of Unix.

Changed in version 3.3: Return type changed from a tuple to
a tuple-like object with named attributes.

os.unsetenv(key)
Unset (delete) the environment variable named key. Such
changes to the environment affect subprocesses started with
os.system(), popen() or fork() and execv().

When unsetenv() is supported, deletion of items in
os.environ is automatically translated into a corresponding
call to unsetenv(); however, calls to unsetenv() don’t up-
date os.environ, so it is actually preferable to delete items
of os.environ.

Availability: most flavors of Unix, Windows.

File Object Creation
These functions create new file objects. (See also open() for
opening file descriptors.)

os.fdopen(fd, *args, **kwargs)
Return an open file object connected to the file descriptor fd.
This is an alias of the open() built-in function and accepts
the same arguments. The only difference is that the first ar-
gument of fdopen() must always be an integer.

File Descriptor Operations

https://docs.python.org/3/library/socket.html#socket.gethostname
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/library/functions.html#open

These functions operate on I/O streams referenced using file
descriptors.

File descriptors are small integers corresponding to a file that has
been opened by the current process. For example, standard input
is usually file descriptor 0, standard output is 1, and standard er-
ror is 2. Further files opened by a process will then be assigned
3, 4, 5, and so forth. The name “file descriptor” is slightly decep-
tive; on Unix platforms, sockets and pipes are also referenced by
file descriptors.

The fileno() method can be used to obtain the file descriptor
associated with a file object when required. Note that using the
file descriptor directly will bypass the file object methods, ignor-
ing aspects such as internal buffering of data.

os.close(fd)
Close file descriptor fd.

Note: This function is intended for low-level I/O and must
be applied to a file descriptor as returned by os.open() or
pipe(). To close a “file object” returned by the built-in
function open() or by popen() or fdopen(), use its
close() method.

os.closerange(fd_low, fd_high)
Close all file descriptors from fd_low (inclusive) to fd_high
(exclusive), ignoring errors. Equivalent to (but much faster
than):

os.copy_file_range(src, dst, count, offset_src=None,
offset_dst=None)

for fd in range(fd_low, fd_high):
 try:
 os.close(fd)
 except OSError:
 pass

https://docs.python.org/3/library/io.html#io.IOBase.fileno
https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/io.html#io.IOBase.close

Copy count bytes from file descriptor src, starting from offset
offset_src, to file descriptor dst, starting from offset off-
set_dst. If offset_src is None, then src is read from the cur-
rent position; respectively for offset_dst. The files pointed by
src and dst must reside in the same filesystem, otherwise an
OSError is raised with errno set to errno.EXDEV.

This copy is done without the additional cost of transferring
data from the kernel to user space and then back into the
kernel. Additionally, some filesystems could implement extra
optimizations. The copy is done as if both files are opened as
binary.

The return value is the amount of bytes copied. This could be
less than the amount requested.

Availability: Linux kernel >= 4.5 or glibc >= 2.27.

New in version 3.8.

os.device_encoding(fd)
Return a string describing the encoding of the device associ-
ated with fd if it is connected to a terminal; else return None.

os.dup(fd)
Return a duplicate of file descriptor fd. The new file descrip-
tor is non-inheritable.

On Windows, when duplicating a standard stream (0: stdin, 1:
stdout, 2: stderr), the new file descriptor is inheritable.

Changed in version 3.4: The new file descriptor is now non-
inheritable.

os.dup2(fd, fd2, inheritable=True)
Duplicate file descriptor fd to fd2, closing the latter first if
necessary. Return fd2. The new file descriptor is inheritable
by default or non-inheritable if inheritable is False.

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError.errno
https://docs.python.org/3/library/errno.html#errno.EXDEV
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/constants.html#None

Changed in version 3.4: Add the optional inheritable
parameter.

Changed in version 3.7: Return fd2 on success. Previously,
None was always returned.

os.fchmod(fd, mode)
Change the mode of the file given by fd to the numeric mode.
See the docs for chmod() for possible values of mode. As of
Python 3.3, this is equivalent to os.chmod(fd, mode).

Availability: Unix.

os.fchown(fd, uid, gid)
Change the owner and group id of the file given by fd to the
numeric uid and gid. To leave one of the ids unchanged, set
it to -1. See chown(). As of Python 3.3, this is equivalent to
os.chown(fd, uid, gid).

Availability: Unix.

os.fdatasync(fd)
Force write of file with filedescriptor fd to disk. Does not
force update of metadata.

Availability: Unix.

Note: This function is not available on MacOS.

os.fpathconf(fd, name)
Return system configuration information relevant to an open
file. name specifies the configuration value to retrieve; it may
be a string which is the name of a defined system value;
these names are specified in a number of standards (POSIX.1,
Unix 95, Unix 98, and others). Some platforms define addi-
tional names as well. The names known to the host operating
system are given in the pathconf_names dictionary. For con-
figuration variables not included in that mapping, passing an

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

integer for name is also accepted.

If name is a string and is not known, ValueError is raised. If
a specific value for name is not supported by the host sys-
tem, even if it is included in pathconf_names, an OSError is
raised with errno.EINVAL for the error number.

As of Python 3.3, this is equivalent to os.pathconf(fd,
name).

Availability: Unix.

os.fstat(fd)
Get the status of the file descriptor fd. Return a stat_result
object.

As of Python 3.3, this is equivalent to os.stat(fd).

See also: The stat() function.

os.fstatvfs(fd)
Return information about the filesystem containing the file
associated with file descriptor fd, like statvfs(). As of
Python 3.3, this is equivalent to os.statvfs(fd).

Availability: Unix.

os.fsync(fd)
Force write of file with filedescriptor fd to disk. On Unix, this
calls the native fsync() function; on Windows, the MS
_commit() function.

If you’re starting with a buffered Python file object f, first do
f.flush(), and then do os.fsync(f.fileno()), to ensure
that all internal buffers associated with f are written to disk.

Availability: Unix, Windows.

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/errno.html#errno.EINVAL
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/library/intro.html#availability

os.ftruncate(fd, length)
Truncate the file corresponding to file descriptor fd, so that it
is at most length bytes in size. As of Python 3.3, this is
equivalent to os.truncate(fd, length).

Raises an auditing event os.truncate with arguments fd,
length.

Availability: Unix, Windows.

Changed in version 3.5: Added support for Windows

os.get_blocking(fd)
Get the blocking mode of the file descriptor: False if the
O_NONBLOCK flag is set, True if the flag is cleared.

See also set_blocking() and
socket.socket.setblocking().

Availability: Unix.

New in version 3.5.

os.isatty(fd)
Return True if the file descriptor fd is open and connected to
a tty(-like) device, else False.

os.lockf(fd, cmd, len)
Apply, test or remove a POSIX lock on an open file descriptor.
fd is an open file descriptor. cmd specifies the command to
use - one of F_LOCK, F_TLOCK, F_ULOCK or F_TEST. len speci-
fies the section of the file to lock.

Availability: Unix.

New in version 3.3.

os.F_LOCK
os.F_TLOCK

https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/socket.html#socket.socket.setblocking
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

os.F_ULOCK
os.F_TEST

Flags that specify what action lockf() will take.

Availability: Unix.

New in version 3.3.

os.lseek(fd, pos, how)
Set the current position of file descriptor fd to position pos,
modified by how: SEEK_SET or 0 to set the position relative to
the beginning of the file; SEEK_CUR or 1 to set it relative to
the current position; SEEK_END or 2 to set it relative to the
end of the file. Return the new cursor position in bytes, start-
ing from the beginning.

os.SEEK_SET
os.SEEK_CUR
os.SEEK_END

Parameters to the lseek() function. Their values are 0, 1,
and 2, respectively.

New in version 3.3: Some operating systems could support
additional values, like os.SEEK_HOLE or os.SEEK_DATA.

os.open(path, flags, mode=0o777, *, dir_fd=None)
Open the file path and set various flags according to flags
and possibly its mode according to mode. When computing
mode, the current umask value is first masked out. Return
the file descriptor for the newly opened file. The new file de-
scriptor is non-inheritable.

For a description of the flag and mode values, see the C run-
time documentation; flag constants (like O_RDONLY and
O_WRONLY) are defined in the os module. In particular, on
Windows adding O_BINARY is needed to open files in binary
mode.

https://docs.python.org/3/library/intro.html#availability

This function can support paths relative to directory descrip-
tors with the dir_fd parameter.

Raises an auditing event open with arguments path, mode,
flags.

Changed in version 3.4: The new file descriptor is now non-
inheritable.

Note: This function is intended for low-level I/O. For nor-
mal usage, use the built-in function open(), which returns
a file object with read() and write() methods (and many
more). To wrap a file descriptor in a file object, use
fdopen().

New in version 3.3: The dir_fd argument.

Changed in version 3.5: If the system call is interrupted and
the signal handler does not raise an exception, the function
now retries the system call instead of raising an
InterruptedError exception (see PEP 475 for the rationale).

Changed in version 3.6: Accepts a path-like object.

The following constants are options for the flags parameter to
the open() function. They can be combined using the bitwise OR
operator |. Some of them are not available on all platforms. For
descriptions of their availability and use, consult the open(2)
manual page on Unix or the MSDN on Windows.

os.O_RDONLY
os.O_WRONLY
os.O_RDWR
os.O_APPEND
os.O_CREAT
os.O_EXCL
os.O_TRUNC

The above constants are available on Unix and Windows.

https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/library/exceptions.html#InterruptedError
https://www.python.org/dev/peps/pep-0475
https://docs.python.org/3/glossary.html#term-path-like-object
https://manpages.debian.org/open(2)
https://msdn.microsoft.com/en-us/library/z0kc8e3z.aspx

os.O_DSYNC
os.O_RSYNC
os.O_SYNC
os.O_NDELAY
os.O_NONBLOCK
os.O_NOCTTY
os.O_CLOEXEC

The above constants are only available on Unix.

Changed in version 3.3: Add O_CLOEXEC constant.

os.O_BINARY
os.O_NOINHERIT
os.O_SHORT_LIVED
os.O_TEMPORARY
os.O_RANDOM
os.O_SEQUENTIAL
os.O_TEXT

The above constants are only available on Windows.

os.O_ASYNC
os.O_DIRECT
os.O_DIRECTORY
os.O_NOFOLLOW
os.O_NOATIME
os.O_PATH
os.O_TMPFILE
os.O_SHLOCK
os.O_EXLOCK

The above constants are extensions and not present if they
are not defined by the C library.

Changed in version 3.4: Add O_PATH on systems that support
it. Add O_TMPFILE, only available on Linux Kernel 3.11 or
newer.

os.openpty()
Open a new pseudo-terminal pair. Return a pair of file de-

scriptors (master, slave) for the pty and the tty, respec-
tively. The new file descriptors are non-inheritable. For a
(slightly) more portable approach, use the pty module.

Availability: some flavors of Unix.

Changed in version 3.4: The new file descriptors are now
non-inheritable.

os.pipe()
Create a pipe. Return a pair of file descriptors (r, w) usable
for reading and writing, respectively. The new file descriptor
is non-inheritable.

Availability: Unix, Windows.

Changed in version 3.4: The new file descriptors are now
non-inheritable.

os.pipe2(flags)
Create a pipe with flags set atomically. flags can be con-
structed by ORing together one or more of these values:
O_NONBLOCK, O_CLOEXEC. Return a pair of file descriptors (r,
w) usable for reading and writing, respectively.

Availability: some flavors of Unix.

New in version 3.3.

os.posix_fallocate(fd, offset, len)
Ensures that enough disk space is allocated for the file speci-
fied by fd starting from offset and continuing for len bytes.

Availability: Unix.

New in version 3.3.

os.posix_fadvise(fd, offset, len, advice)
Announces an intention to access data in a specific pattern

https://docs.python.org/3/library/pty.html#module-pty
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

thus allowing the kernel to make optimizations. The advice
applies to the region of the file specified by fd starting at off-
set and continuing for len bytes. advice is one of
POSIX_FADV_NORMAL, POSIX_FADV_SEQUENTIAL,
POSIX_FADV_RANDOM, POSIX_FADV_NOREUSE,
POSIX_FADV_WILLNEED or POSIX_FADV_DONTNEED.

Availability: Unix.

New in version 3.3.

os.POSIX_FADV_NORMAL
os.POSIX_FADV_SEQUENTIAL
os.POSIX_FADV_RANDOM
os.POSIX_FADV_NOREUSE
os.POSIX_FADV_WILLNEED
os.POSIX_FADV_DONTNEED

Flags that can be used in advice in posix_fadvise() that
specify the access pattern that is likely to be used.

Availability: Unix.

New in version 3.3.

os.pread(fd, n, offset)
Read at most n bytes from file descriptor fd at a position of
offset, leaving the file offset unchanged.

Return a bytestring containing the bytes read. If the end of
the file referred to by fd has been reached, an empty bytes
object is returned.

Availability: Unix.

New in version 3.3.

os.preadv(fd, buffers, offset, flags=0)
Read from a file descriptor fd at a position of offset into mu-
table bytes-like objects buffers, leaving the file offset un-

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-bytes-like-object

changed. Transfer data into each buffer until it is full and
then move on to the next buffer in the sequence to hold the
rest of the data.

The flags argument contains a bitwise OR of zero or more of
the following flags:

RWF_HIPRI

RWF_NOWAIT

Return the total number of bytes actually read which can be
less than the total capacity of all the objects.

The operating system may set a limit (sysconf() value
'SC_IOV_MAX') on the number of buffers that can be used.

Combine the functionality of os.readv() and os.pread().

Availability: Linux 2.6.30 and newer, FreeBSD 6.0 and newer,
OpenBSD 2.7 and newer. Using flags requires Linux 4.6 or
newer.

New in version 3.7.

os.RWF_NOWAIT
Do not wait for data which is not immediately available. If this
flag is specified, the system call will return instantly if it
would have to read data from the backing storage or wait for
a lock.

If some data was successfully read, it will return the number
of bytes read. If no bytes were read, it will return -1 and set
errno to errno.EAGAIN.

Availability: Linux 4.14 and newer.

New in version 3.7.

os.RWF_HIPRI

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/errno.html#errno.EAGAIN
https://docs.python.org/3/library/intro.html#availability

High priority read/write. Allows block-based filesystems to
use polling of the device, which provides lower latency, but
may use additional resources.

Currently, on Linux, this feature is usable only on a file de-
scriptor opened using the O_DIRECT flag.

Availability: Linux 4.6 and newer.

New in version 3.7.

os.pwrite(fd, str, offset)
Write the bytestring in str to file descriptor fd at position of
offset, leaving the file offset unchanged.

Return the number of bytes actually written.

Availability: Unix.

New in version 3.3.

os.pwritev(fd, buffers, offset, flags=0)
Write the buffers contents to file descriptor fd at a offset off-
set, leaving the file offset unchanged. buffers must be a se-
quence of bytes-like objects. Buffers are processed in array
order. Entire contents of the first buffer is written before pro-
ceeding to the second, and so on.

The flags argument contains a bitwise OR of zero or more of
the following flags:

RWF_DSYNC

RWF_SYNC

Return the total number of bytes actually written.

The operating system may set a limit (sysconf() value
'SC_IOV_MAX') on the number of buffers that can be used.

Combine the functionality of os.writev() and os.pwrite().

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-bytes-like-object

Availability: Linux 2.6.30 and newer, FreeBSD 6.0 and newer,
OpenBSD 2.7 and newer. Using flags requires Linux 4.7 or
newer.

New in version 3.7.

os.RWF_DSYNC
Provide a per-write equivalent of the O_DSYNC open(2) flag.
This flag effect applies only to the data range written by the
system call.

Availability: Linux 4.7 and newer.

New in version 3.7.

os.RWF_SYNC
Provide a per-write equivalent of the O_SYNC open(2) flag.
This flag effect applies only to the data range written by the
system call.

Availability: Linux 4.7 and newer.

New in version 3.7.

os.read(fd, n)
Read at most n bytes from file descriptor fd.

Return a bytestring containing the bytes read. If the end of
the file referred to by fd has been reached, an empty bytes
object is returned.

Note: This function is intended for low-level I/O and must
be applied to a file descriptor as returned by os.open() or
pipe(). To read a “file object” returned by the built-in
function open() or by popen() or fdopen(), or sys.stdin,
use its read() or readline() methods.

Changed in version 3.5: If the system call is interrupted and

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/sys.html#sys.stdin

the signal handler does not raise an exception, the function
now retries the system call instead of raising an
InterruptedError exception (see PEP 475 for the rationale).

os.sendfile(out, in, offset, count)
os.sendfile(out, in, offset, count, [headers,][trailers,
]flags=0)

Copy count bytes from file descriptor in to file descriptor out
starting at offset. Return the number of bytes sent. When EOF
is reached return 0.

The first function notation is supported by all platforms that
define sendfile().

On Linux, if offset is given as None, the bytes are read from
the current position of in and the position of in is updated.

The second case may be used on Mac OS X and FreeBSD
where headers and trailers are arbitrary sequences of buffers
that are written before and after the data from in is written. It
returns the same as the first case.

On Mac OS X and FreeBSD, a value of 0 for count specifies to
send until the end of in is reached.

All platforms support sockets as out file descriptor, and some
platforms allow other types (e.g. regular file, pipe) as well.

Cross-platform applications should not use headers, trailers
and flags arguments.

Availability: Unix.

Note: For a higher-level wrapper of sendfile(), see
socket.socket.sendfile().

New in version 3.3.

https://docs.python.org/3/library/exceptions.html#InterruptedError
https://www.python.org/dev/peps/pep-0475
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/socket.html#socket.socket.sendfile

os.set_blocking(fd, blocking)
Set the blocking mode of the specified file descriptor. Set the
O_NONBLOCK flag if blocking is False, clear the flag otherwise.

See also get_blocking() and
socket.socket.setblocking().

Availability: Unix.

New in version 3.5.

os.SF_NODISKIO
os.SF_MNOWAIT
os.SF_SYNC

Parameters to the sendfile() function, if the implementation
supports them.

Availability: Unix.

New in version 3.3.

os.readv(fd, buffers)
Read from a file descriptor fd into a number of mutable
bytes-like objects buffers. Transfer data into each buffer until
it is full and then move on to the next buffer in the sequence
to hold the rest of the data.

Return the total number of bytes actually read which can be
less than the total capacity of all the objects.

The operating system may set a limit (sysconf() value
'SC_IOV_MAX') on the number of buffers that can be used.

Availability: Unix.

New in version 3.3.

os.tcgetpgrp(fd)
Return the process group associated with the terminal given

https://docs.python.org/3/library/socket.html#socket.socket.setblocking
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/intro.html#availability

by fd (an open file descriptor as returned by os.open()).

Availability: Unix.

os.tcsetpgrp(fd, pg)
Set the process group associated with the terminal given by
fd (an open file descriptor as returned by os.open()) to pg.

Availability: Unix.

os.ttyname(fd)
Return a string which specifies the terminal device associated
with file descriptor fd. If fd is not associated with a terminal
device, an exception is raised.

Availability: Unix.

os.write(fd, str)
Write the bytestring in str to file descriptor fd.

Return the number of bytes actually written.

Note: This function is intended for low-level I/O and must
be applied to a file descriptor as returned by os.open() or
pipe(). To write a “file object” returned by the built-in
function open() or by popen() or fdopen(), or sys.stdout
or sys.stderr, use its write() method.

Changed in version 3.5: If the system call is interrupted and
the signal handler does not raise an exception, the function
now retries the system call instead of raising an
InterruptedError exception (see PEP 475 for the rationale).

os.writev(fd, buffers)
Write the contents of buffers to file descriptor fd. buffers
must be a sequence of bytes-like objects. Buffers are pro-
cessed in array order. Entire contents of the first buffer is
written before proceeding to the second, and so on.

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/exceptions.html#InterruptedError
https://www.python.org/dev/peps/pep-0475
https://docs.python.org/3/glossary.html#term-bytes-like-object

Returns the total number of bytes actually written.

The operating system may set a limit (sysconf() value
'SC_IOV_MAX') on the number of buffers that can be used.

Availability: Unix.

New in version 3.3.

Querying the size of a terminal

New in version 3.3.

os.get_terminal_size(fd=STDOUT_FILENO)
Return the size of the terminal window as (columns, lines),
tuple of type terminal_size.

The optional argument fd (default STDOUT_FILENO, or stan-
dard output) specifies which file descriptor should be
queried.

If the file descriptor is not connected to a terminal, an
OSError is raised.

shutil.get_terminal_size() is the high-level function
which should normally be used, os.get_terminal_size is the
low-level implementation.

Availability: Unix, Windows.

class os.terminal_size
A subclass of tuple, holding (columns, lines) of the termi-
nal window size.

columns
Width of the terminal window in characters.

lines

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/shutil.html#shutil.get_terminal_size
https://docs.python.org/3/library/intro.html#availability

Height of the terminal window in characters.

Inheritance of File Descriptors

New in version 3.4.

A file descriptor has an “inheritable” flag which indicates if the
file descriptor can be inherited by child processes. Since Python
3.4, file descriptors created by Python are non-inheritable by
default.

On UNIX, non-inheritable file descriptors are closed in child pro-
cesses at the execution of a new program, other file descriptors
are inherited.

On Windows, non-inheritable handles and file descriptors are
closed in child processes, except for standard streams (file de-
scriptors 0, 1 and 2: stdin, stdout and stderr), which are always
inherited. Using spawn* functions, all inheritable handles and all
inheritable file descriptors are inherited. Using the subprocess
module, all file descriptors except standard streams are closed,
and inheritable handles are only inherited if the close_fds para-
meter is False.

os.get_inheritable(fd)
Get the “inheritable” flag of the specified file descriptor (a
boolean).

os.set_inheritable(fd, inheritable)
Set the “inheritable” flag of the specified file descriptor.

os.get_handle_inheritable(handle)
Get the “inheritable” flag of the specified handle (a boolean).

Availability: Windows.

os.set_handle_inheritable(handle, inheritable)
Set the “inheritable” flag of the specified handle.

https://docs.python.org/3/library/subprocess.html#module-subprocess
https://docs.python.org/3/library/intro.html#availability

Availability: Windows.

Files and Directories
On some Unix platforms, many of these functions support one or
more of these features:

specifying a file descriptor: Normally the path argument
provided to functions in the os module must be a string
specifying a file path. However, some functions now alter-
natively accept an open file descriptor for their path argu-
ment. The function will then operate on the file referred to
by the descriptor. (For POSIX systems, Python will call the
variant of the function prefixed with f (e.g. call fchdir in-
stead of chdir).)

You can check whether or not path can be specified as a file
descriptor for a particular function on your platform using
os.supports_fd. If this functionality is unavailable, using it
will raise a NotImplementedError.

If the function also supports dir_fd or follow_symlinks argu-
ments, it’s an error to specify one of those when supplying
path as a file descriptor.

paths relative to directory descriptors: If dir_fd is not
None, it should be a file descriptor referring to a directory,
and the path to operate on should be relative; path will then
be relative to that directory. If the path is absolute, dir_fd is
ignored. (For POSIX systems, Python will call the variant of
the function with an at suffix and possibly prefixed with f
(e.g. call faccessat instead of access).

You can check whether or not dir_fd is supported for a par-
ticular function on your platform using
os.supports_dir_fd. If it’s unavailable, using it will raise a
NotImplementedError.

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/exceptions.html#NotImplementedError

not following symlinks: If follow_symlinks is False, and
the last element of the path to operate on is a symbolic link,
the function will operate on the symbolic link itself rather
than the file pointed to by the link. (For POSIX systems,
Python will call the l... variant of the function.)

You can check whether or not follow_symlinks is supported
for a particular function on your platform using
os.supports_follow_symlinks. If it’s unavailable, using it
will raise a NotImplementedError.

os.access(path, mode, *, dir_fd=None, effective_ids=False,
follow_symlinks=True)

Use the real uid/gid to test for access to path. Note that most
operations will use the effective uid/gid, therefore this rou-
tine can be used in a suid/sgid environment to test if the in-
voking user has the specified access to path. mode should be
F_OK to test the existence of path, or it can be the inclusive
OR of one or more of R_OK, W_OK, and X_OK to test permis-
sions. Return True if access is allowed, False if not. See the
Unix man page access(2) for more information.

This function can support specifying paths relative to direc-
tory descriptors and not following symlinks.

If effective_ids is True, access() will perform its access
checks using the effective uid/gid instead of the real uid/gid.
effective_ids may not be supported on your platform; you can
check whether or not it is available using
os.supports_effective_ids. If it is unavailable, using it will
raise a NotImplementedError.

Note: Using access() to check if a user is authorized to
e.g. open a file before actually doing so using open() cre-
ates a security hole, because the user might exploit the
short time interval between checking and opening the file
to manipulate it. It’s preferable to use EAFP techniques. For

https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://manpages.debian.org/access(2)
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/glossary.html#term-eafp

example:

is better written as:

Note: I/O operations may fail even when access() indi-
cates that they would succeed, particularly for operations
on network filesystems which may have permissions se-
mantics beyond the usual POSIX permission-bit model.

Changed in version 3.3: Added the dir_fd, effective_ids, and
follow_symlinks parameters.

Changed in version 3.6: Accepts a path-like object.

os.F_OK
os.R_OK
os.W_OK
os.X_OK

Values to pass as the mode parameter of access() to test
the existence, readability, writability and executability of
path, respectively.

os.chdir(path)
Change the current working directory to path.

This function can support specifying a file descriptor. The

if os.access("myfile", os.R_OK):
 with open("myfile") as fp:
 return fp.read()
return "some default data"

try:
 fp = open("myfile")
except PermissionError:
 return "some default data"
else:
 with fp:
 return fp.read()

https://docs.python.org/3/glossary.html#term-path-like-object

descriptor must refer to an opened directory, not an open
file.

This function can raise OSError and subclasses such as
FileNotFoundError, PermissionError, and
NotADirectoryError.

New in version 3.3: Added support for specifying path as a
file descriptor on some platforms.

Changed in version 3.6: Accepts a path-like object.

os.chflags(path, flags, *, follow_symlinks=True)
Set the flags of path to the numeric flags. flags may take a
combination (bitwise OR) of the following values (as defined
in the stat module):

stat.UF_NODUMP

stat.UF_IMMUTABLE

stat.UF_APPEND

stat.UF_OPAQUE

stat.UF_NOUNLINK

stat.UF_COMPRESSED

stat.UF_HIDDEN

stat.SF_ARCHIVED

stat.SF_IMMUTABLE

stat.SF_APPEND

stat.SF_NOUNLINK

stat.SF_SNAPSHOT

This function can support not following symlinks.

Availability: Unix.

New in version 3.3: The follow_symlinks argument.

Changed in version 3.6: Accepts a path-like object.

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/exceptions.html#PermissionError
https://docs.python.org/3/library/exceptions.html#NotADirectoryError
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/stat.html#module-stat
https://docs.python.org/3/library/stat.html#stat.UF_NODUMP
https://docs.python.org/3/library/stat.html#stat.UF_IMMUTABLE
https://docs.python.org/3/library/stat.html#stat.UF_APPEND
https://docs.python.org/3/library/stat.html#stat.UF_OPAQUE
https://docs.python.org/3/library/stat.html#stat.UF_NOUNLINK
https://docs.python.org/3/library/stat.html#stat.UF_COMPRESSED
https://docs.python.org/3/library/stat.html#stat.UF_HIDDEN
https://docs.python.org/3/library/stat.html#stat.SF_ARCHIVED
https://docs.python.org/3/library/stat.html#stat.SF_IMMUTABLE
https://docs.python.org/3/library/stat.html#stat.SF_APPEND
https://docs.python.org/3/library/stat.html#stat.SF_NOUNLINK
https://docs.python.org/3/library/stat.html#stat.SF_SNAPSHOT
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-path-like-object

os.chmod(path, mode, *, dir_fd=None, follow_symlinks=True)
Change the mode of path to the numeric mode. mode may
take one of the following values (as defined in the stat mod-
ule) or bitwise ORed combinations of them:

stat.S_ISUID

stat.S_ISGID

stat.S_ENFMT

stat.S_ISVTX

stat.S_IREAD

stat.S_IWRITE

stat.S_IEXEC

stat.S_IRWXU

stat.S_IRUSR

stat.S_IWUSR

stat.S_IXUSR

stat.S_IRWXG

stat.S_IRGRP

stat.S_IWGRP

stat.S_IXGRP

stat.S_IRWXO

stat.S_IROTH

stat.S_IWOTH

stat.S_IXOTH

This function can support specifying a file descriptor, paths
relative to directory descriptors and not following symlinks.

Note: Although Windows supports chmod(), you can only
set the file’s read-only flag with it (via the stat.S_IWRITE
and stat.S_IREAD constants or a corresponding integer
value). All other bits are ignored.

New in version 3.3: Added support for specifying path as an
open file descriptor, and the dir_fd and follow_symlinks

https://docs.python.org/3/library/stat.html#module-stat
https://docs.python.org/3/library/stat.html#stat.S_ISUID
https://docs.python.org/3/library/stat.html#stat.S_ISGID
https://docs.python.org/3/library/stat.html#stat.S_ENFMT
https://docs.python.org/3/library/stat.html#stat.S_ISVTX
https://docs.python.org/3/library/stat.html#stat.S_IREAD
https://docs.python.org/3/library/stat.html#stat.S_IWRITE
https://docs.python.org/3/library/stat.html#stat.S_IEXEC
https://docs.python.org/3/library/stat.html#stat.S_IRWXU
https://docs.python.org/3/library/stat.html#stat.S_IRUSR
https://docs.python.org/3/library/stat.html#stat.S_IWUSR
https://docs.python.org/3/library/stat.html#stat.S_IXUSR
https://docs.python.org/3/library/stat.html#stat.S_IRWXG
https://docs.python.org/3/library/stat.html#stat.S_IRGRP
https://docs.python.org/3/library/stat.html#stat.S_IWGRP
https://docs.python.org/3/library/stat.html#stat.S_IXGRP
https://docs.python.org/3/library/stat.html#stat.S_IRWXO
https://docs.python.org/3/library/stat.html#stat.S_IROTH
https://docs.python.org/3/library/stat.html#stat.S_IWOTH
https://docs.python.org/3/library/stat.html#stat.S_IXOTH

arguments.

Changed in version 3.6: Accepts a path-like object.

os.chown(path, uid, gid, *, dir_fd=None,
follow_symlinks=True)

Change the owner and group id of path to the numeric uid
and gid. To leave one of the ids unchanged, set it to -1.

This function can support specifying a file descriptor, paths
relative to directory descriptors and not following symlinks.

See shutil.chown() for a higher-level function that accepts
names in addition to numeric ids.

Availability: Unix.

New in version 3.3: Added support for specifying path as an
open file descriptor, and the dir_fd and follow_symlinks
arguments.

Changed in version 3.6: Supports a path-like object.

os.chroot(path)
Change the root directory of the current process to path.

Availability: Unix.

Changed in version 3.6: Accepts a path-like object.

os.fchdir(fd)
Change the current working directory to the directory repre-
sented by the file descriptor fd. The descriptor must refer to
an opened directory, not an open file. As of Python 3.3, this
is equivalent to os.chdir(fd).

Availability: Unix.

os.getcwd()
Return a string representing the current working directory.

https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/shutil.html#shutil.chown
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/intro.html#availability

os.getcwdb()
Return a bytestring representing the current working
directory.

Changed in version 3.8: The function now uses the UTF-8
encoding on Windows, rather than the ANSI code page: see
PEP 529 for the rationale. The function is no longer depre-
cated on Windows.

os.lchflags(path, flags)
Set the flags of path to the numeric flags, like chflags(), but
do not follow symbolic links. As of Python 3.3, this is equiva-
lent to os.chflags(path, flags, follow_symlinks=False).

Availability: Unix.

Changed in version 3.6: Accepts a path-like object.

os.lchmod(path, mode)
Change the mode of path to the numeric mode. If path is a
symlink, this affects the symlink rather than the target. See
the docs for chmod() for possible values of mode. As of
Python 3.3, this is equivalent to os.chmod(path, mode,

follow_symlinks=False).

Availability: Unix.

Changed in version 3.6: Accepts a path-like object.

os.lchown(path, uid, gid)
Change the owner and group id of path to the numeric uid
and gid. This function will not follow symbolic links. As of
Python 3.3, this is equivalent to os.chown(path, uid, gid,
follow_symlinks=False).

Availability: Unix.

Changed in version 3.6: Accepts a path-like object.

https://www.python.org/dev/peps/pep-0529
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-path-like-object

os.link(src, dst, *, src_dir_fd=None, dst_dir_fd=None,
follow_symlinks=True)

Create a hard link pointing to src named dst.

This function can support specifying src_dir_fd and/or
dst_dir_fd to supply paths relative to directory descriptors,
and not following symlinks.

Availability: Unix, Windows.

Changed in version 3.2: Added Windows support.

New in version 3.3: Added the src_dir_fd, dst_dir_fd, and fol-
low_symlinks arguments.

Changed in version 3.6: Accepts a path-like object for src
and dst.

os.listdir(path='.')
Return a list containing the names of the entries in the direc-
tory given by path. The list is in arbitrary order, and does not
include the special entries '.' and '..' even if they are
present in the directory.

path may be a path-like object. If path is of type bytes (di-
rectly or indirectly through the PathLike interface), the file-
names returned will also be of type bytes; in all other cir-
cumstances, they will be of type str.

This function can also support specifying a file descriptor;
the file descriptor must refer to a directory.

Raises an auditing event os.listdir with argument path.

Note: To encode str filenames to bytes, use fsencode().

See also: The scandir() function returns directory entries
along with file attribute information, giving better perfor-

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/sys.html#auditing

mance for many common use cases.

Changed in version 3.2: The path parameter became
optional.

New in version 3.3: Added support for specifying path as an
open file descriptor.

Changed in version 3.6: Accepts a path-like object.

os.lstat(path, *, dir_fd=None)
Perform the equivalent of an lstat() system call on the giv-
en path. Similar to stat(), but does not follow symbolic
links. Return a stat_result object.

On platforms that do not support symbolic links, this is an
alias for stat().

As of Python 3.3, this is equivalent to os.stat(path,

dir_fd=dir_fd, follow_symlinks=False).

This function can also support paths relative to directory de-
scriptors.

See also: The stat() function.

Changed in version 3.2: Added support for Windows 6.0
(Vista) symbolic links.

Changed in version 3.3: Added the dir_fd parameter.

Changed in version 3.6: Accepts a path-like object for src
and dst.

Changed in version 3.8: On Windows, now opens reparse
points that represent another path (name surrogates), includ-
ing symbolic links and directory junctions. Other kinds of
reparse points are resolved by the operating system as for

https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-path-like-object

stat().

os.mkdir(path, mode=0o777, *, dir_fd=None)
Create a directory named path with numeric mode mode.

If the directory already exists, FileExistsError is raised.

On some systems, mode is ignored. Where it is used, the cur-
rent umask value is first masked out. If bits other than the
last 9 (i.e. the last 3 digits of the octal representation of the
mode) are set, their meaning is platform-dependent. On
some platforms, they are ignored and you should call
chmod() explicitly to set them.

This function can also support paths relative to directory de-
scriptors.

It is also possible to create temporary directories; see the
tempfile module’s tempfile.mkdtemp() function.

New in version 3.3: The dir_fd argument.

Changed in version 3.6: Accepts a path-like object.

os.makedirs(name, mode=0o777, exist_ok=False)
Recursive directory creation function. Like mkdir(), but
makes all intermediate-level directories needed to contain
the leaf directory.

The mode parameter is passed to mkdir() for creating the
leaf directory; see the mkdir() description for how it is inter-
preted. To set the file permission bits of any newly-created
parent directories you can set the umask before invoking
makedirs(). The file permission bits of existing parent direc-
tories are not changed.

If exist_ok is False (the default), an FileExistsError is
raised if the target directory already exists.

https://docs.python.org/3/library/exceptions.html#FileExistsError
https://docs.python.org/3/library/tempfile.html#module-tempfile
https://docs.python.org/3/library/tempfile.html#tempfile.mkdtemp
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/exceptions.html#FileExistsError

Note: makedirs() will become confused if the path ele-
ments to create include pardir (eg. “..” on UNIX systems).

This function handles UNC paths correctly.

New in version 3.2: The exist_ok parameter.

Changed in version 3.4.1: Before Python 3.4.1, if exist_ok
was True and the directory existed, makedirs() would still
raise an error if mode did not match the mode of the existing
directory. Since this behavior was impossible to implement
safely, it was removed in Python 3.4.1. See bpo-21082.

Changed in version 3.6: Accepts a path-like object.

Changed in version 3.7: The mode argument no longer af-
fects the file permission bits of newly-created intermediate-
level directories.

os.mkfifo(path, mode=0o666, *, dir_fd=None)
Create a FIFO (a named pipe) named path with numeric mode
mode. The current umask value is first masked out from the
mode.

This function can also support paths relative to directory de-
scriptors.

FIFOs are pipes that can be accessed like regular files. FIFOs
exist until they are deleted (for example with os.unlink()).
Generally, FIFOs are used as rendezvous between “client” and
“server” type processes: the server opens the FIFO for read-
ing, and the client opens it for writing. Note that mkfifo()
doesn’t open the FIFO — it just creates the rendezvous point.

Availability: Unix.

New in version 3.3: The dir_fd argument.

Changed in version 3.6: Accepts a path-like object.

https://bugs.python.org/issue21082
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-path-like-object

os.mknod(path, mode=0o600, device=0, *, dir_fd=None)
Create a filesystem node (file, device special file or named
pipe) named path. mode specifies both the permissions to
use and the type of node to be created, being combined (bit-
wise OR) with one of stat.S_IFREG, stat.S_IFCHR,
stat.S_IFBLK, and stat.S_IFIFO (those constants are avail-
able in stat). For stat.S_IFCHR and stat.S_IFBLK, device
defines the newly created device special file (probably using
os.makedev()), otherwise it is ignored.

This function can also support paths relative to directory de-
scriptors.

Availability: Unix.

New in version 3.3: The dir_fd argument.

Changed in version 3.6: Accepts a path-like object.

os.major(device)
Extract the device major number from a raw device number
(usually the st_dev or st_rdev field from stat).

os.minor(device)
Extract the device minor number from a raw device number
(usually the st_dev or st_rdev field from stat).

os.makedev(major, minor)
Compose a raw device number from the major and minor de-
vice numbers.

os.pathconf(path, name)
Return system configuration information relevant to a named
file. name specifies the configuration value to retrieve; it may
be a string which is the name of a defined system value;
these names are specified in a number of standards (POSIX.1,
Unix 95, Unix 98, and others). Some platforms define addi-
tional names as well. The names known to the host operating

https://docs.python.org/3/library/stat.html#module-stat
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-path-like-object

system are given in the pathconf_names dictionary. For con-
figuration variables not included in that mapping, passing an
integer for name is also accepted.

If name is a string and is not known, ValueError is raised. If
a specific value for name is not supported by the host sys-
tem, even if it is included in pathconf_names, an OSError is
raised with errno.EINVAL for the error number.

This function can support specifying a file descriptor.

Availability: Unix.

Changed in version 3.6: Accepts a path-like object.

os.pathconf_names
Dictionary mapping names accepted by pathconf() and
fpathconf() to the integer values defined for those names
by the host operating system. This can be used to determine
the set of names known to the system.

Availability: Unix.

os.readlink(path, *, dir_fd=None)
Return a string representing the path to which the symbolic
link points. The result may be either an absolute or relative
pathname; if it is relative, it may be converted to an absolute
pathname using os.path.join(os.path.dirname(path),

result).

If the path is a string object (directly or indirectly through a
PathLike interface), the result will also be a string object,
and the call may raise a UnicodeDecodeError. If the path is a
bytes object (direct or indirectly), the result will be a bytes
object.

This function can also support paths relative to directory de-
scriptors.

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/errno.html#errno.EINVAL
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/intro.html#availability

When trying to resolve a path that may contain links, use
realpath() to properly handle recursion and platform
differences.

Availability: Unix, Windows.

Changed in version 3.2: Added support for Windows 6.0
(Vista) symbolic links.

New in version 3.3: The dir_fd argument.

Changed in version 3.6: Accepts a path-like object on Unix.

Changed in version 3.8: Accepts a path-like object and a
bytes object on Windows.

Changed in version 3.8: Added support for directory junc-
tions, and changed to return the substitution path (which
typically includes \\?\ prefix) rather than the optional “print
name” field that was previously returned.

os.remove(path, *, dir_fd=None)
Remove (delete) the file path. If path is a directory, an
IsADirectoryError is raised. Use rmdir() to remove
directories.

This function can support paths relative to directory descrip-
tors.

On Windows, attempting to remove a file that is in use causes
an exception to be raised; on Unix, the directory entry is re-
moved but the storage allocated to the file is not made avail-
able until the original file is no longer in use.

This function is semantically identical to unlink().

New in version 3.3: The dir_fd argument.

Changed in version 3.6: Accepts a path-like object.

https://docs.python.org/3/library/os.path.html#os.path.realpath
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/exceptions.html#IsADirectoryError
https://docs.python.org/3/glossary.html#term-path-like-object

os.removedirs(name)
Remove directories recursively. Works like rmdir() except
that, if the leaf directory is successfully removed,
removedirs() tries to successively remove every parent di-
rectory mentioned in path until an error is raised (which is
ignored, because it generally means that a parent directory is
not empty). For example, os.removedirs('foo/bar/baz')

will first remove the directory 'foo/bar/baz', and then re-
move 'foo/bar' and 'foo' if they are empty. Raises OSError
if the leaf directory could not be successfully removed.

Changed in version 3.6: Accepts a path-like object.

os.rename(src, dst, *, src_dir_fd=None, dst_dir_fd=None)
Rename the file or directory src to dst. If dst exists, the oper-
ation will fail with an OSError subclass in a number of cases:

On Windows, if dst exists a FileExistsError is always
raised.

On Unix, if src is a file and dst is a directory or vice-versa, an
IsADirectoryError or a NotADirectoryError will be raised
respectively. If both are directories and dst is empty, dst will
be silently replaced. If dst is a non-empty directory, an
OSError is raised. If both are files, dst it will be replaced
silently if the user has permission. The operation may fail on
some Unix flavors if src and dst are on different filesystems.
If successful, the renaming will be an atomic operation (this
is a POSIX requirement).

This function can support specifying src_dir_fd and/or
dst_dir_fd to supply paths relative to directory descriptors.

If you want cross-platform overwriting of the destination, use
replace().

New in version 3.3: The src_dir_fd and dst_dir_fd arguments.

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#FileExistsError
https://docs.python.org/3/library/exceptions.html#IsADirectoryError
https://docs.python.org/3/library/exceptions.html#NotADirectoryError
https://docs.python.org/3/library/exceptions.html#OSError

Changed in version 3.6: Accepts a path-like object for src
and dst.

os.renames(old, new)
Recursive directory or file renaming function. Works like
rename(), except creation of any intermediate directories
needed to make the new pathname good is attempted first.
After the rename, directories corresponding to rightmost
path segments of the old name will be pruned away using
removedirs().

Note: This function can fail with the new directory struc-
ture made if you lack permissions needed to remove the
leaf directory or file.

Changed in version 3.6: Accepts a path-like object for old
and new.

os.replace(src, dst, *, src_dir_fd=None, dst_dir_fd=None)
Rename the file or directory src to dst. If dst is a directory,
OSError will be raised. If dst exists and is a file, it will be re-
placed silently if the user has permission. The operation may
fail if src and dst are on different filesystems. If successful,
the renaming will be an atomic operation (this is a POSIX
requirement).

This function can support specifying src_dir_fd and/or
dst_dir_fd to supply paths relative to directory descriptors.

New in version 3.3.

Changed in version 3.6: Accepts a path-like object for src
and dst.

os.rmdir(path, *, dir_fd=None)
Remove (delete) the directory path. If the directory does not
exist or is not empty, an FileNotFoundError or an OSError
is raised respectively. In order to remove whole directory

https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/exceptions.html#OSError

trees, shutil.rmtree() can be used.

This function can support paths relative to directory descrip-
tors.

New in version 3.3: The dir_fd parameter.

Changed in version 3.6: Accepts a path-like object.

os.scandir(path='.')
Return an iterator of os.DirEntry objects corresponding to
the entries in the directory given by path. The entries are
yielded in arbitrary order, and the special entries '.' and
'..' are not included.

Using scandir() instead of listdir() can significantly in-
crease the performance of code that also needs file type or
file attribute information, because os.DirEntry objects ex-
pose this information if the operating system provides it
when scanning a directory. All os.DirEntry methods may
perform a system call, but is_dir() and is_file() usually
only require a system call for symbolic links;
os.DirEntry.stat() always requires a system call on Unix
but only requires one for symbolic links on Windows.

path may be a path-like object. If path is of type bytes (di-
rectly or indirectly through the PathLike interface), the type
of the name and path attributes of each os.DirEntry will be
bytes; in all other circumstances, they will be of type str.

This function can also support specifying a file descriptor;
the file descriptor must refer to a directory.

Raises an auditing event os.scandir with argument path.

The scandir() iterator supports the context manager proto-
col and has the following method:

https://docs.python.org/3/library/shutil.html#shutil.rmtree
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/glossary.html#term-context-manager

scandir.close()
Close the iterator and free acquired resources.

This is called automatically when the iterator is exhausted
or garbage collected, or when an error happens during
iterating. However it is advisable to call it explicitly or use
the with statement.

New in version 3.6.

The following example shows a simple use of scandir() to
display all the files (excluding directories) in the given path
that don’t start with '.'. The entry.is_file() call will gen-
erally not make an additional system call:

Note: On Unix-based systems, scandir() uses the sys-
tem’s opendir() and readdir() functions. On Windows, it
uses the Win32 FindFirstFileW and FindNextFileW functions.

New in version 3.5.

New in version 3.6: Added support for the context manager
protocol and the close() method. If a scandir() iterator is
neither exhausted nor explicitly closed a ResourceWarning
will be emitted in its destructor.

The function accepts a path-like object.

Changed in version 3.7: Added support for file descriptors on
Unix.

class os.DirEntry
Object yielded by scandir() to expose the file path and oth-

with os.scandir(path) as it:
 for entry in it:
 if not entry.name.startswith('.') and entry.is_file
 print(entry.name)

https://docs.python.org/3/reference/compound_stmts.html#with
http://pubs.opengroup.org/onlinepubs/009695399/functions/opendir.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/readdir_r.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa364418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa364428(v=vs.85).aspx
https://docs.python.org/3/glossary.html#term-context-manager
https://docs.python.org/3/library/exceptions.html#ResourceWarning
https://docs.python.org/3/glossary.html#term-path-like-object

er file attributes of a directory entry.

scandir() will provide as much of this information as possi-
ble without making additional system calls. When a stat() or
lstat() system call is made, the os.DirEntry object will
cache the result.

os.DirEntry instances are not intended to be stored in long-
lived data structures; if you know the file metadata has
changed or if a long time has elapsed since calling
scandir(), call os.stat(entry.path) to fetch up-to-date
information.

Because the os.DirEntry methods can make operating sys-
tem calls, they may also raise OSError. If you need very fine-
grained control over errors, you can catch OSError when
calling one of the os.DirEntry methods and handle as
appropriate.

To be directly usable as a path-like object, os.DirEntry im-
plements the PathLike interface.

Attributes and methods on a os.DirEntry instance are as
follows:

name
The entry’s base filename, relative to the scandir() path
argument.

The name attribute will be bytes if the scandir() path
argument is of type bytes and str otherwise. Use
fsdecode() to decode byte filenames.

path
The entry’s full path name: equivalent to
os.path.join(scandir_path, entry.name) where scan-
dir_path is the scandir() path argument. The path is

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/glossary.html#term-path-like-object

only absolute if the scandir() path argument was abso-
lute. If the scandir() path argument was a file
descriptor, the path attribute is the same as the name
attribute.

The path attribute will be bytes if the scandir() path
argument is of type bytes and str otherwise. Use
fsdecode() to decode byte filenames.

inode()
Return the inode number of the entry.

The result is cached on the os.DirEntry object. Use
os.stat(entry.path, follow_symlinks=False).st_ino

to fetch up-to-date information.

On the first, uncached call, a system call is required on
Windows but not on Unix.

is_dir(*, follow_symlinks=True)
Return True if this entry is a directory or a symbolic link
pointing to a directory; return False if the entry is or
points to any other kind of file, or if it doesn’t exist
anymore.

If follow_symlinks is False, return True only if this entry
is a directory (without following symlinks); return False if
the entry is any other kind of file or if it doesn’t exist
anymore.

The result is cached on the os.DirEntry object, with a
separate cache for follow_symlinks True and False. Call
os.stat() along with stat.S_ISDIR() to fetch up-to-
date information.

On the first, uncached call, no system call is required in
most cases. Specifically, for non-symlinks, neither Win-
dows or Unix require a system call, except on certain

https://docs.python.org/3/library/os.path.html#module-os.path
https://docs.python.org/3/library/os.path.html#module-os.path
https://docs.python.org/3/library/stat.html#stat.S_ISDIR

Unix file systems, such as network file systems, that re-
turn dirent.d_type == DT_UNKNOWN. If the entry is a
symlink, a system call will be required to follow the sym-
link unless follow_symlinks is False.

This method can raise OSError, such as
PermissionError, but FileNotFoundError is caught and
not raised.

is_file(*, follow_symlinks=True)
Return True if this entry is a file or a symbolic link point-
ing to a file; return False if the entry is or points to a di-
rectory or other non-file entry, or if it doesn’t exist
anymore.

If follow_symlinks is False, return True only if this entry
is a file (without following symlinks); return False if the
entry is a directory or other non-file entry, or if it doesn’t
exist anymore.

The result is cached on the os.DirEntry object. Caching,
system calls made, and exceptions raised are as per
is_dir().

is_symlink()
Return True if this entry is a symbolic link (even if bro-
ken); return False if the entry points to a directory or any
kind of file, or if it doesn’t exist anymore.

The result is cached on the os.DirEntry object. Call
os.path.islink() to fetch up-to-date information.

On the first, uncached call, no system call is required in
most cases. Specifically, neither Windows or Unix require
a system call, except on certain Unix file systems, such as
network file systems, that return dirent.d_type ==

DT_UNKNOWN.

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#PermissionError
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/os.path.html#os.path.islink

This method can raise OSError, such as
PermissionError, but FileNotFoundError is caught and
not raised.

stat(*, follow_symlinks=True)
Return a stat_result object for this entry. This method
follows symbolic links by default; to stat a symbolic link
add the follow_symlinks=False argument.

On Unix, this method always requires a system call. On
Windows, it only requires a system call if follow_symlinks
is True and the entry is a reparse point (for example, a
symbolic link or directory junction).

On Windows, the st_ino, st_dev and st_nlink attributes
of the stat_result are always set to zero. Call
os.stat() to get these attributes.

The result is cached on the os.DirEntry object, with a
separate cache for follow_symlinks True and False. Call
os.stat() to fetch up-to-date information.

Note that there is a nice correspondence between several at-
tributes and methods of os.DirEntry and of pathlib.Path.
In particular, the name attribute has the same meaning, as do
the is_dir(), is_file(), is_symlink() and stat()

methods.

New in version 3.5.

Changed in version 3.6: Added support for the PathLike in-
terface. Added support for bytes paths on Windows.

os.stat(path, *, dir_fd=None, follow_symlinks=True)
Get the status of a file or a file descriptor. Perform the equiv-
alent of a stat() system call on the given path. path may be
specified as either a string or bytes – directly or indirectly

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#PermissionError
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#bytes

through the PathLike interface – or as an open file descrip-
tor. Return a stat_result object.

This function normally follows symlinks; to stat a symlink add
the argument follow_symlinks=False, or use lstat().

This function can support specifying a file descriptor and not
following symlinks.

On Windows, passing follow_symlinks=False will disable
following all name-surrogate reparse points, which includes
symlinks and directory junctions. Other types of reparse
points that do not resemble links or that the operating sys-
tem is unable to follow will be opened directly. When follow-
ing a chain of multiple links, this may result in the original
link being returned instead of the non-link that prevented
full traversal. To obtain stat results for the final path in this
case, use the os.path.realpath() function to resolve the
path name as far as possible and call lstat() on the result.
This does not apply to dangling symlinks or junction points,
which will raise the usual exceptions.

Example:

See also: fstat() and lstat() functions.

New in version 3.3: Added the dir_fd and follow_symlinks ar-
guments, specifying a file descriptor instead of a path.

>>> import os
>>> statinfo = os.stat('somefile.txt')
>>> statinfo
os.stat_result(st_mode=33188, st_ino=7876932, st_dev=234881026,
st_nlink=1, st_uid=501, st_gid=501, st_size=264, st_atime=1297230295,
st_mtime=1297230027, st_ctime=1297230027)
>>> statinfo.st_size
264

>>>

https://docs.python.org/3/library/os.path.html#os.path.realpath

Changed in version 3.6: Accepts a path-like object.

Changed in version 3.8: On Windows, all reparse points that
can be resolved by the operating system are now followed,
and passing follow_symlinks=False disables following all
name surrogate reparse points. If the operating system
reaches a reparse point that it is not able to follow, stat now
returns the information for the original path as if
follow_symlinks=False had been specified instead of rais-
ing an error.

class os.stat_result
Object whose attributes correspond roughly to the members
of the stat structure. It is used for the result of os.stat(),
os.fstat() and os.lstat().

Attributes:

st_mode
File mode: file type and file mode bits (permissions).

st_ino
Platform dependent, but if non-zero, uniquely identifies
the file for a given value of st_dev. Typically:

the inode number on Unix,
the file index on Windows

st_dev
Identifier of the device on which this file resides.

st_nlink
Number of hard links.

st_uid
User identifier of the file owner.

st_gid
Group identifier of the file owner.

https://docs.python.org/3/glossary.html#term-path-like-object
https://msdn.microsoft.com/en-us/library/aa363788

st_size
Size of the file in bytes, if it is a regular file or a symbolic
link. The size of a symbolic link is the length of the path-
name it contains, without a terminating null byte.

Timestamps:

st_atime
Time of most recent access expressed in seconds.

st_mtime
Time of most recent content modification expressed in
seconds.

st_ctime
Platform dependent:

the time of most recent metadata change on Unix,
the time of creation on Windows, expressed in
seconds.

st_atime_ns
Time of most recent access expressed in nanoseconds as
an integer.

st_mtime_ns
Time of most recent content modification expressed in
nanoseconds as an integer.

st_ctime_ns
Platform dependent:

the time of most recent metadata change on Unix,
the time of creation on Windows, expressed in
nanoseconds as an integer.

Note: The exact meaning and resolution of the st_atime,
st_mtime, and st_ctime attributes depend on the operat-
ing system and the file system. For example, on Windows

systems using the FAT or FAT32 file systems, st_mtime has
2-second resolution, and st_atime has only 1-day resolu-
tion. See your operating system documentation for details.

Similarly, although st_atime_ns, st_mtime_ns, and
st_ctime_ns are always expressed in nanoseconds, many
systems do not provide nanosecond precision. On systems
that do provide nanosecond precision, the floating-point
object used to store st_atime, st_mtime, and st_ctime
cannot preserve all of it, and as such will be slightly inex-
act. If you need the exact timestamps you should always
use st_atime_ns, st_mtime_ns, and st_ctime_ns.

On some Unix systems (such as Linux), the following attrib-
utes may also be available:

st_blocks
Number of 512-byte blocks allocated for file. This may be
smaller than st_size/512 when the file has holes.

st_blksize
“Preferred” blocksize for efficient file system I/O. Writing
to a file in smaller chunks may cause an inefficient read-
modify-rewrite.

st_rdev
Type of device if an inode device.

st_flags
User defined flags for file.

On other Unix systems (such as FreeBSD), the following at-
tributes may be available (but may be only filled out if root
tries to use them):

st_gen
File generation number.

st_birthtime
Time of file creation.

On Solaris and derivatives, the following attributes may also
be available:

st_fstype
String that uniquely identifies the type of the filesystem
that contains the file.

On Mac OS systems, the following attributes may also be
available:

st_rsize
Real size of the file.

st_creator
Creator of the file.

st_type
File type.

On Windows systems, the following attributes are also
available:

st_file_attributes
Windows file attributes: dwFileAttributes member of
the BY_HANDLE_FILE_INFORMATION structure returned by
GetFileInformationByHandle(). See the
FILE_ATTRIBUTE_* constants in the stat module.

st_reparse_tag
When st_file_attributes has the
FILE_ATTRIBUTE_REPARSE_POINT set, this field contains
the tag identifying the type of reparse point. See the
IO_REPARSE_TAG_* constants in the stat module.

The standard module stat defines functions and constants

https://docs.python.org/3/library/stat.html#module-stat
https://docs.python.org/3/library/stat.html#module-stat
https://docs.python.org/3/library/stat.html#module-stat

that are useful for extracting information from a stat struc-
ture. (On Windows, some items are filled with dummy values.)

For backward compatibility, a stat_result instance is also
accessible as a tuple of at least 10 integers giving the most
important (and portable) members of the stat structure, in
the order st_mode, st_ino, st_dev, st_nlink, st_uid,
st_gid, st_size, st_atime, st_mtime, st_ctime. More items
may be added at the end by some implementations. For com-
patibility with older Python versions, accessing stat_result
as a tuple always returns integers.

New in version 3.3: Added the st_atime_ns, st_mtime_ns,
and st_ctime_ns members.

New in version 3.5: Added the st_file_attributes member
on Windows.

Changed in version 3.5: Windows now returns the file index
as st_ino when available.

New in version 3.7: Added the st_fstype member to
Solaris/derivatives.

New in version 3.8: Added the st_reparse_tag member on
Windows.

Changed in version 3.8: On Windows, the st_mode member
now identifies special files as S_IFCHR, S_IFIFO or S_IFBLK
as appropriate.

os.statvfs(path)
Perform a statvfs() system call on the given path. The re-
turn value is an object whose attributes describe the filesys-
tem on the given path, and correspond to the members of
the statvfs structure, namely: f_bsize, f_frsize,
f_blocks, f_bfree, f_bavail, f_files, f_ffree, f_favail,

f_flag, f_namemax, f_fsid.

Two module-level constants are defined for the f_flag at-
tribute’s bit-flags: if ST_RDONLY is set, the filesystem is
mounted read-only, and if ST_NOSUID is set, the semantics of
setuid/setgid bits are disabled or not supported.

Additional module-level constants are defined for GNU/glibc
based systems. These are ST_NODEV (disallow access to de-
vice special files), ST_NOEXEC (disallow program execution),
ST_SYNCHRONOUS (writes are synced at once), ST_MANDLOCK
(allow mandatory locks on an FS), ST_WRITE (write on file/di-
rectory/symlink), ST_APPEND (append-only file),
ST_IMMUTABLE (immutable file), ST_NOATIME (do not update
access times), ST_NODIRATIME (do not update directory ac-
cess times), ST_RELATIME (update atime relative to
mtime/ctime).

This function can support specifying a file descriptor.

Availability: Unix.

Changed in version 3.2: The ST_RDONLY and ST_NOSUID con-
stants were added.

New in version 3.3: Added support for specifying path as an
open file descriptor.

Changed in version 3.4: The ST_NODEV, ST_NOEXEC,
ST_SYNCHRONOUS, ST_MANDLOCK, ST_WRITE, ST_APPEND,
ST_IMMUTABLE, ST_NOATIME, ST_NODIRATIME, and
ST_RELATIME constants were added.

Changed in version 3.6: Accepts a path-like object.

New in version 3.7: Added f_fsid.

os.supports_dir_fd

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-path-like-object

A set object indicating which functions in the os module ac-
cept an open file descriptor for their dir_fd parameter. Differ-
ent platforms provide different features, and the underlying
functionality Python uses to implement the dir_fd parameter
is not available on all platforms Python supports. For consis-
tency’s sake, functions that may support dir_fd always allow
specifying the parameter, but will throw an exception if the
functionality is used when it’s not locally available. (Specify-
ing None for dir_fd is always supported on all platforms.)

To check whether a particular function accepts an open file
descriptor for its dir_fd parameter, use the in operator on
supports_dir_fd. As an example, this expression evaluates
to True if os.stat() accepts open file descriptors for dir_fd
on the local platform:

Currently dir_fd parameters only work on Unix platforms;
none of them work on Windows.

New in version 3.3.

os.supports_effective_ids
A set object indicating whether os.access() permits speci-
fying True for its effective_ids parameter on the local plat-
form. (Specifying False for effective_ids is always supported
on all platforms.) If the local platform supports it, the collec-
tion will contain os.access(); otherwise it will be empty.

This expression evaluates to True if os.access() supports
effective_ids=True on the local platform:

Currently effective_ids is only supported on Unix platforms; it
does not work on Windows.

os.stat in os.supports_dir_fd

os.access in os.supports_effective_ids

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set

New in version 3.3.

os.supports_fd
A set object indicating which functions in the os module
permit specifying their path parameter as an open file de-
scriptor on the local platform. Different platforms provide
different features, and the underlying functionality Python
uses to accept open file descriptors as path arguments is not
available on all platforms Python supports.

To determine whether a particular function permits specify-
ing an open file descriptor for its path parameter, use the in
operator on supports_fd. As an example, this expression
evaluates to True if os.chdir() accepts open file descriptors
for path on your local platform:

New in version 3.3.

os.supports_follow_symlinks
A set object indicating which functions in the os module ac-
cept False for their follow_symlinks parameter on the local
platform. Different platforms provide different features, and
the underlying functionality Python uses to implement fol-
low_symlinks is not available on all platforms Python sup-
ports. For consistency’s sake, functions that may support fol-
low_symlinks always allow specifying the parameter, but will
throw an exception if the functionality is used when it’s not
locally available. (Specifying True for follow_symlinks is al-
ways supported on all platforms.)

To check whether a particular function accepts False for its
follow_symlinks parameter, use the in operator on
supports_follow_symlinks. As an example, this expression
evaluates to True if you may specify follow_symlinks=False
when calling os.stat() on the local platform:

os.chdir in os.supports_fd

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set

New in version 3.3.

os.symlink(src, dst, target_is_directory=False, *,
dir_fd=None)

Create a symbolic link pointing to src named dst.

On Windows, a symlink represents either a file or a directory,
and does not morph to the target dynamically. If the target is
present, the type of the symlink will be created to match.
Otherwise, the symlink will be created as a directory if tar-
get_is_directory is True or a file symlink (the default) other-
wise. On non-Windows platforms, target_is_directory is
ignored.

This function can support paths relative to directory descrip-
tors.

Note: On newer versions of Windows 10, unprivileged ac-
counts can create symlinks if Developer Mode is enabled.
When Developer Mode is not available/enabled, the SeCre-
ateSymbolicLinkPrivilege privilege is required, or the
process must be run as an administrator.

OSError is raised when the function is called by an unprivi-
leged user.

Availability: Unix, Windows.

Changed in version 3.2: Added support for Windows 6.0
(Vista) symbolic links.

New in version 3.3: Added the dir_fd argument, and now al-
low target_is_directory on non-Windows platforms.

Changed in version 3.6: Accepts a path-like object for src
and dst.

os.stat in os.supports_follow_symlinks

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-path-like-object

Changed in version 3.8: Added support for unelevated sym-
links on Windows with Developer Mode.

os.sync()
Force write of everything to disk.

Availability: Unix.

New in version 3.3.

os.truncate(path, length)
Truncate the file corresponding to path, so that it is at most
length bytes in size.

This function can support specifying a file descriptor.

Raises an auditing event os.truncate with arguments path,
length.

Availability: Unix, Windows.

New in version 3.3.

Changed in version 3.5: Added support for Windows

Changed in version 3.6: Accepts a path-like object.

os.unlink(path, *, dir_fd=None)
Remove (delete) the file path. This function is semantically
identical to remove(); the unlink name is its traditional Unix
name. Please see the documentation for remove() for further
information.

New in version 3.3: The dir_fd parameter.

Changed in version 3.6: Accepts a path-like object.

os.utime(path, times=None, *, [ns,]dir_fd=None,
follow_symlinks=True)

Set the access and modified times of the file specified by

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-path-like-object

path.

utime() takes two optional parameters, times and ns. These
specify the times set on path and are used as follows:

If ns is specified, it must be a 2-tuple of the form
(atime_ns, mtime_ns) where each member is an int
expressing nanoseconds.
If times is not None, it must be a 2-tuple of the form
(atime, mtime) where each member is an int or float
expressing seconds.
If times is None and ns is unspecified, this is equivalent
to specifying ns=(atime_ns, mtime_ns) where both
times are the current time.

It is an error to specify tuples for both times and ns.

Note that the exact times you set here may not be returned
by a subsequent stat() call, depending on the resolution
with which your operating system records access and modifi-
cation times; see stat(). The best way to preserve exact
times is to use the st_atime_ns and st_mtime_ns fields from
the os.stat() result object with the ns parameter to utime.

This function can support specifying a file descriptor, paths
relative to directory descriptors and not following symlinks.

New in version 3.3: Added support for specifying path as an
open file descriptor, and the dir_fd, follow_symlinks, and ns
parameters.

Changed in version 3.6: Accepts a path-like object.

os.walk(top, topdown=True, onerror=None,
followlinks=False)

Generate the file names in a directory tree by walking the tree
either top-down or bottom-up. For each directory in the tree
rooted at directory top (including top itself), it yields a 3-tu-

https://docs.python.org/3/glossary.html#term-path-like-object

ple (dirpath, dirnames, filenames).

dirpath is a string, the path to the directory. dirnames is a list
of the names of the subdirectories in dirpath (excluding '.'
and '..'). filenames is a list of the names of the non-direc-
tory files in dirpath. Note that the names in the lists contain
no path components. To get a full path (which begins with
top) to a file or directory in dirpath, do
os.path.join(dirpath, name).

If optional argument topdown is True or not specified, the
triple for a directory is generated before the triples for any of
its subdirectories (directories are generated top-down). If
topdown is False, the triple for a directory is generated after
the triples for all of its subdirectories (directories are gener-
ated bottom-up). No matter the value of topdown, the list of
subdirectories is retrieved before the tuples for the directory
and its subdirectories are generated.

When topdown is True, the caller can modify the dirnames
list in-place (perhaps using del or slice assignment), and
walk() will only recurse into the subdirectories whose names
remain in dirnames; this can be used to prune the search,
impose a specific order of visiting, or even to inform walk()
about directories the caller creates or renames before it re-
sumes walk() again. Modifying dirnames when topdown is
False has no effect on the behavior of the walk, because in
bottom-up mode the directories in dirnames are generated
before dirpath itself is generated.

By default, errors from the scandir() call are ignored. If op-
tional argument onerror is specified, it should be a function;
it will be called with one argument, an OSError instance. It
can report the error to continue with the walk, or raise the
exception to abort the walk. Note that the filename is avail-
able as the filename attribute of the exception object.

https://docs.python.org/3/reference/simple_stmts.html#del
https://docs.python.org/3/library/exceptions.html#OSError

By default, walk() will not walk down into symbolic links that
resolve to directories. Set followlinks to True to visit directo-
ries pointed to by symlinks, on systems that support them.

Note: Be aware that setting followlinks to True can lead to
infinite recursion if a link points to a parent directory of it-
self. walk() does not keep track of the directories it visited
already.

Note: If you pass a relative pathname, don’t change the
current working directory between resumptions of walk().
walk() never changes the current directory, and assumes
that its caller doesn’t either.

This example displays the number of bytes taken by non-di-
rectory files in each directory under the starting directory,
except that it doesn’t look under any CVS subdirectory:

In the next example (simple implementation of
shutil.rmtree()), walking the tree bottom-up is essential,
rmdir() doesn’t allow deleting a directory before the direc-
tory is empty:

import os
from os.path import join, getsize
for root, dirs, files in os.walk('python/Lib/email'):
 print(root, "consumes", end=" ")
 print(sum(getsize(join(root, name)) for name in files
 print("bytes in", len(files), "non-directory files"
 if 'CVS' in dirs:
 dirs.remove('CVS') # don't visit CVS directories

Delete everything reachable from the directory named in "top",
assuming there are no symbolic links.
CAUTION: This is dangerous! For example, if top == '/', it
could delete all your disk files.
import os
for root, dirs, files in os.walk(top, topdown=False):

https://docs.python.org/3/library/shutil.html#shutil.rmtree

Changed in version 3.5: This function now calls
os.scandir() instead of os.listdir(), making it faster by
reducing the number of calls to os.stat().

Changed in version 3.6: Accepts a path-like object.

os.fwalk(top='.', topdown=True, onerror=None, *,
follow_symlinks=False, dir_fd=None)

This behaves exactly like walk(), except that it yields a 4-
tuple (dirpath, dirnames, filenames, dirfd), and it sup-
ports dir_fd.

dirpath, dirnames and filenames are identical to walk() out-
put, and dirfd is a file descriptor referring to the directory
dirpath.

This function always supports paths relative to directory de-
scriptors and not following symlinks. Note however that, un-
like other functions, the fwalk() default value for fol-
low_symlinks is False.

Note: Since fwalk() yields file descriptors, those are only
valid until the next iteration step, so you should duplicate
them (e.g. with dup()) if you want to keep them longer.

This example displays the number of bytes taken by non-di-
rectory files in each directory under the starting directory,
except that it doesn’t look under any CVS subdirectory:

 for name in files:
 os.remove(os.path.join(root, name))
 for name in dirs:
 os.rmdir(os.path.join(root, name))

import os
for root, dirs, files, rootfd in os.fwalk('python/Lib/email'
 print(root, "consumes", end="")
 print(sum([os.stat(name, dir_fd=rootfd).st_size for

https://docs.python.org/3/glossary.html#term-path-like-object

In the next example, walking the tree bottom-up is essential:
rmdir() doesn’t allow deleting a directory before the direc-
tory is empty:

Availability: Unix.

New in version 3.3.

Changed in version 3.6: Accepts a path-like object.

Changed in version 3.7: Added support for bytes paths.

os.memfd_create(name[, flags=os.MFD_CLOEXEC])
Create an anonymous file and return a file descriptor that
refers to it. flags must be one of the os.MFD_* constants
available on the system (or a bitwise ORed combination of
them). By default, the new file descriptor is non-inheritable.

The name supplied in name is used as a filename and will be
displayed as the target of the corresponding symbolic link in
the directory /proc/self/fd/. The displayed name is always
prefixed with memfd: and serves only for debugging purpos-
es. Names do not affect the behavior of the file descriptor,

 end="")
 print("bytes in", len(files), "non-directory files"
 if 'CVS' in dirs:
 dirs.remove('CVS') # don't visit CVS directories

Delete everything reachable from the directory named in "top",
assuming there are no symbolic links.
CAUTION: This is dangerous! For example, if top == '/', it
could delete all your disk files.
import os
for root, dirs, files, rootfd in os.fwalk(top, topdown=
 for name in files:
 os.unlink(name, dir_fd=rootfd)
 for name in dirs:
 os.rmdir(name, dir_fd=rootfd)

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/stdtypes.html#bytes

and as such multiple files can have the same name without
any side effects.

Availability: Linux 3.17 or newer with glibc 2.27 or newer.

New in version 3.8.

os.MFD_CLOEXEC
os.MFD_ALLOW_SEALING
os.MFD_HUGETLB
os.MFD_HUGE_SHIFT
os.MFD_HUGE_MASK
os.MFD_HUGE_64KB
os.MFD_HUGE_512KB
os.MFD_HUGE_1MB
os.MFD_HUGE_2MB
os.MFD_HUGE_8MB
os.MFD_HUGE_16MB
os.MFD_HUGE_32MB
os.MFD_HUGE_256MB
os.MFD_HUGE_512MB
os.MFD_HUGE_1GB
os.MFD_HUGE_2GB
os.MFD_HUGE_16GB

These flags can be passed to memfd_create().

Availability: Linux 3.17 or newer with glibc 2.27 or newer.
The MFD_HUGE* flags are only available since Linux 4.14.

New in version 3.8.

Linux extended attributes

New in version 3.3.

These functions are all available on Linux only.

os.getxattr(path, attribute, *, follow_symlinks=True)

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

Return the value of the extended filesystem attribute at-
tribute for path. attribute can be bytes or str (directly or indi-
rectly through the PathLike interface). If it is str, it is encod-
ed with the filesystem encoding.

This function can support specifying a file descriptor and not
following symlinks.

Changed in version 3.6: Accepts a path-like object for path
and attribute.

os.listxattr(path=None, *, follow_symlinks=True)
Return a list of the extended filesystem attributes on path.
The attributes in the list are represented as strings decoded
with the filesystem encoding. If path is None, listxattr()
will examine the current directory.

This function can support specifying a file descriptor and not
following symlinks.

Changed in version 3.6: Accepts a path-like object.

os.removexattr(path, attribute, *, follow_symlinks=True)
Removes the extended filesystem attribute attribute from
path. attribute should be bytes or str (directly or indirectly
through the PathLike interface). If it is a string, it is encoded
with the filesystem encoding.

This function can support specifying a file descriptor and not
following symlinks.

Changed in version 3.6: Accepts a path-like object for path
and attribute.

os.setxattr(path, attribute, value, flags=0, *,
follow_symlinks=True)

Set the extended filesystem attribute attribute on path to val-
ue. attribute must be a bytes or str with no embedded NULs
(directly or indirectly through the PathLike interface). If it is

https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/glossary.html#term-path-like-object

a str, it is encoded with the filesystem encoding. flags may be
XATTR_REPLACE or XATTR_CREATE. If XATTR_REPLACE is given
and the attribute does not exist, EEXISTS will be raised. If
XATTR_CREATE is given and the attribute already exists, the
attribute will not be created and ENODATA will be raised.

This function can support specifying a file descriptor and not
following symlinks.

Note: A bug in Linux kernel versions less than 2.6.39
caused the flags argument to be ignored on some filesys-
tems.

Changed in version 3.6: Accepts a path-like object for path
and attribute.

os.XATTR_SIZE_MAX
The maximum size the value of an extended attribute can be.
Currently, this is 64 KiB on Linux.

os.XATTR_CREATE
This is a possible value for the flags argument in setxattr().
It indicates the operation must create an attribute.

os.XATTR_REPLACE
This is a possible value for the flags argument in setxattr().
It indicates the operation must replace an existing attribute.

Process Management
These functions may be used to create and manage processes.

The various exec* functions take a list of arguments for the new
program loaded into the process. In each case, the first of these
arguments is passed to the new program as its own name rather
than as an argument a user may have typed on a command line.
For the C programmer, this is the argv[0] passed to a program’s

https://docs.python.org/3/glossary.html#term-path-like-object

main(). For example, os.execv('/bin/echo', ['foo', 'bar'])
will only print bar on standard output; foo will seem to be
ignored.

os.abort()
Generate a SIGABRT signal to the current process. On Unix,
the default behavior is to produce a core dump; on Windows,
the process immediately returns an exit code of 3. Be aware
that calling this function will not call the Python signal han-
dler registered for SIGABRT with signal.signal().

os.add_dll_directory(path)
Add a path to the DLL search path.

This search path is used when resolving dependencies for
imported extension modules (the module itself is resolved
through sys.path), and also by ctypes.

Remove the directory by calling close() on the returned ob-
ject or using it in a with statement.

See the Microsoft documentation for more information about
how DLLs are loaded.

Availability: Windows.

New in version 3.8: Previous versions of CPython would re-
solve DLLs using the default behavior for the current process.
This led to inconsistencies, such as only sometimes searching
PATH or the current working directory, and OS functions such
as AddDllDirectory having no effect.

In 3.8, the two primary ways DLLs are loaded now explicitly
override the process-wide behavior to ensure consistency.
See the porting notes for information on updating libraries.

os.execl(path, arg0, arg1, ...)
os.execle(path, arg0, arg1, ..., env)

https://docs.python.org/3/library/signal.html#signal.signal
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/reference/compound_stmts.html#with
https://msdn.microsoft.com/44228cf2-6306-466c-8f16-f513cd3ba8b5
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/whatsnew/3.8.html#bpo-36085-whatsnew

os.execlp(file, arg0, arg1, ...)
os.execlpe(file, arg0, arg1, ..., env)
os.execv(path, args)
os.execve(path, args, env)
os.execvp(file, args)
os.execvpe(file, args, env)

These functions all execute a new program, replacing the
current process; they do not return. On Unix, the new exe-
cutable is loaded into the current process, and will have the
same process id as the caller. Errors will be reported as
OSError exceptions.

The current process is replaced immediately. Open file ob-
jects and descriptors are not flushed, so if there may be data
buffered on these open files, you should flush them using
sys.stdout.flush() or os.fsync() before calling an exec*
function.

The “l” and “v” variants of the exec* functions differ in how
command-line arguments are passed. The “l” variants are
perhaps the easiest to work with if the number of parameters
is fixed when the code is written; the individual parameters
simply become additional parameters to the execl*() func-
tions. The “v” variants are good when the number of parame-
ters is variable, with the arguments being passed in a list or
tuple as the args parameter. In either case, the arguments to
the child process should start with the name of the command
being run, but this is not enforced.

The variants which include a “p” near the end (execlp(),
execlpe(), execvp(), and execvpe()) will use the PATH envi-
ronment variable to locate the program file. When the envi-
ronment is being replaced (using one of the exec*e variants,
discussed in the next paragraph), the new environment is
used as the source of the PATH variable. The other variants,
execl(), execle(), execv(), and execve(), will not use the
PATH variable to locate the executable; path must contain an

https://docs.python.org/3/library/exceptions.html#OSError

appropriate absolute or relative path.

For execle(), execlpe(), execve(), and execvpe() (note
that these all end in “e”), the env parameter must be a map-
ping which is used to define the environment variables for
the new process (these are used instead of the current
process’ environment); the functions execl(), execlp(),
execv(), and execvp() all cause the new process to inherit
the environment of the current process.

For execve() on some platforms, path may also be specified
as an open file descriptor. This functionality may not be sup-
ported on your platform; you can check whether or not it is
available using os.supports_fd. If it is unavailable, using it
will raise a NotImplementedError.

Availability: Unix, Windows.

New in version 3.3: Added support for specifying path as an
open file descriptor for execve().

Changed in version 3.6: Accepts a path-like object.

os._exit(n)
Exit the process with status n, without calling cleanup han-
dlers, flushing stdio buffers, etc.

Note: The standard way to exit is sys.exit(n). _exit()
should normally only be used in the child process after a
fork().

The following exit codes are defined and can be used with
_exit(), although they are not required. These are typically used
for system programs written in Python, such as a mail server’s
external command delivery program.

Note: Some of these may not be available on all Unix plat-

https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/glossary.html#term-path-like-object

forms, since there is some variation. These constants are de-
fined where they are defined by the underlying platform.

os.EX_OK
Exit code that means no error occurred.

Availability: Unix.

os.EX_USAGE
Exit code that means the command was used incorrectly,
such as when the wrong number of arguments are given.

Availability: Unix.

os.EX_DATAERR
Exit code that means the input data was incorrect.

Availability: Unix.

os.EX_NOINPUT
Exit code that means an input file did not exist or was not
readable.

Availability: Unix.

os.EX_NOUSER
Exit code that means a specified user did not exist.

Availability: Unix.

os.EX_NOHOST
Exit code that means a specified host did not exist.

Availability: Unix.

os.EX_UNAVAILABLE
Exit code that means that a required service is unavailable.

Availability: Unix.

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

os.EX_SOFTWARE
Exit code that means an internal software error was detected.

Availability: Unix.

os.EX_OSERR
Exit code that means an operating system error was detected,
such as the inability to fork or create a pipe.

Availability: Unix.

os.EX_OSFILE
Exit code that means some system file did not exist, could
not be opened, or had some other kind of error.

Availability: Unix.

os.EX_CANTCREAT
Exit code that means a user specified output file could not be
created.

Availability: Unix.

os.EX_IOERR
Exit code that means that an error occurred while doing I/O
on some file.

Availability: Unix.

os.EX_TEMPFAIL
Exit code that means a temporary failure occurred. This indi-
cates something that may not really be an error, such as a
network connection that couldn’t be made during a retryable
operation.

Availability: Unix.

os.EX_PROTOCOL
Exit code that means that a protocol exchange was illegal,

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

invalid, or not understood.

Availability: Unix.

os.EX_NOPERM
Exit code that means that there were insufficient permissions
to perform the operation (but not intended for file system
problems).

Availability: Unix.

os.EX_CONFIG
Exit code that means that some kind of configuration error
occurred.

Availability: Unix.

os.EX_NOTFOUND
Exit code that means something like “an entry was not
found”.

Availability: Unix.

os.fork()
Fork a child process. Return 0 in the child and the child’s
process id in the parent. If an error occurs OSError is raised.

Note that some platforms including FreeBSD <= 6.3 and
Cygwin have known issues when using fork() from a thread.

Warning: See ssl for applications that use the SSL module
with fork().

Availability: Unix.

os.forkpty()
Fork a child process, using a new pseudo-terminal as the
child’s controlling terminal. Return a pair of (pid, fd),

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/ssl.html#module-ssl
https://docs.python.org/3/library/intro.html#availability

where pid is 0 in the child, the new child’s process id in the
parent, and fd is the file descriptor of the master end of the
pseudo-terminal. For a more portable approach, use the pty
module. If an error occurs OSError is raised.

Availability: some flavors of Unix.

os.kill(pid, sig)
Send signal sig to the process pid. Constants for the specific
signals available on the host platform are defined in the
signal module.

Windows: The signal.CTRL_C_EVENT and
signal.CTRL_BREAK_EVENT signals are special signals which
can only be sent to console processes which share a common
console window, e.g., some subprocesses. Any other value
for sig will cause the process to be unconditionally killed by
the TerminateProcess API, and the exit code will be set to sig.
The Windows version of kill() additionally takes process
handles to be killed.

See also signal.pthread_kill().

New in version 3.2: Windows support.

os.killpg(pgid, sig)
Send the signal sig to the process group pgid.

Availability: Unix.

os.nice(increment)
Add increment to the process’s “niceness”. Return the new
niceness.

Availability: Unix.

os.plock(op)
Lock program segments into memory. The value of op (de-

https://docs.python.org/3/library/pty.html#module-pty
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/signal.html#module-signal
https://docs.python.org/3/library/signal.html#signal.CTRL_C_EVENT
https://docs.python.org/3/library/signal.html#signal.CTRL_BREAK_EVENT
https://docs.python.org/3/library/signal.html#signal.pthread_kill
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

fined in <sys/lock.h>) determines which segments are
locked.

Availability: Unix.

os.popen(cmd, mode='r', buffering=-1)
Open a pipe to or from command cmd. The return value is an
open file object connected to the pipe, which can be read or
written depending on whether mode is 'r' (default) or 'w'.
The buffering argument has the same meaning as the corre-
sponding argument to the built-in open() function. The re-
turned file object reads or writes text strings rather than
bytes.

The close method returns None if the subprocess exited
successfully, or the subprocess’s return code if there was an
error. On POSIX systems, if the return code is positive it rep-
resents the return value of the process left-shifted by one
byte. If the return code is negative, the process was terminat-
ed by the signal given by the negated value of the return
code. (For example, the return value might be -

signal.SIGKILL if the subprocess was killed.) On Windows
systems, the return value contains the signed integer return
code from the child process.

This is implemented using subprocess.Popen; see that
class’s documentation for more powerful ways to manage
and communicate with subprocesses.

os.posix_spawn(path, argv, env, *, file_actions=None,
setpgroup=None, resetids=False, setsid=False, setsigmask=(),
setsigdef=(), scheduler=None)

Wraps the posix_spawn() C library API for use from Python.

Most users should use subprocess.run() instead of
posix_spawn().

The positional-only arguments path, args, and env are simi-

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://docs.python.org/3/library/subprocess.html#subprocess.run

lar to execve().

The path parameter is the path to the executable file.The
path should contain a directory.Use posix_spawnp() to pass
an executable file without directory.

The file_actions argument may be a sequence of tuples de-
scribing actions to take on specific file descriptors in the
child process between the C library implementation’s fork()
and exec() steps. The first item in each tuple must be one of
the three type indicator listed below describing the remaining
tuple elements:

os.POSIX_SPAWN_OPEN
(os.POSIX_SPAWN_OPEN, fd, path, flags, mode)

Performs os.dup2(os.open(path, flags, mode), fd).

os.POSIX_SPAWN_CLOSE
(os.POSIX_SPAWN_CLOSE, fd)

Performs os.close(fd).

os.POSIX_SPAWN_DUP2
(os.POSIX_SPAWN_DUP2, fd, new_fd)

Performs os.dup2(fd, new_fd).

These tuples correspond to the C library
posix_spawn_file_actions_addopen(),
posix_spawn_file_actions_addclose(), and
posix_spawn_file_actions_adddup2() API calls used to pre-
pare for the posix_spawn() call itself.

The setpgroup argument will set the process group of the
child to the value specified. If the value specified is 0, the
child’s process group ID will be made the same as its process
ID. If the value of setpgroup is not set, the child will inherit

the parent’s process group ID. This argument corresponds to
the C library POSIX_SPAWN_SETPGROUP flag.

If the resetids argument is True it will reset the effective UID
and GID of the child to the real UID and GID of the parent
process. If the argument is False, then the child retains the
effective UID and GID of the parent. In either case, if the set-
user-ID and set-group-ID permission bits are enabled on the
executable file, their effect will override the setting of the ef-
fective UID and GID. This argument corresponds to the C li-
brary POSIX_SPAWN_RESETIDS flag.

If the setsid argument is True, it will create a new session ID
for posix_spawn. setsid requires POSIX_SPAWN_SETSID or
POSIX_SPAWN_SETSID_NP flag. Otherwise,
NotImplementedError is raised.

The setsigmask argument will set the signal mask to the sig-
nal set specified. If the parameter is not used, then the child
inherits the parent’s signal mask. This argument corresponds
to the C library POSIX_SPAWN_SETSIGMASK flag.

The sigdef argument will reset the disposition of all signals in
the set specified. This argument corresponds to the C library
POSIX_SPAWN_SETSIGDEF flag.

The scheduler argument must be a tuple containing the (op-
tional) scheduler policy and an instance of sched_param with
the scheduler parameters. A value of None in the place of the
scheduler policy indicates that is not being provided. This ar-
gument is a combination of the C library
POSIX_SPAWN_SETSCHEDPARAM and
POSIX_SPAWN_SETSCHEDULER flags.

New in version 3.8.

Availability: Unix.

https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/intro.html#availability

os.posix_spawnp(path, argv, env, *, file_actions=None,
setpgroup=None, resetids=False, setsid=False, setsigmask=(),
setsigdef=(), scheduler=None)

Wraps the posix_spawnp() C library API for use from Python.

Similar to posix_spawn() except that the system searches for
the executable file in the list of directories specified by the
PATH environment variable (in the same way as for
execvp(3)).

New in version 3.8.

Availability: See posix_spawn() documentation.

os.register_at_fork(*, before=None,
after_in_parent=None, after_in_child=None)

Register callables to be executed when a new child process is
forked using os.fork() or similar process cloning APIs. The
parameters are optional and keyword-only. Each specifies a
different call point.

before is a function called before forking a child
process.
after_in_parent is a function called from the parent
process after forking a child process.
after_in_child is a function called from the child process.

These calls are only made if control is expected to return to
the Python interpreter. A typical subprocess launch will not
trigger them as the child is not going to re-enter the
interpreter.

Functions registered for execution before forking are called
in reverse registration order. Functions registered for execu-
tion after forking (either in the parent or in the child) are
called in registration order.

Note that fork() calls made by third-party C code may not

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/subprocess.html#module-subprocess

call those functions, unless it explicitly calls
PyOS_BeforeFork(), PyOS_AfterFork_Parent() and
PyOS_AfterFork_Child().

There is no way to unregister a function.

Availability: Unix.

New in version 3.7.

os.spawnl(mode, path, ...)
os.spawnle(mode, path, ..., env)
os.spawnlp(mode, file, ...)
os.spawnlpe(mode, file, ..., env)
os.spawnv(mode, path, args)
os.spawnve(mode, path, args, env)
os.spawnvp(mode, file, args)
os.spawnvpe(mode, file, args, env)

Execute the program path in a new process.

(Note that the subprocess module provides more powerful
facilities for spawning new processes and retrieving their re-
sults; using that module is preferable to using these func-
tions. Check especially the Replacing Older Functions with
the subprocess Module section.)

If mode is P_NOWAIT, this function returns the process id of
the new process; if mode is P_WAIT, returns the process’s
exit code if it exits normally, or -signal, where signal is the
signal that killed the process. On Windows, the process id will
actually be the process handle, so can be used with the
waitpid() function.

Note on VxWorks, this function doesn’t return -signal when
the new process is killed. Instead it raises OSError exception.

The “l” and “v” variants of the spawn* functions differ in how
command-line arguments are passed. The “l” variants are

https://docs.python.org/3/c-api/sys.html#c.PyOS_BeforeFork
https://docs.python.org/3/c-api/sys.html#c.PyOS_AfterFork_Parent
https://docs.python.org/3/c-api/sys.html#c.PyOS_AfterFork_Child
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/subprocess.html#module-subprocess
https://docs.python.org/3/library/subprocess.html#subprocess-replacements

perhaps the easiest to work with if the number of parameters
is fixed when the code is written; the individual parameters
simply become additional parameters to the spawnl*() func-
tions. The “v” variants are good when the number of parame-
ters is variable, with the arguments being passed in a list or
tuple as the args parameter. In either case, the arguments to
the child process must start with the name of the command
being run.

The variants which include a second “p” near the end
(spawnlp(), spawnlpe(), spawnvp(), and spawnvpe()) will
use the PATH environment variable to locate the program file.
When the environment is being replaced (using one of the
spawn*e variants, discussed in the next paragraph), the new
environment is used as the source of the PATH variable. The
other variants, spawnl(), spawnle(), spawnv(), and
spawnve(), will not use the PATH variable to locate the exe-
cutable; path must contain an appropriate absolute or relative
path.

For spawnle(), spawnlpe(), spawnve(), and spawnvpe()

(note that these all end in “e”), the env parameter must be a
mapping which is used to define the environment variables
for the new process (they are used instead of the current
process’ environment); the functions spawnl(), spawnlp(),
spawnv(), and spawnvp() all cause the new process to inherit
the environment of the current process. Note that keys and
values in the env dictionary must be strings; invalid keys or
values will cause the function to fail, with a return value of
127.

As an example, the following calls to spawnlp() and
spawnvpe() are equivalent:

import os
os.spawnlp(os.P_WAIT, 'cp', 'cp', 'index.html', '/dev/null'

Availability: Unix, Windows. spawnlp(), spawnlpe(),
spawnvp() and spawnvpe() are not available on Windows.
spawnle() and spawnve() are not thread-safe on Windows;
we advise you to use the subprocess module instead.

Changed in version 3.6: Accepts a path-like object.

os.P_NOWAIT
os.P_NOWAITO

Possible values for the mode parameter to the spawn* family
of functions. If either of these values is given, the spawn*()
functions will return as soon as the new process has been
created, with the process id as the return value.

Availability: Unix, Windows.

os.P_WAIT
Possible value for the mode parameter to the spawn* family
of functions. If this is given as mode, the spawn*() functions
will not return until the new process has run to completion
and will return the exit code of the process the run is suc-
cessful, or -signal if a signal kills the process.

Availability: Unix, Windows.

os.P_DETACH
os.P_OVERLAY

Possible values for the mode parameter to the spawn* family
of functions. These are less portable than those listed above.
P_DETACH is similar to P_NOWAIT, but the new process is de-
tached from the console of the calling process. If P_OVERLAY
is used, the current process will be replaced; the spawn*
function will not return.

L = ['cp', 'index.html', '/dev/null']
os.spawnvpe(os.P_WAIT, 'cp', L, os.environ)

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/subprocess.html#module-subprocess
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

Availability: Windows.

os.startfile(path[, operation])
Start a file with its associated application.

When operation is not specified or 'open', this acts like dou-
ble-clicking the file in Windows Explorer, or giving the file
name as an argument to the start command from the inter-
active command shell: the file is opened with whatever appli-
cation (if any) its extension is associated.

When another operation is given, it must be a “command
verb” that specifies what should be done with the file. Com-
mon verbs documented by Microsoft are 'print' and 'edit'
(to be used on files) as well as 'explore' and 'find' (to be
used on directories).

startfile() returns as soon as the associated application is
launched. There is no option to wait for the application to
close, and no way to retrieve the application’s exit status.
The path parameter is relative to the current directory. If you
want to use an absolute path, make sure the first character is
not a slash ('/'); the underlying Win32 ShellExecute()
function doesn’t work if it is. Use the os.path.normpath()
function to ensure that the path is properly encoded for
Win32.

To reduce interpreter startup overhead, the Win32
ShellExecute() function is not resolved until this function is
first called. If the function cannot be resolved,
NotImplementedError will be raised.

Availability: Windows.

os.system(command)
Execute the command (a string) in a subshell. This is imple-
mented by calling the Standard C function system(), and has
the same limitations. Changes to sys.stdin, etc. are not re-

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/os.path.html#os.path.normpath
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/sys.html#sys.stdin

flected in the environment of the executed command. If com-
mand generates any output, it will be sent to the interpreter
standard output stream.

On Unix, the return value is the exit status of the process en-
coded in the format specified for wait(). Note that POSIX
does not specify the meaning of the return value of the C
system() function, so the return value of the Python function
is system-dependent.

On Windows, the return value is that returned by the system
shell after running command. The shell is given by the Win-
dows environment variable COMSPEC: it is usually cmd.exe,
which returns the exit status of the command run; on sys-
tems using a non-native shell, consult your shell
documentation.

The subprocess module provides more powerful facilities for
spawning new processes and retrieving their results; using
that module is preferable to using this function. See the Re-
placing Older Functions with the subprocess Module section
in the subprocess documentation for some helpful recipes.

Raises an auditing event os.system with argument command.

Availability: Unix, Windows.

os.times()
Returns the current global process times. The return value is
an object with five attributes:

user - user time
system - system time
children_user - user time of all child processes
children_system - system time of all child processes
elapsed - elapsed real time since a fixed point in the
past

https://docs.python.org/3/library/subprocess.html#module-subprocess
https://docs.python.org/3/library/subprocess.html#subprocess-replacements
https://docs.python.org/3/library/subprocess.html#module-subprocess
https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/library/intro.html#availability

For backwards compatibility, this object also behaves like a
five-tuple containing user, system, children_user,
children_system, and elapsed in that order.

See the Unix manual page times(2) and times(3) manual page
on Unix or the GetProcessTimes MSDN <https://docs.mi-
crosoft.com/windows/win32/api/processthreadsapi/nf-pro-
cessthreadsapi-getprocesstimes> _ on Windows. On Win-
dows, only user and system are known; the other attributes
are zero.

Availability: Unix, Windows.

Changed in version 3.3: Return type changed from a tuple to
a tuple-like object with named attributes.

os.wait()
Wait for completion of a child process, and return a tuple
containing its pid and exit status indication: a 16-bit num-
ber, whose low byte is the signal number that killed the
process, and whose high byte is the exit status (if the signal
number is zero); the high bit of the low byte is set if a core
file was produced.

Availability: Unix.

os.waitid(idtype, id, options)
Wait for the completion of one or more child processes. id-
type can be P_PID, P_PGID or P_ALL. id specifies the pid to
wait on. options is constructed from the ORing of one or
more of WEXITED, WSTOPPED or WCONTINUED and additionally
may be ORed with WNOHANG or WNOWAIT. The return value is an
object representing the data contained in the siginfo_t
structure, namely: si_pid, si_uid, si_signo, si_status,
si_code or None if WNOHANG is specified and there are no
children in a waitable state.

Availability: Unix.

https://manpages.debian.org/times(2)
https://manpages.debian.org/times(3)
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

New in version 3.3.

os.P_PID
os.P_PGID
os.P_ALL

These are the possible values for idtype in waitid(). They
affect how id is interpreted.

Availability: Unix.

New in version 3.3.

os.WEXITED
os.WSTOPPED
os.WNOWAIT

Flags that can be used in options in waitid() that specify
what child signal to wait for.

Availability: Unix.

New in version 3.3.

os.CLD_EXITED
os.CLD_DUMPED
os.CLD_TRAPPED
os.CLD_CONTINUED

These are the possible values for si_code in the result re-
turned by waitid().

Availability: Unix.

New in version 3.3.

os.waitpid(pid, options)
The details of this function differ on Unix and Windows.

On Unix: Wait for completion of a child process given by
process id pid, and return a tuple containing its process id
and exit status indication (encoded as for wait()). The se-

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

mantics of the call are affected by the value of the integer
options, which should be 0 for normal operation.

If pid is greater than 0, waitpid() requests status informa-
tion for that specific process. If pid is 0, the request is for the
status of any child in the process group of the current
process. If pid is -1, the request pertains to any child of the
current process. If pid is less than -1, status is requested for
any process in the process group -pid (the absolute value of
pid).

An OSError is raised with the value of errno when the syscall
returns -1.

On Windows: Wait for completion of a process given by
process handle pid, and return a tuple containing pid, and its
exit status shifted left by 8 bits (shifting makes cross-plat-
form use of the function easier). A pid less than or equal to 0
has no special meaning on Windows, and raises an exception.
The value of integer options has no effect. pid can refer to
any process whose id is known, not necessarily a child
process. The spawn* functions called with P_NOWAIT return
suitable process handles.

Changed in version 3.5: If the system call is interrupted and
the signal handler does not raise an exception, the function
now retries the system call instead of raising an
InterruptedError exception (see PEP 475 for the rationale).

os.wait3(options)
Similar to waitpid(), except no process id argument is given
and a 3-element tuple containing the child’s process id, exit
status indication, and resource usage information is returned.
Refer to resource.getrusage() for details on resource usage
information. The option argument is the same as that provid-
ed to waitpid() and wait4().

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#InterruptedError
https://www.python.org/dev/peps/pep-0475
https://docs.python.org/3/library/resource.html#module-resource
https://docs.python.org/3/library/resource.html#resource.getrusage

Availability: Unix.

os.wait4(pid, options)
Similar to waitpid(), except a 3-element tuple, containing
the child’s process id, exit status indication, and resource
usage information is returned. Refer to
resource.getrusage() for details on resource usage infor-
mation. The arguments to wait4() are the same as those
provided to waitpid().

Availability: Unix.

os.WNOHANG
The option for waitpid() to return immediately if no child
process status is available immediately. The function returns
(0, 0) in this case.

Availability: Unix.

os.WCONTINUED
This option causes child processes to be reported if they have
been continued from a job control stop since their status was
last reported.

Availability: some Unix systems.

os.WUNTRACED
This option causes child processes to be reported if they have
been stopped but their current state has not been reported
since they were stopped.

Availability: Unix.

The following functions take a process status code as returned by
system(), wait(), or waitpid() as a parameter. They may be
used to determine the disposition of a process.

os.WCOREDUMP(status)

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/resource.html#module-resource
https://docs.python.org/3/library/resource.html#resource.getrusage
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

Return True if a core dump was generated for the process,
otherwise return False.

Availability: Unix.

os.WIFCONTINUED(status)
Return True if the process has been continued from a job
control stop, otherwise return False.

Availability: Unix.

os.WIFSTOPPED(status)
Return True if the process has been stopped, otherwise re-
turn False.

Availability: Unix.

os.WIFSIGNALED(status)
Return True if the process exited due to a signal, otherwise
return False.

Availability: Unix.

os.WIFEXITED(status)
Return True if the process exited using the exit(2) system
call, otherwise return False.

Availability: Unix.

os.WEXITSTATUS(status)
If WIFEXITED(status) is true, return the integer parameter to
the exit(2) system call. Otherwise, the return value is
meaningless.

Availability: Unix.

os.WSTOPSIG(status)
Return the signal which caused the process to stop.

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://manpages.debian.org/exit(2)
https://docs.python.org/3/library/intro.html#availability
https://manpages.debian.org/exit(2)
https://docs.python.org/3/library/intro.html#availability

Availability: Unix.

os.WTERMSIG(status)
Return the signal which caused the process to exit.

Availability: Unix.

Interface to the scheduler
These functions control how a process is allocated CPU time by
the operating system. They are only available on some Unix plat-
forms. For more detailed information, consult your Unix
manpages.

New in version 3.3.

The following scheduling policies are exposed if they are sup-
ported by the operating system.

os.SCHED_OTHER
The default scheduling policy.

os.SCHED_BATCH
Scheduling policy for CPU-intensive processes that tries to
preserve interactivity on the rest of the computer.

os.SCHED_IDLE
Scheduling policy for extremely low priority background
tasks.

os.SCHED_SPORADIC
Scheduling policy for sporadic server programs.

os.SCHED_FIFO
A First In First Out scheduling policy.

os.SCHED_RR
A round-robin scheduling policy.

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability

os.SCHED_RESET_ON_FORK
This flag can be OR’ed with any other scheduling policy.
When a process with this flag set forks, its child’s scheduling
policy and priority are reset to the default.

class os.sched_param(sched_priority)
This class represents tunable scheduling parameters used in
sched_setparam(), sched_setscheduler(), and
sched_getparam(). It is immutable.

At the moment, there is only one possible parameter:

sched_priority
The scheduling priority for a scheduling policy.

os.sched_get_priority_min(policy)
Get the minimum priority value for policy. policy is one of the
scheduling policy constants above.

os.sched_get_priority_max(policy)
Get the maximum priority value for policy. policy is one of
the scheduling policy constants above.

os.sched_setscheduler(pid, policy, param)
Set the scheduling policy for the process with PID pid. A pid
of 0 means the calling process. policy is one of the sched-
uling policy constants above. param is a sched_param

instance.

os.sched_getscheduler(pid)
Return the scheduling policy for the process with PID pid. A
pid of 0 means the calling process. The result is one of the
scheduling policy constants above.

os.sched_setparam(pid, param)
Set a scheduling parameters for the process with PID pid. A
pid of 0 means the calling process. param is a sched_param
instance.

os.sched_getparam(pid)
Return the scheduling parameters as a sched_param instance
for the process with PID pid. A pid of 0 means the calling
process.

os.sched_rr_get_interval(pid)
Return the round-robin quantum in seconds for the process
with PID pid. A pid of 0 means the calling process.

os.sched_yield()
Voluntarily relinquish the CPU.

os.sched_setaffinity(pid, mask)
Restrict the process with PID pid (or the current process if
zero) to a set of CPUs. mask is an iterable of integers repre-
senting the set of CPUs to which the process should be
restricted.

os.sched_getaffinity(pid)
Return the set of CPUs the process with PID pid (or the cur-
rent process if zero) is restricted to.

Miscellaneous System Information

os.confstr(name)
Return string-valued system configuration values. name
specifies the configuration value to retrieve; it may be a
string which is the name of a defined system value; these
names are specified in a number of standards (POSIX, Unix
95, Unix 98, and others). Some platforms define additional
names as well. The names known to the host operating sys-
tem are given as the keys of the confstr_names dictionary.
For configuration variables not included in that mapping,
passing an integer for name is also accepted.

If the configuration value specified by name isn’t defined,
None is returned.

If name is a string and is not known, ValueError is raised. If
a specific value for name is not supported by the host sys-
tem, even if it is included in confstr_names, an OSError is
raised with errno.EINVAL for the error number.

Availability: Unix.

os.confstr_names
Dictionary mapping names accepted by confstr() to the in-
teger values defined for those names by the host operating
system. This can be used to determine the set of names
known to the system.

Availability: Unix.

os.cpu_count()
Return the number of CPUs in the system. Returns None if
undetermined.

This number is not equivalent to the number of CPUs the
current process can use. The number of usable CPUs can be
obtained with len(os.sched_getaffinity(0))

New in version 3.4.

os.getloadavg()
Return the number of processes in the system run queue av-
eraged over the last 1, 5, and 15 minutes or raises OSError if
the load average was unobtainable.

Availability: Unix.

os.sysconf(name)
Return integer-valued system configuration values. If the
configuration value specified by name isn’t defined, -1 is re-
turned. The comments regarding the name parameter for
confstr() apply here as well; the dictionary that provides in-
formation on the known names is given by sysconf_names.

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/errno.html#errno.EINVAL
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/intro.html#availability

Availability: Unix.

os.sysconf_names
Dictionary mapping names accepted by sysconf() to the in-
teger values defined for those names by the host operating
system. This can be used to determine the set of names
known to the system.

Availability: Unix.

The following data values are used to support path manipulation
operations. These are defined for all platforms.

Higher-level operations on pathnames are defined in the
os.path module.

os.curdir
The constant string used by the operating system to refer to
the current directory. This is '.' for Windows and POSIX.
Also available via os.path.

os.pardir
The constant string used by the operating system to refer to
the parent directory. This is '..' for Windows and POSIX.
Also available via os.path.

os.sep
The character used by the operating system to separate
pathname components. This is '/' for POSIX and '\\' for
Windows. Note that knowing this is not sufficient to be able
to parse or concatenate pathnames — use os.path.split()
and os.path.join() — but it is occasionally useful. Also
available via os.path.

os.altsep
An alternative character used by the operating system to sep-
arate pathname components, or None if only one separator

https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/intro.html#availability
https://docs.python.org/3/library/os.path.html#module-os.path
https://docs.python.org/3/library/os.path.html#module-os.path
https://docs.python.org/3/library/os.path.html#module-os.path
https://docs.python.org/3/library/os.path.html#os.path.split
https://docs.python.org/3/library/os.path.html#os.path.join
https://docs.python.org/3/library/os.path.html#module-os.path

character exists. This is set to '/' on Windows systems
where sep is a backslash. Also available via os.path.

os.extsep
The character which separates the base filename from the
extension; for example, the '.' in os.py. Also available via
os.path.

os.pathsep
The character conventionally used by the operating system to
separate search path components (as in PATH), such as ':'
for POSIX or ';' for Windows. Also available via os.path.

os.defpath
The default search path used by exec*p* and spawn*p* if the
environment doesn’t have a 'PATH' key. Also available via
os.path.

os.linesep
The string used to separate (or, rather, terminate) lines on
the current platform. This may be a single character, such as
'\n' for POSIX, or multiple characters, for example, '\r\n'
for Windows. Do not use os.linesep as a line terminator when
writing files opened in text mode (the default); use a single
'\n' instead, on all platforms.

os.devnull
The file path of the null device. For example: '/dev/null' for
POSIX, 'nul' for Windows. Also available via os.path.

os.RTLD_LAZY
os.RTLD_NOW
os.RTLD_GLOBAL
os.RTLD_LOCAL
os.RTLD_NODELETE
os.RTLD_NOLOAD
os.RTLD_DEEPBIND

https://docs.python.org/3/library/os.path.html#module-os.path
https://docs.python.org/3/library/os.path.html#module-os.path
https://docs.python.org/3/library/os.path.html#module-os.path
https://docs.python.org/3/library/os.path.html#module-os.path
https://docs.python.org/3/library/os.path.html#module-os.path

Flags for use with the setdlopenflags() and
getdlopenflags() functions. See the Unix manual page
dlopen(3) for what the different flags mean.

New in version 3.3.

Random numbers

os.getrandom(size, flags=0)
Get up to size random bytes. The function can return less
bytes than requested.

These bytes can be used to seed user-space random number
generators or for cryptographic purposes.

getrandom() relies on entropy gathered from device drivers
and other sources of environmental noise. Unnecessarily
reading large quantities of data will have a negative impact
on other users of the /dev/random and /dev/urandom

devices.

The flags argument is a bit mask that can contain zero or
more of the following values ORed together: os.GRND_RANDOM
and GRND_NONBLOCK.

See also the Linux getrandom() manual page.

Availability: Linux 3.17 and newer.

New in version 3.6.

os.urandom(size)
Return a string of size random bytes suitable for crypto-
graphic use.

This function returns random bytes from an OS-specific ran-
domness source. The returned data should be unpredictable
enough for cryptographic applications, though its exact qual-

https://docs.python.org/3/library/sys.html#sys.setdlopenflags
https://docs.python.org/3/library/sys.html#sys.getdlopenflags
https://manpages.debian.org/dlopen(3)
http://man7.org/linux/man-pages/man2/getrandom.2.html
https://docs.python.org/3/library/intro.html#availability

ity depends on the OS implementation.

On Linux, if the getrandom() syscall is available, it is used in
blocking mode: block until the system urandom entropy pool
is initialized (128 bits of entropy are collected by the kernel).
See the PEP 524 for the rationale. On Linux, the getrandom()
function can be used to get random bytes in non-blocking
mode (using the GRND_NONBLOCK flag) or to poll until the sys-
tem urandom entropy pool is initialized.

On a Unix-like system, random bytes are read from the
/dev/urandom device. If the /dev/urandom device is not
available or not readable, the NotImplementedError excep-
tion is raised.

On Windows, it will use CryptGenRandom().

See also: The secrets module provides higher level func-
tions. For an easy-to-use interface to the random number
generator provided by your platform, please see
random.SystemRandom.

Changed in version 3.6.0: On Linux, getrandom() is now
used in blocking mode to increase the security.

Changed in version 3.5.2: On Linux, if the getrandom()
syscall blocks (the urandom entropy pool is not initialized
yet), fall back on reading /dev/urandom.

Changed in version 3.5: On Linux 3.17 and newer, the
getrandom() syscall is now used when available. On OpenBSD
5.6 and newer, the C getentropy() function is now used.
These functions avoid the usage of an internal file descriptor.

os.GRND_NONBLOCK
By default, when reading from /dev/random, getrandom()
blocks if no random bytes are available, and when reading

https://www.python.org/dev/peps/pep-0524
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/secrets.html#module-secrets
https://docs.python.org/3/library/random.html#random.SystemRandom

from /dev/urandom, it blocks if the entropy pool has not yet
been initialized.

If the GRND_NONBLOCK flag is set, then getrandom() does not
block in these cases, but instead immediately raises
BlockingIOError.

New in version 3.6.

os.GRND_RANDOM
If this bit is set, then random bytes are drawn from the
/dev/random pool instead of the /dev/urandom pool.

New in version 3.6.

https://docs.python.org/3/library/exceptions.html#BlockingIOError

