
Getting Started With Microsoft PowerShell

James E. Jarvis

November 24, 2016

1



Contents
1 About PowerShell 3

2 Getting started 3
2.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Commands 5
3.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Aliases 6

5 Variables in PowerShell 8
5.1 Integer Variables . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Doubles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3 String Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.4 Special variables . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.5 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.6 Arrays of Objects . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.7 Hashes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.8 Removing variables . . . . . . . . . . . . . . . . . . . . . . . . 15
5.9 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 The PowerShell environment 16

7 Redirection and pipes 17

8 Reading and writing to files 18
8.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

9 Scripts 21
9.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

10 Logic and loops for flow control 22
10.1 If . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10.2 For . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10.3 Foreach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10.4 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

11 Advanced Topics 25
11.1 More date and time . . . . . . . . . . . . . . . . . . . . . . . . 25
11.2 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
11.3 Handling Data - Using CSV files . . . . . . . . . . . . . . . . . 26

2



11.4 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
11.5 Advanced: Handling XML data and loading a .Net framework 28

12 Further Help 30

13 Listings 32

3



1 About PowerShell
PowerShell is a registered trademark of Microsoft Corporation. PowerShell
is provided by Microsoft Corporation and is a well thought out, very usable
and powerful scripting language. The influence of other scripting languages,
not just Microsoft can be seen

In PowerShell commands (often called cmdlets) have the form:

verb-noun

that is a verb indicating the action and a noun indicating the object for
example:

get-childitem

PowerShell itself is provided as a command line environment. In addi-
tion to all the PowerShell "cmdlets" one may call a non-PowerShell program
directly (e.g. notepad.exe).

2 Getting started
This document assumes you are working on a University of Edinburgh Sup-
ported Windows Desktop. The exercises may work in other environments
but this has not been tested. If following this document you may need to
search the Internet for additional modules and follow the instructions on how
to install them. Unless you know what you are doing, it is sensible to only
install extra PowerShell functionality from genuine Microsoft sites.

Readers will find the exercises easier if they have previous experience of
scripting or programming languages. Additionally, PowerShell uses pipelines
extensively so prior attendance at Unix 1 and Unix 2 courses will be and
advantage.

1. Click on the Start button

2. Type PowerShell

3. You should now see:

• Windows PowerShell (Figure 1)

• Windows PowerShell ISE (Figure 2)

4



Figure 1: PowerShell - the command line environment.

If running scripts, the first option of using the PowerShell directly is fine.
For creating and editing scripts the PowerShell ISE (Integrated Scripting
Environment) is very useful.

You may see additional options but these are the two to use for this
course.

2.1 Exercise

1. Run PowerShell. Type exit and press the Enter key. What happens?

2. Run PowerShell ISE. Click on theHelp menu. Click onUpdate Win-
dows PowerShell Help. You will notice in the window below a com-
mand update-help runs and then usually produces an error. This is
normal on the University of Edinburgh Supported Windows Desktop.

3. Read the red error text. Can you determine why the command failed?

5



Figure 2: PowerShell ISE - An integrated script editor.

3 Commands
Commands may take none, one or several parameters and one, none or several
values (see Listing ??, page ??). Users of Unix shell environments will quickly
appreciate that the developers of PowerShell have implemented command
syntax in a similar way.

The command write-host can be used with no parameters, in which case
it will create a blank line of output (see Listing 2, page 6).

We can find options for write-host by typing help write-host (see

Listing 1: Command Syntax
<command -name > -<Required Parameter Name > <Required Parameter Value >

[-<Optional Parameter Name > <Optional Parameter Value >]
[-<Optional Switch Parameters >]
[-<Optional Parameter Name >] <Required Parameter Value >

6



Listing 2: Hello World
PS M:\> write -host

PS M:\> write -host "Hello␣World"
Hello World

Command Aliases
clear-host cls, clear
format-list fl
get-childitem gci, ls, dir
get-content gc, cat, type
get-location gl, pwd
get-member gm
remove-item ri, rm, rmdir, del, erase, rd
write-output write, echo

Table 1: Some PowerShell Command Aliases

Listing 3, page 7). For extra detail, add the "-full" option: help -full write-
host

3.1 Exercise

1. Type write-host "Hello World" and press the Enter key

2. Type write-host -foregroundcolor yellow "Hello World"

3. Get PowerShell to print in blue text on a yellow background? Clue,
use the -backgroundcolor parameter.

4. Type help clear-host -online What happens?

4 Aliases
Many commands have aliases (see Table 1) and for those who have used DOS
or Unix these can be very familiar. Aliases are short forms of a command. So
for someone used to using the command pwd typing help pwd will indicate
that the underlying command is actually get-location . However, if coming
from a Unix or DOS environment, typing the form you are familiar with
makes adopting powershell easier.

7



Listing 3: Getting help for the write-host command
PS M:\> help write -host

NAME
Write -Host

SYNOPSIS
Writes customized output to a host.

SYNTAX
Write -Host [[-Object] <Object >] [-BackgroundColor
<ConsoleColor >] [-ForegroundColor <ConsoleColor >]
[-NoNewline] [-Separator <Object >] [<CommonParameters >]

DESCRIPTION
The Write -Host cmdlet customizes output. You can
specify the color of text by using the ForegroundColor
parameter , and you can specify the background color by
using the BackgroundColor parameter. The Separator
parameter lets you specify a string to use to separate
displayed objects. The particular result depends on
the program that is hosting Windows PowerShell.

RELATED LINKS
Online Version:
http ://go.microsoft.com/fwlink /? LinkID =113426
Clear -Host
Out -Host
Write -Debug
Write -Error
Write -Output
Write -Progress
Write -Verbose
Write -Warning

REMARKS
To see the examples , type: "get -help␣Write -Host

␣␣␣␣-examples".
For more information , type: "get -help␣Write -Host

␣␣␣␣-detailed".
For technical information , type: "get -help␣Write -Host

␣␣␣␣-full".
For online help , type: "get -help␣Write -Host␣-online"

8



5 Variables in PowerShell
Variables are labels we use to store data that can vary (hence the name
"variable").

In PowerShell variables are referenced and dereferenced by appending the
variable name with $ symbol.

In PowerShell variables can be of many types:

• integers (whole numbers, positive or negative, e.g. 1, 5 ,-17, 0)

• doubles (numbers with decimal places, positive or negative, e,g. 1.5,
5.0, -17.2, 0.45)

• strings (sequences of characters that make, for example, words or sen-
tences )

• arrays (sequences of variables referenced by an integer index, for exam-
ple strings can be treated as arrays)

• hash tables (sometimes called dictionary, these are key value pairs)

• objects (an object is may contain a complex set of variable types and
associations) - some examples include:

– processes

– services

– event logs

– computers

– XML

– anything you can think might need a variable!

5.1 Integer Variables

Variables can handle numbers and perform arithmetic operations. There are
several types of variable that can contain numbers. The simplest variable
type is the [int] type for integers (see Listing 4, page 9).

PowerShell trys to do the right thing. The variable $a in Listing 5 (page 9)
is an integer. We the redeclare $a and it becomes a string. The answer
provided if we now add the two variables will depend on the type of the first
variable listed.

9



Listing 4: Integer variables and arithmetic
PS M:\> [int] $a=5
PS M:\> [int] $b=7
PS M:\> $a
5
PS M:\> $b
7
PS M:\> $a+$b
12

Listing 5: Integers and strings
PS M:\> [int] $b=7
PS M:\> $a=4
PS M:\> $a.getType (). Name
Int32
PS M:\> $a+$b
11
PS M:\> $a="4"
PS M:\> $a.getType (). Name
String
PS M:\> $a+$b
47
PS M:\> $b+$a
11

5.2 Doubles

Variables of type [double] are similar to integers in that they hold numbers
however the number can contain fractional parts as decimals (see Listing 6,
page 9).

5.3 String Variables

To assign the value "Tuesday" to variable called "day" we type $day="Tuesday"
as see in Listing 7 (page 10).

We can also ask the user to enter information using the read-host com-
mand (Listing 8, page 10).

The read-host command echoes back what was typed however if we
assign that value to a variable, say $name then we can capture the user

Listing 6: Arithmetic with numbers with decimal points
PS M:\> [double] $a=4.0
PS M:\> [double] $b=3.5
PS M:\> $a-$b
0.5

10



Listing 7: String variables
PS M:\> $day="Tuesday"
PS M:\>
PS M:\> $day
Tuesday
PS M:\>

Listing 8: Reading user input
PS M:\> read -host "What␣is␣your␣name:"
What is your name:: James
James

input for use later (see Listing 9, page 10).
String variables can be more than one line long, bounded by the double

quotes as in (see Listing 10, page 11).
Things get more interesting when we explicity set $a to be of type string

inf Listing 11 (page 11). Here, when $a and $b are added they are added as
strings. If we change the order and add $b and $a the result is an integer
calculation. PowerShell casts the result based on the first variable type.

Generally PowerShell will have a good idea of what you mean when you
assign a value to a new variable. It will equally make sensible conversions
where it can but type needs care. Listing 12 (page 11 illustrates the variable
$myvar starting as an integer, becoming a double and then becoming a string.

Note that the BaseType for numeric is System.ValueType whereas for
strings it is System.Object. Generally PowerShell handles mixtures of Sys-
tem.ValueType sensibly. To force a variable to be a particular type you specify
the type in square brackets (see Listing 13 on page 12).

5.4 Special variables

There are several special variables:

• $true

• $false

Listing 9: Storing a user’s response
PS M:\> $name=read -host "What␣is␣your␣name:"
What is your name:: Jane
PS M:\> write -host $name
Jane

11



Listing 10: Multiline string variables
PS M:\> $workaddress="Main␣Library ,
>>␣George␣Square ,
>>␣Edinburgh"
>>
PS M:\> $workaddress
Main Library ,
George Square ,
Edinburgh
PS M:\> $workaddress
Main Library ,
George Square ,
Edinburgh
PS M:\>

Listing 11: Results can be unexpected if variable types are mixed
PS M:\> [string] $a="4"
PS M:\> [int] $b=7
PS M:\> $a+$b
47
PS M:\> $b+$a
11
PS M:\>

Listing 12: Determining the type of a variable or object
PS M:\> $myvar =5
PS M:\> $myvar.GetType ()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Int32 System.ValueType

PS M:\> $myvar=$myvar +0.4
PS M:\> $myvar
5.4
PS M:\> $myvar.GetType ()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Double System.ValueType

PS M:\> $myvar="7"+$myvar
PS M:\> $myvar
75.4
PS M:\> $myvar.GetType ()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True String System.Object

PS M:\>

12



Listing 13: Forcing (declaring) type of variable or object)
PS M:\> $a.GetType ()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Int32 System.ValueType

PS M:\> [double] $q=$a
PS M:\> $q.GetType ()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Double System.ValueType

Listing 14: A string can be viewed as an array of characters
PS M:\> $i="cheese"
PS M:\> $i[4]
s
PS M:\> $i[0]
c
PS M:\> $i.Length
6

• $null

If a command succeeds it will return $true but on failure it will return
$false. The variable $null indicates a variable is not set. Setting a variable’s
value to $null effectively deletes that variable.

5.5 Arrays

Arrays are variables with multiple values with the first value indexed as 0,
the second as 1 and so on. We have already used string variables and these
can be broken into an array of characters as in Listing 14 (page 12).

Note how we use the .Length method to access how long is the string.
We can also have an array of strings as words - Listing 15 (page 13)

creates an array to hold the names of Scottish cities:
Note that the length is actually the number of items in the array. Array

values are indexed from 0 (zero) - in the above example $city[0] would have
the value Edinburgh. That is why the fourth element containing "Aberdeen"
is dereferenced 1 as $ city[3]

1Dereferencing a variable

13



Listing 15: An array containing the names of Scottish cities
PS M:\> $city=("Edinburgh","Glasgow","Dundee","Aberdeen")
PS M:\> $city[3]
Aberdeen
PS M:\> ($city).Length
4

Listing 16: A directory listing is an array of file system objects
PS M:\> $myarray=get -childitem
PS M:\> ($myarray).Count
475
PS M:\> $myarray[99]

Directory: M:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/04/2014 17:09 95579 Advanced -PowerShell -To-Office365.docx

PS M:\>

5.6 Arrays of Objects

In the Listing 16 (page 13) we use get-childitem command to get the file
and folder contents of the current directory but assign the result to $myarray
.

Your directory listing may have a different number of items specified by
the ( $myarray).Count variable.

5.7 Hashes

Hashes or dictionary objects are very useful. They are essentially errays of
key-value pairs.

For this example we shall use Scottish cities and their populations.
Listing 17 (page 14) illustrates the use of a hash (see Section 5.7 to store

a map of city to population.
In Listing 18 (page 14) we add Falkirk (which is not a city but does have

an impressive wheel and some nearby Kelpies).
Essentially what hashes do is allow us to access variable data with a

variable and that variable need not be an integer. Note the order hashes are
returned is not intended to be predictable. In Listing 19 (page 15) we can
access the population by explicit use of the string or a variable containing the

14



City Population
Glasgow 976970
Edinburgh 488610
Aberdeen 209460
Dundee 157690

Table 2: Populations of Scottish Cities, Mid-2012 Populations Estimates
for Settlements and Localities in Scotland from General Register Office of
Scotland website

Listing 17: Using a hash to store Scottish cities and their populations
PS M:\> $pops=@{"Glasgow"=976970;"Edinburgh"=488610;
>> "Aberdeen"=209460;"Dundee"=157690}
>>
PS M:\> $pops

Name Value
---- -----
Edinburgh 488610
Glasgow 976970
Dundee 157690
Aberdeen 209460

PS M:\>

Listing 18: Adding to a hash table
PS M:\> $pops.Add(" Falkirk " ,100480)
PS M:\> $pops

Name Value
---- -----
Edinburgh 488610
Glasgow 976970
Falkirk 100480
Dundee 157690
Aberdeen 209460

PS M:\>

15



Listing 19: Accessing a hash value using its key
PS M:\> $pops."Aberdeen"
209460
PS M:\> $city="Aberdeen"
PS M:\> $pops.$city
209460
PS M:\>

Listing 20: Accessing a hash value using input from a user
PS M:\> $pops=@{"Glasgow"=976970;"Edinburgh"=488610;
>> "Aberdeen"=209460;"Dundee"=157690}
>>
PS M:\> $city=read -host "Enter␣a␣Scottish␣city:"
Enter a Scottish city to be given its population: : Edinburgh
PS M:\> $pops.$city
488610
PS M:\>

string. If you have used hashes before you might agree this is rather elegant.
Not convinced? Well it is really useful for lookups based on user input

(see Listing ??, page 15).

5.8 Removing variables

The quickest way to remove a variable is to set it to be null as in Listing 21
(page 15).

5.9 Exercise

1. Create a variable $a and assign it a value of 3 then use the write-host
command to display the value.

2. Type $a.GetType() to find the type of variable $a

3. Create a variable $b and assign it a value of 3.3 then use the write-host
command to display the value.

Listing 21: Deleting a variable or object
PS M:\> $myvar="Something"
PS M:\> $myvar
Something
PS M:\> $myvar=$null
PS M:\> $myvar
PS M:\>

16



Listing 22: The PowerShell environment
PS C:\> get -item env:\

Name Value
---- -----
SystemDrive C:
ProgramFiles(x86) C:\ Program Files (x86)
USERDNSDOMAIN ED.AC.UK
ProgramW6432 C:\ Program Files
.
.
.
CommonProgramFiles(x86) C:\ Program Files (x86)\ Common Files
HOMEDRIVE M:
windir C:\ Windows
NUMBER_OF_PROCESSORS 4
OS Windows_NT
ProgramFiles C:\ Program Files
ComSpec C:\ Windows\system32\cmd.exe
.
.
.
USERDOMAIN_ROAMINGPROFILE ED
PUBLIC C:\Users\Public

4. Type $b.GetType() to find the type of variable $b

5. Create a variable $c and assign it a value of "3.3" (include those
quotes) then use the write-host command to display the value.

6. Type $c.GetType() to find the type of variable $c

7. Assign to a variable $d the sum of the first two variables by typing
$d=$a + $b

8. What value is returned when you convert to integer the values 3.4 and
3.6? (This may be a surprise to those with Unix experience.)

6 The PowerShell environment
Within a shell the environment is the term to describe the current settings.
These settings are exposed in environment variables. So for example the
variable username contains the username of the current logged on user -
presumably you! Listing 22 (page 16) shows the environment (with some
values omitted).

Listing 23 (page 17) shows how to access and assign a single environ-
ment variable. Note the use of the parentheses around the command then

17



Listing 23: Accessing a single environment value
PS C:\> get -item env:\ username

Name Value
---- -----
USERNAME jjarvis
PS C:\> (get -item env:\ username).value
jjarvis
PS C:\> $me=(get -item env:\ username).value
PS C:\> $me
jjarvis
PS C:> $env:username
jjarvis

Listing 24: Accessing a single environment value
cmdlet1 < c:\fileA.txt | cmdlet2 > c:\ fileB.txt

prepended with .value. However a much easier syntax is $env:varname
which does away with the parentheses.

7 Redirection and pipes
The redirection operators are the greater than and less than symbols.

The greater than symbol > indicates that output data is redirected to a
file (or something behaving as a a file). The less than symbol < indicates
that data is read in from a file.

Listing 23 (page 17) shows cmdlet1 will take input from c:
fileA.txt and the output of the command is passed to cmdlet2; cmdlet2 will
send any output to c:
fileB.txt

Pipes and redirection are difficult concepts to master. If you have not
used them before be assured it is normal to find them difficult to understand.

The summary would be:

• Pipes sit between cmdlets, passing the output of the lefthand cmdlet
to the input of the right hand cmdlet.

• Redirection controls flow between a cmdlet on the left of the symbol
and a file on the right.

• Redirection < indicates information is read from the file for the cmdlet

• Redirection > indicate information written to the file by the cmdlet

18



8 Reading and writing to files

Figure 3: An example text file in Notepad editor.

The information we use on our computers is typically stored in files.
PowerShell allows us to read and write to files. We will start with a plain
text file as seen in Figure 3. This file called example.txt has the following
text in it:

Hello World

This is a text document.

Assuming you have created the above (using notepad.exe) adn saved it
to m:\example.txt, one can use the command get-content to inspect the
contents. Listing 25 (page 19 shows how to get the content of the file put to
screen followed by how to assign it to variable $filecontent for later use.

This time we will load the file and then write it our to a new file called
m:\hello.txt (see Listing 26 on page 19). Before we we write the file we confirm
hello.txt does not exist, which is the source of those red error messages.

Here we have introduced the pipe symbol - that vertical bar | to the left
of the out-file command. The pipe symbol indicates the output of the
command on its left is passed as the input to the command on the right.
So above, instead of the value in $filecontent being sent to the screen (often

19



Listing 25: Accessing the content of a file
PS M:\> get -content M:\ example.txt
Hello World

This is a text document.
PS M:\> $filecontent=get -content m:\ example.txt
PS M:\> $filecontent
Hello World

This is a text document.
PS M:\>

Listing 26: Writing to a file
PS M:\> Get -Content .\example.txt
Hello World

This is a text document.
PS M:\> $filecontent=Get -Content .\example.txt
PS M:\> get -content hello.txt
‘ g e t - c o n t e n t : C a n n o t f i n d p a t h ’ M : \ h e l l o . t x t ’

‘ b e c a u s e i t d o e s n o t e x i s t .

‘ A t l i n e : 1 c h a r : 1

‘ + g e t - c o n t e n t h e l l o . t x t

‘ + ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

‘ + C a t e g o r y I n f o : O b j e c t N o t F o u n d :

‘ ( M : \ h e l l o . t x t : S t r i n g ) [ G e t - C o n t e n t ] ,

‘ I t e m N o t F o u n d E x c e p t i o n

‘ + F u l l y Q u a l i f i e d E r r o r I d : P a t h N o t F o u n d ,

‘ M i c r o s o f t . P o w e r S h e l l . C o m m a n d s . G e t C o n t e n t C o m m a n d

PS M:\> $filecontent
Hello World

This is a text document.
PS M:\> $filecontent | out -file hello.txt
PS M:\> get -content hello.txt
Hello World

This is a text document.
PS M:\>

20



Listing 27: Using get-member (gm) to discover what methods can be applied
to variable
PS M:\> $filecontent | gm

TypeName: System.String

Name MemberType Definition
---- ---------- ----------
Clone Method System.Object Clo...
CompareTo Method int CompareTo(Sys...
Contains Method bool Contains(str...
CopyTo Method void CopyTo(int s....
.
.

referred to as standard output) it instead is pass as input to the out-file
command.

The pipe symbol is incredibly useful. It allows us to let information flow
through multiple commands without having to save contents on the way. Now
we will look at combining the pipe symbol with a really useful command...

Our variable $filecontent is of type "object" which means it is not neces-
sarily obvious what you can use it for. This is where the pipe symbol and the
get-member comes in handy. The get-member is so useful that you will
find yourself command using the command very frequently so if you prefer
less typing you may be pleased to know the alias is gm. Here is gm in action:

The output has been curtailed here but typically gm will show you
what you can do or use from an object or variable. Remember earlier the
($city).Length ? By using $city | gm it was clear that Length was a property
of the variable $city that could be queried.

8.1 Exercise

1. Create and save a text file with notepad.exe containing your address.
Call the file address.txt. Use get-content to display the file address.txt
contents.

2. Assign the contents of address.txt to a variable $address and display
the contents.

3. Create a multi-line string variable $workaddress with your work address

4. Create a variable $myname with your firstname and surname in it. Use
the pipe symbol and gm to work out what methods are available to
make it all uppercase or lowercase.

21



Listing 28: Putting commands into a script that greets with the current year
# This is a comment - commenting your scripts will make them
# more understandable for yourself and others.
# Comments begin with the hash symbol #

### Store today ’s year in a variable called "year"
$year =(get -date -UFormat "%Y")

### Ask the user for their name and store in variable "name"
$name=read -host "What␣is␣you␣name?"

### Write out a reply using the values name and day
write -host "Hello␣$name.␣␣This␣year␣is␣$year"

9 Scripts
So far we have been looking at PowerShell as a shell environment but now
we will look at using PowerShell for writing scripts. By saving a series of
commands to a file we can invoke the series again and again without having
to retype. The file we save is a plain text file but with the file extension .ps1
to indicate it may be invoked (or executed).

Listing 28 (page 21) details the sequence of commands which can be typed
in PowerShell ISE. By saving the above listing in m:\report-thisyear.ps1 and
then the script may be run (or executed) by clicking on the run button in the
PowerShell ISE (see Figure 4, page 22).

Alternatively open a PowerShell window, cd into the same folder as the
saved file and type: m :\report-thisyear.ps1.

9.1 Exercise

1. Type in the previous listing in notepad.exe

2. Save as "report-thisyear.ps1" (you have to change the file extension).

3. Try running "report-thisyear.ps1" - you will need to specify the full
path to the script.

4. Open "report-thisyear.ps1" in Notepad.exe again. Copy all the code to
the clipboard.

5. Open the PowerShell ISE

6. Paste the contents of the clipboard into a new document in PowerShell
ISE.

22



Figure 4: Running a script in the PowerShell ISE.

7. Save as "report-thisyear2.ps1".

8. Use the run button to run the script

Although powershell scripts may be written in Notepad.exe it should be
apparent that using PowerShell ISE has several advantages.

10 Logic and loops for flow control
PowerShell like other coding environments allows for the asking of questions
and looping a given number of times within scripts. The ability to do some-
thing dependent on something else, or to repeat a series of commands is the
key to the usefulness of scripts. They allow us to save time doing mundane
predictable processes.

23



Listing 29: Using the if else and elseif statements
[string] $name=read -host "What␣is␣your␣name?␣"
if ( $name.length -lt 5 ) {

write -host "$name␣is␣a␣short␣name"
} elseif ( $name.length -lt 9 ) {

write -host "$name␣is␣a␣medium␣length␣name"
} else {

write -host "$name␣is␣long␣␣-␣are␣you␣tired␣typing␣it?"
}

Listing 30: Using the for loop
PS M:\svn > for ($a = 50; $a -ge 0; $a=$a -10) {
>> $a
>> }
>>
50
40
30
20
10
0
PS M:\svn >

10.1 If

Listing 29 (page 23) demonstrates flow control based on if, else and elseif
statements. The computers asks for your name and then outputs a different
message based on a computer value (length) of the name. If the script is run
then Jim will get a different response from Claire and Ebeneezer will have a
different response again.

10.2 For

The for command enables iteration over a range with a given step sequence.
In Listing 30 (page 23) we have a countdown in steps of -10 from 50 to 0.
More usually one is doing a count up in steps of one in which case $a=$a+1
may be abbreviated to $a++ .

10.3 Foreach

If you remember earlier we had a variable $city which had four values. Now
four values is not many but it could be thousands. Listing 31 (page 24) totals
the populations for the cities and calculates and average. The script does
the following on each line:

24



Listing 31: Using the foreach to loop over an array of objects
PS M:\> $pops=@{"Glasgow"=976970;"Edinburgh"=488610;
>> "Aberdeen"=209460;"Dundee"=157690}
>>
PS M:\> [double] $total =0
PS M:\> foreach ($city in $pops.Keys) {
>> $total=$total+$pops.$city
>> }
>> $average=$total / ($pops).Count
>> write -host "Total␣population:␣$total ,␣average:␣$average"
>>
Total population: 1832730 , average: 458182.5

Listing 32: Using a pipe and the measure-object to avoid the need for a loop
$pops=@{"Glasgow"=976970;"Edinburgh"=488610;
>> "Aberdeen"=209460;"Dundee"=157690}
>>
($pops.Values | Measure -Object -average ). Average

1. The hash variable $pops is initialised with the names and populations
of four Scottish cities.

2. We initialise a the variable $total with type double and a zero value.

3. The foreach command indicates that for each value in turn in the
$pops.$keys we should assign that value to $city and apply the code
between the opening { brace and the closing } brace.

4. The one line inside the braces adds the population of the current value
of the $city variable by accessing the hash $pops.$city .

5. The foreach loop restarts with the next value in $pops.Keys when it
encounters the closing } brace for as long as there are still values.

6. The value for variable $average is calculated using the $total divided
by the number of cities in $pops.Count .

7. The results are printed out.

Of course calculating an average is a fairly common requirement. In
PowerShell it is usually possible to do things in more than one way. We
could have simplified the task eliminating the need for a loop by instead
using a pipe and the measure-object command as in Listing 32 (page 24).

25



Listing 33: How much time has passed since Nelson Mandela was born?
PS M:\> [datetime] $born="18␣July␣1918"
PS M:\> ((get -date).Year -$born.Year)
96
PS M:\> ((get -date)-$born)

Days : 35202
Hours : 10
Minutes : 25
Seconds : 37
Milliseconds : 526
Ticks : 30414903375268673
TotalDays : 35202.4344621165
TotalHours : 844858.427090796
TotalMinutes : 50691505.6254478
TotalSeconds : 3041490337.52687
TotalMilliseconds : 3041490337526.87

PS M:\>

10.4 Exercise

1. Open the PowerShell ISE

2. Write a script with a hash of people you know and their birthday.

3. Add a question to ask for a person.

4. Return the birthday for that person.

11 Advanced Topics

11.1 More date and time
Those who have scripted in other languages know that date and time can be
interesting to handle! PowerShell does a good job of handling date and time.
Date and time are held in variables of type

datetime

.
Listing 33 (page 25) is an example looking at Nelson Mandela’s birth date

and the amount of time passed since then.
Note that when two

datetime

26



Listing 34: Assigning a date
PS M:\> [datetime] $b="11:25␣pm␣7␣July␣1998"
PS M:\> $b

07 July 1998 23:25:00

values are subtracted the difference is of type

timespan

which is measured in ticks. One second lasts for 10000000 ticks.
Listing 34 (page 26) illustrates assigning a point in time to a [datetime]

variable. PowerShell does a reasonable job of working out what is meant but
checking input style is recommended as "pm" is accepted bu "p.m." is not!

11.2 Exercise

Using powershell calculate if you have lived for:

1. A million seconds?

2. A million minutes?

3. A million hours?

4. Calculate your age in units of millions of minutes.

11.3 Handling Data - Using CSV files

In Table 5.7 the population of Scottish cities was tabulated. Being able to
access and manipulate tables of data is an essential part of the modern know-
ledge economy. PowerShell has some very useful features for accessing and
referencing data read from files.

Being able to read and process this data can be very useful. There are
ways to address Excel files using the COM Object Excel.Application how-
ever these examples are going to use CSV file formats and the PowerShell
command import-csv .

Table 11.3 is a representation of the contents of the file "element.csv".
Listing 35 (page 27) shows how we can access that data in powershell.

27



Element Symbol Protons Neutrons
Iron Fe 26 30
Oxygen O 8 8
Hydrogen H 1 0
Carbon C 6 6

Table 3: Selected chemical elements and their properties

Listing 35: Importing a CSV file into a tabular data object
PS C:\Workspace > $elements=Import -Csv .\element.csv
PS C:\Workspace > $elements

Element Symbol
Protons Neutrons
------- ------
------- --------
Iron Fe
26 30
Oxygen O
8 8
Hydrogen H
1 0
Carbon C
6 6

PS C:\Workspace > $elements.Protons
26
8
1
6
PS C:\Workspace > ($elements.Protons | Measure -Object -sum).sum
41

28



Listing 36: Accessing the University hierarchy XML
PS C:\Workspace > $webClient = new -object System.Net.WebClient
PS C:\Workspace > $webClient.Headers.Add("user -agent", "PowerShell Script ")
PS C:\Workspace > $url="https :// www.org.planning.ed.ac.uk/webware/units.xml"
PS C:\Workspace > $webClient.DownloadFile($url ,"c:\ workspace\units.xml")
PS C:\Workspace > [xml] $hierarchy=Get -Content C:\ Workspace\units.xml

11.4 Exercise

1. Create a CSV file of elements with values shown in Table 11.3 (page 27).

2. Import the data into a variable $elements

3. Calculate the average number of protons (tip = Measure-Object -
average)

4. Print element symbols were the number of protons equals the number
of neutrons.

11.5 Advanced: Handling XML data and loading a .Net
framework

Many data including metadata are now stored in eXtensible Markup Lan-
guage (XML). PowerShell can handle objects which are XML by declaring
them as [XML] .

Many data including metadata are now stored in eXtensible Markup Lan-
guage (XML). PowerShell can handle objects which are XML by declaring
them as

XML

.
The example in Listing 36 (page 28) loads the current University of

Edinburgh Organisation Hierarchy. To do this we need to load the Sys-
tem.NetcWebClient object. If you have used VBScript before then loading a
.Net framework will be familiar.

We now have an XML object $hierarchy. Unfortunately the XML file is
really just a flat excel export of units with a field saying which level they
reside and which is their parent. We can see this if we select the rows a level
2 of the University hierarchy as in Listing 36 (page 29). Note only the first
and last level 2 units are shown for brevity.

Ideally the XML would be structured hierarchically. To transform the
XML we need to load another .Net framework. We also need the transform
which fortunately is available as a web download. Listing 38 (page 31) details

29



Listing 37: Accessing the University hierarchy level 2 units (Colleges)
PS C:\Workspace > $hierarchy.ROWSET.ROW | where {$_.UNIT_LEVEL -eq 2}
num : 2
UNIT_CODE : HSS
UNIT_DESCRIPTION_LONG : College of Humanities and Social Science
UNIT_DESCRIPTION_SHORT : HSS
UNIT_LEVEL : 2
UNIT_PARENT : UOE
CATEGORY_AB_ACTIVITY : A
URL : http ://www.hss.ed.ac.uk/
UNIT_ADDRESS_LINE_1 : 57 George Square
UNIT_ADDRESS_LINE_2 : Edinburgh
UNIT_POSTCODE : EH8 9JU
CURRENT_STATUS : A
ACTIVE_FROM_DATE : 2002 -08 -01 T00 :00:00
HEAD_OF_UNIT : Professor XXXXXXXXXXX
HOU_EMAIL : Head.CHSS@ed.ac.uk
HOU_ADDRESS_LINE_1 : 55 George Square
HOU_ADDRESS_LINE_2 : Edinburgh
HOU_POSTCODE : EH8 9JU
CONTACT : XX XXXXXX XXXXXX
CONTACT_EMAIL : XXXXX.XXXXXX@ed.ac.uk
CONTACT_ADDRESS_LINE_1 : 55 George Square
CONTACT_ADDRESS_LINE_2 : Edinburgh
CONTACT_POSTCODE : EH8 9JU
LAST_UPDATED : 2014 -02 -27 T15 :31:00
UPDATED_BY : ORG
SORT_DESCRIPTION : 1

.

.

.

num : 9
UNIT_CODE : ACS
UNIT_DESCRIPTION_LONG : Student and Academic Services
UNIT_DESCRIPTION_SHORT : SASG
UNIT_LEVEL : 2
UNIT_PARENT : UOE
URL : http ://www.ed.ac.uk/misc/acss.html
UNIT_ADDRESS_LINE_1 : Old College
UNIT_ADDRESS_LINE_2 : South Bridge
UNIT_ADDRESS_LINE_3 : Edinburgh
UNIT_POSTCODE : EH8 9YL
CURRENT_STATUS : I
ACTIVE_FROM_DATE : 2002 -08 -01 T00 :00:00
INACTIVE_FROM_DATE : 2006 -02 -06 T00 :00:00
HEAD_OF_UNIT : XX XXXX XXXXXXX
HOU_EMAIL : University.Secretary@ed.ac.uk
HOU_ADDRESS_LINE_1 : Old College
HOU_ADDRESS_LINE_2 : South Bridge
HOU_ADDRESS_LINE_3 : Edinburgh
HOU_POSTCODE : EH8 9YL
LAST_UPDATED : 2006 -02 -06 T16 :20:00
UPDATED_BY : XXXXX
SORT_DESCRIPTION : 4

30



the how we use another .Net framework to perform a transform on the XML.
Note that the URL has been wrapped. The transformed XML object in $tree
has an array of colleges under the top node university.

12 Further Help
PowerShell is easy to do quick experiments of how it will behave. Coupled
with the get-method cmdlet (aliased to gm) one can quickly assess what meth-
ods are available for objects. Occasionally and object will be suitably opaque
- but a web search will usually identify some existing use cases. It hardly
needs saying that the best source for definitive answers is Microsoft but for
examples the Microsoft Scripting Guys are particularly useful. Choose their
examples first.

Other sources should be taken with a degree of caution. In particular do
not run code that you have not "eye-balled" to verify you understand what
it will do.

Finally, whilst there may be books out there the best source of help
is reputable sites on the Internet providing one takes care to realise that
technology is a rapidly changing discipline.

31



Listing 38: Transforming the XML
PS C:\> $webClient = new -object System.Net.WebClient
PS C:\> $webClient.Headers.Add("user -agent", "PowerShell Script ")
PS C:\> $xslurl="http :// edin.ac/1 DydneY"
PS C:\> $xslfile="c:\ workspace\uoe -create -hierarchical.xsl"
PS C:\> $webClient.DownloadFile($xslurl ,$xslfile)
PS C:\> $xslt = New -Object System.Xml.Xsl.XslCompiledTransform
PS C:\> $xslt.Load($xslfile)
PS C:\> $xslt.Transform ("C:\ Workspace\units.xml","C:\ Workspace\tree.xml")
PS C:\> [xml]$tree=Get -Content C:\ Workspace\tree.xml
PS C:\> $tree

xml university
--- ----------
version="1.0" encoding="utf -8" university

PS C:\Workspace > $tree.university

unit : UOE
UNIT_CODE : UOE
UNIT_PARENT :
UNIT_DESCRIPTION_LONG : University of Edinburgh
UNIT_LEVEL : 1
LAST_UPDATED : 2002 -10 -25 T00 :00:00
UPDATED_BY : ORG
college : {college , college , college , college...}

PS C:\Workspace > $tree.university.college [0]

unit : HSS
UNIT_CODE : HSS
UNIT_PARENT : UOE
UNIT_DESCRIPTION_LONG : College of Humanities and Social Science
UNIT_LEVEL : 2
LAST_UPDATED : 2014 -02 -27 T15 :31:00
UPDATED_BY : ORG
node : node

PS C:\ Workspace

32



13 Listings

Listings
1 Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Hello World . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Getting help for the write-host command . . . . . . . . . . . . 7
4 Integer variables and arithmetic . . . . . . . . . . . . . . . . . 9
5 Integers and strings . . . . . . . . . . . . . . . . . . . . . . . . 9
6 Arithmetic with numbers with decimal points . . . . . . . . . 9
7 String variables . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8 Reading user input . . . . . . . . . . . . . . . . . . . . . . . . 10
9 Storing a user’s response . . . . . . . . . . . . . . . . . . . . . 10
10 Multiline string variables . . . . . . . . . . . . . . . . . . . . . 11
11 Results can be unexpected if variable types are mixed . . . . . 11
12 Determining the type of a variable or object . . . . . . . . . . 11
13 Forcing (declaring) type of variable or object) . . . . . . . . . 12
14 A string can be viewed as an array of characters . . . . . . . . 12
15 An array containing the names of Scottish cities . . . . . . . . 13
16 A directory listing is an array of file system objects . . . . . . 13
17 Using a hash to store Scottish cities and their populations . . 14
18 Adding to a hash table . . . . . . . . . . . . . . . . . . . . . . 14
19 Accessing a hash value using its key . . . . . . . . . . . . . . . 15
20 Accessing a hash value using input from a user . . . . . . . . . 15
21 Deleting a variable or object . . . . . . . . . . . . . . . . . . . 15
22 The PowerShell environment . . . . . . . . . . . . . . . . . . . 16
23 Accessing a single environment value . . . . . . . . . . . . . . 17
24 Accessing a single environment value . . . . . . . . . . . . . . 17
25 Accessing the content of a file . . . . . . . . . . . . . . . . . . 19
26 Writing to a file . . . . . . . . . . . . . . . . . . . . . . . . . . 19
27 Using get-member (gm) to discover what methods can be ap-

plied to variable . . . . . . . . . . . . . . . . . . . . . . . . . . 20
28 Putting commands into a script that greets with the current

year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
29 Using the if else and elseif statements . . . . . . . . . . . . . . 23
30 Using the for loop . . . . . . . . . . . . . . . . . . . . . . . . . 23
31 Using the foreach to loop over an array of objects . . . . . . . 24
32 Using a pipe and the measure-object to avoid the need for a

loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
33 How much time has passed since Nelson Mandela was born? . 25

33



34 Assigning a date . . . . . . . . . . . . . . . . . . . . . . . . . 26
35 Importing a CSV file into a tabular data object . . . . . . . . 27
36 Accessing the University hierarchy XML . . . . . . . . . . . . 28
37 Accessing the University hierarchy level 2 units (Colleges) . . . 29
38 Transforming the XML . . . . . . . . . . . . . . . . . . . . . . 31

34


