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PREFACE

This is, on the surface, a book about writing device drivers for the Linux system.
That is a worthy goal, of course; the flow of new hardware products is not likely
to slow down anytime soon, and somebody is going to have to make all those
new gadgets work with Linux. But this book is also about how the Linux kernel
works and how to adapt its workings to your needs or interests. Linux is an open
system; with this book, we hope, it will be more open and accessible to a larger
community of developers.

Much has changed with Linux since the first edition of this book came out. Linux
now runs on many more processors and supports a much wider variety of hard-
war e. Many of the internal programming interfaces have changed significantly.
Thus, the second edition. This book covers the 2.4 kernel, with all of the new fea-
tur es that it provides, while still giving a look backward to earlier releases for
those who need to support them.

We hope you’ll enjoy reading this book as much as we have enjoyed writing it.

Alessandro’s Introduction
As an electronic engineer and a do-it-yourself kind of person, I have always
enjoyed using the computer to control external hardware. Ever since the days of
my father’s Apple IIe, I have been looking for another platform wher e I could con-
nect my custom circuitry and write my own driver software. Unfortunately, the PC
of the 1980s wasn’t powerful enough, at either the software or the hardware level:
the internal design of the PC is much worse than that of the Apple II, and the
available documentation has long been unsatisfying. But then Linux appeared, and
I decided to give it a try by buying an expensive 386 motherboard and no propri-
etary software at all.
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Preface

At the time, I was using Unix systems at the university and was greatly excited by
the smart operating system, in particular when supplemented by the even smarter
utilities that the GNU project donates to the user base. Running the Linux kernel
on my own PC motherboard has always been an interesting experience, and I
could even write my own device drivers and play with the soldering iron once
again. I continue to tell people, “When I grow up, I wanna be a hacker,” and
GNU/Linux is the perfect platform for such dreams. That said, I don’t know if I
will ever grow up.

As Linux matures, more and more people get interested in writing drivers for cus-
tom circuitry and for commercial devices. As Linus Torvalds noted, “We’r e back to
the times when men were men and wrote their own device drivers.”

Back in 1996, I was hacking with my own toy device drivers that let me play with
some loaned, donated, or even home-built hardware. I already had contributed a
few pages to the Ker nel Hacker’s Guide, by Michael Johnson, and began writing
ker nel-related articles for Linux Journal, the magazine Michael founded and
dir ected. Michael put me in touch with Andy Oram at O’Reilly; he expressed an
inter est in having me write a whole book about device drivers, and I accepted this
task, which kept me pretty busy for quite a lot of time.

In 1999 it was clear I couldn’t find the energy to update the book by myself: my
family had grown and I had enough programming work to keep busy producing
exclusively GPL’d software. Besides, the kernel had grown bigger and supported
mor e diverse platforms than it used to, and the API had turned more broad and
mor e matur e. That’s when Jonathan offer ed to help: he had just the right skills and
enthusiasm to start the update and to force me to stay on track with the sched-
ule — which slipped quite a lot anyway. He’s been an invaluable mate in the pro-
cess, which he pushed forward with good skills and dedication, definitely more
than I could put in. I really enjoyed working with him, both on a technical and
personal level.

Jon’s Introduction
I first started actively playing with Linux early in 1994, when I convinced my
employer to buy me a laptop from a company called, then, Fintronic Systems.
Having been a Unix user since the beginning of the 1980s, and having played
ar ound in the source since about then, I was immediately hooked. Even in 1994,
Linux was a highly capable system, and the first truly free system that I had ever
been able to work with. I lost almost all my interest in working with proprietary
systems at that point.

I didn’t ever really plan to get into writing about Linux, though. Instead, when I
started talking with O’Reilly about helping with the second edition of this book, I
had recently quit my job of 18 years to start a Linux consulting company. As a way
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of attracting attention to ourselves, we launched a Linux news site, Linux Weekly
News (http://lwn.net), which, among other things, covered kernel development. As
Linux exploded in popularity, the web site did too, and the consulting business
was eventually forgotten.

But my first interest has always been systems programming. In the early days, that
inter est took the form of “fixing” the original BSD Unix paging code (which has to
have been a horrible hack job) or making recalcitrant tape drives work on a
VAX/VMS system (where source was available, if you didn’t mind the fact that it
was in assembly and Bliss, and came on microfiche only). As time passed, I got to
hack drivers on systems with names like Alliant, Ardent, and Sun, before moving
into tasks such as deploying Linux as a real-time radar data collection system or, in
the process of writing this book, fixing the I/O request queue locking in the Linux
floppy driver.

So I welcomed the opportunity to work on this book for several reasons. As much
as anything, it was a chance to get deeply into the code and to help others with a
similar goal. Linux has always been intended to be fun as well as useful, and play-
ing around with the kernel is one of the most fun parts of all—at least, for those
with a certain warped sense of fun. Working with Alessandro has been a joy, and I
must thank him for trusting me to hack on his excellent text, being patient with
me as I came up to speed and as I broke things, and for that jet-lagged bicycle
tour of Pavia. Writing this book has been a great time.

Audience of This Book
On the technical side, this text should offer a hands-on approach to understanding
the kernel internals and some of the design choices made by the Linux develop-
ers. Although the main, official target of the book is teaching how to write device
drivers, the material should give an interesting overview of the kernel implementa-
tion as well.

Although real hackers can find all the necessary information in the official kernel
sources, usually a written text can be helpful in developing programming skills.
The text you are appr oaching is the result of hours of patient grepping through
the kernel sources, and we hope the final result is worth the effort it took.

This book should be an interesting source of information both for people who
want to experiment with their computer and for technical programmers who face
the need to deal with the inner levels of a Linux box. Note that “a Linux box” is a
wider concept than “a PC running Linux,” as many platforms are supported by our
operating system, and kernel programming is by no means bound to a specific
platfor m. We hope this book will be useful as a starting point for people who
want to become kernel hackers but don’t know where to start.

Preface
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Preface

The Linux enthusiast should find in this book enough food for her mind to start
playing with the code base and should be able to join the group of developers
that is continuously working on new capabilities and perfor mance enhancements.
This book does not cover the Linux kernel in its entirety, of course, but Linux
device driver authors need to know how to work with many of the kernel’s sub-
systems. It thus makes a good introduction to kernel programming in general.
Linux is still a work in progr ess, and there’s always a place for new programmers
to jump into the game.

If, on the other hand, you are just trying to write a device driver for your own
device, and you don’t want to muck with the kernel internals, the text should be
modularized enough to fit your needs as well. If you don’t want to go deep into
the details, you can just skip the most technical sections and stick to the standard
API used by device drivers to seamlessly integrate with the rest of the kernel.

The main target of this book is writing kernel modules for version 2.4 of the Linux
ker nel. A module is object code that can be loaded at runtime to add new func-
tionality to a running kernel. Wherever possible, however, our sample code also
runs on versions 2.2 and 2.0 of the kernel, and we point out where things have
changed along the way.

Organization of the Material
The book introduces its topics in ascending order of complexity and is divided
into two parts. The first part (Chapters 1 to 10) begins with the proper setup of
ker nel modules and goes on to describe the various aspects of programming that
you’ll need in order to write a full-featured driver for a char-oriented device. Every
chapter covers a distinct problem and includes a “symbol table” at the end, which
can be used as a refer ence during actual development.

Thr oughout the first part of the book, the organization of the material moves
roughly from the software-oriented concepts to the hardware-r elated ones. This
organization is meant to allow you to test the software on your own computer as
far as possible without the need to plug external hardware into the machine. Every
chapter includes source code and points to sample drivers that you can run on any
Linux computer. In Chapter 8 and Chapter 9, however, we’ll ask you to connect an
inch of wire to the parallel port in order to test out hardware handling, but this
requir ement should be manageable by everyone.

The second half of the book describes block drivers and network interfaces and
goes deeper into more advanced topics. Many driver authors will not need this
material, but we encourage you to go on reading anyway. Much of the material
found there is inter esting as a view into how the Linux kernel works, even if you
do not need it for a specific project.
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Backg round Infor mation
In order to be able to use this book, you need to be confident with C program-
ming. A little Unix expertise is needed as well, as we often refer to Unix com-
mands and pipelines.

At the hardware level, no previous expertise is requir ed to understand the material
in this book, as long as the general concepts are clear in advance. The text isn’t
based on specific PC hardware, and we provide all the needed information when
we do refer to specific hardware.

Several free software tools are needed to build the kernel, and you often need
specific versions of these tools. Those that are too old can lack needed features,
while those that are too new can occasionally generate broken kernels. Usually,
the tools provided with any current distribution will work just fine. Tool version
requir ements vary from one kernel to the next; consult Documentation/Changes in
the source tree of the kernel you are using for exact requir ements.

Sour ces of Further Infor mation
Most of the information we provide in this book is extracted directly from the ker-
nel sources and related documentation. In particular, pay attention to the Docu-
mentation dir ectory that is found in the kernel source tree. There is a wealth of
useful information there, including documentation of an increasing part of the ker-
nel API (in the DocBook subdir ectory).

Ther e ar e a few interesting books out there that extensively cover related topics;
they are listed in the bibliography.

Ther e is much useful information available on the Internet; the following is a sam-
pling. Internet sites, of course, tend to be highly volatile while printed books are
hard to update. Thus, this list should be regarded as being somewhat out of date.

http://www.ker nel.org
ftp://ftp.ker nel.org

This site is the home of Linux kernel development. You’ll find the latest kernel
release and related information. Note that the FTP site is mirror ed thr oughout
the world, so you’ll most likely find a mirror near you.

http://www.linuxdoc.or g
The Linux Documentation Project carries a lot of interesting documents called
“HOWTOs”; some of them are pretty technical and cover kernel-r elated topics.

Preface
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http://www.linux-mag.com/depts/gear.html
The “Gearheads only” section from Linux Magazine often runs kernel-oriented
articles from well-known developers.

http://www.linux.it/ker neldocs
This page contains many kernel-oriented magazine articles written by Alessan-
dr o.

http://lwn.net
At the risk of seeming self-serving, we’ll point out this news site (edited by
one of your authors) which, among other things, offers regular kernel devel-
opment coverage.

http://kt.zork.net
Ker nel Traf fic is a popular site that provides weekly summaries of discussions
on the Linux kernel development mailing list.

http://www.atnf.csir o.au/˜rgooch/linux/docs/ker nel-newsflash.html
The Kernel Newsflash site is a clearinghouse for late-breaking kernel news. In
particular, it concentrates on problems and incompatibilities in current kernel
releases; thus, it can be a good resource for people trying to figure out why
the latest development kernel broke their drivers.

http://www.ker nelnotes.org
Ker nel Notes is a classic site with information on kernel releases, unofficial
patches, and more.

http://www.ker nelnewbies.org
This site is oriented toward new kernel developers. There is beginning infor-
mation, an FAQ, and an associated IRC channel for those looking for immedi-
ate assistance.

http://lksr.or g
The Linux Kernel Source Reference is a web interface to a CVS archive con-
taining an incredible array of historical kernel releases. It can be especially
useful for finding out just when a particular change occurred.

http://www.linux-mm.or g
This page is oriented toward Linux memory management development. It con-
tains a fair amount of useful information and an exhaustive list of kernel-ori-
ented web links.

http://www.conecta.it/linux
This Italian site is one of the places where a Linux enthusiast keeps updated
infor mation about all the ongoing projects involving Linux. Maybe you already
know an interesting site with HTTP links about Linux development; if not, this
one is a good starting point.
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Online Ver sion and License
The authors have chosen to make this book freely available under the GNU Free
Documentation License, version 1.1.

Full license
http://www.or eilly.com/catalog/linuxdrive2/chapter/licenseinfo.html;

HTML
http://www.or eilly.com/catalog/linuxdrive2/chapter/book;

DocBook
http://www.or eilly.com/catalog/linuxdrive2/chapter/bookindex.xml;

PDF
http://www.or eilly.com/catalog/linuxdrive2/chapter/bookindexpdf.html.

Conventions Used in This Book
The following is a list of the typographical conventions used in this book:

Italic Used for file and directory names, program and command
names, command-line options, URLs, and new terms

Constant Width Used in examples to show the contents of files or the out-
put from commands, and in the text to indicate words
that appear in C code or other literal strings

Constant Italic Used to indicate variable options, keywords, or text that
the user is to replace with an actual value

Constant Bold Used in examples to show commands or other text that
should be typed literally by the user

Pay special attention to notes set apart from the text with the following icons:

This is a tip. It contains useful supplementary information about the
topic at hand.

This is a warning. It helps you solve and avoid annoying problems.
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Preface

We’d Like to Hear from You
We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mis-
takes!). Please let us know about any errors you find, as well as your suggestions
for future editions, by writing to:

O’Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web page for the book, where we list errata, examples, or any addi-
tional information. You can access this page at:

http://www.or eilly.com/catalog/linuxdrive2

To comment or ask technical questions about this book, send email to:

bookquestions@or eilly.com

For more infor mation about our books, conferences, software, Resource Cen-
ters,and the O’Reilly Network, see our web site at:

http://www.or eilly.com
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CHAPTER ONE

AN INTRODUCTION TO
DEVICE DRIVERS

As the popularity of the Linux system continues to grow, the interest in writing
Linux device drivers steadily increases. Most of Linux is independent of the hard-
war e it runs on, and most users can be (happily) unaware of hardwar e issues. But,
for each piece of hardware supported by Linux, somebody somewhere has written
a driver to make it work with the system. Without device drivers, there is no func-
tioning system.

Device drivers take on a special role in the Linux kernel. They are distinct “black
boxes” that make a particular piece of hardware respond to a well-defined internal
pr ogramming inter face; they hide completely the details of how the device works.
User activities are per formed by means of a set of standardized calls that are inde-
pendent of the specific driver; mapping those calls to device-specific operations
that act on real hardware is then the role of the device driver. This programming
inter face is such that drivers can be built separately from the rest of the kernel,
and “plugged in” at runtime when needed. This modularity makes Linux drivers
easy to write, to the point that there are now hundreds of them available.

Ther e ar e a number of reasons to be interested in the writing of Linux device
drivers. The rate at which new hardware becomes available (and obsolete!) alone
guarantees that driver writers will be busy for the foreseeable future. Individuals
may need to know about drivers in order to gain access to a particular device that
is of interest to them. Hardware vendors, by making a Linux driver available for
their products, can add the large and growing Linux user base to their potential
markets. And the open source nature of the Linux system means that if the driver
writer wishes, the source to a driver can be quickly disseminated to millions of
users.
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Chapter 1: An Introduction to Device Driver s

This book will teach you how to write your own drivers and how to hack around
in related parts of the kernel. We have taken a device-independent approach; the
pr ogramming techniques and interfaces are presented, whenever possible, without
being tied to any specific device. Each driver is differ ent; as a driver writer, you
will need to understand your specific device well. But most of the principles and
basic techniques are the same for all drivers. This book cannot teach you about
your device, but it will give you a handle on the background you need to make
your device work.

As you learn to write drivers, you will find out a lot about the Linux kernel in gen-
eral; this may help you understand how your machine works and why things
ar en’t always as fast as you expect or don’t do quite what you want. We’ll intro-
duce new ideas gradually, starting off with very simple drivers and building upon
them; every new concept will be accompanied by sample code that doesn’t need
special hardware to be tested.

This chapter doesn’t actually get into writing code. However, we intr oduce some
backgr ound concepts about the Linux kernel that you’ll be glad you know later,
when we do launch into programming.

The Role of the Device Driver
As a programmer, you will be able to make your own choices about your driver,
choosing an acceptable trade-off between the programming time requir ed and the
flexibility of the result. Though it may appear strange to say that a driver is “flexi-
ble,” we like this word because it emphasizes that the role of a device driver is
pr oviding mechanism, not policy.

The distinction between mechanism and policy is one of the best ideas behind the
Unix design. Most programming problems can indeed be split into two parts:
“what capabilities are to be provided” (the mechanism) and “how those capabili-
ties can be used” (the policy). If the two issues are addr essed by differ ent parts of
the program, or even by differ ent pr ograms altogether, the software package is
much easier to develop and to adapt to particular needs.

For example, Unix management of the graphic display is split between the X
server, which knows the hardware and offers a unified interface to user programs,
and the window and session managers, which implement a particular policy with-
out knowing anything about the hardware. People can use the same window man-
ager on differ ent hardwar e, and differ ent users can run differ ent configurations on
the same workstation. Even completely differ ent desktop environments, such as
KDE and GNOME, can coexist on the same system. Another example is the lay-
er ed structur e of TCP/IP networking: the operating system offers the socket
abstraction, which implements no policy regarding the data to be transferred,
while differ ent servers are in charge of the services (and their associated policies).
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Mor eover, a server like ftpd pr ovides the file transfer mechanism, while users can
use whatever client they prefer; both command-line and graphic clients exist, and
anyone can write a new user interface to transfer files.

Wher e drivers are concer ned, the same separation of mechanism and policy
applies. The floppy driver is policy free — its role is only to show the diskette as a
continuous array of data blocks. Higher levels of the system provide policies, such
as who may access the floppy drive, whether the drive is accessed directly or via a
filesystem, and whether users may mount filesystems on the drive. Since differ ent
envir onments usually need to use hardware in dif ferent ways, it’s important to be
as policy free as possible.

When writing drivers, a programmer should pay particular attention to this funda-
mental concept: write kernel code to access the hardware, but don’t force particu-
lar policies on the user, since differ ent users have differ ent needs. The driver
should deal with making the hardware available, leaving all the issues about how
to use the hardware to the applications. A driver, then, is flexible if it offers access
to the hardware capabilities without adding constraints. Sometimes, however,
some policy decisions must be made. For example, a digital I/O driver may only
of fer byte-wide access to the hardware in order to avoid the extra code needed to
handle individual bits.

You can also look at your driver from a differ ent perspective: it is a software layer
that lies between the applications and the actual device. This privileged role of the
driver allows the driver programmer to choose exactly how the device should
appear: differ ent drivers can offer differ ent capabilities, even for the same device.
The actual driver design should be a balance between many differ ent considera-
tions. For instance, a single device may be used concurrently by differ ent pr o-
grams, and the driver programmer has complete freedom to determine how to
handle concurrency. You could implement memory mapping on the device inde-
pendently of its hardware capabilities, or you could provide a user library to help
application programmers implement new policies on top of the available primi-
tives, and so forth. One major consideration is the trade-off between the desire to
pr esent the user with as many options as possible and the time in which you have
to do the writing as well as the need to keep things simple so that errors don’t
cr eep in.

Policy-fr ee drivers have a number of typical characteristics. These include support
for both synchronous and asynchronous operation, the ability to be opened multi-
ple times, the ability to exploit the full capabilities of the hardware, and the lack of
softwar e layers to “simplify things” or provide policy-related operations. Drivers of
this sort not only work better for their end users, but also turn out to be easier to
write and maintain as well. Being policy free is actually a common target for soft-
war e designers.

The Role of the Device Driver
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Chapter 1: An Introduction to Device Driver s

Many device drivers, indeed, are released together with user programs to help
with configuration and access to the target device. Those programs can range from
simple utilities to complete graphical applications. Examples include the tunelp
pr ogram, which adjusts how the parallel port printer driver operates, and the
graphical car dctl utility that is part of the PCMCIA driver package. Often a client
library is provided as well, which provides capabilities that do not need to be
implemented as part of the driver itself.

The scope of this book is the kernel, so we’ll try not to deal with policy issues, or
with application programs or support libraries. Sometimes we’ll talk about differ ent
policies and how to support them, but we won’t go into much detail about pro-
grams using the device or the policies they enforce. You should understand, how-
ever, that user programs are an integral part of a software package and that even
policy-fr ee packages are distributed with configuration files that apply a default
behavior to the underlying mechanisms.

Splitting the Ker nel
In a Unix system, several concurrent pr ocesses attend to differ ent tasks. Each pro-
cess asks for system resources, be it computing power, memory, network connec-
tivity, or some other resource. The ker nel is the big chunk of executable code in
charge of handling all such requests. Though the distinction between the differ ent
ker nel tasks isn’t always clearly marked, the kernel’s role can be split, as shown in
Figur e 1-1, into the following parts:

Pr ocess management
The kernel is in charge of creating and destroying processes and handling
their connection to the outside world (input and output). Communication
among differ ent pr ocesses (thr ough signals, pipes, or interprocess communica-
tion primitives) is basic to the overall system functionality and is also handled
by the kernel. In addition, the scheduler, which controls how processes share
the CPU, is part of process management. More generally, the kernel’s process
management activity implements the abstraction of several processes on top of
a single CPU or a few of them.

Memory management
The computer’s memory is a major resource, and the policy used to deal with
it is a critical one for system perfor mance. The kernel builds up a virtual
addr essing space for any and all processes on top of the limited available
resources. The differ ent parts of the kernel interact with the memory-manage-
ment subsystem through a set of function calls, ranging from the simple mal-
loc/fr ee pair to much more exotic functionalities.

Filesystems
Unix is heavily based on the filesystem concept; almost everything in Unix can
be treated as a file. The kernel builds a structured filesystem on top of
unstructur ed hardwar e, and the resulting file abstraction is heavily used
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Figur e 1-1. A split view of the kernel

thr oughout the whole system. In addition, Linux supports multiple filesystem
types, that is, differ ent ways of organizing data on the physical medium. For
example, diskettes may be formatted with either the Linux-standard ext2
filesystem or with the commonly used FAT filesystem.

Device control
Almost every system operation eventually maps to a physical device. With the
exception of the processor, memory, and a very few other entities, any and all
device control operations are per formed by code that is specific to the device
being addressed. That code is called a device driver. The kernel must have
embedded in it a device driver for every peripheral present on a system, from
the hard drive to the keyboard and the tape streamer. This aspect of the ker-
nel’s functions is our primary interest in this book.

Splitting the Ker nel
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Chapter 1: An Introduction to Device Driver s

Networking
Networking must be managed by the operating system because most network
operations are not specific to a process: incoming packets are asynchr onous
events. The packets must be collected, identified, and dispatched before a
pr ocess takes care of them. The system is in charge of delivering data packets
acr oss pr ogram and network interfaces, and it must control the execution of
pr ograms according to their network activity. Additionally, all the routing and
addr ess resolution issues are implemented within the kernel.

Toward the end of this book, in Chapter 16, you’ll find a road map to the Linux
ker nel, but these few paragraphs should suffice for now.

One of the good features of Linux is the ability to extend at runtime the set of fea-
tur es of fered by the kernel. This means that you can add functionality to the ker-
nel while the system is up and running.

Each piece of code that can be added to the kernel at runtime is called a module.
The Linux kernel offers support for quite a few differ ent types (or classes) of mod-
ules, including, but not limited to, device drivers. Each module is made up of
object code (not linked into a complete executable) that can be dynamically linked
to the running kernel by the insmod pr ogram and can be unlinked by the rmmod
pr ogram.

Figur e 1-1 identifies differ ent classes of modules in charge of specific tasks—a
module is said to belong to a specific class according to the functionality it offers.
The placement of modules in Figure 1-1 covers the most important classes, but is
far from complete because more and more functionality in Linux is being modular-
ized.

Classes of Devices and Modules
The Unix way of looking at devices distinguishes between three device types.
Each module usually implements one of these types, and thus is classifiable as a
char module, a block module, or a network module. This division of modules into
dif ferent types, or classes, is not a rigid one; the programmer can choose to build
huge modules implementing differ ent drivers in a single chunk of code. Good pro-
grammers, nonetheless, usually create a differ ent module for each new functional-
ity they implement, because decomposition is a key element of scalability and
extendability.

The three classes are the following:

Character devices
A character (char) device is one that can be accessed as a stream of bytes (like
a file); a char driver is in charge of implementing this behavior. Such a driver
usually implements at least the open, close, read, and write system calls. The
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text console (/dev/console) and the serial ports (/dev/ttyS0 and friends) are
examples of char devices, as they are well repr esented by the stream abstrac-
tion. Char devices are accessed by means of filesystem nodes, such as
/dev/tty1 and /dev/lp0. The only relevant differ ence between a char device and
a regular file is that you can always move back and forth in the regular file,
wher eas most char devices are just data channels, which you can only access
sequentially. There exist, nonetheless, char devices that look like data areas,
and you can move back and forth in them; for instance, this usually applies to
frame grabbers, where the applications can access the whole acquired image
using mmap or lseek.

Block devices
Like char devices, block devices are accessed by filesystem nodes in the /dev
dir ectory. A block device is something that can host a filesystem, such as a
disk. In most Unix systems, a block device can be accessed only as multiples
of a block, where a block is usually one kilobyte of data or another power of
2. Linux allows the application to read and write a block device like a char
device — it per mits the transfer of any number of bytes at a time. As a result,
block and char devices differ only in the way data is managed internally by
the kernel, and thus in the kernel/driver software inter face. Like a char device,
each block device is accessed through a filesystem node and the differ ence
between them is transparent to the user. A block driver offers the kernel the
same interface as a char driver, as well as an additional block-oriented inter-
face that is invisible to the user or applications opening the /dev entry points.
That block interface, though, is essential to be able to mount a filesystem.

Network interfaces
Any network transaction is made through an interface, that is, a device that is
able to exchange data with other hosts. Usually, an interface is a hardware
device, but it might also be a pure softwar e device, like the loopback inter-
face. A network interface is in charge of sending and receiving data packets,
driven by the network subsystem of the kernel, without knowing how individ-
ual transactions map to the actual packets being transmitted. Though both Tel-
net and FTP connections are str eam oriented, they transmit using the same
device; the device doesn’t see the individual streams, but only the data pack-
ets.

Not being a stream-oriented device, a network interface isn’t easily mapped to
a node in the filesystem, as /dev/tty1 is. The Unix way to provide access to
inter faces is still by assigning a unique name to them (such as eth0), but that
name doesn’t have a corresponding entry in the filesystem. Communication
between the kernel and a network device driver is completely differ ent fr om
that used with char and block drivers. Instead of read and write, the kernel
calls functions related to packet transmission.

Other classes of driver modules exist in Linux. The modules in each class exploit
public services the kernel offers to deal with specific types of devices. Therefor e,

Classes of Devices and Modules
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one can talk of universal serial bus (USB) modules, serial modules, and so on. The
most common nonstandard class of devices is that of SCSI* drivers. Although every
peripheral connected to the SCSI bus appears in /dev as either a char device or a
block device, the internal organization of the software is dif ferent.

Just as network interface cards provide the network subsystem with hardware-
related functionality, so a SCSI controller provides the SCSI subsystem with access
to the actual interface cable. SCSI is a communication protocol between the com-
puter and peripheral devices, and every SCSI device responds to the same proto-
col, independently of what controller board is plugged into the computer. The
Linux kernel therefor e embeds a SCSI implementation (i.e., the mapping of file
operations to the SCSI communication protocol). The driver writer has to imple-
ment the mapping between the SCSI abstraction and the physical cable. This map-
ping depends on the SCSI controller and is independent of the devices attached to
the SCSI cable.

Other classes of device drivers have been added to the kernel in recent times,
including USB drivers, FireWir e drivers, and I2O drivers. In the same way that they
handled SCSI drivers, kernel developers collected class-wide features and exported
them to driver implementers to avoid duplicating work and bugs, thus simplifying
and strengthening the process of writing such drivers.

In addition to device drivers, other functionalities, both hardware and software,
ar e modularized in the kernel. Beyond device drivers, filesystems are perhaps the
most important class of modules in the Linux system. A filesystem type determines
how information is organized on a block device in order to repr esent a tree of
dir ectories and files. Such an entity is not a device driver, in that there’s no explicit
device associated with the way the information is laid down; the filesystem type is
instead a software driver, because it maps the low-level data structures to higher-
level data structures. It is the filesystem that determines how long a filename can
be and what information about each file is stored in a directory entry. The filesys-
tem module must implement the lowest level of the system calls that access direc-
tories and files, by mapping filenames and paths (as well as other information,
such as access modes) to data structures stored in data blocks. Such an interface is
completely independent of the actual data transfer to and from the disk (or other
medium), which is accomplished by a block device driver.

If you think of how strongly a Unix system depends on the underlying filesystem,
you’ll realize that such a software concept is vital to system operation. The ability
to decode filesystem information stays at the lowest level of the kernel hierarchy
and is of utmost importance; even if you write a block driver for your new CD-
ROM, it is useless if you are not able to run ls or cp on the data it hosts. Linux
supports the concept of a filesystem module, whose software inter face declar es
the differ ent operations that can be perfor med on a filesystem inode, directory,

* SCSI is an acronym for Small Computer Systems Interface; it is an established standard in
the workstation and high-end server market.
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file, and superblock. It’s quite unusual for a programmer to actually need to write
a filesystem module, because the official kernel already includes code for the most
important filesystem types.

Secur ity Issues
Security is an increasingly important concern in moder n times. We will discuss
security-r elated issues as they come up throughout the book. There are a few gen-
eral concepts, however, that are worth mentioning now.

Security has two faces, which can be called deliberate and incidental. One security
pr oblem is the damage a user can cause through the misuse of existing programs,
or by incidentally exploiting bugs; a differ ent issue is what kind of (mis)functional-
ity a programmer can deliberately implement. The programmer has, obviously,
much more power than a plain user. In other words, it’s as dangerous to run a
pr ogram you got from somebody else from the root account as it is to give him or
her a root shell now and then. Although having access to a compiler is not a secu-
rity hole per se, the hole can appear when compiled code is actually executed;
everyone should be careful with modules, because a kernel module can do any-
thing. A module is just as powerful as a superuser shell.

Any security check in the system is enforced by kernel code. If the kernel has
security holes, then the system has holes. In the official kernel distribution, only
an authorized user can load modules; the system call cr eate_module checks if the
invoking process is authorized to load a module into the kernel. Thus, when run-
ning an official kernel, only the superuser,* or an intruder who has succeeded in
becoming privileged, can exploit the power of privileged code.

When possible, driver writers should avoid encoding security policy in their code.
Security is a policy issue that is often best handled at higher levels within the ker-
nel, under the control of the system administrator. Ther e ar e always exceptions,
however. As a device driver writer, you should be aware of situations in which
some types of device access could adversely affect the system as a whole, and
should provide adequate controls. For example, device operations that affect
global resources (such as setting an interrupt line) or that could affect other users
(such as setting a default block size on a tape drive) are usually only available to
suf ficiently privileged users, and this check must be made in the driver itself.

Driver writers must also be careful, of course, to avoid introducing security bugs.
The C programming language makes it easy to make several types of errors. Many
curr ent security problems are created, for example, by buf fer overrun err ors, in
which the programmer forgets to check how much data is written to a buffer, and
data ends up written beyond the end of the buffer, thus overwriting unrelated

* Version 2.0 of the kernel allows only the superuser to run privileged code, while version
2.2 has more sophisticated capability checks. We discuss this in “Capabilities and
Restricted Operations” in Chapter 5.

Secur ity Issues
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data. Such errors can compromise the entire system and must be avoided. Fortu-
nately, avoiding these errors is usually relatively easy in the device driver context,
in which the interface to the user is narrowly defined and highly controlled.

Some other general security ideas are worth keeping in mind. Any input received
fr om user processes should be treated with great suspicion; never trust it unless
you can verify it. Be careful with uninitialized memory; any memory obtained
fr om the kernel should be zeroed or otherwise initialized before being made avail-
able to a user process or device. Otherwise, information leakage could result. If
your device interprets data sent to it, be sure the user cannot send anything that
could compromise the system. Finally, think about the possible effect of device
operations; if there are specific operations (e.g., reloading the firmwar e on an
adapter board, formatting a disk) that could affect the system, those operations
should probably be restricted to privileged users.

Be careful, also, when receiving software from third parties, especially when the
ker nel is concerned: because everybody has access to the source code, everybody
can break and recompile things. Although you can usually trust precompiled ker-
nels found in your distribution, you should avoid running kernels compiled by an
untrusted friend—if you wouldn’t run a precompiled binary as root, then you’d
better not run a precompiled kernel. For example, a maliciously modified kernel
could allow anyone to load a module, thus opening an unexpected back door via
cr eate_module.

Note that the Linux kernel can be compiled to have no module support whatso-
ever, thus closing any related security holes. In this case, of course, all needed
drivers must be built directly into the kernel itself. It is also possible, with 2.2 and
later kernels, to disable the loading of kernel modules after system boot, via the
capability mechanism.

Version Numbering
Befor e digging into programming, we’d like to comment on the version number-
ing scheme used in Linux and which versions are cover ed by this book.

First of all, note that every softwar e package used in a Linux system has its own
release number, and there are often interdependencies across them: you need a
particular version of one package to run a particular version of another package.
The creators of Linux distributions usually handle the messy problem of matching
packages, and the user who installs from a prepackaged distribution doesn’t need
to deal with version numbers. Those who replace and upgrade system software,
on the other hand, are on their own. Fortunately, almost all modern distributions
support the upgrade of single packages by checking interpackage dependencies;
the distribution’s package manager generally will not allow an upgrade until the
dependencies are satisfied.
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To run the examples we introduce during the discussion, you won’t need particu-
lar versions of any tool but the kernel; any recent Linux distribution can be used
to run our examples. We won’t detail specific requir ements, because the file Docu-
mentation/Changes in your kernel sources is the best source of such information if
you experience any problem.

As far as the kernel is concerned, the even-numbered kernel versions (i.e., 2.2.x
and 2.4.x) are the stable ones that are intended for general distribution. The odd
versions (such as 2.3.x), on the contrary, are development snapshots and are quite
ephemeral; the latest of them repr esents the current status of development, but
becomes obsolete in a few days or so.

This book covers versions 2.0 through 2.4 of the kernel. Our focus has been to
show all the features available to device driver writers in 2.4, the current version at
the time we are writing. We also try to cover 2.2 thoroughly, in those areas where
the features differ between 2.2 and 2.4. We also note features that are not available
in 2.0, and offer workarounds where space permits. In general, the code we show
is designed to compile and run on a wide range of kernel versions; in particular, it
has all been tested with version 2.4.4, and, where applicable, with 2.2.18 and
2.0.38 as well.

This text doesn’t talk specifically about odd-numbered kernel versions. General
users will never have a reason to run development kernels. Developers experi-
menting with new features, however, will want to be running the latest develop-
ment release. They will usually keep upgrading to the most recent version to pick
up bug fixes and new implementations of features. Note, however, that there’s no
guarantee on experimental kernels,* and nobody will help you if you have prob-
lems due to a bug in a noncurrent odd-numbered kernel. Those who run odd-
number ed versions of the kernel are usually skilled enough to dig in the code
without the need for a textbook, which is another reason why we don’t talk about
development kernels here.

Another feature of Linux is that it is a platform-independent operating system, not
just “a Unix clone for PC clones” anymore: it is successfully being used with Alpha
and SPARC processors, 68000 and PowerPC platforms, as well as a few more. This
book is platform independent as far as possible, and all the code samples have
been tested on several platforms, such as the PC brands, Alpha, ARM, IA-64, M68k,
PowerPC, SPARC, SPARC64, and VR41xx (MIPS). Because the code has been tested
on both 32-bit and 64-bit processors, it should compile and run on all other plat-
for ms. As you might expect, the code samples that rely on particular hardware
don’t work on all the supported platforms, but this is always stated in the source
code.

* Note that there’s no guarantee on even-numbered kernels as well, unless you rely on a
commercial provider that grants its own warranty.

Version Numbering

11

22 June 2001 16:32



Chapter 1: An Introduction to Device Driver s

License Ter ms
Linux is licensed with the GNU General Public License (GPL), a document devised
for the GNU project by the Free Software Foundation. The GPL allows anybody to
redistribute, and even sell, a product covered by the GPL, as long as the recipient
is allowed to rebuild an exact copy of the binary files from source. Additionally,
any software product derived from a product covered by the GPL must, if it is
redistributed at all, be released under the GPL.

The main goal of such a license is to allow the growth of knowledge by permitting
everybody to modify programs at will; at the same time, people selling software to
the public can still do their job. Despite this simple objective, there’s a never-end-
ing discussion about the GPL and its use. If you want to read the license, you can
find it in several places in your system, including the directory /usr/sr c/linux, as a
file called COPYING.

Third-party and custom modules are not part of the Linux kernel, and thus you’re
not forced to license them under the GPL. A module uses the kernel through a
well-defined interface, but is not part of it, similar to the way user programs use
the kernel through system calls. Note that the exemption to GPL licensing applies
only to modules that use only the published module interface. Modules that dig
deeper into the kernel must adhere to the “derived work” terms of the GPL.

In brief, if your code goes in the kernel, you must use the GPL as soon as you
release the code. Although personal use of your changes doesn’t force the GPL on
you, if you distribute your code you must include the source code in the distribu-
tion — people acquiring your package must be allowed to rebuild the binary at
will. If you write a module, on the other hand, you are allowed to distribute it in
binary form. However, this is not always practical, as modules should in general
be recompiled for each kernel version that they will be linked with (as explained
in Chapter 2, in the section “Version Dependency,” and Chapter 11, in the section
“Version Control in Modules”). New kernel releases — even minor stable releases —
often break compiled modules, requiring a recompile. Linus Torvalds has stated
publicly that he has no problem with this behavior, and that binary modules
should be expected to work only with the kernel under which they were com-
piled. As a module writer, you will generally serve your users better by making
source available.

As far as this book is concerned, most of the code is freely redistributable, either
in source or binary form, and neither we nor O’Reilly & Associates retain any right
on any derived works. All the programs are available through FTP from
ftp://ftp.ora.com/pub/examples/linux/drivers/, and the exact license terms are stated
in the file LICENSE in the same directory.
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When sample programs include parts of the kernel code, the GPL applies: the
comments accompanying source code are very clear about that. This only happens
for a pair of source files that are very minor to the topic of this book.

Joining the Ker nel Development
Community
As you get into writing modules for the Linux kernel, you become part of a larger
community of developers. Within that community, you can find not only people
engaged in similar work, but also a group of highly committed engineers working
toward making Linux a better system. These people can be a source of help, of
ideas, and of critical review as well—they will be the first people you will likely
tur n to when you are looking for testers for a new driver.

The central gathering point for Linux kernel developers is the linux-ker nel mailing
list. All major kernel developers, from Linus Torvalds on down, subscribe to this
list. Please note that the list is not for the faint of heart: traffic as of this writing can
run up to 200 messages per day or more. Nonetheless, following this list is essen-
tial for those who are inter ested in kernel development; it also can be a top-qual-
ity resource for those in need of kernel development help.

To join the linux-kernel list, follow the instructions found in the linux-kernel mail-
ing list FAQ: http://www.tux.or g/lkml. Please read the rest of the FAQ while you
ar e at it; there is a great deal of useful information there. Linux kernel developers
ar e busy people, and they are much more inclined to help people who have
clearly done their homework first.

Over view of the Book
Fr om her e on, we enter the world of kernel programming. Chapter 2 introduces
modularization, explaining the secrets of the art and showing the code for running
modules. Chapter 3 talks about char drivers and shows the complete code for a
memory-based device driver that can be read and written for fun. Using memory
as the hardware base for the device allows anyone to run the sample code without
the need to acquire special hardware.

Debugging techniques are vital tools for the programmer and are intr oduced in
Chapter 4. Then, with our new debugging skills, we move to advanced features of
char drivers, such as blocking operations, the use of select, and the important ioctl
call; these topics are the subject of Chapter 5.

Befor e dealing with hardware management, we dissect a few more of the kernel’s
softwar e inter faces: Chapter 6 shows how time is managed in the kernel, and
Chapter 7 explains memory allocation.

Over view of the Book
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Next we focus on hardware. Chapter 8 describes the management of I/O ports and
memory buffers that live on the device; after that comes interrupt handling, in
Chapter 9. Unfortunately, not everyone will be able to run the sample code for
these chapters, because some hardware support is actually needed to test the soft-
war e inter face to interrupts. We’ve tried our best to keep requir ed hardwar e sup-
port to a minimum, but you still need to put your hands on the soldering iron to
build your hardware “device.” The device is a single jumper wire that plugs into
the parallel port, so we hope this is not a problem.

Chapter 10 offers some additional suggestions about writing kernel software and
about portability issues.

In the second part of this book, we get more ambitious; thus, Chapter 11 starts
over with modularization issues, going deeper into the topic.

Chapter 12 then describes how block drivers are implemented, outlining the
aspects that differ entiate them from char drivers. Following that, Chapter 13
explains what we left out from the previous treatment of memory management:
mmap and direct memory access (DMA). At this point, everything about char and
block drivers has been introduced.

The third main class of drivers is introduced next. Chapter 14 talks in some detail
about network interfaces and dissects the code of the sample network driver.

A few features of device drivers depend directly on the interface bus where the
peripheral fits, so Chapter 15 provides an overview of the main features of the bus
implementations most frequently found nowadays, with a special focus on PCI and
USB support offer ed in the kernel.

Finally, Chapter 16 is a tour of the kernel source: it is meant to be a starting point
for people who want to understand the overall design, but who may be scared by
the huge amount of source code that makes up Linux.
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CHAPTER TWO

BUILDING AND
RUNNING MODULES

It’s high time now to begin programming. This chapter introduces all the essential
concepts about modules and kernel programming. In these few pages, we build
and run a complete module. Developing such expertise is an essential foundation
for any kind of modularized driver. To avoid throwing in too many concepts at
once, this chapter talks only about modules, without referring to any specific
device class.

All the kernel items (functions, variables, header files, and macros) that are intr o-
duced here are described in a refer ence section at the end of the chapter.

For the impatient reader, the following code is a complete “Hello, World” module
(which does nothing in particular). This code will compile and run under Linux
ker nel versions 2.0 through 2.4.*

#define MODULE
#include <linux/module.h>

int init_module(void) { printk("<1>Hello, world\n"); return 0; }
void cleanup_module(void) { printk("<1>Goodbye cruel world\n"); }

The printk function is defined in the Linux kernel and behaves similarly to the
standard C library function printf. The kernel needs its own printing function
because it runs by itself, without the help of the C library. The module can call
printk because, after insmod has loaded it, the module is linked to the kernel and
can access the kernel’s public symbols (functions and variables, as detailed in the
next section). The string <1> is the priority of the message. We’ve specified a high
priority (low cardinal number) in this module because a message with the default
priority might not show on the console, depending on the kernel version you are

* This example, and all the others presented in this book, is available on the O’Reilly FTP
site, as explained in Chapter 1.
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running, the version of the klogd daemon, and your configuration. You can ignore
this issue for now; we’ll explain it in the section “printk” in Chapter 4.

You can test the module by calling insmod and rmmod, as shown in the screen
dump in the following paragraph. Note that only the superuser can load and
unload a module.

The source file shown earlier can be loaded and unloaded as shown only if the
running kernel has module version support disabled; however, most distributions
pr einstall versioned kernels (versioning is discussed in “Version Control in Mod-
ules” in Chapter 11). Although older modutils allowed loading nonversioned mod-
ules to versioned kernels, this is no longer possible. To solve the problem with
hello.c, the source in the misc-modules dir ectory of the sample code includes a
few more lines to be able to run both under versioned and nonversioned kernels.
However, we str ongly suggest you compile and run your own kernel (without ver-
sion support) before you run the sample code.*

root# gcc -c hello.c
root# insmod ./hello.o
Hello, world
root# rmmod hello
Goodbye cruel world
root#

According to the mechanism your system uses to deliver the message lines, your
output may be differ ent. In particular, the previous screen dump was taken from a
text console; if you are running insmod and rmmod fr om an xter m, you won’t see
anything on your TTY. Instead, it may go to one of the system log files, such as
/var/log/messages (the name of the actual file varies between Linux distributions).
The mechanism used to deliver kernel messages is described in “How Messages
Get Logged” in Chapter 4.

As you can see, writing a module is not as difficult as you might expect. The hard
part is understanding your device and how to maximize perfor mance. We’ll go
deeper into modularization throughout this chapter and leave device-specific
issues to later chapters.

Kernel Modules Ver sus Applications
Befor e we go further, it’s worth underlining the various differ ences between a ker-
nel module and an application.

Wher eas an application perfor ms a single task from beginning to end, a module
registers itself in order to serve future requests, and its “main” function terminates
immediately. In other words, the task of the function init_module (the module’s

* If you are new to building kernels, Alessandro has posted an article at
http://www.linux.it/ker neldocs/kconf that should help you get started.
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entry point) is to prepar e for later invocation of the module’s functions; it’s as
though the module were saying, “Here I am, and this is what I can do.” The sec-
ond entry point of a module, cleanup_module, gets invoked just before the mod-
ule is unloaded. It should tell the kernel, “I’m not there anymor e; don’t ask me to
do anything else.” The ability to unload a module is one of the features of modu-
larization that you’ll most appreciate, because it helps cut down development
time; you can test successive versions of your new driver without going through
the lengthy shutdown/reboot cycle each time.

As a programmer, you know that an application can call functions it doesn’t
define: the linking stage resolves external refer ences using the appropriate library
of functions. printf is one of those callable functions and is defined in libc. A mod-
ule, on the other hand, is linked only to the kernel, and the only functions it can
call are the ones exported by the kernel; there are no libraries to link to. The
printk function used in hello.c earlier, for example, is the version of printf defined
within the kernel and exported to modules. It behaves similarly to the original
function, with a few minor differ ences, the main one being lack of floating-point
support.*

Figur e 2-1 shows how function calls and function pointers are used in a module to
add new functionality to a running kernel.

Because no library is linked to modules, source files should never include the
usual header files. Only functions that are actually part of the kernel itself may be
used in kernel modules. Anything related to the kernel is declared in headers
found in include/linux and include/asm inside the kernel sources (usually found
in /usr/sr c/linux). Older distributions (based on libc version 5 or earlier) used to
carry symbolic links from /usr/include/linux and /usr/include/asm to the actual
ker nel sources, so your libc include tree could refer to the headers of the actual
ker nel source you had installed. These symbolic links made it convenient for user-
space applications to include kernel header files, which they occasionally need to
do.

Even though user-space headers are now separate from kernel-space headers,
sometimes applications still include kernel headers, either before an old library is
used or before new information is needed that is not available in the user-space
headers. However, many of the declarations in the kernel header files are relevant
only to the kernel itself and should not be seen by user-space applications. These
declarations are ther efor e pr otected by #ifdef __KERNEL_ _ blocks. That’s why
your driver, like other kernel code, will need to be compiled with the
__KERNEL_ _ pr eprocessor symbol defined.

The role of individual kernel headers will be introduced throughout the book as
each of them is needed.

* The implementation found in Linux 2.0 and 2.2 has no support for the L and Z qualifiers.
They have been introduced in 2.4, though.
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init_module() register_capability()

cleanup_module() unregister_capability()

Module Kernel Proper

insmod

rmmod

printk()
...
...

capabilities[]

One function

Multiple functions

Data Function call

Function pointer

Data pointer

Assignment to data

KEY

Figur e 2-1. Linking a module to the kernel

Developers working on any large software system (such as the kernel) must be
awar e of and avoid namespace pollution. Namespace pollution is what happens
when there are many functions and global variables whose names aren’t meaning-
ful enough to be easily distinguished. The programmer who is forced to deal with
such an application expends much mental energy just to remember the “reserved”
names and to find unique names for new symbols. Namespace collisions can cre-
ate problems ranging from module loading failures to bizarre failur es—which, per-
haps, only happen to a remote user of your code who builds a kernel with a
dif ferent set of configuration options.

Developers can’t afford to fall into such an error when writing kernel code
because even the smallest module will be linked to the whole kernel. The best
appr oach for preventing namespace pollution is to declare all your symbols as
static and to use a prefix that is unique within the kernel for the symbols you

18

22 June 2001 16:34



leave global. Also note that you, as a module writer, can control the external visi-
bility of your symbols, as described in “The Kernel Symbol Table” later in this
chapter.*

Using the chosen prefix for private symbols within the module may be a good
practice as well, as it may simplify debugging. While testing your driver, you could
export all the symbols without polluting your namespace. Prefixes used in the ker-
nel are, by convention, all lowercase, and we’ll stick to the same convention.

The last differ ence between kernel programming and application programming is
in how each environment handles faults: whereas a segmentation fault is harmless
during application development and a debugger can always be used to trace the
err or to the problem in the source code, a kernel fault is fatal at least for the cur-
rent process, if not for the whole system. We’ll see how to trace kernel errors in
Chapter 4, in the section “Debugging System Faults.”

User Space and Ker nel Space
A module runs in the so-called ker nel space, wher eas applications run in user
space. This concept is at the base of operating systems theory.

The role of the operating system, in practice, is to provide programs with a consis-
tent view of the computer’s hardware. In addition, the operating system must
account for independent operation of programs and protection against unautho-
rized access to resources. This nontrivial task is only possible if the CPU enforces
pr otection of system software from the applications.

Every modern processor is able to enforce this behavior. The chosen approach is
to implement differ ent operating modalities (or levels) in the CPU itself. The levels
have differ ent roles, and some operations are disallowed at the lower levels; pro-
gram code can switch from one level to another only through a limited number of
gates. Unix systems are designed to take advantage of this hardware featur e, using
two such levels. All current processors have at least two protection levels, and
some, like the x86 family, have more levels; when several levels exist, the highest
and lowest levels are used. Under Unix, the kernel executes in the highest level
(also called supervisor mode), where everything is allowed, whereas applications
execute in the lowest level (the so-called user mode), where the processor regu-
lates direct access to hardware and unauthorized access to memory.

We usually refer to the execution modes as ker nel space and user space. These
ter ms encompass not only the differ ent privilege levels inherent in the two modes,
but also the fact that each mode has its own memory mapping—its own address
space — as well.

* Most versions of insmod (but not all of them) export all non-static symbols if they find
no specific instruction in the module; that’s why it’s wise to declare as static all the
symbols you are not willing to export.
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Unix transfers execution from user space to kernel space whenever an application
issues a system call or is suspended by a hardware interrupt. Kernel code execut-
ing a system call is working in the context of a process — it operates on behalf of
the calling process and is able to access data in the process’s address space. Code
that handles interrupts, on the other hand, is asynchronous with respect to pro-
cesses and is not related to any particular process.

The role of a module is to extend kernel functionality; modularized code runs in
ker nel space. Usually a driver perfor ms both the tasks outlined previously: some
functions in the module are executed as part of system calls, and some are in
charge of interrupt handling.

Concur renc y in the Ker nel
One way in which device driver programming differs greatly from (most) applica-
tion programming is the issue of concurrency. An application typically runs
sequentially, from the beginning to the end, without any need to worry about
what else might be happening to change its environment. Kernel code does not
run in such a simple world and must be written with the idea that many things can
be happening at once.

Ther e ar e a few sources of concurrency in kernel programming. Naturally, Linux
systems run multiple processes, more than one of which can be trying to use your
driver at the same time. Most devices are capable of interrupting the processor;
interrupt handlers run asynchronously and can be invoked at the same time that
your driver is trying to do something else. Several software abstractions (such as
ker nel timers, introduced in Chapter 6) run asynchronously as well. Moreover, of
course, Linux can run on symmetric multiprocessor (SMP) systems, with the result
that your driver could be executing concurrently on more than one CPU.

As a result, Linux kernel code, including driver code, must be reentrant—it must
be capable of running in more than one context at the same time. Data structures
must be carefully designed to keep multiple threads of execution separate, and the
code must take care to access shared data in ways that prevent corruption of the
data. Writing code that handles concurrency and avoids race conditions (situations
in which an unfortunate order of execution causes undesirable behavior) requir es
thought and can be tricky. Every sample driver in this book has been written with
concurr ency in mind, and we will explain the techniques we use as we come to
them.

A common mistake made by driver programmers is to assume that concurrency is
not a problem as long as a particular segment of code does not go to sleep (or
“block”). It is true that the Linux kernel is nonpreemptive; with the important
exception of servicing interrupts, it will not take the processor away from kernel
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code that does not yield willingly. In past times, this nonpreemptive behavior was
enough to prevent unwanted concurrency most of the time. On SMP systems,
however, preemption is not requir ed to cause concurrent execution.

If your code assumes that it will not be preempted, it will not run properly on
SMP systems. Even if you do not have such a system, others who run your code
may have one. In the future, it is also possible that the kernel will move to a pre-
emptive mode of operation, at which point even uniprocessor systems will have to
deal with concurrency everywhere (some variants of the kernel already implement
it). Thus, a prudent programmer will always program as if he or she were working
on an SMP system.

The Cur rent Process
Although kernel modules don’t execute sequentially as applications do, most
actions perfor med by the kernel are related to a specific process. Kernel code can
know the current process driving it by accessing the global item current, a
pointer to struct task_struct, which as of version 2.4 of the kernel is
declar ed in <asm/current.h>, included by <linux/sched.h>. The current
pointer refers to the user process currently executing. During the execution of a
system call, such as open or read, the current process is the one that invoked the
call. Kernel code can use process-specific information by using current, if it
needs to do so. An example of this technique is presented in “Access Control on a
Device File,” in Chapter 5.

Actually, current is not properly a global variable any more, like it was in the
first Linux kernels. The developers optimized access to the structure describing the
curr ent pr ocess by hiding it in the stack page. You can look at the details of cur-
rent in <asm/current.h>. While the code you’ll look at might seem hairy, we
must keep in mind that Linux is an SMP-compliant system, and a global variable
simply won’t work when you are dealing with multiple CPUs. The details of the
implementation remain hidden to other kernel subsystems though, and a device
driver can just include <linux/sched.h> and refer to the current pr ocess.

Fr om a module’s point of view, current is just like the external refer ence printk.
A module can refer to current wher ever it sees fit. For example, the following
statement prints the process ID and the command name of the current process by
accessing certain fields in struct task_struct:

printk("The process is \"%s\" (pid %i)\n",
current->comm, current->pid);

The command name stored in current->comm is the base name of the program
file that is being executed by the current process.

Kernel Modules Ver sus Applications
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Compiling and Loading
The rest of this chapter is devoted to writing a complete, though typeless, module.
That is, the module will not belong to any of the classes listed in “Classes of
Devices and Modules” in Chapter 1. The sample driver shown in this chapter is
called skull, short for Simple Kernel Utility for Loading Localities. You can reuse
the skull source to load your own local code to the kernel, after removing the
sample functionality it offers.*

Befor e we deal with the roles of init_module and cleanup_module, however, we’ll
write a makefile that builds object code that the kernel can load.

First, we need to define the __KERNEL_ _ symbol in the prepr ocessor befor e we
include any headers. As mentioned earlier, much of the kernel-specific content in
the kernel headers is unavailable without this symbol.

Another important symbol is MODULE, which must be defined before including
<linux/module.h> (except for drivers that are linked directly into the kernel).
This book does not cover directly linked modules; thus, the MODULE symbol is
always defined in our examples.

If you are compiling for an SMP machine, you also need to define __SMP_ _
befor e including the kernel headers. In version 2.2, the “multiprocessor or unipro-
cessor” choice was promoted to a proper configuration item, so using these lines
as the very first lines of your modules will do the task:

#include <linux/config.h>
#ifdef CONFIG_SMP
# define __SMP_ _
#endif

A module writer must also specify the –O flag to the compiler, because many func-
tions are declar ed as inline in the header files. gcc doesn’t expand inline func-
tions unless optimization is enabled, but it can accept both the –g and –O options,
allowing you to debug code that uses inline functions.† Because the kernel makes
extensive use of inline functions, it is important that they be expanded properly.

You may also need to check that the compiler you are running matches the kernel
you are compiling against, referring to the file Documentation/Changes in the ker-
nel source tree. The kernel and the compiler are developed at the same time,
though by differ ent gr oups, so sometimes changes in one tool reveal bugs in the

* We use the word local her e to denote personal changes to the system, in the good old
Unix tradition of /usr/local.

† Note, however, that using any optimization greater than –O2 is risky, because the com-
piler might inline functions that are not declared as inline in the source. This may be a
pr oblem with kernel code, because some functions expect to find a standard stack layout
when they are called.
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other. Some distributions ship a version of the compiler that is too new to reliably
build the kernel. In this case, they will usually provide a separate package (often
called kgcc) with a compiler intended for kernel compilation.

Finally, in order to prevent unpleasant errors, we suggest that you use the –Wall
(all warnings) compiler flag, and also that you fix all features in your code that
cause compiler warnings, even if this requir es changing your usual programming
style. When writing kernel code, the preferr ed coding style is undoubtedly Linus’s
own style. Documentation/CodingStyle is amusing reading and a mandatory lesson
for anyone interested in kernel hacking.

All the definitions and flags we have introduced so far are best located within the
CFLAGS variable used by make.

In addition to a suitable CFLAGS, the makefile being built needs a rule for joining
dif ferent object files. The rule is needed only if the module is split into differ ent
source files, but that is not uncommon with modules. The object files are joined
by the ld -r command, which is not really a linking operation, even though it uses
the linker. The output of ld -r is another object file, which incorporates all the
code from the input files. The –r option means “relocatable;” the output file is
relocatable in that it doesn’t yet embed absolute addresses.

The following makefile is a minimal example showing how to build a module
made up of two source files. If your module is made up of a single source file, just
skip the entry containing ld -r.

# Change it here or specify it on the "make" command line
KERNELDIR = /usr/src/linux

include $(KERNELDIR)/.config

CFLAGS = -D__KERNEL_ _ -DMODULE -I$(KERNELDIR)/include \
-O -Wall

ifdef CONFIG_SMP
CFLAGS += -D__SMP_ _ -DSMP

endif

all: skull.o

skull.o: skull_init.o skull_clean.o
$(LD) -r $ˆ -o $@

clean:
rm -f *.o *˜ core

If you are not familiar with make, you may wonder why no .c file and no compila-
tion rule appear in the makefile shown. These declarations are unnecessary
because make is smart enough to turn .c into .o without being instructed to, using
the current (or default) choice for the compiler, $(CC), and its flags, $(CFLAGS).

Compiling and Loading
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After the module is built, the next step is loading it into the kernel. As we’ve
alr eady suggested, insmod does the job for you. The program is like ld, in that it
links any unresolved symbol in the module to the symbol table of the running ker-
nel. Unlike the linker, however, it doesn’t modify the disk file, but rather an in-
memory copy. insmod accepts a number of command-line options (for details, see
the manpage), and it can assign values to integer and string variables in your mod-
ule before linking it to the current kernel. Thus, if a module is correctly designed,
it can be configured at load time; load-time configuration gives the user more flex-
ibility than compile-time configuration, which is still used sometimes. Load-time
configuration is explained in “Automatic and Manual Configuration” later in this
chapter.

Inter ested readers may want to look at how the kernel supports insmod: it relies
on a few system calls defined in ker nel/module.c. The function sys_cr eate_module
allocates kernel memory to hold a module (this memory is allocated with vmalloc ;
see “vmalloc and Friends” in Chapter 7). The system call get_ker nel_syms retur ns
the kernel symbol table so that kernel refer ences in the module can be resolved,
and sys_init_module copies the relocated object code to kernel space and calls the
module’s initialization function.

If you actually look in the kernel source, you’ll find that the names of the system
calls are prefixed with sys_. This is true for all system calls and no other func-
tions; it’s useful to keep this in mind when grepping for the system calls in the
sources.

Version Dependenc y
Bear in mind that your module’s code has to be recompiled for each version of
the kernel that it will be linked to. Each module defines a symbol called __mod-
ule_kernel_version, which insmod matches against the version number of
the current kernel. This symbol is placed in the .modinfo Executable Linking
and Format (ELF) section, as explained in detail in Chapter 11. Please note that
this description of the internals applies only to versions 2.2 and 2.4 of the kernel;
Linux 2.0 did the same job in a differ ent way.

The compiler will define the symbol for you whenever you include
<linux/module.h> (that’s why hello.c earlier didn’t need to declare it). This
also means that if your module is made up of multiple source files, you have to
include <linux/module.h> fr om only one of your source files (unless you use
__NO_VERSION_ _, which we’ll introduce in a while).

In case of version mismatch, you can still try to load a module against a differ ent
ker nel version by specifying the –f (“force”) switch to insmod, but this operation
isn’t safe and can fail. It’s also difficult to tell in advance what will happen. Load-
ing can fail because of mismatching symbols, in which case you’ll get an error
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message, or it can fail because of an internal change in the kernel. If that happens,
you’ll get serious errors at runtime and possibly a system panic—a good reason to
be wary of version mismatches. Version mismatches can be handled more grace-
fully by using versioning in the kernel (a topic that is more advanced and is intro-
duced in “Version Control in Modules” in Chapter 11).

If you want to compile your module for a particular kernel version, you have to
include the specific header files for that kernel (for example, by declaring a differ-
ent KERNELDIR) in the makefile given previously. This situation is not uncommon
when playing with the kernel sources, as most of the time you’ll end up with sev-
eral versions of the source tree. All of the sample modules accompanying this
book use the KERNELDIR variable to point to the correct kernel sources; it can be
set in your environment or passed on the command line of make.

When asked to load a module, insmod follows its own search path to look for the
object file, looking in version-dependent directories under /lib/modules. Although
older versions of the program looked in the current directory, first, that behavior is
now disabled for security reasons (it’s the same problem of the PATH envir onment
variable). Thus, if you need to load a module from the current directory you
should use . /module.o, which works with all known versions of the tool.

Sometimes, you’ll encounter kernel interfaces that behave differ ently between ver-
sions 2.0.x and 2.4.x of Linux. In this case you’ll need to resort to the macros
defining the version number of the current source tree, which are defined in the
header <linux/version.h>. We will point out cases where inter faces have
changed as we come to them, either within the chapter or in a specific section
about version dependencies at the end, to avoid complicating a 2.4-specific discus-
sion.

The header, automatically included by linux/module.h, defines the following
macr os:

UTS_RELEASE
The macro expands to a string describing the version of this kernel tree. For
example, "2.3.48".

LINUX_VERSION_CODE
The macro expands to the binary repr esentation of the kernel version, one
byte for each part of the version release number. For example, the code for
2.3.48 is 131888 (i.e., 0x020330).* With this information, you can (almost) eas-
ily determine what version of the kernel you are dealing with.

KERNEL_VERSION(major,minor,release)
This is the macro used to build a “kernel_version_code” from the individual
numbers that build up a version number. For example, KERNEL_VER-
SION(2,3,48) expands to 131888. This macro is very useful when you

* This allows up to 256 development versions between stable versions.
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need to compare the current version and a known checkpoint. We’ll use this
macr o several times throughout the book.

The file version.h is included by module.h, so you won’t usually need to include
version.h explicitly. On the other hand, you can prevent module.h fr om including
version.h by declaring __NO_VERSION_ _ in advance. You’ll use
__NO_VERSION_ _ if you need to include <linux/module.h> in several
source files that will be linked together to form a single module—for example, if
you need prepr ocessor macr os declar ed in module.h. Declaring
__NO_VERSION_ _ befor e including module.h pr events automatic declaration of
the string __module_kernel_version or its equivalent in source files where
you don’t want it (ld -r would complain about the multiple definition of the sym-
bol). Sample modules in this book use __NO_VERSION_ _ to this end.

Most dependencies based on the kernel version can be worked around with pre-
pr ocessor conditionals by exploiting KERNEL_VERSION and LINUX_VER-
SION_CODE. Version dependency should, however, not clutter driver code with
hairy #ifdef conditionals; the best way to deal with incompatibilities is by con-
fining them to a specific header file. That’s why our sample code includes a sys-
dep.h header, used to hide all incompatibilities in suitable macro definitions.

The first version dependency we are going to face is in the definition of a “make
install” rule for our drivers. As you may expect, the installation directory,
which varies according to the kernel version being used, is chosen by looking in
version.h. The following fragment comes from the file Rules.make, which is
included by all makefiles:

VERSIONFILE = $(INCLUDEDIR)/linux/version.h
VERSION = $(shell awk -F\" ’/REL/ {print $$2}’ $(VERSIONFILE))
INSTALLDIR = /lib/modules/$(VERSION)/misc

We chose to install all of our drivers in the misc dir ectory; this is both the right
choice for miscellaneous add-ons and a good way to avoid dealing with the
change in the directory structure under /lib/modules that was introduced right
befor e version 2.4 of the kernel was released. Even though the new directory
structur e is more complicated, the misc dir ectory is used by both old and new ver-
sions of the modutils package.

With the definition of INSTALLDIR just given, the install rule of each makefile,
then, is laid out like this:

install:
install -d $(INSTALLDIR)
install -c $(OBJS) $(INSTALLDIR)
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Platfor m Dependenc y
Each computer platform has its peculiarities, and kernel designers are free to
exploit all the peculiarities to achieve better perfor mance in the target object file.

Unlike application developers, who must link their code with precompiled
libraries and stick to conventions on parameter passing, kernel developers can
dedicate some processor registers to specific roles, and they have done so. More-
over, ker nel code can be optimized for a specific processor in a CPU family to get
the best from the target platform: unlike applications that are often distributed in
binary format, a custom compilation of the kernel can be optimized for a specific
computer set.

Modularized code, in order to be interoperable with the kernel, needs to be com-
piled using the same options used in compiling the kernel (i.e., reserving the same
registers for special use and perfor ming the same optimizations). For this reason,
our top-level Rules.make includes a platform-specific file that complements the
makefiles with extra definitions. All of those files are called Makefile.plat-
form and assign suitable values to make variables according to the current kernel
configuration.

Another interesting feature of this layout of makefiles is that cross compilation is
supported for the whole tree of sample files. Whenever you need to cross compile
for your target platform, you’ll need to replace all of your tools (gcc, ld, etc.) with
another set of tools (for example, m68k-linux-gcc, m68k-linux-ld ). The prefix to
be used is defined as $(CROSS_COMPILE), either in the make command line or
in your environment.

The SPARC architectur e is a special case that must be handled by the makefiles.
User-space programs running on the SPARC64 (SPARC V9) platform are the same
binaries you run on SPARC32 (SPARC V8). Therefor e, the default compiler running
on SPARC64 (gcc) generates SPARC32 object code. The kernel, on the other hand,
must run SPARC V9 object code, so a cross compiler is needed. All GNU/Linux dis-
tributions for SPARC64 include a suitable cross compiler, which the makefiles
select.

Although the complete list of version and platform dependencies is slightly more
complicated than shown here, the previous description and the set of makefiles
we provide is enough to get things going. The set of makefiles and the kernel
sources can be browsed if you are looking for more detailed information.

The Ker nel Symbol Table
We’ve seen how insmod resolves undefined symbols against the table of public
ker nel symbols. The table contains the addresses of global kernel items—

The Ker nel Symbol Table
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functions and variables—that are needed to implement modularized drivers. The
public symbol table can be read in text form from the file /pr oc/ksyms (assuming,
of course, that your kernel has support for the /pr oc filesystem — which it really
should).

When a module is loaded, any symbol exported by the module becomes part of
the kernel symbol table, and you can see it appear in /pr oc/ksyms or in the output
of the ksyms command.

New modules can use symbols exported by your module, and you can stack new
modules on top of other modules. Module stacking is implemented in the main-
str eam ker nel sources as well: the msdos filesystem relies on symbols exported by
the fat module, and each input USB device module stacks on the usbcor e and
input modules.

Module stacking is useful in complex projects. If a new abstraction is implemented
in the form of a device driver, it might offer a plug for hardware-specific imple-
mentations. For example, the video-for-linux set of drivers is split into a generic
module that exports symbols used by lower-level device drivers for specific hard-
war e. According to your setup, you load the generic video module and the spe-
cific module for your installed hardware. Support for parallel ports and the wide
variety of attachable devices is handled in the same way, as is the USB kernel sub-
system. Stacking in the parallel port subsystem is shown in Figure 2-2; the arrows
show the communications between the modules (with some example functions
and data structures) and with the kernel programming interface.

Port sharing
and device
registration

Low-level
device
operations

lp

parport

parport_pc Kernel API

(Message
printing, driver
registration,
port allocation,
etc.)

Figur e 2-2. Stacking of parallel port driver modules

When using stacked modules, it is helpful to be aware of the modpr obe utility.
modpr obe functions in much the same way as insmod, but it also loads any other
modules that are requir ed by the module you want to load. Thus, one modpr obe
command can sometimes replace several invocations of insmod (although you’ll
still need insmod when loading your own modules from the current directory,
because modpr obe only looks in the tree of installed modules).
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Layer ed modularization can help reduce development time by simplifying each
layer. This is similar to the separation between mechanism and policy that we dis-
cussed in Chapter 1.

In the usual case, a module implements its own functionality without the need to
export any symbols at all. You will need to export symbols, however, whenever
other modules may benefit from using them. You may also need to include spe-
cific instructions to avoid exporting all non-static symbols, as most versions
(but not all) of modutils export all of them by default.

The Linux kernel header files provide a convenient way to manage the visibility of
your symbols, thus reducing namespace pollution and promoting proper informa-
tion hiding. The mechanism described in this section works with kernels 2.1.18
and later; the 2.0 kernel had a completely differ ent mechanism, which is described
at the end of the chapter.

If your module exports no symbols at all, you might want to make that explicit by
placing a line with this macro call in your source file:

EXPORT_NO_SYMBOLS;

The macro expands to an assembler directive and may appear anywhere within
the module. Portable code, however, should place it within the module initializa-
tion function (init_module), because the version of this macro defined in sysdep.h
for older kernels will work only there.

If, on the other hand, you need to export a subset of symbols from your module,
the first step is defining the prepr ocessor macr o EXPORT_SYMTAB. This macro
must be defined befor e including module.h. It is common to define it at compile
time with the –D compiler flag in Makefile.

If EXPORT_SYMTAB is defined, individual symbols are exported with a couple of
macr os:

EXPORT_SYMBOL (name);
EXPORT_SYMBOL_NOVERS (name);

Either version of the macro will make the given symbol available outside the mod-
ule; the second version (EXPORT_SYMBOL_NOVERS) exports the symbol with no
versioning information (described in Chapter 11). Symbols must be exported out-
side of any function because the macros expand to the declaration of a variable.
(Inter ested readers can look at <linux/module.h> for the details, even though
the details are not needed to make things work.)

Initialization and Shutdown
As already mentioned, init_module registers any facility offer ed by the module. By
facility, we mean a new functionality, be it a whole driver or a new software
abstraction, that can be accessed by an application.

Initialization and Shutdown
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Modules can register many differ ent types of facilities; for each facility, there is a
specific kernel function that accomplishes this registration. The arguments passed
to the kernel registration functions are usually a pointer to a data structure describ-
ing the new facility and the name of the facility being register ed. The data struc-
tur e usually embeds pointers to module functions, which is how functions in the
module body get called.

The items that can be register ed exceed the list of device types mentioned in
Chapter 1. They include serial ports, miscellaneous devices, /pr oc files, executable
domains, and line disciplines. Many of those registrable items support functions
that aren’t directly related to hardware but remain in the “software abstractions”
field. Those items can be register ed because they are integrated into the driver’s
functionality anyway (like /pr oc files and line disciplines for example).

Ther e ar e other facilities that can be register ed as add-ons for certain drivers, but
their use is so specific that it’s not worth talking about them; they use the stacking
technique, as described earlier in “The Kernel Symbol Table.” If you want to probe
further, you can grep for EXPORT_SYMBOL in the kernel sources and find the
entry points offer ed by differ ent drivers. Most registration functions are prefixed
with register_, so another possible way to find them is to grep for register_
in /pr oc/ksyms.

Er ror Handling in init_module
If any errors occur when you register utilities, you must undo any registration
activities perfor med befor e the failure. An error can happen, for example, if there
isn’t enough memory in the system to allocate a new data structure or because a
resource being requested is already being used by other drivers. Though unlikely,
it might happen, and good program code must be prepar ed to handle this event.

Linux doesn’t keep a per-module registry of facilities that have been register ed, so
the module must back out of everything itself if init_module fails at some point. If
you ever fail to unregister what you obtained, the kernel is left in an unstable
state: you can’t register your facilities again by reloading the module because they
will appear to be busy, and you can’t unregister them because you’d need the
same pointer you used to register and you’re not likely to be able to figure out the
addr ess. Recovery from such situations is tricky, and you’ll be often forced to
reboot in order to be able to load a newer revision of your module.

Err or recovery is sometimes best handled with the goto statement. We nor mally
hate to use goto, but in our opinion this is one situation (well, the only situation)
wher e it is useful. In the kernel, goto is often used as shown here to deal with
err ors.

The following sample code (using fictitious registration and unregistration func-
tions) behaves correctly if initialization fails at any point.
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int init_module(void)
{
int err;

/* registration takes a pointer and a name */
err = register_this(ptr1, "skull");
if (err) goto fail_this;
err = register_that(ptr2, "skull");
if (err) goto fail_that;
err = register_those(ptr3, "skull");
if (err) goto fail_those;

return 0; /* success */

fail_those: unregister_that(ptr2, "skull");
fail_that: unregister_this(ptr1, "skull");
fail_this: return err; /* propagate the error */

}

This code attempts to register three (fictitious) facilities. The goto statement is
used in case of failure to cause the unregistration of only the facilities that had
been successfully register ed befor e things went bad.

Another option, requiring no hairy goto statements, is keeping track of what has
been successfully register ed and calling cleanup_module in case of any error. The
cleanup function will only unroll the steps that have been successfully accom-
plished. This alternative, however, requir es mor e code and more CPU time, so in
fast paths you’ll still resort to goto as the best error-r ecovery tool. The retur n
value of init_module, err, is an err or code. In the Linux kernel, error codes are
negative numbers belonging to the set defined in <linux/errno.h>. If you
want to generate your own error codes instead of retur ning what you get from
other functions, you should include <linux/errno.h> in order to use symbolic
values such as -ENODEV, -ENOMEM, and so on. It is always good practice to
retur n appr opriate err or codes, because user programs can turn them to meaning-
ful strings using perr or or similar means. (However, it’s interesting to note that sev-
eral versions of modutils retur ned a “Device busy” message for any error retur ned
by init_module ; the problem has only been fixed in recent releases.)

Obviously, cleanup_module must undo any registration perfor med by init_mod-
ule, and it is customary (but not mandatory) to unregister facilities in the reverse
order used to register them:

void cleanup_module(void)
{
unregister_those(ptr3, "skull");
unregister_that(ptr2, "skull");
unregister_this(ptr1, "skull");
return;

}

Initialization and Shutdown
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If your initialization and cleanup are mor e complex than dealing with a few items,
the goto appr oach may become difficult to manage, because all the cleanup code
must be repeated within init_module, with several labels intermixed. Sometimes,
ther efor e, a dif ferent layout of the code proves more successful.

What you’d do to minimize code duplication and keep everything streamlined is to
call cleanup_module fr om within init_module whenever an error occurs. The
cleanup function, then, must check the status of each item before undoing its reg-
istration. In its simplest form, the code looks like the following:

struct something *item1;
struct somethingelse *item2;
int stuff_ok;

void cleanup_module(void)
{
if (item1)

release_thing(item1);
if (item2)
release_thing2(item2);

if (stuff_ok)
unregister_stuff();

return;
}

int init_module(void)
{
int err = -ENOMEM;

item1 = allocate_thing(arguments);
item2 = allocate_thing2(arguments2);
if (!item2 || !item2)
goto fail;

err = register_stuff(item1, item2);
if (!err)
stuff_ok = 1;

else
goto fail;

return 0; /* success */

fail:
cleanup_module();
return err;

}

As shown in this code, you may or may not need external flags to mark success of
the initialization step, depending on the semantics of the registration/allocation
function you call. Whether or not flags are needed, this kind of initialization scales
well to a large number of items and is often better than the technique shown
earlier.
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The Usage Count
The system keeps a usage count for every module in order to determine whether
the module can be safely removed. The system needs this information because a
module can’t be unloaded if it is busy: you can’t remove a filesystem type while
the filesystem is mounted, and you can’t drop a char device while a process is
using it, or you’ll experience some sort of segmentation fault or kernel panic when
wild pointers get derefer enced.

In modern ker nels, the system can automatically track the usage count for you,
using a mechanism that we will see in the next chapter. Ther e ar e still times, how-
ever, when you will need to adjust the usage count manually. Code that must be
portable to older kernels must still use manual usage count maintenance as well.
To work with the usage count, use these three macros:

MOD_INC_USE_COUNT
Incr ements the count for the current module

MOD_DEC_USE_COUNT
Decr ements the count

MOD_IN_USE
Evaluates to true if the count is not zero

The macros are defined in <linux/module.h>, and they act on internal data
structur es that shouldn’t be accessed directly by the programmer. The internals of
module management changed a lot during 2.1 development and were completely
rewritten in 2.1.18, but the use of these macros did not change.

Note that there’s no need to check for MOD_IN_USE fr om within cleanup_module,
because the check is perfor med by the system call sys_delete_module (defined in
ker nel/module.c) in advance.

Pr oper management of the module usage count is critical for system stability.
Remember that the kernel can decide to try to unload your module at absolutely
any time. A common module programming error is to start a series of operations
(in response, say, to an open request) and increment the usage count at the end. If
the kernel unloads the module halfway through those operations, chaos is
ensur ed. To avoid this kind of problem, you should call MOD_INC_USE_COUNT
befor e doing almost anything else in a module.

You won’t be able to unload a module if you lose track of the usage count. This
situation may very well happen during development, so you should keep it in
mind. For example, if a process gets destroyed because your driver derefer enced a
NULL pointer, the driver won’t be able to close the device, and the usage count
won’t fall back to zero. One possible solution is to completely disable the usage
count during the debugging cycle by redefining both MOD_INC_USE_COUNT and
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MOD_DEC_USE_COUNT to no-ops. Another solution is to use some other method
to force the counter to zero (you’ll see this done in the section “Using the ioctl
Argument” in Chapter 5). Sanity checks should never be circumvented in a pro-
duction module. For debugging, however, sometimes a brute-force attitude helps
save development time and is therefor e acceptable.

The current value of the usage count is found in the third field of each entry in
/pr oc/modules. This file shows the modules currently loaded in the system, with
one entry for each module. The fields are the name of the module, the number of
bytes of memory it uses, and the current usage count. This is a typical /pr oc/mod-
ules file:

parport_pc 7604 1 (autoclean)
lp 4800 0 (unused)
parport 8084 1 [parport_probe parport_pc lp]
lockd 33256 1 (autoclean)
sunrpc 56612 1 (autoclean) [lockd]
ds 6252 1
i82365 22304 1
pcmcia_core 41280 0 [ds i82365]

Her e we see several modules in the system. Among other things, the parallel port
modules have been loaded in a stacked manner, as we saw in Figure 2-2. The
(autoclean) marker identifies modules managed by kmod or ker neld (see
Chapter 11); the (unused) marker means exactly that. Other flags exist as well.
In Linux 2.0, the second (size) field was expressed in pages (4 KB each on most
platfor ms) rather than bytes.

Unloading
To unload a module, use the rmmod command. Its task is much simpler than
loading, since no linking has to be perfor med. The command invokes the
delete_module system call, which calls cleanup_module in the module itself if the
usage count is zero or retur ns an error otherwise.

The cleanup_module implementation is in charge of unregistering every item that
was register ed by the module. Only the exported symbols are removed automati-
cally.

Explicit Initialization and Cleanup Functions
As we have seen, the kernel calls init_module to initialize a newly loaded module,
and calls cleanup_module just before module removal. In modern ker nels, how-
ever, these functions often have differ ent names. As of kernel 2.3.13, a facility
exists for explicitly naming the module initialization and cleanup routines; using
this facility is the preferr ed pr ogramming style.
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Consider an example. If your module names its initialization routine my_init
(instead of init_module) and its cleanup routine my_cleanup, you would mark
them with the following two lines (usually at the end of the source file):

module_init(my_init);
module_exit(my_cleanup);

Note that your code must include <linux/init.h> to use module_init and
module_exit.

The advantage of doing things this way is that each initialization and cleanup func-
tion in the kernel can have a unique name, which helps with debugging. These
functions also make life easier for those writing drivers that work either as a mod-
ule or built directly into the kernel. However, use of module_init and module_exit
is not requir ed if your initialization and cleanup functions use the old names. In
fact, for modules, the only thing they do is define init_module and cleanup_mod-
ule as new names for the given functions.

If you dig through the kernel source (in versions 2.2 and later), you will likely see
a slightly differ ent for m of declaration for module initialization and cleanup func-
tions, which looks like the following:

static int __init my_init(void)
{
....

}

static void __exit my_cleanup(void)
{
....

}

The attribute __init, when used in this way, will cause the initialization function
to be discarded, and its memory reclaimed, after initialization is complete. It only
works, however, for built-in drivers; it has no effect on modules. __exit, instead,
causes the omission of the marked function when the driver is not built as a mod-
ule; again, in modules, it has no effect.

The use of __init (and __initdata for data items) can reduce the amount of
memory used by the kernel. There is no har m in marking module initialization
functions with __init, even though currently there is no benefit either. Manage-
ment of initialization sections has not been implemented yet for modules, but it’s a
possible enhancement for the future.

Using Resources
A module can’t accomplish its task without using system resources such as

Using Resources
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memory, I/O ports, I/O memory, and interrupt lines, as well as DMA channels if
you use old-fashioned DMA controllers like the Industry Standard Architectur e
(ISA) one.

As a programmer, you are alr eady accustomed to managing memory allocation;
writing kernel code is no differ ent in this regard. Your program obtains a memory
ar ea using kmalloc and releases it using kfr ee. These functions behave like malloc
and fr ee, except that kmalloc takes an additional argument, the priority. Usually, a
priority of GFP_KERNEL or GFP_USER will do. The GFP acr onym stands for “get
fr ee page.” (Memory allocation is covered in detail in Chapter 7.)

Beginning driver programmers may initially be surprised at the need to allocate
I/O ports, I/O memory,* and interrupt lines explicitly. After all, it is possible for a
ker nel module to simply access these resources without telling the operating sys-
tem about it. Although system memory is anonymous and may be allocated from
anywher e, I/O memory, ports, and interrupts have very specific roles. For
instance, a driver needs to be able to allocate the exact ports it needs, not just
some ports. But drivers cannot just go about making use of these system resources
without first ensuring that they are not already in use elsewhere.

I/O Por ts and I/O Memory
The job of a typical driver is, for the most part, writing and reading I/O ports and
I/O memory. Access to I/O ports and I/O memory (collectively called I/O regions)
happens both at initialization time and during normal operations.

Unfortunately, not all bus architectur es of fer a clean way to identify I/O regions
belonging to each device, and sometimes the driver must guess where its I/O
regions live, or even probe for the devices by reading and writing to “possible”
addr ess ranges. This problem is especially true of the ISA bus, which is still in use
for simple devices to plug in a personal computer and is very popular in the
industrial world in its PC/104 implementation (see PC/104 and PC/104+ in Chapter
15).

Despite the features (or lack of features) of the bus being used by a hardware
device, the device driver should be guaranteed exclusive access to its I/O regions
in order to prevent interfer ence fr om other drivers. For example, if a module prob-
ing for its hardware should happen to write to ports owned by another device,
weird things would undoubtedly happen.

The developers of Linux chose to implement a request/fr ee mechanism for I/O
regions, mainly as a way to prevent collisions between differ ent devices. The
mechanism has long been in use for I/O ports and was recently generalized to
manage resource allocation at large. Note that this mechanism is just a software

* The memory areas that reside on the peripheral device are commonly called I/O memory
to differ entiate them from system RAM, which is customarily called memory).
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abstraction that helps system housekeeping, and may or may not be enforced by
hardwar e featur es. For example, unauthorized access to I/O ports doesn’t produce
any error condition equivalent to “segmentation fault”—the hardware can’t enforce
port registration.

Infor mation about register ed resources is available in text form in the files
/pr oc/ioports and /pr oc/iomem, although the latter was only introduced during 2.3
development. We’ll discuss version 2.4 now, introducing portability issues at the
end of the chapter.

Ports

A typical /pr oc/ioports file on a recent PC that is running version 2.4 of the kernel
will look like the following:

0000-001f : dma1
0020-003f : pic1
0040-005f : timer
0060-006f : keyboard
0080-008f : dma page reg
00a0-00bf : pic2
00c0-00df : dma2
00f0-00ff : fpu
0170-0177 : ide1
01f0-01f7 : ide0
02f8-02ff : serial(set)
0300-031f : NE2000
0376-0376 : ide1
03c0-03df : vga+
03f6-03f6 : ide0
03f8-03ff : serial(set)
1000-103f : Intel Corporation 82371AB PIIX4 ACPI
1000-1003 : acpi
1004-1005 : acpi
1008-100b : acpi
100c-100f : acpi

1100-110f : Intel Corporation 82371AB PIIX4 IDE
1300-131f : pcnet_cs
1400-141f : Intel Corporation 82371AB PIIX4 ACPI
1800-18ff : PCI CardBus #02
1c00-1cff : PCI CardBus #04
5800-581f : Intel Corporation 82371AB PIIX4 USB
d000-dfff : PCI Bus #01
d000-d0ff : ATI Technologies Inc 3D Rage LT Pro AGP-133

Each entry in the file specifies (in hexadecimal) a range of ports locked by a driver
or owned by a hardware device. In earlier versions of the kernel the file had the
same format, but without the “layered” structure that is shown through indenta-
tion.

Using Resources
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The file can be used to avoid port collisions when a new device is added to the
system and an I/O range must be selected by moving jumpers: the user can check
what ports are alr eady in use and set up the new device to use an available I/O
range. Although you might object that most modern hardwar e doesn’t use jumpers
any more, the issue is still relevant for custom devices and industrial components.

But what is more important than the ioports file itself is the data structure behind
it. When the software driver for a device initializes itself, it can know what port
ranges are alr eady in use; if the driver needs to probe I/O ports to detect the new
device, it will be able to avoid probing those ports that are alr eady in use by other
drivers.

ISA probing is in fact a risky task, and several drivers distributed with the official
Linux kernel refuse to perfor m pr obing when loaded as modules, to avoid the risk
of destroying a running system by poking around in ports where some yet-
unknown hardware may live. Fortunately, modern (as well as old-but-well-
thought-out) bus architectur es ar e immune to all these problems.

The programming interface used to access the I/O registry is made up of three
functions:

int check_region(unsigned long start, unsigned long len);
struct resource *request_region(unsigned long start,
unsigned long len, char *name);
void release_region(unsigned long start, unsigned long len);

check_r egion may be called to see if a range of ports is available for allocation; it
retur ns a negative error code (such as -EBUSY or -EINVAL) if the answer is no.
request_r egion will actually allocate the port range, retur ning a non-NULL pointer
value if the allocation succeeds. Drivers don’t need to use or save the actual
pointer retur ned—checking against NULL is all you need to do.* Code that needs
to work only with 2.4 kernels need not call check_r egion at all; in fact, it’s better
not to, since things can change between the calls to check_r egion and
request_r egion. If you want to be portable to older kernels, however, you must
use check_r egion because request_r egion used to retur n void befor e 2.4. Your
driver should call release_r egion, of course, to release the ports when it is done
with them.

The three functions are actually macros, and they are declar ed in
<linux/ioport.h>.

The typical sequence for registering ports is the following, as it appears in the
skull sample driver. (The function skull_ probe_hw is not shown here because it
contains device-specific code.)

* The actual pointer is used only when the function is called internally by the resource
management subsystem of the kernel.
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#include <linux/ioport.h>
#include <linux/errno.h>
static int skull_detect(unsigned int port, unsigned int range)
{
int err;

if ((err = check_region(port,range)) < 0) return err; /* busy */
if (skull_probe_hw(port,range) != 0) return -ENODEV; /* not found */
request_region(port,range,"skull"); /* "Can’t fail" */
return 0;

}

This code first looks to see if the requir ed range of ports is available; if the ports
cannot be allocated, there is no point in looking for the hardware. The actual allo-
cation of the ports is deferred until after the device is known to exist. The
request_r egion call should never fail; the kernel only loads a single module at a
time, so there should not be a problem with other modules slipping in and steal-
ing the ports during the detection phase. Paranoid code can check, but bear in
mind that kernels prior to 2.4 define request_r egion as retur ning void.

Any I/O ports allocated by the driver must eventually be released; skull does it
fr om within cleanup_module :

static void skull_release(unsigned int port, unsigned int range)
{
release_region(port,range);

}

The request/fr ee appr oach to resources is similar to the register/unr egister
sequence described earlier for facilities and fits well in the goto-based implemen-
tation scheme already outlined.

Memor y

Similar to what happens for I/O ports, I/O memory information is available in the
/pr oc/iomem file. This is a fraction of the file as it appears on a personal computer:

00000000-0009fbff : System RAM
0009fc00-0009ffff : reserved
000a0000-000bffff : Video RAM area
000c0000-000c7fff : Video ROM
000f0000-000fffff : System ROM
00100000-03feffff : System RAM
00100000-0022c557 : Kernel code
0022c558-0024455f : Kernel data

20000000-2fffffff : Intel Corporation 440BX/ZX - 82443BX/ZX Host bridge
68000000-68000fff : Texas Instruments PCI1225
68001000-68001fff : Texas Instruments PCI1225 (#2)
e0000000-e3ffffff : PCI Bus #01
e4000000-e7ffffff : PCI Bus #01
e4000000-e4ffffff : ATI Technologies Inc 3D Rage LT Pro AGP-133
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e6000000-e6000fff : ATI Technologies Inc 3D Rage LT Pro AGP-133
fffc0000-ffffffff : reserved

Once again, the values shown are hexadecimal ranges, and the string after the
colon is the name of the “owner” of the I/O region.

As far as driver writing is concerned, the registry for I/O memory is accessed in
the same way as for I/O ports, since they are actually based on the same internal
mechanism.

To obtain and relinquish access to a certain I/O memory region, the driver should
use the following calls:

int check_mem_region(unsigned long start, unsigned long len);
int request_mem_region(unsigned long start, unsigned long len,

char *name);
int release_mem_region(unsigned long start, unsigned long len);

A typical driver will already know its own I/O memory range, and the sequence
shown previously for I/O ports will reduce to the following:

if (check_mem_region(mem_addr, mem_size)) { printk("drivername:
memory already in use\n"); return -EBUSY; }
request_mem_region(mem_addr, mem_size, "drivername");

Resour ce Allocation in Linux 2.4
The current resource allocation mechanism was introduced in Linux 2.3.11 and
pr ovides a flexible way of controlling system resources. This section briefly
describes the mechanism. However, the basic resource allocation functions
(request_r egion and the rest) are still implemented (via macros) and are still uni-
versally used because they are backward compatible with earlier kernel versions.
Most module programmers will not need to know about what is really happening
under the hood, but those working on more complex drivers may be interested.

Linux resource management is able to control arbitrary resources, and it can do so
in a hierarchical manner. Globally known resources (the range of I/O ports, say)
can be subdivided into smaller subsets—for example, the resources associated
with a particular bus slot. Individual drivers can then further subdivide their range
if need be.

Resource ranges are described via a resour ce structur e, declar ed in
<linux/ioport.h>:

struct resource {
const char *name;
unsigned long start, end;
unsigned long flags;
struct resource *parent, *sibling, *child;

};

40

22 June 2001 16:34



Top-level (root) resources are created at boot time. For example, the resource
structur e describing the I/O port range is created as follows:

struct resource ioport_resource =
{ "PCI IO", 0x0000, IO_SPACE_LIMIT, IORESOURCE_IO };

Thus, the name of the resource is PCI IO, and it covers a range from zero
thr ough IO_SPACE_LIMIT, which, according to the hardware platfor m being run,
can be 0xffff (16 bits of address space, as happens on the x86, IA-64, Alpha,
M68k, and MIPS), 0xffffffff (32 bits: SPARC, PPC, SH) or
0xffffffffffffffff (64 bits: SPARC64).

Subranges of a given resource may be created with allocate_r esource. For exam-
ple, during PCI initialization a new resource is created for a region that is actually
assigned to a physical device. When the PCI code reads those port or memory
assignments, it creates a new resource for just those regions, and allocates them
under ioport_resource or iomem_resource.

A driver can then request a subset of a particular resource (actually a subrange of
a global resource) and mark it as busy by calling _ _request_r egion, which retur ns
a pointer to a new struct resource data structure that describes the resource
being requested (or retur ns NULL in case of error). The structure is alr eady part of
the global resource tree, and the driver is not allowed to use it at will.

An interested reader may enjoy looking at the details by browsing the source in
ker nel/resour ce.c and looking at the use of the resource management scheme in
the rest of the kernel. Most driver writers, however, will be more than adequately
served by request_r egion and the other functions introduced in the previous sec-
tion.

This layered mechanism brings a couple of benefits. One is that it makes the I/O
structur e of the system apparent within the data structures of the kernel. The result
shows up in /pr oc/ioports, for example:

e800-e8ff : Adaptec AHA-2940U2/W / 7890
e800-e8be : aic7xxx

The range e800-e8ff is allocated to an Adaptec card, which has identified itself
to the PCI bus driver. The aic7xxx driver has then requested most of that range—
in this case, the part corresponding to real ports on the card.

The other advantage to controlling resources in this way is that it partitions the
port space into distinct subranges that reflect the hardware of the underlying sys-
tem. Since the resource allocator will not allow an allocation to cross subranges, it
can block a buggy driver (or one looking for hardware that does not exist on the
system) from allocating ports that belong to more than range—even if some of
those ports are unallocated at the time.
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Automatic and Manual Configuration
Several parameters that a driver needs to know can change from system to system.
For instance, the driver must know the hardware’s actual I/O addresses, or mem-
ory range (this is not a problem with well-designed bus interfaces and only applies
to ISA devices). Sometimes you’ll need to pass parameters to a driver to help it in
finding its own device or to enable/disable specific features.

Depending on the device, there may be other parameters in addition to the I/O
addr ess that affect the driver’s behavior, such as device brand and release number.
It’s essential for the driver to know the value of these parameters in order to work
corr ectly. Setting up the driver with the correct values (i.e., configuring it) is one
of the tricky tasks that need to be perfor med during driver initialization.

Basically, there are two ways to obtain the correct values: either the user specifies
them explicitly or the driver autodetects them. Although autodetection is undoubt-
edly the best approach to driver configuration, user configuration is much easier to
implement. A suitable trade-off for a driver writer is to implement automatic con-
figuration whenever possible, while allowing user configuration as an option to
override autodetection. An additional advantage of this approach to configuration
is that the initial development can be done without autodetection, by specifying
the parameters at load time, and autodetection can be implemented later.

Many drivers also have configuration options that control other aspects of their
operation. For example, drivers for SCSI adapters often have options controlling
the use of tagged command queuing, and the Integrated Device Electronics (IDE)
drivers allow user control of DMA operations. Thus, even if your driver relies
entir ely on autodetection to locate hardware, you may want to make other config-
uration options available to the user.

Parameter values can be assigned at load time by insmod or modpr obe ; the latter
can also read parameter assignment from a configuration file (typically
/etc/modules.conf ). The commands accept the specification of integer and string
values on the command line. Thus, if your module were to provide an integer
parameter called skull_ival and a string parameter skull_sval, the parameters could
be set at module load time with an insmod command like:

insmod skull skull_ival=666 skull_sval="the beast"

However, befor e insmod can change module parameters, the module must make
them available. Parameters are declar ed with the MODULE_PARM macr o, which is
defined in module.h. MODULE_PARM takes two parameters: the name of the vari-
able, and a string describing its type. The macro should be placed outside of any
function and is typically found near the head of the source file. The two parame-
ters mentioned earlier could be declared with the following lines:
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int skull_ival=0;
char *skull_sval;

MODULE_PARM (skull_ival, "i");
MODULE_PARM (skull_sval, "s");

Five types are curr ently supported for module parameters: b, one byte; h, a short
(two bytes); i, an integer; l, a long; and s, a string. In the case of string values, a
pointer variable should be declared; insmod will allocate the memory for the user-
supplied parameter and set the variable accordingly. An integer value preceding
the type indicates an array of a given length; two numbers, separated by a
hyphen, give a minimum and maximum number of values. If you want to find the
author’s description of this feature, you should refer to the header file
<linux/module.h>.

As an example, an array that must have at least two and no more than four values
could be declared as:

int skull_array[4];
MODULE_PARM (skull_array, "2-4i");

Ther e is also a macro MODULE_PARM_DESC, which allows the programmer to
pr ovide a description for a module parameter. This description is stored in the
object file; it can be viewed with a tool like objdump, and can also be displayed
by automated system administration tools. An example might be as follows:

int base_port = 0x300;
MODULE_PARM (base_port, "i");
MODULE_PARM_DESC (base_port, "The base I/O port (default 0x300)");

All module parameters should be given a default value; insmod will change the
value only if explicitly told to by the user. The module can check for explicit
parameters by testing parameters against their default values. Automatic configura-
tion, then, can be designed to work this way: if the configuration variables have
the default value, perfor m autodetection; otherwise, keep the current value. In
order for this technique to work, the “default” value should be one that the user
would never actually want to specify at load time.

The following code shows how skull autodetects the port address of a device. In
this example, autodetection is used to look for multiple devices, while manual
configuration is restricted to a single device. The function skull_detect occurr ed
earlier, in “Ports,” while skull_init_boar d is in charge of device-specific initializa-
tion and thus is not shown.

/*
* port ranges: the device can reside between
* 0x280 and 0x300, in steps of 0x10. It uses 0x10 ports.
*/

#define SKULL_PORT_FLOOR 0x280
#define SKULL_PORT_CEIL 0x300
#define SKULL_PORT_RANGE 0x010

Automatic and Manual Configuration
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/*
* the following function performs autodetection, unless a specific
* value was assigned by insmod to "skull_port_base"
*/

static int skull_port_base=0; /* 0 forces autodetection */
MODULE_PARM (skull_port_base, "i");
MODULE_PARM_DESC (skull_port_base, "Base I/O port for skull");

static int skull_find_hw(void) /* returns the # of devices */
{
/* base is either the load-time value or the first trial */
int base = skull_port_base ? skull_port_base

: SKULL_PORT_FLOOR;
int result = 0;

/* loop one time if value assigned; try them all if autodetecting */
do {

if (skull_detect(base, SKULL_PORT_RANGE) == 0) {
skull_init_board(base);
result++;

}
base += SKULL_PORT_RANGE; /* prepare for next trial */

}
while (skull_port_base == 0 && base < SKULL_PORT_CEIL);

return result;
}

If the configuration variables are used only within the driver (they are not pub-
lished in the kernel’s symbol table), the driver writer can make life a little easier
for the user by leaving off the prefix on the variable names (in this case,
skull_ ). Prefixes usually mean little to users except extra typing.

For completeness, there are thr ee other macros that place documentation into the
object file. They are as follows:

MODULE_AUTHOR (name)
Puts the author’s name into the object file.

MODULE_DESCRIPTION (desc)
Puts a description of the module into the object file.

MODULE_SUPPORTED_DEVICE (dev)
Places an entry describing what device is supported by this module. Com-
ments in the kernel source suggest that this parameter may eventually be used
to help with automated module loading, but no such use is made at this time.
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Doing It in User Space
A Unix programmer who’s addressing kernel issues for the first time might well be
nervous about writing a module. Writing a user program that reads and writes
dir ectly to the device ports is much easier.

Indeed, there are some arguments in favor of user-space programming, and some-
times writing a so-called user-space device driver is a wise alternative to kernel
hacking.

The advantages of user-space drivers can be summarized as follows:

• The full C library can be linked in. The driver can perfor m many exotic tasks
without resorting to external programs (the utility programs implementing
usage policies that are usually distributed along with the driver itself).

• The programmer can run a conventional debugger on the driver code without
having to go through contortions to debug a running kernel.

• If a user-space driver hangs, you can simply kill it. Problems with the driver
ar e unlikely to hang the entire system, unless the hardware being controlled is
really misbehaving.

• User memory is swappable, unlike kernel memory. An infrequently used
device with a huge driver won’t occupy RAM that other programs could be
using, except when it is actually in use.

• A well-designed driver program can still allow concurrent access to a device.

An example of a user-space driver is the X server: it knows exactly what the hard-
war e can do and what it can’t, and it offers the graphic resources to all X clients.
Note, however, that there is a slow but steady drift toward frame-buffer-based
graphics environments, where the X server acts only as a server based on a real
ker nel-space device driver for actual graphic manipulation.

Usually, the writer of a user-space driver implements a server process, taking over
fr om the kernel the task of being the single agent in charge of hardware contr ol.
Client applications can then connect to the server to perfor m actual communica-
tion with the device; a smart driver process can thus allow concurrent access to
the device. This is exactly how the X server works.

Another example of a user-space driver is the gpm mouse server: it perfor ms arbi-
tration of the mouse device between clients, so that several mouse-sensitive appli-
cations can run on differ ent virtual consoles.

Sometimes, though, the user-space driver grants device access to a single program.
This is how libsvga works. The library, which turns a TTY into a graphics display,
gets linked to the application, thus supplementing the application’s capabilities

Doing It in User Space
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without resorting to a central authority (e.g., a server). This approach usually gives
you better perfor mance because it skips the communication overhead, but it
requir es the application to run as a privileged user (this is one of the problems
being solved by the frame buffer device driver running in kernel space).

But the user-space approach to device driving has a number of drawbacks. The
most important are as follows:

• Interrupts are not available in user space. The only way around this (on the
x86) is to use the vm86 system call, which imposes a perfor mance penalty.*

• Dir ect access to memory is possible only by mmapping /dev/mem, and only a
privileged user can do that.

• Access to I/O ports is available only after calling ioper m or iopl. Mor eover, not
all platforms support these system calls, and access to /dev/port can be too
slow to be effective. Both the system calls and the device file are reserved to a
privileged user.

• Response time is slower, because a context switch is requir ed to transfer infor-
mation or actions between the client and the hardware.

• Worse yet, if the driver has been swapped to disk, response time is unaccept-
ably long. Using the mlock system call might help, but usually you’ll need to
lock several memory pages, because a user-space program depends on a lot
of library code. mlock, too, is limited to privileged users.

• The most important devices can’t be handled in user space, including, but not
limited to, network interfaces and block devices.

As you see, user-space drivers can’t do that much after all. Interesting applications
nonetheless exist: for example, support for SCSI scanner devices (implemented by
the SANE package) and CD writers (implemented by cdr ecord and other tools). In
both cases, user-level device drivers rely on the “SCSI generic” kernel driver,
which exports low-level SCSI functionality to user-space programs so they can
drive their own hardware.

In order to write a user-space driver, some hardware knowledge is sufficient, and
ther e’s no need to understand the subtleties of kernel software. We won’t discuss
user-space drivers any further in this book, but will concentrate on kernel code
instead.

One case in which working in user space might make sense is when you are
beginning to deal with new and unusual hardware. This way you can learn to
manage your hardware without the risk of hanging the whole system. Once you’ve

* The system call is not discussed in this book because the subject matter of the text is ker-
nel drivers; moreover, vm86 is too platform specific to be really interesting.
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done that, encapsulating the software in a ker nel module should be a painless
operation.

Backward Compatibility
The Linux kernel is a moving target — many things change over time as new fea-
tur es ar e developed. The interface that we have described in this chapter is that
pr ovided by the 2.4 kernel; if your code needs to work on older releases, you will
need to take various steps to make that happen.

This is the first of many “backward compatibility” sections in this book. At the end
of each chapter we’ll cover the things that have changed since version 2.0 of the
ker nel, and what needs to be done to make your code portable.

For starters, the KERNEL_VERSION macr o was introduced in kernel 2.1.90. The
sysdep.h header file contains a replacement for kernels that need it.

Changes in Resource Management
The new resource management scheme brings in a few portability problems if you
want to write a driver that can run with kernel versions older than 2.4. This section
discusses the portability problems you’ll encounter and how the sysdep.h header
tries to hide them.

The most apparent change brought about by the new resource management code
is the addition of request_mem_r egion and related functions. Their role is limited
to accessing the I/O memory database, without perfor ming specific operations on
any hardware. What you can do with earlier kernels, thus, is to simply not call the
functions. The sysdep.h header easily accomplishes that by defining the functions
as macros that retur n 0 for kernels earlier than 2.4.

Another differ ence between 2.4 and earlier kernel versions is in the actual proto-
types of request_r egion and related functions.

Ker nels earlier than 2.4 declared both request_r egion and release_r egion as func-
tions retur ning void (thus forcing the use of check_r egion befor ehand). The new
implementation, more corr ectly, has functions that retur n a pointer value so that
an error condition can be signaled (thus making check_r egion pr etty useless). The
actual pointer value will not generally be useful to driver code for anything other
than a test for NULL, which means that the request failed.

If you want to save a few lines of code in your drivers and are not concerned
about backward portability, you could exploit the new function calls and avoid
using check_r egion in your code. Actually, check_r egion is now implemented on
top of request_r egion, releasing the I/O region and retur ning success if the request
is fulfilled; the overhead is negligible because none of these functions is ever
called from a time-critical code section.

Backward Compatibility
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If you prefer to be portable, you can stick to the call sequence we suggested ear-
lier in this chapter and ignore the retur n values of request_r egion and
release_r egion. Anyway, sysdep.h declar es both functions as macros retur ning 0
(success), so you can both be portable and check the retur n value of every func-
tion you call.

The last differ ence in the I/O registry between version 2.4 and earlier versions of
the kernel is in the data types used for the start and len arguments. Whereas
new kernels always use unsigned long, older kernels used shorter types. This
change has no effect on driver portability, though.

Compiling for Multiprocessor Systems
Version 2.0 of the kernel didn’t use the CONFIG_SMP configuration option to build
for SMP systems; instead, choice was made a global assignment in the main kernel
makefile. Note that modules compiled for an SMP machine will not work in a
unipr ocessor ker nel, and vice versa, so it is important to get this one right.

The sample code accompanying this book automatically deals with SMP in the
makefiles, so the code shown earlier need not be copied in each module. How-
ever, we do not support SMP under version 2.0 of the kernel. This should not be a
pr oblem because multiprocessor support was not very robust in Linux 2.0, and
everyone running SMP systems should be using 2.2 or 2.4. Version 2.0 is covered
by this book because it’s still the platform of choice for small embedded systems
(especially in its no-MMU implementation), but no such system has multiple pro-
cessors.

Expor ting Symbols in Linux 2.0
The Linux 2.0 symbol export mechanism was built around a function called regis-
ter_symtab. A Linux 2.0 module would build a table describing all of the symbols
to be exported, then would call register_symtab fr om its initialization function.
Only symbols that were listed in the explicit symbol table were exported to the
ker nel. If, instead, the function was not called at all, all global symbols were
exported.

If your module doesn’t need to export any symbols, and you don’t want to declare
everything as static, just hide global symbols by adding the following line to
init_module. This call to register_symtab simply overwrites the module’s default
symbol table with an empty one:

register_symtab(NULL);

This is exactly how sysdep.h defines EXPORT_NO_SYMBOLS when compiling for
version 2.0. This is also why EXPORT_NO_SYMBOLS must appear within init_mod-
ule to work properly under Linux 2.0.
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If you do need to export symbols from your module, you will need to create a
symbol table structure describing these symbols. Filling a Linux 2.0 symbol table
structur e is a tricky task, but kernel developers have provided header files to sim-
plify things. The following lines of code show how a symbol table is declared and
exported using the facilities offer ed by the headers of Linux 2.0:

static struct symbol_table skull_syms = {

#include <linux/symtab_begin.h>
X(skull_fn1),
X(skull_fn2),
X(skull_variable),

#include <linux/symtab_end.h>
};

register_symtab(&skull_syms);

Writing portable code that controls symbol visibility takes an explicit effort from
the device driver programmer. This is a case where it is not sufficient to define a
few compatibility macros; instead, portability requir es a fair amount of conditional
pr eprocessor code, but the concepts are simple. The first step is to identify the
ker nel version in use and to define some symbols accordingly. What we chose to
do in sysdep.h is define a macro REGISTER_SYMTAB() that expands to nothing
on version 2.2 and later and expands to register_symtab on version 2.0. Also,
__USE_OLD_SYMTAB_ _ is defined if the old code must be used.

By making use of this code, a module that exports symbols may now do so
portably. In the sample code is a module, called misc-modules/export.c, that does
nothing except export one symbol. The module, covered in more detail in “Ver-
sion Control in Modules” in Chapter 11, includes the following lines to export the
symbol portably:

#ifdef __USE_OLD_SYMTAB_ _
static struct symbol_table export_syms = {
#include <linux/symtab_begin.h>
X(export_function),
#include <linux/symtab_end.h>

};
#else
EXPORT_SYMBOL(export_function);

#endif

int export_init(void)
{
REGISTER_SYMTAB(&export_syms);
return 0;

}

Backward Compatibility
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If __USE_OLD_SYMTAB_ _ is set (meaning that you are dealing with a 2.0 ker-
nel), the symbol_table structur e is defined as needed; otherwise, EXPORT_SYMBOL
is used to export the symbol directly. Then, in init_module, REGISTER_SYMTAB
is called; on anything but a 2.0 kernel, it will expand to nothing.

Module Configuration Parameter s
MODULE_PARM was introduced in kernel version 2.1.18. With the 2.0 kernel, no
parameters were declar ed explicitly; instead, insmod was able to change the value
of any variable within the module. This method had the disadvantage of providing
user access to variables for which this mode of access had not been intended;
ther e was also no type checking of parameters. MODULE_PARM makes module
parameters much cleaner and safer, but also makes Linux 2.2 modules incompati-
ble with 2.0 kernels.

If 2.0 compatibility is a concern, a simple prepr ocessor test can be used to define
the various MODULE_ macr os to do nothing. The header file sysdep.h in the sam-
ple code defines these macros when needed.

Quick Reference
This section summarizes the kernel functions, variables, macros, and /pr oc files
that we’ve touched on in this chapter. It is meant to act as a refer ence. Each item
is listed after the relevant header file, if any. A similar section appears at the end
of every chapter from here on, summarizing the new symbols introduced in the
chapter.

__KERNEL_ _
MODULE

Pr eprocessor symbols, which must both be defined to compile modularized
ker nel code.

__SMP_ _
A prepr ocessor symbol that must be defined when compiling modules for
symmetric multiprocessor systems.

int init_module(void);
void cleanup_module(void);

Module entry points, which must be defined in the module object file.

#include <linux/init.h>
module_init(init_function);
module_exit(cleanup_function);

The modern mechanism for marking a module’s initialization and cleanup
functions.
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#include <linux/module.h>
Requir ed header. It must be included by a module source.

MOD_INC_USE_COUNT;
MOD_DEC_USE_COUNT;
MOD_IN_USE;

Macr os that act on the usage count.

/pr oc/modules
The list of currently loaded modules. Entries contain the module name, the
amount of memory each module occupies, and the usage count. Extra strings
ar e appended to each line to specify flags that are curr ently active for the
module.

EXPORT_SYMTAB;
Pr eprocessor macro, requir ed for modules that export symbols.

EXPORT_NO_SYMBOLS;
Macr o used to specify that the module exports no symbols to the kernel.

EXPORT_SYMBOL (symbol);
EXPORT_SYMBOL_NOVERS (symbol);

Macr o used to export a symbol to the kernel. The second form exports with-
out using versioning information.

int register_symtab(struct symbol_table *);
Function used to specify the set of public symbols in the module. Used in 2.0
ker nels only.

#include <linux/symtab_begin.h>
X(symbol),
#include <linux/symtab_end.h>

Headers and prepr ocessor macr o used to declare a symbol table in the 2.0
ker nel.

MODULE_PARM(variable, type);
MODULE_PARM_DESC (variable, description);

Macr os that make a module variable available as a parameter that may be
adjusted by the user at module load time.

MODULE_AUTHOR(author);
MODULE_DESCRIPTION(description);
MODULE_SUPPORTED_DEVICE(device);

Place documentation on the module in the object file.

Quick Reference
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#include <linux/version.h>
Requir ed header. It is included by <linux/module.h>, unless
__NO_VERSION_ _ is defined (see later in this list).

LINUX_VERSION_CODE
Integer macro, useful to #ifdef version dependencies.

char kernel_version[] = UTS_RELEASE;
Requir ed variable in every module. <linux/module.h> defines it, unless
__NO_VERSION_ _ is defined (see the following entry).

__NO_VERSION_ _
Pr eprocessor symbol. Prevents declaration of kernel_version in
<linux/module.h>.

#include <linux/sched.h>
One of the most important header files. This file contains definitions of much
of the kernel API used by the driver, including functions for sleeping and
numer ous variable declarations.

struct task_struct *current;
The current process.

current->pid
current->comm

The process ID and command name for the current process.

#include <linux/kernel.h>
int printk(const char * fmt, . . . );

The analogue of printf for kernel code.

#include <linux/malloc.h>
void *kmalloc(unsigned int size, int priority);
void kfree(void *obj);

Analogue of malloc and fr ee for kernel code. Use the value of GFP_KERNEL
as the priority.

#include <linux/ioport.h>
int check_region(unsigned long from, unsigned long extent);
struct resource *request_region(unsigned long from, unsigned

long extent, const char *name);
void release_region(unsigned long from, unsigned long

extent);
Functions used to register and release I/O ports.
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int check_mem_region (unsigned long start, unsigned long
extent);

struct resource *request_mem_region (unsigned long start,
unsigned long extent, const char *name);

void release_mem_region (unsigned long start, unsigned long
extent);

Macr os used to register and release I/O memory regions.

/pr oc/ksyms
The public kernel symbol table.

/pr oc/ioports
The list of ports used by installed devices.

/pr oc/iomem
The list of allocated memory regions.

Quick Reference
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CHAPTER THREE

CHAR DRIVERS

The goal of this chapter is to write a complete char device driver. We’ll develop a
character driver because this class is suitable for most simple hardware devices.
Char drivers are also easier to understand than, for example, block drivers or net-
work drivers. Our ultimate aim is to write a modularized char driver, but we won’t
talk about modularization issues in this chapter.

Thr oughout the chapter, we’ll present code fragments extracted from a real device
driver: scull, short for Simple Character Utility for Loading Localities. scull is a char
driver that acts on a memory area as though it were a device. A side effect of this
behavior is that, as far as scull is concerned, the word device can be used inter-
changeably with “the memory area used by scull.”

The advantage of scull is that it isn’t hardware dependent, since every computer
has memory. scull just acts on some memory, allocated using kmalloc. Anyone can
compile and run scull, and scull is portable across the computer architectur es on
which Linux runs. On the other hand, the device doesn’t do anything “useful”
other than demonstrating the interface between the kernel and char drivers and
allowing the user to run some tests.

The Design of scull
The first step of driver writing is defining the capabilities (the mechanism) the
driver will offer to user programs. Since our “device” is part of the computer’s
memory, we’re free to do what we want with it. It can be a sequential or random-
access device, one device or many, and so on.

To make scull be useful as a template for writing real drivers for real devices, we’ll
show you how to implement several device abstractions on top of the computer
memory, each with a differ ent personality.

The scull source implements the following devices. Each kind of device imple-
mented by the module is referr ed to as a type :
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scull0 to scull3
Four devices each consisting of a memory area that is both global and persis-
tent. Global means that if the device is opened multiple times, the data con-
tained within the device is shared by all the file descriptors that opened it.
Persistent means that if the device is closed and reopened, data isn’t lost. This
device can be fun to work with, because it can be accessed and tested using
conventional commands such as cp, cat, and shell I/O redir ection; we’ll exam-
ine its internals in this chapter.

scullpipe0 to scullpipe3
Four FIFO (first-in-first-out) devices, which act like pipes. One process reads
what another process writes. If multiple processes read the same device, they
contend for data. The internals of scullpipe will show how blocking and non-
blocking read and write can be implemented without having to resort to inter-
rupts. Although real drivers synchronize with their devices using hardware
interrupts, the topic of blocking and nonblocking operations is an important
one and is separate from interrupt handling (covered in Chapter 9).

scullsingle
scullpriv
sculluid
scullwuid

These devices are similar to scull0, but with some limitations on when an
open is permitted. The first (scullsingle) allows only one process at a time to
use the driver, wher eas scullpriv is private to each virtual console (or X termi-
nal session) because processes on each console/terminal will get a differ ent
memory area from processes on other consoles. sculluid and scullwuid can be
opened multiple times, but only by one user at a time; the former retur ns an
err or of “Device Busy” if another user is locking the device, whereas the latter
implements blocking open. These variations of scull add more “policy” than
“mechanism;” this kind of behavior is interesting to look at anyway, because
some devices requir e types of management like the ones shown in these scull
variations as part of their mechanism.

Each of the scull devices demonstrates differ ent featur es of a driver and presents
dif ferent difficulties. This chapter covers the internals of scull0 to skull3; the more
advanced devices are cover ed in Chapter 5: scullpipe is described in “A Sample
Implementation: scullpipe” and the others in “Access Control on a Device File.”

Major and Minor Numbers
Char devices are accessed through names in the filesystem. Those names are
called special files or device files or simply nodes of the filesystem tree; they are
conventionally located in the /dev dir ectory. Special files for char drivers are

Major and Minor Numbers
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identified by a “c” in the first column of the output of ls –l. Block devices appear
in /dev as well, but they are identified by a “b.” The focus of this chapter is on
char devices, but much of the following information applies to block devices as
well.

If you issue the ls –l command, you’ll see two numbers (separated by a comma) in
the device file entries before the date of last modification, where the file length
nor mally appears. These numbers are the major device number and minor device
number for the particular device. The following listing shows a few devices as
they appear on a typical system. Their major numbers are 1, 4, 7, and 10, while
the minors are 1, 3, 5, 64, 65, and 129.

crw-rw-rw- 1 root root 1, 3 Feb 23 1999 null
crw------- 1 root root 10, 1 Feb 23 1999 psaux
crw------- 1 rubini tty 4, 1 Aug 16 22:22 tty1
crw-rw-rw- 1 root dialout 4, 64 Jun 30 11:19 ttyS0
crw-rw-rw- 1 root dialout 4, 65 Aug 16 00:00 ttyS1
crw------- 1 root sys 7, 1 Feb 23 1999 vcs1
crw------- 1 root sys 7, 129 Feb 23 1999 vcsa1
crw-rw-rw- 1 root root 1, 5 Feb 23 1999 zero

The major number identifies the driver associated with the device. For example,
/dev/null and /dev/zer o ar e both managed by driver 1, whereas virtual consoles
and serial terminals are managed by driver 4; similarly, both vcs1 and vcsa1
devices are managed by driver 7. The kernel uses the major number at open time
to dispatch execution to the appropriate driver.

The minor number is used only by the driver specified by the major number; other
parts of the kernel don’t use it, and merely pass it along to the driver. It is com-
mon for a driver to control several devices (as shown in the listing); the minor
number provides a way for the driver to differ entiate among them.

Version 2.4 of the kernel, though, introduced a new (optional) feature, the device
file system or devfs. If this file system is used, management of device files is sim-
plified and quite differ ent; on the other hand, the new filesystem brings several
user-visible incompatibilities, and as we are writing it has not yet been chosen as a
default feature by system distributors. The previous description and the following
instructions about adding a new driver and special file assume that devfs is not
pr esent. The gap is filled later in this chapter, in “The Device Filesystem.”

When devfs is not being used, adding a new driver to the system means assigning
a major number to it. The assignment should be made at driver (module) initializa-
tion by calling the following function, defined in <linux/fs.h>:

int register_chrdev(unsigned int major, const char *name,
struct file_operations *fops);
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The retur n value indicates success or failure of the operation. A negative retur n
code signals an error; a 0 or positive retur n code reports successful completion.
The major argument is the major number being requested, name is the name of
your device, which will appear in /pr oc/devices, and fops is the pointer to an
array of function pointers, used to invoke your driver’s entry points, as explained
in “File Operations,” later in this chapter.

The major number is a small integer that serves as the index into a static array of
char drivers; “Dynamic Allocation of Major Numbers” later in this chapter explains
how to select a major number. The 2.0 kernel supported 128 devices; 2.2 and 2.4
incr eased that number to 256 (while reserving the values 0 and 255 for future
uses). Minor numbers, too, are eight-bit quantities; they aren’t passed to regis-
ter_chr dev because, as stated, they are only used by the driver itself. There is
tr emendous pr essur e fr om the developer community to increase the number of
possible devices supported by the kernel; increasing device numbers to at least 16
bits is a stated goal for the 2.5 development series.

Once the driver has been register ed in the kernel table, its operations are associ-
ated with the given major number. Whenever an operation is perfor med on a char-
acter device file associated with that major number, the kernel finds and invokes
the proper function from the file_operations structur e. For this reason, the
pointer passed to register_chr dev should point to a global structure within the
driver, not to one local to the module’s initialization function.

The next question is how to give programs a name by which they can request
your driver. A name must be inserted into the /dev dir ectory and associated with
your driver’s major and minor numbers.

The command to create a device node on a filesystem is mknod; superuser privi-
leges are requir ed for this operation. The command takes three arguments in addi-
tion to the name of the file being created. For example, the command

mknod /dev/scull0 c 254 0

cr eates a char device (c) whose major number is 254 and whose minor number is
0. Minor numbers should be in the range 0 to 255 because, for historical reasons,
they are sometimes stored in a single byte. There are sound reasons to extend the
range of available minor numbers, but for the time being, the eight-bit limit is still
in force.

Please note that once created by mknod, the special device file remains unless it is
explicitly deleted, like any information stored on disk. You may want to remove
the device created in this example by issuing rm /dev/scull0.

Dynamic Allocation of Major Numbers
Some major device numbers are statically assigned to the most common devices. A
list of those devices can be found in Documentation/devices.txt within the kernel
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source tree. Because many numbers are alr eady assigned, choosing a unique num-
ber for a new driver can be difficult — there are far more custom drivers than avail-
able major numbers. You could use one of the major numbers reserved for
“experimental or local use,”* but if you experiment with several “local” drivers or
you publish your driver for third parties to use, you’ll again experience the prob-
lem of choosing a suitable number.

Fortunately (or rather, thanks to someone’s ingenuity), you can request dynamic
assignment of a major number. If the argument major is set to 0 when you call
register_chr dev, the function selects a free number and retur ns it. The major num-
ber retur ned is always positive, while negative retur n values are err or codes.
Please note the behavior is slightly differ ent in the two cases: the function retur ns
the allocated major number if the caller requests a dynamic number, but retur ns 0
(not the major number) when successfully registering a predefined major number.

For private drivers, we strongly suggest that you use dynamic allocation to obtain
your major device number, rather than choosing a number randomly from the
ones that are curr ently fr ee. If, on the other hand, your driver is meant to be use-
ful to the community at large and be included into the official kernel tree, you’ll
need to apply to be assigned a major number for exclusive use.

The disadvantage of dynamic assignment is that you can’t create the device nodes
in advance because the major number assigned to your module can’t be guaran-
teed to always be the same. This means that you won’t be able to use loading-on-
demand of your driver, an advanced feature intr oduced in Chapter 11. For normal
use of the driver, this is hardly a problem, because once the number has been
assigned, you can read it from /pr oc/devices.

To load a driver using a dynamic major number, ther efor e, the invocation of ins-
mod can be replaced by a simple script that after calling insmod reads
/pr oc/devices in order to create the special file(s).

A typical /pr oc/devices file looks like the following:

Character devices:
1 mem
2 pty
3 ttyp
4 ttyS
6 lp
7 vcs
10 misc
13 input
14 sound
21 sg

180 usb

* Major numbers in the ranges 60 to 63, 120 to 127, and 240 to 254 are reserved for local
and experimental use: no real device will be assigned such major numbers.
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Block devices:
2 fd
8 sd
11 sr
65 sd
66 sd

The script to load a module that has been assigned a dynamic number can thus be
written using a tool such as awk to retrieve information from /pr oc/devices in order
to create the files in /dev.

The following script, scull_load, is part of the scull distribution. The user of a
driver that is distributed in the form of a module can invoke such a script from the
system’s rc.local file or call it manually whenever the module is needed.

#!/bin/sh
module="scull"
device="scull"
mode="664"

# invoke insmod with all arguments we were passed
# and use a pathname, as newer modutils don’t look in . by default
/sbin/insmod -f ./$module.o $* || exit 1

# remove stale nodes
rm -f /dev/${device}[0-3]

major=‘awk "\\$2==\"$module\" {print \\$1}" /proc/devices‘

mknod /dev/${device}0 c $major 0
mknod /dev/${device}1 c $major 1
mknod /dev/${device}2 c $major 2
mknod /dev/${device}3 c $major 3

# give appropriate group/permissions, and change the group.
# Not all distributions have staff; some have "wheel" instead.
group="staff"
grep ’ˆstaff:’ /etc/group > /dev/null || group="wheel"

chgrp $group /dev/${device}[0-3]
chmod $mode /dev/${device}[0-3]

The script can be adapted for another driver by redefining the variables and
adjusting the mknod lines. The script just shown creates four devices because four
is the default in the scull sources.

The last few lines of the script may seem obscure: why change the group and
mode of a device? The reason is that the script must be run by the superuser, so
newly created special files are owned by root. The permission bits default so that
only root has write access, while anyone can get read access. Normally, a device
node requir es a dif ferent access policy, so in some way or another access rights
must be changed. The default in our script is to give access to a group of users,
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but your needs may vary. Later, in the section “Access Control on a Device File” in
Chapter 5, the code for sculluid will demonstrate how the driver can enforce its
own kind of authorization for device access. A scull_unload script is then available
to clean up the /dev dir ectory and remove the module.

As an alternative to using a pair of scripts for loading and unloading, you could
write an init script, ready to be placed in the directory your distribution uses for
these scripts.* As part of the scull source, we offer a fairly complete and config-
urable example of an init script, called scull.init; it accepts the conventional argu-
ments — either “start” or “stop” or “restart” — and per forms the role of both
scull_load and scull_unload.

If repeatedly creating and destroying /dev nodes sounds like overkill, there is a
useful workaround. If you are only loading and unloading a single driver, you can
just use rmmod and insmod after the first time you create the special files with
your script: dynamic numbers are not randomized, and you can count on the same
number to be chosen if you don’t mess with other (dynamic) modules. Avoiding
lengthy scripts is useful during development. But this trick, clearly, doesn’t scale to
mor e than one driver at a time.

The best way to assign major numbers, in our opinion, is by defaulting to dynamic
allocation while leaving yourself the option of specifying the major number at load
time, or even at compile time. The code we suggest using is similar to the code
intr oduced for autodetection of port numbers. The scull implementation uses a
global variable, scull_major, to hold the chosen number. The variable is initial-
ized to SCULL_MAJOR, defined in scull.h. The default value of SCULL_MAJOR in
the distributed source is 0, which means “use dynamic assignment.” The user can
accept the default or choose a particular major number, either by modifying the
macr o befor e compiling or by specifying a value for scull_major on the ins-
mod command line. Finally, by using the scull_load script, the user can pass argu-
ments to insmod on scull_load ’s command line.†

Her e’s the code we use in scull ’s source to get a major number:

result = register_chrdev(scull_major, "scull", &scull_fops);
if (result < 0) {
printk(KERN_WARNING "scull: can’t get major %d\n",scull_major);
return result;

}
if (scull_major == 0) scull_major = result; /* dynamic */

* Distributions vary widely on the location of init scripts; the most common directories
used are /etc/init.d, /etc/r c.d/init.d, and /sbin/init.d. In addition, if your script is to be run
at boot time, you will need to make a link to it from the appropriate run-level directory
(i.e., . . . /rc3.d).

† The init script scull.init doesn’t accept driver options on the command line, but it sup-
ports a configuration file because it’s designed for automatic use at boot and shutdown
time.
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Removing a Driver from the System
When a module is unloaded from the system, the major number must be released.
This is accomplished with the following function, which you call from the mod-
ule’s cleanup function:

int unregister_chrdev(unsigned int major, const char *name);

The arguments are the major number being released and the name of the associ-
ated device. The kernel compares the name to the register ed name for that num-
ber, if any: if they differ, -EINVAL is retur ned. The kernel also retur ns -EINVAL if
the major number is out of the allowed range.

Failing to unregister the resource in the cleanup function has unpleasant effects.
/pr oc/devices will generate a fault the next time you try to read it, because one of
the name strings still points to the module’s memory, which is no longer mapped.
This kind of fault is called an oops because that’s the message the kernel prints
when it tries to access invalid addresses.*

When you unload the driver without unregistering the major number, recovery will
be difficult because the str cmp function in unr egister_chrdev must derefer ence a
pointer (name) to the original module. If you ever fail to unregister a major num-
ber, you must reload both the same module and another one built on purpose to
unr egister the major. The faulty module will, with luck, get the same address, and
the name string will be in the same place, if you didn’t change the code. The safer
alter native, of course, is to reboot the system.

In addition to unloading the module, you’ll often need to remove the device files
for the removed driver. The task can be accomplished by a script that pairs to the
one used at load time. The script scull_unload does the job for our sample device;
as an alternative, you can invoke scull.init stop.

If dynamic device files are not removed from /dev, ther e’s a possibility of unex-
pected errors: a spare /dev/framegrabber on a developer’s computer might refer to
a fire-alar m device one month later if both drivers used a dynamic major number.
“No such file or directory” is a friendlier response to opening /dev/framegrabber
than the new driver would produce.

dev_t and kdev_t
So far we’ve talked about the major number. Now it’s time to discuss the minor
number and how the driver uses it to differ entiate among devices.

Every time the kernel calls a device driver, it tells the driver which device is being
acted upon. The major and minor numbers are pair ed in a single data type that the
driver uses to identify a particular device. The combined device number (the major

* The word oops is used as both a noun and a verb by Linux enthusiasts.
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and minor numbers concatenated together) resides in the field i_rdev of the
inode structur e, which we introduce later. Some driver functions receive a pointer
to struct inode as the first argument. So if you call the pointer inode (as
most driver writers do), the function can extract the device number by looking at
inode->i_rdev.

Historically, Unix declared dev_t (device type) to hold the device numbers. It
used to be a 16-bit integer value defined in <sys/types.h>. Nowadays, more
than 256 minor numbers are needed at times, but changing dev_t is difficult
because there are applications that “know” the internals of dev_t and would
br eak if the structure wer e to change. Thus, while much of the groundwork has
been laid for larger device numbers, they are still treated as 16-bit integers for
now.

Within the Linux kernel, however, a dif ferent type, kdev_t, is used. This data
type is designed to be a black box for every kernel function. User programs do
not know about kdev_t at all, and kernel functions are unawar e of what is inside
a kdev_t. If kdev_t remains hidden, it can change from one kernel version to
the next as needed, without requiring changes to everyone’s device drivers.

The information about kdev_t is confined in <linux/kdev_t.h>, which is
mostly comments. The header makes instructive reading if you’re inter ested in the
reasoning behind the code. There’s no need to include the header explicitly in the
drivers, however, because <linux/fs.h> does it for you.

The following macros and functions are the operations you can perfor m on
kdev_t:

MAJOR(kdev_t dev);
Extract the major number from a kdev_t structur e.

MINOR(kdev_t dev);
Extract the minor number.

MKDEV(int ma, int mi);
Cr eate a kdev_t built from major and minor numbers.

kdev_t_to_nr(kdev_t dev);
Convert a kdev_t type to a number (a dev_t).

to_kdev_t(int dev);
Convert a number to kdev_t. Note that dev_t is not defined in kernel
mode, and therefor e int is used.

As long as your code uses these operations to manipulate device numbers, it
should continue to work even as the internal data structures change.
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File Operations
In the next few sections, we’ll look at the various operations a driver can perfor m
on the devices it manages. An open device is identified internally by a file struc-
tur e, and the kernel uses the file_operations structur e to access the driver’s
functions. The structure, defined in <linux/fs.h>, is an array of function point-
ers. Each file is associated with its own set of functions (by including a field called
f_op that points to a file_operations structur e). The operations are mostly in
charge of implementing the system calls and are thus named open, read, and so
on. We can consider the file to be an “object” and the functions operating on it to
be its “methods,” using object-oriented programming terminology to denote
actions declared by an object to act on itself. This is the first sign of object-ori-
ented programming we see in the Linux kernel, and we’ll see more in later chap-
ters.

Conventionally, a file_operations structur e or a pointer to one is called fops
(or some variation thereof ); we’ve already seen one such pointer as an argument
to the register_chr dev call. Each field in the structure must point to the function in
the driver that implements a specific operation, or be left NULL for unsupported
operations. The exact behavior of the kernel when a NULL pointer is specified is
dif ferent for each function, as the list later in this section shows.

The file_operations structur e has been slowly getting bigger as new func-
tionality is added to the kernel. The addition of new operations can, of course,
cr eate portability problems for device drivers. Instantiations of the structure in
each driver used to be declared using standard C syntax, and new operations were
nor mally added to the end of the structure; a simple recompilation of the drivers
would place a NULL value for that operation, thus selecting the default behavior,
usually what you wanted.

Since then, kernel developers have switched to a “tagged” initialization format that
allows initialization of structure fields by name, thus circumventing most problems
with changed data structures. The tagged initialization, however, is not standard C
but a (useful) extension specific to the GNU compiler. We will look at an example
of tagged structure initialization shortly.

The following list introduces all the operations that an application can invoke on a
device. We’ve tried to keep the list brief so it can be used as a refer ence, mer ely
summarizing each operation and the default kernel behavior when a NULL pointer
is used. You can skip over this list on your first reading and retur n to it later.

The rest of the chapter, after describing another important data structure (the
file, which actually includes a pointer to its own file_operations), explains
the role of the most important operations and offers hints, caveats, and real code
examples. We defer discussion of the more complex operations to later chapters
because we aren’t ready to dig into topics like memory management, blocking
operations, and asynchronous notification quite yet.

File Operations
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The following list shows what operations appear in struct file_operations
for the 2.4 series of kernels, in the order in which they appear. Although there are
minor differ ences between 2.4 and earlier kernels, they will be dealt with later in
this chapter, so we are just sticking to 2.4 for a while. The retur n value of each
operation is 0 for success or a negative error code to signal an error, unless other-
wise noted.

loff_t (*llseek) (struct file *, loff_t, int);
The llseek method is used to change the current read/write position in a file,
and the new position is retur ned as a (positive) retur n value. The loff_t is a
“long offset” and is at least 64 bits wide even on 32-bit platforms. Errors are
signaled by a negative retur n value. If the function is not specified for the
driver, a seek relative to end-of-file fails, while other seeks succeed by modify-
ing the position counter in the file structur e (described in “The file Struc-
tur e” later in this chapter).

ssize_t (*read) (struct file *, char *, size_t, loff_t *);
Used to retrieve data from the device. A null pointer in this position causes the
read system call to fail with -EINVAL (“Invalid argument”). A non-negative
retur n value repr esents the number of bytes successfully read (the retur n value
is a “signed size” type, usually the native integer type for the target platform).

ssize_t (*write) (struct file *, const char *, size_t,
loff_t *);

Sends data to the device. If missing, -EINVAL is retur ned to the program call-
ing the write system call. The retur n value, if non-negative, repr esents the
number of bytes successfully written.

int (*readdir) (struct file *, void *, filldir_t);
This field should be NULL for device files; it is used for reading directories,
and is only useful to filesystems.

unsigned int (*poll) (struct file *, struct
poll_table_struct *);

The poll method is the back end of two system calls, poll and select, both used
to inquire if a device is readable or writable or in some special state. Either
system call can block until a device becomes readable or writable. If a driver
doesn’t define its poll method, the device is assumed to be both readable and
writable, and in no special state. The retur n value is a bit mask describing the
status of the device.

int (*ioctl) (struct inode *, struct file *, unsigned int,
unsigned long);

The ioctl system call offers a way to issue device-specific commands (like for-
matting a track of a floppy disk, which is neither reading nor writing). Addi-
tionally, a few ioctl commands are recognized by the kernel without referring
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to the fops table. If the device doesn’t offer an ioctl entry point, the system
call retur ns an error for any request that isn’t predefined (-ENOTTY, “No such
ioctl for device”). If the device method retur ns a non-negative value, the same
value is passed back to the calling program to indicate successful completion.

int (*mmap) (struct file *, struct vm_area_struct *);
mmap is used to request a mapping of device memory to a process’s address
space. If the device doesn’t implement this method, the mmap system call
retur ns -ENODEV.

int (*open) (struct inode *, struct file *);
Though this is always the first operation perfor med on the device file, the
driver is not requir ed to declare a corr esponding method. If this entry is NULL,
opening the device always succeeds, but your driver isn’t notified.

int (*flush) (struct file *);
The flush operation is invoked when a process closes its copy of a file
descriptor for a device; it should execute (and wait for) any outstanding oper-
ations on the device. This must not be confused with the fsync operation
requested by user programs. Currently, flush is used only in the network file
system (NFS) code. If flush is NULL, it is simply not invoked.

int (*release) (struct inode *, struct file *);
This operation is invoked when the file structur e is being released. Like
open, release can be missing.*

int (*fsync) (struct inode *, struct dentry *, int);
This method is the back end of the fsync system call, which a user calls to
flush any pending data. If not implemented in the driver, the system call
retur ns -EINVAL.

int (*fasync) (int, struct file *, int);
This operation is used to notify the device of a change in its FASYNC flag.
Asynchr onous notification is an advanced topic and is described in Chapter 5.
The field can be NULL if the driver doesn’t support asynchronous notification.

int (*lock) (struct file *, int, struct file_lock *);
The lock method is used to implement file locking; locking is an indispensable
featur e for regular files, but is almost never implemented by device drivers.

ssize_t (*readv) (struct file *, const struct iovec *,
unsigned long, loff_t *);

ssize_t (*writev) (struct file *, const struct iovec *,
unsigned long, loff_t *);

* Note that release isn’t invoked every time a process calls close. Whenever a file struc-
tur e is shared (for example, after a fork or a dup), release won’t be invoked until all
copies are closed. If you need to flush pending data when any copy is closed, you
should implement the flush method.

File Operations
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These methods, added late in the 2.3 development cycle, implement scat-
ter/gather read and write operations. Applications occasionally need to do a
single read or write operation involving multiple memory areas; these system
calls allow them to do so without forcing extra copy operations on the data.

struct module *owner;
This field isn’t a method like everything else in the file_operations struc-
tur e. Instead, it is a pointer to the module that “owns” this structure; it is used
by the kernel to maintain the module’s usage count.

The scull device driver implements only the most important device methods, and
uses the tagged format to declare its file_operations structur e:

struct file_operations scull_fops = {
llseek: scull_llseek,
read: scull_read,
write: scull_write,
ioctl: scull_ioctl,
open: scull_open,
release: scull_release,

};

This declaration uses the tagged structure initialization syntax, as we described ear-
lier. This syntax is preferr ed because it makes drivers more portable across
changes in the definitions of the structures, and arguably makes the code more
compact and readable. Tagged initialization allows the reordering of structure
members; in some cases, substantial perfor mance impr ovements have been real-
ized by placing frequently accessed members in the same hardware cache line.

It is also necessary to set the owner field of the file_operations structur e. In
some kernel code, you will often see owner initialized with the rest of the struc-
tur e, using the tagged syntax as follows:

owner: THIS_MODULE,

That approach works, but only on 2.4 kernels. A more portable approach is to use
the SET_MODULE_OWNER macr o, which is defined in <linux/module.h>. scull
per forms this initialization as follows:

SET_MODULE_OWNER(&scull_fops);

This macro works on any structure that has an owner field; we will encounter this
field again in other contexts later in the book.

The file Structure
struct file, defined in <linux/fs.h>, is the second most important data
structur e used in device drivers. Note that a file has nothing to do with the
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FILEs of user-space programs. A FILE is defined in the C library and never
appears in kernel code. A struct file, on the other hand, is a kernel structure
that never appears in user programs.

The file structur e repr esents an open file. (It is not specific to device drivers;
every open file in the system has an associated struct file in kernel space.) It
is created by the kernel on open and is passed to any function that operates on
the file, until the last close. After all instances of the file are closed, the kernel
releases the data structure. An open file is differ ent fr om a disk file, repr esented by
struct inode.

In the kernel sources, a pointer to struct file is usually called either file or
filp (“file pointer”). We’ll consistently call the pointer filp to prevent ambigui-
ties with the structure itself. Thus, file refers to the structure and filp to a
pointer to the structure.

The most important fields of struct file ar e shown here. As in the previous
section, the list can be skipped on a first reading. In the next section though,
when we face some real C code, we’ll discuss some of the fields, so they are her e
for you to refer to.

mode_t f_mode;
The file mode identifies the file as either readable or writable (or both), by
means of the bits FMODE_READ and FMODE_WRITE. You might want to check
this field for read/write permission in your ioctl function, but you don’t need
to check permissions for read and write because the kernel checks before
invoking your method. An attempt to write without permission, for example,
is rejected without the driver even knowing about it.

loff_t f_pos;
The current reading or writing position. loff_t is a 64-bit value (long
long in gcc ter minology). The driver can read this value if it needs to know
the current position in the file, but should never change it (read and write
should update a position using the pointer they receive as the last argument
instead of acting on filp->f_pos dir ectly).

unsigned int f_flags;
These are the file flags, such as O_RDONLY, O_NONBLOCK, and O_SYNC. A
driver needs to check the flag for nonblocking operation, while the other flags
ar e seldom used. In particular, read/write permission should be checked using
f_mode instead of f_flags. All the flags are defined in the header
<linux/fcntl.h>.

The file Structure
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struct file_operations *f_op;
The operations associated with the file. The kernel assigns the pointer as part
of its implementation of open, and then reads it when it needs to dispatch any
operations. The value in filp->f_op is never saved for later refer ence; this
means that you can change the file operations associated with your file when-
ever you want, and the new methods will be effective immediately after you
retur n to the caller. For example, the code for open associated with major
number 1 (/dev/null, /dev/zer o, and so on) substitutes the operations in
filp->f_op depending on the minor number being opened. This practice
allows the implementation of several behaviors under the same major number
without introducing overhead at each system call. The ability to replace the
file operations is the kernel equivalent of “method overriding” in object-ori-
ented programming.

void *private_data;
The open system call sets this pointer to NULL befor e calling the open method
for the driver. The driver is free to make its own use of the field or to ignore
it. The driver can use the field to point to allocated data, but then must free
memory in the release method before the file structur e is destroyed by the
ker nel. private_data is a useful resource for preserving state information
acr oss system calls and is used by most of our sample modules.

struct dentry *f_dentry;
The directory entry (dentry) structur e associated with the file. Dentries are an
optimization introduced in the 2.1 development series. Device driver writers
nor mally need not concern themselves with dentry structures, other than to
access the inode structur e as filp->f_dentry->d_inode.

The real structure has a few more fields, but they aren’t useful to device drivers.
We can safely ignore those fields because drivers never fill file structur es; they
only access structures created elsewhere.

open and release
Now that we’ve taken a quick look at the fields, we’ll start using them in real scull
functions.

The open Method
The open method is provided for a driver to do any initialization in preparation for
later operations. In addition, open usually increments the usage count for the
device so that the module won’t be unloaded before the file is closed. The count,
described in “The Usage Count” in Chapter 2, is then decremented by the release
method.
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In most drivers, open should perfor m the following tasks:

• Incr ement the usage count

• Check for device-specific errors (such as device-not-ready or similar hardware
pr oblems)

• Initialize the device, if it is being opened for the first time

• Identify the minor number and update the f_op pointer, if necessary

• Allocate and fill any data structure to be put in filp->private_data

In scull, most of the preceding tasks depend on the minor number of the device
being opened. Therefor e, the first thing to do is identify which device is involved.
We can do that by looking at inode->i_rdev.

We’ve already talked about how the kernel doesn’t use the minor number of the
device, so the driver is free to use it at will. In practice, differ ent minor numbers
ar e used to access differ ent devices or to open the same device in a differ ent way.
For example, /dev/st0 (minor number 0) and /dev/st1 (minor 1) refer to differ ent
SCSI tape drives, whereas /dev/nst0 (minor 128) is the same physical device as
/dev/st0, but it acts differ ently (it doesn’t rewind the tape when it is closed). All of
the tape device files have differ ent minor numbers, so that the driver can tell them
apart.

A driver never actually knows the name of the device being opened, just the
device number—and users can play on this indiffer ence to names by aliasing new
names to a single device for their own convenience. If you create two special files
with the same major/minor pair, the devices are one and the same, and there is no
way to differ entiate between them. The same effect can be obtained using a sym-
bolic or hard link, and the preferr ed way to implement aliasing is creating a sym-
bolic link.

The scull driver uses the minor number like this: the most significant nibble
(upper four bits) identifies the type (personality) of the device, and the least signif-
icant nibble (lower four bits) lets you distinguish between individual devices if the
type supports more than one device instance. Thus, scull0 is differ ent fr om
scullpipe0 in the top nibble, while scull0 and scull1 dif fer in the bottom nibble.*
Two macr os (TYPE and NUM) are defined in the source to extract the bits from a
device number, as shown here:

#define TYPE(dev) (MINOR(dev) >> 4) /* high nibble */
#define NUM(dev) (MINOR(dev) & 0xf) /* low nibble */

* Bit splitting is a typical way to use minor numbers. The IDE driver, for example, uses the
top two bits for the disk number, and the bottom six bits for the partition number.

open and release
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For each device type, scull defines a specific file_operations structur e, which
is placed in filp->f_op at open time. The following code shows how multiple
fops ar e implemented:

struct file_operations *scull_fop_array[]={
&scull_fops, /* type 0 */
&scull_priv_fops, /* type 1 */
&scull_pipe_fops, /* type 2 */
&scull_sngl_fops, /* type 3 */
&scull_user_fops, /* type 4 */
&scull_wusr_fops /* type 5 */

};
#define SCULL_MAX_TYPE 5

/* In scull_open, the fop_array is used according to TYPE(dev) */
int type = TYPE(inode->i_rdev);

if (type > SCULL_MAX_TYPE) return -ENODEV;
filp->f_op = scull_fop_array[type];

The kernel invokes open according to the major number; scull uses the minor
number in the macros just shown. TYPE is used to index into scull_fop_array
in order to extract the right set of methods for the device type being opened.

In scull, filp->f_op is assigned to the correct file_operations structur e as
deter mined by the device type, found in the minor number. The open method
declar ed in the new fops is then invoked. Usually, a driver doesn’t invoke its
own fops, because they are used by the kernel to dispatch the right driver
method. But when your open method has to deal with differ ent device types, you
might want to call fops->open after modifying the fops pointer according to
the minor number being opened.

The actual code for scull_open follows. It uses the TYPE and NUM macr os defined
in the previous code snapshot to split the minor number:

int scull_open(struct inode *inode, struct file *filp)
{
Scull_Dev *dev; /* device information */
int num = NUM(inode->i_rdev);
int type = TYPE(inode->i_rdev);

/*
* If private data is not valid, we are not using devfs
* so use the type (from minor nr.) to select a new f_op
*/

if (!filp->private_data && type) {
if (type > SCULL_MAX_TYPE) return -ENODEV;
filp->f_op = scull_fop_array[type];
return filp->f_op->open(inode, filp); /* dispatch to specific open */

}
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/* type 0, check the device number (unless private_data valid) */
dev = (Scull_Dev *)filp->private_data;
if (!dev) {
if (num >= scull_nr_devs) return -ENODEV;
dev = &scull_devices[num];
filp->private_data = dev; /* for other methods */

}

MOD_INC_USE_COUNT; /* Before we maybe sleep */
/* now trim to 0 the length of the device if open was write-only */
if ( (filp->f_flags & O_ACCMODE) == O_WRONLY) {
if (down_interruptible(&dev->sem)) {
MOD_DEC_USE_COUNT;
return -ERESTARTSYS;

}
scull_trim(dev); /* ignore errors */
up(&dev->sem);

}

return 0; /* success */
}

A few explanations are due here. The data structure used to hold the region of
memory is Scull_Dev, which will be introduced shortly. The global variables
scull_nr_devs and scull_devices[] (all lowercase) are the number of
available devices and the actual array of pointers to Scull_Dev.

The calls to down_interruptible and up can be ignored for now; we will get to
them shortly.

The code looks pretty sparse because it doesn’t do any particular device handling
when open is called. It doesn’t need to, because the scull0-3 device is global and
persistent by design. Specifically, there’s no action like “initializing the device on
first open” because we don’t keep an open count for sculls, just the module usage
count.

Given that the kernel can maintain the usage count of the module via the owner
field in the file_operations structur e, you may be wondering why we incre-
ment that count manually here. The answer is that older kernels requir ed modules
to do all of the work of maintaining their usage count—the owner mechanism
did not exist. To be portable to older kernels, scull incr ements its own usage
count. This behavior will cause the usage count to be too high on 2.4 systems, but
that is not a problem because it will still drop to zero when the module is not
being used.

The only real operation perfor med on the device is truncating it to a length of
zer o when the device is opened for writing. This is perfor med because, by design,
overwriting a pscull device with a shorter file results in a shorter device data area.
This is similar to the way opening a regular file for writing truncates it to zero
length. The operation does nothing if the device is opened for reading.

open and release
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We’ll see later how a real initialization works when we look at the code for the
other scull personalities.

The release Method
The role of the release method is the reverse of open. Sometimes you’ll find that
the method implementation is called device_close instead of
device_release. Either way, the device method should perfor m the following
tasks:

• Deallocate anything that open allocated in filp->private_data

• Shut down the device on last close

• Decr ement the usage count

The basic form of scull has no hardware to shut down, so the code requir ed is
minimal:*

int scull_release(struct inode *inode, struct file *filp)
{
MOD_DEC_USE_COUNT;
return 0;

}

It is important to decrement the usage count if you incremented it at open time,
because the kernel will never be able to unload the module if the counter doesn’t
dr op to zero.

How can the counter remain consistent if sometimes a file is closed without hav-
ing been opened? After all, the dup and fork system calls will create copies of
open files without calling open; each of those copies is then closed at program ter-
mination. For example, most programs don’t open their stdin file (or device), but
all of them end up closing it.

The answer is simple: not every close system call causes the release method to be
invoked. Only the ones that actually release the device data structure invoke the
method — hence its name. The kernel keeps a counter of how many times a file
structur e is being used. Neither fork nor dup cr eates a new file structur e (only
open does that); they just increment the counter in the existing structure.

The close system call executes the release method only when the counter for the
file structur e dr ops to zero, which happens when the structure is destr oyed.
This relationship between the release method and the close system call guarantees
that the usage count for modules is always consistent.

* The other flavors of the device are closed by differ ent functions, because scull_open sub-
stituted a differ ent filp->f_op for each device. We’ll see those later.
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Note that the flush method is called every time an application calls close. However,
very few drivers implement flush, because usually there’s nothing to perfor m at
close time unless release is involved.

As you may imagine, the previous discussion applies even when the application
ter minates without explicitly closing its open files: the kernel automatically closes
any file at process exit time by internally using the close system call.

scull’s Memor y Usage
Befor e intr oducing the read and write operations, we’d better look at how and
why scull per forms memory allocation. “How” is needed to thoroughly understand
the code, and “why” demonstrates the kind of choices a driver writer needs to
make, although scull is definitely not typical as a device.

This section deals only with the memory allocation policy in scull and doesn’t
show the hardware management skills you’ll need to write real drivers. Those
skills are intr oduced in Chapter 8, and in Chapter 9. Therefor e, you can skip this
section if you’re not interested in understanding the inner workings of the mem-
ory-oriented scull driver.

The region of memory used by scull, also called a device her e, is variable in
length. The more you write, the more it grows; trimming is perfor med by overwrit-
ing the device with a shorter file.

The implementation chosen for scull is not a smart one. The source code for a
smart implementation would be more dif ficult to read, and the aim of this section
is to show read and write, not memory management. That’s why the code just
uses kmalloc and kfr ee without resorting to allocation of whole pages, although
that would be more efficient.

On the flip side, we didn’t want to limit the size of the “device” area, for both a
philosophical reason and a practical one. Philosophically, it’s always a bad idea to
put arbitrary limits on data items being managed. Practically, scull can be used to
temporarily eat up your system’s memory in order to run tests under low-memory
conditions. Running such tests might help you understand the system’s internals.
You can use the command cp /dev/zero /dev/scull0 to eat all the real RAM with
scull, and you can use the dd utility to choose how much data is copied to the
scull device.

In scull, each device is a linked list of pointers, each of which points to a
Scull_Dev structur e. Each such structure can refer, by default, to at most four
million bytes, through an array of intermediate pointers. The released source uses
an array of 1000 pointers to areas of 4000 bytes. We call each memory area a
quantum and the array (or its length) a quantum set. A scull device and its mem-
ory areas are shown in Figure 3-1.

scull’s Memor y Usage
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Figur e 3-1. The layout of a scull device

The chosen numbers are such that writing a single byte in scull consumes eight or
twelve thousand bytes of memory: four thousand for the quantum and four or
eight thousand for the quantum set (according to whether a pointer is repr esented
in 32 bits or 64 bits on the target platform). If, instead, you write a huge amount of
data, the overhead of the linked list is not too bad. There is only one list element
for every four megabytes of data, and the maximum size of the device is limited
by the computer’s memory size.

Choosing the appropriate values for the quantum and the quantum set is a ques-
tion of policy, rather than mechanism, and the optimal sizes depend on how the
device is used. Thus, the scull driver should not force the use of any particular val-
ues for the quantum and quantum set sizes. In scull, the user can change the val-
ues in charge in several ways: by changing the macros SCULL_QUANTUM and
SCULL_QSET in scull.h at compile time, by setting the integer values
scull_quantum and scull_qset at module load time, or by changing both
the current and default values using ioctl at runtime.

Using a macro and an integer value to allow both compile-time and load-time con-
figuration is reminiscent of how the major number is selected. We use this tech-
nique for whatever value in the driver is arbitrary, or related to policy.

The only question left is how the default numbers have been chosen. In this par-
ticular case, the problem is finding the best balance between the waste of memory
resulting from half-filled quanta and quantum sets and the overhead of allocation,
deallocation, and pointer chaining that occurs if quanta and sets are small.
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Additionally, the internal design of kmalloc should be taken into account. We
won’t touch the point now, though; the innards of kmalloc ar e explor ed in “The
Real Story of kmalloc” in Chapter 7.

The choice of default numbers comes from the assumption that massive amounts
of data are likely to be written to scull while testing it, although normal use of the
device will most likely transfer just a few kilobytes of data.

The data structure used to hold device information is as follows:

typedef struct Scull_Dev {
void **data;
struct Scull_Dev *next; /* next list item */
int quantum; /* the current quantum size */
int qset; /* the current array size */
unsigned long size;
devfs_handle_t handle; /* only used if devfs is there */
unsigned int access_key; /* used by sculluid and scullpriv */
struct semaphore sem; /* mutual exclusion semaphore */

} Scull_Dev;

The next code fragment shows in practice how Scull_Dev is used to hold data.
The function scull_trim is in charge of freeing the whole data area and is invoked
by scull_open when the file is opened for writing. It simply walks through the list
and frees any quantum and quantum set it finds.

int scull_trim(Scull_Dev *dev)
{
Scull_Dev *next, *dptr;
int qset = dev->qset; /* "dev" is not null */
int i;

for (dptr = dev; dptr; dptr = next) { /* all the list items */
if (dptr->data) {
for (i = 0; i < qset; i++)
if (dptr->data[i])
kfree(dptr->data[i]);

kfree(dptr->data);
dptr->data=NULL;

}
next=dptr->next;
if (dptr != dev) kfree(dptr); /* all of them but the first */

}
dev->size = 0;
dev->quantum = scull_quantum;
dev->qset = scull_qset;
dev->next = NULL;
return 0;

}

scull’s Memor y Usage
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A Brief Introduction to Race Conditions
Now that you understand how scull ’s memory management works, here is a sce-
nario to consider. Two processes, A and B, both have the same scull device open
for writing. Both attempt simultaneously to append data to the device. A new
quantum is requir ed for this operation to succeed, so each process allocates the
requir ed memory and stores a pointer to it in the quantum set.

The result is trouble. Because both processes see the same scull device, each will
stor e its new memory in the same place in the quantum set. If A stores its pointer
first, B will overwrite that pointer when it does its store. Thus the memory allo-
cated by A, and the data written therein, will be lost.

This situation is a classic race condition; the results vary depending on who gets
ther e first, and usually something undesirable happens in any case. On uniproces-
sor Linux systems, the scull code would not have this sort of problem, because
pr ocesses running kernel code are not preempted. On SMP systems, however, life
is more complicated. Processes A and B could easily be running on differ ent pr o-
cessors and could interfer e with each other in this manner.

The Linux kernel provides several mechanisms for avoiding and managing race
conditions. A full description of these mechanisms will have to wait until Chapter
9, but a beginning discussion is appropriate here.

A semaphor e is a general mechanism for controlling access to resources. In its sim-
plest form, a semaphore may be used for mutual exclusion; processes using
semaphor es in the mutual exclusion mode are prevented from simultaneously run-
ning the same code or accessing the same data. This sort of semaphore is often
called a mutex, from “mutual exclusion.”

Semaphor es in Linux are defined in <asm/semaphore.h>. They have a type of
struct semaphore, and a driver should only act on them using the provided
inter face. In scull, one semaphore is allocated for each device, in the Scull_Dev
structur e. Since the devices are entir ely independent of each other, ther e is no
need to enforce mutual exclusion across multiple devices.

Semaphor es must be initialized prior to use by passing a numeric argument to
sema_init. For mutual exclusion applications (i.e., keeping multiple threads from
accessing the same data simultaneously), the semaphore should be initialized to a
value of 1, which means that the semaphore is available. The following code in
scull ’s module initialization function (scull_init) shows how the semaphores are
initialized as part of setting up the devices.

for (i=0; i < scull_nr_devs; i++) {
scull_devices[i].quantum = scull_quantum;
scull_devices[i].qset = scull_qset;
sema_init(&scull_devices[i].sem, 1);

}
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A process wishing to enter a section of code protected by a semaphore must first
ensur e that no other process is already there. Whereas in classical computer sci-
ence the function to obtain a semaphore is often called P, in Linux you’ll need to
call down or down_interruptible. These functions test the value of the semaphore
to see if it is greater than 0; if so, they decrement the semaphore and retur n. If the
semaphor e is 0, the functions will sleep and try again after some other process,
which has presumably freed the semaphore, wakes them up.

The down_interruptible function can be interrupted by a signal, whereas down
will not allow signals to be delivered to the process. You almost always want to
allow signals; otherwise, you risk creating unkillable processes and other undesir-
able behavior. A complication of allowing signals, however, is that you always
have to check if the function (here down_interruptible) was interrupted. As usual,
the function retur ns 0 for success and nonzero in case of failure. If the process is
interrupted, it will not have acquired the semaphores; thus, you won’t need to call
up. A typical call to invoke a semaphore ther efor e nor mally looks something like
this:

if (down_interruptible (&sem))
return -ERESTARTSYS;

The -ERESTARTSYS retur n value tells the system that the operation was inter-
rupted by a signal. The kernel function that called the device method will either
retry it or retur n -EINTR to the application, according to how signal handling has
been configured by the application. Of course, your code may have to perfor m
cleanup work before retur ning if interrupted in this mode.

A process that obtains a semaphore must always release it afterward. Whereas
computer science calls the release function V, Linux uses up instead. A simple call
like

up (&sem);

will increment the value of the semaphore and wake up any processes that are
waiting for the semaphore to become available.

Car e must be taken with semaphores. The data protected by the semaphore must
be clearly defined, and all code that accesses that data must obtain the semaphore
first. Code that uses down_interruptible to obtain a semaphore must not call
another function that also attempts to obtain that semaphore, or deadlock will
result. If a routine in your driver fails to release a semaphore it holds (perhaps as a
result of an error retur n), any further attempts to obtain that semaphore will stall.
Mutual exclusion in general can be tricky, and benefits from a well-defined and
methodical approach.

In scull, the per-device semaphore is used to protect access to the stored data. Any
code that accesses the data field of the Scull_Dev structur e must first have

A Brief Introduction to Race Conditions

77

22 June 2001 16:35



Chapter 3: Char Driver s

obtained the semaphore. To avoid deadlocks, only functions that implement
device methods will try to obtain the semaphore. Internal routines, such as
scull_trim shown earlier, assume that the semaphore has already been obtained.
As long as these invariants hold, access to the Scull_Dev data structure is safe
fr om race conditions.

read and write
The read and write methods perfor m a similar task, that is, copying data from and
to application code. Therefor e, their prototypes are pretty similar and it’s worth
intr oducing them at the same time:

ssize_t read(struct file *filp, char *buff,
size_t count, loff_t *offp);

ssize_t write(struct file *filp, const char *buff,
size_t count, loff_t *offp);

For both methods, filp is the file pointer and count is the size of the requested
data transfer. The buff argument points to the user buffer holding the data to be
written or the empty buffer where the newly read data should be placed. Finally,
offp is a pointer to a “long offset type” object that indicates the file position the
user is accessing. The retur n value is a “signed size type;” its use is discussed later.

As far as data transfer is concerned, the main issue associated with the two device
methods is the need to transfer data between the kernel address space and the
user address space. The operation cannot be carried out through pointers in the
usual way, or through memcpy. User-space addresses cannot be used directly in
ker nel space, for a number of reasons.

One big differ ence between kernel-space addresses and user-space addresses is
that memory in user-space can be swapped out. When the kernel accesses a user-
space pointer, the associated page may not be present in memory, and a page
fault is generated. The functions we introduce in this section and in “Using the
ioctl Argument” in Chapter 5 use some hidden magic to deal with page faults in
the proper way even when the CPU is executing in kernel space.

Also, it’s interesting to note that the x86 port of Linux 2.0 used a completely differ-
ent memory map for user space and kernel space. Thus, user-space pointers
couldn’t be derefer enced at all from kernel space.

If the target device is an expansion board instead of RAM, the same problem
arises, because the driver must nonetheless copy data between user buffers and
ker nel space (and possibly between kernel space and I/O memory).

Cr oss-space copies are per formed in Linux by special functions, defined in
<asm/uaccess.h>. Such a copy is either perfor med by a generic (memcpy -like)
function or by functions optimized for a specific data size (char, short, int,
long); most of them are intr oduced in “Using the ioctl Argument” in Chapter 5.

78

22 June 2001 16:35



The code for read and write in scull needs to copy a whole segment of data to or
fr om the user address space. This capability is offer ed by the following kernel
functions, which copy an arbitrary array of bytes and sit at the heart of every read
and write implementation:

unsigned long copy_to_user(void *to, const void *from,
unsigned long count);

unsigned long copy_from_user(void *to, const void *from,
unsigned long count);

Although these functions behave like normal memcpy functions, a little extra care
must be used when accessing user space from kernel code. The user pages being
addr essed might not be currently present in memory, and the page-fault handler
can put the process to sleep while the page is being transferred into place. This
happens, for example, when the page must be retrieved from swap space. The net
result for the driver writer is that any function that accesses user space must be
reentrant and must be able to execute concurrently with other driver functions
(see also “Writing Reentrant Code” in Chapter 5). That’s why we use semaphores
to control concurrent access.

The role of the two functions is not limited to copying data to and from user-
space: they also check whether the user space pointer is valid. If the pointer is
invalid, no copy is perfor med; if an invalid address is encountered during the
copy, on the other hand, only part of the data is copied. In both cases, the retur n
value is the amount of memory still to be copied. The scull code looks for this
err or retur n, and retur ns -EFAULT to the user if it’s not 0.

The topic of user-space access and invalid user space pointers is somewhat
advanced, and is discussed in “Using the ioctl Argument” in Chapter 5. However,
it’s worth suggesting that if you don’t need to check the user-space pointer you
can invoke _ _copy_to_user and _ _copy_fr om_user instead. This is useful, for
example, if you know you already checked the argument.

As far as the actual device methods are concer ned, the task of the read method is
to copy data from the device to user space (using copy_to_user), while the write
method must copy data from user space to the device (using copy_fr om_user).
Each read or write system call requests transfer of a specific number of bytes, but
the driver is free to transfer less data—the exact rules are slightly differ ent for
reading and writing and are described later in this chapter.

Whatever the amount of data the methods transfer, they should in general update
the file position at *offp to repr esent the current file position after successful
completion of the system call. Most of the time the offp argument is just a
pointer to filp->f_pos, but a differ ent pointer is used in order to support the
pr ead and pwrite system calls, which perfor m the equivalent of lseek and read or
write in a single, atomic operation.

Figur e 3-2 repr esents how a typical read implementation uses its arguments.

read and write
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....
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copy_to_user()

Figur e 3-2. The ar guments to read

Both the read and write methods retur n a negative value if an error occurs. A
retur n value greater than or equal to 0 tells the calling program how many bytes
have been successfully transferred. If some data is transferred correctly and then
an error happens, the retur n value must be the count of bytes successfully trans-
ferr ed, and the error does not get reported until the next time the function is
called.

Although kernel functions retur n a negative number to signal an error, and the
value of the number indicates the kind of error that occurred (as introduced in
Chapter 2 in “Error Handling in init_module”), programs that run in user space
always see –1 as the error retur n value. They need to access the errno variable to
find out what happened. The differ ence in behavior is dictated by the POSIX call-
ing standard for system calls and the advantage of not dealing with errno in the
ker nel.

The read Method
The retur n value for read is interpreted by the calling application program as fol-
lows:

• If the value equals the count argument passed to the read system call, the
requested number of bytes has been transferred. This is the optimal case.
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• If the value is positive, but smaller than count, only part of the data has been
transferr ed. This may happen for a number of reasons, depending on the
device. Most often, the application program will retry the read. For instance, if
you read using the fr ead function, the library function reissues the system call
till completion of the requested data transfer.

• If the value is 0, end-of-file was reached.

• A negative value means there was an error. The value specifies what the error
was, according to <linux/errno.h>. These errors look like -EINTR (inter-
rupted system call) or -EFAULT (bad address).

What is missing from the preceding list is the case of “there is no data, but it may
arrive later.” In this case, the read system call should block. We won’t deal with
blocking input until “Blocking I/O” in Chapter 5.

The scull code takes advantage of these rules. In particular, it takes advantage of
the partial-read rule. Each invocation of scull_r ead deals only with a single data
quantum, without implementing a loop to gather all the data; this makes the code
shorter and easier to read. If the reading program really wants more data, it reiter-
ates the call. If the standard I/O library (i.e., fr ead and friends) is used to read the
device, the application won’t even notice the quantization of the data transfer.

If the current read position is greater than the device size, the read method of
scull retur ns 0 to signal that there’s no data available (in other words, we’re at
end-of-file). This situation can happen if process A is reading the device while
pr ocess B opens it for writing, thus truncating the device to a length of zero. Pro-
cess A suddenly finds itself past end-of-file, and the next read call retur ns 0.

Her e is the code for read:

ssize_t scull_read(struct file *filp, char *buf, size_t count,
loff_t *f_pos)

{
Scull_Dev *dev = filp->private_data; /* the first list item */
Scull_Dev *dptr;
int quantum = dev->quantum;
int qset = dev->qset;
int itemsize = quantum * qset; /* how many bytes in the list item */
int item, s_pos, q_pos, rest;
ssize_t ret = 0;

if (down_interruptible(&dev->sem))
return -ERESTARTSYS;

if (*f_pos >= dev->size)
goto out;

if (*f_pos + count > dev->size)
count = dev->size - *f_pos;

/* find list item, qset index, and offset in the quantum */
item = (long)*f_pos / itemsize;
rest = (long)*f_pos % itemsize;

read and write

81

22 June 2001 16:35



Chapter 3: Char Driver s

s_pos = rest / quantum; q_pos = rest % quantum;

/* follow the list up to the right position (defined elsewhere) */
dptr = scull_follow(dev, item);

if (!dptr->data)
goto out; /* don’t fill holes */

if (!dptr->data[s_pos])
goto out;

/* read only up to the end of this quantum */
if (count > quantum - q_pos)
count = quantum - q_pos;

if (copy_to_user(buf, dptr->data[s_pos]+q_pos, count)) {
ret = -EFAULT;

goto out;
}
*f_pos += count;
ret = count;

out:
up(&dev->sem);
return ret;

}

The write Method
write, like read, can transfer less data than was requested, according to the follow-
ing rules for the retur n value:

• If the value equals count, the requested number of bytes has been trans-
ferr ed.

• If the value is positive, but smaller than count, only part of the data has been
transferr ed. The program will most likely retry writing the rest of the data.

• If the value is 0, nothing was written. This result is not an error, and there is
no reason to retur n an error code. Once again, the standard library retries the
call to write. We’ll examine the exact meaning of this case in “Blocking I/O” in
Chapter 5, where blocking write is introduced.

• A negative value means an error occurred; like for read, valid error values are
those defined in <linux/errno.h>.

Unfortunately, there may be misbehaving programs that issue an error message
and abort when a partial transfer is perfor med. This happens because some pro-
grammers are accustomed to seeing write calls that either fail or succeed com-
pletely, which is actually what happens most of the time and should be supported
by devices as well. This limitation in the scull implementation could be fixed, but
we didn’t want to complicate the code more than necessary.
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The scull code for write deals with a single quantum at a time, like the read
method does:

ssize_t scull_write(struct file *filp, const char *buf, size_t count,
loff_t *f_pos)

{
Scull_Dev *dev = filp->private_data;
Scull_Dev *dptr;
int quantum = dev->quantum;
int qset = dev->qset;
int itemsize = quantum * qset;
int item, s_pos, q_pos, rest;
ssize_t ret = -ENOMEM; /* value used in "goto out" statements */

if (down_interruptible(&dev->sem))
return -ERESTARTSYS;

/* find list item, qset index and offset in the quantum */
item = (long)*f_pos / itemsize;
rest = (long)*f_pos % itemsize;
s_pos = rest / quantum; q_pos = rest % quantum;

/* follow the list up to the right position */
dptr = scull_follow(dev, item);
if (!dptr->data) {
dptr->data = kmalloc(qset * sizeof(char *), GFP_KERNEL);
if (!dptr->data)
goto out;

memset(dptr->data, 0, qset * sizeof(char *));
}
if (!dptr->data[s_pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);
if (!dptr->data[s_pos])
goto out;

}
/* write only up to the end of this quantum */
if (count > quantum - q_pos)
count = quantum - q_pos;

if (copy_from_user(dptr->data[s_pos]+q_pos, buf, count)) {
ret = -EFAULT;

goto out;
}
*f_pos += count;
ret = count;

/* update the size */
if (dev->size < *f_pos)
dev-> size = *f_pos;

read and write
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out:
up(&dev->sem);
return ret;

}

readv and writev
Unix systems have long supported two alternative system calls named readv and
writev. These “vector” versions take an array of structures, each of which contains
a pointer to a buffer and a length value. A readv call would then be expected to
read the indicated amount into each buffer in turn. writev, instead, would gather
together the contents of each buffer and put them out as a single write operation.

Until version 2.3.44 of the kernel, however, Linux always emulated readv and
writev with multiple calls to read and write. If your driver does not supply meth-
ods to handle the vector operations, they will still be implemented that way. In
many situations, however, greater efficiency is achieved by implementing readv
and writev dir ectly in the driver.

The prototypes for the vector operations are as follows:

ssize_t (*readv) (struct file *filp, const struct iovec *iov,
unsigned long count, loff_t *ppos);

ssize_t (*writev) (struct file *filp, const struct iovec *iov,
unsigned long count, loff_t *ppos);

Her e, the filp and ppos arguments are the same as for read and write. The
iovec structur e, defined in <linux/uio.h>, looks like this:

struct iovec
{
void *iov_base;
_&thinsp;_kernel_size_t iov_len;

};

Each iovec describes one chunk of data to be transferred; it starts at iov_base
(in user space) and is iov_len bytes long. The count parameter to the method
tells how many iovec structur es ther e ar e. These structures are created by the
application, but the kernel copies them into kernel space before calling the driver.

The simplest implementation of the vectored operations would be a simple loop
that just passes the address and length out of each iovec to the driver’s read or
write function. Often, however, efficient and correct behavior requir es that the
driver do something smarter. For example, a writev on a tape drive should write
the contents of all the iovec structur es as a single record on the tape.

Many drivers, though, will gain no benefit from implementing these methods
themselves. Thus, scull omits them. The kernel will emulate them with read and
write, and the end result is the same.
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Playing with the New Devices
Once you are equipped with the four methods just described, the driver can be
compiled and tested; it retains any data you write to it until you overwrite it with
new data. The device acts like a data buffer whose length is limited only by the
amount of real RAM available. You can try using cp, dd, and input/output redir ec-
tion to test the driver.

The fr ee command can be used to see how the amount of free memory shrinks
and expands according to how much data is written into scull.

To get more confident with reading and writing one quantum at a time, you can
add a printk at an appropriate point in the driver and watch what happens while
an application reads or writes large chunks of data. Alternatively, use the strace
utility to monitor the system calls issued by a program, together with their retur n
values. Tracing a cp or an ls -l > /dev/scull0 will show quantized reads and writes.
Monitoring (and debugging) techniques are presented in detail in the next chapter.

The Device Filesystem
As suggested at the beginning of the chapter, recent versions of the Linux kernel
of fer a special filesystem for device entry points. The filesystem has been available
for a while as an unofficial patch; it was made part of the official source tree in
2.3.46. A backport to 2.2 is available as well, although not included in the official
2.2 kernels.

Although use of the special filesystem is not widespread as we write this, the new
featur es of fer a few advantages to the device driver writer. Ther efor e, our version
of scull exploits devfs if it is being used in the target system. The module uses ker-
nel configuration information at compile time to know whether particular features
have been enabled, and in this case we depend on CONFIG_DEVFS_FS being
defined or not.

The main advantages of devfs ar e as follows:

• Device entry points in /dev ar e cr eated at device initialization and removed at
device removal.

• The device driver can specify device names, ownership, and permission bits,
but user-space programs can still change ownership and permission (but not
the filename).

• Ther e is no need to allocate a major number for the device driver and deal
with minor numbers.

As a result, there is no need to run a script to create device special files when a
module is loaded or unloaded, because the driver is autonomous in managing its
own special files.

The Device Filesystem
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To handle device creation and removal, the driver should call the following func-
tions:

#include <linux/devfs_fs_kernel.h>

devfs_handle_t devfs_mk_dir (devfs_handle_t dir,
const char *name, void *info);

devfs_handle_t devfs_register (devfs_handle_t dir,
const char *name, unsigned int flags,
unsigned int major, unsigned int minor,
umode_t mode, void *ops, void *info);

void devfs_unregister (devfs_handle_t de);

The devfs implementation offers several other functions for kernel code to use.
They allow creation of symbolic links, access to the internal data structures to
retrieve devfs_handle_t items from inodes, and other tasks. Those other func-
tions are not covered here because they are not very important or easily under-
stood. The curious reader could look at the header file for further information.

The various arguments to the register/unr egister functions are as follows:

dir
The parent directory where the new special file should be created. Most
drivers will use NULL to create special files in /dev dir ectly. To create an
owned directory, a driver should call devfs_mk_dir.

name
The name of the device, without the leading /dev/. The name can include
slashes if you want the device to be in a subdirectory; the subdirectory is cre-
ated during the registration process. Alternatively, you can specify a valid dir
pointer to the hosting subdirectory.

flags
A bit mask of devfs flags. DEVFS_FL_DEFAULT can be a good choice, and
DEVFS_FL_AUTO_DEVNUM is the flag you need for automatic assignment of
major and minor numbers. The actual flags are described later.

major
minor

The major and minor numbers for the device. Unused if
DEVFS_FL_AUTO_DEVNUM is specified in the flags.

mode
Access mode of the new device.

ops
A pointer to the file operation structure for the device.
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info
A default value for filp->private_data. The filesystem will initialize the
pointer to this value when the device is opened. The info pointer passed to
devfs_mk_dir is not used by devfs and acts as a “client data” pointer.

de A “devfs entry” obtained by a previous call to devfs_r egister.

The flags are used to select specific features to be enabled for the special file
being created. Although the flags are briefly and clearly documented in
<linux/devfs_fs_kernel.h>, it’s worth introducing some of them.

DEVFS_FL_NONE
DEVFS_FL_DEFAULT

The former symbol is simply 0, and is suggested for code readability. The lat-
ter macro is curr ently defined to DEVFS_FL_NONE, but is a good choice to be
forward compatible with future implementations of the filesystem.

DEVFS_FL_AUTO_OWNER
The flag makes the device appear to be owned by the last uid/gid that opened
it, and read/write for anybody when no process has it opened. The feature is
useful for tty device files but is also interesting for device drivers to prevent
concurr ent access to a nonshareable device. We’ll see access policy issues in
Chapter 5.

DEVFS_FL_SHOW_UNREG
DEVFS_FL_HIDE

The former flag requests not to remove the device file from /dev when it is
unr egister ed. The latter requests never to show it in /dev. The flags are not
usually needed for normal devices.

DEVFS_FL_AUTO_DEVNUM
Automatically allocate a device number for this device. The number will
remain associated with the device name even after the devfs entry is unregis-
ter ed, so if the driver is reloaded before the system is shut down, it will
receive the same major/minor pair.

DEVFS_FL_NO_PERSISTENCE
Don’t keep track of this entry after it is removed. This flags saves some system
memory after module removal, at the cost of losing persistence of device fea-
tur es acr oss module unload/reload. Persistent features are access mode, file
ownership, and major/minor numbers.

It is possible to query the flags associated with a device or to change them at run-
time. The following two functions perfor m the tasks:

int devfs_get_flags (devfs_handle_t de, unsigned int *flags);
int devfs_set_flags (devfs_handle_t de, unsigned int flags);

The Device Filesystem
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Using devfs in Practice
Because devfs leads to serious user-space incompatibilities as far as device names
ar e concer ned, not all installed systems use it. Independently of how the new fea-
tur e will be accepted by Linux users, it’s unlikely you’ll write devfs-only drivers
anytime soon; thus, you’ll need to add support for the “older” way of dealing with
file creation and permission from user space and using major/minor numbers in
ker nel space.

The code needed to implement a device driver that only runs with devfs installed
is a subset of the code you need to support both environments, so we only show
the dual-mode initialization. Instead of writing a specific sample driver to try out
devfs, we added devfs support to the scull driver. If you load scull to a kernel that
uses devfs, you’ll need to directly invoke insmod instead of running the scull_load
script.

We chose to create a directory to host all scull special files because the structure of
devfs is highly hierarchical and there’s no reason not to adhere to this convention.
Mor eover, we can thus show how a directory is created and removed.

Within scull_init, the following code deals with device creation, using a field
within the device structure (called handle) to keep track of what devices have
been register ed:

/* If we have devfs, create /dev/scull to put files in there */
scull_devfs_dir = devfs_mk_dir(NULL, "scull", NULL);
if (!scull_devfs_dir) return -EBUSY; /* problem */

for (i=0; i < scull_nr_devs; i++) {
sprintf(devname, "%i", i);
devfs_register(scull_devfs_dir, devname,

DEVFS_FL_AUTO_DEVNUM,
0, 0, S_IFCHR | S_IRUGO | S_IWUGO,
&scull_fops,
scull_devices+i);

}

The previous code is paired by the two lines that are part of the following excerpt
fr om scull_cleanup:

if (scull_devices) {
for (i=0; i<scull_nr_devs; i++) {
scull_trim(scull_devices+i);
/* the following line is only used for devfs */
devfs_unregister(scull_devices[i].handle);

}
kfree(scull_devices);

}

/* once again, only for devfs */
devfs_unregister(scull_devfs_dir);
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Part of the previous code fragments is protected by #ifdef CONFIG_DEVFS_FS.
If the feature is not enabled in the current kernel, scull will revert to regis-
ter_chr dev.

The only extra task that needs to be perfor med in order to support both environ-
ments is dealing with initialization of filp->f_ops and filp->private_data
in the open device method. The former pointer is simply not modified, since the
right file operations have been specified in devfs_r egister. The latter will only need
to be initialized by the open method if it is NULL, since it will only be NULL if
devfs is not being used.

/*
* If private data is not valid, we are not using devfs
* so use the type (from minor nr.) to select a new f_op
*/

if (!filp->private_data && type) {
if (type > SCULL_MAX_TYPE) return -ENODEV;
filp->f_op = scull_fop_array[type];
return filp->f_op->open(inode, filp); /* dispatch to specific open */

}

/* type 0, check the device number (unless private_data valid) */
dev = (Scull_Dev *)filp->private_data;
if (!dev) {
if (num >= scull_nr_devs) return -ENODEV;
dev = &scull_devices[num];
filp->private_data = dev; /* for other methods */

}

Once equipped with the code shown, the scull module can be loaded to a system
running devfs. It will show the following lines as output of ls -l /dev/scull:

crw-rw-rw- 1 root root 144, 1 Jan 1 1970 0
crw-rw-rw- 1 root root 144, 2 Jan 1 1970 1
crw-rw-rw- 1 root root 144, 3 Jan 1 1970 2
crw-rw-rw- 1 root root 144, 4 Jan 1 1970 3
crw-rw-rw- 1 root root 144, 5 Jan 1 1970 pipe0
crw-rw-rw- 1 root root 144, 6 Jan 1 1970 pipe1
crw-rw-rw- 1 root root 144, 7 Jan 1 1970 pipe2
crw-rw-rw- 1 root root 144, 8 Jan 1 1970 pipe3
crw-rw-rw- 1 root root 144, 12 Jan 1 1970 priv
crw-rw-rw- 1 root root 144, 9 Jan 1 1970 single
crw-rw-rw- 1 root root 144, 10 Jan 1 1970 user
crw-rw-rw- 1 root root 144, 11 Jan 1 1970 wuser

The functionality of the various files is the same as that of the “normal” scull mod-
ule, the only differ ence being in device pathnames: what used to be /dev/scull0 is
now /dev/scull/0.

The Device Filesystem
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Portability Issues and devfs
The source files of scull ar e somewhat complicated by the need to be able to com-
pile and run well with Linux versions 2.0, 2.2, and 2.4. This portability requir ement
brings in several instances of conditional compilation based on CON-
FIG_DEVFS_FS.

Fortunately, most developers agree that #ifdef constructs are basically bad when
they appear in the body of function definitions (as opposed to being used in
header files). Therefor e, the addition of devfs brings in the needed machinery to
completely avoid #ifdef in your code. We still have conditional compilation in
scull because older versions of the kernel headers can’t offer support for that.

If your code is meant to only be used with version 2.4 of the kernel, you can
avoid conditional compilation by calling kernel functions to initialize the driver in
both ways; things are arranged so that one of the initializations will do nothing at
all, while retur ning success. The following is an example of what initialization
might look like:

#include <devfs_fs_kernel.h>

int init_module()
{
/* request a major: does nothing if devfs is used */
result = devfs_register_chrdev(major, "name", &fops);
if (result < 0) return result;

/* register using devfs: does nothing if not in use */
devfs_register(NULL, "name", /* .... */ );
return 0;

}

You can resort to similar tricks in your own header files, as long as you are car eful
not to redefine functions that are alr eady defined by kernel headers. Removing
conditional compilation is a good thing because it improves readability of the code
and reduces the amount of possible bugs by letting the compiler parse the whole
input file. Whenever conditional compilation is used, there is the risk of introduc-
ing typos or other errors that can slip through unnoticed if they happen in a place
that is discarded by the C prepr ocessor because of #ifdef.

This is, for example, how scull.h avoids conditional compilation in the cleanup
part of the program. This code is portable to all kernel versions because it doesn’t
depend on devfs being known to the header files:

#ifdef CONFIG_DEVFS_FS /* only if enabled, to avoid errors in 2.0 */
#include <linux/devfs_fs_kernel.h>
#else
typedef void * devfs_handle_t; /* avoid #ifdef inside the structure */

#endif
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Nothing is defined in sysdep.h because it is very hard to implement this kind of
hack generically enough to be of general use. Each driver should arrange for its
own needs to avoid excessive #ifdef statements in function code. Also, we
chose not to support devfs in the sample code for this book, with the exception of
scull. We hope this discussion is enough to help readers exploit devfs if they want
to; devfs support has been omitted from the rest of the sample files in order to
keep the code simple.

Backward Compatibility
This chapter, so far, has described the kernel programming interface for version
2.4 of the Linux kernel. Unfortunately, this interface has changed significantly over
the course of kernel development. These changes repr esent impr ovements in how
things are done, but, once again, they also pose a challenge for those who wish to
write drivers that are compatible across multiple versions of the kernel.

Insofar as this chapter is concerned, there are few noticeable differ ences between
versions 2.4 and 2.2. Version 2.2, however, changed many of the prototypes of the
file_operations methods from what 2.0 had; access to user space was greatly
modified (and simplified) as well. The semaphore mechanism was not as well
developed in Linux 2.0. And, finally, the 2.1 development series introduced the
dir ectory entry (dentry) cache.

Changes in the File Operations Structure
A number of factors drove the changes in the file_operations methods. The
longstanding 2 GB file-size limit caused problems even in the Linux 2.0 days. As a
result, the 2.1 development series started using the loff_t type, a 64-bit value, to
repr esent file positions and lengths. Large file support was not completely inte-
grated until version 2.4 of the kernel, but much of the groundwork was done ear-
lier and had to be accommodated by driver writers.

Another change introduced during 2.1 development was the addition of the
f_pos pointer argument to the read and write methods. This change was made to
support the POSIX pr ead and pwrite system calls, which explicitly set the file off-
set where data is to be read or written. Without these system calls, threaded pro-
grams can run into race conditions when moving around in files.

Almost all methods in Linux 2.0 received an explicit inode pointer argument. The
2.1 development series removed this parameter from several of the methods, since
it was rarely needed. If you need the inode pointer, you can still retrieve it from
the filp argument.

The end result is that the prototypes of the commonly used file_operations
methods looked like this in 2.0:

Backward Compatibility
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int (*lseek) (struct inode *, struct file *, off_t, int);
Note that this method is called lseek in Linux 2.0, instead of llseek. The name
change was made to recognize that seeks could now happen with 64-bit offset
values.

int (*read) (struct inode *, struct file *, char *, int);
int (*write) (struct inode *, struct file *, const char *,

int);
As mentioned, these functions in Linux 2.0 had the inode pointer as an argu-
ment, and lacked the position argument.

void (*release) (struct inode *, struct file *);
In the 2.0 kernel, the release method could not fail, and thus retur ned void.

Ther e have been many other changes to the file_operations structur e; we
will cover them in the following chapters as we get to them. Meanwhile, it is
worth a moment to look at how portable code can be written that accounts for the
changes we have seen so far. The changes in these methods are large, and there is
no simple, elegant way to cover them over.

The way the sample code handles these changes is to define a set of small wrap-
per functions that “translate” from the old API to the new. These wrappers are
only used when compiling under 2.0 headers, and must be substituted for the
“r eal” device methods within the file_operations structur e. This is the code
implementing the wrappers for the scull driver:

/*
* The following wrappers are meant to make things work with 2.0 kernels
*/

#ifdef LINUX_20
int scull_lseek_20(struct inode *ino, struct file *f,

off_t offset, int whence)
{
return (int)scull_llseek(f, offset, whence);

}

int scull_read_20(struct inode *ino, struct file *f, char *buf,
int count)

{
return (int)scull_read(f, buf, count, &f->f_pos);

}

int scull_write_20(struct inode *ino, struct file *f, const char *b,
int c)

{
return (int)scull_write(f, b, c, &f->f_pos);

}

void scull_release_20(struct inode *ino, struct file *f)
{
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scull_release(ino, f);
}

/* Redefine "real" names to the 2.0 ones */
#define scull_llseek scull_lseek_20
#define scull_read scull_read_20
#define scull_write scull_write_20
#define scull_release scull_release_20
#define llseek lseek
#endif /* LINUX_20 */

Redefining names in this manner can also account for structure members whose
names have changed over time (such as the change from lseek to llseek).

Needless to say, this sort of redefinition of the names should be done with care;
these lines should appear before the definition of the file_operations struc-
tur e, but after any other use of those names.

Two other incompatibilities are related to the file_operations structur e. One
is that the flush method was added during the 2.1 development cycle. Driver writ-
ers almost never need to worry about this method, but its presence in the middle
of the structure can still create problems. The best way to avoid dealing with the
flush method is to use the tagged initialization syntax, as we did in all the sample
source files.

The other differ ence is in the way an inode pointer is retrieved from a filp
pointer. Wher eas moder n ker nels use a dentry (dir ectory entry) data structure,
version 2.0 had no such structure. Therefor e, sysdep.h defines a macro that should
be used to portably access an inode fr om a filp:

#ifdef LINUX_20
# define INODE_FROM_F(filp) ((filp)->f_inode)
#else
# define INODE_FROM_F(filp) ((filp)->f_dentry->d_inode)
#endif

The Module Usage Count
In 2.2 and earlier kernels, the Linux kernel did not offer any assistance to modules
in maintaining the usage count. Modules had to do that work themselves. This
appr oach was error prone and requir ed the duplication of a lot of work. It also
encouraged race conditions. The new method is thus a definite improvement.

Code that is written to be portable, however, must be prepar ed to deal with the
older way of doing things. That means that the usage count must still be incre-
mented when a new refer ence is made to the module, and decremented when
that refer ence goes away. Portable code must also work around the fact that the
owner field did not exist in the file_operations structur e in earlier kernels.

Backward Compatibility
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The easiest way to handle that is to use SET_MODULE_OWNER, rather than work-
ing with the owner field directly. In sysdep.h, we provide a null
SET_FILE_OWNER for kernels that do not have this facility.

Changes in Semaphore Suppor t
Semaphor e support was less developed in the 2.0 kernel; support for SMP systems
in general was primitive at that time. Drivers written for only that kernel version
may not need to use semaphores at all, since only one CPU was allowed to be
running kernel code at that time. Nonetheless, there may still be a need for
semaphor es, and it does not hurt to have the full protection needed by later kernel
versions.

Most of the semaphore functions covered in this chapter existed in the 2.0 kernel.
The one exception is sema_init; in version 2.0, programmers had to initialize
semaphor es manually. The sysdep.h header file handles this problem by defining a
version of sema_init when compiled under the 2.0 kernel:

#ifdef LINUX_20
# ifdef MUTEX_LOCKED /* Only if semaphore.h included */

extern inline void sema_init (struct semaphore *sem, int val)
{
sem->count = val;
sem->waking = sem->lock = 0;
sem->wait = NULL;

}
# endif
#endif /* LINUX_20 */

Changes in Access to User Space
Finally, access to user space changed completely at the beginning of the 2.1 devel-
opment series. The new interface has a better design and makes much better use
of the hardware in ensuring safe access to user-space memory. But, of course, the
inter face is differ ent. The 2.0 memory-access functions were as follows:

void memcpy_fromfs(void *to, const void *from, unsigned long count);
void memcpy_tofs(void *to, const void *from, unsigned long count);

The names of these functions come from the historical use of the FS segment reg-
ister on the i386. Note that there is no retur n value from these functions; if the
user supplies an invalid address, the data copy will silently fail. sysdep.h hides the
renaming and allows you to portably call copy_to_user and copy_fr om_user.
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Quick Reference
This chapter introduced the following symbols and header files. The list of the
fields in struct file_operations and struct file is not repeated here.

#include <linux/fs.h>
The “file system” header is the header requir ed for writing device drivers. All
the important functions are declar ed in here.

int register_chrdev(unsigned int major, const char
*name, struct file_operations *fops);

Registers a character device driver. If the major number is not 0, it is used
unchanged; if the number is 0, then a dynamic number is assigned for this
device.

int unregister_chrdev(unsigned int major, const char *name);
Unr egisters the driver at unload time. Both major and the name string must
contain the same values that were used to register the driver.

kdev_t inode->i_rdev;
The device “number” for the current device is accessible from the inode
structur e.

int MAJOR(kdev_t dev);
int MINOR(kdev_t dev);

These macros extract the major and minor numbers from a device item.

kdev_t MKDEV(int major, int minor);
This macro builds a kdev_t data item from the major and minor numbers.

SET_MODULE_OWNER(struct file_operations *fops)
This macro sets the owner field in the given file_operations structur e.

#include <asm/semaphore.h>
Defines functions and types for the use of semaphores.

void sema_init (struct semaphore *sem, int val);
Initializes a semaphore to a known value. Mutual exclusion semaphores are
usually initialized to a value of 1.

int down_interruptible (struct semaphore *sem);
void up (struct semaphore *sem);

Obtains a semaphore (sleeping, if necessary) and releases it, respectively.

#include <asm/segment.h>
#include <asm/uaccess.h>

segment.h defines functions related to cross-space copying in all kernels up to
and including 2.0. The name was changed to uaccess.h in the 2.1
development series.

Quick Reference

95

22 June 2001 16:35



Chapter 3: Char Driver s

unsigned long __copy_from_user (void *to, const void *from,
unsigned long count);

unsigned long __copy_to_user (void *to, const void *from,
unsigned long count);

Copy data between user space and kernel space.

void memcpy_fromfs(void *to, const void *from, unsigned long
count);

void memcpy_tofs(void *to, const void *from, unsigned long
count);

These functions were used to copy an array of bytes from user space to kernel
space and vice versa in version 2.0 of the kernel.

#include <linux/devfs_fs_kernel.h>
devfs_handle_t devfs_mk_dir (devfs_handle_t dir, const char

*name, void *info);
devfs_handle_t devfs_register (devfs_handle_t dir, const

char *name, unsigned int flags,
unsigned int major, unsigned int minor, umode_t mode, void

*ops, void *info);
void devfs_unregister (devfs_handle_t de);

These are the basic functions for registering devices with the device filesystem
(devfs).
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CHAPTER FOUR

DEB UGGING
TECHNIQUES

One of the most compelling problems for anyone writing kernel code is how to
appr oach debugging. Kernel code cannot be easily executed under a debugger,
nor can it be easily traced, because it is a set of functionalities not related to a spe-
cific process. Kernel code errors can also be exceedingly hard to repr oduce and
can bring down the entire system with them, thus destroying much of the evi-
dence that could be used to track them down.

This chapter introduces techniques you can use to monitor kernel code and trace
err ors under such trying circumstances.

Debugg ing by Printing
The most common debugging technique is monitoring, which in applications pro-
gramming is done by calling printf at suitable points. When you are debugging
ker nel code, you can accomplish the same goal with printk.

pr intk
We used the printk function in earlier chapters with the simplifying assumption
that it works like printf. Now it’s time to introduce some of the differ ences.

One of the differ ences is that printk lets you classify messages according to their
severity by associating differ ent loglevels, or priorities, with the messages. You usu-
ally indicate the loglevel with a macro. For example, KERN_INFO, which we saw
pr epended to some of the earlier print statements, is one of the possible loglevels
of the message. The loglevel macro expands to a string, which is concatenated to
the message text at compile time; that’s why there is no comma between the prior-
ity and the format string in the following examples. Here are two examples of
printk commands, a debug message and a critical message:
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printk(KERN_DEBUG "Here I am: %s:%i\n", __FILE_ _, __LINE_& _);
printk(KERN_CRIT "I’m trashed; giving up on %p\n", ptr);

Ther e ar e eight possible loglevel strings, defined in the header <linux/ker-
nel.h>:

KERN_EMERG
Used for emergency messages, usually those that precede a crash.

KERN_ALERT
A situation requiring immediate action.

KERN_CRIT
Critical conditions, often related to serious hardware or softwar e failur es.

KERN_ERR
Used to report error conditions; device drivers will often use KERN_ERR to
report hardware dif ficulties.

KERN_WARNING
Warnings about problematic situations that do not, in themselves, create seri-
ous problems with the system.

KERN_NOTICE
Situations that are nor mal, but still worthy of note. A number of security-
related conditions are reported at this level.

KERN_INFO
Infor mational messages. Many drivers print information about the hardware
they find at startup time at this level.

KERN_DEBUG
Used for debugging messages.

Each string (in the macro expansion) repr esents an integer in angle brackets. Inte-
gers range from 0 to 7, with smaller values repr esenting higher priorities.

A printk statement with no specified priority defaults to DEFAULT_MES-
SAGE_LOGLEVEL, specified in ker nel/printk.c as an integer. The default loglevel
value has changed several times during Linux development, so we suggest that
you always specify an explicit loglevel.

Based on the loglevel, the kernel may print the message to the current console, be
it a text-mode terminal, a serial line printer, or a parallel printer. If the priority is
less than the integer variable console_loglevel, the message is displayed. If
both klogd and syslogd ar e running on the system, kernel messages are appended
to /var/log/messages (or otherwise treated depending on your syslogd configura-
tion), independent of console_loglevel. If klogd is not running, the message
won’t reach user space unless you read /pr oc/kmsg.
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The variable console_loglevel is initialized to DEFAULT_CON-
SOLE_LOGLEVEL and can be modified through the sys_syslog system call. One
way to change it is by specifying the –c switch when invoking klogd, as specified
in the klogd manpage. Note that to change the current value, you must first kill
klogd and then restart it with the –c option. Alternatively, you can write a program
to change the console loglevel. You’ll find a version of such a program in misc-
pr ogs/setlevel.c in the source files provided on the O’Reilly FTP site. The new level
is specified as an integer value between 1 and 8, inclusive. If it is set to 1, only
messages of level 0 (KERN_EMERG) will reach the console; if it is set to 8, all mes-
sages, including debugging ones, will be displayed.

You’ll probably want to lower the loglevel if you work on the console and you
experience a kernel fault (see “Debugging System Faults” later in this chapter),
because the fault-handling code raises the console_loglevel to its maximum
value, causing every subsequent message to appear on the console. You’ll want to
raise the loglevel if you need to see your debugging messages; this is useful if you
ar e developing kernel code remotely and the text console is not being used for an
interactive session.

Fr om version 2.1.31 on it is possible to read and modify the console loglevel using
the text file /pr oc/sys/kernel/printk. The file hosts four integer values. You may be
inter ested in the first two: the current console loglevel and the default level for
messages. With recent kernels, for instance, you can cause all kernel messages to
appear at the console by simply entering

# echo 8 > /proc/sys/kernel/printk

If you run 2.0, however, you still need the setlevel tool.

It should now be apparent why the hello.c sample had the <1> markers; they are
ther e to make sure that the messages appear on the console.

Linux allows for some flexibility in console logging policies by letting you send
messages to a specific virtual console (if your console lives on the text screen). By
default, the “console” is the current virtual terminal. To select a differ ent virtual ter-
minal to receive messages, you can issue ioctl(TIOCLINUX) on any console
device. The following program, setconsole, can be used to choose which console
receives kernel messages; it must be run by the superuser and is available in the
misc-pr ogs dir ectory.

This is how the program works:

int main(int argc, char **argv)
{

char bytes[2] = {11,0}; /* 11 is the TIOCLINUX cmd number */

if (argc==2) bytes[1] = atoi(argv[1]); /* the chosen console */
else {

fprintf(stderr, "%s: need a single arg\n",argv[0]); exit(1);
}

Debugg ing by Printing
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if (ioctl(STDIN_FILENO, TIOCLINUX, bytes)<0) { /* use stdin */
fprintf(stderr,"%s: ioctl(stdin, TIOCLINUX): %s\n",

argv[0], strerror(errno));
exit(1);

}
exit(0);

}

setconsole uses the special ioctl command TIOCLINUX, which implements Linux-
specific functions. To use TIOCLINUX, you pass it an argument that is a pointer to
a byte array. The first byte of the array is a number that specifies the requested
subcommand, and the following bytes are subcommand specific. In setconsole,
subcommand 11 is used, and the next byte (stored in bytes[1]) identifies the
virtual console. The complete description of TIOCLINUX can be found in
drivers/char/tty_io.c, in the kernel sources.

How Messages Get Logged
The printk function writes messages into a circular buffer that is LOG_BUF_LEN
(defined in ker nel/printk.c) bytes long. It then wakes any process that is waiting
for messages, that is, any process that is sleeping in the syslog system call or that is
reading /pr oc/kmsg. These two interfaces to the logging engine are almost equiva-
lent, but note that reading from /pr oc/kmsg consumes the data from the log buffer,
wher eas the syslog system call can optionally retur n log data while leaving it for
other processes as well. In general, reading the /pr oc file is easier, which is why it
is the default behavior for klogd.

If you happen to read the kernel messages by hand, after stopping klogd you’ll
find that the /pr oc file looks like a FIFO, in that the reader blocks, waiting for
mor e data. Obviously, you can’t read messages this way if klogd or another pro-
cess is already reading the same data because you’ll contend for it.

If the circular buffer fills up, printk wraps around and starts adding new data to
the beginning of the buffer, overwriting the oldest data. The logging process thus
loses the oldest data. This problem is negligible compared with the advantages of
using such a circular buffer. For example, a circular buffer allows the system to
run even without a logging process, while minimizing memory waste by overwrit-
ing old data should nobody read it. Another feature of the Linux approach to mes-
saging is that printk can be invoked from anywhere, even from an interrupt
handler, with no limit on how much data can be printed. The only disadvantage is
the possibility of losing some data.

If the klogd pr ocess is running, it retrieves kernel messages and dispatches them to
syslogd, which in turn checks /etc/syslog.conf to find out how to deal with them.
syslogd dif ferentiates between messages according to a facility and a priority;
allowable values for both the facility and the priority are defined in
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<sys/syslog.h>. Ker nel messages are logged by the LOG_KERN facility, at a
priority corresponding to the one used in printk (for example, LOG_ERR is used
for KERN_ERR messages). If klogd isn’t running, data remains in the circular buffer
until someone reads it or the buffer overflows.

If you want to avoid clobbering your system log with the monitoring messages
fr om your driver, you can either specify the –f (file) option to klogd to instruct it to
save messages to a specific file, or modify /etc/syslog.conf to suit your needs. Yet
another possibility is to take the brute-force approach: kill klogd and verbosely
print messages on an unused virtual terminal,* or issue the command cat
/pr oc/kmsg fr om an unused xter m.

Turning the Messages On and Off
During the early stages of driver development, printk can help considerably in
debugging and testing new code. When you officially release the driver, on the
other hand, you should remove, or at least disable, such print statements. Unfortu-
nately, you’re likely to find that as soon as you think you no longer need the mes-
sages and remove them, you’ll implement a new feature in the driver (or
somebody will find a bug) and you’ll want to turn at least one of the messages
back on. There are several ways to solve both issues, to globally enable or disable
your debug messages and to turn individual messages on or off.

Her e we show one way to code printk calls so you can turn them on and off indi-
vidually or globally; the technique depends on defining a macro that resolves to a
printk (or printf ) call when you want it to.

• Each print statement can be enabled or disabled by removing or adding a sin-
gle letter to the macro’s name.

• All the messages can be disabled at once by changing the value of the
CFLAGS variable before compiling.

• The same print statement can be used in kernel code and user-level code, so
that the driver and test programs can be managed in the same way with
regard to extra messages.

The following code fragment implements these features and comes directly from
the header scull.h.

#undef PDEBUG /* undef it, just in case */
#ifdef SCULL_DEBUG
# ifdef __KERNEL_ _

/* This one if debugging is on, and kernel space */
# define PDEBUG(fmt, args...) printk( KERN_DEBUG "scull: " fmt,

## args)

* For example, use setlevel 8; setconsole 10 to set up terminal 10 to display messages.

Debugg ing by Printing
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# else
/* This one for user space */

# define PDEBUG(fmt, args...) fprintf(stderr, fmt, ## args)
# endif
#else
# define PDEBUG(fmt, args...) /* not debugging: nothing */
#endif

#undef PDEBUGG
#define PDEBUGG(fmt, args...) /* nothing: it’s a placeholder */

The symbol PDEBUG depends on whether or not SCULL_DEBUG is defined, and it
displays information in whatever manner is appropriate to the environment where
the code is running: it uses the kernel call printk when it’s in the kernel, and the
libc call fprintf to the standard error when run in user space. The PDEBUGG sym-
bol, on the other hand, does nothing; it can be used to easily “comment” print
statements without removing them entirely.

To simplify the process further, add the following lines to your makefile:

# Comment/uncomment the following line to disable/enable debugging
DEBUG = y

# Add your debugging flag (or not) to CFLAGS
ifeq ($(DEBUG),y)

DEBFLAGS = -O -g -DSCULL_DEBUG # "-O" is needed to expand inlines
else

DEBFLAGS = -O2
endif

CFLAGS += $(DEBFLAGS)

The macros shown in this section depend on a gcc extension to the ANSI C pre-
pr ocessor that supports macros with a variable number of arguments. This gcc
dependency shouldn’t be a problem because the kernel proper depends heavily
on gcc featur es anyway. In addition, the makefile depends on GNU’s version of
make ; once again, the kernel already depends on GNU make, so this dependency
is not a problem.

If you’re familiar with the C prepr ocessor, you can expand on the given definitions
to implement the concept of a “debug level,” defining differ ent levels and assign-
ing an integer (or bit mask) value to each level to determine how verbose it
should be.

But every driver has its own features and monitoring needs. The art of good pro-
gramming is in choosing the best trade-off between flexibility and efficiency, and
we can’t tell what is the best for you. Remember that prepr ocessor conditionals (as
well as constant expressions in the code) are executed at compile time, so you
must recompile to turn messages on or off. A possible alternative is to use C
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conditionals, which are executed at runtime and therefor e per mit you to turn mes-
saging on and off during program execution. This is a nice feature, but it requir es
additional processing every time the code is executed, which can affect perfor-
mance even when the messages are disabled. Sometimes this perfor mance hit is
unacceptable.

The macros shown in this section have proven themselves useful in a number of
situations, with the only disadvantage being the requir ement to recompile a mod-
ule after any changes to its messages.

Debugg ing by Quer ying
The previous section described how printk works and how it can be used. What it
didn’t talk about are its disadvantages.

A massive use of printk can slow down the system noticeably, because syslogd
keeps syncing its output files; thus, every line that is printed causes a disk opera-
tion. This is the right implementation from syslogd ’s perspective. It tries to write
everything to disk in case the system crashes right after printing the message; how-
ever, you don’t want to slow down your system just for the sake of debugging
messages. This problem can be solved by prefixing the name of your log file as it
appears in /etc/syslogd.conf with a minus.* The problem with changing the config-
uration file is that the modification will likely remain there after you are done
debugging, even though during normal system operation you do want messages to
be flushed to disk as soon as possible. An alternative to such a permanent change
is running a program other than klogd (such as cat /proc/kmsg, as suggested ear-
lier), but this may not provide a suitable environment for normal system operation.

Mor e often than not, the best way to get relevant information is to query the sys-
tem when you need the information, instead of continually producing data. In fact,
every Unix system provides many tools for obtaining system information: ps, net-
stat, vmstat, and so on.

Two main techniques are available to driver developers for querying the system:
cr eating a file in the /pr oc filesystem and using the ioctl driver method. You may
use devfs as an alternative to /pr oc, but /pr oc is an easier tool to use for informa-
tion retrieval.

Using the /proc Filesystem
The /pr oc filesystem is a special, software-cr eated filesystem that is used by the
ker nel to export information to the world. Each file under /pr oc is tied to a kernel
function that generates the file’s “contents” on the fly when the file is read. We

* The minus is a “magic” marker to prevent syslogd fr om flushing the file to disk at every
new message, documented in syslog.conf(5), a manual page worth reading.
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have already seen some of these files in action; /pr oc/modules, for example,
always retur ns a list of the currently loaded modules.

/pr oc is heavily used in the Linux system. Many utilities on a modern Linux distri-
bution, such as ps, top, and uptime, get their information from /pr oc. Some device
drivers also export information via /pr oc, and yours can do so as well. The /pr oc
filesystem is dynamic, so your module can add or remove entries at any time.

Fully featured /pr oc entries can be complicated beasts; among other things, they
can be written to as well as read from. Most of the time, however, /pr oc entries are
read-only files. This section will concern itself with the simple read-only case.
Those who are inter ested in implementing something more complicated can look
her e for the basics; the kernel source may then be consulted for the full picture.

All modules that work with /pr oc should include <linux/proc_fs.h> to define
the proper functions.

To create a read-only /pr oc file, your driver must implement a function to produce
the data when the file is read. When some process reads the file (using the read
system call), the request will reach your module by means of one of two differ ent
inter faces, according to what you register ed. We’ll leave registration for later in this
section and jump directly to the description of the reading interfaces.

In both cases the kernel allocates a page of memory (i.e., PAGE_SIZE bytes)
wher e the driver can write data to be retur ned to user space.

The recommended interface is read_ proc, but an older interface named get_info
also exists.

int (*read_proc)(char *page, char **start, off_t offset, int
count, int *eof, void *data);

The page pointer is the buffer where you’ll write your data; start is used by
the function to say where the interesting data has been written in page (mor e
on this later); offset and count have the same meaning as in the read
implementation. The eof argument points to an integer that must be set by
the driver to signal that it has no more data to retur n, while data is a driver-
specific data pointer you can use for internal bookkeeping.* The function is
available in version 2.4 of the kernel, and 2.2 as well if you use our sysdep.h
header.

int (*get_info)(char *page, char **start, off_t offset, int
count);

get_info is an older interface used to read from a /pr oc file. The arguments all
have the same meaning as for read_ proc. What it lacks is the pointer to report
end-of-file and the object-oriented flavor brought in by the data pointer. The

* We’ll find several of these pointers throughout the book; they repr esent the “object”
involved in this action and correspond somewhat to this in C++.
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function is available in all the kernel versions we are inter ested in (although it
had an extra unused argument in its 2.0 implementation).

Both functions should retur n the number of bytes of data actually placed in the
page buf fer, just like the read implementation does for other files. Other output
values are *eof and *start. eof is a simple flag, but the use of the start
value is somewhat more complicated.

The main problem with the original implementation of user extensions to the /pr oc
filesystem was use of a single memory page for data transfer. This limited the total
size of a user file to 4 KB (or whatever was appropriate for the host platform). The
start argument is there to implement large data files, but it can be ignored.

If your pr oc_read function does not set the *start pointer (it starts out NULL),
the kernel assumes that the offset parameter has been ignored and that the data
page contains the whole file you want to retur n to user space. If, on the other
hand, you need to build a bigger file from pieces, you can set *start to be equal
to page so that the caller knows your new data is placed at the beginning of the
buf fer. You should then, of course, skip the first offset bytes of data, which will
have already been retur ned in a previous call.

Ther e has long been another major issue with /pr oc files, which start is meant
to solve as well. Sometimes the ASCII repr esentation of kernel data structures
changes between successive calls to read, so the reader process could find incon-
sistent data from one call to the next. If *start is set to a small integer value, the
caller will use it to increment filp->f_pos independently of the amount of data
you retur n, thus making f_pos an internal record number of your read_ proc or
get_info pr ocedure. If, for example, your read_ proc function is retur ning infor ma-
tion from a big array of structures, and five of those structures were retur ned in
the first call, start could be set to 5. The next call will provide that same value
as the offset; the driver then knows to start retur ning data from the sixth structure
in the array. This is defined as a “hack” by its authors and can be seen in
fs/pr oc/generic.c.

Time for an example. Here is a simple read_ proc implementation for the scull
device:

int scull_read_procmem(char *buf, char **start, off_t offset,
int count, int *eof, void *data)

{
int i, j, len = 0;
int limit = count - 80; /* Don’t print more than this */

for (i = 0; i < scull_nr_devs && len <= limit; i++) {
Scull_Dev *d = &scull_devices[i];
if (down_interruptible(&d->sem))

return -ERESTARTSYS;
len += sprintf(buf+len,"\nDevice %i: qset %i, q %i, sz %li\n",

i, d->qset, d->quantum, d->size);
for (; d && len <= limit; d = d->next) { /* scan the list */
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len += sprintf(buf+len, " item at %p, qset at %p\n", d,
d->data);

if (d->data && !d->next) /* dump only the last item
- save space */

for (j = 0; j < d->qset; j++) {
if (d->data[j])

len += sprintf(buf+len," % 4i: %8p\n",
j,d->data[j]);

}
}
up(&scull_devices[i].sem);

}
*eof = 1;
return len;

}

This is a fairly typical read_ proc implementation. It assumes that there will never
be a need to generate more than one page of data, and so ignores the start and
offset values. It is, however, car eful not to overrun its buffer, just in case.

A /pr oc function using the get_info inter face would look very similar to the one
just shown, with the exception that the last two arguments would be missing. The
end-of-file condition, in this case, is signaled by retur ning less data than the caller
expects (i.e., less than count).

Once you have a read_ proc function defined, you need to connect it to an entry
in the /pr oc hierarchy. There are two ways of setting up this connection, depend-
ing on what versions of the kernel you wish to support. The easiest method, only
available in the 2.4 kernel (and 2.2 too if you use our sysdep.h header), is to sim-
ply call cr eate_pr oc_read_entry. Her e is the call used by scull to make its /pr oc
function available as /pr oc/scullmem:

create_proc_read_entry("scullmem",
0 /* default mode */,
NULL /* parent dir */,
scull_read_procmem,
NULL /* client data */);

The arguments to this function are, as shown, the name of the /pr oc entry, the file
per missions to apply to the entry (the value 0 is treated as a special case and is
tur ned to a default, world-readable mask), the proc_dir_entry pointer to the
par ent dir ectory for this file (we use NULL to make the driver appear directly
under /pr oc), the pointer to the read_ proc function, and the data pointer that will
be passed back to the read_ proc function.

The directory entry pointer can be used to create entire dir ectory hierarchies under
/pr oc. Note, however, that an entry may be more easily placed in a subdirectory of
/pr oc simply by giving the directory name as part of the name of the entry—as
long as the directory itself already exists. For example, an emerging convention

106

22 June 2001 16:35



says that /pr oc entries associated with device drivers should go in the subdirectory
driver/; scull could place its entry there simply by giving its name as
driver/scullmem.

Entries in /pr oc, of course, should be removed when the module is unloaded.
remove_ proc_entry is the function that undoes what cr eate_pr oc_read_entry did:

remove_proc_entry("scullmem", NULL /* parent dir */);

The alternative method for creating a /pr oc entry is to create and initialize a
proc_dir_entry structur e and pass it to pr oc_register_dynamic (version 2.0) or
pr oc_register (version 2.2, which assumes a dynamic file if the inode number in
the structure is 0). As an example, consider the following code that scull uses
when compiled against 2.0 headers:

static int scull_get_info(char *buf, char **start, off_t offset,
int len, int unused)

{
int eof = 0;
return scull_read_procmem (buf, start, offset, len, &eof, NULL);

}

struct proc_dir_entry scull_proc_entry = {
namelen: 8,
name: "scullmem",
mode: S_IFREG | S_IRUGO,
nlink: 1,
get_info: scull_get_info,

};

static void scull_create_proc()
{

proc_register_dynamic(&proc_root, &scull_proc_entry);
}

static void scull_remove_proc()
{

proc_unregister(&proc_root, scull_proc_entry.low_ino);
}

The code declares a function using the get_info inter face and fills in a
proc_dir_entry structur e that is register ed with the filesystem.

This code provides compatibility across the 2.0 and 2.2 kernels, with a little sup-
port from macro definitions in sysdep.h. It uses the get_info inter face because the
2.0 kernel did not support read_ proc. Some more work with #ifdef could have
made it use read_ proc with Linux 2.2, but the benefits would be minor.
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The ioctl Method
ioctl, which we show you how to use in the next chapter, is a system call that acts
on a file descriptor; it receives a number that identifies a command to be per-
for med and (optionally) another argument, usually a pointer.

As an alternative to using the /pr oc filesystem, you can implement a few ioctl com-
mands tailored for debugging. These commands can copy relevant data structures
fr om the driver to user space, where you can examine them.

Using ioctl this way to get information is somewhat more dif ficult than using /pr oc,
because you need another program to issue the ioctl and display the results. This
pr ogram must be written, compiled, and kept in sync with the module you’re test-
ing. On the other hand, the driver’s code is easier than what is needed to imple-
ment a /pr oc file

Ther e ar e times when ioctl is the best way to get information, because it runs
faster than reading /pr oc. If some work must be perfor med on the data before it’s
written to the screen, retrieving the data in binary form is mor e ef ficient than read-
ing a text file. In addition, ioctl doesn’t requir e splitting data into fragments smaller
than a page.

Another interesting advantage of the ioctl appr oach is that information-r etrieval
commands can be left in the driver even when debugging would otherwise be dis-
abled. Unlike a /pr oc file, which is visible to anyone who looks in the directory
(and too many people are likely to wonder “what that strange file is”), undocu-
mented ioctl commands are likely to remain unnoticed. In addition, they will still
be there should something weird happen to the driver. The only drawback is that
the module will be slightly bigger.

Debugg ing by Watching
Sometimes minor problems can be tracked down by watching the behavior of an
application in user space. Watching programs can also help in building confidence
that a driver is working correctly. For example, we were able to feel confident
about scull after looking at how its read implementation reacted to read requests
for differ ent amounts of data.

Ther e ar e various ways to watch a user-space program working. You can run a
debugger on it to step through its functions, add print statements, or run the pro-
gram under strace. Her e we’ll discuss just the last technique, which is most inter-
esting when the real goal is examining kernel code.

The strace command is a powerful tool that shows all the system calls issued by a
user-space program. Not only does it show the calls, but it can also show the argu-
ments to the calls, as well as retur n values in symbolic form. When a system call
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fails, both the symbolic value of the error (e.g., ENOMEM) and the corresponding
string (Out of memory) are displayed. strace has many command-line options;
the most useful of which are –t to display the time when each call is executed, –T
to display the time spent in the call, –e to limit the types of calls traced, and –o to
redir ect the output to a file. By default, strace prints tracing information on
stderr.

strace receives information from the kernel itself. This means that a program can
be traced regardless of whether or not it was compiled with debugging support
(the –g option to gcc) and whether or not it is stripped. You can also attach tracing
to a running process, similar to the way a debugger can connect to a running pro-
cess and control it.

The trace information is often used to support bug reports sent to application
developers, but it’s also invaluable to kernel programmers. We’ve seen how driver
code executes by reacting to system calls; strace allows us to check the consis-
tency of input and output data of each call.

For example,the following screen dump shows the last lines of running the com-
mand strace ls /dev > /dev/scull0 :

[...]
open("/dev", O_RDONLY|O_NONBLOCK) = 4
fcntl(4, F_SETFD, FD_CLOEXEC) = 0
brk(0x8055000) = 0x8055000
lseek(4, 0, SEEK_CUR) = 0
getdents(4, /* 70 entries */, 3933) = 1260
[...]
getdents(4, /* 0 entries */, 3933) = 0
close(4) = 0
fstat(1, {st_mode=S_IFCHR|0664, st_rdev=makedev(253, 0), ...}) = 0
ioctl(1, TCGETS, 0xbffffa5c) = -1 ENOTTY (Inappropriate ioctl

for device)
write(1, "MAKEDEV\natibm\naudio\naudio1\na"..., 4096) = 4000
write(1, "d2\nsdd3\nsdd4\nsdd5\nsdd6\nsdd7"..., 96) = 96
write(1, "4\nsde5\nsde6\nsde7\nsde8\nsde9\n"..., 3325) = 3325
close(1) = 0
_exit(0) = ?

It’s apparent in the first write call that after ls finished looking in the target direc-
tory, it tried to write 4 KB. Strangely (for ls), only four thousand bytes were writ-
ten, and the operation was retried. However, we know that the write
implementation in scull writes a single quantum at a time, so we could have
expected the partial write. After a few steps, everything sweeps through, and the
pr ogram exits successfully.

As another example, let’s read the scull device (using the wc command):

[...]
open("/dev/scull0", O_RDONLY) = 4
fstat(4, {st_mode=S_IFCHR|0664, st_rdev=makedev(253, 0), ...}) = 0
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read(4, "MAKEDEV\natibm\naudio\naudio1\na"..., 16384) = 4000
read(4, "d2\nsdd3\nsdd4\nsdd5\nsdd6\nsdd7"..., 16384) = 3421
read(4, "", 16384) = 0
fstat(1, {st_mode=S_IFCHR|0600, st_rdev=makedev(3, 7), ...}) = 0
ioctl(1, TCGETS, {B38400 opost isig icanon echo ...}) = 0
write(1, " 7421 /dev/scull0\n", 20) = 20
close(4) = 0
_exit(0) = ?

As expected, read is able to retrieve only four thousand bytes at a time, but the
total amount of data is the same that was written in the previous example. It’s
inter esting to note how retries are organized in this example, as opposed to the
pr evious trace. wc is optimized for fast reading and thus bypasses the standard
library, trying to read more data with a single system call. You can see from the
read lines in the trace how wc tried to read 16 KB at a time.

Linux experts can find much useful information in the output of strace. If you’r e
put off by all the symbols, you can limit yourself to watching how the file methods
(open, read, and so on) work.

Personally, we find strace most useful for pinpointing runtime errors from system
calls. Often the perr or call in the application or demo program isn’t verbose
enough to be useful for debugging, and being able to tell exactly which arguments
to which system call triggered the error can be a great help.

Debugg ing System Faults
Even if you’ve used all the monitoring and debugging techniques, sometimes bugs
remain in the driver, and the system faults when the driver is executed. When this
happens it’s important to be able to collect as much information as possible to
solve the problem.

Note that “fault” doesn’t mean “panic.” The Linux code is robust enough to
respond gracefully to most errors: a fault usually results in the destruction of the
curr ent pr ocess while the system goes on working. The system can panic, and it
may if a fault happens outside of a process’s context, or if some vital part of the
system is compromised. But when the problem is due to a driver error, it usually
results only in the sudden death of the process unlucky enough to be using the
driver. The only unrecoverable damage when a process is destroyed is that some
memory allocated to the process’s context is lost; for instance, dynamic lists allo-
cated by the driver through kmalloc might be lost. However, since the kernel calls
the close operation for any open device when a process dies, your driver can
release what was allocated by the open method.

We’ve already said that when kernel code misbehaves, an informative message is
printed on the console. The next section explains how to decode and use such
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messages. Even though they appear rather obscure to the novice, processor dumps
ar e full of interesting information, often sufficient to pinpoint a program bug with-
out the need for additional testing.

Oops Messages
Most bugs show themselves in NULL pointer derefer ences or by the use of other
incorr ect pointer values. The usual outcome of such bugs is an oops message.

Any address used by the processor is a virtual address and is mapped to physical
addr esses thr ough a complex structure of so-called page tables (see “Page Tables”
in Chapter 13). When an invalid pointer is derefer enced, the paging mechanism
fails to map the pointer to a physical address and the processor signals a page
fault to the operating system. If the address is not valid, the kernel is not able to
“page in” the missing address; it generates an oops if this happens while the pro-
cessor is in supervisor mode.

It’s worth noting that the first enhancement introduced after version 2.0 was auto-
matic handling of invalid address faults when moving data to and from user space.
Linus chose to let the hardware catch erroneous memory refer ences, so that the
nor mal case (where the addresses are corr ect) is handled more efficiently.

An oops displays the processor status at the time of the fault, including the con-
tents of the CPU registers, the location of page descriptor tables, and other seem-
ingly incomprehensible information. The message is generated by printk
statements in the fault handler (ar ch/*/kernel/traps.c) and is dispatched as
described earlier, in the section “printk.”

Let’s look at one such message. Here’s what results from derefer encing a NULL
pointer on a PC running version 2.4 of the kernel. The most relevant information
her e is the instruction pointer (EIP), the address of the faulty instruction.

Unable to handle kernel NULL pointer dereference at virtual address \
00000000

printing eip:
c48370c3
*pde = 00000000
Oops: 0002
CPU: 0
EIP: 0010:[<c48370c3>]
EFLAGS: 00010286
eax: ffffffea ebx: c2281a20 ecx: c48370c0 edx: c2281a40
esi: 4000c000 edi: 4000c000 ebp: c38adf8c esp: c38adf8c
ds: 0018 es: 0018 ss: 0018
Process ls (pid: 23171, stackpage=c38ad000)
Stack: 0000010e c01356e6 c2281a20 4000c000 0000010e c2281a40 c38ac000 \

0000010e
4000c000 bffffc1c 00000000 00000000 c38adfc4 c010b860 00000001 \

4000c000
0000010e 0000010e 4000c000 bffffc1c 00000004 0000002b 0000002b \
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00000004
Call Trace: [<c01356e6>] [<c010b860>]
Code: c7 05 00 00 00 00 00 00 00 00 31 c0 89 ec 5d c3 8d b6 00 00

This message was generated by writing to a device owned by the faulty module, a
module built deliberately to demonstrate failures. The implementation of the write
method of faulty.c is trivial:

ssize_t faulty_write (struct file *filp, const char *buf, size_t count,
loff_t *pos)

{
/* make a simple fault by dereferencing a NULL pointer */
*(int *)0 = 0;
return 0;

}

As you can see, what we do here is der efer ence a NULL pointer. Since 0 is never a
valid pointer value, a fault occurs, which the kernel turns into the oops message
shown earlier. The calling process is then killed.

The faulty module has more inter esting fault conditions in its read implementa-
tion:

char faulty_buf[1024];

ssize_t faulty_read (struct file *filp, char *buf, size_t count,
loff_t *pos)

{
int ret, ret2;
char stack_buf[4];

printk(KERN_DEBUG "read: buf %p, count %li\n", buf, (long)count);
/* the next line oopses with 2.0, but not with 2.2 and later */
ret = copy_to_user(buf, faulty_buf, count);
if (!ret) return count; /* we survived */

printk(KERN_DEBUG "didn’t fail: retry\n");
/* For 2.2 and 2.4, let’s try a buffer overflow */
sprintf(stack_buf, "1234567\n");
if (count > 8) count = 8; /* copy 8 bytes to the user */
ret2 = copy_to_user(buf, stack_buf, count);
if (!ret2) return count;
return ret2;

}

It first reads from a global buffer without checking the size of the data, and then
per forms a buffer overrun by writing to a local buffer. The first situation results in
an oops only in version 2.0 of the kernel, because later versions automatically deal
with user copy functions. The buffer overflow results in an oops with all kernel
versions; however, since the return instruction brings the instruction pointer to
nowher e land, this kind of fault is much harder to trace, and you can get some-
thing like the following:
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EIP: 0010:[<00000000>]
[...]
Call Trace: [<c010b860>]
Code: Bad EIP value.

The main problem with users dealing with oops messages is in the little intrinsic
meaning carried by hexadecimal values; to be meaningful to the programmer they
need to be resolved to symbols. A couple of utilities are available to perfor m this
resolution for developers: klogd and ksymoops. The former tool perfor ms symbol
decoding by itself whenever it is running; the latter needs to be purposely invoked
by the user. In the following discussion we use the data generated in our first oops
example by derefer encing a NULL pointer.

Using klogd

The klogd daemon can decode oops messages before they reach the log files. In
many situations, klogd can provide all the information a developer needs to track
down a problem, though sometimes the developer must give it a little help.

A dump of the oops for faulty, as it reaches the system log, looks like this (note
the decoded symbols on the EIP line and in the stack trace):

Unable to handle kernel NULL pointer dereference at virtual address \
00000000

printing eip:
c48370c3
*pde = 00000000
Oops: 0002
CPU: 0
EIP: 0010:[faulty:faulty_write+3/576]
EFLAGS: 00010286
eax: ffffffea ebx: c2c55ae0 ecx: c48370c0 edx: c2c55b00
esi: 0804d038 edi: 0804d038 ebp: c2337f8c esp: c2337f8c
ds: 0018 es: 0018 ss: 0018
Process cat (pid: 23413, stackpage=c2337000)
Stack: 00000001 c01356e6 c2c55ae0 0804d038 00000001 c2c55b00 c2336000 \

00000001
0804d038 bffffbd4 00000000 00000000 bffffbd4 c010b860 00000001 \

0804d038
00000001 00000001 0804d038 bffffbd4 00000004 0000002b 0000002b \

00000004
Call Trace: [sys_write+214/256] [system_call+52/56]
Code: c7 05 00 00 00 00 00 00 00 00 31 c0 89 ec 5d c3 8d b6 00 00

klogd pr ovides most of the necessary information to track down the problem. In
this case we see that the instruction pointer (EIP) was executing in the function
faulty_write, so we know where to start looking. The 3/576 string tells us that the
pr ocessor was at byte 3 of a function that appears to be 576 bytes long. Note that
the values are decimal, not hex.
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The developer must exercise some care, however, to get useful information for
err ors that occur within loadable modules. klogd loads all of the available symbol
infor mation when it starts, and uses those symbols thereafter. If you load a module
after klogd has initialized itself (usually at system boot), klogd will not have your
module’s symbol information. To force klogd to go out and get that information,
send the klogd pr ocess a SIGUSR1 signal after your module has been loaded (or
reloaded), and before you do anything that could cause it to oops.

It is also possible to run klogd with the –p (“paranoid”) option, which will cause it
to rer ead symbol information anytime it sees an oops message. The klogd man-
page recommends against this mode of operation, however, since it makes klogd
query the kernel for information after the problem has occurred. Information
obtained after an error could be plain wrong.

For klogd to work properly, it must have a current copy of the System.map symbol
table file. Normally this file is found in /boot; if you have built and installed a ker-
nel from a nonstandard location you may have to copy System.map into /boot, or
tell klogd to look elsewhere. klogd refuses to decode symbols if the symbol table
doesn’t match the current kernel. If a symbol is decoded on the system log, you
can be reasonably sure it is decoded correctly.

Using ksymoops

At times klogd may not be enough for your tracing purposes. Usually, you need to
get both the hexadecimal address and the associated symbol, and you often need
of fsets printed as hex numbers. You may need more infor mation than address
decoding. Also, it is common for klogd to get killed during the fault. In such situa-
tions, a stronger oops analyzer may be called for; ksymoops is such a tool.

Prior to the 2.3 development series, ksymoops was distributed with the kernel
source, in the scripts dir ectory. It now lives on its own FTP site and is maintained
independently of the kernel. Even if you are working with an older kernel, you
pr obably should go to ftp://ftp.ocs.com.au/pub/ksymoops and get an updated ver-
sion of the tool.

To operate at its best, ksymoops needs a lot of information in addition to the error
message; you can use command-line options to tell it where to find the various
items. The program needs the following items:

A System.map file
This map must correspond to the kernel that was running at the time the oops
occurr ed. The default is /usr/sr c/linux/System.map.

A list of modules
ksymoops needs to know what modules were loaded when the oops occurred,
in order to extract symbolic information from them. If you do not supply this
list, ksymoops will look at /pr oc/modules.
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A list of kernel symbols defined when the oops occurred
The default is to get this list from /pr oc/ksyms.

A copy of the kernel image that was running
Note that ksymoops needs a straight kernel image, not the compressed version
(vmlinuz, zImage, or bzImage) that most systems boot. The default is to use
no kernel image because most people don’t keep it. If you have the exact
image handy, you should tell the program where it is by using the -v option.

The locations of the object files for any kernel modules that were loaded
ksymoops will look in the standard directories for modules, but during devel-
opment you will almost certainly have to tell it where your module lives using
the -o option

Although ksymoops will go to files in /pr oc for some of its needed information, the
results can be unreliable. The system, of course, will almost certainly have been
rebooted between the time the oops occurs and when ksymoops is run, and the
infor mation fr om /pr oc may not match the state of affairs when the failure
occurr ed. When possible, it is better to save copies of /pr oc/modules and
/pr oc/ksyms prior to causing the oops to happen.

We urge driver developers to read the manual page for ksymoops because it is a
very informative document.

The last argument on the tool’s command line is the location of the oops message;
if it is missing, the tool will read stdin in the best Unix tradition. The message
can be recover ed fr om the system logs with luck; in the case of a very bad crash
you may end up writing it down off the screen and typing it back in (unless you
wer e using a serial console, a nice tool for kernel developers).

Note that ksymoops will be confused by an oops message that has already been
pr ocessed by klogd. If you are running klogd, and your system is still running after
an oops occurs, a clean oops message can often be obtained by invoking the
dmesg command.

If you do not provide all of the listed information explicitly, ksymoops will issue
war nings. It will also issue warnings about things like loaded modules that define
no symbols. A warning-fr ee run of ksymoops is rare.

Output from ksymoops tends to look like the following:

>>EIP; c48370c3 <[faulty]faulty_write+3/20> <=====
Trace; c01356e6 <sys_write+d6/100>
Trace; c010b860 <system_call+34/38>
Code; c48370c3 <[faulty]faulty_write+3/20>
00000000 <_EIP>:
Code; c48370c3 <[faulty]faulty_write+3/20> <=====

0: c7 05 00 00 00 movl $0x0,0x0 <=====
Code; c48370c8 <[faulty]faulty_write+8/20>

5: 00 00 00 00 00
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Code; c48370cd <[faulty]faulty_write+d/20>
a: 31 c0 xorl %eax,%eax

Code; c48370cf <[faulty]faulty_write+f/20>
c: 89 ec movl %ebp,%esp

Code; c48370d1 <[faulty]faulty_write+11/20>
e: 5d popl %ebp

Code; c48370d2 <[faulty]faulty_write+12/20>
f: c3 ret

Code; c48370d3 <[faulty]faulty_write+13/20>
10: 8d b6 00 00 00 leal 0x0(%esi),%esi

Code; c48370d8 <[faulty]faulty_write+18/20>
15: 00

As you can see, ksymoops pr ovides EIP and kernel stack information much like
klogd does, but more precisely and in hexadecimal. You’ll note that the
faulty_write function is correctly reported to be 0x20 bytes long. This is because
ksymoops reads the object file of your module and extracts all available informa-
tion.

In this case, moreover, you also get an assembly language dump of the code
wher e the fault occurred. This information can often be used to figure out exactly
what was happening; here it’s clearly an instruction that writes a 0 to address 0.

One interesting feature of ksymoops is that it is ported to nearly all the platforms
wher e Linux runs and exploits the bfd (binary format description) library in order
to support several computer architectur es at the same time. To step outside of the
PC world, let’s see how the same oops message appears on the SPARC64 platfor m
(several lines have been broken for typographical needs):

Unable to handle kernel NULL pointer dereference
tsk->mm->context = 0000000000000734
tsk->mm->pgd = fffff80003499000

\/ ____
"@’/ .. \‘@"
/_| \__/ |_\

\_ _U_/
ls(16740): Oops
TSTATE: 0000004400009601 TPC: 0000000001000128 TNPC: 0000000000457fbc \
Y: 00800000
g0: 000000007002ea88 g1: 0000000000000004 g2: 0000000070029fb0 \
g3: 0000000000000018
g4: fffff80000000000 g5: 0000000000000001 g6: fffff8000119c000 \
g7: 0000000000000001
o0: 0000000000000000 o1: 000000007001a000 o2: 0000000000000178 \
o3: fffff8001224f168
o4: 0000000001000120 o5: 0000000000000000 sp: fffff8000119f621 \
ret_pc: 0000000000457fb4
l0: fffff800122376c0 l1: ffffffffffffffea l2: 000000000002c400 \
l3: 000000000002c400
l4: 0000000000000000 l5: 0000000000000000 l6: 0000000000019c00 \
l7: 0000000070028cbc
i0: fffff8001224f140 i1: 000000007001a000 i2: 0000000000000178 \
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i3: 000000000002c400
i4: 000000000002c400 i5: 000000000002c000 i6: fffff8000119f6e1 \
i7: 0000000000410114
Caller[0000000000410114]
Caller[000000007007cba4]
Instruction DUMP: 01000000 90102000 81c3e008 <c0202000> \
30680005 01000000 01000000 01000000 01000000

Note how the instruction dump doesn’t start from the instruction that caused the
fault but three instructions earlier: that’s because the RISC platforms execute sev-
eral instructions in parallel and may generate deferred exceptions, so one must be
able to look back at the last few instructions.

This is what ksymoops prints when fed with input data starting at the TSTATE line:

>>TPC; 0000000001000128 <[faulty].text.start+88/a0> <=====
>>O7; 0000000000457fb4 <sys_write+114/160>
>>I7; 0000000000410114 <linux_sparc_syscall+34/40>
Trace; 0000000000410114 <linux_sparc_syscall+34/40>
Trace; 000000007007cba4 <END_OF_CODE+6f07c40d/????>
Code; 000000000100011c <[faulty].text.start+7c/a0>
0000000000000000 <_TPC>:
Code; 000000000100011c <[faulty].text.start+7c/a0>

0: 01 00 00 00 nop
Code; 0000000001000120 <[faulty].text.start+80/a0>

4: 90 10 20 00 clr %o0 ! 0 <_TPC>
Code; 0000000001000124 <[faulty].text.start+84/a0>

8: 81 c3 e0 08 retl
Code; 0000000001000128 <[faulty].text.start+88/a0> <=====

c: c0 20 20 00 clr [ %g0 ] <=====
Code; 000000000100012c <[faulty].text.start+8c/a0>

10: 30 68 00 05 b,a %xcc, 24 <_TPC+0x24> \
0000000001000140 <[faulty]faulty_write+0/20>

Code; 0000000001000130 <[faulty].text.start+90/a0>
14: 01 00 00 00 nop

Code; 0000000001000134 <[faulty].text.start+94/a0>
18: 01 00 00 00 nop

Code; 0000000001000138 <[faulty].text.start+98/a0>
1c: 01 00 00 00 nop

Code; 000000000100013c <[faulty].text.start+9c/a0>
20: 01 00 00 00 nop

To print the disassembled code shown we had to tell ksymoops the target file for-
mat and architectur e (this is needed because the native architectur e for SPARC64
user space is 32 bit). In this case, the options -t elf64-sparc -a spar c:v9 did the job.

You may complain that this call trace doesn’t carry any interesting information;
however, the SPARC pr ocessors don’t save all the call trace on the stack: the O7
and I7 registers hold the instruction pointers of the last two calling functions,
which is why they are shown near the call trace. In this case, the faulty instruction
was in a function invoked by sys_write.
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Note that, whatever the platform/architectur e pair, the format used to show disas-
sembled code is the same as that used by the objdump pr ogram. objdump is a
power ful utility; if you want to look at the whole function that failed, you can
invoke the command objdump –d faulty.o (once again, on SPARC64, you need
special options: —tar get elf64-spar c—architectur e spar c:v9). For more infor ma-
tion on objdump and its command-line options, see the manpage for the com-
mand.

Lear ning to decode an oops message requir es some practice and an understanding
of the target processor you are using, as well as of the conventions used to repr e-
sent assembly language, but it’s worth doing. The time spent learning will be
quickly repaid. Even if you have previous expertise with the PC assembly lan-
guage under non-Unix operating systems, you may need to devote some time to
lear ning, because the Unix syntax is differ ent fr om Intel syntax. (A good descrip-
tion of the differ ences is in the Info documentation file for as, in the chapter called
“i386-specific.”)

System Hangs
Although most bugs in kernel code end up as oops messages, sometimes they can
completely hang the system. If the system hangs, no message is printed. For exam-
ple, if the code enters an endless loop, the kernel stops scheduling, and the sys-
tem doesn’t respond to any action, including the magic CTRL-ALT-DEL
combination. You have two choices for dealing with system hangs—either prevent
them beforehand or be able to debug them after the fact.

You can prevent an endless loop by inserting schedule invocations at strategic
points. The schedule call (as you might guess) invokes the scheduler and thus
allows other processes to steal CPU time from the current process. If a process is
looping in kernel space due to a bug in your driver, the schedule calls enable you
to kill the process, after tracing what is happening.

You should be aware, of course, that any call to schedule may create an additional
source of reentrant calls to your driver, since it allows other processes to run. This
reentrancy should not normally be a problem, assuming that you have used suit-
able locking in your driver. Be sur e, however, not to call schedule any time that
your driver is holding a spinlock.

If your driver really hangs the system, and you don’t know where to insert sched-
ule calls, the best way to go is to add some print messages and write them to the
console (by changing the console_loglevel value).

Sometimes the system may appear to be hung, but it isn’t. This can happen, for
example, if the keyboard remains locked in some strange way. These false hangs
can be detected by looking at the output of a program you keep running for just
this purpose. A clock or system load meter on your display is a good status moni-
tor; as long as it continues to update, the scheduler is working. If you are not
using a graphic display, you can check the scheduler by running a program that
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flashes the keyboard LEDs, turns on the floppy motor every now and then, or ticks
the speaker—conventional beeps are quite annoying and should be avoided; look
for the KDMKTONE ioctl command instead. A sample program (misc-pr ogs/heart-
beat.c) that flashes a keyboard LED in a heartbeat fashion is available in the
sources on the O’Reilly FTP site.

If the keyboard isn’t accepting input, the best thing to do is log into the system
thr ough your network and kill any offending processes, or reset the keyboard
(with kbd_mode –a). However, discovering that the hang is only a keyboard
lockup is of little use if you don’t have a network available to help you recover. If
this is the case, you could set up alternative input devices to be able at least to
reboot the system cleanly. A shutdown and reboot cycle is easier on your com-
puter than hitting the so-called big red button, and it saves you from the lengthy
fsck scanning of your disks.

Such an alternative input device can be, for example, the mouse. Version 1.10 or
newer of the gpm mouse server features a command-line option to enable a simi-
lar capability, but it works only in text mode. If you don’t have a network connec-
tion and run in graphics mode, we suggest running some custom solution, like a
switch connected to the DCD pin of the serial line and a script that polls for status
change.

An indispensable tool for these situations is the “magic SysRq key,” which is avail-
able on more architectur es in 2.2 and later kernels. Magic SysRq is invoked with
the combination of the ALT and SysRq keys on the PC keyboard, or with the ALT
and Stop keys on SPARC keyboards. A third key, pressed along with these two,
per forms one of a number of useful actions, as follows:

r Turns off keyboard raw mode in situations where you cannot run kbd_mode.

k Invokes the “secure attention” (SAK) function. SAK will kill all processes run-
ning on the current console, leaving you with a clean terminal.

s Per forms an emergency synchronization of all disks.

u Attempts to remount all disks in a read-only mode. This operation, usually
invoked immediately after s, can save a lot of filesystem checking time in
cases where the system is in serious trouble.

b Immediately reboots the system. Be sure to synchr onize and remount the disks
first.

p Prints the current register information.

t Prints the current task list.

m Prints memory information.

Other magic SysRq functions exist; see sysr q.txt in the Documentation dir ectory of
the kernel source for the full list. Note that magic SysRq must be explicitly enabled
in the kernel configuration, and that most distributions do not enable it, for
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obvious security reasons. For a system used to develop drivers, however, enabling
magic SysRq is worth the trouble of building a new kernel in itself. Magic SysRq
must be enabled at runtime with a command like the following:

echo 1 > /proc/sys/kernel/sysrq

Another precaution to use when repr oducing system hangs is to mount all your
disks as read-only (or unmount them). If the disks are read-only or unmounted,
ther e’s no risk of damaging the filesystem or leaving it in an inconsistent state.
Another possibility is using a computer that mounts all of its filesystems via NFS,
the network file system. The “NFS-Root” capability must be enabled in the kernel,
and special parameters must be passed at boot time. In this case you’ll avoid any
filesystem corruption without even resorting to SysRq, because filesystem coher-
ence is managed by the NFS server, which is not brought down by your device
driver.

Debugger s and Related Tools
The last resort in debugging modules is using a debugger to step through the
code, watching the value of variables and machine registers. This approach is
time-consuming and should be avoided whenever possible. Nonetheless, the fine-
grained perspective on the code that is achieved through a debugger is sometimes
invaluable.

Using an interactive debugger on the kernel is a challenge. The kernel runs in its
own address space on the behalf of all the processes on the system. As a result, a
number of common capabilities provided by user-space debuggers, such as break-
points and single-stepping, are harder to come by in the kernel. In this section we
look at several ways of debugging the kernel; each of them has advantages and
disadvantages.

Using gdb
gdb can be quite useful for looking at the system internals. Proficient use of the
debugger at this level requir es some confidence with gdb commands, some under-
standing of assembly code for the target platform, and the ability to match source
code and optimized assembly.

The debugger must be invoked as though the kernel were an application. In addi-
tion to specifying the filename for the uncompressed kernel image, you need to
pr ovide the name of a core file on the command line. For a running kernel, that
cor e file is the kernel core image, /pr oc/kcore. A typical invocation of gdb looks
like the following:

gdb /usr/src/linux/vmlinux /proc/kcore

The first argument is the name of the uncompressed kernel executable, not the
zImage or bzImage or anything compressed.
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The second argument on the gdb command line is the name of the core file. Like
any file in /pr oc, /pr oc/kcore is generated when it is read. When the read system
call executes in the /pr oc filesystem, it maps to a data-generation function rather
than a data-retrieval one; we’ve already exploited this feature in “Using the /proc
Filesystem” earlier in this chapter. kcor e is used to repr esent the kernel “exe-
cutable” in the format of a core file; it is a huge file because it repr esents the
whole kernel address space, which corresponds to all physical memory. From
within gdb, you can look at kernel variables by issuing the standard gdb com-
mands. For example, p jif fies prints the number of clock ticks from system boot to
the current time.

When you print data from gdb, the kernel is still running, and the various data
items have differ ent values at differ ent times; gdb, however, optimizes access to
the core file by caching data that has already been read. If you try to look at the
jiffies variable once again, you’ll get the same answer as before. Caching val-
ues to avoid extra disk access is a correct behavior for conventional core files, but
is inconvenient when a “dynamic” core image is used. The solution is to issue the
command cor e-file /pr oc/kcore whenever you want to flush the gdb cache; the
debugger prepar es to use a new core file and discards any old information. You
won’t, however, always need to issue cor e-file when reading a new datum; gdb
reads the core in chunks of a few kilobytes and caches only chunks it has already
refer enced.

Numer ous capabilities normally provided by gdb ar e not available when you are
working with the kernel. For example, gdb is not able to modify kernel data; it
expects to be running a program to be debugged under its own control before
playing with its memory image. It is also not possible to set breakpoints or watch-
points, or to single-step through kernel functions.

If you compile the kernel with debugging support (–g ), the resulting vmlinux file
tur ns out to work better with gdb than the same file compiled without –g. Note,
however, that a large amount of disk space is needed to compile the kernel with
the –g option (each object file and the kernel itself are thr ee or more times bigger
than usual).

On non-PC computers, the game is differ ent. On the Alpha, make boot strips the
ker nel befor e cr eating the bootable image, so you end up with both the vmlinux
and the vmlinux.gz files. The former is usable by gdb, and you can boot from the
latter. On the SPARC, the kernel (at least the 2.0 kernel) is not stripped by default.

When you compile the kernel with –g and run the debugger using vmlinux
together with /pr oc/kcore, gdb can retur n a lot of information about the kernel
inter nals. You can, for example, use commands such as p *module_list, p *mod-
ule_list->next, and p *chr devs[4]->fops to dump structures. To get the best out of p,
you’ll need to keep a kernel map and the source code handy.
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Another useful task that gdb per forms on the running kernel is disassembling func-
tions, via the disassemble command (which can be abbreviated to disass) or the
“examine instructions” (x/i) command. The disassemble command can take as its
argument either a function name or a memory range, whereas x/i takes a single
memory address, also in the form of a symbol name. You can invoke, for example,
x/20i to disassemble 20 instructions. Note that you can’t disassemble a module
function, because the debugger is acting on vmlinux, which doesn’t know about
your module. If you try to disassemble a module by address, gdb is most likely to
reply “Cannot access memory at xxxx.” For the same reason, you can’t look at data
items belonging to a module. They can be read from /dev/mem if you know the
addr ess of your variables, but it’s hard to make sense out of raw data extracted
fr om system RAM.

If you want to disassemble a module function, you’re better off running the obj-
dump utility on the module object file. Unfortunately, the tool runs on the disk
copy of the file, not the running one; therefor e, the addresses as shown by obj-
dump will be the addresses before relocation, unrelated to the module’s execution
envir onment. Another disadvantage of disassembling an unlinked object file is that
function calls are still unresolved, so you can’t easily tell a call to printk fr om a call
to kmalloc.

As you see, gdb is a useful tool when your aim is to peek into the running kernel,
but it lacks some features that are vital to debugging device drivers.

The kdb Ker nel Debugger
Many readers may be wondering why the kernel does not have any more
advanced debugging features built into it. The answer, quite simply, is that Linus
does not believe in interactive debuggers. He fears that they lead to poor fixes,
those which patch up symptoms rather than addressing the real cause of prob-
lems. Thus, no built-in debuggers.

Other kernel developers, however, see an occasional use for interactive debugging
tools. One such tool is the kdb built-in kernel debugger, available as a nonofficial
patch from oss.sgi.com. To use kdb, you must obtain the patch (be sure to get a
version that matches your kernel version), apply it, and rebuild and reinstall the
ker nel. Note that, as of this writing, kdb works only on IA-32 (x86) systems
(though a version for the IA-64 existed for a while in the mainline kernel source
befor e being removed).

Once you are running a kdb-enabled kernel, there are a couple of ways to enter
the debugger. Hitting the Pause (or Break) key on the console will start up the
debugger. kdb also starts up when a kernel oops happens, or when a breakpoint
is hit. In any case, you will see a message that looks something like this:

Entering kdb (0xc1278000) on processor 1 due to Keyboard Entry
[1]kdb>
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Note that just about everything the kernel does stops when kdb is running. Noth-
ing else should be running on a system where you invoke kdb; in particular, you
should not have networking turned on—unless, of course, you are debugging a
network driver. It is generally a good idea to boot the system in single-user mode
if you will be using kdb.

As an example, consider a quick scull debugging session. Assuming that the driver
is already loaded, we can tell kdb to set a breakpoint in scull_r ead as follows:

[1]kdb> bp scull_read
Instruction(i) BP #0 at 0xc8833514 (scull_read)

is enabled on cpu 1
[1]kdb> go

The bp command tells kdb to stop the next time the kernel enters scull_r ead. We
then type go to continue execution. After putting something into one of the scull
devices, we can attempt to read it by running cat under a shell on another termi-
nal, yielding the following:

Entering kdb (0xc3108000) on processor 0 due to Breakpoint @ 0xc8833515
Instruction(i) breakpoint #0 at 0xc8833514
scull_read+0x1: movl %esp,%ebp
[0]kdb>

We are now positioned at the beginning of scull_r ead. To see how we got there,
we can get a stack trace:

[0]kdb> bt
EBP EIP Function(args)

0xc3109c5c 0xc8833515 scull_read+0x1
0xc3109fbc 0xfc458b10 scull_read+0x33c255fc( 0x3, 0x803ad78, 0x1000,
0x1000, 0x804ad78)
0xbffffc88 0xc010bec0 system_call
[0]kdb>

kdb attempts to print out the arguments to every function in the call trace. It gets
confused, however, by optimization tricks used by the compiler. Thus it prints five
arguments for scull_r ead, which only has four.

Time to look at some data. The mds command manipulates data; we can query the
value of the scull_devices pointer with a command like:

[0]kdb> mds scull_devices 1
c8836104: c4c125c0 ....

Her e we asked for one (four-byte) word of data starting at the location of
scull_devices; the answer tells us that our device array was allocated starting
at the address c4c125c0. To look at a device structure itself we need to use that
addr ess:
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[0]kdb> mds c4c125c0
c4c125c0: c3785000 ....
c4c125c4: 00000000 ....
c4c125c8: 00000fa0 ....
c4c125cc: 000003e8 ....
c4c125d0: 0000009a ....
c4c125d4: 00000000 ....
c4c125d8: 00000000 ....
c4c125dc: 00000001 ....

The eight lines here corr espond to the eight fields in the Scull_Dev structur e.
Thus we see that the memory for the first device is allocated at 0xc3785000, that
ther e is no next item in the list, that the quantum is 4000 (hex fa0) and the array
size is 1000 (hex 3e8), that there are 154 bytes of data in the device (hex 9a), and
so on.

kdb can change data as well. Suppose we wanted to trim some of the data from
the device:

[0]kdb> mm c4c125d0 0x50
0xc4c125d0 = 0x50

A subsequent cat on the device will now retur n less data than before.

kdb has a number of other capabilities, including single-stepping (by instructions,
not lines of C source code), setting breakpoints on data access, disassembling
code, stepping through linked lists, accessing register data, and more. After you
have applied the kdb patch, a full set of manual pages can be found in the Docu-
mentation/kdb dir ectory in your kernel source tree.

The Integ rated Ker nel Debugger Patch
A number of kernel developers have contributed to an unofficial patch called the
integrated kernel debugger, or IKD. IKD provides a number of interesting kernel
debugging facilities. The x86 is the primary platform for this patch, but much of it
works on other architectur es as well. As of this writing, the IKD patch can be
found at ftp://ftp.ker nel.org/pub/linux/ker nel/people/andrea/ikd. It is a patch that
must be applied to the source for your kernel; the patch is version specific, so be
sur e to download the one that matches the kernel you are working with.

One of the features of the IKD patch is a kernel stack debugger. If you turn this
featur e on, the kernel will check the amount of free space on the kernel stack at
every function call, and force an oops if it gets too small. If something in your ker-
nel is causing stack corruption, this tool may help you to find it. There is also a
“stack meter” feature that you can use to see how close to filling up the stack you
get at any particular time.
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The IKD patch also includes some tools for finding kernel lockups. A “soft lockup”
detector forces an oops if a kernel procedur e goes for too long without schedul-
ing. It is implemented by simply counting the number of function calls that are
made and shutting things down if that number exceeds a preconfigur ed thr eshold.
Another feature can continuously print the program counter on a virtual console
for truly last-resort lockup tracking. The semaphore deadlock detector forces an
oops if a process spends too long waiting on a down call.

Other debugging capabilities in IKD include the kernel trace capability, which can
record the paths taken through the kernel code. There are some memory debug-
ging tools, including a leak detector and a couple of “poisoners,” that can be use-
ful in tracking down memory corruption problems.

Finally, IKD also includes a version of the kdb debugger discussed in the previous
section. As of this writing, however, the version of kdb included in the IKD patch
is somewhat old. If you need kdb, we recommend that you go directly to the
source at oss.sgi.com for the current version.

The kgdb Patch
kgdb is a patch that allows the full use of the gdb debugger on the Linux kernel,
but only on x86 systems. It works by hooking into the system to be debugged via
a serial line, with gdb running on the far end. You thus need two systems to use
kgdb—one to run the debugger and one to run the kernel of interest. Like kdb,
kgdb is currently available from oss.sgi.com.

Setting up kgdb involves installing a kernel patch and booting the modified kernel.
You need to connect the two systems with a serial cable (of the null modem vari-
ety) and to install some support files on the gdb side of the connection. The patch
places detailed instructions in the file Documentation/i386/gdb-serial.txt; we won’t
repr oduce them here. Be sure to read the instructions on debugging modules:
toward the end there are some nice gdb macr os that have been written for this
purpose.

Kernel Crash Dump Analyzer s
Crash dump analyzers enable the system to record its state when an oops occurs,
so that it may be examined at leisure afterward. They can be especially useful if
you are supporting a driver for a user at a differ ent site. Users can be somewhat
reluctant to copy down oops messages for you so installing a crash dump system
can let you get the information you need to track down a user’s problem without
requiring work from him. It is thus not surprising that the available crash dump
analyzers have been written by companies in the business of supporting systems
for users.

Debugger s and Related Tools

125

22 June 2001 16:35



Chapter 4: Debugging Techniques

Ther e ar e curr ently two crash dump analyzer patches available for Linux. Both
wer e relatively new when this section was written, and both were in a state of
flux. Rather than provide detailed information that is likely to go out of date, we’ll
restrict ourselves to providing an overview and pointers to where mor e infor ma-
tion can be found.

The first analyzer is LKCD (Linux Kernel Crash Dumps). It’s available, once again,
fr om oss.sgi.com. When a kernel oops occurs, LKCD will write a copy of the cur-
rent system state (memory, primarily) into the dump device you specified in
advance. The dump device must be a system swap area. A utility called LCRASH is
run on the next reboot (before swapping is enabled) to generate a summary of the
crash, and optionally to save a copy of the dump in a conventional file. LCRASH
can be run interactively and provides a number of debugger-like commands for
querying the state of the system.

LKCD is currently supported for the Intel 32-bit architectur e only, and only works
with swap partitions on SCSI disks.

Another crash dump facility is available from www.missioncriticallinux.com. This
crash dump subsystem creates crash dump files directly in /var/dumps and does
not use the swap area. That makes certain things easier, but it also means that the
system will be modifying the file system while in a state where things are known
to have gone wrong. The crash dumps generated are in a standard core file for-
mat, so tools like gdb can be used for post-mortem analysis. This package also
pr ovides a separate analyzer that is able to extract more infor mation than gdb fr om
the crash dump files.

The User-Mode Linux Por t
User-Mode Linux is an interesting concept. It is structured as a separate port of the
Linux kernel, with its own ar ch/um subdir ectory. It does not run on a new type of
hardwar e, however; instead, it runs on a virtual machine implemented on the
Linux system call interface. Thus, User-Mode Linux allows the Linux kernel to run
as a separate, user-mode process on a Linux system.

Having a copy of the kernel running as a user-mode process brings a number of
advantages. Because it is running on a constrained, virtual processor, a buggy ker-
nel cannot damage the “real” system. Differ ent hardwar e and software configura-
tions can be tried easily on the same box. And, perhaps most significantly for
ker nel developers, the user-mode kernel can be easily manipulated with gdb or
another debugger. After all, it is just another process. User-Mode Linux clearly has
the potential to accelerate kernel development.

As of this writing, User-Mode Linux is not distributed with the mainline kernel; it
must be downloaded from its web site (http://user-mode-linux.sour ceforge.net).
The word is that it will be integrated into an early 2.4 release after 2.4.0; it may
well be there by the time this book is published.
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User-Mode Linux also has some significant limitations as of this writing, most of
which will likely be addressed soon. The virtual processor currently works in a
unipr ocessor mode only; the port runs on SMP systems without a problem, but it
can only emulate a uniprocessor host. The biggest problem for driver writers,
though, is that the user-mode kernel has no access to the host system’s hardware.
Thus, while it can be useful for debugging most of the sample drivers in this book,
User-Mode Linux is not yet useful for debugging drivers that have to deal with real
hardwar e. Finally, User-Mode Linux only runs on the IA-32 architectur e.

Because work is under way to fix all of these problems, User-Mode Linux will
likely be an indispensable tool for Linux device driver programmers in the very
near future.

The Linux Trace Toolkit
The Linux Trace Toolkit (LTT) is a kernel patch and a set of related utilities that
allow the tracing of events in the kernel. The trace includes timing information
and can create a reasonably complete picture of what happened over a given
period of time. Thus, it can be used not only for debugging but also for tracking
down perfor mance pr oblems.

LTT, along with extensive documentation, can be found on the Web at www.oper-
sys.com/LTT.

Dynamic Probes
Dynamic Probes (or DProbes) is a debugging tool released (under the GPL) by
IBM for Linux on the IA-32 architectur e. It allows the placement of a “probe” at
almost any place in the system, in both user and kernel space. The probe consists
of some code (written in a specialized, stack-oriented language) that is executed
when control hits the given point. This code can report information back to user
space, change registers, or do a number of other things. The useful feature of
DPr obes is that once the capability has been built into the kernel, probes can be
inserted anywhere within a running system without kernel builds or reboots.
DPr obes can also work with the Linux Trace Toolkit to insert new tracing events at
arbitrary locations.

The DProbes tool can be downloaded from IBM’s open source site: oss.soft-
war e.ibm.com.
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CHAPTER FIVE

ENHANCED CHAR
DRIVER OPERATIONS

In Chapter 3, we built a complete device driver that the user can write to and read
fr om. But a real device usually offers more functionality than synchronous read
and write. Now that we’re equipped with debugging tools should something go
awry, we can safely go ahead and implement new operations.

What is normally needed, in addition to reading and writing the device, is the abil-
ity to perfor m various types of hardware contr ol via the device driver. Contr ol
operations are usually supported via the ioctl method. The alternative is to look at
the data flow being written to the device and use special sequences as control
commands. This latter technique should be avoided because it requir es reserving
some characters for controlling purposes; thus, the data flow can’t contain those
characters. Moreover, this technique turns out to be more complex to handle than
ioctl. Nonetheless, sometimes it’s a useful approach to device control and is used
by tty’s and other devices. We’ll describe it later in this chapter in ‘‘Device Control
Without ioctl.’’

As we suggested in the previous chapter, the ioctl system call offers a device spe-
cific entry point for the driver to handle ‘‘commands.’’ ioctl is device specific in
that, unlike read and other methods, it allows applications to access features
unique to the hardware being driven, such as configuring the device and entering
or exiting operating modes. These control operations are usually not available
thr ough the read/write file abstraction. For example, everything you write to a
serial port is used as communication data, and you cannot change the baud rate
by writing to the device. That is what ioctl is for: controlling the I/O channel.

Another important feature of real devices (unlike scull ) is that data being read or
written is exchanged with other hardware, and some synchronization is needed.
The concepts of blocking I/O and asynchronous notification fill the gap and are
intr oduced in this chapter by means of a modified scull device. The driver uses
interaction between differ ent pr ocesses to create asynchronous events. As with the
original scull, you don’t need special hardware to test the driver’s workings. We
will definitely deal with real hardware, but not until Chapter 8.
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ioctl
The ioctl function call in user space corresponds to the following prototype:

int ioctl(int fd, int cmd, ...);

The prototype stands out in the list of Unix system calls because of the dots,
which usually repr esent not a variable number of arguments. In a real system,
however, a system call can’t actually have a variable number of arguments. System
calls must have a well-defined number of arguments because user programs can
access them only through hardware ‘‘gates,’’ as outlined in ‘‘User Space and Kernel
Space’’ in Chapter 2. Therefor e, the dots in the prototype repr esent not a variable
number of arguments but a single optional argument, traditionally identified as
char *argp. The dots are simply there to prevent type checking during compila-
tion. The actual nature of the third argument depends on the specific control com-
mand being issued (the second argument). Some commands take no arguments,
some take an integer value, and some take a pointer to other data. Using a pointer
is the way to pass arbitrary data to the ioctl call; the device will then be able to
exchange any amount of data with user space.

The ioctl driver method, on the other hand, receives its arguments according to
this declaration:

int (*ioctl) (struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg);

The inode and filp pointers are the values corresponding to the file descriptor
fd passed on by the application and are the same parameters passed to the open
method. The cmd argument is passed from the user unchanged, and the optional
arg argument is passed in the form of an unsigned long, regardless of
whether it was given by the user as an integer or a pointer. If the invoking pro-
gram doesn’t pass a third argument, the arg value received by the driver opera-
tion has no meaningful value.

Because type checking is disabled on the extra argument, the compiler can’t warn
you if an invalid argument is passed to ioctl, and the programmer won’t notice the
err or until runtime. This lack of checking can be seen as a minor problem with the
ioctl definition, but it is a necessary price for the general functionality that ioctl
pr ovides.

As you might imagine, most ioctl implementations consist of a switch statement
that selects the correct behavior according to the cmd argument. Differ ent com-
mands have differ ent numeric values, which are usually given symbolic names to
simplify coding. The symbolic name is assigned by a prepr ocessor definition. Cus-
tom drivers usually declare such symbols in their header files; scull.h declar es
them for scull. User programs must, of course, include that header file as well to
have access to those symbols.

ioctl
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Choosing the ioctl Commands
Befor e writing the code for ioctl, you need to choose the numbers that correspond
to commands. Unfortunately, the simple choice of using small numbers starting
fr om 1 and going up doesn’t work well.

The command numbers should be unique across the system in order to prevent
err ors caused by issuing the right command to the wrong device. Such a mismatch
is not unlikely to happen, and a program might find itself trying to change the
baud rate of a non-serial-port input stream, such as a FIFO or an audio device. If
each ioctl number is unique, then the application will get an EINVAL err or rather
than succeeding in doing something unintended.

To help programmers create unique ioctl command codes, these codes have been
split up into several bitfields. The first versions of Linux used 16-bit numbers: the
top eight were the ‘‘magic’’ number associated with the device, and the bottom
eight were a sequential number, unique within the device. This happened because
Linus was ‘‘clueless’’ (his own word); a better division of bitfields was conceived
only later. Unfortunately, quite a few drivers still use the old convention. They
have to: changing the command codes would break no end of binary programs. In
our sources, however, we will use the new command code convention exclu-
sively.

To choose ioctl numbers for your driver according to the new convention, you
should first check include/asm/ioctl.h and Documentation/ioctl-number.txt. The
header defines the bitfields you will be using: type (magic number), ordinal num-
ber, dir ection of transfer, and size of argument. The ioctl-number.txt file lists the
magic numbers used throughout the kernel, so you’ll be able to choose your own
magic number and avoid overlaps. The text file also lists the reasons why the con-
vention should be used.

The old, and now deprecated, way of choosing an ioctl number was easy: authors
chose a magic eight-bit number, such as ‘‘k’’ (hex 0x6b), and added an ordinal
number, like this:

#define SCULL_IOCTL1 0x6b01
#define SCULL_IOCTL2 0x6b02
/* .... */

If both the application and the driver agreed on the numbers, you only needed to
implement the switch statement in your driver. However, this way of defining
ioctl numbers, which had its foundations in Unix tradition, shouldn’t be used any
mor e. We’ve only shown the old way to give you a taste of what ioctl numbers
look like.

The new way to define numbers uses four bitfields, which have the following
meanings. Any new symbols we introduce in the following list are defined in
<linux/ioctl.h>.
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type
The magic number. Just choose one number (after consulting ioctl-number.txt)
and use it throughout the driver. This field is eight bits wide
(_IOC_TYPEBITS).

number
The ordinal (sequential) number. It’s eight bits (_IOC_NRBITS) wide.

direction
The direction of data transfer, if the particular command involves a data trans-
fer. The possible values are _IOC_NONE (no data transfer), _IOC_READ,
_IOC_WRITE, and _IOC_READ | _IOC_WRITE (data is transferred both
ways). Data transfer is seen from the application’s point of view; _IOC_READ
means reading fr om the device, so the driver must write to user space. Note
that the field is a bit mask, so _IOC_READ and _IOC_WRITE can be extracted
using a logical AND operation.

size
The size of user data involved. The width of this field is architectur e depen-
dent and currently ranges from 8 to 14 bits. You can find its value for your
specific architectur e in the macro _IOC_SIZEBITS. If you intend your driver
to be portable, however, you can only count on a size up to 255. It’s not
mandatory that you use the size field. If you need larger data structures, you
can just ignore it. We’ll see soon how this field is used.

The header file <asm/ioctl.h>, which is included by <linux/ioctl.h>,
defines macros that help set up the command numbers as follows:
_IO(type,nr), _IOR(type,nr,dataitem), _IOW(type,nr,dataitem),
and _IOWR(type,nr,dataitem). Each macro corr esponds to one of the possi-
ble values for the direction of the transfer. The type and number fields are
passed as arguments, and the size field is derived by applying sizeof to the
dataitem argument. The header also defines macros to decode the numbers:
_IOC_DIR(nr), _IOC_TYPE(nr), _IOC_NR(nr), and _IOC_SIZE(nr). We
won’t go into any more detail about these macros because the header file is clear,
and sample code is shown later in this section.

Her e is how some ioctl commands are defined in scull. In particular, these com-
mands set and get the driver’s configurable parameters.

/* Use ’k’ as magic number */
#define SCULL_IOC_MAGIC ’k’

#define SCULL_IOCRESET _IO(SCULL_IOC_MAGIC, 0)

/*
* S means "Set" through a ptr
* T means "Tell" directly with the argument value
* G means "Get": reply by setting through a pointer
* Q means "Query": response is on the return value

ioctl
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* X means "eXchange": G and S atomically
* H means "sHift": T and Q atomically
*/

#define SCULL_IOCSQUANTUM _IOW(SCULL_IOC_MAGIC, 1, scull_quantum)
#define SCULL_IOCSQSET _IOW(SCULL_IOC_MAGIC, 2, scull_qset)
#define SCULL_IOCTQUANTUM _IO(SCULL_IOC_MAGIC, 3)
#define SCULL_IOCTQSET _IO(SCULL_IOC_MAGIC, 4)
#define SCULL_IOCGQUANTUM _IOR(SCULL_IOC_MAGIC, 5, scull_quantum)
#define SCULL_IOCGQSET _IOR(SCULL_IOC_MAGIC, 6, scull_qset)
#define SCULL_IOCQQUANTUM _IO(SCULL_IOC_MAGIC, 7)
#define SCULL_IOCQQSET _IO(SCULL_IOC_MAGIC, 8)
#define SCULL_IOCXQUANTUM _IOWR(SCULL_IOC_MAGIC, 9, scull_quantum)
#define SCULL_IOCXQSET _IOWR(SCULL_IOC_MAGIC,10, scull_qset)
#define SCULL_IOCHQUANTUM _IO(SCULL_IOC_MAGIC, 11)
#define SCULL_IOCHQSET _IO(SCULL_IOC_MAGIC, 12)
#define SCULL_IOCHARDRESET _IO(SCULL_IOC_MAGIC, 15) /* debugging tool */

#define SCULL_IOC_MAXNR 15

The last command, HARDRESET, is used to reset the module’s usage count to 0 so
that the module can be unloaded should something go wrong with the counter.
The actual source file also defines all the commands between IOCHQSET and
HARDRESET, although they’re not shown here.

We chose to implement both ways of passing integer arguments — by pointer and
by explicit value, although by an established convention ioctl should exchange
values by pointer. Similarly, both ways are used to retur n an integer number: by
pointer or by setting the retur n value. This works as long as the retur n value is a
positive integer; on retur n fr om any system call, a positive value is preserved (as
we saw for read and write), while a negative value is considered an error and is
used to set errno in user space.

The ‘‘exchange’’ and ‘‘shift’’ operations are not particularly useful for scull. We
implemented ‘‘exchange’’ to show how the driver can combine separate operations
into a single atomic one, and ‘‘shift’’ to pair ‘‘tell’’ and ‘‘query.’’ There are times
when atomic* test-and-set operations like these are needed, in particular, when
applications need to set or release locks.

The explicit ordinal number of the command has no specific meaning. It is used
only to tell the commands apart. Actually, you could even use the same ordinal
number for a read command and a write command, since the actual ioctl number
is differ ent in the ‘‘direction’’ bits, but there is no reason why you would want to
do so. We chose not to use the ordinal number of the command anywhere but in
the declaration, so we didn’t assign a symbolic value to it. That’s why explicit

* A fragment of program code is said to be atomic when it will always be executed as
though it were a single instruction, without the possibility of the processor being inter-
rupted and something happening in between (such as somebody else’s code running).
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numbers appear in the definition given previously. The example shows one way
to use the command numbers, but you are free to do it dif ferently.

The value of the ioctl cmd argument is not currently used by the kernel, and it’s
quite unlikely it will be in the future. Therefor e, you could, if you were feeling
lazy, avoid the complex declarations shown earlier and explicitly declare a set of
scalar numbers. On the other hand, if you did, you wouldn’t benefit from using
the bitfields. The header <linux/kd.h> is an example of this old-fashioned
appr oach, using 16-bit scalar values to define the ioctl commands. That source file
relied on scalar numbers because it used the technology then available, not out of
laziness. Changing it now would be a gratuitous incompatibility.

The Retur n Value
The implementation of ioctl is usually a switch statement based on the command
number. But what should the default selection be when the command number
doesn’t match a valid operation? The question is controversial. Several kernel func-
tions retur n -EINVAL (‘‘Invalid argument’’), which makes sense because the com-
mand argument is indeed not a valid one. The POSIX standard, however, states
that if an inappropriate ioctl command has been issued, then -ENOTTY should be
retur ned. The string associated with that value used to be ‘‘Not a typewriter’’ under
all libraries up to and including libc5. Only libc6 changed the message to ‘‘Inap-
pr opriate ioctl for device,’’ which looks more to the point. Because most recent
Linux system are libc6 based, we’ll stick to the standard and retur n -ENOTTY. It’s
still pretty common, though, to retur n -EINVAL in response to an invalid ioctl
command.

The Predefined Commands
Though the ioctl system call is most often used to act on devices, a few commands
ar e recognized by the kernel. Note that these commands, when applied to your
device, are decoded befor e your own file operations are called. Thus, if you
choose the same number for one of your ioctl commands, you won’t ever see any
request for that command, and the application will get something unexpected
because of the conflict between the ioctl numbers.

The predefined commands are divided into three groups:

• Those that can be issued on any file (regular, device, FIFO, or socket)

• Those that are issued only on regular files

• Those specific to the filesystem type

Commands in the last group are executed by the implementation of the hosting
filesystem (see the chattr command). Device driver writers are inter ested only in
the first group of commands, whose magic number is ‘‘T.’’ Looking at the workings
of the other groups is left to the reader as an exercise; ext2_ioctl is a most

ioctl
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inter esting function (though easier than you may expect), because it implements
the append-only flag and the immutable flag.

The following ioctl commands are predefined for any file:

FIOCLEX
Set the close-on-exec flag (File IOctl CLose on EXec). Setting this flag will
cause the file descriptor to be closed when the calling process executes a new
pr ogram.

FIONCLEX
Clear the close-on-exec flag.

FIOASYNC
Set or reset asynchronous notification for the file (as discussed in “Asyn-
chr onous Notification” later in this chapter). Note that kernel versions up to
Linux 2.2.4 incorrectly used this command to modify the O_SYNC flag. Since
both actions can be accomplished in other ways, nobody actually uses the
FIOASYNC command, which is reported here only for completeness.

FIONBIO
‘‘File IOctl Non-Blocking I/O’’ (described later in this chapter in “Blocking and
Nonblocking Operations”). This call modifies the O_NONBLOCK flag in
filp->f_flags. The third argument to the system call is used to indicate
whether the flag is to be set or cleared. We’ll look at the role of the flag later
in this chapter. Note that the flag can also be changed by the fcntl system call,
using the F_SETFL command.

The last item in the list introduced a new system call, fcntl, which looks like ioctl.
In fact, the fcntl call is very similar to ioctl in that it gets a command argument and
an extra (optional) argument. It is kept separate from ioctl mainly for historical
reasons: when Unix developers faced the problem of controlling I/O operations,
they decided that files and devices were dif ferent. At the time, the only devices
with ioctl implementations were ttys, which explains why -ENOTTY is the stan-
dard reply for an incorrect ioctl command. Things have changed, but fcntl remains
in the name of backward compatibility.

Using the ioctl Argument
Another point we need to cover before looking at the ioctl code for the scull
driver is how to use the extra argument. If it is an integer, it’s easy: it can be used
dir ectly. If it is a pointer, however, some care must be taken.

When a pointer is used to refer to user space, we must ensure that the user
addr ess is valid and that the corresponding page is currently mapped. If kernel
code tries to access an out-of-range address, the processor issues an exception.
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Exceptions in kernel code are tur ned to oops messages by every Linux kernel up
thr ough 2.0.x ; version 2.1 and later handle the problem more gracefully. In any
case, it’s the driver’s responsibility to make proper checks on every user-space
addr ess it uses and to retur n an error if it is invalid.

Addr ess verification for kernels 2.2.x and beyond is implemented by the function
access_ok, which is declared in <asm/uaccess.h>:

int access_ok(int type, const void *addr, unsigned long size);

The first argument should be either VERIFY_READ or VERIFY_WRITE, depend-
ing on whether the action to be perfor med is reading the user-space memory area
or writing it. The addr argument holds a user-space address, and size is a byte
count. If ioctl, for instance, needs to read an integer value from user space, size
is sizeof(int). If you need to both read and write at the given address, use
VERIFY_WRITE, since it is a superset of VERIFY_READ.

Unlike most functions, access_ok retur ns a boolean value: 1 for success (access is
OK) and 0 for failure (access is not OK). If it retur ns false, the driver will usually
retur n -EFAULT to the caller.

Ther e ar e a couple of interesting things to note about access_ok. First is that it
does not do the complete job of verifying memory access; it only checks to see
that the memory refer ence is in a region of memory that the process might reason-
ably have access to. In particular, access_ok ensur es that the address does not
point to kernel-space memory. Second, most driver code need not actually call
access_ok. The memory-access routines described later take care of that for you.
We will nonetheless demonstrate its use so that you can see how it is done, and
for backward compatibility reasons that we will get into toward the end of the
chapter.

The scull source exploits the bitfields in the ioctl number to check the arguments
befor e the switch:

int err = 0, tmp;
int ret = 0;

/*
* extract the type and number bitfields, and don’t decode
* wrong cmds: return ENOTTY (inappropriate ioctl) before access_ok()
*/

if (_IOC_TYPE(cmd) != SCULL_IOC_MAGIC) return -ENOTTY;
if (_IOC_NR(cmd) > SCULL_IOC_MAXNR) return -ENOTTY;

/*
* the direction is a bitmask, and VERIFY_WRITE catches R/W
* transfers. ‘Type’ is user oriented, while
* access_ok is kernel oriented, so the concept of "read" and
* "write" is reversed
*/

ioctl
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if (_IOC_DIR(cmd) & _IOC_READ)
err = !access_ok(VERIFY_WRITE, (void *)arg, _IOC_SIZE(cmd));

else if (_IOC_DIR(cmd) & _IOC_WRITE)
err = !access_ok(VERIFY_READ, (void *)arg, _IOC_SIZE(cmd));

if (err) return -EFAULT;

After calling access_ok, the driver can safely perfor m the actual transfer. In addi-
tion to the copy_fr om_user and copy_to_user functions, the programmer can
exploit a set of functions that are optimized for the most-used data sizes (one, two,
and four bytes, as well as eight bytes on 64-bit platforms). These functions are
described in the following list and are defined in <asm/uaccess.h>.

put_user(datum, ptr)
__put_user(datum, ptr)

These macros write the datum to user space; they are relatively fast, and
should be called instead of copy_to_user whenever single values are being
transferr ed. Since type checking is not perfor med on macro expansion, you
can pass any type of pointer to put_user, as long as it is a user-space address.
The size of the data transfer depends on the type of the ptr argument and is
deter mined at compile time using a special gcc pseudo-function that isn’t
worth showing here. As a result, if ptr is a char pointer, one byte is trans-
ferr ed, and so on for two, four, and possibly eight bytes.

put_user checks to ensure that the process is able to write to the given mem-
ory address. It retur ns 0 on success, and -EFAULT on error. _ _put_user per-
for ms less checking (it does not call access_ok), but can still fail on some
kinds of bad addresses. Thus, _ _put_user should only be used if the memory
region has already been verified with access_ok.

As a general rule, you’ll call _ _put_user to save a few cycles when you are
implementing a read method, or when you copy several items and thus call
access_ok just once before the first data transfer.

get_user(local, ptr)
__get_user(local, ptr)

These macros are used to retrieve a single datum from user space. They
behave like put_user and _ _put_user, but transfer data in the opposite direc-
tion. The value retrieved is stored in the local variable local; the retur n value
indicates whether the operation succeeded or not. Again, _ _get_user should
only be used if the address has already been verified with access_ok.

If an attempt is made to use one of the listed functions to transfer a value that
does not fit one of the specific sizes, the result is usually a strange message from
the compiler, such as ‘‘conversion to non-scalar type requested.’’ In such cases,
copy_to_user or copy_fr om_user must be used.
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Capabilities and Restricted Operations
Access to a device is controlled by the permissions on the device file(s), and the
driver is not normally involved in permissions checking. There are situations, how-
ever, wher e any user is granted read/write permission on the device, but some
other operations should be denied. For example, not all users of a tape drive
should be able to set its default block size, and the ability to work with a disk
device does not mean that the user can refor mat the drive. In cases like these, the
driver must perfor m additional checks to be sure that the user is capable of per-
for ming the requested operation.

Unix systems have traditionally restricted privileged operations to the superuser
account. Privilege is an all-or-nothing thing—the superuser can do absolutely any-
thing, but all other users are highly restricted. The Linux kernel as of version 2.2
pr ovides a mor e flexible system called capabilities. A capability-based system
leaves the all-or-nothing mode behind and breaks down privileged operations into
separate subgroups. In this way, a particular user (or program) can be empowered
to perfor m a specific privileged operation without giving away the ability to per-
for m other, unr elated operations. Capabilities are still little used in user space, but
ker nel code uses them almost exclusively.

The full set of capabilities can be found in <linux/capability.h>. A subset
of those capabilities that might be of interest to device driver writers includes the
following:

CAP_DAC_OVERRIDE
The ability to override access restrictions on files and directories.

CAP_NET_ADMIN
The ability to perfor m network administration tasks, including those which
af fect network interfaces.

CAP_SYS_MODULE
The ability to load or remove kernel modules.

CAP_SYS_RAWIO
The ability to perfor m ‘‘raw’’ I/O operations. Examples include accessing
device ports or communicating directly with USB devices.

CAP_SYS_ADMIN
A catch-all capability that provides access to many system administration oper-
ations.

CAP_SYS_TTY_CONFIG
The ability to perfor m tty configuration tasks.

Befor e per forming a privileged operation, a device driver should check that the
calling process has the appropriate capability with the capable function (defined in
<sys/sched.h>):

ioctl
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int capable(int capability);

In the scull sample driver, any user is allowed to query the quantum and quantum
set sizes. Only privileged users, however, may change those values, since inappro-
priate values could badly affect system perfor mance. When needed, the scull
implementation of ioctl checks a user’s privilege level as follows:

if (! capable (CAP_SYS_ADMIN))
return -EPERM;

In the absence of a more specific capability for this task, CAP_SYS_ADMIN was
chosen for this test.

The Implementation of the ioctl Commands
The scull implementation of ioctl only transfers the configurable parameters of the
device and turns out to be as easy as the following:

switch(cmd) {

#ifdef SCULL_DEBUG
case SCULL_IOCHARDRESET:

/*
* reset the counter to 1, to allow unloading in case
* of problems. Use 1, not 0, because the invoking
* process has the device open.
*/
while (MOD_IN_USE)

MOD_DEC_USE_COUNT;
MOD_INC_USE_COUNT;
/* don’t break: fall through and reset things */

#endif /* SCULL_DEBUG */

case SCULL_IOCRESET:
scull_quantum = SCULL_QUANTUM;
scull_qset = SCULL_QSET;
break;

case SCULL_IOCSQUANTUM: /* Set: arg points to the value */
if (! capable (CAP_SYS_ADMIN))

return -EPERM;
ret = __get_user(scull_quantum, (int *)arg);
break;

case SCULL_IOCTQUANTUM: /* Tell: arg is the value */
if (! capable (CAP_SYS_ADMIN))

return -EPERM;
scull_quantum = arg;
break;
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case SCULL_IOCGQUANTUM: /* Get: arg is pointer to result */
ret = __put_user(scull_quantum, (int *)arg);
break;

case SCULL_IOCQQUANTUM: /* Query: return it (it’s positive) */
return scull_quantum;

case SCULL_IOCXQUANTUM: /* eXchange: use arg as pointer */
if (! capable (CAP_SYS_ADMIN))

return -EPERM;
tmp = scull_quantum;
ret = __get_user(scull_quantum, (int *)arg);
if (ret == 0)

ret = __put_user(tmp, (int *)arg);
break;

case SCULL_IOCHQUANTUM: /* sHift: like Tell + Query */
if (! capable (CAP_SYS_ADMIN))

return -EPERM;
tmp = scull_quantum;
scull_quantum = arg;
return tmp;

default: /* redundant, as cmd was checked against MAXNR */
return -ENOTTY;

}
return ret;

scull also includes six entries that act on scull_qset. These entries are identical
to the ones for scull_quantum and are not worth showing in print.

The six ways to pass and receive arguments look like the following from the
caller’s point of view (i.e., from user space):

int quantum;

ioctl(fd,SCULL_IOCSQUANTUM, &quantum);
ioctl(fd,SCULL_IOCTQUANTUM, quantum);

ioctl(fd,SCULL_IOCGQUANTUM, &quantum);
quantum = ioctl(fd,SCULL_IOCQQUANTUM);

ioctl(fd,SCULL_IOCXQUANTUM, &quantum);
quantum = ioctl(fd,SCULL_IOCHQUANTUM, quantum);

Of course, a normal driver would not implement such a mix of calling modes in
one place. We have done so here only to demonstrate the differ ent ways in which
things could be done. Normally, however, data exchanges would be consistently
per formed, either through pointers (more common) or by value (less common),
and mixing of the two techniques would be avoided.

ioctl
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Device Control Without ioctl
Sometimes controlling the device is better accomplished by writing control
sequences to the device itself. This technique is used, for example, in the console
driver, wher e so-called escape sequences are used to move the cursor, change the
default color, or per form other configuration tasks. The benefit of implementing
device control this way is that the user can control the device just by writing data,
without needing to use (or sometimes write) programs built just for configuring
the device.

For example, the setter m pr ogram acts on the console (or another terminal) con-
figuration by printing escape sequences. This behavior has the advantage of per-
mitting the remote control of devices. The controlling program can live on a
dif ferent computer than the controlled device, because a simple redir ection of the
data stream does the configuration job. You’r e alr eady used to this with ttys, but
the technique is more general.

The drawback of controlling by printing is that it adds policy constraints to the
device; for example, it is viable only if you are sur e that the control sequence can’t
appear in the data being written to the device during normal operation. This is
only partly true for ttys. Although a text display is meant to display only ASCII
characters, sometimes control characters can slip through in the data being written
and can thus affect the console setup. This can happen, for example, when you
issue gr ep on a binary file; the extracted lines can contain anything, and you often
end up with the wrong font on your console.*

Contr olling by write is definitely the way to go for those devices that don’t transfer
data but just respond to commands, such as robotic devices.

For instance, a driver written for fun by one of your authors moves a camera on
two axes. In this driver, the ‘‘device’’ is simply a pair of old stepper motors, which
can’t really be read from or written to. The concept of ‘‘sending a data stream’’ to a
stepper motor makes little or no sense. In this case, the driver interprets what is
being written as ASCII commands and converts the requests to sequences of
impulses that manipulate the stepper motors. The idea is similar, somewhat, to the
AT commands you send to the modem in order to set up communication, the
main differ ence being that the serial port used to communicate with the modem
must transfer real data as well. The advantage of direct device control is that you
can use cat to move the camera without writing and compiling special code to
issue the ioctl calls.

* CTRL-N sets the alternate font, which is made up of graphic symbols and thus isn’t a
friendly font for typing input to your shell; if you encounter this problem, echo a CTRL-O
character to restor e the primary font.
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When writing command-oriented drivers, there’s no reason to implement the ioctl
method. An additional command in the interpreter is easier to implement and use.

Sometimes, though, you might choose to act the other way around: instead of
making write into an interpreter and avoiding ioctl, you might choose to avoid
write altogether and use ioctl commands exclusively, while accompanying the
driver with a specific command-line tool to send those commands to the driver.
This approach moves the complexity from kernel space to user space, where it
may be easier to deal with, and helps keep the driver small while denying use of
simple cat or echo commands.

Blocking I/O
One problem that might arise with read is what to do when there’s no data yet,
but we’re not at end-of-file.

The default answer is ‘‘go to sleep waiting for data.’’ This section shows how a
pr ocess is put to sleep, how it is awakened, and how an application can ask if
ther e is data without just blindly issuing a read call and blocking. We then apply
the same concepts to write.

As usual, before we show actual code, we’ll explain a few concepts.

Going to Sleep and Awakening
Whenever a process must wait for an event (such as the arrival of data or the ter-
mination of a process), it should go to sleep. Sleeping causes the process to sus-
pend execution, freeing the processor for other uses. At some future time, when
the event being waited for occurs, the process will be woken up and will continue
with its job. This section discusses the 2.4 machinery for putting a process to sleep
and waking it up. Earlier versions are discussed in “Backward Compatibility” later
in this chapter.

Ther e ar e several ways of handling sleeping and waking up in Linux, each suited
to differ ent needs. All, however, work with the same basic data type, a wait queue
(wait_queue_head_t). A wait queue is exactly that—a queue of processes that
ar e waiting for an event. Wait queues are declar ed and initialized as follows:

wait_queue_head_t my_queue;
init_waitqueue_head (&my_queue);

When a wait queue is declared statically (i.e., not as an automatic variable of a
pr ocedure or as part of a dynamically-allocated data structure), it is also possible
to initialize the queue at compile time:

DECLARE_WAIT_QUEUE_HEAD (my_queue);

Blocking I/O
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It is a common mistake to neglect to initialize a wait queue (especially since earlier
versions of the kernel did not requir e this initialization); if you forget, the results
will usually not be what you intended.

Once the wait queue is declared and initialized, a process may use it to go to
sleep. Sleeping is accomplished by calling one of the variants of sleep_on, depend-
ing on how deep a sleep is called for.

sleep_on(wait_queue_head_t *queue);
Puts the process to sleep on this queue. sleep_on has the disadvantage of not
being interruptible; as a result, the process can end up being stuck (and un-
killable) if the event it’s waiting for never happens.

interruptible_sleep_on(wait_queue_head_t *queue);
The interruptible variant works just like sleep_on, except that the sleep can be
interrupted by a signal. This is the form that device driver writers have been
using for a long time, before wait_event_interruptible (described later)
appear ed.

sleep_on_timeout(wait_queue_head_t *queue, long timeout);
interruptible_sleep_on_timeout(wait_queue_head_t *queue,

long timeout);
These two functions behave like the previous two, with the exception that the
sleep will last no longer than the given timeout period. The timeout is speci-
fied in ‘‘jiffies,’’ which are cover ed in Chapter 6.

void wait_event(wait_queue_head_t queue, int condition);
int wait_event_interruptible(wait_queue_head_t queue, int

condition);
These macros are the preferr ed way to sleep on an event. They combine wait-
ing for an event and testing for its arrival in a way that avoids race conditions.
They will sleep until the condition, which may be any boolean C expression,
evaluates true. The macros expand to a while loop, and the condition is
reevaluated over time—the behavior is differ ent fr om that of a function call or
a simple macro, where the arguments are evaluated only at call time. The lat-
ter macro is implemented as an expression that evaluates to 0 in case of suc-
cess and -ERESTARTSYS if the loop is interrupted by a signal.

It is worth repeating that driver writers should almost always use the interruptible
instances of these functions/macros. The noninterruptible version exists for the
small number of situations in which signals cannot be dealt with, for example,
when waiting for a data page to be retrieved from swap space. Most drivers do not
pr esent such special situations.

Of course, sleeping is only half of the problem; something, somewhere will have
to wake the process up again. When a device driver sleeps directly, there is
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usually code in another part of the driver that perfor ms the wakeup, once it
knows that the event has occurred. Typically a driver will wake up sleepers in its
interrupt handler once new data has arrived. Other scenarios are possible, how-
ever.

Just as there is mor e than one way to sleep, so there is also more than one way to
wake up. The high-level functions provided by the kernel to wake up processes
ar e as follows:

wake_up(wait_queue_head_t *queue);
This function will wake up all processes that are waiting on this event queue.

wake_up_interruptible(wait_queue_head_t *queue);
wake_up_interruptible wakes up only the processes that are in interruptible
sleeps. Any process that sleeps on the wait queue using a noninterruptible
function or macro will continue to sleep.

wake_up_sync(wait_queue_head_t *queue);
wake_up_interruptible_sync(wait_queue_head_t *queue);

Nor mally, a wake_up call can cause an immediate reschedule to happen,
meaning that other processes might run before wake_up retur ns. The “syn-
chr onous” variants instead make any awakened processes runnable, but do
not reschedule the CPU. This is used to avoid rescheduling when the current
pr ocess is known to be going to sleep, thus forcing a reschedule anyway.
Note that awakened processes could run immediately on a differ ent pr ocessor,
so these functions should not be expected to provide mutual exclusion.

If your driver is using interruptible_sleep_on, ther e is little differ ence between
wake_up and wake_up_interruptible. Calling the latter is a common convention,
however, to preserve consistency between the two calls.

As an example of wait queue usage, imagine you want to put a process to sleep
when it reads your device and awaken it when someone else writes to the device.
The following code does just that:

DECLARE_WAIT_QUEUE_HEAD(wq);

ssize_t sleepy_read (struct file *filp, char *buf, size_t count,
loff_t *pos)

{
printk(KERN_DEBUG "process %i (%s) going to sleep\n",

current->pid, current->comm);
interruptible_sleep_on(&wq);
printk(KERN_DEBUG "awoken %i (%s)\n", current->pid, current->comm);
return 0; /* EOF */

}

Blocking I/O
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ssize_t sleepy_write (struct file *filp, const char *buf, size_t count,
loff_t *pos)

{
printk(KERN_DEBUG "process %i (%s) awakening the readers...\n",

current->pid, current->comm);
wake_up_interruptible(&wq);
return count; /* succeed, to avoid retrial */

}

The code for this device is available as sleepy in the example programs and can
be tested using cat and input/output redir ection, as usual.

An important thing to remember with wait queues is that being woken up does
not guarantee that the event you were waiting for has occurred; a process can be
woken for other reasons, mainly because it received a signal. Any code that sleeps
should do so in a loop that tests the condition after retur ning fr om the sleep, as
discussed in “A Sample Implementation: scullpipe” later in this chapter.

A Deeper Look at Wait Queues
The previous discussion is all that most driver writers will need to know to get
their job done. Some, however, will want to dig deeper. This section attempts to
get the curious started; everybody else can skip to the next section without miss-
ing much that is important.

The wait_queue_head_t type is a fairly simple structure, defined in
<linux/wait.h>. It contains only a lock variable and a linked list of sleeping
pr ocesses. The individual data items in the list are of type wait_queue_t, and
the list is the generic list defined in <linux/list.h> and described in “Linked
Lists” in Chapter 10. Normally the wait_queue_t structur es ar e allocated on the
stack by functions like interruptible_sleep_on; the structures end up in the stack
because they are simply declared as automatic variables in the relevant functions.
In general, the programmer need not deal with them.

Some advanced applications, however, can requir e dealing with wait_queue_t
variables directly. For these, it’s worth a quick look at what actually goes on inside
a function like interruptible_sleep_on. The following is a simplified version of the
implementation of interruptible_sleep_on to put a process to sleep:

void simplified_sleep_on(wait_queue_head_t *queue)
{

wait_queue_t wait;

init_waitqueue_entry(&wait, current);
current->state = TASK_INTERRUPTIBLE;

add_wait_queue(queue, &wait);
schedule();
remove_wait_queue (queue, &wait);

}
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The code here creates a new wait_queue_t variable (wait, which gets allo-
cated on the stack) and initializes it. The state of the task is set to TASK_INTER-
RUPTIBLE, meaning that it is in an interruptible sleep. The wait queue entry is
then added to the queue (the wait_queue_head_t * argument). Then schedule
is called, which relinquishes the processor to somebody else. schedule retur ns
only when somebody else has woken up the process and set its state to
TASK_RUNNING. At that point, the wait queue entry is removed from the queue,
and the sleep is done.

Figur e 5-1 shows the internals of the data structures involved in wait queues and
how they are used by processes.

Wait Queues in Linux 2.4

Several processes are sleeping on the same queue

KEY

No process is sleeping on the queue

The device structure
with its
wait_queue_head_t

The struct
wait_queue itself

The current
process and
its associated
stack page

Another
process and
its associated
stack page

The current process is sleeping on the device’s queue

wait_queue_head_t

spinlock_t lock;

structlist_head task_list;

wait_queue_t

struct task_struct *task;

struct list_head task_list;

Figur e 5-1. Wait queues in Linux 2.4

A quick look through the kernel shows that a great many procedur es do their
sleeping ‘‘manually’’ with code that looks like the previous example. Most of those
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implementations date back to kernels prior to 2.2.3, before wait_event was intro-
duced. As suggested, wait_event is now the preferr ed way to sleep on an event,
because interruptible_sleep_on is subject to unpleasant race conditions. A full
description of how that can happen will have to wait until “Going to Sleep With-
out Races” in Chapter 9; the short version, simply, is that things can change in the
time between when your driver decides to sleep and when it actually gets around
to calling interruptible_sleep_on.

One other reason for calling the scheduler explicitly, however, is to do exclusive
waits. There can be situations in which several processes are waiting on an event;
when wake_up is called, all of those processes will try to execute. Suppose that
the event signifies the arrival of an atomic piece of data. Only one process will be
able to read that data; all the rest will simply wake up, see that no data is avail-
able, and go back to sleep.

This situation is sometimes referr ed to as the ‘‘thundering herd problem.’’ In high-
per formance situations, thundering herds can waste resources in a big way. The
cr eation of a large number of runnable processes that can do no useful work gen-
erates a large number of context switches and processor overhead, all for nothing.
Things would work better if those processes simply remained asleep.

For this reason, the 2.3 development series added the concept of an exclusive
sleep. If processes sleep in an exclusive mode, they are telling the kernel to wake
only one of them. The result is improved perfor mance in some situations.

The code to perfor m an exclusive sleep looks very similar to that for a regular
sleep:

void simplified_sleep_exclusive(wait_queue_head_t *queue)
{

wait_queue_t wait;

init_waitqueue_entry(&wait, current);
current->state = TASK_INTERRUPTIBLE | TASK_EXCLUSIVE;

add_wait_queue_exclusive(queue, &wait);
schedule();
remove_wait_queue (queue, &wait);

}

Adding the TASK_EXCLUSIVE flag to the task state indicates that the process is in
an exclusive wait. The call to add_wait_queue_exclusive is also necessary, how-
ever. That function adds the process to the end of the wait queue, behind all oth-
ers. The purpose is to leave any processes in nonexclusive sleeps at the
beginning, where they will always be awakened. As soon as wake_up hits the first
exclusive sleeper, it knows it can stop.
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The attentive reader may have noticed another reason to manipulate wait queues
and the scheduler explicitly. Whereas functions like sleep_on will block a process
on exactly one wait queue, working with the queues directly allows sleeping on
multiple queues simultaneously. Most drivers need not sleep on more than one
queue; if yours is the exception, you will need to use code like what we’ve
shown.

Those wanting to dig even deeper into the wait queue code can look at
<linux/sched.h> and kernel/sched.c.

Wr iting Reentrant Code
When a process is put to sleep, the driver is still alive and can be called by
another process. Let’s consider the console driver as an example. While an appli-
cation is waiting for keyboard input on tty1, the user switches to tty2 and
spawns a new shell. Now both shells are waiting for keyboard input within the
console driver, although they sleep on differ ent wait queues: one on the queue
associated with tty1 and the other on the queue associated with tty2. Each pro-
cess is blocked within the interruptible_sleep_on function, but the driver can still
receive and answer requests from other ttys.

Of course, on SMP systems, multiple simultaneous calls to your driver can happen
even when you do not sleep.

Such situations can be handled painlessly by writing reentrant code. Reentrant
code is code that doesn’t keep status information in global variables and thus is
able to manage interwoven invocations without mixing anything up. If all the sta-
tus information is process specific, no interfer ence will ever happen.

If status information is needed, it can either be kept in local variables within the
driver function (each process has a differ ent stack page in kernel space where
local variables are stor ed), or it can reside in private_data within the filp
accessing the file. Using local variables is preferr ed because sometimes the same
filp can be shared between two processes (usually parent and child).

If you need to save large amounts of status data, you can keep the pointer in a
local variable and use kmalloc to retrieve the actual storage space. In this case you
must remember to kfr ee the data, because there’s no equivalent to ‘‘everything is
released at process termination’’ when you’re working in kernel space. Using local
variables for large items is not good practice, because the data may not fit the sin-
gle page of memory allocated for stack space.

You need to make reentrant any function that matches either of two conditions.
First, if it calls schedule, possibly by calling sleep_on or wake_up. Second, if it
copies data to or from user space, because access to user space might page-fault,
and the process will be put to sleep while the kernel deals with the missing page.
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Every function that calls any such functions must be reentrant as well. For exam-
ple, if sample_r ead calls sample_getdata, which in turn can block, then sam-
ple_r ead must be reentrant as well as sample_getdata, because nothing prevents
another process from calling it while it is already executing on behalf of a process
that went to sleep.

Finally, of course, code that sleeps should always keep in mind that the state of
the system can change in almost any way while a process is sleeping. The driver
should be careful to check any aspect of its environment that might have changed
while it wasn’t paying attention.

Blocking and Nonblocking Operations
Another point we need to touch on before we look at the implementation of full-
featur ed read and write methods is the role of the O_NONBLOCK flag in
filp->f_flags. The flag is defined in <linux/fcntl.h>, which is automati-
cally included by <linux/fs.h>.

The flag gets its name from ‘‘open-nonblock,’’ because it can be specified at open
time (and originally could only be specified there). If you browse the source code,
you’ll find some refer ences to an O_NDELAY flag; this is an alternate name for
O_NONBLOCK, accepted for compatibility with System V code. The flag is cleared
by default, because the normal behavior of a process waiting for data is just to
sleep. In the case of a blocking operation, which is the default, the following
behavior should be implemented in order to adhere to the standard semantics:

• If a process calls read but no data is (yet) available, the process must block.
The process is awakened as soon as some data arrives, and that data is
retur ned to the caller, even if there is less than the amount requested in the
count argument to the method.

• If a process calls write and there is no space in the buffer, the process must
block, and it must be on a differ ent wait queue from the one used for reading.
When some data has been written to the hardware device, and space becomes
fr ee in the output buffer, the process is awakened and the write call succeeds,
although the data may be only partially written if there isn’t room in the buffer
for the count bytes that were requested.

Both these statements assume that there are both input and output buffers; in
practice, almost every device driver has them. The input buffer is requir ed to avoid
losing data that arrives when nobody is reading. In contrast, data can’t be lost on
write, because if the system call doesn’t accept data bytes, they remain in the user-
space buffer. Even so, the output buffer is almost always useful for squeezing
mor e per formance out of the hardware.
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The perfor mance gain of implementing an output buffer in the driver results from
the reduced number of context switches and user-level/ker nel-level transitions.
Without an output buffer (assuming a slow device), only one or a few characters
ar e accepted by each system call, and while one process sleeps in write, another
pr ocess runs (that’s one context switch). When the first process is awakened, it
resumes (another context switch), write retur ns (ker nel/user transition), and the
pr ocess reiterates the system call to write more data (user/kernel transition); the
call blocks, and the loop continues. If the output buffer is big enough, the write
call succeeds on the first attempt—the buffer ed data will be pushed out to the
device later, at interrupt time—without control needing to go back to user space
for a second or third write call. The choice of a suitable size for the output buffer
is clearly device specific.

We didn’t use an input buffer in scull, because data is already available when read
is issued. Similarly, no output buffer was used, because data is simply copied to
the memory area associated with the device. Essentially, the device is a buf fer, so
the implementation of additional buffers would be superfluous. We’ll see the use
of buffers in Chapter 9, in the section titled “Interrupt-Driven I/O.”

The behavior of read and write is differ ent if O_NONBLOCK is specified. In this
case, the calls simply retur n -EAGAIN if a process calls read when no data is
available or if it calls write when there’s no space in the buffer.

As you might expect, nonblocking operations retur n immediately, allowing the
application to poll for data. Applications must be careful when using the stdio
functions while dealing with nonblocking files, because they can easily mistake a
nonblocking retur n for EOF. They always have to check errno.

Naturally, O_NONBLOCK is meaningful in the open method also. This happens
when the call can actually block for a long time; for example, when opening a
FIFO that has no writers (yet), or accessing a disk file with a pending lock. Usu-
ally, opening a device either succeeds or fails, without the need to wait for exter-
nal events. Sometimes, however, opening the device requir es a long initialization,
and you may choose to support O_NONBLOCK in your open method by retur ning
immediately with -EAGAIN (“try it again”) if the flag is set, after initiating device
initialization. The driver may also implement a blocking open to support access
policies in a way similar to file locks. We’ll see one such implementation in the
section “Blocking open as an Alternative to EBUSY” later in this chapter.

Some drivers may also implement special semantics for O_NONBLOCK; for exam-
ple, an open of a tape device usually blocks until a tape has been inserted. If the
tape drive is opened with O_NONBLOCK, the open succeeds immediately regard-
less of whether the media is present or not.

Only the read, write, and open file operations are affected by the nonblocking
flag.
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A Sample Implementation: scullpipe
The /dev/scullpipe devices (there are four of them by default) are part of the scull
module and are used to show how blocking I/O is implemented.

Within a driver, a process blocked in a read call is awakened when data arrives;
usually the hardware issues an interrupt to signal such an event, and the driver
awakens waiting processes as part of handling the interrupt. The scull driver
works differ ently, so that it can be run without requiring any particular hardware
or an interrupt handler. We chose to use another process to generate the data and
wake the reading process; similarly, reading processes are used to wake sleeping
writer processes. The resulting implementation is similar to that of a FIFO (or
named pipe) filesystem node, whence the name.

The device driver uses a device structure that embeds two wait queues and a
buf fer. The size of the buffer is configurable in the usual ways (at compile time,
load time, or runtime).

typedef struct Scull_Pipe {
wait_queue_head_t inq, outq; /* read and write queues */
char *buffer, *end; /* begin of buf, end of buf */
int buffersize; /* used in pointer arithmetic */
char *rp, *wp; /* where to read, where to write */
int nreaders, nwriters; /* number of openings for r/w */
struct fasync_struct *async_queue; /* asynchronous readers */
struct semaphore sem; /* mutual exclusion semaphore */
devfs_handle_t handle; /* only used if devfs is there */

} Scull_Pipe;

The read implementation manages both blocking and nonblocking input and
looks like this (the puzzling first line of the function is explained later, in “Seeking
a Device”):

ssize_t scull_p_read (struct file *filp, char *buf, size_t count,
loff_t *f_pos)

{
Scull_Pipe *dev = filp->private_data;

if (f_pos != &filp->f_pos) return -ESPIPE;

if (down_interruptible(&dev->sem))
return -ERESTARTSYS;

while (dev->rp == dev->wp) { /* nothing to read */
up(&dev->sem); /* release the lock */
if (filp->f_flags & O_NONBLOCK)

return -EAGAIN;
PDEBUG("\"%s\" reading: going to sleep\n", current->comm);
if (wait_event_interruptible(dev->inq, (dev->rp != dev->wp)))

return -ERESTARTSYS; /* signal: tell the fs layer to handle it */
/* otherwise loop, but first reacquire the lock */
if (down_interruptible(&dev->sem))
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return -ERESTARTSYS;
}
/* ok, data is there, return something */
if (dev->wp > dev->rp)

count = min(count, dev->wp - dev->rp);
else /* the write pointer has wrapped, return data up to dev->end */

count = min(count, dev->end - dev->rp);
if (copy_to_user(buf, dev->rp, count)) {

up (&dev->sem);
return -EFAULT;

}
dev->rp += count;
if (dev->rp == dev->end)

dev->rp = dev->buffer; /* wrapped */
up (&dev->sem);

/* finally, awaken any writers and return */
wake_up_interruptible(&dev->outq);
PDEBUG("\"%s\" did read %li bytes\n",current->comm, (long)count);
return count;

}

As you can see, we left some PDEBUG statements in the code. When you compile
the driver, you can enable messaging to make it easier to follow the interaction of
dif ferent processes.

Note also, once again, the use of semaphores to protect critical regions of the
code. The scull code has to be careful to avoid going to sleep when it holds a
semaphor e—otherwise, writers would never be able to add data, and the whole
thing would deadlock. This code uses wait_event_interruptible to wait for data if
need be; it has to check for available data again after the wait, though. Somebody
else could grab the data between when we wake up and when we get the
semaphor e back.

It’s worth repeating that a process can go to sleep both when it calls schedule,
either directly or indirectly, and when it copies data to or from user space. In the
latter case the process may sleep if the user array is not currently present in main
memory. If scull sleeps while copying data between kernel and user space, it will
sleep with the device semaphore held. Holding the semaphore in this case is justi-
fied since it will not deadlock the system, and since it is important that the device
memory array not change while the driver sleeps.

The if statement that follows interruptible_sleep_on takes care of signal handling.
This statement ensures the proper and expected reaction to signals, which could
have been responsible for waking up the process (since we were in an interrupt-
ible sleep). If a signal has arrived and it has not been blocked by the process, the
pr oper behavior is to let upper layers of the kernel handle the event. To this aim,
the driver retur ns -ERESTARTSYS to the caller; this value is used internally by the
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virtual filesystem (VFS) layer, which either restarts the system call or retur ns
-EINTR to user space. We’ll use the same statement to deal with signal handling
for every read and write implementation. Because signal_ pending was introduced
only in version 2.1.57 of the kernel, sysdep.h defines it for earlier kernels to pre-
serve portability of source code.

The implementation for write is quite similar to that for read (and, again, its first
line will be explained later). Its only ‘‘peculiar’’ feature is that it never completely
fills the buffer, always leaving a hole of at least one byte. Thus, when the buffer is
empty, wp and rp ar e equal; when there is data there, they are always differ ent.

static inline int spacefree(Scull_Pipe *dev)
{

if (dev->rp == dev->wp)
return dev->buffersize - 1;

return ((dev->rp + dev->buffersize - dev->wp) % dev->buffersize) - 1;
}

ssize_t scull_p_write(struct file *filp, const char *buf, size_t count,
loff_t *f_pos)

{
Scull_Pipe *dev = filp->private_data;

if (f_pos != &filp->f_pos) return -ESPIPE;

if (down_interruptible(&dev->sem))
return -ERESTARTSYS;

/* Make sure there’s space to write */
while (spacefree(dev) == 0) { /* full */

up(&dev->sem);
if (filp->f_flags & O_NONBLOCK)

return -EAGAIN;
PDEBUG("\"%s\" writing: going to sleep\n",current->comm);
if (wait_event_interruptible(dev->outq, spacefree(dev) > 0))

return -ERESTARTSYS; /* signal: tell the fs layer to handle it */
if (down_interruptible(&dev->sem))

return -ERESTARTSYS;
}
/* ok, space is there, accept something */
count = min(count, spacefree(dev));
if (dev->wp >= dev->rp)

count = min(count, dev->end - dev->wp); /* up to end-of-buffer */
else /* the write pointer has wrapped, fill up to rp-1 */

count = min(count, dev->rp - dev->wp - 1);
PDEBUG("Going to accept %li bytes to %p from %p\n",

(long)count, dev->wp, buf);
if (copy_from_user(dev->wp, buf, count)) {

up (&dev->sem);
return -EFAULT;

}
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dev->wp += count;
if (dev->wp == dev->end)

dev->wp = dev->buffer; /* wrapped */
up(&dev->sem);

/* finally, awaken any reader */
wake_up_interruptible(&dev->inq); /* blocked in read() and select() */

/* and signal asynchronous readers, explained later in Chapter 5 */
if (dev->async_queue)

kill_fasync(&dev->async_queue, SIGIO, POLL_IN);
PDEBUG("\"%s\" did write %li bytes\n",current->comm, (long)count);
return count;

}

The device, as we conceived it, doesn’t implement blocking open and is simpler
than a real FIFO. If you want to look at the real thing, you can find it in fs/pipe.c,
in the kernel sources.

To test the blocking operation of the scullpipe device, you can run some programs
on it, using input/output redir ection as usual. Testing nonblocking activity is trick-
ier, because the conventional programs don’t perfor m nonblocking operations.
The misc-pr ogs source directory contains the following simple program, called
nbtest, for testing nonblocking operations. All it does is copy its input to its output,
using nonblocking I/O and delaying between retrials. The delay time is passed on
the command line and is one second by default.

int main(int argc, char **argv)
{

int delay=1, n, m=0;

if (argc>1) delay=atoi(argv[1]);
fcntl(0, F_SETFL, fcntl(0,F_GETFL) | O_NONBLOCK); /* stdin */
fcntl(1, F_SETFL, fcntl(1,F_GETFL) | O_NONBLOCK); /* stdout */

while (1) {
n=read(0, buffer, 4096);
if (n>=0)

m=write(1, buffer, n);
if ((n<0 || m<0) && (errno != EAGAIN))

break;
sleep(delay);

}
perror( n<0 ? "stdin" : "stdout");
exit(1);

}
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poll and select
Applications that use nonblocking I/O often use the poll and select system calls as
well. poll and select have essentially the same functionality: both allow a process
to determine whether it can read from or write to one or more open files without
blocking. They are thus often used in applications that must use multiple input or
output streams without blocking on any one of them. The same functionality is
of fered by two separate functions because they were implemented in Unix almost
at the same time by two differ ent gr oups: select was introduced in BSD Unix,
wher eas poll was the System V solution.

Support for either system call requir es support from the device driver to function.
In version 2.0 of the kernel the device method was modeled on select (and no poll
was available to user programs); from version 2.1.23 onward both were offer ed,
and the device method was based on the newly introduced poll system call
because poll of fered more detailed control than select.

Implementations of the poll method, implementing both the poll and select system
calls, have the following prototype:

unsigned int (*poll) (struct file *, poll_table *);

The driver’s method will be called whenever the user-space program perfor ms a
poll or select system call involving a file descriptor associated with the driver. The
device method is in charge of these two steps:

1. Call poll_wait on one or more wait queues that could indicate a change in the
poll status.

2. Return a bit mask describing operations that could be immediately perfor med
without blocking.

Both of these operations are usually straightforward, and tend to look very similar
fr om one driver to the next. They rely, however, on infor mation that only the
driver can provide, and thus must be implemented individually by each driver.

The poll_table structur e, the second argument to the poll method, is used
within the kernel to implement the poll and select calls; it is declared in
<linux/poll.h>, which must be included by the driver source. Driver writers
need know nothing about its internals and must use it as an opaque object; it is
passed to the driver method so that every event queue that could wake up the
pr ocess and change the status of the poll operation can be added to the
poll_table structur e by calling the function poll_wait:

void poll_wait (struct file *, wait_queue_head_t *, poll_table *);
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The second task perfor med by the poll method is retur ning the bit mask describ-
ing which operations could be completed immediately; this is also straightforward.
For example, if the device has data available, a read would complete without
sleeping; the poll method should indicate this state of affairs. Several flags (defined
in <linux/poll.h>) are used to indicate the possible operations:

POLLIN
This bit must be set if the device can be read without blocking.

POLLRDNORM
This bit must be set if ‘‘normal’’ data is available for reading. A readable device
retur ns (POLLIN | POLLRDNORM).

POLLRDBAND
This bit indicates that out-of-band data is available for reading from the
device. It is currently used only in one place in the Linux kernel (the DECnet
code) and is not generally applicable to device drivers.

POLLPRI
High-priority data (out-of-band) can be read without blocking. This bit causes
select to report that an exception condition occurred on the file, because select
reports out-of-band data as an exception condition.

POLLHUP
When a process reading this device sees end-of-file, the driver must set POLL-
HUP (hang-up). A process calling select will be told that the device is readable,
as dictated by the select functionality.

POLLERR
An error condition has occurred on the device. When poll is invoked, the
device is reported as both readable and writable, since both read and write
will retur n an error code without blocking.

POLLOUT
This bit is set in the retur n value if the device can be written to without block-
ing.

POLLWRNORM
This bit has the same meaning as POLLOUT, and sometimes it actually is the
same number. A writable device retur ns (POLLOUT | POLLWRNORM).

POLLWRBAND
Like POLLRDBAND, this bit means that data with nonzero priority can be writ-
ten to the device. Only the datagram implementation of poll uses this bit, since
a datagram can transmit out of band data.

It’s worth noting that POLLRDBAND and POLLWRBAND ar e meaningful only with
file descriptors associated with sockets: device drivers won’t normally use these
flags.
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The description of poll takes up a lot of space for something that is relatively sim-
ple to use in practice. Consider the scullpipe implementation of the poll method:

unsigned int scull_p_poll(struct file *filp, poll_table *wait)
{

Scull_Pipe *dev = filp->private_data;
unsigned int mask = 0;

/*
* The buffer is circular; it is considered full
* if "wp" is right behind "rp". "left" is 0 if the
* buffer is empty, and it is "1" if it is completely full.
*/

int left = (dev->rp + dev->buffersize - dev->wp) % dev->buffersize;

poll_wait(filp, &dev->inq, wait);
poll_wait(filp, &dev->outq, wait);
if (dev->rp != dev->wp) mask |= POLLIN | POLLRDNORM; /* readable */
if (left != 1) mask |= POLLOUT | POLLWRNORM; /* writable */

return mask;
}

This code simply adds the two scullpipe wait queues to the poll_table, then
sets the appropriate mask bits depending on whether data can be read or written.

The poll code as shown is missing end-of-file support. The poll method should
retur n POLLHUP when the device is at the end of the file. If the caller used the
select system call, the file will be reported as readable; in both cases the applica-
tion will know that it can actually issue the read without waiting forever, and the
read method will retur n 0 to signal end-of-file.

With real FIFOs, for example, the reader sees an end-of-file when all the writers
close the file, whereas in scullpipe the reader never sees end-of-file. The behavior
is differ ent because a FIFO is intended to be a communication channel between
two processes, while scullpipe is a trashcan where everyone can put data as long
as there’s at least one reader. Mor eover, it makes no sense to reimplement what is
alr eady available in the kernel.

Implementing end-of-file in the same way as FIFOs do would mean checking
dev->nwriters, both in read and in poll, and reporting end-of-file (as just
described) if no process has the device opened for writing. Unfortunately, though,
if a reader opened the scullpipe device before the writer, it would see end-of-file
without having a chance to wait for data. The best way to fix this problem would
be to implement blocking within open; this task is left as an exercise for the
reader.
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Interaction with read and write
The purpose of the poll and select calls is to determine in advance if an I/O opera-
tion will block. In that respect, they complement read and write. Mor e important,
poll and select ar e useful because they let the application wait simultaneously for
several data streams, although we are not exploiting this feature in the scull exam-
ples.

A corr ect implementation of the three calls is essential to make applications work
corr ectly. Though the following rules have more or less already been stated, we’ll
summarize them here.

Reading data from the device

• If ther e is data in the input buffer, the read call should retur n immediately,
with no noticeable delay, even if less data is available than the application
requested and the driver is sure the remaining data will arrive soon. You can
always retur n less data than you’re asked for if this is convenient for any rea-
son (we did it in scull), provided you retur n at least one byte.

• If ther e is no data in the input buffer, by default read must block until at least
one byte is there. If O_NONBLOCK is set, on the other hand, read retur ns
immediately with a retur n value of -EAGAIN (although some old versions of
System V retur n 0 in this case). In these cases poll must report that the device
is unreadable until at least one byte arrives. As soon as there is some data in
the buffer, we fall back to the previous case.

• If we are at end-of-file, read should retur n immediately with a retur n value of
0, independent of O_NONBLOCK. poll should report POLLHUP in this case.

Wr iting to the device

• If ther e is space in the output buffer, write should retur n without delay. It can
accept less data than the call requested, but it must accept at least one byte. In
this case, poll reports that the device is writable.

• If the output buffer is full, by default write blocks until some space is freed. If
O_NONBLOCK is set, write retur ns immediately with a retur n value of
-EAGAIN (older System V Unices retur ned 0). In these cases poll should
report that the file is not writable. If, on the other hand, the device is not able
to accept any more data, write retur ns -ENOSPC (‘‘No space left on device’’),
independently of the setting of O_NONBLOCK.

• Never make a write call wait for data transmission before retur ning, even if
O_NONBLOCK is clear. This is because many applications use select to find out
whether a write will block. If the device is reported as writable, the call must
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consistently not block. If the program using the device wants to ensure that
the data it enqueues in the output buffer is actually transmitted, the driver
must provide an fsync method. For instance, a removable device should have
an fsync entry point.

Although these are a good set of general rules, one should also recognize that
each device is unique and that sometimes the rules must be bent slightly. For
example, record-oriented devices (such as tape drives) cannot execute partial
writes.

Flushing pending output

We’ve seen how the write method by itself doesn’t account for all data output
needs. The fsync function, invoked by the system call of the same name, fills the
gap. This method’s prototype is

int (*fsync) (struct file *file, struct dentry *dentry, int datasync);

If some application will ever need to be assured that data has been sent to the
device, the fsync method must be implemented. A call to fsync should retur n only
when the device has been completely flushed (i.e., the output buffer is empty),
even if that takes some time, regardless of whether O_NONBLOCK is set. The
datasync argument, present only in the 2.4 kernel, is used to distinguish
between the fsync and fdatasync system calls; as such, it is only of interest to
filesystem code and can be ignored by drivers.

The fsync method has no unusual features. The call isn’t time critical, so every
device driver can implement it to the author’s taste. Most of the time, char drivers
just have a NULL pointer in their fops. Block devices, on the other hand, always
implement the method with the general-purpose block_fsync, which in turn
flushes all the blocks of the device, waiting for I/O to complete.

The Underlying Data Structure
The actual implementation of the poll and select system calls is reasonably simple,
for those who are inter ested in how it works. Whenever a user application calls
either function, the kernel invokes the poll method of all files refer enced by the
system call, passing the same poll_table to each of them. The structure is, for
all practical purposes, an array of poll_table_entry structur es allocated for a
specific poll or select call. Each poll_table_entry contains the struct file
pointer for the open device, a wait_queue_head_t pointer, and a
wait_queue_t entry. When a driver calls poll_wait, one of these entries gets
filled in with the information provided by the driver, and the wait queue entry gets
put onto the driver’s queue. The pointer to wait_queue_head_t is used to track
the wait queue where the current poll table entry is register ed, in order for
fr ee_wait to be able to dequeue the entry before the wait queue is awakened.
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If none of the drivers being polled indicates that I/O can occur without blocking,
the poll call simply sleeps until one of the (perhaps many) wait queues it is on
wakes it up.

What’s interesting in the implementation of poll is that the file operation may be
called with a NULL pointer as poll_table argument. This situation can come
about for a couple of reasons. If the application calling poll has provided a timeout
value of 0 (indicating that no wait should be done), there is no reason to accumu-
late wait queues, and the system simply does not do it. The poll_table pointer
is also set to NULL immediately after any driver being polled indicates that I/O is
possible. Since the kernel knows at that point that no wait will occur, it does not
build up a list of wait queues.

When the poll call completes, the poll_table structur e is deallocated, and all
wait queue entries previously added to the poll table (if any) are removed from
the table and their wait queues.

Actually, things are somewhat more complex than depicted here, because the poll
table is not a simple array but rather a set of one or more pages, each hosting an
array. This complication is meant to avoid putting too low a limit (dictated by the
page size) on the maximum number of file descriptors involved in a poll or select
system call.

We tried to show the data structures involved in polling in Figure 5-2; the figure is
a simplified repr esentation of the real data structures because it ignores the multi-
page nature of a poll table and disregards the file pointer that is part of each
poll_table_entry. The reader interested in the actual implementation is urged
to look in <linux/poll.h> and fs/select.c.

Asynchronous Notification
Though the combination of blocking and nonblocking operations and the select
method are suf ficient for querying the device most of the time, some situations
ar en’t ef ficiently managed by the techniques we’ve seen so far.

Let’s imagine, for example, a process that executes a long computational loop at
low priority, but needs to process incoming data as soon as possible. If the input
channel is the keyboard, you are allowed to send a signal to the application (using
the ‘INTR’ character, usually CTRL-C), but this signaling ability is part of the tty
abstraction, a software layer that isn’t used for general char devices. What we need
for asynchronous notification is something differ ent. Further more, any input data
should generate an interrupt, not just CTRL-C.

User programs have to execute two steps to enable asynchronous notification from
an input file. First, they specify a process as the ‘‘owner’’ of the file. When a pro-
cess invokes the F_SETOWN command using the fcntl system call, the process ID
of the owner process is saved in filp->f_owner for later use. This step is nec-
essary for the kernel to know just who to notify. In order to actually enable
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The struct poll_table_struct

int error;

struct poll_table_page *tables;

The struct poll_table_entry

wait_queue_t wait;

wait_queue_head_t *wait_address;

The data structures behind poll

A generic device structure
with its
wait_queue_head_t

A process with an active
poll ()

The struct
poll_table_struct

Poll table entries

A process calls poll for one device only

A process is calling poll (or select) on two devices

Figur e 5-2. The data structures of poll

asynchr onous notification, the user programs must set the FASYNC flag in the
device by means of the F_SETFL fcntl command.

After these two calls have been executed, the input file can request delivery of a
SIGIO signal whenever new data arrives. The signal is sent to the process (or pro-
cess group, if the value is negative) stored in filp->f_owner.

For example, the following lines of code in a user program enable asynchronous
notification to the current process for the stdin input file:

signal(SIGIO, &input_handler); /* dummy sample; sigaction() is better */
fcntl(STDIN_FILENO, F_SETOWN, getpid());
oflags = fcntl(STDIN_FILENO, F_GETFL);
fcntl(STDIN_FILENO, F_SETFL, oflags | FASYNC);

The program named asynctest in the sources is a simple program that reads
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stdin as shown. It can be used to test the asynchronous capabilities of scullpipe.
The program is similar to cat, but doesn’t terminate on end-of-file; it responds only
to input, not to the absence of input.

Note, however, that not all the devices support asynchronous notification, and you
can choose not to offer it. Applications usually assume that the asynchronous
capability is available only for sockets and ttys. For example, pipes and FIFOs
don’t support it, at least in the current kernels. Mice offer asynchronous notifica-
tion because some programs expect a mouse to be able to send SIGIO like a tty
does.

Ther e is one remaining problem with input notification. When a process receives a
SIGIO, it doesn’t know which input file has new input to offer. If mor e than one
file is enabled to asynchronously notify the process of pending input, the applica-
tion must still resort to poll or select to find out what happened.

The Driver’s Point of View
A mor e relevant topic for us is how the device driver can implement asynchronous
signaling. The following list details the sequence of operations from the kernel’s
point of view:

1. When F_SETOWN is invoked, nothing happens, except that a value is assigned
to filp->f_owner.

2. When F_SETFL is executed to turn on FASYNC, the driver’s fasync method is
called. This method is called whenever the value of FASYNC is changed in
filp->f_flags, to notify the driver of the change so it can respond prop-
erly. The flag is cleared by default when the file is opened. We’ll look at the
standard implementation of the driver method soon.

3. When data arrives, all the processes register ed for asynchronous notification
must be sent a SIGIO signal.

While implementing the first step is trivial—ther e’s nothing to do on the driver’s
part — the other steps involve maintaining a dynamic data structure to keep track
of the differ ent asynchr onous readers; there might be several of these readers. This
dynamic data structure, however, doesn’t depend on the particular device
involved, and the kernel offers a suitable general-purpose implementation so that
you don’t have to rewrite the same code in every driver.

The general implementation offer ed by Linux is based on one data structure and
two functions (which are called in the second and third steps described earlier).
The header that declares related material is <linux/fs.h>—nothing new
her e—and the data structure is called struct fasync_struct. As we did with
wait queues, we need to insert a pointer to the structure in the device-specific data
structur e. Actually, we’ve already seen such a field in the section “A Sample Imple-
mentation: scullpipe.”

Asynchronous Notification
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The two functions that the driver calls correspond to the following prototypes:

int fasync_helper(int fd, struct file *filp,
int mode, struct fasync_struct **fa);

void kill_fasync(struct fasync_struct **fa, int sig, int band);

fasync_helper is invoked to add files to or remove files from the list of inter-
ested processes when the FASYNC flag changes for an open file. All of its argu-
ments except the last are provided to the fasync method and can be passed
thr ough dir ectly. kill_fasync is used to signal the interested processes when
data arrives. Its arguments are the signal to send (usually SIGIO) and the band,
which is almost always POLL_IN (but which may be used to send “urgent” or out-
of-band data in the networking code).

Her e’s how scullpipe implements the fasync method:

int scull_p_fasync(fasync_file fd, struct file *filp, int mode)
{

Scull_Pipe *dev = filp->private_data;

return fasync_helper(fd, filp, mode, &dev->async_queue);
}

It’s clear that all the work is perfor med by fasync_helper. It wouldn’t be possible,
however, to implement the functionality without a method in the driver, because
the helper function needs to access the correct pointer to struct
fasync_struct * (her e &dev->async_queue), and only the driver can pro-
vide the information.

When data arrives, then, the following statement must be executed to signal asyn-
chr onous readers. Since new data for the scullpipe reader is generated by a pro-
cess issuing a write, the statement appears in the write method of scullpipe.

if (dev->async_queue)
kill_fasync(&dev->async_queue, SIGIO, POLL_IN);

It might appear that we’re done, but there’s still one thing missing. We must
invoke our fasync method when the file is closed to remove the file from the list
of active asynchronous readers. Although this call is requir ed only if
filp->f_flags has FASYNC set, calling the function anyway doesn’t hurt and is
the usual implementation. The following lines, for example, are part of the close
method for scullpipe:

/* remove this filp from the asynchronously notified filp’s */
scull_p_fasync(-1, filp, 0);

The data structure underlying asynchronous notification is almost identical to the
structur e struct wait_queue, because both situations involve waiting on an
event. The differ ence is that struct file is used in place of struct
task_struct. The struct file in the queue is then used to retrieve
f_owner, in order to signal the process.
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Seeking a Device
The difficult part of the chapter is over; now we’ll quickly detail the llseek method,
which is useful and easy to implement.

The llseek Implementation
The llseek method implements the lseek and llseek system calls. We have already
stated that if the llseek method is missing from the device’s operations, the default
implementation in the kernel perfor ms seeks from the beginning of the file and
fr om the current position by modifying filp->f_pos, the current reading/writ-
ing position within the file. Please note that for the lseek system call to work cor-
rectly, the read and write methods must cooperate by updating the offset item
they receive as argument (the argument is usually a pointer to filp->f_pos).

You may need to provide your own llseek method if the seek operation corre-
sponds to a physical operation on the device or if seeking from end-of-file, which
is not implemented by the default method, makes sense. A simple example can be
seen in the scull driver:

loff_t scull_llseek(struct file *filp, loff_t off, int whence)
{

Scull_Dev *dev = filp->private_data;
loff_t newpos;

switch(whence) {
case 0: /* SEEK_SET */
newpos = off;
break;

case 1: /* SEEK_CUR */
newpos = filp->f_pos + off;
break;

case 2: /* SEEK_END */
newpos = dev->size + off;
break;

default: /* can’t happen */
return -EINVAL;

}
if (newpos<0) return -EINVAL;
filp->f_pos = newpos;
return newpos;

}

The only device-specific operation here is retrieving the file length from the
device. In scull the read and write methods cooperate as needed, as shown in
“r ead and write” in Chapter 3.

Seeking a Device
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Although the implementation just shown makes sense for scull, which handles a
well-defined data area, most devices offer a data flow rather than a data area (just
think about the serial ports or the keyboard), and seeking those devices does not
make sense. If this is the case, you can’t just refrain from declaring the llseek oper-
ation, because the default method allows seeking. Instead, you should use the fol-
lowing code:

loff_t scull_p_llseek(struct file *filp, loff_t off, int whence)
{

return -ESPIPE; /* unseekable */
}

This function comes from the scullpipe device, which isn’t seekable; the error code
is translated to ‘‘Illegal seek,’’ though the symbolic name means ‘‘is a pipe.’’
Because the position indicator is meaningless for nonseekable devices, neither
read nor write needs to update it during data transfer.

It’s interesting to note that since pr ead and pwrite have been added to the set of
supported system calls, the lseek device method is not the only way a user-space
pr ogram can seek a file. A proper implementation of unseekable devices should
allow normal read and write calls while preventing pr ead and pwrite. This is
accomplished by the following line—the first in both the read and write methods
of scullpipe—we didn’t explain when introducing those methods:

if (f_pos != &filp->f_pos) return -ESPIPE;

Access Control on a Device File
Of fering access control is sometimes vital for the reliability of a device node. Not
only should unauthorized users not be permitted to use the device (a restriction is
enforced by the filesystem permission bits), but sometimes only one authorized
user should be allowed to open the device at a time.

The problem is similar to that of using ttys. In that case, the login pr ocess changes
the ownership of the device node whenever a user logs into the system, in order
to prevent other users from interfering with or sniffing the tty data flow. However,
it’s impractical to use a privileged program to change the ownership of a device
every time it is opened, just to grant unique access to it.

None of the code shown up to now implements any access control beyond the
filesystem permission bits. If the open system call forwards the request to the
driver, open will succeed. We now introduce a few techniques for implementing
some additional checks.

Every device shown in this section has the same behavior as the bare scull device
(that is, it implements a persistent memory area) but differs from scull in access
contr ol, which is implemented in the open and close operations.
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Single-Open Devices
The brute-force way to provide access control is to permit a device to be opened
by only one process at a time (single openness). This technique is best avoided
because it inhibits user ingenuity. A user might well want to run differ ent pr o-
cesses on the same device, one reading status information while the other is writ-
ing data. In some cases, users can get a lot done by running a few simple
pr ograms thr ough a shell script, as long as they can access the device concur-
rently. In other words, implementing a single-open behavior amounts to creating
policy, which may get in the way of what your users want to do.

Allowing only a single process to open a device has undesirable properties, but it
is also the easiest access control to implement for a device driver, so it’s shown
her e. The source code is extracted from a device called scullsingle.

The open call refuses access based on a global integer flag:

int scull_s_open(struct inode *inode, struct file *filp)
{

Scull_Dev *dev = &scull_s_device; /* device information */
int num = NUM(inode->i_rdev);

if (!filp->private_data && num > 0)
return -ENODEV; /* not devfs: allow 1 device only */

spin_lock(&scull_s_lock);
if (scull_s_count) {

spin_unlock(&scull_s_lock);
return -EBUSY; /* already open */

}
scull_s_count++;
spin_unlock(&scull_s_lock);
/* then, everything else is copied from the bare scull device */

if ( (filp->f_flags & O_ACCMODE) == O_WRONLY)
scull_trim(dev);

if (!filp->private_data)
filp->private_data = dev;

MOD_INC_USE_COUNT;
return 0; /* success */

}

The close call, on the other hand, marks the device as no longer busy.

int scull_s_release(struct inode *inode, struct file *filp)
{

scull_s_count--; /* release the device */
MOD_DEC_USE_COUNT;
return 0;

}

Nor mally, we recommend that you put the open flag scull_s_count (with the
accompanying spinlock, scull_s_lock, whose role is explained in the next
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subsection) within the device structure (Scull_Dev her e) because, conceptually,
it belongs to the device. The scull driver, however, uses standalone variables to
hold the flag and the lock in order to use the same device structure and methods
as the bare scull device and minimize code duplication.

Another Digression into Race Conditions
Consider once again the test on the variable scull_s_count just shown. Two
separate actions are taken there: (1) the value of the variable is tested, and the
open is refused if it is not 0, and (2) the variable is incremented to mark the
device as taken. On a single-processor system, these tests are safe because no
other process will be able to run between the two actions.

As soon as you get into the SMP world, however, a problem arises. If two pro-
cesses on two processors attempt to open the device simultaneously, it is possible
that they could both test the value of scull_s_count befor e either modifies it.
In this scenario you’ll find that, at best, the single-open semantics of the device is
not enforced. In the worst case, unexpected concurrent access could create data
structur e corruption and system crashes.

In other words, we have another race condition here. This one could be solved in
much the same way as the races we already saw in Chapter 3. Those race condi-
tions were trigger ed by access to a status variable of a potentially shared data
structur e and were solved using semaphores. In general, however, semaphor es
can be expensive to use, because they can put the calling process to sleep. They
ar e a heavyweight solution for the problem of protecting a quick check on a status
variable.

Instead, scullsingle uses a differ ent locking mechanism called a spinlock. Spinlocks
will never put a process to sleep. Instead, if a lock is not available, the spinlock
primitives will simply retry, over and over (i.e., ‘‘spin’’), until the lock is freed.
Spinlocks thus have very little locking overhead, but they also have the potential
to cause a processor to spin for a long time if somebody hogs the lock. Another
advantage of spinlocks over semaphores is that their implementation is empty
when compiling code for a uniprocessor system (where these SMP-specific races
can’t happen). Semaphores are a mor e general resource that make sense on
unipr ocessor computers as well as SMP, so they don’t get optimized away in the
unipr ocessor case.

Spinlocks can be the ideal mechanism for small critical sections. Processes should
hold spinlocks for the minimum time possible, and must never sleep while hold-
ing a lock. Thus, the main scull driver, which exchanges data with user space and
can therefor e sleep, is not suitable for a spinlock solution. But spinlocks work
nicely for controlling access to scull_s_single (even if they still are not the
optimal solution, which we will see in Chapter 9).

Spinlocks are declar ed with a type of spinlock_t, which is defined in
<linux/spinlock.h>. Prior to use, they must be initialized:
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spin_lock_init(spinlock_t *lock);

A process entering a critical section will obtain the lock with spin_lock:

spin_lock(spinlock_t *lock);

The lock is released at the end with spin_unlock:

spin_unlock(spinlock_t *lock);

Spinlocks can be more complicated than this, and we’ll get into the details in
Chapter 9. But the simple case as shown here suits our needs for now, and all of
the access-control variants of scull will use simple spinlocks in this manner.

The astute reader may have noticed that whereas scull_s_open acquir es the
scull_s_lock lock prior to incrementing the scull_s_count flag,
scull_s_close takes no such precautions. This code is safe because no other code
will change the value of scull_s_count if it is nonzero, so there will be no
conflict with this particular assignment.

Restr icting Access to a Single User at a Time
The next step beyond a single system-wide lock is to let a single user open a
device in multiple processes but allow only one user to have the device open at a
time. This solution makes it easy to test the device, since the user can read and
write from several processes at once, but assumes that the user takes some
responsibility for maintaining the integrity of the data during multiple accesses.
This is accomplished by adding checks in the open method; such checks are per-
for med after the normal permission checking and can only make access more
restrictive than that specified by the owner and group permission bits. This is the
same access policy as that used for ttys, but it doesn’t resort to an external privi-
leged program.

Those access policies are a little trickier to implement than single-open policies. In
this case, two items are needed: an open count and the uid of the ‘‘owner’’ of the
device. Once again, the best place for such items is within the device structure;
our example uses global variables instead, for the reason explained earlier for
scullsingle. The name of the device is sculluid.

The open call grants access on first open, but remembers the owner of the device.
This means that a user can open the device multiple times, thus allowing cooper-
ating processes to work concurrently on the device. At the same time, no other
user can open it, thus avoiding external interfer ence. Since this version of the
function is almost identical to the preceding one, only the relevant part is repr o-
duced here:

spin_lock(&scull_u_lock);
if (scull_u_count &&

(scull_u_owner != current->uid) && /* allow user */
(scull_u_owner != current->euid) && /* allow whoever did su */
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!capable(CAP_DAC_OVERRIDE)) { /* still allow root */
spin_unlock(&scull_u_lock);
return -EBUSY; /* -EPERM would confuse the user */

}

if (scull_u_count == 0)
scull_u_owner = current->uid; /* grab it */

scull_u_count++;
spin_unlock(&scull_u_lock);

We chose to retur n -EBUSY and not -EPERM, even though the code is perfor ming
a per mission check, in order to point a user who is denied access in the right
dir ection. The reaction to ‘‘Permission denied’’ is usually to check the mode and
owner of the /dev file, while ‘‘Device busy’’ correctly suggests that the user should
look for a process already using the device.

This code also checks to see if the process attempting the open has the ability to
override file access permissions; if so, the open will be allowed even if the open-
ing process is not the owner of the device. The CAP_DAC_OVERRIDE capability
fits the task well in this case.

The code for close is not shown, since all it does is decrement the usage count.

Blocking open as an Alternative to EBUSY
When the device isn’t accessible, retur ning an error is usually the most sensible
appr oach, but there are situations in which you’d prefer to wait for the device.

For example, if a data communication channel is used both to transmit reports on
a timely basis (using cr ontab) and for casual usage according to people’s needs,
it’s much better for the timely report to be slightly delayed rather than fail just
because the channel is currently busy.

This is one of the choices that the programmer must make when designing a
device driver, and the right answer depends on the particular problem being
solved.

The alternative to EBUSY, as you may have guessed, is to implement blocking
open.

The scullwuid device is a version of sculluid that waits for the device on open
instead of retur ning -EBUSY. It dif fers fr om sculluid only in the following part of
the open operation:

spin_lock(&scull_w_lock);
while (scull_w_count &&
(scull_w_owner != current->uid) && /* allow user */
(scull_w_owner != current->euid) && /* allow whoever did su */
!capable(CAP_DAC_OVERRIDE)) {
spin_unlock(&scull_w_lock);
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if (filp->f_flags & O_NONBLOCK) return -EAGAIN;
interruptible_sleep_on(&scull_w_wait);
if (signal_pending(current)) /* a signal arrived */
return -ERESTARTSYS; /* tell the fs layer to handle it */

/* else, loop */
spin_lock(&scull_w_lock);

}
if (scull_w_count == 0)

scull_w_owner = current->uid; /* grab it */
scull_w_count++;
spin_unlock(&scull_w_lock);

The implementation is based once again on a wait queue. Wait queues were cre-
ated to maintain a list of processes that sleep while waiting for an event, so they fit
per fectly her e.

The release method, then, is in charge of awakening any pending process:

int scull_w_release(struct inode *inode, struct file *filp)
{

scull_w_count--;
if (scull_w_count == 0)

wake_up_interruptible(&scull_w_wait); /* awaken other uid’s */
MOD_DEC_USE_COUNT;
return 0;

}

The problem with a blocking-open implementation is that it is really unpleasant
for the interactive user, who has to keep guessing what is going wrong. The inter-
active user usually invokes precompiled commands such as cp and tar and can’t
just add O_NONBLOCK to the open call. Someone who’s making a backup using
the tape drive in the next room would prefer to get a plain ‘‘device or resource
busy’’ message instead of being left to guess why the hard drive is so silent today
while tar is scanning it.

This kind of problem (differ ent, incompatible policies for the same device) is best
solved by implementing one device node for each access policy. An example of
this practice can be found in the Linux tape driver, which provides multiple device
files for the same device. Differ ent device files will, for example, cause the drive to
record with or without compression, or to automatically rewind the tape when the
device is closed.

Cloning the Device on Open
Another technique to manage access control is creating differ ent private copies of
the device depending on the process opening it.

Access Control on a Device File
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Clearly this is possible only if the device is not bound to a hardware object; scull is
an example of such a ‘‘software’’ device. The internals of /dev/tty use a similar
technique in order to give its process a differ ent ‘‘view’’ of what the /dev entry
point repr esents. When copies of the device are created by the software driver, we
call them virtual devices—just as virtual consoles use a single physical tty device.

Although this kind of access control is rarely needed, the implementation can be
enlightening in showing how easily kernel code can change the application’s per-
spective of the surrounding world (i.e., the computer). The topic is quite exotic,
actually, so if you aren’t interested, you can jump directly to the next section.

The /dev/scullpriv device node implements virtual devices within the scull pack-
age. The scullpriv implementation uses the minor number of the process’s control-
ling tty as a key to access the virtual device. You can nonetheless easily modify the
sources to use any integer value for the key; each choice leads to a differ ent pol-
icy. For example, using the uid leads to a differ ent virtual device for each user,
while using a pid key creates a new device for each process accessing it.

The decision to use the controlling terminal is meant to enable easy testing of the
device using input/output redir ection: the device is shared by all commands run
on the same virtual terminal and is kept separate from the one seen by commands
run on another terminal.

The open method looks like the following code. It must look for the right virtual
device and possibly create one. The final part of the function is not shown
because it is copied from the bare scull, which we’ve already seen.

/* The clone-specific data structure includes a key field */
struct scull_listitem {

Scull_Dev device;
int key;
struct scull_listitem *next;

};

/* The list of devices, and a lock to protect it */
struct scull_listitem *scull_c_head;
spinlock_t scull_c_lock;

/* Look for a device or create one if missing */
static Scull_Dev *scull_c_lookfor_device(int key)
{

struct scull_listitem *lptr, *prev = NULL;

for (lptr = scull_c_head; lptr && (lptr->key != key); lptr = lptr->next)
prev=lptr;

if (lptr) return &(lptr->device);

/* not found */
lptr = kmalloc(sizeof(struct scull_listitem), GFP_ATOMIC);
if (!lptr) return NULL;
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/* initialize the device */
memset(lptr, 0, sizeof(struct scull_listitem));
lptr->key = key;
scull_trim(&(lptr->device)); /* initialize it */
sema_init(&(lptr->device.sem), 1);

/* place it in the list */
if (prev) prev->next = lptr;
else scull_c_head = lptr;

return &(lptr->device);
}

int scull_c_open(struct inode *inode, struct file *filp)
{

Scull_Dev *dev;
int key, num = NUM(inode->i_rdev);

if (!filp->private_data && num > 0)
return -ENODEV; /* not devfs: allow 1 device only */

if (!current->tty) {
PDEBUG("Process \"%s\" has no ctl tty\n",current->comm);
return -EINVAL;

}
key = MINOR(current->tty->device);

/* look for a scullc device in the list */
spin_lock(&scull_c_lock);
dev = scull_c_lookfor_device(key);
spin_unlock(&scull_c_lock);

if (!dev) return -ENOMEM;

/* then, everything else is copied from the bare scull device */

The release method does nothing special. It would normally release the device on
last close, but we chose not to maintain an open count in order to simplify the
testing of the driver. If the device were released on last close, you wouldn’t be
able to read the same data after writing to the device unless a background process
wer e to keep it open. The sample driver takes the easier approach of keeping the
data, so that at the next open, you’ll find it there. The devices are released when
scull_cleanup is called.

Her e’s the release implementation for /dev/scullpriv, which closes the discussion of
device methods.

int scull_c_release(struct inode *inode, struct file *filp)
{

/*
* Nothing to do, because the device is persistent.
* A ‘real’ cloned device should be freed on last close

Access Control on a Device File
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*/
MOD_DEC_USE_COUNT;
return 0;

}

Backward Compatibility
Many parts of the device driver API covered in this chapter have changed between
the major kernel releases. For those of you needing to make your driver work with
Linux 2.0 or 2.2, here is a quick rundown of the differ ences you will encounter.

Wait Queues in Linux 2.2 and 2.0
A relatively small amount of the material in this chapter changed in the 2.3 devel-
opment cycle. The one significant change is in the area of wait queues. The 2.2
ker nel had a differ ent and simpler implementation of wait queues, but it lacked
some important features, such as exclusive sleeps. The new implementation of
wait queues was introduced in kernel version 2.3.1.

The 2.2 wait queue implementation used variables of the type struct
wait_queue * instead of wait_queue_head_t. This pointer had to be initial-
ized to NULL prior to its first use. A typical declaration and initialization of a wait
queue looked like this:

struct wait_queue *my_queue = NULL;

The various functions for sleeping and waking up looked the same, with the
exception of the variable type for the queue itself. As a result, writing code that
works for all 2.x ker nels is easily done with a bit of code like the following, which
is part of the sysdep.h header we use to compile our sample code.

# define DECLARE_WAIT_QUEUE_HEAD(head) struct wait_queue *head = NULL
typedef struct wait_queue *wait_queue_head_t;

# define init_waitqueue_head(head) (*(head)) = NULL

The synchronous versions of wake_up wer e added in 2.3.29, and sysdep.h pr o-
vides macros with the same names so that you can use the feature in your code
while maintaining portability. The replacement macros expand to normal
wake_up, since the underlying mechanisms were missing from earlier kernels. The
timeout versions of sleep_on wer e added in kernel 2.1.127. The rest of the wait
queue interface has remained relatively unchanged. The sysdep.h header defines
the needed macros in order to compile and run your modules with Linux 2.2 and
Linux 2.0 without cluttering the code with lots of #ifdefs.

The wait_event macr o did not exist in the 2.0 kernel. For those who need it, we
have provided an implementation in sysdep.h
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Asynchronous Notification
Some small changes have been made in how asynchronous notification works for
both the 2.2 and 2.4 releases.

In Linux 2.3.21, kill_fasync got its third argument. Prior to this release, kill_fasync
was called as

kill_fasync(struct fasync_struct *queue, int signal);

Fortunately, sysdep.h takes care of the issue.

In the 2.2 release, the type of the first argument to the fasync method changed. In
the 2.0 kernel, a pointer to the inode structur e for the device was passed, instead
of the integer file descriptor:

int (*fasync) (struct inode *inode, struct file *filp, int on);

To solve this incompatibility, we use the same approach taken for read and write:
use of a wrapper function when the module is compiled under 2.0 headers.

The inode argument to the fasync method was also passed in when called from
the release method, rather than the -1 value used with later kernels.

The fsync Method
The third argument to the fsync file_operations method (the integer data-
sync value) was added in the 2.3 development series, meaning that portable code
will generally need to include a wrapper function for older kernels. There is a
trap, however, for people trying to write portable fsync methods: at least one dis-
tributor, which will remain nameless, patched the 2.4 fsync API into its 2.2 kernel.
The kernel developers usually (usually . . . ) try to avoid making API changes
within a stable series, but they have little control over what the distributors do.

Access to User Space in Linux 2.0
Memory access was handled differ ently in the 2.0 kernels. The Linux virtual mem-
ory system was less well developed at that time, and memory access was handled
a little differ ently. The new system was the key change that opened 2.1 develop-
ment, and it brought significant improvements in perfor mance; unfortunately, it
was accompanied by yet another set of compatibility headaches for driver writers.

The functions used to access memory under Linux 2.0 were as follows:

verify_area(int mode, const void *ptr, unsigned long size);
This function worked similarly to access_ok, but perfor med mor e extensive
checking and was slower. The function retur ned 0 in case of success and
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173

22 June 2001 16:36



Chapter 5: Enhanced Char Driver Operations

-EFAULT in case of errors. Recent kernel headers still define the function, but
it’s now just a wrapper around access_ok. When using version 2.0 of the ker-
nel, calling verify_ar ea is never optional; no access to user space can safely be
per formed without a prior, explicit verification.

put_user(datum, ptr)
The put_user macr o looks much like its modern-day equivalent. It differ ed,
however, in that no verification was done, and there was no retur n value.

get_user(ptr)
This macro fetched the value at the given address, and retur ned it as its retur n
value. Once again, no verification was done by the execution of the macro.

verify_ar ea had to be called explicitly because no user-ar ea copy function per-
for med the check. The great news introduced by Linux 2.1, which forced the
incompatible change in the get_user and put_user functions, was that the task of
verifying user addresses was left to the hardware, because the kernel was now
able to trap and handle processor exceptions generated during data copies to user
space.

As an example of how the older calls are used, consider scull one more time. A
version of scull using the 2.0 API would call verify_ar ea in this way:

int err = 0, tmp;

/*
* extract the type and number bitfields, and don’t decode
* wrong cmds: return ENOTTY before verify_area()
*/

if (_IOC_TYPE(cmd) != SCULL_IOC_MAGIC) return -ENOTTY;
if (_IOC_NR(cmd) > SCULL_IOC_MAXNR) return -ENOTTY;

/*
* the direction is a bit mask, and VERIFY_WRITE catches R/W
* transfers. ‘Type’ is user oriented, while
* verify_area is kernel oriented, so the concept of "read" and
* "write" is reversed
*/

if (_IOC_DIR(cmd) & _IOC_READ)
err = verify_area(VERIFY_WRITE, (void *)arg, _IOC_SIZE(cmd));

else if (_IOC_DIR(cmd) & _IOC_WRITE)
err = verify_area(VERIFY_READ, (void *)arg, _IOC_SIZE(cmd));

if (err) return err;

Then get_user and put_user can be used as follows:

case SCULL_IOCXQUANTUM: /* eXchange: use arg as pointer */
tmp = scull_quantum;
scull_quantum = get_user((int *)arg);
put_user(tmp, (int *)arg);
break;
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default: /* redundant, as cmd was checked against MAXNR */
return -ENOTTY;

}
return 0;

Only a small portion of the ioctl switch code has been shown, since it is little dif-
fer ent fr om the version for 2.2 and beyond.

Life would be relatively easy for the compatibility-conscious driver writer if it
wer en’t for the fact that put_user and get_user ar e implemented as macros in all
Linux versions, and their interfaces changed. As a result, a straightforward fix using
macr os cannot be done.

One possible solution is to define a new set of version-independent macros. The
path taken by sysdep.h consists in defining upper-case macros: GET_USER,
__GET_USER, and so on. The arguments are the same as with the kernel macros
of Linux 2.4, but the caller must be sure that verify_ar ea has been called first
(because that call is needed when compiling for 2.0).

Capabilities in 2.0
The 2.0 kernel did not support the capabilities abstraction at all. All permissions
checks simply looked to see if the calling process was running as the superuser; if
so, the operation would be allowed. The function suser was used for this purpose;
it takes no arguments and retur ns a nonzer o value if the process has superuser
privileges.

suser still exists in later kernels, but its use is strongly discouraged. It is better to
define a version of capable for 2.0, as is done in sysdep.h:

# define capable(anything) suser()

In this way, code can be written that is portable but which works with modern,
capability-oriented systems.

The Linux 2.0 select Method
The 2.0 kernel did not support the poll system call; only the BSD-style select call
was available. The corresponding device driver method was thus called select, and
operated in a slightly differ ent way, though the actions to be perfor med ar e almost
identical.

The select method is passed a pointer to a select_table, and must pass that
pointer to select_wait only if the calling process should wait for the requested con-
dition (one of SEL_IN, SEL_OUT, or SEL_EX).

The scull driver deals with the incompatibility by declaring a specific select method
to be used when it is compiled for version 2.0 of the kernel:

Backward Compatibility
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#ifdef __USE_OLD_SELECT_ _
int scull_p_poll(struct inode *inode, struct file *filp,

int mode, select_table *table)
{

Scull_Pipe *dev = filp->private_data;

if (mode == SEL_IN) {
if (dev->rp != dev->wp) return 1; /* readable */
PDEBUG("Waiting to read\n");
select_wait(&dev->inq, table); /* wait for data */
return 0;

}
if (mode == SEL_OUT) {

/*
* The buffer is circular; it is considered full
* if "wp" is right behind "rp". "left" is 0 if the
* buffer is empty, and it is "1" if it is completely full.
*/

int left = (dev->rp + dev->buffersize - dev->wp) % dev->buffersize;
if (left != 1) return 1; /* writable */
PDEBUG("Waiting to write\n");
select_wait(&dev->outq, table); /* wait for free space */
return 0;

}
return 0; /* never exception-able */

}
#else /* Use poll instead, already shown */

The __USE_OLD_SELECT_ _ pr eprocessor symbol used here is set by the sys-
dep.h include file according to kernel version.

Seeking in Linux 2.0
Prior to Linux 2.1, the llseek device method was called lseek instead, and it
received differ ent parameters from the current implementation. For that reason,
under Linux 2.0 you were not allowed to seek a file, or a device, past the 2 GB
limit, even though the llseek system call was already supported.

The prototype of the file operation in the 2.0 kernel was the following:

int (*lseek) (struct inode *inode, struct file *filp , off_t off,
int whence);

Those working to write drivers compatible with 2.0 and 2.2 usually end up defin-
ing separate implementations of the seek method for the two interfaces.

2.0 and SMP
Because Linux 2.0 only minimally supported SMP systems, race conditions of the
type mentioned in this chapter did not normally come about. The 2.0 kernel did
have a spinlock implementation, but, since only one processor could be running
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ker nel code at a time, there was less need for locking.

Quick Reference
This chapter introduced the following symbols and header files.

#include <linux/ioctl.h>
This header declares all the macros used to define ioctl commands. It is cur-
rently included by <linux/fs.h>.

_IOC_NRBITS
_IOC_TYPEBITS
_IOC_SIZEBITS
_IOC_DIRBITS

The number of bits available for the differ ent bitfields of ioctl commands.
Ther e ar e also four macros that specify the MASKs and four that specify the
SHIFTs, but they’re mainly for internal use. _IOC_SIZEBITS is an important
value to check, because it changes across architectur es.

_IOC_NONE
_IOC_READ
_IOC_WRITE

The possible values for the ‘‘direction’’ bitfield. ‘‘Read’’ and ‘‘write’’ are dif fer-
ent bits and can be OR’d to specify read/write. The values are 0 based.

_IOC(dir,type,nr,size)
_IO(type,nr)
_IOR(type,nr,size)
_IOW(type,nr,size)
_IOWR(type,nr,size)

Macr os used to create an ioctl command.

_IOC_DIR(nr)
_IOC_TYPE(nr)
_IOC_NR(nr)
_IOC_SIZE(nr)

Macr os used to decode a command. In particular, _IOC_TYPE(nr) is an OR
combination of _IOC_READ and _IOC_WRITE.

#include <asm/uaccess.h>
int access_ok(int type, const void *addr, unsigned long

size);
This function checks that a pointer to user space is actually usable. access_ok
retur ns a nonzer o value if the access should be allowed.

Quick Reference
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VERIFY_READ
VERIFY_WRITE

The possible values for the type argument in access_ok. VERIFY_WRITE is a
superset of VERIFY_READ.

#include <asm/uaccess.h>
int put_user(datum,ptr);
int get_user(local,ptr);
int __put_user(datum,ptr);
int __get_user(local,ptr);

Macr os used to store or retrieve a datum to or from user space. The number of
bytes being transferred depends on sizeof(*ptr). The regular versions call
access_ok first, while the qualified versions (_ _put_user and _ _get_user)
assume that access_ok has already been called.

#include <linux/capability.h>
Defines the various CAP_ symbols for capabilities under Linux 2.2 and later.

int capable(int capability);
Retur ns nonzer o if the process has the given capability.

#include <linux/wait.h>
typedef struct { /* . . .  */ } wait_queue_head_t;
void init_waitqueue_head(wait_queue_head_t *queue);
DECLARE_WAIT_QUEUE_HEAD(queue);

The defined type for Linux wait queues. A wait_queue_head_t must be
explicitly initialized with either init_waitqueue_head at runtime or
declar e_wait_queue_head at compile time.

#include <linux/sched.h>
void interruptible_sleep_on(wait_queue_head_t *q);
void sleep_on(wait_queue_head_t *q);
void interruptible_sleep_on_timeout(wait_queue_head_t *q,

long timeout);
void sleep_on_timeout(wait_queue_head_t *q, long timeout);

Calling any of these functions puts the current process to sleep on a queue.
Usually, you’ll choose the interruptible for m to implement blocking read and
write.

void wake_up(struct wait_queue **q);
void wake_up_interruptible(struct wait_queue **q);
void wake_up_sync(struct wait_queue **q);
void wake_up_interruptible_sync(struct wait_queue **q);

These functions wake processes that are sleeping on the queue q. The _inter-
ruptible for m wakes only interruptible processes. The _sync versions will not
reschedule the CPU before retur ning.
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typedef struct { /* . . .  */ } wait_queue_t;
init_waitqueue_entry(wait_queue_t *entry, struct task_struct

*task);
The wait_queue_t type is used when sleeping without calling sleep_on.
Wait queue entries must be initialized prior to use; the task argument used is
almost always current.

void add_wait_queue(wait_queue_head_t *q, wait_queue_t
*wait);

void add_wait_queue_exclusive(wait_queue_head_t *q,
wait_queue_t *wait);

void remove_wait_queue(wait_queue_head_t *q, wait_queue_t
*wait);

These functions add an entry to a wait queue; add_wait_queue_exclusive adds
the entry to the end of the queue for exclusive waits. Entries should be
removed from the queue after sleeping with remove_wait_queue.

void wait_event(wait_queue_head_t q, int condition);
int wait_event_interruptible(wait_queue_head_t q, int condi-

tion);
These two macros will cause the process to sleep on the given queue until the
given condition evaluates to a true value.

void schedule(void);
This function selects a runnable process from the run queue. The chosen pro-
cess can be current or a differ ent one. You won’t usually call schedule
dir ectly, because the sleep_on functions do it internally.

#include <linux/poll.h>
void poll_wait(struct file *filp, wait_queue_head_t *q,

poll_table *p)
This function puts the current process into a wait queue without scheduling
immediately. It is designed to be used by the poll method of device drivers.

int fasync_helper(struct inode *inode, struct file *filp,
int mode, struct fasync_struct **fa);

This function is a ‘‘helper’’ for implementing the fasync device method. The
mode argument is the same value that is passed to the method, while fa
points to a device-specific fasync_struct *.

void kill_fasync(struct fasync_struct *fa, int sig, int
band);

If the driver supports asynchronous notification, this function can be used to
send a signal to processes register ed in fa.

Quick Reference
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#include <linux/spinlock.h>
typedef struct { /* . . .  */ } spinlock_t;
void spin_lock_init(spinlock_t *lock);

The spinlock_t type defines a spinlock, which must be initialized (with
spin_lock_init) prior to use.

spin_lock(spinlock_t *lock);
spin_unlock(spinlock_t *lock);

spin_lock locks the given lock, perhaps waiting until it becomes available. The
lock can then be released with spin_unlock.

180

22 June 2001 16:36



CHAPTER SIX

FLOW OF TIME

At this point, we know the basics of how to write a full-featured char module.
Real-world drivers, however, need to do more than implement the necessary oper-
ations; they have to deal with issues such as timing, memory management, hard-
war e access, and more. Fortunately, the kernel makes a number of facilities
available to ease the task of the driver writer. In the next few chapters we’ll fill in
infor mation on some of the kernel resources that are available, starting with how
timing issues are addr essed. Dealing with time involves the following, in order of
incr easing complexity:

• Understanding kernel timing

• Knowing the current time

• Delaying operation for a specified amount of time

• Scheduling asynchronous functions to happen after a specified time lapse

Time Intervals in the Ker nel
The first point we need to cover is the timer interrupt, which is the mechanism the
ker nel uses to keep track of time intervals. Interrupts are asynchr onous events that
ar e usually fired by external hardware; the CPU is interrupted in its current activity
and executes special code (the Interrupt Service Routine, or ISR) to serve the inter-
rupt. Interrupts and ISR implementation issues are cover ed in Chapter 9.

Timer interrupts are generated by the system’s timing hardware at regular intervals;
this interval is set by the kernel according to the value of HZ, which is an
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architectur e-dependent value defined in <linux/param.h>. Curr ent Linux ver-
sions define HZ to be 100 for most platforms, but some platforms use 1024, and
the IA-64 simulator uses 20. Despite what your preferr ed platfor m uses, no driver
writer should count on any specific value of HZ.

Every time a timer interrupt occurs, the value of the variable jiffies is incre-
mented. jiffies is initialized to 0 when the system boots, and is thus the num-
ber of clock ticks since the computer was turned on. It is declared in
<linux/sched.h> as unsigned long volatile, and will possibly overflow
after a long time of continuous system operation (but no platform featur es jif fy
over flow in less than 16 months of uptime). Much effort has gone into ensuring
that the kernel operates properly when jiffies over flows. Driver writers do not
nor mally have to worry about jiffies over flows, but it is good to be aware of
the possibility.

It is possible to change the value of HZ for those who want systems with a differ-
ent clock interrupt frequency. Some people using Linux for hard real-time tasks
have been known to raise the value of HZ to get better response times; they are
willing to pay the overhead of the extra timer interrupts to achieve their goals. All
in all, however, the best approach to the timer interrupt is to keep the default
value for HZ, by virtue of our complete trust in the kernel developers, who have
certainly chosen the best value.

Processor-Specific Register s
If you need to measure very short time intervals or you need extremely high preci-
sion in your figures, you can resort to platform-dependent resources, selecting pre-
cision over portability.

Most modern CPUs include a high-resolution counter that is incremented every
clock cycle; this counter may be used to measure time intervals precisely. Given
the inherent unpredictability of instruction timing on most systems (due to instruc-
tion scheduling, branch prediction, and cache memory), this clock counter is the
only reliable way to carry out small-scale timekeeping tasks. In response to the
extr emely high speed of modern processors, the pressing demand for empirical
per formance figures, and the intrinsic unpredictability of instruction timing in CPU
designs caused by the various levels of cache memories, CPU manufacturers intro-
duced a way to count clock cycles as an easy and reliable way to measure time
lapses. Most modern processors thus include a counter register that is steadily
incr emented once at each clock cycle.

The details differ from platform to platfor m: the register may or may not be read-
able from user space, it may or may not be writable, and it may be 64 or 32 bits
wide — in the latter case you must be prepar ed to handle overflows. Whether or
not the register can be zeroed, we strongly discourage resetting it, even when
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hardwar e per mits. Since you can always measure dif ferences using unsigned vari-
ables, you can get the work done without claiming exclusive ownership of the
register by modifying its current value.

The most renowned counter register is the TSC (timestamp counter), introduced in
x86 processors with the Pentium and present in all CPU designs ever since. It is a
64-bit register that counts CPU clock cycles; it can be read from both kernel space
and user space.

After including <asm/msr.h> (for ‘‘machine-specific registers’’), you can use one
of these macros:

rdtsc(low,high);
rdtscl(low);

The former atomically reads the 64-bit value into two 32-bit variables; the latter
reads the low half of the register into a 32-bit variable and is sufficient in most
cases. For example, a 500-MHz system will overflow a 32-bit counter once every
8.5 seconds; you won’t need to access the whole register if the time lapse you are
benchmarking reliably takes less time.

These lines, for example, measure the execution of the instruction itself:

unsigned long ini, end;
rdtscl(ini); rdtscl(end);
printk("time lapse: %li\n", end - ini);

Some of the other platforms offer similar functionalities, and kernel headers offer
an architectur e-independent function that you can use instead of rdtsc. It is called
get_cycles, and was introduced during 2.1 development. Its prototype is

#include <linux/timex.h>
cycles_t get_cycles(void);

The function is defined for every platform, and it always retur ns 0 on the plat-
for ms that have no cycle-counter register. The cycles_t type is an appropriate
unsigned type that can fit in a CPU register. The choice to fit the value in a single
register means, for example, that only the lower 32 bits of the Pentium cycle
counter are retur ned by get_cycles. The choice is a sensible one because it avoids
the problems with multiregister operations while not preventing most common
uses of the counter—namely, measuring short time lapses.

Despite the availability of an architectur e-independent function, we’d like to take
the chance to show an example of inline assembly code. To this aim, we’ll imple-
ment a rdtscl function for MIPS processors that works in the same way as the x86
one.

We’ll base the example on MIPS because most MIPS processors feature a 32-bit
counter as register 9 of their internal ‘‘coprocessor 0.’’ To access the register, only

Time Intervals in the Ker nel
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readable from kernel space, you can define the following macro that executes a
‘‘move from coprocessor 0’’ assembly instruction:*

#define rdtscl(dest) \
__asm_ _ __volatile_ _("mfc0 %0,$9; nop" : "=r" (dest))

With this macro in place, the MIPS processor can execute the same code shown
earlier for the x86.

What’s interesting with gcc inline assembly is that allocation of general-purpose
registers is left to the compiler. The macro just shown uses %0 as a placeholder for
‘‘argument 0,’’ which is later specified as ‘‘any register (r) used as output (=).’’ The
macr o also states that the output register must correspond to the C expression
dest. The syntax for inline assembly is very powerful but somewhat complex,
especially for architectur es that have constraints on what each register can do
(namely, the x86 family). The complete syntax is described in the gcc documenta-
tion, usually available in the info documentation tree.

The short C-code fragment shown in this section has been run on a K7-class x86
pr ocessor and a MIPS VR4181 (using the macro just described). The former
reported a time lapse of 11 clock ticks, and the latter just 2 clock ticks. The small
figur e was expected, since RISC processors usually execute one instruction per
clock cycle.

Knowing the Current Time
Ker nel code can always retrieve the current time by looking at the value of
jiffies. Usually, the fact that the value repr esents only the time since the last
boot is not relevant to the driver, because its life is limited to the system uptime.
Drivers can use the current value of jiffies to calculate time intervals across
events (for example, to tell double clicks from single clicks in input device
drivers). In short, looking at jiffies is almost always sufficient when you need
to measure time intervals, and if you need very sharp measures for short time
lapses, processor-specific registers come to the rescue.

It’s quite unlikely that a driver will ever need to know the wall-clock time, since
this knowledge is usually needed only by user programs such as cr on and at. If
such a capability is needed, it will be a particular case of device usage, and the
driver can be correctly instructed by a user program, which can easily do the con-

* The trailing nop instruction is requir ed to prevent the compiler from accessing the target
register in the instruction immediately following mfc0. This kind of interlock is typical of
RISC processors, and the compiler can still schedule useful instructions in the delay slots.
In this case we use nop because inline assembly is a black box for the compiler and no
optimization can be perfor med.
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version from wall-clock time to the system clock. Dealing directly with wall-clock
time in a driver is often a sign that policy is being implemented, and should thus
be looked at closely.

If your driver really needs the current time, the do_gettimeofday function comes to
the rescue. This function doesn’t tell the current day of the week or anything like
that; rather, it fills a struct timeval pointer — the same as used in the gettime-
ofday system call—with the usual seconds and microseconds values. The proto-
type for do_gettimeofday is:

#include <linux/time.h>
void do_gettimeofday(struct timeval *tv);

The source states that do_gettimeofday has ‘‘near microsecond resolution’’ for
many architectur es. The precision does vary from one architectur e to another,
however, and can be less in older kernels. The current time is also available
(though with less precision) from the xtime variable (a struct timeval);
however, dir ect use of this variable is discouraged because you can’t atomically
access both the timeval fields tv_sec and tv_usec unless you disable inter-
rupts. As of the 2.2 kernel, a quick and safe way of getting the time quickly, possi-
bly with less precision, is to call get_fast_time:

void get_fast_time(struct timeval *tv);

Code for reading the current time is available within the jit (‘‘Just In Time’’) mod-
ule in the source files provided on the O’Reilly FTP site. jit cr eates a file called
/pr oc/currentime, which retur ns thr ee things in ASCII when read:

• The current time as retur ned by do_gettimeofday

• The current time as found in xtime

• The current jiffies value

We chose to use a dynamic /pr oc file because it requir es less module code—it’s
not worth creating a whole device just to retur n thr ee lines of text.

If you use cat to read the file multiple times in less than a timer tick, you’ll see the
dif ference between xtime and do_gettimeofday, reflecting the fact that xtime is
updated less frequently:

morgana% cd /proc; cat currentime currentime currentime
gettime: 846157215.937221
xtime: 846157215.931188
jiffies: 1308094
gettime: 846157215.939950
xtime: 846157215.931188
jiffies: 1308094
gettime: 846157215.942465
xtime: 846157215.941188
jiffies: 1308095
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Delaying Execution
Device drivers often need to delay the execution of a particular piece of code for a
period of time—usually to allow the hardware to accomplish some task. In this
section we cover a number of differ ent techniques for achieving delays. The cir-
cumstances of each situation determine which technique is best to use; we’ll go
over them all and point out the advantages and disadvantages of each.

One important thing to consider is whether the length of the needed delay is
longer than one clock tick. Longer delays can make use of the system clock;
shorter delays typically must be implemented with software loops.

Long Delays
If you want to delay execution by a multiple of the clock tick or you don’t requir e
strict precision (for example, if you want to delay an integer number of seconds),
the easiest implementation (and the most braindead) is the following, also known
as busy waiting:

unsigned long j = jiffies + jit_delay * HZ;

while (jiffies < j)
/* nothing */;

This kind of implementation should definitely be avoided. We show it here
because on occasion you might want to run this code to understand better the
inter nals of other code.

So let’s look at how this code works. The loop is guaranteed to work because
jiffies is declared as volatile by the kernel headers and therefor e is rer ead
any time some C code accesses it. Though ‘‘correct,’’ this busy loop completely
locks the processor for the duration of the delay; the scheduler never interrupts a
pr ocess that is running in kernel space. Still worse, if interrupts happen to be dis-
abled when you enter the loop, jiffies won’t be updated, and the while con-
dition remains true forever. You’ll be forced to hit the big red button.

This implementation of delaying code is available, like the following ones, in the
jit module. The /pr oc/jit* files created by the module delay a whole second every
time they are read. If you want to test the busy wait code, you can read /pr oc/jit-
busy, which busy-loops for one second whenever its read method is called; a
command such as dd if=/proc/jitbusy bs=1 delays one second each time it reads a
character.

As you may suspect, reading /pr oc/jitbusy is terrible for system perfor mance,
because the computer can run other processes only once a second.
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A better solution that allows other processes to run during the time interval is the
following, although it can’t be used in hard real-time tasks or other time-critical sit-
uations.

while (jiffies < j)
schedule();

The variable j in this example and the following ones is the value of jiffies at
the expiration of the delay and is always calculated as just shown for busy waiting.

This loop (which can be tested by reading /pr oc/jitsched ) still isn’t optimal. The
system can schedule other tasks; the current process does nothing but release the
CPU, but it remains in the run queue. If it is the only runnable process, it will
actually run (it calls the scheduler, which selects the same process, which calls the
scheduler, which . . . ). In other words, the load of the machine (the average num-
ber of running processes) will be at least one, and the idle task (process number
0, also called swapper for historical reasons) will never run. Though this issue may
seem irrelevant, running the idle task when the computer is idle relieves the pro-
cessor’s workload, decreasing its temperature and increasing its lifetime, as well as
the duration of the batteries if the computer happens to be your laptop. Moreover,
since the process is actually executing during the delay, it will be accounted for all
the time it consumes. You can see this by running time cat /proc/jitsched.

If, instead, the system is very busy, the driver could end up waiting rather longer
than expected. Once a process releases the processor with schedule, ther e ar e no
guarantees that it will get it back anytime soon. If there is an upper bound on the
acceptable delay time, calling schedule in this manner is not a safe solution to the
driver’s needs.

Despite its drawbacks, the previous loop can provide a quick and dirty way to
monitor the workings of a driver. If a bug in your module locks the system solid,
adding a small delay after each debugging printk statement ensures that every
message you print before the processor hits your nasty bug reaches the system log
befor e the system locks. Without such delays, the messages are corr ectly printed to
the memory buffer, but the system locks before klogd can do its job.

The best way to implement a delay, however, is to ask the kernel to do it for you.
Ther e ar e two ways of setting up short-term timeouts, depending on whether your
driver is waiting for other events or not.

If your driver uses a wait queue to wait for some other event, but you also want to
be sure it runs within a certain period of time, it can use the timeout versions of
the sleep functions, as shown in “Going to Sleep and Awakening” in Chapter 5:

sleep_on_timeout(wait_queue_head_t *q, unsigned long timeout);
interruptible_sleep_on_timeout(wait_queue_head_t *q,

unsigned long timeout);

Both versions will sleep on the given wait queue, but will retur n within the time-
out period (in jiffies) in any case. They thus implement a bounded sleep that will
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not go on forever. Note that the timeout value repr esents the number of jiffies to
wait, not an absolute time value. Delaying in this manner can be seen in the
implementation of /pr oc/jitqueue:

wait_queue_head_t wait;

init_waitqueue_head (&wait);
interruptible_sleep_on_timeout(&wait, jit_delay*HZ);

In a normal driver, execution could be resumed in either of two ways: somebody
calls wake_up on the wait queue, or the timeout expires. In this particular imple-
mentation, nobody will ever call wake_up on the wait queue (after all, no other
code even knows about it), so the process will always wake up when the timeout
expir es. That is a perfectly valid implementation, but, if there are no other events
of interest to your driver, delays can be achieved in a more straightforward manner
with schedule_timeout:

set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout (jit_delay*HZ);

The previous line (for /pr oc/jitself ) causes the process to sleep until the given time
has passed. schedule_timeout, too, expects a time offset, not an absolute number
of jiffies. Once again, it is worth noting that an extra time interval could pass
between the expiration of the timeout and when your process is actually sched-
uled to execute.

Shor t Delays
Sometimes a real driver needs to calculate very short delays in order to synchro-
nize with the hardware. In this case, using the jiffies value is definitely not the
solution.

The kernel functions udelay and mdelay serve this purpose.* Their prototypes are

#include <linux/delay.h>
void udelay(unsigned long usecs);
void mdelay(unsigned long msecs);

The functions are compiled inline on most supported architectur es. The former
uses a software loop to delay execution for the requir ed number of microseconds,
and the latter is a loop around udelay, provided for the convenience of the pro-
grammer. The udelay function is where the BogoMips value is used: its loop is
based on the integer value loops_per_second, which in turn is the result of the
BogoMips calculation perfor med at boot time.

The udelay call should be called only for short time lapses because the precision
of loops_per_second is only eight bits, and noticeable errors accumulate when

* The u in udelay repr esents the Greek letter mu and stands for micr o.
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calculating long delays. Even though the maximum allowable delay is nearly one
second (since calculations overflow for longer delays), the suggested maximum
value for udelay is 1000 microseconds (one millisecond). The function mdelay
helps in cases where the delay must be longer than one millisecond.

It’s also important to remember that udelay is a busy-waiting function (and thus
mdelay is too); other tasks can’t be run during the time lapse. You must therefor e
be very careful, especially with mdelay, and avoid using it unless there’s no other
way to meet your goal.

Curr ently, support for delays longer than a few microseconds and shorter than a
timer tick is very inefficient. This is not usually an issue, because delays need to
be just long enough to be noticed by humans or by the hardware. One hundredth
of a second is a suitable precision for human-related time intervals, while one mil-
lisecond is a long enough delay for hardware activities.

Although mdelay is not available in Linux 2.0, sysdep.h fills the gap.

Task Queues
One feature many drivers need is the ability to schedule execution of some tasks
at a later time without resorting to interrupts. Linux offers three differ ent inter faces
for this purpose: task queues, tasklets (as of kernel 2.3.43), and kernel timers. Task
queues and tasklets provide a flexible utility for scheduling execution at a later
time, with various meanings for ‘‘later’’; they are most useful when writing inter-
rupt handlers, and we’ll see them again in “Tasklets and Bottom-Half Processing,”
in Chapter 9. Kernel timers are used to schedule a task to run at a specific time in
the future and are dealt with in “Kernel Timers,” later in this chapter.

A typical situation in which you might use task queues or tasklets is to manage
hardwar e that cannot generate interrupts but still allows blocking read. You need
to poll the device, while taking care not to burden the CPU with unnecessary
operations. Waking the reading process at fixed time intervals (for example, using
current->timeout) isn’t a suitable approach, because each poll would requir e
two context switches (one to run the polling code in the reading process, and one
to retur n to a process that has real work to do), and often a suitable polling mech-
anism can be implemented only outside of a process’s context.

A similar problem is giving timely input to a simple hardware device. For example,
you might need to feed steps to a stepper motor that is directly connected to the
parallel port—the motor needs to be moved by single steps on a timely basis. In
this case, the controlling process talks to your device driver to dispatch a move-
ment, but the actual movement should be perfor med step by step at regular inter-
vals after retur ning fr om write.
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The preferr ed way to perfor m such floating operations quickly is to register a task
for later execution. The kernel supports task queues, wher e tasks accumulate to be
‘‘consumed’’ when the queue is run. You can declare your own task queue and
trigger it at will, or you can register your tasks in predefined queues, which are
run (triggered) by the kernel itself.

This section first describes task queues, then introduces predefined task queues,
which provide a good start for some interesting tests (and hang the computer if
something goes wrong), and finally introduces how to run your own task queues.
Following that, we look at the new tasklet inter face, which supersedes task queues
in many situations in the 2.4 kernel.

The Nature of Task Queues
A task queue is a list of tasks, each task being repr esented by a function pointer
and an argument. When a task is run, it receives a single void * argument and
retur ns void. The pointer argument can be used to pass along a data structure to
the routine, or it can be ignored. The queue itself is a list of structures (the tasks)
that are owned by the kernel module declaring and queueing them. The module is
completely responsible for allocating and deallocating the structures, and static
structur es ar e commonly used for this purpose.

A queue element is described by the following structure, copied directly from
<linux/tqueue.h>:

struct tq_struct {
struct tq_struct *next; /* linked list of active bh’s */
int sync; /* must be initialized to zero */
void (*routine)(void *); /* function to call */
void *data; /* argument to function */

};

The ‘‘bh’’ in the first comment means bottom half. A bottom half is ‘‘half of an
interrupt handler’’; we’ll discuss this topic thoroughly when we deal with inter-
rupts in “Tasklets and Bottom-Half Processing,” in Chapter 9. For now, suffice it to
say that a bottom half is a mechanism provided by a device driver to handle asyn-
chr onous tasks which, usually, are too large to be done while handling a hardware
interrupt. This chapter should make sense without an understanding of bottom
halves, but we will, by necessity, refer to them occasionally.

The most important fields in the data structure just shown are routine and
data. To queue a task for later execution, you need to set both these fields before
queueing the structure, while next and sync should be cleared. The sync flag
in the structure is used by the kernel to prevent queueing the same task more than
once, because this would corrupt the next pointer. Once the task has been
queued, the structure is consider ed ‘‘owned’’ by the kernel and shouldn’t be
modified until the task is run.
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The other data structure involved in task queues is task_queue, which is cur-
rently just a pointer to struct tq_struct; the decision to typedef this
pointer to another symbol permits the extension of task_queue in the future,
should the need arise. task_queue pointers should be initialized to NULL befor e
use.

The following list summarizes the operations that can be perfor med on task
queues and struct tq_structs.

DECLARE_TASK_QUEUE(name);
This macro declar es a task queue with the given name, and initializes it to the
empty state.

int queue_task(struct tq_struct *task, task_queue *list);
As its name suggests, this function queues a task. The retur n value is 0 if the
task was already present on the given queue, nonzero otherwise.

void run_task_queue(task_queue *list);
This function is used to consume a queue of accumulated tasks. You won’t
need to call it yourself unless you declare and maintain your own queue.

Befor e getting into the details of using task queues, we need to pause for a
moment to look at how they work inside the kernel.

How Task Queues Are Run
A task queue, as we have already seen, is in practice a linked list of functions to
call. When run_task_queue is asked to run a given queue, each entry in the list is
executed. When you are writing functions that work with task queues, you have to
keep in mind when the kernel will call run_task_queue; the exact context imposes
some constraints on what you can do. You should also not make any assumptions
regarding the order in which enqueued tasks are run; each of them must do its
task independently of the other ones.

And when are task queues run? If you are using one of the predefined task queues
discussed in the next section, the answer is ‘‘when the kernel gets around to it.’’
Dif ferent queues are run at differ ent times, but they are always run when the ker-
nel has no other pressing work to do.

Most important, they almost certainly are not run when the process that queued
the task is executing. They are, instead, run asynchronously. Until now, everything
we have done in our sample drivers has run in the context of a process executing
system calls. When a task queue runs, however, that process could be asleep, exe-
cuting on a differ ent pr ocessor, or could conceivably have exited altogether.

This asynchronous execution resembles what happens when a hardware interrupt
happens (which is discussed in detail in Chapter 9). In fact, task queues are often
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run as the result of a ‘‘software interrupt.’’ When running in interrupt mode (or
interrupt time) in this way, your code is subject to a number of constraints. We
will introduce these constraints now; they will be seen again in several places in
this book. Repetition is called for in this case; the rules for interrupt mode must be
followed or the system will find itself in deep trouble.

A number of actions requir e the context of a process in order to be executed.
When you are outside of process context (i.e., in interrupt mode), you must
observe the following rules:

• No access to user space is allowed. Because there is no process context, there
is no path to the user space associated with any particular process.

• The current pointer is not valid in interrupt mode, and cannot be used.

• No sleeping or scheduling may be perfor med. Interrupt-mode code may not
call schedule or sleep_on; it also may not call any other function that may
sleep. For example, calling kmalloc( . . . , GFP_KERNEL) is against the
rules. Semaphores also may not be used since they can sleep.

Ker nel code can tell if it is running in interrupt mode by calling the function
in_interrupt( ), which takes no parameters and retur ns nonzer o if the processor is
running in interrupt time.

One other feature of the current implementation of task queues is that a task can
requeue itself in the same queue from which it was run. For instance, a task being
run from the timer tick can reschedule itself to be run on the next tick by calling
queue_task to put itself on the queue again. Rescheduling is possible because the
head of the queue is replaced with a NULL pointer before consuming queued
tasks; as a result, a new queue is built once the old one starts executing.

Although rescheduling the same task over and over might appear to be a pointless
operation, it is sometimes useful. For example, consider a driver that moves a pair
of stepper motors one step at a time by rescheduling itself on the timer queue
until the target has been reached. Another example is the jiq module, where the
printing function reschedules itself to produce its output—the result is several iter-
ations through the timer queue.

Predefined Task Queues
The easiest way to perfor m deferr ed execution is to use the queues that are
alr eady maintained by the kernel. There are a few of these queues, but your driver
can use only three of them, described in the following list. The queues are
declar ed in <linux/tqueue.h>, which you should include in your source.

The scheduler queue
The scheduler queue is unique among the predefined task queues in that it
runs in process context, implying that the tasks it runs have a bit more free-
dom in what they can do. In Linux 2.4, this queue runs out of a dedicated
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ker nel thr ead called keventd and is accessed via a function called sched-
ule_task. In older versions of the kernel, keventd was not used, and the queue
(tq_scheduler) was manipulated directly.

tq_timer
This queue is run by the timer tick. Because the tick (the function do_timer)
runs at interrupt time, any task within this queue runs at interrupt time as well.

tq_immediate
The immediate queue is run as soon as possible, either on retur n fr om a sys-
tem call or when the scheduler is run, whichever comes first. The queue is
consumed at interrupt time.

Other predefined task queues exist as well, but they are not generally of interest to
driver writers.

The timeline of a driver using a task queue is repr esented in Figure 6-1. The figure
shows a driver that queues a function in tq_immediate fr om an interrupt han-
dler.

How the examples work

Examples of deferred computation are available in the jiq (“Just In Queue”) mod-
ule, from which the source in this section has been extracted. This module creates
/pr oc files that can be read using dd or other tools; this is similar to jit.

The process reading a jiq file is put to sleep until the buffer is full.* This sleeping
is handled with a simple wait queue, declared as

DECLARE_WAIT_QUEUE_HEAD (jiq_wait);

The buffer is filled by successive runs of a task queue. Each pass through the
queue appends a text string to the buffer being filled; each string reports the cur-
rent time (in jiffies), the process that is current during this pass, and the retur n
value of in_interrupt.

The code for filling the buffer is confined to the jiq_ print_tq function, which exe-
cutes at each run through the queue being used. The printing function is not inter-
esting and is not worth showing here; instead, let’s look at the initialization of the
task to be inserted in a queue:

struct tq_struct jiq_task; /* global: initialized to zero */

/* these lines are in jiq_init() */
jiq_task.routine = jiq_print_tq;
jiq_task.data = (void *)&jiq_data;

* The buffer of a /pr oc file is a page of memory, 4 KB, or whatever is appropriate for the
platfor m you use.
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Process code

Kernel code

Driver code

tq_immediate
(and pointer to task)

blah();
blah();

Code Being Executed

do_sth();

queue_task (task,tq);

do_sth_else();

return;

tq_immediate task

Interrupt

blah();
blah();

Return
from

interrupt

As soon as possible,
at a safe time

Data

run_task_queue(tq_immediate);

do_the_task();

return;

blah();
blah();

tq_immediate task

1

Other tasks may be queued

1

1

0

tq_immediate task

X

0

KEY

struct task_struct
(and pointer to next)

“sync” bit

Figur e 6-1. Timeline of task-queue usage

Ther e’s no need to clear the sync and next fields of jiq_task because static
variables are initialized to 0 by the compiler.

The scheduler queue

The scheduler queue is, in some ways, the easiest to use. Because tasks executed

194

22 June 2001 16:37



fr om this queue do not run in interrupt mode, they can do more things; in particu-
lar, they can sleep. Many parts of the kernel use this queue to accomplish a wide
variety of tasks.

As of kernel 2.4.0-test11, the actual task queue implementing the scheduler queue
is hidden from the rest of the kernel. Rather than use queue_task dir ectly, code
using this queue must call schedule_task to put a task on the queue:

int schedule_task(struct tq_struct *task);

task, of course, is the task to be scheduled. The retur n value is directly from
queue_task: nonzer o if the task was not already on the queue.

Again, as of 2.4.0-test11, the kernel runs a special process, called keventd, whose
sole job is running tasks from the scheduler queue. keventd pr ovides a predictable
pr ocess context for the tasks it runs (unlike the previous implementation, which
would run tasks under an essentially random process’s context).

Ther e ar e a couple of implications to the keventd implementation that are worth
keeping in mind. The first is that tasks in this queue can sleep, and some kernel
code takes advantage of that freedom. Well-behaved code, however, should take
car e to sleep only for very short periods of time, since no other tasks will be run
fr om the scheduler queue while keventd is sleeping. It is also a good idea to keep
in mind that your task shares the scheduler queue with others, which can also
sleep. In normal situations, tasks placed in the scheduler queue will run very
quickly (perhaps even before schedule_task retur ns). If some other task sleeps,
though, the time that elapses before your tasks execute could be significant. Tasks
that absolutely have to run within a narrow time window should use one of the
other queues.

/pr oc/jiqsched is a sample file that uses the scheduler queue. The read function for
the file dispatches everything to the task queue in the following way:

int jiq_read_sched(char *buf, char **start, off_t offset,
int len, int *eof, void *data)

{

jiq_data.len = 0; /* nothing printed, yet */
jiq_data.buf = buf; /* print in this place */
jiq_data.jiffies = jiffies; /* initial time */

/* jiq_print will queue_task() again in jiq_data.queue */
jiq_data.queue = SCHEDULER_QUEUE;

schedule_task(&jiq_task); /* ready to run */
interruptible_sleep_on(&jiq_wait); /* sleep till completion */

*eof = 1;
return jiq_data.len;

}
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Reading /pr oc/jiqsched pr oduces output like the following:

time delta interrupt pid cpu command
601687 0 0 2 1 keventd
601687 0 0 2 1 keventd
601687 0 0 2 1 keventd
601687 0 0 2 1 keventd
601687 0 0 2 1 keventd
601687 0 0 2 1 keventd
601687 0 0 2 1 keventd
601687 0 0 2 1 keventd
601687 0 0 2 1 keventd

In this output, the time field is the value of jiffies when the task is run,
delta is the change in jiffies since the last time the task ran, interrupt is
the output of the in_interrupt function, pid is the ID of the running process, cpu
is the number of the CPU being used (always 0 on uniprocessor systems), and
command is the command being run by the current process.

In this case, we see that the task is always running under the keventd pr ocess. It
also runs very quickly—a task that resubmits itself to the scheduler queue can run
hundr eds or thousands of times within a single timer tick. Even on a very heavily
loaded system, the latency in the scheduler queue is quite small.

The timer queue

The timer queue is differ ent fr om the scheduler queue in that the queue
(tq_timer) is dir ectly available. Also, of course, tasks run from the timer queue
ar e run in interrupt mode. Additionally, you’re guaranteed that the queue will run
at the next clock tick, thus eliminating latency caused by system load.

The sample code implements /pr oc/jiqtimer with the timer queue. For this queue,
it must use queue_task to get things going:

int jiq_read_timer(char *buf, char **start, off_t offset,
int len, int *eof, void *data)

{

jiq_data.len = 0; /* nothing printed, yet */
jiq_data.buf = buf; /* print in this place */
jiq_data.jiffies = jiffies; /* initial time */
jiq_data.queue = &tq_timer; /* reregister yourself here */

queue_task(&jiq_task, &tq_timer); /* ready to run */
interruptible_sleep_on(&jiq_wait); /* sleep till completion */

*eof = 1;
return jiq_data.len;

}
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The following is what head /proc/jiqtimer retur ned on a system that was compiling
a new kernel:

time delta interrupt pid cpu command
45084845 1 1 8783 0 cc1
45084846 1 1 8783 0 cc1
45084847 1 1 8783 0 cc1
45084848 1 1 8783 0 cc1
45084849 1 1 8784 0 as
45084850 1 1 8758 1 cc1
45084851 1 1 8789 0 cpp
45084852 1 1 8758 1 cc1
45084853 1 1 8758 1 cc1
45084854 1 1 8758 1 cc1
45084855 1 1 8758 1 cc1

Note, this time, that exactly one timer tick goes by between each invocation of the
task, and that an arbitrary process is running.

The immediate queue

The last predefined queue that can be used by modularized code is the immediate
queue. This queue is run via the bottom-half mechanism, which means that one
additional step is requir ed to use it. Bottom halves are run only when the kernel
has been told that a run is necessary; this is accomplished by ‘‘marking’’ the bot-
tom half. In the case of tq_immediate, the necessary call is mark_bh(IMMEDI-
ATE_BH). Be sur e to call mark_bh after the task has been queued; otherwise, the
ker nel may run the task queue before your task has been added.

The immediate queue is the fastest queue in the system—it’s executed soonest
and is run in interrupt time. The queue is consumed either by the scheduler or as
soon as one process retur ns fr om its system call. Typical output can look like this:

time delta interrupt pid cpu command
45129449 0 1 8883 0 head
45129453 4 1 0 0 swapper
45129453 0 1 601 0 X
45129453 0 1 601 0 X
45129453 0 1 601 0 X
45129453 0 1 601 0 X
45129454 1 1 0 0 swapper
45129454 0 1 601 0 X
45129454 0 1 601 0 X
45129454 0 1 601 0 X
45129454 0 1 601 0 X
45129454 0 1 601 0 X
45129454 0 1 601 0 X
45129454 0 1 601 0 X

It’s clear that the queue can’t be used to delay the execution of a task—it’s an
‘‘immediate’’ queue. Instead, its purpose is to execute a task as soon as possible,

Task Queues

197

22 June 2001 16:37



Chapter 6: Flow of Time

but at a safe time. This feature makes it a great resource for interrupt handlers,
because it offers them an entry point for executing program code outside of the
actual interrupt management routine. The mechanism used to receive network
packets, for example, is based on a similar mechanism.

Please note that you should not rer egister your task in this queue (although we do
it in jiqimmed for explanatory purposes). The practice gains nothing and may lock
the computer hard if run on some version/platform pairs. Some implementations
used to rerun the queue until it was empty. This was true, for example, for version
2.0 running on the PC platform.

Running Your Own Task Queues
Declaring a new task queue is not difficult. A driver is free to declare a new task
queue, or even several of them; tasks are queued just as we’ve seen with the pre-
defined queues discussed previously.

Unlike a predefined task queue, however, a custom queue is not automatically run
by the kernel. The programmer who maintains a queue must arrange for a way of
running it.

The following macro declar es the queue and expands to a variable declaration.
You’ll most likely place it at the beginning of your file, outside of any function:

DECLARE_TASK_QUEUE(tq_custom);

After declaring the queue, you can invoke the usual functions to queue tasks. The
call just shown pairs naturally with the following:

queue_task(&custom_task, &tq_custom);

The following line will run tq_custom when it is time to execute the task-queue
entries that have accumulated:

run_task_queue(&tq_custom);

If you want to experiment with custom queues now, you need to register a func-
tion to trigger the queue in one of the predefined queues. Although this may look
like a roundabout way to do things, it isn’t. A custom queue can be useful when-
ever you need to accumulate jobs and execute them all at the same time, even if
you use another queue to select that ‘‘same time.’’

Tasklets
Shortly before the release of the 2.4 kernel, the developers added a new mecha-
nism for the deferral of kernel tasks. This mechanism, called tasklets, is now the
pr eferr ed way to accomplish bottom-half tasks; indeed, bottom halves themselves
ar e now implemented with tasklets.
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Tasklets resemble task queues in a number of ways. They are a way of deferring a
task until a safe time, and they are always run in interrupt time. Like task queues,
tasklets will be run only once, even if scheduled multiple times, but tasklets may
be run in parallel with other (differ ent) tasklets on SMP systems. On SMP systems,
tasklets are also guaranteed to run on the CPU that first schedules them, which
pr ovides better cache behavior and thus better perfor mance.

Each tasklet has associated with it a function that is called when the tasklet is to be
executed. The life of some kernel developer was made easier by giving that func-
tion a single argument of type unsigned long, which makes life a little more
annoying for those who would rather pass it a pointer; casting the long argument
to a pointer type is a safe practice on all supported architectur es and pretty com-
mon in memory management (as discussed in Chapter 13). The tasklet function is
of type void; it retur ns no value.

Softwar e support for tasklets is part of <linux/interrupt.h>, and the tasklet
itself must be declared with one of the following:

DECLARE_TASKLET(name, function, data);
Declar es a tasklet with the given name; when the tasklet is to be executed (as
described later), the given function is called with the (unsigned long) data
value.

DECLARE_TASKLET_DISABLED(name, function, data);
Declar es a tasklet as before, but its initial state is ‘‘disabled,’’ meaning that it
can be scheduled but will not be executed until enabled at some future time.

The sample jiq driver, when compiled against 2.4 headers, implements /pr oc/jiq-
tasklet, which works like the other jiq entries but uses tasklets; we didn’t emulate
tasklets for older kernel versions in sysdep.h. The module declares its tasklet as

void jiq_print_tasklet (unsigned long);
DECLARE_TASKLET (jiq_tasklet, jiq_print_tasklet, (unsigned long)

&jiq_data);

When your driver wants to schedule a tasklet to run, it calls tasklet_schedule:

tasklet_schedule(&jiq_tasklet);

Once a tasklet is scheduled, it is guaranteed to be run once (if enabled) at a safe
time. Tasklets may reschedule themselves in much the same manner as task
queues. A tasklet need not worry about running against itself on a multiprocessor
system, since the kernel takes steps to ensure that any given tasklet is only run-
ning in one place. If your driver implements multiple tasklets, however, it should
be prepar ed for the possibility that more than one of them could run simultane-
ously. In that case, spinlocks must be used to protect critical sections of the code
(semaphor es, which can sleep, may not be used in tasklets since they run in inter-
rupt time).

Task Queues
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The output from /pr oc/jiqtasklet looks like this:

time delta interrupt pid cpu command
45472377 0 1 8904 0 head
45472378 1 1 0 0 swapper
45472379 1 1 0 0 swapper
45472380 1 1 0 0 swapper
45472383 3 1 0 0 swapper
45472383 0 1 601 0 X
45472383 0 1 601 0 X
45472383 0 1 601 0 X
45472383 0 1 601 0 X
45472389 6 1 0 0 swapper

Note that the tasklet always runs on the same CPU, even though this output was
pr oduced on a dual-CPU system.

The tasklet subsystem provides a few other functions for advanced use of tasklets:

void tasklet_disable(struct tasklet_struct *t);
This function disables the given tasklet. The tasklet may still be scheduled
with tasklet_schedule, but its execution will be deferred until a time when the
tasklet has been enabled again.

void tasklet_enable(struct tasklet_struct *t);
Enables a tasklet that had been previously disabled. If the tasklet has already
been scheduled, it will run soon (but not directly out of tasklet_enable).

void tasklet_kill(struct tasklet_struct *t);
This function may be used on tasklets that reschedule themselves indefinitely.
tasklet_kill will remove the tasklet from any queue that it is on. In order to
avoid race conditions with the tasklet rescheduling itself, this function waits
until the tasklet executes, then pulls it from the queue. Thus, you can be sure
that tasklets will not be interrupted partway through. If, however, the tasklet
is not currently running and rescheduling itself, tasklet_kill may hang.
tasklet_kill may not be called in interrupt time.

Kernel Timer s
The ultimate resources for time keeping in the kernel are the timers. Timers are
used to schedule execution of a function (a timer handler) at a particular time in
the future. They thus work differ ently fr om task queues and tasklets in that you
can specify when in the future your function will be called, whereas you can’t tell
exactly when a queued task will be executed. On the other hand, kernel timers
ar e similar to task queues in that a function register ed in a kernel timer is executed
only once—timers aren’t cyclic.
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Ther e ar e times when you need to execute operations detached from any pro-
cess’s context, like turning off the floppy motor or finishing another lengthy shut-
down operation. In that case, delaying the retur n fr om close wouldn’t be fair to the
application program. Using a task queue would be wasteful, because a queued
task must continually rer egister itself until the requisite time has passed.

A timer is much easier to use. You register your function once, and the kernel calls
it once when the timer expires. Such a functionality is used often within the kernel
pr oper, but it is sometimes needed by the drivers as well, as in the example of the
floppy motor.

The kernel timers are organized in a doubly linked list. This means that you can
cr eate as many timers as you want. A timer is characterized by its timeout value (in
jif fies) and the function to be called when the timer expires. The timer handler
receives an argument, which is stored in the data structure, together with a pointer
to the handler itself.

The data structure of a timer looks like the following, which is extracted from
<linux/timer.h>):

struct timer_list {
struct timer_list *next; /* never touch this */
struct timer_list *prev; /* never touch this */
unsigned long expires; /* the timeout, in jiffies */
unsigned long data; /* argument to the handler */
void (*function)(unsigned long); /* handler of the timeout */
volatile int running; /* added in 2.4; don’t touch */

};

The timeout of a timer is a value in jiffies. Thus, timer->function will run
when jiffies is equal to or greater than timer->expires. The timeout is an
absolute value; it is usually generated by taking the current value of jiffies and
adding the amount of the desired delay.

Once a timer_list structur e is initialized, add_timer inserts it into a sorted list,
which is then polled more or less 100 times per second. Even systems (such as the
Alpha) that run with a higher clock interrupt frequency do not check the timer list
mor e often than that; the added timer resolution would not justify the cost of the
extra passes through the list.

These are the functions used to act on timers:

void init_timer(struct timer_list *timer);
This inline function is used to initialize the timer structure. Currently, it zeros
the prev and next pointers (and the running flag on SMP systems). Pro-
grammers are str ongly urged to use this function to initialize a timer and to
never explicitly touch the pointers in the structure, in order to be forward
compatible.

Kernel Timer s
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void add_timer(struct timer_list *timer);
This function inserts a timer into the global list of active timers.

int mod_timer(struct timer_list *timer, unsigned long
expires);

Should you need to change the time at which a timer expires, mod_timer can
be used. After the call, the new expires value will be used.

int del_timer(struct timer_list *timer);
If a timer needs to be removed from the list before it expir es, del_timer should
be called. When a timer expires, on the other hand, it is automatically
removed from the list.

int del_timer_sync(struct timer_list *timer);
This function works like del_timer, but it also guarantees that, when it retur ns,
the timer function is not running on any CPU. del_timer_sync is used to avoid
race conditions when a timer function is running at unexpected times; it
should be used in most situations. The caller of del_timer_sync must ensure
that the timer function will not use add_timer to add itself again.

An example of timer usage can be seen in the jiq module. The file /pr oc/jitimer
uses a timer to generate two data lines; it uses the same printing function as the
task queue examples do. The first data line is generated from the read call
(invoked by the user process looking at /pr oc/jitimer), while the second line is
printed by the timer function after one second has elapsed.

The code for /pr oc/jitimer is as follows:

struct timer_list jiq_timer;

void jiq_timedout(unsigned long ptr)
{

jiq_print((void *)ptr); /* print a line */
wake_up_interruptible(&jiq_wait); /* awaken the process */

}

int jiq_read_run_timer(char *buf, char **start, off_t offset,
int len, int *eof, void *data)

{

jiq_data.len = 0; /* prepare the argument for jiq_print() */
jiq_data.buf = buf;
jiq_data.jiffies = jiffies;
jiq_data.queue = NULL; /* don’t requeue */

init_timer(&jiq_timer); /* init the timer structure */
jiq_timer.function = jiq_timedout;
jiq_timer.data = (unsigned long)&jiq_data;
jiq_timer.expires = jiffies + HZ; /* one second */
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jiq_print(&jiq_data); /* print and go to sleep */
add_timer(&jiq_timer);
interruptible_sleep_on(&jiq_wait);
del_timer_sync(&jiq_timer); /* in case a signal woke us up */

*eof = 1;
return jiq_data.len;

}

Running head /proc/jitimer gives the following output:

time delta interrupt pid cpu command
45584582 0 0 8920 0 head
45584682 100 1 0 1 swapper

Fr om the output you can see that the timer function, which printed the last line
her e, was running in interrupt mode.

What can appear strange when using timers is that the timer expires at just the
right time, even if the processor is executing in a system call. We suggested earlier
that when a process is running in kernel space, it won’t be scheduled away; the
clock tick, however, is special, and it does all of its tasks independent of the cur-
rent process. You can try to look at what happens when you read /pr oc/jitbusy in
the background and /pr oc/jitimer in the foregr ound. Although the system appears
to be locked solid by the busy-waiting system call, both the timer queue and the
ker nel timers continue running.

Thus, timers can be another source of race conditions, even on uniprocessor sys-
tems. Any data structures accessed by the timer function should be protected from
concurr ent access, either by being atomic types (discussed in Chapter 10) or by
using spinlocks.

One must also be very careful to avoid race conditions with timer deletion. Con-
sider a situation in which a module’s timer function is run on one processor while
a related event (a file is closed or the module is removed) happens on another.
The result could be the timer function expecting a situation that is no longer valid,
resulting in a system crash. To avoid this kind of race, your module should use
del_timer_sync instead of del_timer. If the timer function can restart the timer itself
(a common pattern), you should also have a ‘‘stop timer’’ flag that you set before
calling del_timer_sync. The timer function should then check that flag and not
reschedule itself with add_timer if the flag has been set.

Another pattern that can cause race conditions is modifying timers by deleting
them with del_timer, then creating a new one with add_timer. It is better, in this
situation, to simply use mod_timer to make the necessary change.

Kernel Timer s
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Backward Compatibility
Task queues and timing issues have remained relatively constant over the years.
Nonetheless, a few things have changed and must be kept in mind.

The functions sleep_on_timeout, interruptible_sleep_on_timeout, and sched-
ule_timeout wer e all added for the 2.2 kernel. In the 2.0 days, timeouts were han-
dled with a variable (called timeout) in the task structure. As a result, code that
now makes a call like

interruptible_sleep_on_timeout(my_queue, timeout);

used to be implemented as

current->timeout = jiffies + timeout;
interruptible_sleep_on(my_queue);

The sysdep.h header recr eates schedule_timeout for pre-2.4 kernels so that you can
use the new syntax and run on 2.0 and 2.2:

extern inline void schedule_timeout(int timeout)
{

current->timeout = jiffies + timeout;
current->state = TASK_INTERRUPTIBLE;
schedule();
current->timeout = 0;

}

In 2.0, there wer e a couple of additional functions for putting functions into task
queues. queue_task_ir q could be called instead of queue_task in situations in
which interrupts were disabled, yielding a (very) small perfor mance benefit.
queue_task_ir q_off is even faster, but does not function properly in situations in
which the task is already queued or is running, and can thus only be used where
those conditions are guaranteed not to occur. Neither of these two functions pro-
vided much in the way of perfor mance benefits, and they were removed in kernel
2.1.30. Using queue_task in all cases works with all kernel versions. (It is worth
noting, though, that queue_task had a retur n type of void in 2.2 and prior ker-
nels.)

Prior to 2.4, the schedule_task function and associated keventd pr ocess did not
exist. Instead, another predefined task queue, tq_scheduler, was provided.
Tasks placed in tq_scheduler wer e run in the schedule function, and thus
always ran in process context. The actual process whose context would be used
was always differ ent, however; it was whatever process was being scheduled on
the CPU at the time. tq_scheduler typically had larger latencies, especially for
tasks that resubmitted themselves. sysdep.h pr ovides the following implementation
for schedule_task on 2.0 and 2.2 systems:
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extern inline int schedule_task(struct tq_struct *task)
{

queue_task(task, &tq_scheduler);
return 1;

}

As has been mentioned, the 2.3 development series added the tasklet mechanism;
befor e, only task queues were available for ‘‘immediate deferred’’ execution. The
bottom-half subsystem was implemented differ ently, though most of the changes
ar e not visible to driver writers. We didn’t emulate tasklets for older kernels in sys-
dep.h because they are not strictly needed for driver operation; if you want to be
backward compatible you’ll need to either write your own emulation or use task
queues instead.

The in_interrupt function did not exist in Linux 2.0. Instead, a global variable
intr_count kept track of the number of interrupt handlers running. Querying
intr_count is semantically the same as calling in_interrupt, so compatibility is
easily implemented in sysdep.h.

The del_timer_sync function did not exist prior to development kernel 2.4.0-test2.
The usual sysdep.h header defines a minimal replacement when you build against
older kernel headers. Kernel version 2.0 didn’t have mod_timer, either. This gap is
also filled by our compatibility header.

Quick Reference
This chapter introduced the following symbols:

#include <linux/param.h>
HZ The HZ symbol specifies the number of clock ticks generated per second.

#include <linux/sched.h>
volatile unsigned long jiffies

The jiffies variable is incremented once for each clock tick; thus, it’s incre-
mented HZ times per second.

#include <asm/msr.h>
rdtsc(low,high);
rdtscl(low);

Read the timestamp counter or its lower half. The header and macros are spe-
cific to PC-class processors; other platforms may need asm constructs to
achieve similar results.

extern struct timeval xtime;
The current time, as calculated at the last timer tick.

Quick Reference
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#include <linux/time.h>
void do_gettimeofday(struct timeval *tv);
void get_fast_time(struct timeval *tv);

The functions retur n the current time; the former is very high resolution, the
latter may be faster while giving coarser resolution.

#include <linux/delay.h>
void udelay(unsigned long usecs);
void mdelay(unsigned long msecs);

The functions introduce delays of an integer number of microseconds and mil-
liseconds. The former should be used to wait for no longer than one millisec-
ond; the latter should be used with extreme care because these delays are
both busy-loops.

int in_interrupt();
Retur ns nonzer o if the processor is currently running in interrupt mode.

#include <linux/tqueue.h>
DECLARE_TASK_QUEUE(variablename);

The macro declar es a new variable and initializes it.

void queue_task(struct tq_struct *task, task_queue *list);
The function registers a task for later execution.

void run_task_queue(task_queue *list);
This function consumes a task queue.

task_queue tq_immediate, tq_timer;
These predefined task queues are run as soon as possible (for tq_immedi-
ate), or after each timer tick (for tq_timer).

int schedule_task(struct tq_struct *task);
Schedules a task to be run on the scheduler queue.

#include <linux/interrupt.h>
DECLARE_TASKLET(name, function, data)
DECLARE_TASKLET_DISABLED(name, function, data)

Declar e a tasklet structure that will call the given function (passing it the given
unsigned long data) when the tasklet is executed. The second form initial-
izes the tasklet to a disabled state, keeping it from running until it is explicitly
enabled.

void tasklet_schedule(struct tasklet_struct *tasklet);
Schedules the given tasklet for running. If the tasklet is enabled, it will be run
shortly on the same CPU that ran the first call to tasklet_schedule.
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tasklet_enable(struct tasklet_struct *tasklet);
tasklet_disable(struct tasklet_struct *tasklet);

These functions respectively enable and disable the given tasklet. A disabled
tasklet can be scheduled, but will not run until it has been enabled again.

void tasklet_kill(struct tasklet_struct *tasklet);
Causes an ‘‘infinitely rescheduling’’ tasklet to cease execution. This function
can block and may not be called in interrupt time.

#include <linux/timer.h>
void init_timer(struct timer_list * timer);

This function initializes a newly allocated timer.

void add_timer(struct timer_list * timer);
This function inserts the timer into the global list of pending timers.

int mod_timer(struct timer_list *timer, unsigned long
expires);

This function is used to change the expiration time of an already scheduled
timer structure.

int del_timer(struct timer_list * timer);
del_timer removes a timer from the list of pending timers. If the timer was
actually queued, del_timer retur ns 1; otherwise, it retur ns 0.

int del_timer_sync(struct timer_list *timer);
This function is similar to del_timer, but guarantees that the function is not
curr ently running on other CPUs.

Quick Reference
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CHAPTER SEVEN

GETTING HOLD OF
MEMORY

Thus far, we have used kmalloc and kfr ee for the allocation and freeing of mem-
ory. The Linux kernel offers a richer set of memory allocation primitives, however.
In this chapter we look at other ways of making use of memory in device drivers
and at how to make the best use of your system’s memory resources. We will not
get into how the differ ent architectur es actually administer memory. Modules are
not involved in issues of segmentation, paging, and so on, since the kernel offers
a unified memory management interface to the drivers. In addition, we won’t
describe the internal details of memory management in this chapter, but will defer
it to ‘‘Memory Management in Linux’’ in Chapter 13.

The Real Story of kmalloc
The kmalloc allocation engine is a powerful tool, and easily learned because of its
similarity to malloc. The function is fast—unless it blocks—and it doesn’t clear the
memory it obtains; the allocated region still holds its previous content. The allo-
cated region is also contiguous in physical memory. In the next few sections, we
talk in detail about kmalloc, so you can compare it with the memory allocation
techniques that we discuss later.

The Flags Argument
The first argument to kmalloc is the size of the block to be allocated. The second
argument, the allocation flags, is much more inter esting, because it controls the
behavior of kmalloc in a number of ways.

The most-used flag, GFP_KERNEL, means that the allocation (internally perfor med
by calling, eventually, get_fr ee_pages, which is the source of the GFP_ pr efix) is
per formed on behalf of a process running in kernel space. In other words, this
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means that the calling function is executing a system call on behalf of a process.
Using GFP_KERNEL means that kmalloc can put the current process to sleep wait-
ing for a page when called in low-memory situations. A function that allocates
memory using GFP_KERNEL must therefor e be reentrant. While the current pro-
cess sleeps, the kernel takes proper action to retrieve a memory page, either by
flushing buffers to disk or by swapping out memory from a user process.

GFP_KERNEL isn’t always the right allocation flag to use; sometimes kmalloc is
called from outside a process’s context. This type of call can happen, for instance,
in interrupt handlers, task queues, and kernel timers. In this case, the current
pr ocess should not be put to sleep, and the driver should use a flag of
GFP_ATOMIC instead. The kernel normally tries to keep some free pages around
in order to fulfill atomic allocation. When GFP_ATOMIC is used, kmalloc can use
even the last free page. If that last page does not exist, however, the allocation will
fail.

Other flags can be used in place of or in addition to GFP_KERNEL and
GFP_ATOMIC, although those two cover most of the needs of device drivers. All
the flags are defined in <linux/mm.h>: individual flags are prefixed with a dou-
ble underscore, like __GFP_DMA; collections of flags lack the prefix and are
sometimes called allocation priorities.

GFP_KERNEL
Nor mal allocation of kernel memory. May sleep.

GFP_BUFFER
Used in managing the buffer cache, this priority allows the allocator to sleep.
It differs from GFP_KERNEL in that fewer attempts will be made to free mem-
ory by flushing dirty pages to disk; the purpose here is to avoid deadlocks
when the I/O subsystems themselves need memory.

GFP_ATOMIC
Used to allocate memory from interrupt handlers and other code outside of a
pr ocess context. Never sleeps.

GFP_USER
Used to allocate memory on behalf of the user. It may sleep, and is a low-pri-
ority request.

GFP_HIGHUSER
Like GFP_USER, but allocates from high memory, if any. High memory is
described in the next subsection.

__GFP_DMA
This flag requests memory usable in DMA data transfers to/from devices. Its
exact meaning is platform dependent, and the flag can be OR’d to either
GFP_KERNEL or GFP_ATOMIC.

The Real Story of kmalloc
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__GFP_HIGHMEM
The flag requests high memory, a platform-dependent feature that has no
ef fect on platforms that don’t support it. It is part of the GFP_HIGHUSER mask
and has little use elsewhere.

Memor y zones

Both __GFP_DMA and __GFP_HIGHMEM have a platform-dependent role,
although their use is valid for all platforms.

Version 2.4 of the kernel knows about three memory zones: DMA-capable mem-
ory, normal memory, and high memory. While allocation normally happens in the
nor mal zone, setting either of the bits just mentioned requir es memory to be allo-
cated from a differ ent zone. The idea is that every computer platform that must
know about special memory ranges (instead of considering all RAM equivalent)
will fall into this abstraction.

DMA-capable memory is the only memory that can be involved in DMA data trans-
fers with peripheral devices. This restriction arises when the address bus used to
connect peripheral devices to the processor is limited with respect to the address
bus used to access RAM. For example, on the x86, devices that plug into the ISA
bus can only address memory from 0 to 16 MB. Other platforms have similar
needs, although usually less stringent than the ISA one.*

High memory is memory that requir es special handling to be accessed. It made its
appearance in kernel memory management when support for the Pentium II Vir-
tual Memory Extension was implemented during 2.3 development to access up to
64 GB of physical memory. High memory is a concept that only applies to the x86
and SPARC platforms, and the two implementations are dif ferent.

Whenever a new page is allocated to fulfill the kmalloc request, the kernel builds
a list of zones that can be used in the search. If __GFP_DMA is specified, only the
DMA zone is searched: if no memory is available at low addresses, allocation fails.
If no special flag is present, both normal and DMA memory is searched; if
__GFP_HIGHMEM is set, then all three zones are used to search a free page.

If the platform has no concept of high memory or it has been disabled in the ker-
nel configuration, __GFP_HIGHMEM is defined as 0 and has no effect.

The mechanism behind memory zones is implemented in mm/page_alloc.c, while
initialization of the zone resides in platform-specific files, usually in mm/init.c
within the ar ch tr ee. We’ll revisit these topics in Chapter 13.

* It’s interesting to note that the limit is only in force for the ISA bus; an x86 device that
plugs into the PCI bus can perfor m DMA with all nor mal memory.
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The Size Argument
The kernel manages the system’s physical memory, which is available only in
page-sized chunks. As a result, kmalloc looks rather differ ent than a typical user-
space malloc implementation. A simple, heap-oriented allocation technique would
quickly run into trouble; it would have a hard time working around the page
boundaries. Thus, the kernel uses a special page-oriented allocation technique to
get the best use from the system’s RAM.

Linux handles memory allocation by creating a set of pools of memory objects of
fixed sizes. Allocation requests are handled by going to a pool that holds suffi-
ciently large objects, and handing an entire memory chunk back to the requester.
The memory management scheme is quite complex, and the details of it are not
nor mally all that interesting to device driver writers. After all, the implementation
can change—as it did in the 2.1.38 kernel — without af fecting the interface seen by
the rest of the kernel.

The one thing driver developers should keep in mind, though, is that the kernel
can allocate only certain predefined fixed-size byte arrays. If you ask for an arbi-
trary amount of memory, you’re likely to get slightly more than you asked for, up
to twice as much. Also, programmers should remember that the minimum memory
that kmalloc handles is as big as 32 or 64, depending on the page size used by the
curr ent architectur e.

The data sizes available are generally powers of two. In the 2.0 kernel, the avail-
able sizes were actually slightly less than a power of two, due to control flags
added by the management system. If you keep this fact in mind, you’ll use mem-
ory more efficiently. For example, if you need a buffer of about 2000 bytes and
run Linux 2.0, you’re better off asking for 2000 bytes, rather than 2048. Requesting
exactly a power of two is the worst possible case with any kernel older than
2.1.38 — the ker nel will allocate twice as much as you requested. This is why scull
used 4000 bytes per quantum instead of 4096.

You can find the exact values used for the allocation blocks in mm/kmalloc.c (with
the 2.0 kernel) or mm/slab.c (in current kernels), but remember that they can
change again without notice. The trick of allocating less than 4 KB works well for
scull with all 2.x ker nels, but it’s not guaranteed to be optimal in the future.

In any case, the maximum size that can be allocated by kmalloc is 128 KB—
slightly less with 2.0 kernels. If you need more than a few kilobytes, however,
ther e ar e better ways than kmalloc to obtain memory, as outlined next.

Lookaside Caches
A device driver often ends up allocating many objects of the same size, over and
over. Given that the kernel already maintains a set of memory pools of objects that
ar e all the same size, why not add some special pools for these high-volume

Lookaside Caches
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objects? In fact, the kernel does implement this sort of lookaside cache. Device
drivers normally do not exhibit the sort of memory behavior that justifies using a
lookaside cache, but there can be exceptions; the USB and ISDN drivers in Linux
2.4 use caches.

Linux memory caches have a type of kmem_cache_t and are created with a call
to kmem_cache_cr eate:

kmem_cache_t * kmem_cache_create(const char *name, size_t size,
size_t offset, unsigned long flags,
void (*constructor)(void *, kmem_cache_t *,

unsigned long flags),
void (*destructor)(void *, kmem_cache_t *,

unsigned long flags) );

The function creates a new cache object that can host any number of memory
ar eas all of the same size, specified by the size argument. The name argument is
associated with this cache and functions as housekeeping information usable in
tracking problems; usually, it is set to the name of the type of structure that will be
cached. The maximum length for the name is 20 characters, including the trailing
ter minator.

The offset is the offset of the first object in the page; it can be used to ensure a
particular alignment for the allocated objects, but you most likely will use 0 to
request the default value. flags contr ols how allocation is done, and is a bit
mask of the following flags:

SLAB_NO_REAP
Setting this flag protects the cache from being reduced when the system is
looking for memory. You would not usually need to set this flag.

SLAB_HWCACHE_ALIGN
This flag requir es each data object to be aligned to a cache line; actual align-
ment depends on the cache layout of the host platform. This is usually a good
choice.

SLAB_CACHE_DMA
This flag requir es each data object to be allocated in DMA-capable memory.

The constructor and destructor arguments to the function are optional
functions (but there can be no destructor without a constructor); the former can be
used to initialize newly allocated objects and the latter can be used to “clean up”
objects prior to their memory being released back to the system as a whole.

Constructors and destructors can be useful, but there are a few constraints that you
should keep in mind. A constructor is called when the memory for a set of objects
is allocated; because that memory may hold several objects, the constructor may
be called multiple times. You cannot assume that the constructor will be called as
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an immediate effect of allocating an object. Similarly, destructors can be called at
some unknown future time, not immediately after an object has been freed. Con-
structors and destructors may or may not be allowed to sleep, according to
whether they are passed the SLAB_CTOR_ATOMIC flag (where CTOR is short for
constructor).

For convenience, a programmer can use the same function for both the construc-
tor and destructor; the slab allocator always passes the SLAB_CTOR_CONSTRUC-
TOR flag when the callee is a constructor.

Once a cache of objects is created, you can allocate objects from it by calling
kmem_cache_alloc:

void *kmem_cache_alloc(kmem_cache_t *cache, int flags);

Her e, the cache argument is the cache you have created previously; the flags are
the same as you would pass to kmalloc, and are consulted if kmem_cache_alloc
needs to go out and allocate more memory itself.

To free an object, use kmem_cache_fr ee:

void kmem_cache_free(kmem_cache_t *cache, const void *obj);

When driver code is finished with the cache, typically when the module is
unloaded, it should free its cache as follows:

int kmem_cache_destroy(kmem_cache_t *cache);

The destroy option will succeed only if all objects allocated from the cache have
been retur ned to it. A module should thus check the retur n status from
kmem_cache_destr oy; a failur e indicates some sort of memory leak within the
module (since some of the objects have been dropped).

One side benefit to using lookaside caches is that the kernel maintains statistics on
cache usage. There is even a kernel configuration option that enables the collec-
tion of extra statistical information, but at a noticeable runtime cost. Cache statis-
tics may be obtained from /pr oc/slabinfo.

A scull Based on the Slab Caches: scullc
Time for an example. scullc is a cut-down version of the scull module that imple-
ments only the bare device — the persistent memory region. Unlike scull, which
uses kmalloc, scullc uses memory caches. The size of the quantum can be modi-
fied at compile time and at load time, but not at runtime—that would requir e cr e-
ating a new memory cache, and we didn’t want to deal with these unneeded
details. The sample module refuses to compile with version 2.0 of the kernel
because memory caches were not there, as explained in “Backward Compatibility”
later in the chapter.

Lookaside Caches
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scullc is a complete example that can be used to make tests. It differs from scull
only in a few lines of code. This is how it allocates memory quanta:

/* Allocate a quantum using the memory cache */
if (!dptr->data[s_pos]) {

dptr->data[s_pos] =
kmem_cache_alloc(scullc_cache, GFP_KERNEL);

if (!dptr->data[s_pos])
goto nomem;

memset(dptr->data[s_pos], 0, scullc_quantum);
}

And these lines release memory:

for (i = 0; i < qset; i++)
if (dptr->data[i])

kmem_cache_free(scullc_cache, dptr->data[i]);
kfree(dptr->data);

To support use of scullc_cache, these few lines are included in the file at
pr oper places:

/* declare one cache pointer: use it for all devices */
kmem_cache_t *scullc_cache;

/* init_module: create a cache for our quanta */
scullc_cache =

kmem_cache_create("scullc", scullc_quantum,
0, SLAB_HWCACHE_ALIGN,
NULL, NULL); /* no ctor/dtor */

if (!scullc_cache) {
result = -ENOMEM;
goto fail_malloc2;

}

/* cleanup_module: release the cache of our quanta */
kmem_cache_destroy(scullc_cache);

The main differ ences in passing from scull to scullc ar e a slight speed improve-
ment and better memory use. Since quanta are allocated from a pool of memory
fragments of exactly the right size, their placement in memory is as dense as possi-
ble, as opposed to scull quanta, which bring in an unpredictable memory frag-
mentation.

get_free_page and Friends
If a module needs to allocate big chunks of memory, it is usually better to use a
page-oriented technique. Requesting whole pages also has other advantages,
which will be introduced later, in “The mmap Device Operation” in Chapter 13.
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To allocate pages, the following functions are available:

get_zer oed_page
Retur ns a pointer to a new page and fills the page with zeros.

_ _get_fr ee_page
Similar to get_zer oed_page, but doesn’t clear the page.

_ _get_fr ee_pages
Allocates and retur ns a pointer to the first byte of a memory area that is sev-
eral (physically contiguous) pages long, but doesn’t zero the area.

_ _get_dma_ pages
Similar to get_fr ee_pages, but guarantees that the allocated memory is DMA
capable. If you use version 2.2 or later of the kernel, you can simply use
_ _get_fr ee_pages and pass the __GFP_DMA flag; if you want backward com-
patibility with 2.0, you need to call this function instead.

The prototypes for the functions follow:

unsigned long get_zeroed_page(int flags);
unsigned long __get_free_page(int flags);
unsigned long __get_free_pages(int flags, unsigned long order);
unsigned long __get_dma_pages(int flags, unsigned long order);

The flags argument works in the same way as with kmalloc; usually either
GFP_KERNEL or GFP_ATOMIC is used, perhaps with the addition of the
__GFP_DMA flag (for memory that can be used for direct memory access opera-
tions) or __GFP_HIGHMEM when high memory can be used. order is the base-
two logarithm of the number of pages you are requesting or freeing (i.e., log2N).
For example, order is 0 if you want one page and 3 if you request eight pages.
If order is too big (no contiguous area of that size is available), the page alloca-
tion will fail. The maximum value of order was 5 in Linux 2.0 (corresponding to
32 pages) and 9 with later versions (corresponding to 512 pages: 2 MB on most
platfor ms). Anyway, the bigger order is, the more likely it is that the allocation
will fail.

When a program is done with the pages, it can free them with one of the follow-
ing functions. The first function is a macro that falls back on the second:

void free_page(unsigned long addr);
void free_pages(unsigned long addr, unsigned long order);

If you try to free a differ ent number of pages than you allocated, the memory map
will become corrupted and the system will get in trouble at a later time.

It’s worth stressing that get_fr ee_pages and the other functions can be called at any
time, subject to the same rules we saw for kmalloc. The functions can fail to allo-
cate memory in certain circumstances, particularly when GFP_ATOMIC is used.
Ther efor e, the program calling these allocation functions must be prepar ed to han-
dle an allocation failure.

get_free_page and Friends
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It has been said that if you want to live dangerously, you can assume that neither
kmalloc nor the underlying get_fr ee_pages will ever fail when called with a priority
of GFP_KERNEL. This is almost true, but not completely: small, memory-limited
systems can still run into trouble. A driver writer ignores the possibility of alloca-
tion failures at his or her peril (or that of his or her users).

Although kmalloc(GFP_KERNEL) sometimes fails when there is no available
memory, the kernel does its best to fulfill allocation requests. Therefor e, it’s easy
to degrade system responsiveness by allocating too much memory. For example,
you can bring the computer down by pushing too much data into a scull device;
the system will start crawling while it tries to swap out as much as possible in
order to fulfill the kmalloc request. Since every resource is being sucked up by the
gr owing device, the computer is soon render ed unusable; at that point you can no
longer even start a new process to try to deal with the problem. We don’t address
this issue in scull, since it is just a sample module and not a real tool to put into a
multiuser system. As a programmer, you must nonetheless be careful, because a
module is privileged code and can open new security holes in the system (the
most likely is a denial-of-service hole like the one just outlined).

A scull Using Whole Pages: scullp
In order to test page allocation for real, the scullp module is released together with
other sample code. It is a reduced scull, just like scullc intr oduced earlier.

Memory quanta allocated by scullp ar e whole pages or page sets: the
scullp_order variable defaults to 0 and can be specified at either compile time
or load time.

The following lines show how it allocates memory:

/* Here’s the allocation of a single quantum */
if (!dptr->data[s_pos]) {

dptr->data[s_pos] =
(void *)__get_free_pages(GFP_KERNEL, dptr->order);

if (!dptr->data[s_pos])
goto nomem;

memset(dptr->data[s_pos], 0, PAGE_SIZE << dptr->order);
}

The code to deallocate memory in scullp, instead, looks like this:

/* This code frees a whole quantum set */
for (i = 0; i < qset; i++)

if (dptr->data[i])
free_pages((unsigned long)(dptr->data[i]),

dptr->order);
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At the user level, the perceived differ ence is primarily a speed improvement and
better memory use because there is no inter nal fragmentation of memory. We ran
some tests copying four megabytes from scull0 to scull1 and then from scullp0 to
scullp1; the results showed a slight improvement in kernel-space processor usage.

The perfor mance impr ovement is not dramatic, because kmalloc is designed to be
fast. The main advantage of page-level allocation isn’t actually speed, but rather
mor e ef ficient memory usage. Allocating by pages wastes no memory, whereas
using kmalloc wastes an unpredictable amount of memory because of allocation
granularity.

But the biggest advantage of _ _get_fr ee_page is that the page is completely yours,
and you could, in theory, assemble the pages into a linear area by appropriate
tweaking of the page tables. For example, you can allow a user process to mmap
memory areas obtained as single unrelated pages. We’ll discuss this kind of opera-
tion in ‘‘The mmap Device Operation’’ in Chapter 13, where we show how scullp
of fers memory mapping, something that scull cannot offer.

vmalloc and Friends
The next memory allocation function that we’ll show you is vmalloc, which allo-
cates a contiguous memory region in the virtual addr ess space. Although the
pages are not necessarily consecutive in physical memory (each page is retrieved
with a separate call to _ _get_fr ee_page), the kernel sees them as a contiguous
range of addresses. vmalloc retur ns 0 (the NULL addr ess) if an error occurs, other-
wise, it retur ns a pointer to a linear memory area of size at least size.

The prototypes of the function and its relatives (ior emap, which is not strictly an
allocation function, will be discussed shortly) are as follows:

#include <linux/vmalloc.h>

void * vmalloc(unsigned long size);
void vfree(void * addr);
void *ioremap(unsigned long offset, unsigned long size);
void iounmap(void * addr);

It’s worth stressing that memory addresses retur ned by kmalloc and get_fr ee_pages
ar e also virtual addresses. Their actual value is still massaged by the MMU (mem-
ory management unit, usually part of the CPU) before it is used to address physi-
cal memory.* vmalloc is not differ ent in how it uses the hardware, but rather in
how the kernel perfor ms the allocation task.

* Actually, some architectur es define ranges of ‘‘virtual’’ addresses as reserved to address
physical memory. When this happens, the Linux kernel takes advantage of the feature,
and both the kernel and get_fr ee_pages addr esses lie in one of those memory ranges. The
dif ference is transparent to device drivers and other code that is not directly involved
with the memory-management kernel subsystem.

vmalloc and Friends

217

22 June 2001 16:38



Chapter 7: Getting Hold of Memory

The (virtual) address range used by kmalloc and get_fr ee_pages featur es a one-to-
one mapping to physical memory, possibly shifted by a constant PAGE_OFFSET
value; the functions don’t need to modify the page tables for that address range.
The address range used by vmalloc and ior emap, on the other hand, is completely
synthetic, and each allocation builds the (virtual) memory area by suitably setting
up the page tables.

This differ ence can be perceived by comparing the pointers retur ned by the allo-
cation functions. On some platforms (for example, the x86), addresses retur ned by
vmalloc ar e just greater than addresses that kmalloc addr esses. On other platforms
(for example, MIPS and IA-64), they belong to a completely differ ent addr ess
range. Addresses available for vmalloc ar e in the range from VMALLOC_START to
VMALLOC_END. Both symbols are defined in <asm/pgtable.h>.

Addr esses allocated by vmalloc can’t be used outside of the micropr ocessor,
because they make sense only on top of the processor’s MMU. When a driver
needs a real physical address (such as a DMA address, used by peripheral hard-
war e to drive the system’s bus), you can’t easily use vmalloc. The right time to call
vmalloc is when you are allocating memory for a large sequential buffer that exists
only in software. It’s important to note that vmalloc has more overhead than
_ _get_fr ee_pages because it must both retrieve the memory and build the page
tables. Therefor e, it doesn’t make sense to call vmalloc to allocate just one page.

An example of a function that uses vmalloc is the cr eate_module system call,
which uses vmalloc to get space for the module being created. Code and data of
the module are later copied to the allocated space using copy_fr om_user, after ins-
mod has relocated the code. In this way, the module appears to be loaded into
contiguous memory. You can verify, by looking in /pr oc/ksyms, that kernel sym-
bols exported by modules lie in a differ ent memory range than symbols exported
by the kernel proper.

Memory allocated with vmalloc is released by vfr ee, in the same way that kfr ee
releases memory allocated by kmalloc.

Like vmalloc, ior emap builds new page tables; unlike vmalloc, however, it doesn’t
actually allocate any memory. The retur n value of ior emap is a special virtual
addr ess that can be used to access the specified physical address range; the virtual
addr ess obtained is eventually released by calling iounmap. Note that the retur n
value from ior emap cannot be safely derefer enced on all platforms; instead, func-
tions like readb should be used. See “Directly Mapped Memory” in Chapter 8for
the details.

ior emap is most useful for mapping the (physical) address of a PCI buffer to (vir-
tual) kernel space. For example, it can be used to access the frame buffer of a PCI
video device; such buffers are usually mapped at high physical addresses, outside
of the address range for which the kernel builds page tables at boot time. PCI
issues are explained in more detail in “The PCI Interface” in Chapter 15.
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It’s worth noting that for the sake of portability, you should not directly access
addr esses retur ned by ior emap as if they were pointers to memory. Rather, you
should always use readb and the other I/O functions introduced in Using I/O
Memory, in Chapter 8. This requir ement applies because some platforms, such as
the Alpha, are unable to directly map PCI memory regions to the processor
addr ess space because of differ ences between PCI specs and Alpha processors in
how data is transferred.

Ther e is almost no limit to how much memory vmalloc can allocate and ior emap
can make accessible, although vmalloc refuses to allocate more memory than the
amount of physical RAM, in order to detect common errors or typos made by pro-
grammers. You should remember, however, that requesting too much memory
with vmalloc leads to the same problems as it does with kmalloc.

Both ior emap and vmalloc ar e page oriented (they work by modifying the page
tables); thus the relocated or allocated size is rounded up to the nearest page
boundary. In addition, the implementation of ior emap found in Linux 2.0 won’t
even consider remapping a physical address that doesn’t start at a page boundary.
Newer kernels allow that by ‘‘rounding down’’ the address to be remapped and by
retur ning an offset into the first remapped page.

One minor drawback of vmalloc is that it can’t be used at interrupt time because
inter nally it uses kmalloc(GFP_KERNEL) to acquire storage for the page tables,
and thus could sleep. This shouldn’t be a problem — if the use of _ _get_fr ee_page
isn’t good enough for an interrupt handler, then the software design needs some
cleaning up.

A scull Using Vir tual Addresses: scullv
Sample code using vmalloc is provided in the scullv module. Like scullp, this mod-
ule is a stripped-down version of scull that uses a differ ent allocation function to
obtain space for the device to store data.

The module allocates memory 16 pages at a time. The allocation is done in large
chunks to achieve better perfor mance than scullp and to show something that
takes too long with other allocation techniques to be feasible. Allocating more
than one page with _ _get_fr ee_pages is failure prone, and even when it succeeds,
it can be slow. As we saw earlier, vmalloc is faster than other functions in allocat-
ing several pages, but somewhat slower when retrieving a single page, because of
the overhead of page-table building. scullv is designed like scullp. order specifies
the ‘‘order’’ of each allocation and defaults to 4. The only differ ence between
scullv and scullp is in allocation management. These lines use vmalloc to obtain
new memory:

/* Allocate a quantum using virtual addresses */
if (!dptr->data[s_pos]) {

dptr->data[s_pos] =
(void *)vmalloc(PAGE_SIZE << dptr->order);

vmalloc and Friends
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if (!dptr->data[s_pos])
goto nomem;

memset(dptr->data[s_pos], 0, PAGE_SIZE << dptr->order);
}

And these lines release memory:

/* Release the quantum set */
for (i = 0; i < qset; i++)

if (dptr->data[i])
vfree(dptr->data[i]);

If you compile both modules with debugging enabled, you can look at their data
allocation by reading the files they create in /pr oc. The following snapshots were
taken on two differ ent systems:

salma% cat /tmp/bigfile > /dev/scullp0; head -5 /proc/scullpmem

Device 0: qset 500, order 0, sz 1048576
item at e00000003e641b40, qset at e000000025c60000

0:e00000003007c000
1:e000000024778000

salma% cat /tmp/bigfile > /dev/scullv0; head -5 /proc/scullvmem

Device 0: qset 500, order 4, sz 1048576
item at e0000000303699c0, qset at e000000025c87000

0:a000000000034000
1:a000000000078000

salma% uname -m
ia64

rudo% cat /tmp/bigfile > /dev/scullp0; head -5 /proc/scullpmem

Device 0: qset 500, order 0, sz 1048576
item at c4184780, qset at c71c4800

0:c262b000
1:c2193000

rudo% cat /tmp/bigfile > /dev/scullv0; head -5 /proc/scullvmem

Device 0: qset 500, order 4, sz 1048576
item at c4184b80, qset at c71c4000

0:c881a000
1:c882b000

rudo% uname -m
i686

The values show two differ ent behaviors. On IA-64, physical addresses and virtual
addr esses ar e mapped to completely differ ent addr ess ranges (0xE and 0xA),
wher eas on x86 computers vmalloc retur ns virtual addresses just above the map-
ping used for physical memory.
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Boot-Time Allocation
If you really need a huge buffer of physically contiguous memory, you need to
allocate it by requesting memory at boot time. This technique is inelegant and
inflexible, but it is also the least prone to failure. Needless to say, a module can’t
allocate memory at boot time; only drivers directly linked to the kernel can do
that.

Allocation at boot time is the only way to retrieve consecutive memory pages
while bypassing the limits imposed by get_fr ee_pages on the buffer size, both in
ter ms of maximum allowed size and limited choice of sizes. Allocating memory at
boot time is a ‘‘dirty’’ technique, because it bypasses all memory management poli-
cies by reserving a private memory pool.

One noticeable problem with boot-time allocation is that it is not a feasible option
for the average user: being only available for code linked in the kernel image, a
device driver using this kind of allocation can only be installed or replaced by
rebuilding the kernel and rebooting the computer. Fortunately, there are a pair of
workar ounds to this problem, which we introduce soon.

Even though we won’t suggest allocating memory at boot time, it’s something
worth mentioning because it used to be the only way to allocate a DMA-capable
buf fer in the first Linux versions, before __GFP_DMA was introduced.

Acquir ing a Dedicated Buffer at Boot Time
When the kernel is booted, it gains access to all the physical memory available in
the system. It then initializes each of its subsystems by calling that subsystem’s ini-
tialization function, allowing initialization code to allocate a memory buffer for pri-
vate use by reducing the amount of RAM left for normal system operation.

With version 2.4 of the kernel, this kind of allocation is perfor med by calling one
of these functions:

#include <linux/bootmem.h>
void *alloc_bootmem(unsigned long size);
void *alloc_bootmem_low(unsigned long size);
void *alloc_bootmem_pages(unsigned long size);
void *alloc_bootmem_low_pages(unsigned long size);

The functions allocate either whole pages (if they end with _pages) or non-page-
aligned memory areas. They allocate either low or normal memory (see the discus-
sion of memory zones earlier in this chapter). Normal allocation retur ns memory
addr esses that are above MAX_DMA_ADDRESS; low memory is at addresses lower
than that value.

Boot-Time Allocation
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This interface was introduced in version 2.3.23 of the kernel. Earlier versions used
a less refined interface, similar to the one described in Unix books. Basically, the
initialization functions of several kernel subsystems received two unsigned
long arguments, which repr esented the current bounds of the free memory area.
Each such function could steal part of this area, retur ning the new lower bound. A
driver allocating memory at boot time, therefor e, was able to steal consecutive
memory from the linear array of available RAM.

The main problem with this older mechanism of managing boot-time allocation
requests was that not all initialization functions could modify the lower memory
bound, so writing a driver needing such allocation usually implied providing users
with a kernel patch. On the other hand, alloc_bootmem can be called by the ini-
tialization function of any kernel subsystem, provided it is perfor med at boot time.

This way of allocating memory has several disadvantages, not the least being the
inability to ever free the buffer. After a driver has taken some memory, it has no
way of retur ning it to the pool of free pages; the pool is created after all the physi-
cal allocation has taken place, and we don’t recommend hacking the data struc-
tur es inter nal to memory management. On the other hand, the advantage of this
technique is that it makes available an area of consecutive physical memory that is
suitable for DMA. This is currently the only safe way in the standard kernel to allo-
cate a buffer of more than 32 consecutive pages, because the maximum value of
order that is accepted by get_fr ee_pages is 5. If, however, you need many pages
and they don’t have to be physically contiguous, vmalloc is by far the best func-
tion to use.

If you are going to resort to grabbing memory at boot time, you must modify
init/main.c in the kernel sources. You’ll find more about main.c in Chapter 16.

Note that this ‘‘allocation’’ can be perfor med only in multiples of the page size,
though the number of pages doesn’t have to be a power of two.

The bigphysarea Patch
Another approach that can be used to make large, contiguous memory regions
available to drivers is to apply the bigphysar ea patch. This unofficial patch has
been floating around the Net for years; it is so renowned and useful that some dis-
tributions apply it to the kernel images they install by default. The patch basically
allocates memory at boot time and makes it available to device drivers at runtime.
You’ll need to pass a command-line option to the kernel to specify the amount of
memory that must be reserved at boot time.

The patch is currently maintained at http://www.polywar e.nl/˜middelink/En/hob-
v4l.html. It includes its own documentation that describes the allocation interface
it offers to device drivers. The Zoran 36120 frame grabber driver, part of the 2.4
ker nel (in drivers/char/zr36120.c) uses the bigphysar ea extension if it is available,
and is thus a good example of how the interface is used.
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Reser ving High RAM Addresses
The last option for allocating contiguous memory areas, and possibly the easiest, is
reserving a memory area at the end of physical memory (whereas bigphysar ea
reserves it at the beginning of physical memory). To this aim, you need to pass a
command-line option to the kernel to limit the amount of memory being managed.
For example, one of your authors uses mem=126M to reserve 2 megabytes in a
system that actually has 128 megabytes of RAM. Later, at runtime, this memory can
be allocated and used by device drivers.

The allocator module, part of the sample code released on the O’Reilly FTP site,
of fers an allocation interface to manage any high memory not used by the Linux
ker nel. The module is described in more detail in “Do-it-yourself allocation” in
Chapter 13.

The advantage of allocator over the bigphysar ea patch is that there’s no need to
modify official kernel sources. The disadvantage is that you must change the com-
mand-line option to the kernel whenever you change the amount of RAM in the
system. Another disadvantage, which makes allocator unsuitable in some situa-
tions is that high memory cannot be used for some tasks, such as DMA buffers for
ISA devices.

Backward Compatibility
The Linux memory management subsystem has changed dramatically since the 2.0
ker nel came out. Happily, however, the changes to its programming interface have
been much smaller and easier to deal with.

kmalloc and kfr ee have remained essentially constant between Linux 2.0 and 2.4.
Access to high memory, and thus the __GFP_HIGHMEM flag, was added starting
with kernel 2.3.23; sysdep.h fills the gaps and allows for 2.4 semantics to be used
in 2.2 and 2.0.

The lookaside cache functions were intr oduced in Linux 2.1.23, and were simply
not available in the 2.0 kernel. Code that must be portable back to Linux 2.0
should stick with kmalloc and kfr ee. Mor eover, kmem_destr oy_cache was intro-
duced during 2.3 development and has only been backported to 2.2 as of 2.2.18.
For this reason scullc refuses to compile with a 2.2 kernel older than that.

_ _get_fr ee_pages in Linux 2.0 had a third, integer argument called dma; it served
the same function that the __GFP_DMA flag serves in modern ker nels but it was
not merged in the flags argument. To addr ess the problem, sysdep.h passes 0 as
the third argument to the 2.0 function. If you want to request DMA pages and be
backward compatible with 2.0, you need to call get_dma_ pages instead of using
__GFP_DMA.

Backward Compatibility
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vmalloc and vfr ee ar e unchanged across all 2.x ker nels. However, the ior emap
function was called vr emap in the 2.0 days, and there was no iounmap. Instead,
an I/O mapping obtained with vr emap would be freed with vfr ee. Also, the header
<linux/vmalloc.h> didn’t exist in 2.0; the functions were declar ed by
<linux/mm.h> instead. As usual, sysdep.h makes 2.4 code work with earlier ker-
nels; it also includes <linux/vmalloc.h> if <linux/mm.h> is included, thus
hiding this differ ence as well.

Quick Reference
The functions and symbols related to memory allocation follow.

#include <linux/malloc.h>
void *kmalloc(size_t size, int flags);
void kfree(void *obj);

The most frequently used interface to memory allocation.

#include <linux/mm.h>
GFP_KERNEL
GFP_ATOMIC
__GFP_DMA
__GFP_HIGHMEM

kmalloc flags. __GFP_DMA and __GFP_HIGHMEM ar e flags that can be OR’d
to either GFP_KERNEL or GFP_ATOMIC.

#include <linux/malloc.h>
kmem_cache_t *kmem_cache_create(char *name, size_t size,

size_t offset, unsigned long flags, constructor(),
destructor());

int kmem_cache_destroy(kmem_cache_t *cache);
Cr eate and destroy a slab cache. The cache can be used to allocate several
objects of the same size.

SLAB_NO_REAP
SLAB_HWCACHE_ALIGN
SLAB_CACHE_DMA

Flags that can be specified while creating a cache.

SLAB_CTOR_ATOMIC
SLAB_CTOR_CONSTRUCTOR

Flags that the allocator can pass to the constructor and the destructor func-
tions.
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void *kmem_cache_alloc(kmem_cache_t *cache, int flags);
void kmem_cache_free(kmem_cache_t *cache, const void *obj);

Allocate and release a single object from the cache.

unsigned long get_zeroed_page(int flags);
unsigned long __get_free_page(int flags);
unsigned long __get_free_pages(int flags, unsigned long

order);
unsigned long __get_dma_pages(int flags, unsigned long

order);
The page-oriented allocation functions. get_zer oed_page retur ns a single,
zer o-filled page. All the other versions of the call do not initialize the contents
of the retur ned page(s). _ _get_dma_ pages is only a compatibility macro in
Linux 2.2 and later (you can use __GFP_DMA instead).

void free_page(unsigned long addr);
void free_pages(unsigned long addr, unsigned long order);

These functions release page-oriented allocations.

#include <linux/vmalloc.h>
void * vmalloc(unsigned long size);
void vfree(void * addr);
#include <asm/io.h>
void * ioremap(unsigned long offset, unsigned long size);
void iounmap(void *addr);

These functions allocate or free a contiguous virtual addr ess space. ior emap
accesses physical memory through virtual addresses, while vmalloc allocates
fr ee pages. Regions mapped with ior emap ar e fr eed with iounmap, while
pages obtained from vmalloc ar e released with vfr ee.

#include <linux/bootmem.h>
void *alloc_bootmem(unsigned long size);
void *alloc_bootmem_low(unsigned long size);
void *alloc_bootmem_pages(unsigned long size);
void *alloc_bootmem_low_pages(unsigned long size);

Only with version 2.4 of the kernel, memory can be allocated at boot time
using these functions. The facility can only be used by drivers directly linked
in the kernel image.

Quick Reference
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CHAPTER EIGHT

HARDWARE
MANAGEMENT

Although playing with scull and similar toys is a good introduction to the software
inter face of a Linux device driver, implementing a real device requir es hardwar e.
The driver is the abstraction layer between software concepts and hardware cir-
cuitry; as such, it needs to talk with both of them. Up to now, we have examined
the internals of software concepts; this chapter completes the picture by showing
you how a driver can access I/O ports and I/O memory while being portable
acr oss Linux platforms.

This chapter continues in the tradition of staying as independent of specific hard-
war e as possible. However, wher e specific examples are needed, we use simple
digital I/O ports (like the standard PC parallel port) to show how the I/O instruc-
tions work, and normal frame-buffer video memory to show memory-mapped I/O.

We chose simple digital I/O because it is the easiest form of input/output port.
Also, the Centronics parallel port implements raw I/O and is available in most
computers: data bits written to the device appear on the output pins, and voltage
levels on the input pins are dir ectly accessible by the processor. In practice, you
have to connect LEDs to the port to actually see the results of a digital I/O opera-
tion, but the underlying hardware is extr emely easy to use.

I/O Por ts and I/O Memory
Every peripheral device is controlled by writing and reading its registers. Most of
the time a device has several registers, and they are accessed at consecutive
addr esses, either in the memory address space or in the I/O address space.

At the hardware level, there is no conceptual differ ence between memory regions
and I/O regions: both of them are accessed by asserting electrical signals on the
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addr ess bus and control bus (i.e., the read and write signals)* and by reading from
or writing to the data bus.

While some CPU manufacturers implement a single address space in their chips,
some others decided that peripheral devices are dif ferent from memory and there-
for e deserve a separate address space. Some processors (most notably the x86
family) have separate read and write electrical lines for I/O ports, and special CPU
instructions to access ports.

Because peripheral devices are built to fit a peripheral bus, and the most popular
I/O buses are modeled on the personal computer, even processors that do not
have a separate address space for I/O ports must fake reading and writing I/O
ports when accessing some peripheral devices, usually by means of external
chipsets or extra circuitry in the CPU core. The latter solution is only common
within tiny processors meant for embedded use.

For the same reason, Linux implements the concept of I/O ports on all computer
platfor ms it runs on, even on platforms where the CPU implements a single
addr ess space. The implementation of port access sometimes depends on the spe-
cific make and model of the host computer (because differ ent models use differ ent
chipsets to map bus transactions into memory address space).

Even if the peripheral bus has a separate address space for I/O ports, not all
devices map their registers to I/O ports. While use of I/O ports is common for ISA
peripheral boards, most PCI devices map registers into a memory address region.
This I/O memory approach is generally preferr ed because it doesn’t requir e use of
special-purpose processor instructions; CPU cores access memory much more effi-
ciently, and the compiler has much more freedom in register allocation and
addr essing-mode selection when accessing memory.

I/O Register s and Conventional Memory
Despite the strong similarity between hardware registers and memory, a program-
mer accessing I/O registers must be careful to avoid being tricked by CPU (or
compiler) optimizations that can modify the expected I/O behavior.

The main differ ence between I/O registers and RAM is that I/O operations have
side effects, while memory operations have none: the only effect of a memory
write is storing a value to a location, and a memory read retur ns the last value
written there. Because memory access speed is so critical to CPU perfor mance, the
no-side-ef fects case has been optimized in several ways: values are cached and
read/write instructions are reorder ed.

* Not all computer platform use a read and a write signal; some have differ ent means to
addr ess exter nal circuits. The differ ence is irrelevant at software level, however, and we’ll
assume all have read and write to simplify the discussion.

I/O Por ts and I/O Memory
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The compiler can cache data values into CPU registers without writing them to
memory, and even if it stores them, both write and read operations can operate on
cache memory without ever reaching physical RAM. Reordering can also happen
both at compiler level and at hardware level: often a sequence of instructions can
be executed more quickly if it is run in an order differ ent fr om that which appears
in the program text, for example, to prevent interlocks in the RISC pipeline. On
CISC processors, operations that take a significant amount of time can be executed
concurr ently with other, quicker ones.

These optimizations are transpar ent and benign when applied to conventional
memory (at least on uniprocessor systems), but they can be fatal to correct I/O
operations because they interfer e with those ‘‘side effects’’ that are the main rea-
son why a driver accesses I/O registers. The processor cannot anticipate a situa-
tion in which some other process (running on a separate processor, or something
happening inside an I/O controller) depends on the order of memory access. A
driver must therefor e ensur e that no caching is perfor med and no read or write
reordering takes place when accessing registers: the compiler or the CPU may just
try to outsmart you and reorder the operations you request; the result can be
strange errors that are very difficult to debug.

The problem with hardware caching is the easiest to face: the underlying hardware
is already configured (either automatically or by Linux initialization code) to dis-
able any hardware cache when accessing I/O regions (whether they are memory
or port regions).

The solution to compiler optimization and hardware reordering is to place a mem-
ory barrier between operations that must be visible to the hardware (or to another
pr ocessor) in a particular order. Linux provides four macros to cover all possible
ordering needs.

#include <linux/kernel.h>
void barrier(void)

This function tells the compiler to insert a memory barrier, but has no effect
on the hardware. Compiled code will store to memory all values that are cur-
rently modified and resident in CPU registers, and will rer ead them later when
they are needed.

#include <asm/system.h>
void rmb(void);
void wmb(void);
void mb(void);

These functions insert hardware memory barriers in the compiled instruction
flow; their actual instantiation is platform dependent. An rmb (r ead memory
barrier) guarantees that any reads appearing before the barrier are completed
prior to the execution of any subsequent read. wmb guarantees ordering in
write operations, and the mb instruction guarantees both. Each of these func-
tions is a superset of barrier.
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A typical usage of memory barriers in a device driver may have this sort of form:

writel(dev->registers.addr, io_destination_address);
writel(dev->registers.size, io_size);
writel(dev->registers.operation, DEV_READ);
wmb();
writel(dev->registers.control, DEV_GO);

In this case, it is important to be sure that all of the device registers controlling a
particular operation have been properly set prior to telling it to begin. The mem-
ory barrier will enforce the completion of the writes in the necessary order.

Because memory barriers affect perfor mance, they should only be used where
really needed. The differ ent types of barriers can also have differ ent per formance
characteristics, so it is worthwhile to use the most specific type possible. For
example, on the x86 architectur e, wmb( ) curr ently does nothing, since writes out-
side the processor are not reorder ed. Reads are reorder ed, however, so mb( ) will
be slower than wmb( ).

It is worth noting that most of the other kernel primitives dealing with synchro-
nization, such as spinlock and atomic_t operations, also function as memory
barriers.

Some architectur es allow the efficient combination of an assignment and a mem-
ory barrier. Version 2.4 of the kernel provides a few macros that perfor m this com-
bination; in the default case they are defined as follows:

#define set_mb(var, value) do {var = value; mb();} while 0
#define set_wmb(var, value) do {var = value; wmb();} while 0
#define set_rmb(var, value) do {var = value; rmb();} while 0

Wher e appr opriate, <asm/system.h> defines these macros to use architectur e-
specific instructions that accomplish the task more quickly.

The header file sysdep.h defines macros described in this section for the platforms
and the kernel versions that lack them.

Using I/O Por ts
I/O ports are the means by which drivers communicate with many devices out
ther e—at least part of the time. This section covers the various functions available
for making use of I/O ports; we also touch on some portability issues.

Let us start with a quick reminder that I/O ports must be allocated before being
used by your driver. As we discussed in “I/O Ports and I/O Memory” in Chapter 2,
the functions used to allocate and free ports are:

Using I/O Por ts
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#include <linux/ioport.h>
int check_region(unsigned long start, unsigned long len);
struct resource *request_region(unsigned long start,

unsigned long len, char *name);
void release_region(unsigned long start, unsigned long len);

After a driver has requested the range of I/O ports it needs to use in its activities, it
must read and/or write to those ports. To this aim, most hardware dif ferentiates
between 8-bit, 16-bit, and 32-bit ports. Usually you can’t mix them like you nor-
mally do with system memory access.*

A C program, therefor e, must call differ ent functions to access differ ent size ports.
As suggested in the previous section, computer architectur es that support only
memory-mapped I/O registers fake port I/O by remapping port addresses to mem-
ory addresses, and the kernel hides the details from the driver in order to ease
portability. The Linux kernel headers (specifically, the architectur e-dependent
header <asm/io.h>) define the following inline functions to access I/O ports.

Fr om now on, when we use unsigned without further type speci-
fications, we are referring to an architectur e-dependent definition
whose exact nature is not relevant. The functions are almost always
portable because the compiler automatically casts the values during
assignment — their being unsigned helps prevent compile-time warn-
ings. No information is lost with such casts as long as the program-
mer assigns sensible values to avoid overflow. We’ll stick to this
convention of ‘‘incomplete typing’’ for the rest of the chapter.

unsigned inb(unsigned port);
void outb(unsigned char byte, unsigned port);

Read or write byte ports (eight bits wide). The port argument is defined as
unsigned long for some platforms and unsigned short for others. The
retur n type of inb is also differ ent acr oss architectur es.

unsigned inw(unsigned port);
void outw(unsigned short word, unsigned port);

These functions access 16-bit ports (word wide); they are not available when
compiling for the M68k and S390 platforms, which support only byte I/O.

* Sometimes I/O ports are arranged like memory, and you can (for example) bind two
8-bit writes into a single 16-bit operation. This applies, for instance, to PC video boards,
but in general you can’t count on this feature.
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unsigned inl(unsigned port);
void outl(unsigned longword, unsigned port);

These functions access 32-bit ports. longword is either declared as
unsigned long or unsigned int, according to the platform. Like word
I/O, ‘‘long’’ I/O is not available on M68k and S390.

Note that no 64-bit port I/O operations are defined. Even on 64-bit architectur es,
the port address space uses a 32-bit (maximum) data path.

The functions just described are primarily meant to be used by device drivers, but
they can also be used from user space, at least on PC-class computers. The GNU C
library defines them in <sys/io.h>. The following conditions should apply in
order for inb and friends to be used in user-space code:

• The program must be compiled with the -O option to force expansion of
inline functions.

• The ioper m or iopl system calls must be used to get permission to perfor m I/O
operations on ports. ioper m gets permission for individual ports, while iopl
gets permission for the entire I/O space. Both these functions are Intel spe-
cific.

• The program must run as root to invoke ioper m or iopl * Alter natively, one of
its ancestors must have gained port access running as root.

If the host platform has no ioper m and no iopl system calls, user space can still
access I/O ports by using the /dev/port device file. Note, though, that the meaning
of the file is very platform specific, and most likely not useful for anything but the
PC.

The sample sources misc-pr ogs/inp.c and misc-pr ogs/outp.c ar e a minimal tool for
reading and writing ports from the command line, in user space. They expect to
be installed under multiple names (i.e., inpb, inpw, and inpl and will manipulate
byte, word, or long ports depending on which name was invoked by the user.
They use /dev/port if ioper m is not present.

The programs can be made setuid root, if you want to live dangerously and play
with your hardware without acquiring explicit privileges.

Str ing Operations
In addition to the single-shot in and out operations, some processors implement
special instructions to transfer a sequence of bytes, words, or longs to and from a
single I/O port or the same size. These are the so-called string instructions, and
they perfor m the task more quickly than a C-language loop can do. The following

* Technically, it must have the CAP_SYS_RAWIO capability, but that is the same as running
as root on current systems.

Using I/O Por ts
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macr os implement the concept of string I/O by either using a single machine
instruction or by executing a tight loop if the target processor has no instruction
that perfor ms string I/O. The macros are not defined at all when compiling for the
M68k and S390 platforms. This should not be a portability problem, since these
platfor ms don’t usually share device drivers with other platforms, because their
peripheral buses are dif ferent.

The prototypes for string functions are the following:

void insb(unsigned port, void *addr, unsigned long count);
void outsb(unsigned port, void *addr, unsigned long count);

Read or write count bytes starting at the memory address addr. Data is read
fr om or written to the single port port.

void insw(unsigned port, void *addr, unsigned long count);
void outsw(unsigned port, void *addr, unsigned long count);

Read or write 16-bit values to a single 16-bit port.

void insl(unsigned port, void *addr, unsigned long count);
void outsl(unsigned port, void *addr, unsigned long count);

Read or write 32-bit values to a single 32-bit port.

Pausing I/O
Some platforms — most notably the i386—can have problems when the processor
tries to transfer data too quickly to or from the bus. The problems can arise
because the processor is overclocked with respect to the ISA bus, and can show
up when the device board is too slow. The solution is to insert a small delay after
each I/O instruction if another such instruction follows. If your device misses some
data, or if you fear it might miss some, you can use pausing functions in place of
the normal ones. The pausing functions are exactly like those listed previously, but
their names end in _p; they are called inb_ p, outb_ p, and so on. The functions are
defined for most supported architectur es, although they often expand to the same
code as nonpausing I/O, because there is no need for the extra pause if the archi-
tectur e runs with a nonobsolete peripheral bus.

Platfor m Dependencies
I/O instructions are, by their nature, highly processor dependent. Because they
work with the details of how the processor handles moving data in and out, it is
very hard to hide the differ ences between systems. As a consequence, much of the
source code related to port I/O is platform dependent.

You can see one of the incompatibilities, data typing, by looking back at the list of
functions, where the arguments are typed differ ently based on the architectural
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dif ferences between platforms. For example, a port is unsigned short on the
x86 (where the processor supports a 64-KB I/O space), but unsigned long on
other platforms, whose ports are just special locations in the same address space
as memory.

Other platform dependencies arise from basic structural differ ences in the proces-
sors and thus are unavoidable. We won’t go into detail about the differ ences,
because we assume that you won’t be writing a device driver for a particular sys-
tem without understanding the underlying hardware. Instead, the following is an
overview of the capabilities of the architectur es that are supported by version 2.4
of the kernel:

IA-32 (x86)
The architectur e supports all the functions described in this chapter. Port
numbers are of type unsigned short.

IA-64 (Itanium)
All functions are supported; ports are unsigned long (and memory-
mapped). String functions are implemented in C.

Alpha
All the functions are supported, and ports are memory-mapped. The imple-
mentation of port I/O is differ ent in differ ent Alpha platforms, according to the
chipset they use. String functions are implemented in C and defined in
ar ch/alpha/lib/io.c. Ports are unsigned long.

ARM
Ports are memory-mapped, and all functions are supported; string functions
ar e implemented in C. Ports are of type unsigned int.

M68k
Ports are memory-mapped, and only byte functions are supported. No string
functions are supported, and the port type is unsigned char *.

MIPS
MIPS64

The MIPS port supports all the functions. String operations are implemented
with tight assembly loops, because the processor lacks machine-level string
I/O. Ports are memory-mapped; they are unsigned int in 32-bit processors
and unsigned long in 64-bit ones.

PowerPC
All the functions are supported; ports have type unsigned char *.

Using I/O Por ts
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S390
Similar to the M68k, the header for this platform supports only byte-wide port
I/O with no string operations. Ports are char pointers and are memory-
mapped.

Super-H
Ports are unsigned int (memory-mapped), and all the functions are sup-
ported.

SPARC
SPARC64

Once again, I/O space is memory-mapped. Versions of the port functions are
defined to work with unsigned long ports.

The curious reader can extract more infor mation fr om the io.h files, which some-
times define a few architectur e-specific functions in addition to those we describe
in this chapter. Be war ned that some of these files are rather difficult reading,
however.

It’s interesting to note that no processor outside the x86 family features a differ ent
addr ess space for ports, even though several of the supported families are shipped
with ISA and/or PCI slots (and both buses implement differ ent I/O and memory
addr ess spaces).

Mor eover, some processors (most notably the early Alphas) lack instructions that
move one or two bytes at a time.* Ther efor e, their peripheral chipsets simulate
8-bit and 16-bit I/O accesses by mapping them to special address ranges in the
memory address space. Thus, an inb and an inw instruction that act on the same
port are implemented by two 32-bit memory reads that operate on differ ent
addr esses. Fortunately, all of this is hidden from the device driver writer by the
inter nals of the macros described in this section, but we feel it’s an interesting fea-
tur e to note. If you want to probe further, look for examples in include/asm-
alpha/cor e_lca.h.

How I/O operations are per formed on each platform is well described in the pro-
grammer’s manual for each platform; those manuals are usually available for
download as PDF files on the Web.

* Single-byte I/O is not as important as one may imagine, because it is a rare operation. In
order to read/write a single byte to any address space, you need to implement a data
path connecting the low bits of the register-set data bus to any byte position in the exter-
nal data bus. These data paths requir e additional logic gates that get in the way of every
data transfer. Dropping byte-wide loads and stores can benefit overall system perfor-
mance.
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Using Digital I/O Por ts
The sample code we use to show port I/O from within a device driver acts on
general-purpose digital I/O ports; such ports are found in most computer systems.

A digital I/O port, in its most common incarnation, is a byte-wide I/O location,
either memory-mapped or port-mapped. When you write a value to an output
location, the electrical signal seen on output pins is changed according to the indi-
vidual bits being written. When you read a value from the input location, the cur-
rent logic level seen on input pins is retur ned as individual bit values.

The actual implementation and software inter face of such I/O ports varies from
system to system. Most of the time I/O pins are contr olled by two I/O locations:
one that allows selecting what pins are used as input and what pins are used as
output, and one in which you can actually read or write logic levels. Sometimes,
however, things are even simpler and the bits are hardwir ed as either input or out-
put (but, in this case, you don’t call them ‘‘general-purpose I/O’’ anymore); the
parallel port found on all personal computers is one such not-so-general-purpose
I/O port. Either way, the I/O pins are usable by the sample code we introduce
shortly.

An Over view of the Parallel Por t
Because we expect most readers to be using an x86 platform in the form called
‘‘personal computer,’’ we feel it is worth explaining how the PC parallel port is
designed. The parallel port is the peripheral interface of choice for running digital
I/O sample code on a personal computer. Although most readers probably have
parallel port specifications available, we summarize them here for your conve-
nience.

The parallel interface, in its minimal configuration (we will overlook the ECP and
EPP modes) is made up of three 8-bit ports. The PC standard starts the I/O ports
for the first parallel interface at 0x378, and for the second at 0x278. The first port
is a bidirectional data register; it connects directly to pins 2 through 9 on the phys-
ical connector. The second port is a read-only status register; when the parallel
port is being used for a printer, this register reports several aspects of printer sta-
tus, such as being online, out of paper, or busy. The third port is an output-only
contr ol register, which, among other things, controls whether interrupts are
enabled.

The signal levels used in parallel communications are standard transistor-transistor
logic (TTL) levels: 0 and 5 volts, with the logic threshold at about 1.2 volts; you
can count on the ports at least meeting the standard TTL LS current ratings,
although most modern parallel ports do better in both current and voltage ratings.

Using Digital I/O Por ts
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The parallel connector is not isolated from the computer’s internal
circuitry, which is useful if you want to connect logic gates directly
to the port. But you have to be careful to do the wiring correctly; the
parallel port circuitry is easily damaged when you play with your
own custom circuitry unless you add optoisolators to your circuit.
You can choose to use plug-in parallel ports if you fear you’ll dam-
age your motherboard.

The bit specifications are outlined in Figure 8-1. You can access 12 output bits and
5 input bits, some of which are logically inverted over the course of their signal
path. The only bit with no associated signal pin is bit 4 (0x10) of port 2, which
enables interrupts from the parallel port. We’ll make use of this bit as part of our
implementation of an interrupt handler in Chapter 9.

Input line
Output line

3 2

17 16

Bit #

Pin #

noninverted
inverted

1

13

14

25

49 8 7 6 5 3 2

27 6 5 4 3 1 0

Data port: base_addr + 0

Status port: base_addr + 1 11 10 12 13 15

27 6 5 4 3 1 0

1617 14 1

27 6 5 4 3 1 0

Control port: base_addr + 2

irq enable

KEY

Figur e 8-1. The pinout of the parallel port
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A Sample Driver
The driver we will introduce is called short (Simple Hardware Operations and Raw
Tests). All it does is read and write a few eight-bit ports, starting from the one you
select at load time. By default it uses the port range assigned to the parallel inter-
face of the PC. Each device node (with a unique minor number) accesses a differ-
ent port. The short driver doesn’t do anything useful; it just isolates for external
use a single instruction acting on a port. If you are not used to port I/O, you can
use short to get familiar with it; you can measure the time it takes to transfer data
thr ough a port or play other games.

For short to work on your system, it must have free access to the underlying hard-
war e device (by default, the parallel interface); thus, no other driver may have
allocated it. Most modern distributions set up the parallel port drivers as modules
that are loaded only when needed, so contention for the I/O addresses is not usu-
ally a problem. If, however, you get a “can’t get I/O address” error from short (on
the console or in the system log file), some other driver has probably already
taken the port. A quick look at /pr oc/ioports will usually tell you which driver is
getting in the way. The same caveat applies to other I/O devices if you are not
using the parallel interface.

Fr om now on, we’ll just refer to ‘‘the parallel interface’’ to simplify the discussion.
However, you can set the base module parameter at load time to redir ect short to
other I/O devices. This feature allows the sample code to run on any Linux plat-
for m wher e you have access to a digital I/O interface that is accessible via outb
and inb (even though the actual hardware is memory-mapped on all platforms but
the x86). Later, in “Using I/O Memory,” we’ll show how short can be used with
generic memory-mapped digital I/O as well.

To watch what happens on the parallel connector, and if you have a bit of an
inclination to work with hardware, you can solder a few LEDs to the output pins.
Each LED should be connected in series to a 1-KΩ resistor leading to a ground pin
(unless, of course, your LEDs have the resistor built in). If you connect an output
pin to an input pin, you’ll generate your own input to be read from the input
ports.

Note that you cannot just connect a printer to the parallel port and see data sent to
short. This driver implements simple access to the I/O ports and does not perfor m
the handshake that printers need to operate on the data.

If you are going to view parallel data by soldering LEDs to a D-type connector, we
suggest that you not use pins 9 and 10, because we’ll be connecting them together
later to run the sample code shown in Chapter 9.

As far as short is concerned, /dev/short0 writes to and reads from the eight-bit port
located at the I/O address base (0x378 unless changed at load time). /dev/short1
writes to the eight-bit port located at base + 1, and so on up to base + 7.
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The actual output operation perfor med by /dev/short0 is based on a tight loop
using outb. A memory barrier instruction is used to ensure that the output opera-
tion actually takes place and is not optimized away.

while (count--) {
outb(*(ptr++), address);
wmb();

}

You can run the following command to light your LEDs:

echo -n "any string" > /dev/short0

Each LED monitors a single bit of the output port. Remember that only the last
character written remains steady on the output pins long enough to be perceived
by your eyes. For that reason, we suggest that you prevent automatic insertion of a
trailing newline by passing the -n option to echo.

Reading is perfor med by a similar function, built around inb instead of outb. In
order to read ‘‘meaningful’’ values from the parallel port, you need to have some
hardwar e connected to the input pins of the connector to generate signals. If there
is no signal, you’ll read an endless stream of identical bytes. If you choose to read
fr om an output port, you’ll most likely get back the last value written to the port
(this applies to the parallel interface and to most other digital I/O circuits in com-
mon use). Thus, those uninclined to get out their soldering irons can read the cur-
rent output value on port 0x378 by running a command like:

dd if=/dev/short0 bs=1 count=1 | od -t x1

To demonstrate the use of all the I/O instructions, there are thr ee variations of
each short device: /dev/short0 per forms the loop just shown, /dev/short0p uses
outb_ p and inb_ p in place of the ‘‘fast’’ functions, and /dev/short0s uses the string
instructions. There are eight such devices, from short0 to short7. Although the PC
parallel interface has only three ports, you may need more of them if using a dif-
fer ent I/O device to run your tests.

The short driver perfor ms an absolute minimum of hardware contr ol, but is ade-
quate to show how the I/O port instructions are used. Interested readers may want
to look at the source for the parport and parport_ pc modules to see how compli-
cated this device can get in real life in order to support a range of devices (print-
ers, tape backup, network interfaces) on the parallel port.

Using I/O Memory
Despite the popularity of I/O ports in the x86 world, the main mechanism used to
communicate with devices is through memory-mapped registers and device mem-
ory. Both are called I/O memory because the differ ence between registers and
memory is transparent to software.
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I/O memory is simply a region of RAM-like locations that the device makes avail-
able to the processor over the bus. This memory can be used for a number of pur-
poses, such as holding video data or Ethernet packets, as well as implementing
device registers that behave just like I/O ports (i.e., they have side effects associ-
ated with reading and writing them).

The way used to access I/O memory depends on the computer architectur e, bus,
and device being used, though the principles are the same everywhere. The dis-
cussion in this chapter touches mainly on ISA and PCI memory, while trying to
convey general information as well. Although access to PCI memory is introduced
her e, a thor ough discussion of PCI is deferred to Chapter 15.

According to the computer platform and bus being used, I/O memory may or may
not be accessed through page tables. When access passes though page tables, the
ker nel must first arrange for the physical address to be visible from your driver
(this usually means that you must call ior emap befor e doing any I/O). If no page
tables are needed, then I/O memory locations look pretty much like I/O ports,
and you can just read and write to them using proper wrapper functions.

Whether or not ior emap is requir ed to access I/O memory, direct use of pointers
to I/O memory is a discouraged practice. Even though (as introduced in “I/O Ports
and I/O Memory”) I/O memory is addressed like normal RAM at hardware level,
the extra care outlined in “I/O Registers and Conventional Memory” suggests
avoiding normal pointers. The wrapper functions used to access I/O memory are
both safe on all platforms and optimized away whenever straight pointer derefer-
encing can perfor m the operation.

Ther efor e, even though derefer encing a pointer works (for now) on the x86, fail-
ur e to use the proper macros will hinder the portability and readability of the
driver.

Remember from Chapter 2 that device memory regions must be allocated prior to
use. This is similar to how I/O ports are register ed and is accomplished by the fol-
lowing functions:

int check_mem_region(unsigned long start, unsigned long len);
void request_mem_region(unsigned long start, unsigned long len,
char *name);
void release_mem_region(unsigned long start, unsigned long len);

The start argument to pass to the functions is the physical address of the mem-
ory region, before any remapping takes place. The functions would normally be
used in a manner such as the following:

if (check_mem_region(mem_addr, mem_size)) {
printk("drivername: memory already in use\n");
return -EBUSY;

}
request_mem_region(mem_addr, mem_size, "drivername");

Using I/O Memory
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[...]

release_mem_region(mem_addr, mem_size);

Directly Mapped Memory
Several computer platforms reserve part of their memory address space for I/O
locations, and automatically disable memory management for any (virtual) address
in that memory range.

The MIPS processors used in personal digital assistants (PDAs) offer an interesting
example of this setup. Two address ranges, 512 MB each, are dir ectly mapped to
physical addresses. Any memory access to either of those address ranges bypasses
the MMU, and any access to one of those ranges bypasses the cache as well. A
section of these 512 megabytes is reserved for peripheral devices, and drivers can
access their I/O memory directly by using the noncached address range.

Other platforms have other means to offer directly mapped address ranges: some
of them have special address spaces to derefer ence physical addresses (for exam-
ple, SPARC64 uses a special ‘‘address space identifier’’ for this aim), and others use
virtual addresses set up to bypass processor caches.

When you need to access a directly mapped I/O memory area, you still shouldn’t
der efer ence your I/O pointers, even though, on some architectur es, you may well
be able to get away with doing exactly that. To write code that will work across
systems and kernel versions, however, you must avoid direct accesses and instead
use the following functions.

unsigned readb(address);
unsigned readw(address);
unsigned readl(address);

These macros are used to retrieve 8-bit, 16-bit, and 32-bit data values from I/O
memory. The advantage of using macros is the typelessness of the argument:
address is cast before being used, because the value ‘‘is not clearly either an
integer or a pointer, and we will accept both’’ (from asm-alpha/io.h). Neither
the reading nor the writing functions check the validity of address, because
they are meant to be as fast as pointer derefer encing (we already know that
sometimes they actually expand into pointer derefer encing).

void writeb(unsigned value, address);
void writew(unsigned value, address);
void writel(unsigned value, address);

Like the previous functions, these functions (macros) are used to write 8-bit,
16-bit, and 32-bit data items.
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memset_io(address, value, count);
When you need to call memset on I/O memory, this function does what you
need, while keeping the semantics of the original memset.

memcpy_fromio(dest, source, num);
memcpy_toio(dest, source, num);

These functions move blocks of data to and from I/O memory and behave
like the C library routine memcpy.

In modern versions of the kernel, these functions are available across all architec-
tur es. The implementation will vary, however; on some they are macr os that
expand to pointer operations, and on others they are real functions. As a driver
writer, however, you need not worry about how they work, as long as you use
them.

Some 64-bit platforms also offer readq and writeq, for quad-word (eight-byte)
memory operations on the PCI bus. The quad-wor d nomenclatur e is a historical
leftover from the times when all real processors had 16-bit words. Actually, the L
naming used for 32-bit values has become incorrect too, but renaming everything
would make things still more confused.

Reusing short for I/O Memory
The short sample module, introduced earlier to access I/O ports, can be used to
access I/O memory as well. To this aim, you must tell it to use I/O memory at
load time; also, you’ll need to change the base address to make it point to your
I/O region.

For example, this is how we used short to light the debug LEDs on a MIPS devel-
opment board:

mips.root# ./short_load use_mem=1 base=0xb7ffffc0
mips.root# echo -n 7 > /dev/short0

Use of short for I/O memory is the same as it is for I/O ports; however, since no
pausing or string instructions exist for I/O memory, access to /dev/short0p and
/dev/short0s per forms the same operation as /dev/short0.

The following fragment shows the loop used by short in writing to a memory loca-
tion:

while (count--) {
writeb(*(ptr++), address);
wmb();

}

Note the use of a write memory barrier here. Because writeb likely turns into a
dir ect assignment on many architectur es, the memory barrier is needed to ensure
that the writes happen in the expected order.
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Software-Mapped I/O Memory
The MIPS class of processors notwithstanding, directly mapped I/O memory is
pr etty rar e in the current platform arena; this is especially true when a peripheral
bus is used with memory-mapped devices (which is most of the time).

The most common hardware and software arrangement for I/O memory is this:
devices live at well-known physical addresses, but the CPU has no predefined vir-
tual address to access them. The well-known physical address can be either hard-
wir ed in the device or assigned by system firmwar e at boot time. The former is
true, for example, of ISA devices, whose addresses are either burned in device
logic circuits, statically assigned in local device memory, or set by means of physi-
cal jumpers. The latter is true of PCI devices, whose addresses are assigned by sys-
tem software and written to device memory, where they persist only while the
device is powered on.

Either way, for software to access I/O memory, there must be a way to assign a
virtual address to the device. This is the role of the ior emap function, introduced
in “vmalloc and Friends.” The function, which was covered in the previous chapter
because it is related to memory use, is designed specifically to assign virtual
addr esses to I/O memory regions. Moreover, ker nel developers implemented
ior emap so that it doesn’t do anything if applied to directly mapped I/O addresses.

Once equipped with ior emap (and iounmap), a device driver can access any I/O
memory address, whether it is directly mapped to virtual address space or not.
Remember, though, that these addresses should not be derefer enced dir ectly;
instead, functions like readb should be used. We could thus arrange short to work
with both MIPS I/O memory and the more common ISA/PCI x86 memory by
equipping the module with ior emap/iounmap calls whenever the use_mem
parameter is set.

Befor e we show how short calls the functions, we’d better review the prototypes
of the functions and introduce a few details that we passed over in the previous
chapter.

The functions are called according to the following definition:

#include <asm/io.h>
void *ioremap(unsigned long phys_addr, unsigned long size);
void *ioremap_nocache(unsigned long phys_addr, unsigned long size);
void iounmap(void * addr);

First of all, you’ll notice the new function ior emap_nocache. We didn’t cover it in
Chapter 7, because its meaning is definitely hardware related. Quoting from one of
the kernel headers: ‘‘It’s useful if some control registers are in such an area and
write combining or read caching is not desirable.’’ Actually, the function’s imple-
mentation is identical to ior emap on most computer platforms: in situations in
which all of I/O memory is already visible through noncacheable addresses,
ther e’s no reason to implement a separate, noncaching version of ior emap.
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Another important feature of ior emap is the differ ent behavior of the 2.0 version
with respect to later ones. Under Linux 2.0, the function (called, remember,
vr emap at the time) refused to remap any non-page-aligned memory region. This
was a sensible choice, since at CPU level everything happens with page-sized
granularity. However, sometimes you need to map small regions of I/O registers
whose (physical) address is not page aligned. To fit this new need, version 2.1.131
and later of the kernel are able to remap unaligned addresses.

Our short module, in order to be backward portable to version 2.0 and to be able
to access non-page-aligned registers, includes the following code instead of calling
ior emap dir ectly:

/* Remap a not (necessarily) aligned port region */
void *short_remap(unsigned long phys_addr)
{

/* The code comes mainly from arch/any/mm/ioremap.c */
unsigned long offset, last_addr, size;

last_addr = phys_addr + SHORT_NR_PORTS - 1;
offset = phys_addr & ˜PAGE_MASK;

/* Adjust the begin and end to remap a full page */
phys_addr &= PAGE_MASK;
size = PAGE_ALIGN(last_addr) - phys_addr;
return ioremap(phys_addr, size) + offset;

}

/* Unmap a region obtained with short_remap */
void short_unmap(void *virt_add)
{

iounmap((void *)((unsigned long)virt_add & PAGE_MASK));
}

ISA Memory Below 1 MB
One of the most well-known I/O memory regions is the ISA range as found on
personal computers. This is the memory range between 640 KB (0xA0000) and 1
MB (0x100000). It thus appears right in the middle of regular system RAM. This
positioning may seem a little strange; it is an artifact of a decision made in the
early 1980s, when 640 KB of memory seemed like more than anybody would ever
be able to use.

This memory range belongs to the non-directly-mapped class of memory.* You

* Actually, this is not completely true. The memory range is so small and so frequently
used that the kernel builds page tables at boot time to access those addresses. However,
the virtual address used to access them is not the same as the physical address, and thus
ior emap is needed anyway. Moreover, version 2.0 of the kernel had that range directly
mapped. See “Backward Compatibility” for 2.0 issues.
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can read/write a few bytes in that memory range using the short module as
explained previously, that is, by setting use_mem at load time.

Although ISA I/O memory exists only in x86-class computers, we think it’s worth
spending a few words and a sample driver on it.

We are not going to discuss PCI memory in this chapter, since it is the cleanest
kind of I/O memory: once you know the physical address you can simply remap
and access it. The ‘‘problem’’ with PCI I/O memory is that it doesn’t lend itself to a
working example for this chapter, because we can’t know in advance the physical
addr esses your PCI memory is mapped to, nor whether it’s safe to access either of
those ranges. We chose to describe the ISA memory range because it’s both less
clean and more suitable to running sample code.

To demonstrate access to ISA memory, we will make use of yet another silly little
module (part of the sample sources). In fact, this one is called silly, as an acr onym
for Simple Tool for Unloading and Printing ISA Data, or something like that.

The module supplements the functionality of short by giving access to the whole
384-KB memory space and by showing all the differ ent I/O functions. It features
four device nodes that perfor m the same task using differ ent data transfer func-
tions. The silly devices act as a window over I/O memory, in a way similar to
/dev/mem. You can read and write data, and lseek to an arbitrary I/O memory
addr ess.

Because silly pr ovides access to ISA memory, it must start by mapping the physical
ISA addresses into kernel virtual addresses. In the early days of the Linux kernel,
one could simply assign a pointer to an ISA address of interest, then derefer ence it
dir ectly. In the modern world, though, we must work with the virtual memory sys-
tem and remap the memory range first. This mapping is done with ior emap, as
explained earlier for short:

#define ISA_BASE 0xA0000
#define ISA_MAX 0x100000 /* for general memory access */

/* this line appears in silly_init */
io_base = ioremap(ISA_BASE, ISA_MAX - ISA_BASE);

ior emap retur ns a pointer value that can be used with readb and the other func-
tions explained in the section “Directly Mapped Memory.”

Let’s look back at our sample module to see how these functions might be used.
/dev/sillyb, featuring minor number 0, accesses I/O memory with readb and
writeb. The following code shows the implementation for read, which makes the
addr ess range 0xA0000-0xFFFFF available as a virtual file in the range
0-0x5FFFF. The read function is structured as a switch statement over the dif-
fer ent access modes; here is the sillyb case:
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case M_8:
while (count) {

*ptr = readb(add);
add++; count--; ptr++;

}
break;

The next two devices are /dev/sillyw (minor number 1) and /dev/sillyl (minor num-
ber 2). They act like /dev/sillyb, except that they use 16-bit and 32-bit functions.
Her e’s the write implementation of sillyl, again part of a switch:

case M_32:
while (count >= 4) {

writel(*(u32 *)ptr, add);
add+=4; count-=4; ptr+=4;

}
break;

The last device is /dev/sillycp (minor number 3), which uses the memcpy_*io func-
tions to perfor m the same task. Here’s the core of its read implementation:

case M_memcpy:
memcpy_fromio(ptr, add, count);
break;

Because ior emap was used to provide access to the ISA memory area, silly must
invoke iounmap when the module is unloaded:

iounmap(io_base);

isa_readb and Friends
A look at the kernel source will turn up another set of routines with names like
isa_r eadb. In fact, each of the functions just described has an isa_ equivalent.
These functions provide access to ISA memory without the need for a separate
ior emap step. The word from the kernel developers, however, is that these func-
tions are intended to be temporary driver-porting aids, and that they may go away
in the future. Their use is thus best avoided.

Probing for ISA Memory
Even though most modern devices rely on better I/O bus architectur es, like PCI,
sometimes programmers must still deal with ISA devices and their I/O memory, so
we’ll spend a page on this issue. We won’t touch high ISA memory (the so-called
memory hole in the 14 MB to 16 MB physical address range), because that kind of
I/O memory is extremely rare nowadays and is not supported by the majority of
moder n motherboards or by the kernel. To access that range of I/O memory you’d
need to hack the kernel initialization sequence, and that is better not covered
her e.
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When using ISA memory-mapped devices, the driver writer often ignores where
relevant I/O memory is located in the physical address space, since the actual
addr ess is usually assigned by the user among a range of possible addresses. Or it
may be necessary simply to see if a device is present at a given address or not.

The memory resource management scheme can be helpful in probing, since it will
identify regions of memory that have already been claimed by another driver. The
resource manager, however, cannot tell you about devices whose drivers have not
been loaded, or whether a given region contains the device that you are inter ested
in. Thus, it can still be necessary to actually probe memory to see what is there.
Ther e ar e thr ee distinct cases that you will encounter: that RAM is mapped to the
addr ess, that ROM is there (the VGA BIOS, for example), or that the area is free.

The skull sample source shows a way to deal with such memory, but since skull is
not related to any physical device, it just prints information about the 640 KB to 1
MB memory region and then exits. However, the code used to analyze memory is
worth describing, since it shows how memory probes can be done.

The code to check for RAM segments makes use of cli to disable interrupts,
because these segments can be identified only by physically writing and rer eading
data, and real RAM might be changed by an interrupt handler in the middle of our
tests. The following code is not completely foolproof, because it might mistake
RAM memory on acquisition boards for empty regions if a device is actively writ-
ing to its own memory while this code is scanning the area. However, this situa-
tion is quite unlikely to happen.

unsigned char oldval, newval; /* values read from memory */
unsigned long flags; /* used to hold system flags */
unsigned long add, i;
void *base;

/* Use ioremap to get a handle on our region */
base = ioremap(ISA_REGION_BEGIN, ISA_REGION_END - ISA_REGION_BEGIN);
base -= ISA_REGION_BEGIN; /* Do the offset once */

/* probe all the memory hole in 2-KB steps */
for (add = ISA_REGION_BEGIN; add < ISA_REGION_END; add += STEP) {

/*
* Check for an already allocated region.
*/

if (check_mem_region (add, 2048)) {
printk(KERN_INFO "%lx: Allocated\n", add);
continue;

}
/*
* Read and write the beginning of the region and see what happens.
*/

save_flags(flags);
cli();
oldval = readb (base + add); /* Read a byte */
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writeb (oldvalˆ0xff, base + add);
mb();
newval = readb (base + add);
writeb (oldval, base + add);
restore_flags(flags);

if ((oldvalˆnewval) == 0xff) { /* we reread our change: it’s RAM */
printk(KERN_INFO "%lx: RAM\n", add);
continue;

}
if ((oldvalˆnewval) != 0) { /* random bits changed: it’s empty */

printk(KERN_INFO "%lx: empty\n", add);
continue;

}

/*
* Expansion ROM (executed at boot time by the BIOS)
* has a signature where the first byte is 0x55, the second 0xaa,
* and the third byte indicates the size of such ROM
*/

if ( (oldval == 0x55) && (readb (base + add + 1) == 0xaa)) {
int size = 512 * readb (base + add + 2);
printk(KERN_INFO "%lx: Expansion ROM, %i bytes\n",

add, size);
add += (size & ˜2048) - 2048; /* skip it */
continue;

}

/*
* If the tests above failed, we still don’t know if it is ROM or
* empty. Since empty memory can appear as 0x00, 0xff, or the low
* address byte, we must probe multiple bytes: if at least one of
* them is different from these three values, then this is ROM
* (though not boot ROM).
*/

printk(KERN_INFO "%lx: ", add);
for (i=0; i<5; i++) {

unsigned long radd = add + 57*(i+1); /* a "random" value */
unsigned char val = readb (base + radd);
if (val && val != 0xFF && val != ((unsigned long) radd&0xFF))

break;
}
printk("%s\n", i==5 ? "empty" : "ROM");

}

Detecting memory doesn’t cause collisions with other devices, as long as you take
car e to restor e any byte you modified while you were probing. It is worth noting
that it is always possible that writing to another device’s memory will cause that
device to do something undesirable. In general, this method of probing memory
should be avoided if possible, but it’s not always possible when dealing with older
hardwar e.
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Backward Compatibility
Happily, little has changed with regard to basic hardware access. There are just a
few things that need to be kept in mind when writing backward-compatible
drivers.

Hardwar e memory barriers didn’t exist in version 2.0 of the kernel. There was no
need for such ordering instructions on the platforms then supported. Including sys-
dep.h in your driver will fix the problem by defining hardware barriers to be the
same as software barriers.

Similarly, not all of the port-access functions (inb and friends) were supported on
all architectur es in older kernels. The string functions, in particular, tended to be
absent. We don’t provide the missing functions in our sysdep.h facility: it won’t be
an easy task to perfor m cleanly and most likely is not worth the effort, given the
hardwar e dependency of those functions.

In Linux 2.0, ior emap and iounmap wer e called vr emap and vfr ee, respectively.
The parameters and the functionality were the same. Thus, a couple of definitions
that map the functions to their older counterpart are often enough.

Unfortunately, while vr emap worked just like ior emap for providing access to
‘‘high’’ memory (such as that on PCI cards), it did refuse to remap the ISA memory
ranges. Back in those days, access to this memory was done via direct pointers, so
ther e was no need to remap that address space. Thus, a more complete solution to
implement ior emap for Linux 2.0 running on the x86 platform is as follows:

extern inline void *ioremap(unsigned long phys_addr, unsigned long size)
{

if (phys_addr >= 0xA0000 && phys_addr + size <= 0x100000)
return (void *)phys_addr;

return vremap(phys_addr, size);
}

extern inline void iounmap(void *addr)
{

if ((unsigned long)addr >= 0xA0000
&& (unsigned long)addr < 0x100000)

return;
vfree(addr);

}

If you include sysdep.h in your drivers you’ll be able to use ior emap with no prob-
lems even when accessing ISA memory.

Allocation of memory regions (check_mem_r egion and friends) was introduced in
ker nel 2.3.17. In the 2.0 and 2.2 kernels, there was no central facility for the allo-
cation of memory resources. You can use the macros anyway if you include
sysdep.h because it nullifies the three macros when compiling for 2.0 or 2.2.
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Quick Reference
This chapter introduced the following symbols related to hardware management.

#include <linux/kernel.h>
void barrier(void)

This ‘‘software’’ memory barrier requests the compiler to consider all memory
volatile across this instruction.

#include <asm/system.h>
void rmb(void);
void wmb(void);
void mb(void);

Hardwar e memory barriers. They request the CPU (and the compiler) to
checkpoint all memory reads, writes, or both, across this instruction.

#include <asm/io.h>
unsigned inb(unsigned port);
void outb(unsigned char byte, unsigned port);
unsigned inw(unsigned port);
void outw(unsigned short word, unsigned port);
unsigned inl(unsigned port);
void outl(unsigned doubleword, unsigned port);

These functions are used to read and write I/O ports. They can also be called
by user-space programs, provided they have the right privileges to access
ports.

unsigned inb_p(unsigned port);
. . .

The statement SLOW_DOWN_IO is sometimes needed to deal with slow ISA
boards on the x86 platform. If a small delay is needed after an I/O operation,
you can use the six pausing counterparts of the functions introduced in the
pr evious entry; these pausing functions have names ending in _p.

void insb(unsigned port, void *addr, unsigned long count);
void outsb(unsigned port, void *addr, unsigned long count);
void insw(unsigned port, void *addr, unsigned long count);
void outsw(unsigned port, void *addr, unsigned long count);
void insl(unsigned port, void *addr, unsigned long count);
void outsl(unsigned port, void *addr, unsigned long count);

The ‘‘string functions’’ are optimized to transfer data from an input port to a
region of memory, or the other way around. Such transfers are per formed by
reading or writing the same port count times.

Quick Reference
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#include <linux/ioport.h>
int check_region(unsigned long start, unsigned long len);
void request_region(unsigned long start, unsigned long len,

char *name);
void release_region(unsigned long start, unsigned long len);

Resource allocators for I/O ports. The check function retur ns 0 for success and
less than 0 in case of error.

int check_mem_region(unsigned long start, unsigned long
len);

void request_mem_region(unsigned long start, unsigned long
len, char *name);

void release_mem_region(unsigned long start, unsigned long
len);

These functions handle resource allocation for memory regions.

#include <asm/io.h>
void *ioremap(unsigned long phys_addr, unsigned long size);
void *ioremap_nocache(unsigned long phys_addr, unsigned long

size);
void iounmap(void *virt_addr);

ior emap remaps a physical address range into the processor’s virtual address
space, making it available to the kernel. iounmap fr ees the mapping when it
is no longer needed.

#include <linux/io.h>
unsigned readb(address);
unsigned readw(address);
unsigned readl(address);
void writeb(unsigned value, address);
void writew(unsigned value, address);
void writel(unsigned value, address);
memset_io(address, value, count);
memcpy_fromio(dest, source, nbytes);
memcpy_toio(dest, source, nbytes);

These functions are used to access I/O memory regions, either low ISA mem-
ory or high PCI buffers.

250

22 June 2001 16:39



CHAPTER NINE

INTERRUPT HANDLING

Although some devices can be controlled using nothing but their I/O regions,
most real-world devices are a bit more complicated than that. Devices have to deal
with the external world, which often includes things such as spinning disks, mov-
ing tape, wires to distant places, and so on. Much has to be done in a time frame
that is differ ent, and slower, than that of the processor. Since it is almost always
undesirable to have the processor wait on external events, there must be a way for
a device to let the processor know when something has happened.

That way, of course, is interrupts. An interrupt is simply a signal that the hardware
can send when it wants the processor’s attention. Linux handles interrupts in much
the same way that it handles signals in user space. For the most part, a driver need
only register a handler for its device’s interrupts, and handle them properly when
they arrive. Of course, underneath that simple picture ther e is some complexity; in
particular, interrupt handlers are somewhat limited in the actions they can perfor m
as a result of how they are run.

It is difficult to demonstrate the use of interrupts without a real hardware device to
generate them. Thus, the sample code used in this chapter works with the parallel
port. We’ll be working with the short module from the previous chapter; with
some small additions it can generate and handle interrupts from the parallel port.
The module’s name, short, actually means short int (it is C, isn’t it?), to remind us
that it handles interrupts.

Overall Control of Interrupts
The way that Linux handles interrupts has changed quite a bit over the years, due
to changes in design and in the hardware it works with. The PC’s view of inter-
rupts in the early days was quite simple; there wer e just 16 interrupt lines and one
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pr ocessor to deal with them. Modern hardwar e can have many more interrupts,
and can also be equipped with fancy advanced programmable interrupt controllers
(APICs), which can distribute interrupts across multiple processors in an intelligent
(and programmable) way.

Happily, Linux has been able to deal with all of these changes with relatively few
incompatibilities at the driver level. Thus, the interface described in this chapter
works, with few differ ences, acr oss many kernel versions. Sometimes things do
work out nicely.

Unix-like systems have used the functions cli and sti to disable and enable inter-
rupts for many years. In modern Linux systems, however, using them directly is
discouraged. It is increasingly impossible for any routine to know whether inter-
rupts are enabled when it is called; thus, simply enabling interrupts with sti befor e
retur n is a bad practice. Your function may be retur ning to a function that expects
interrupts to be still disabled.

Thus, if you must disable interrupts, it is better to use the following calls:

unsigned long flags;

save_flags(flags);
cli();

/* This code runs with interrupts disabled */

restore_flags(flags);

Note that save_flags is a macro, and that it is passed the variable to hold the flags
dir ectly—without an & operator. Ther e is also an important constraint on the use
of these macros: save_flags and restor e_flags must be called from the same func-
tion. In other words, you cannot pass the flags to another function, unless the
other function is inlined. Code that ignores this restriction will work on some
architectur es but will fail on others.

Incr easingly, however, even code like the previous example is discouraged wher-
ever possible. In a multiprocessor system, critical code cannot be protected just by
disabling interrupts; some sort of locking mechanism must be used. Functions
such as spin_lock_ir qsave (cover ed in “Using Spinlocks,” later in this chapter) pro-
vide locking and interrupt control together; these functions are the only really safe
way to control concurrency in the presence of interrupts.

cli, meanwhile, disables interrupts on all pr ocessors on the system, and can thus
af fect the perfor mance of the system as a whole.*

* The truth is just a little more complicated than this. If you are alr eady handling an inter-
rupt, cli only disables interrupts on the current CPU.
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Thus, explicit calls to cli and related functions are slowly disappearing from much
of the kernel. There are occasions where you need them in a device driver, but
they are rar e. Befor e calling cli, think about whether you really need to disable all
interrupts on the system.

Prepar ing the Parallel Por t
Although the parallel interface is simple, it can trigger interrupts. This capability is
used by the printer to notify the lp driver that it is ready to accept the next charac-
ter in the buffer.

Like most devices, the parallel port doesn’t actually generate interrupts before it’s
instructed to do so; the parallel standard states that setting bit 4 of port 2 (0x37a,
0x27a, or whatever) enables interrupt reporting. A simple outb call to set the bit
is perfor med by short at module initialization.

Once interrupts are enabled, the parallel interface generates an interrupt whenever
the electrical signal at pin 10 (the so-called ACK bit) changes from low to high.
The simplest way to force the interface to generate interrupts (short of hooking up
a printer to the port) is to connect pins 9 and 10 of the parallel connector. A  short
length of wire inserted into the appropriate holes in the parallel port connector on
the back of your system will create this connection. The pinout of the parallel port
is shown in Figure 8-1.

Pin 9 is the most significant bit of the parallel data byte. If you write binary data to
/dev/short0, you’ll generate several interrupts. Writing ASCII text to the port won’t
generate interrupts, though, because the most significant bit won’t be set.

If you’d rather avoid soldering, but you do have a printer at hand, you can run the
sample interrupt handler using a real printer, as shown later. Note, however, that
the probing functions we are going to introduce depend on the jumper between
pin 9 and 10 being in place, and you’ll need it to experiment with probing using
our code.

Installing an Interrupt Handler
If you want to actually ‘‘see’’ interrupts being generated, writing to the hardware
device isn’t enough; a software handler must be configured in the system. If the
Linux kernel hasn’t been told to expect your interrupt, it will simply acknowledge
and ignore it.

Interrupt lines are a precious and often limited resource, particularly when there
ar e only 15 or 16 of them. The kernel keeps a registry of interrupt lines, similar to
the registry of I/O ports. A module is expected to request an interrupt channel (or
IRQ, for interrupt request) before using it, and to release it when it’s done. In
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many situations, modules are also expected to be able to share interrupt lines with
other drivers, as we will see. The following functions, declared in
<linux/sched.h>, implement the interface:

int request_irq(unsigned int irq,
void (*handler)(int, void *, struct pt_regs *),
unsigned long flags,
const char *dev_name,
void *dev_id);

void free_irq(unsigned int irq, void *dev_id);

The value retur ned fr om request_ir q to the requesting function is either 0 to indi-
cate success or a negative error code, as usual. It’s not uncommon for the function
to retur n -EBUSY to signal that another driver is already using the requested inter-
rupt line. The arguments to the functions are as follows:

unsigned int irq
This is the interrupt number being requested.

void (*handler)(int, void *, struct pt_regs *)
The pointer to the handling function being installed. We’ll discuss the argu-
ments to this function later in this chapter.

unsigned long flags
As you might expect, a bit mask of options (described later) related to inter-
rupt management.

const char *dev_name
The string passed to request_ir q is used in /pr oc/interrupts to show the owner
of the interrupt (see the next section).

void *dev_id
This pointer is used for shared interrupt lines. It is a unique identifier that is
used when the interrupt line is freed and that may also be used by the driver
to point to its own private data area (to identify which device is interrupting).
When no sharing is in force, dev_id can be set to NULL, but it a good idea
anyway to use this item to point to the device structure. We’ll see a practical
use for dev_id in “Implementing a Handler,” later in this chapter.

The bits that can be set in flags ar e as follows:

SA_INTERRUPT
When set, this indicates a ‘‘fast’’ interrupt handler. Fast handlers are executed
with interrupts disabled (the topic is covered in deeper detail later in this
chapter, in “Fast and Slow Handlers”).
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SA_SHIRQ
This bit signals that the interrupt can be shared between devices. The concept
of sharing is outlined in “Interrupt Sharing,” later in this chapter.

SA_SAMPLE_RANDOM
This bit indicates that the generated interrupts can contribute to the entropy
pool used by /dev/random and /dev/urandom. These devices retur n truly ran-
dom numbers when read and are designed to help application software
choose secure keys for encryption. Such random numbers are extracted from
an entropy pool that is contributed by various random events. If your device
generates interrupts at truly random times, you should set this flag. If, on the
other hand, your interrupts will be predictable (for example, vertical blanking
of a frame grabber), the flag is not worth setting—it wouldn’t contribute to
system entropy anyway. Devices that could be influenced by attackers should
not set this flag; for example, network drivers can be subjected to predictable
packet timing from outside and should not contribute to the entropy pool. See
the comments in drivers/char/random.c for more infor mation.

The interrupt handler can be installed either at driver initialization or when the
device is first opened. Although installing the interrupt handler from within the
module’s initialization function might sound like a good idea, it actually isn’t.
Because the number of interrupt lines is limited, you don’t want to waste them.
You can easily end up with more devices in your computer than there are inter-
rupts. If a module requests an IRQ at initialization, it prevents any other driver
fr om using the interrupt, even if the device holding it is never used. Requesting
the interrupt at device open, on the other hand, allows some sharing of resources.

It is possible, for example, to run a frame grabber on the same interrupt as a
modem, as long as you don’t use the two devices at the same time. It is quite
common for users to load the module for a special device at system boot, even if
the device is rarely used. A data acquisition gadget might use the same interrupt as
the second serial port. While it’s not too hard to avoid connecting to your Internet
service provider (ISP) during data acquisition, being forced to unload a module in
order to use the modem is really unpleasant.

The correct place to call request_ir q is when the device is first opened, befor e the
hardwar e is instructed to generate interrupts. The place to call fr ee_irq is the last
time the device is closed, after the hardware is told not to interrupt the processor
any more. The disadvantage of this technique is that you need to keep a per-
device open count. Using the module count isn’t enough if you control two or
mor e devices from the same module.

This discussion notwithstanding, short requests its interrupt line at load time. This
was done so that you can run the test programs without having to run an extra
pr ocess to keep the device open. short, ther efor e, requests the interrupt from
within its initialization function (short_init) instead of doing it in short_open, as a
real device driver would.
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The interrupt requested by the following code is short_irq. The actual assign-
ment of the variable (i.e., determining which IRQ to use) is shown later, since it is
not relevant to the current discussion. short_base is the base I/O address of the
parallel interface being used; register 2 of the interface is written to enable inter-
rupt reporting.

if (short_irq >= 0) {
result = request_irq(short_irq, short_interrupt,

SA_INTERRUPT, "short", NULL);
if (result) {

printk(KERN_INFO "short: can’t get assigned irq %i\n",
short_irq);

short_irq = -1;
}
else { /* actually enable it -- assume this *is* a parallel port */

outb(0x10,short_base+2);
}

}

The code shows that the handler being installed is a fast handler (SA_INTER-
RUPT), does not support interrupt sharing (SA_SHIRQ is missing), and doesn’t
contribute to system entropy (SA_SAMPLE_RANDOM is missing too). The outb call
then enables interrupt reporting for the parallel port.

The /proc Interface
Whenever a hardware interrupt reaches the processor, an inter nal counter is incre-
mented, providing a way to check whether the device is working as expected.
Reported interrupts are shown in /pr oc/interrupts. The following snapshot was
taken after several days of uptime on a two-processor Pentium system:

CPU0 CPU1
0: 34584323 34936135 IO-APIC-edge timer
1: 224407 226473 IO-APIC-edge keyboard
2: 0 0 XT-PIC cascade
5: 5636751 5636666 IO-APIC-level eth0
9: 0 0 IO-APIC-level acpi

10: 565910 565269 IO-APIC-level aic7xxx
12: 889091 884276 IO-APIC-edge PS/2 Mouse
13: 1 0 XT-PIC fpu
15: 1759669 1734520 IO-APIC-edge ide1

NMI: 69520392 69520392
LOC: 69513717 69513716
ERR: 0

The first column is the IRQ number. You can see from the IRQs that are missing
that the file shows only interrupts corresponding to installed handlers. For exam-
ple, the first serial port (which uses interrupt number 4) is not shown, indicating
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that the modem isn’t being used. In fact, even if the modem had been used earlier
but wasn’t in use at the time of the snapshot, it would not show up in the file; the
serial ports are well behaved and release their interrupt handlers when the device
is closed.

The /pr oc/interrupts display shows how many interrupts have been delivered to
each CPU on the system. As you can see from the output, the Linux kernel tries to
divide interrupt traffic evenly across the processors, with some success. The final
columns give information on the programmable interrupt controller that handles
the interrupt (and which a driver writer need not worry about), and the name(s) of
the device(s) that have register ed handlers for the interrupt (as specified in the
dev_name argument to request_ir q).

The /pr oc tr ee contains another interrupt-related file, /pr oc/stat; sometimes you’ll
find one file more useful and sometimes you’ll prefer the other. /pr oc/stat records
several low-level statistics about system activity, including (but not limited to) the
number of interrupts received since system boot. Each line of stat begins with a
text string that is the key to the line; the intr mark is what we are looking for.
The following (truncated and line-broken) snapshot was taken shortly after the
pr evious one:

intr 884865 695557 4527 0 3109 4907 112759 3 0 0 0 11314
0 17747 1 0 34941 0 0 0 0 0 0 0

The first number is the total of all interrupts, while each of the others repr esents a
single IRQ line, starting with interrupt 0. This snapshot shows that interrupt num-
ber 4 has been used 4907 times, even though no handler is curr ently installed. If
the driver you’re testing acquires and releases the interrupt at each open and close
cycle, you may find /pr oc/stat mor e useful than /pr oc/interrupts.

Another differ ence between the two files is that interrupts is not architectur e
dependent, whereas stat is: the number of fields depends on the hardware under-
lying the kernel. The number of available interrupts varies from as few as 15 on
the SPARC to as many as 256 on the IA-64 and a few other systems. It’s interesting
to note that the number of interrupts defined on the x86 is currently 224, not 16 as
you may expect; this, as explained in include/asm-i386/ir q.h, depends on Linux
using the architectural limit instead of an implementation-specific limit (like the 16
interrupt sources of the old-fashioned PC interrupt controller).

The following is a snapshot of /pr oc/interrupts taken on an IA-64 system. As you
can see, besides differ ent hardwar e routing of common interrupt sources, there’s
no platform dependency here.

CPU0 CPU1
27: 1705 34141 IO-SAPIC-level qla1280
40: 0 0 SAPIC perfmon
43: 913 6960 IO-SAPIC-level eth0
47: 26722 146 IO-SAPIC-level usb-uhci
64: 3 6 IO-SAPIC-edge ide0
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80: 4 2 IO-SAPIC-edge keyboard
89: 0 0 IO-SAPIC-edge PS/2 Mouse

239: 5606341 5606052 SAPIC timer
254: 67575 52815 SAPIC IPI
NMI: 0 0
ERR: 0

Autodetecting the IRQ Number
One of the most compelling problems for a driver at initialization time can be how
to determine which IRQ line is going to be used by the device. The driver needs
the information in order to correctly install the handler. Even though a program-
mer could requir e the user to specify the interrupt number at load time, this is a
bad practice because most of the time the user doesn’t know the number, either
because he didn’t configure the jumpers or because the device is jumperless.
Autodetection of the interrupt number is a basic requir ement for driver usability.

Sometimes autodetection depends on the knowledge that some devices feature a
default behavior that rarely, if ever, changes. In this case, the driver might assume
that the default values apply. This is exactly how short behaves by default with the
parallel port. The implementation is straightforward, as shown by short itself:

if (short_irq < 0) /* not yet specified: force the default on */
switch(short_base) {

case 0x378: short_irq = 7; break;
case 0x278: short_irq = 2; break;
case 0x3bc: short_irq = 5; break;

}

The code assigns the interrupt number according to the chosen base I/O address,
while allowing the user to override the default at load time with something like

insmod ./short.o short_irq=x.

short_base defaults to 0x378, so short_irq defaults to 7.

Some devices are mor e advanced in design and simply ‘‘announce’’ which inter-
rupt they’re going to use. In this case, the driver retrieves the interrupt number by
reading a status byte from one of the device’s I/O ports or PCI configuration
space. When the target device is one that has the ability to tell the driver which
interrupt it is going to use, autodetecting the IRQ number just means probing the
device, with no additional work requir ed to probe the interrupt.

It’s interesting to note here that modern devices supply their interrupt configura-
tion. The PCI standard solves the problem by requiring peripheral devices to
declar e what interrupt line(s) they are going to use. The PCI standard is discussed
in Chapter 15.
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Unfortunately, not every device is programmer friendly, and autodetection might
requir e some probing. The technique is quite simple: the driver tells the device to
generate interrupts and watches what happens. If everything goes well, only one
interrupt line is activated.

Though probing is simple in theory, the actual implementation might be unclear.
We’ll look at two ways to perfor m the task: calling kernel-defined helper functions
and implementing our own version.

Kernel-assisted probing

The Linux kernel offers a low-level facility for probing the interrupt number. It
only works for nonshared interrupts, but then most hardware that is capable of
working in a shared interrupt mode provides better ways of finding the configured
interrupt number. The facility consists of two functions, declared in
<linux/interrupt.h> (which also describes the probing machinery):

unsigned long probe_irq_on(void);
This function retur ns a bit mask of unassigned interrupts. The driver must pre-
serve the retur ned bit mask and pass it to pr obe_irq_of f later. After this call,
the driver should arrange for its device to generate at least one interrupt.

int probe_irq_off(unsigned long);
After the device has requested an interrupt, the driver calls this function, pass-
ing as argument the bit mask previously retur ned by pr obe_irq_on.
pr obe_irq_of f retur ns the number of the interrupt that was issued after
‘‘pr obe_on.’’ If no interrupts occurred, 0 is retur ned (thus, IRQ 0 can’t be
pr obed for, but no custom device can use it on any of the supported architec-
tur es anyway). If more than one interrupt occurred (ambiguous detection),
pr obe_irq_of f retur ns a negative value.

The programmer should be careful to enable interrupts on the device after the call
to pr obe_irq_on and to disable them befor e calling pr obe_irq_of f, Additionally, you
must remember to service the pending interrupt in your device after pr obe_irq_of f.

The short module demonstrates how to use such probing. If you load the module
with probe=1, the following code is executed to detect your interrupt line, pro-
vided pins 9 and 10 of the parallel connector are bound together:

int count = 0;
do {

unsigned long mask;

mask = probe_irq_on();
outb_p(0x10,short_base+2); /* enable reporting */
outb_p(0x00,short_base); /* clear the bit */
outb_p(0xFF,short_base); /* set the bit: interrupt! */
outb_p(0x00,short_base+2); /* disable reporting */
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udelay(5); /* give it some time */
short_irq = probe_irq_off(mask);

if (short_irq == 0) { /* none of them? */
printk(KERN_INFO "short: no irq reported by probe\n");
short_irq = -1;

}
/*
* If more than one line has been activated, the result is
* negative. We should service the interrupt (no need for lpt port)
* and loop over again. Loop at most five times, then give up
*/

} while (short_irq < 0 && count++ < 5);
if (short_irq < 0)

printk("short: probe failed %i times, giving up\n", count);

Note the use of udelay befor e calling pr obe_irq_of f. Depending on the speed of
your processor, you may have to wait for a brief period to give the interrupt time
to actually be delivered.

If you dig through the kernel sources, you may stumble across refer ences to a dif-
fer ent pair of functions:

void autoirq_setup(int waittime);
Set up for an IRQ probe. The waittime argument is not used.

int autoirq_report(int waittime);
Delays for the given interval (in jiffies), then retur ns the number of the IRQ
seen since autoir q_setup was called.

These functions are used primarily in the network driver code, for historical rea-
sons. They are curr ently implemented with pr obe_irq_on and pr obe_irq_of f; ther e
is not usually any reason to use the autoir q_ functions over the pr obe_irq_ func-
tions.

Pr obing might be a lengthy task. While this is not true for short, probing a frame
grabber, for example, requir es a delay of at least 20 ms (which is ages for the pro-
cessor), and other devices might take even longer. Ther efor e, it’s best to probe for
the interrupt line only once, at module initialization, independently of whether
you install the handler at device open (as you should) or within the initialization
function (which is not recommended).

It’s interesting to note that on some platforms (PowerPC, M68k, most MIPS imple-
mentations, and both SPARC versions), probing is unnecessary and therefor e the
pr evious functions are just empty placeholders, sometimes called ‘‘useless ISA non-
sense.’’ On other platforms, probing is only implemented for ISA devices. Anyway,
most architectur es define the functions (even if empty) to ease porting existing
device drivers.

Generally speaking, probing is a hack, and mature architectur es ar e like the PCI
bus, which provides all the needed information.
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Do-it-your self probing

Pr obing can be implemented in the driver itself without too much trouble. The
short module perfor ms do-it-yourself detection of the IRQ line if it is loaded with
probe=2.

The mechanism is the same as the one described earlier: enable all unused inter-
rupts, then wait and see what happens. We can, however, exploit our knowledge
of the device. Often a device can be configured to use one IRQ number from a set
of three or four; probing just those IRQs enables us to detect the right one, with-
out having to test for all possible IRQs.

The short implementation assumes that 3, 5, 7, and 9 are the only possible IRQ
values. These numbers are actually the values that some parallel devices allow you
to select.

The following code probes by testing all ‘‘possible’’ interrupts and looking at what
happens. The trials array lists the IRQs to try and has 0 as the end marker; the
tried array is used to keep track of which handlers have actually been register ed
by this driver.

int trials[] = {3, 5, 7, 9, 0};
int tried[] = {0, 0, 0, 0, 0};
int i, count = 0;

/*
* Install the probing handler for all possible lines. Remember
* the result (0 for success, or -EBUSY) in order to only free
* what has been acquired
*/

for (i=0; trials[i]; i++)
tried[i] = request_irq(trials[i], short_probing,

SA_INTERRUPT, "short probe", NULL);

do {
short_irq = 0; /* none obtained yet */
outb_p(0x10,short_base+2); /* enable */
outb_p(0x00,short_base);
outb_p(0xFF,short_base); /* toggle the bit */
outb_p(0x00,short_base+2); /* disable */
udelay(5); /* give it some time */

/* the value has been set by the handler */
if (short_irq == 0) { /* none of them? */

printk(KERN_INFO "short: no irq reported by probe\n");
}
/*
* If more than one line has been activated, the result is
* negative. We should service the interrupt (but the lpt port
* doesn’t need it) and loop over again. Do it at most 5 times
*/
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} while (short_irq <=0 && count++ < 5);

/* end of loop, uninstall the handler */
for (i=0; trials[i]; i++)

if (tried[i] == 0)
free_irq(trials[i], NULL);

if (short_irq < 0)
printk("short: probe failed %i times, giving up\n", count);

You might not know in advance what the ‘‘possible’’ IRQ values are. In that case,
you’ll need to probe all the free interrupts, instead of limiting yourself to a few
trials[]. To probe for all interrupts, you have to probe from IRQ 0 to IRQ
NR_IRQS-1, wher e NR_IRQS is defined in <asm/irq.h> and is platform depen-
dent.

Now we are missing only the probing handler itself. The handler’s role is to
update short_irq according to which interrupts are actually received. A 0 value
in short_irq means ‘‘nothing yet,’’ while a negative value means ‘‘ambiguous.’’
These values were chosen to be consistent with pr obe_irq_of f and to allow the
same code to call either kind of probing within short.c.

void short_probing(int irq, void *dev_id, struct pt_regs *regs)
{

if (short_irq == 0) short_irq = irq; /* found */
if (short_irq != irq) short_irq = -irq; /* ambiguous */

}

The arguments to the handler are described later. Knowing that irq is the inter-
rupt being handled should be sufficient to understand the function just shown.

Fast and Slow Handler s
Older versions of the Linux kernel took great pains to distinguish between ‘‘fast’’
and ‘‘slow’’ interrupts. Fast interrupts were those that could be handled very
quickly, whereas handling slow interrupts took significantly longer. Slow interrupts
could be sufficiently demanding of the processor that it was worthwhile to reen-
able interrupts while they were being handled. Otherwise, tasks requiring quick
attention could be delayed for too long.

In modern ker nels most of the differ ences between fast and slow interrupts have
disappear ed. Ther e remains only one: fast interrupts (those that were requested
with the SA_INTERRUPT flag) are executed with all other interrupts disabled on
the current processor. Note that other processors can still handle interrupts, though
you will never see two processors handling the same IRQ at the same time.

To summarize the slow and fast executing environments:
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• A fast handler runs with interrupt reporting disabled in the micropr ocessor,
and the interrupt being serviced is disabled in the interrupt controller. The
handler can nonetheless enable reporting in the processor by calling sti.

• A slow handler runs with interrupt reporting enabled in the processor, and the
interrupt being serviced is disabled in the interrupt controller.

So, which type of interrupt should your driver use? On modern systems,
SA_INTERRUPT is only intended for use in a few, specific situations (such as
timer interrupts). Unless you have a strong reason to run your interrupt handler
with other interrupts disabled, you should not use SA_INTERRUPT.

This description should satisfy most readers, though someone with a taste for
hardwar e and some experience with her computer might be interested in going
deeper. If you don’t care about the internal details, you can skip to the next sec-
tion.

The inter nals of interrupt handling on the x86

This description has been extrapolated from ar ch/i386/kernel/ir q.c, ar ch/i386/ker-
nel/i8259.c, and include/asm-i386/hw_ir q.h as they appear in the 2.4 kernels;
although the general concepts remain the same, the hardware details differ on
other platforms.

The lowest level of interrupt handling resides in assembly code declared as macros
in hw_ir q.h and expanded in i8259.c. Each interrupt is connected to the function
do_IRQ, defined in ir q.c.

The first thing do_IRQ does is to acknowledge the interrupt so that the interrupt
contr oller can go on to other things. It then obtains a spinlock for the given IRQ
number, thus preventing any other CPU from handling this IRQ. It clears a couple
of status bits (including one called IRQ_WAITING that we’ll look at shortly), and
then looks up the handler(s) for this particular IRQ. If there is no handler, ther e’s
nothing to do; the spinlock is released, any pending tasklets and bottom halves
ar e run, and do_IRQ retur ns.

Usually, however, if a device is interrupting there is a handler register ed as well.
The function handle_IRQ_event is called to actually invoke the handlers. It starts
by testing a global interrupt lock bit; if that bit is set, the processor will spin until it
is cleared. Calling cli sets this bit, thus blocking handling of interrupts; the normal
interrupt handling mechanism does not set this bit, and thus allows further pro-
cessing of interrupts. If the handler is of the slow variety, interrupts are reenabled
in the hardware and the handler is invoked. Then it’s just a matter of cleaning up,
running tasklets and bottom halves, and getting back to regular work. The ‘‘regular
work’’ may well have changed as a result of an interrupt (the handler could
wake_up a process, for example), so the last thing that happens on retur n fr om an
interrupt is a possible rescheduling of the processor.
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Pr obing for IRQs is done by setting the IRQ_WAITING status bit for each IRQ that
curr ently lacks a handler. When the interrupt happens, do_IRQ clears that bit and
then retur ns, since no handler is register ed. pr obe_irq_of f, when called by a driver,
need only search for the IRQ that no longer has IRQ_WAITING set.

Implementing a Handler
So far, we’ve learned to register an interrupt handler, but not to write one. Actu-
ally, there’s nothing unusual about a handler—it’s ordinary C code.

The only peculiarity is that a handler runs at interrupt time and therefor e suf fers
some restrictions on what it can do. These restrictions are the same as those we
saw with task queues. A handler can’t transfer data to or from user space, because
it doesn’t execute in the context of a process. Handlers also cannot do anything
that would sleep, such as calling sleep_on, allocating memory with anything other
than GFP_ATOMIC, or locking a semaphore. Finally, handlers cannot call schedule.

The role of an interrupt handler is to give feedback to its device about interrupt
reception and to read or write data according to the meaning of the interrupt
being serviced. The first step usually consists of clearing a bit on the interface
board; most hardware devices won’t generate other interrupts until their ‘‘interrupt-
pending’’ bit has been cleared. Some devices don’t requir e this step because they
don’t have an ‘‘interrupt-pending’’ bit; such devices are a minority, although the
parallel port is one of them. For that reason, short does not have to clear such a
bit.

A typical task for an interrupt handler is awakening processes sleeping on the
device if the interrupt signals the event they’re waiting for, such as the arrival of
new data.

To stick with the frame grabber example, a process could acquire a sequence of
images by continuously reading the device; the read call blocks before reading
each frame, while the interrupt handler awakens the process as soon as each new
frame arrives. This assumes that the grabber interrupts the processor to signal suc-
cessful arrival of each new frame.

The programmer should be careful to write a routine that executes in a minimum
of time, independent of its being a fast or slow handler. If a long computation
needs to be perfor med, the best approach is to use a tasklet or task queue to
schedule computation at a safer time (see ‘‘Task Queues’’ in Chapter 6).

Our sample code in short makes use of the interrupt to call do_gettimeofday and
print the current time to a page-sized circular buffer. It then awakens any reading
pr ocess because there is now data available to be read.
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void short_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

struct timeval tv;
int written;

do_gettimeofday(&tv);

/* Write a 16-byte record. Assume PAGE_SIZE is a multiple of 16 */
written = sprintf((char *)short_head,"%08u.%06u\n",

(int)(tv.tv_sec % 100000000), (int)(tv.tv_usec));
short_incr_bp(&short_head, written);
wake_up_interruptible(&short_queue); /* wake any reading process */

}

This code, though simple, repr esents the typical job of an interrupt handler. It, in
tur n, calls short_incr_bp, which is defined as follows:

static inline void short_incr_bp(volatile unsigned long *index,
int delta)

{
unsigned long new = *index + delta;
barrier (); /* Don’t optimize these two together */
*index = (new >= (short_buffer + PAGE_SIZE)) ? short_buffer : new;

}

This function has been carefully written to wrap a pointer into the circular buffer
without ever exposing an incorrect value. By assigning only the final value and
placing a barrier to keep the compiler from optimizing things, it is possible to
manipulate the circular buffer pointers safely without locks.

The device file used to read the buffer being filled at interrupt time is /dev/short-
int. This device special file, together with /dev/shortprint, wasn’t introduced in
Chapter 8, because its use is specific to interrupt handling. The internals of
/dev/shortint ar e specifically tailored for interrupt generation and reporting. Writing
to the device generates one interrupt every other byte; reading the device gives
the time when each interrupt was reported.

If you connect together pins 9 and 10 of the parallel connector, you can generate
interrupts by raising the high bit of the parallel data byte. This can be accom-
plished by writing binary data to /dev/short0 or by writing anything to
/dev/shortint.*

The following code implements read and write for /dev/shortint.

* The shortint device accomplishes its task by alternately writing 0x00 and 0xff to the paral-
lel port.

Implementing a Handler
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ssize_t short_i_read (struct file *filp, char *buf, size_t count,
loff_t *f_pos)

{
int count0;

while (short_head == short_tail) {
interruptible_sleep_on(&short_queue);
if (signal_pending (current)) /* a signal arrived */

return -ERESTARTSYS; /* tell the fs layer to handle it */
/* else, loop */

}
/* count0 is the number of readable data bytes */
count0 = short_head - short_tail;
if (count0 < 0) /* wrapped */

count0 = short_buffer + PAGE_SIZE - short_tail;
if (count0 < count) count = count0;

if (copy_to_user(buf, (char *)short_tail, count))
return -EFAULT;

short_incr_bp (&short_tail, count);
return count;

}

ssize_t short_i_write (struct file *filp, const char *buf, size_t count,
loff_t *f_pos)

{
int written = 0, odd = *f_pos & 1;
unsigned long address = short_base; /* output to the parallel

data latch */

if (use_mem) {
while (written < count)

writeb(0xff * ((++written + odd) & 1), address);
} else {

while (written < count)
outb(0xff * ((++written + odd) & 1), address);

}

*f_pos += count;
return written;

}

The other device special file, /dev/shortprint, uses the parallel port to drive a
printer, and you can use it if you want to avoid soldering a wire between pin 9
and 10 of a D-25 connector. The write implementation of shortprint uses a circular
buf fer to store data to be printed, while the read implementation is the one just
shown (so you can read the time your printer takes to eat each character).

In order to support printer operation, the interrupt handler has been slightly modi-
fied from the one just shown, adding the ability to send the next data byte to the
printer if there is mor e data to transfer.
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Using Arguments
Though short ignor es them, three arguments are passed to an interrupt handler:
irq, dev_id, and regs. Let’s look at the role of each.

The interrupt number (int irq) is useful as information you may print in your
log messages, if any. Although it had a role in pre-2.0 kernels, when no dev_id
existed, dev_id serves that role much better.

The second argument, void *dev_id, is a sort of ClientData; a void * argu-
ment is passed to request_ir q, and this same pointer is then passed back as an
argument to the handler when the interrupt happens.

You’ll usually pass a pointer to your device data structure in dev_id, so a driver
that manages several instances of the same device doesn’t need any extra code in
the interrupt handler to find out which device is in charge of the current interrupt
event. Typical use of the argument in an interrupt handler is as follows:

static void sample_interrupt(int irq, void *dev_id, struct pt_regs
*regs)

{
struct sample_dev *dev = dev_id;

/* now ‘dev’ points to the right hardware item */
/* .... */

}

The typical open code associated with this handler looks like this:

static void sample_open(struct inode *inode, struct file *filp)
{

struct sample_dev *dev = hwinfo + MINOR(inode->i_rdev);
request_irq(dev->irq, sample_interrupt,
0 /* flags */, "sample", dev /* dev_id */);
/*....*/
return 0;

}

The last argument, struct pt_regs *regs, is rar ely used. It holds a snapshot
of the processor’s context before the processor entered interrupt code. The regis-
ters can be used for monitoring and debugging; they are not normally needed for
regular device driver tasks.

Enabling and Disabling Interrupts
We have already seen the sti and cli functions, which can enable and disable all
interrupts. Sometimes, however, it’s useful for a driver to enable and disable inter-
rupt reporting for its own IRQ line only. The kernel offers three functions for this
purpose, all declared in <asm/irq.h>:

Implementing a Handler
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void disable_irq(int irq);
void disable_irq_nosync(int irq);
void enable_irq(int irq);

Calling any of these functions may update the mask for the specified irq in the
pr ogrammable interrupt controller (PIC), thus disabling or enabling IRQs across all
pr ocessors. Calls to these functions can be nested—if disable_ir q is called twice in
succession, two enable_ir q calls will be requir ed befor e the IRQ is truly reenabled.
It is possible to call these functions from an interrupt handler, but enabling your
own IRQ while handling it is not usually good practice.

disable_ir q will not only disable the given interrupt, but will also wait for a cur-
rently executing interrupt handler, if any, to complete. disable_ir q_nosync, on the
other hand, retur ns immediately. Thus, using the latter will be a little faster, but
may leave your driver open to race conditions.

But why disable an interrupt? Sticking to the parallel port, let’s look at the plip net-
work interface. A plip device uses the bare-bones parallel port to transfer data.
Since only five bits can be read from the parallel connector, they are interpr eted as
four data bits and a clock/handshake signal. When the first four bits of a packet
ar e transmitted by the initiator (the interface sending the packet), the clock line is
raised, causing the receiving interface to interrupt the processor. The plip handler
is then invoked to deal with newly arrived data.

After the device has been alerted, the data transfer proceeds, using the handshake
line to clock new data to the receiving interface (this might not be the best imple-
mentation, but it is necessary for compatibility with other packet drivers using the
parallel port). Perfor mance would be unbearable if the receiving interface had to
handle two interrupts for every byte received. The driver therefor e disables the
interrupt during the reception of the packet; instead, a poll-and-delay loop is used
to bring in the data.

Similarly, since the handshake line from the receiver to the transmitter is used to
acknowledge data reception, the transmitting interface disables its IRQ line during
packet transmission.

Finally, it’s interesting to note that the SPARC and M68k implementations define
both the disable_ir q and enable_ir q symbols as pointers rather than functions. This
trick allows the kernel to assign the pointers at boot time according to the actual
platfor m being run. The C-language semantics to use the function are the same on
all Linux systems, independent of whether this trick is used or not, which helps
avoid some tedious coding of conditionals.
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Tasklets and Bottom-Half Processing
One of the main problems with interrupt handling is how to perfor m longish tasks
within a handler. Often a substantial amount of work must be done in response to
a device interrupt, but interrupt handlers need to finish up quickly and not keep
interrupts blocked for long. These two needs (work and speed) conflict with each
other, leaving the driver writer in a bit of a bind.

Linux (along with many other systems) resolves this problem by splitting the inter-
rupt handler into two halves. The so-called top half is the routine that actually
responds to the interrupt—the one you register with request_ir q. The bottom half
is a routine that is scheduled by the top half to be executed later, at a safer time.
The use of the term bottom half in the 2.4 kernel can be a bit confusing, in that it
can mean either the second half of an interrupt handler or one of the mechanisms
used to implement this second half, or both. When we refer to a bottom half we
ar e speaking generally about a bottom half; the old Linux bottom-half implementa-
tion is referr ed to explicitly with the acronym BH.

But what is a bottom half useful for?

The big differ ence between the top-half handler and the bottom half is that all
interrupts are enabled during execution of the bottom half—that’s why it runs at a
safer time. In the typical scenario, the top half saves device data to a device-spe-
cific buffer, schedules its bottom half, and exits: this is very fast. The bottom half
then perfor ms whatever other work is requir ed, such as awakening processes,
starting up another I/O operation, and so on. This setup permits the top half to
service a new interrupt while the bottom half is still working.

Every serious interrupt handler is split this way. For instance, when a network
inter face reports the arrival of a new packet, the handler just retrieves the data and
pushes it up to the protocol layer; actual processing of the packet is perfor med in
a bottom half.

One thing to keep in mind with bottom-half processing is that all of the restric-
tions that apply to interrupt handlers also apply to bottom halves. Thus, bottom
halves cannot sleep, cannot access user space, and cannot invoke the scheduler.

The Linux kernel has two differ ent mechanisms that may be used to implement
bottom-half processing. Tasklets were intr oduced late in the 2.3 development
series; they are now the preferr ed way to do bottom-half processing, but they are
not portable to earlier kernel versions. The older bottom-half (BH) implementation
exists in even very old kernels, though it is implemented with tasklets in 2.4. We’ll
look at both mechanisms here. In general, device drivers writing new code should
choose tasklets for their bottom-half processing if possible, though portability con-
siderations may determine that the BH mechanism needs to be used instead.

Tasklets and Bottom-Half Processing
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The following discussion works, once again, with the short driver. When loaded
with a module option, short can be told to do interrupt processing in a top/bot-
tom-half mode, with either a tasklet or bottom-half handler. In this case, the top
half executes quickly; it simply remembers the current time and schedules the bot-
tom half processing. The bottom half is then charged with encoding this time and
awakening any user processes that may be waiting for data.

Tasklets
We have already had an introduction to tasklets in Chapter 6, so a quick review
should suffice here. Remember that tasklets are a special function that may be
scheduled to run, in interrupt context, at a system-determined safe time. They may
be scheduled to run multiple times, but will only run once. No tasklet will ever
run in parallel with itself, since they only run once, but tasklets can run in parallel
with other tasklets on SMP systems. Thus, if your driver has multiple tasklets, they
must employ some sort of locking to avoid conflicting with each other.

Tasklets are also guaranteed to run on the same CPU as the function that first
schedules them. An interrupt handler can thus be secure that a tasklet will not
begin executing before the handler has completed. However, another interrupt can
certainly be delivered while the tasklet is running, so locking between the tasklet
and the interrupt handler may still be requir ed.

Tasklets must be declared with the DECLARE_TASKLET macr o:

DECLARE_TASKLET(name, function, data);

name is the name to be given to the tasklet, function is the function that is
called to execute the tasklet (it takes one unsigned long argument and retur ns
void), and data is an unsigned long value to be passed to the tasklet function.

The short driver declares its tasklet as follows:

void short_do_tasklet (unsigned long);
DECLARE_TASKLET (short_tasklet, short_do_tasklet, 0);

The function tasklet_schedule is used to schedule a tasklet for running. If short is
loaded with tasklet=1, it installs a differ ent interrupt handler that saves data
and schedules the tasklet as follows:

void short_tl_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

do_gettimeofday((struct timeval *) tv_head); /* cast to stop
’volatile’ warning */
short_incr_tv(&tv_head);
tasklet_schedule(&short_tasklet);
short_bh_count++; /* record that an interrupt arrived */

}
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The actual tasklet routine, short_do_tasklet, will be executed shortly at the system’s
convenience. As mentioned earlier, this routine perfor ms the bulk of the work of
handling the interrupt; it looks like this:

void short_do_tasklet (unsigned long unused)
{

int savecount = short_bh_count, written;
short_bh_count = 0; /* we have already been removed from queue */
/*
* The bottom half reads the tv array, filled by the top half,
* and prints it to the circular text buffer, which is then consumed
* by reading processes
*/

/* First write the number of interrupts that occurred before
this bh */

written = sprintf((char *)short_head,"bh after %6i\n",savecount);
short_incr_bp(&short_head, written);

/*
* Then, write the time values. Write exactly 16 bytes at a time,
* so it aligns with PAGE_SIZE
*/

do {
written = sprintf((char *)short_head,"%08u.%06u\n",

(int)(tv_tail->tv_sec % 100000000),
(int)(tv_tail->tv_usec));

short_incr_bp(&short_head, written);
short_incr_tv(&tv_tail);

} while (tv_tail != tv_head);

wake_up_interruptible(&short_queue); /* wake any reading process */
}

Among other things, this tasklet makes a note of how many interrupts have arrived
since it was last called. A device like short can generate a great many interrupts in
a brief period, so it is not uncommon for several to arrive before the bottom half is
executed. Drivers must always be prepar ed for this possibility, and must be able to
deter mine how much work there is to per form from the information left by the top
half.

The BH Mechanism
Unlike tasklets, old-style BH bottom halves have been around almost as long as
the Linux kernel itself. They show their age in a number of ways. For example, all
BH bottom halves are predefined in the kernel, and there can be a maximum of
32 of them. Since they are predefined, bottom halves cannot be used directly by
modules, but that is not actually a problem, as we will see.

Tasklets and Bottom-Half Processing
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Whenever some code wants to schedule a bottom half for running, it calls
mark_bh. In the older BH implemention, mark_bh would set a bit in a bit mask,
allowing the corresponding bottom-half handler to be found quickly at runtime. In
moder n ker nels, it just calls tasklet_schedule to schedule the bottom-half routine
for execution.

Marking bottom halves is defined in <linux/interrupt.h> as

void mark_bh(int nr);

Her e, nr is the ‘‘number’’ of the BH to activate. The number is a symbolic con-
stant defined in <linux/interrupt.h> that identifies the bottom half to run.
The function that corresponds to each bottom half is provided by the driver that
owns the bottom half. For example, when mark_bh(SCSI_BH) is called, the
function being scheduled for execution is scsi_bottom_half_handler, which is part
of the SCSI driver.

As mentioned earlier, bottom halves are static objects, so a modularized driver
won’t be able to register its own BH. There’s no support for dynamic allocation of
BH bottom halves, and it’s unlikely there ever will be. Fortunately, the immediate
task queue can be used instead.

The rest of this section lists some of the most interesting bottom halves. It then
describes how the kernel runs a BH bottom half, which you should understand in
order to use bottom halves properly.

Several BH bottom halves declared by the kernel are inter esting to look at, and a
few can even be used by a driver, as intr oduced earlier. These are the most inter-
esting BHs:

IMMEDIATE_BH
This is the most important bottom half for driver writers. The function being
scheduled runs (with run_task_queue) the tq_immediate task queue. A
driver (like a custom module) that doesn’t own a bottom half can use the
immediate queue as if it were its own BH. After registering a task in the
queue, the driver must mark the BH in order to have its code actually exe-
cuted; how to do this was introduced in “The immediate queue,” in Chapter 6.

TQUEUE_BH
This BH is activated at each timer tick if a task is register ed in tq_timer. In
practice, a driver can implement its own BH using tq_timer. The timer
queue introduced in “The timer queue” in Chapter 6 is a BH, but there’s no
need to call mark_bh for it.

TIMER_BH
This BH is marked by do_timer, the function in charge of the clock tick. The
function that this BH executes is the one that drives the kernel timers. There is
no way to use this facility for a driver short of using add_timer.
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The remaining BH bottom halves are used by specific kernel drivers. There are no
entry points in them for a module, and it wouldn’t make sense for there to be any.
The list of these other bottom halves is steadily shrinking as the drivers are con-
verted to using tasklets.

Once a BH has been marked, it is executed when bh_action (ker nel/softirq.c) is
invoked, which happens when tasklets are run. This happens whenever a process
exits from a system call or when an interrupt handler exits. Tasklets are always
executed as part of the timer interrupt, so a driver can usually expect that a bot-
tom-half routine will be executed at most 10 ms after it has been scheduled.

Wr iting a BH Bottom Half
It’s quite apparent from the list of available bottom halves in “The BH Mechanism”
that a driver implementing a bottom half should attach its code to IMMEDIATE_BH
by using the immediate queue.

When IMMEDIATE_BH is marked, the function in charge of the immediate bottom
half just consumes the immediate queue. If your interrupt handler queues its BH
handler to tq_immediate and marks the IMMEDIATE_BH bottom half, the
queued task will be called at just the right time. Because in all kernels we are
inter ested in you can queue the same task multiple times without trashing the task
queue, you can queue your bottom half every time the top-half handler runs. We’ll
see this behavior in a while.

Drivers with exotic configurations—multiple bottom halves or other setups that
can’t easily be handled with a plain tq_immediate—can be satisfied by using a
custom task queue. The interrupt handler queues the tasks in its own queue, and
when it’s ready to run them, a simple queue-consuming function is inserted into
the immediate queue. See “Running Your Own Task Queues” in Chapter 6 for
details.

Let’s now look at the short BH implementation. When loaded with bh=1, the
module installs an interrupt handler that uses a BH bottom half:

void short_bh_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

/* cast to stop ’volatile’ warning */
do_gettimeofday((struct timeval *) tv_head);
short_incr_tv(&tv_head);

/* Queue the bh. Don’t care about multiple enqueueing */
queue_task(&short_task, &tq_immediate);
mark_bh(IMMEDIATE_BH);

short_bh_count++; /* record that an interrupt arrived */
}

Tasklets and Bottom-Half Processing
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As expected, this code calls queue_task without checking whether the task is
alr eady enqueued.

The BH, then, perfor ms the rest of the work. This BH is, in fact, the same
short_do_tasklet that was shown previuosly.

Her e’s an example of what you see when loading short by specifying bh=1:

morgana% echo 1122334455 > /dev/shortint ; cat /dev/shortint
bh after 5
50588804.876653
50588804.876693
50588804.876720
50588804.876747
50588804.876774

The actual timings that you will see will vary, of course, depending on your partic-
ular system.

Inter rupt Sharing
The notion of an IRQ conflict is almost synonymous with the PC architectur e. In
general, IRQ lines on the PC have not been able to serve more than one device,
and there have never been enough of them. As a result, frustrated users have often
spent much time with their computer case open, trying to find a way to make all
of their hardware play well together.

But, in fact, there is nothing in the design of the hardware itself that says that
interrupt lines cannot be shared. The problems are on the software side. With the
arrival of the PCI bus, the writers of system software have had to work a little
harder, since all PCI interrupts can explicitly be shared. So Linux supports shared
interrupts — and on all buses where it makes any sense, not just the PCI. Thus,
suitably aware drivers for ISA devices can also share an IRQ line.

The question of interrupt sharing under the ISA bus brings in the issue of level-
trigger ed versus edge-triggered interrupt lines. Although the former kind of inter-
rupt reporting is safe with regard to sharing, it may lead to software lockup if not
handled correctly. Edge-triggered interrupts, on the other hand, are not safe with
regard to sharing; ISA is edge triggered, because this signaling is easier to imple-
ment at hardware level and therefor e was the common choice in the 1980s. This
issue is unrelated to electrical signal levels; in order to support sharing, the line
must be able to be driven active by multiple sources whether it is level triggered
or edge triggered.

With a level-triggered interrupt line, the peripheral device asserts the IRQ signal
until software clears the pending interrupt (usually by writing to a device register);
ther efor e, if several devices pull the line active, the CPU will signal an interrupt as
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soon as the IRQ is enabled until all drivers have serviced their devices. This
behavior is safe with regard to sharing but may lead to lockup if a driver fails to
clear its interrupt source.

When using edge-triggered interrupts, on the other hand, interrupts may be lost: if
one device pulls the line active for too long a time, when another device pulls the
line active no edge will be generated, and the processor will ignore the second
request. A shared handler may just not see the interrupt, and if its hardware
doesn’t deassert the IRQ line no other interrupt will be notified for either shared
device.

For this reason, even if interrupt sharing is supported under ISA, it may not func-
tion properly; while some devices pull the IRQ line active for a single clock cycle,
other devices are not so well behaved and may cause great pains to the driver
writer who tries to share the IRQ. We won’t go any deeper into this issue; for the
rest of this section we assume that either the host bus supports sharing or that you
know what you are doing.

To develop a driver that can manage a shared interrupt line, some details need to
be considered. As discussed later, some of the features described in this chapter
ar e not available for devices using interrupt sharing. Whenever possible, it’s better
to support sharing because it presents fewer problems for the final user. In some
cases (e.g., when working with the PCI bus), interrupt sharing is mandatory.

Installing a Shared Handler
Shar ed interrupts are installed through request_ir q just like nonshared ones, but
ther e ar e two differ ences:

• The SA_SHIRQ bit must be specified in the flags argument when requesting
the interrupt.

• The dev_id argument must be unique. Any pointer into the module’s address
space will do, but dev_id definitely cannot be set to NULL.

The kernel keeps a list of shared handlers associated with the interrupt, like a
driver’s signature, and dev_id dif ferentiates between them. If two drivers were to
register NULL as their signature on the same interrupt, things might get mixed up
at unload time, causing the kernel to oops when an interrupt arrived. For this rea-
son, modern ker nels will complain loudly if passed a NULL dev_id when regis-
tering shared interrupts.

When a shared interrupt is requested, request_ir q succeeds if either the interrupt
line is free or any handlers already register ed for that line have also specified that
the IRQ is to be shared. With 2.0 kernels, it was also necessary that all handlers for
a shar ed interrupt were either fast or slow—the two modes could not be mixed.

Inter rupt Sharing
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Whenever two or more drivers are sharing an interrupt line and the hardware
interrupts the processor on that line, the kernel invokes every handler register ed
for that interrupt, passing each its own dev_id. Ther efor e, a shar ed handler must
be able to recognize its own interrupts, and should quickly exit when its own
device has not interrupted.

If you need to probe for your device before requesting the IRQ line, the kernel
can’t help you. No probing function is available for shared handlers. The standard
pr obing mechanism works if the line being used is free, but if the line is already
held by another driver with sharing capabilities, the probe will fail, even if your
driver would have worked perfectly.

The only available technique for probing shared lines, then, is the do-it-yourself
way. The driver should request every possible IRQ line as a shared handler and
then see where interrupts are reported. The differ ence between that and do-it-
yourself probing is that the probing handler must check with the device to see that
the interrupt actually occurred, because it could have been called in response to
another device interrupting on a shared line.

Releasing the handler is perfor med in the normal way, using release_ir q. Her e the
dev_id argument is used to select the correct handler to release from the list of
shar ed handlers for the interrupt. That’s why the dev_id pointer must be unique.

A driver using a shared handler needs to be careful about one more thing: it can’t
play with enable_ir q or disable_ir q. If it does, things might go haywire for other
devices sharing the line. In general, the programmer must remember that his
driver doesn’t own the IRQ, and its behavior should be more ‘‘social’’ than is nec-
essary if one owns the interrupt line.

Running the Handler
As suggested earlier, when the kernel receives an interrupt, all the register ed han-
dlers are invoked. A shared handler must be able to distinguish between interrupts
that it needs to handle and interrupts generated by other devices.

Loading short with the option shared=1 installs the following handler instead of
the default:

void short_sh_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

int value, written;
struct timeval tv;

/* If it wasn’t short, return immediately */
value = inb(short_base);
if (!(value & 0x80)) return;

/* clear the interrupting bit */
outb(value & 0x7F, short_base);
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/* the rest is unchanged */

do_gettimeofday(&tv);
written = sprintf((char *)short_head,"%08u.%06u\n",

(int)(tv.tv_sec % 100000000), (int)(tv.tv_usec));
short_incr_bp(&short_head, written);
wake_up_interruptible(&short_queue); /* wake any reading process */

}

An explanation is due here. Since the parallel port has no ‘‘interrupt-pending’’ bit
to check, the handler uses the ACK bit for this purpose. If the bit is high, the inter-
rupt being reported is for short, and the handler clears the bit.

The handler resets the bit by zeroing the high bit of the parallel interface’s data
port —short assumes that pins 9 and 10 are connected together. If one of the other
devices sharing the IRQ with short generates an interrupt, short sees that its own
line is still inactive and does nothing.

A full-featur ed driver probably splits the work into top and bottom halves, of
course, but that’s easy to add and does not have any impact on the code that
implements sharing. A real driver would also likely use the dev_id argument to
deter mine which, of possibly many, devices might be interrupting.

Note that if you are using a printer (instead of the jumper wire) to test interrupt
management with short, this shared handler won’t work as advertised, because the
printer protocol doesn’t allow for sharing, and the driver can’t know whether the
interrupt was from the printer or not.

The /proc Interface
Installing shared handlers in the system doesn’t affect /pr oc/stat, which doesn’t
even know about handlers. However, /pr oc/interrupts changes slightly.

All the handlers installed for the same interrupt number appear on the same line
of /pr oc/interrupts. The following output shows how shared interrupt handlers are
displayed:

CPU0 CPU1
0: 22114216 22002860 IO-APIC-edge timer
1: 135401 136582 IO-APIC-edge keyboard
2: 0 0 XT-PIC cascade
5: 5162076 5160039 IO-APIC-level eth0
9: 0 0 IO-APIC-level acpi, es1370

10: 310450 312222 IO-APIC-level aic7xxx
12: 460372 471747 IO-APIC-edge PS/2 Mouse
13: 1 0 XT-PIC fpu
15: 1367555 1322398 IO-APIC-edge ide1

NMI: 44117004 44117004
LOC: 44116987 44116986
ERR: 0

Inter rupt Sharing
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The shared interrupt line here is IRQ 9; the active handlers are listed on one line,
separated by commas. Here the power management subsystem (‘‘acpi’’) is sharing
this IRQ with the sound card (‘‘es1370’’). The kernel is unable to distinguish inter-
rupts from these two sources, and will invoke each interrupt handlers in the driver
for each interrupt.

Inter rupt-Dr iven I/O
Whenever a data transfer to or from the managed hardware might be delayed for
any reason, the driver writer should implement buffering. Data buffers help to
detach data transmission and reception from the write and read system calls, and
overall system perfor mance benefits.

A good buffering mechanism leads to interrupt-driven I/O, in which an input
buf fer is filled at interrupt time and is emptied by processes that read the device;
an output buffer is filled by processes that write to the device and is emptied at
interrupt time. An example of interrupt-driven output is the implementation of
/dev/shortint.

For interrupt-driven data transfer to happen successfully, the hardware should be
able to generate interrupts with the following semantics:

• For input, the device interrupts the processor when new data has arrived and
is ready to be retrieved by the system processor. The actual actions to perfor m
depend on whether the device uses I/O ports, memory mapping, or DMA.

• For output, the device delivers an interrupt either when it is ready to accept
new data or to acknowledge a successful data transfer. Memory-mapped and
DMA-capable devices usually generate interrupts to tell the system they are
done with the buffer.

The timing relationships between a read or write and the actual arrival of data
wer e intr oduced in “Blocking and Nonblocking Operations”, in Chapter 5. But
interrupt-driven I/O introduces the problem of synchronizing concurrent access to
shar ed data items and all the issues related to race conditions. The next section
covers this related topic in some depth.

Race Conditions
We have already seen race conditions come up a number of times in the previous
chapters. Whereas race conditions can happen at any time on SMP systems,
unipr ocessor systems, to this point, have had to worry about them rather less.*

* Note, however, that the kernel developers are seriously considering making all ker nel
code preemptable at almost any time, making locking mandatory even on uniprocessor
systems.
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Interrupts, however, can bring with them a whole new set of race conditions, even
on uniprocessor systems. Since an interrupt can happen at any time, it can cause
the interrupt handler to be executed in the middle of an arbitrary piece of driver
code. Thus, any device driver that is working with interrupts—and that is most of
them — must be very concerned with race conditions. For this reason, we look
mor e closely at race conditions and their prevention in this chapter.

Dealing with race conditions is one of the trickiest aspects of programming,
because the related bugs are subtle and very difficult to repr oduce, and it’s hard to
tell when there is a race condition between interrupt code and the driver methods.
The programmer must take great care to avoid corruption of data or metadata.

Dif ferent techniques can be employed to prevent data corruption, and we will
intr oduce the most common ones. We won’t show complete code because the best
code for each situation depends on the operating mode of the device being
driven, and on the programmer’s taste. All of the drivers in this book, however,
pr otect themselves against race conditions, so examples can be found in the sam-
ple code.

The most common ways of protecting data from concurrent access are as follows:

• Using a circular buffer and avoiding shared variables

• Using spinlocks to enforce mutual exclusion

• Using lock variables that are atomically incremented and decremented

Note that semaphores are not listed here. Because locking a semaphore can put a
pr ocess to sleep, semaphores may not be used in interrupt handlers.

Whatever approach you choose, you still need to decide what to do when access-
ing a variable that can be modified at interrupt time. In simple cases, such a vari-
able can simply be declared as volatile to prevent the compiler from
optimizing access to its value (for example, it prevents the compiler from holding
the value in a register for the whole duration of a function). However, the com-
piler generates suboptimal code whenever volatile variables are involved, so
you might choose to resort to some sort of locking instead. In more complicated
situations, there is no choice but to use some sort of locking.

Using Circular Buffers
Using a circular buffer is an effective way of handling concurrent-access problems;
the best way to deal with concurrent access is to perfor m no concurrent access
whatsoever.

The circular buffer uses an algorithm called ‘‘producer and consumer’’: one player
pushes data in and the other pulls data out. Concurrent access is avoided if there

Race Conditions
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is exactly one producer and exactly one consumer. Ther e ar e two examples of
pr oducer and consumer in short. In one case, the reading process is waiting to
consume data that is produced at interrupt time; in the other, the bottom half con-
sumes data produced by the top half.

Two pointers are used to address a circular buffer: head and tail. head is the
point at which data is being written and is updated only by the producer of the
data. Data is being read from tail, which is updated only by the consumer. As
mentioned earlier, if data is written at interrupt time, you must be careful when
accessing head multiple times. You should either declare it as volatile or use
some sort of locking.

The circular buffer runs smoothly, except when it fills up. If that happens, things
become hairy, and you can choose among differ ent possible solutions. The short
implementation just loses data; there’s no check for overflow, and if head goes
beyond tail, a whole buffer of data is lost. Some alternative implementations are
to drop the last item; to overwrite the buffer tail, as printk does (see “How Mes-
sages Get Logged” in Chapter 4); to hold up the producer, as scullpipe does; or to
allocate a temporary extra buffer to back up the main buffer. The best solution
depends on the importance of your data and other situation-specific questions, so
we won’t cover it here.

Although the circular buffer appears to solve the problem of concurrent access,
ther e is still the possibility of a race condition when the read function goes to
sleep. This code shows where the problem appears in short:

while (short_head == short_tail) {
interruptible_sleep_on(&short_queue);
/* ... */
}

When executing this statement, it is possible that new data will arrive after the
while condition is evaluated as true and befor e the process goes to sleep. Infor-
mation carried in by the interrupt won’t be read by the process; the process goes
to sleep even though head != tail, and it isn’t awakened until the next data
item arrives.

We didn’t implement correct locking for short because the source of short_r ead is
included in “A Sample Driver” in Chapter 8, and at that point this discussion was
not worth introducing. Also, the data involved is not worth the effort.

Although the data that short collects is not vital, and the likelihood of getting an
interrupt in the time lapse between two successive instructions is often negligible,
sometimes you just can’t take the risk of going to sleep when data is pending. This
pr oblem is general enough to deserve special treatment and is delayed to ‘‘Going
to Sleep Without Races’’ later in this chapter, wher e we’ll discuss it in detail.
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It’s interesting to note that only a producer-and-consumer situation can be
addr essed with a circular buffer. A programmer must often deal with more com-
plex data structures to solve the concurrent-access problem. The producer/con-
sumer situation is actually the simplest class of these problems; other structures,
such as linked lists, simply don’t lend themselves to a circular buffer implementa-
tion.

Using Spinlocks
We have seen spinlocks before, for example, in the scull driver. The discussion
thus far has looked only at a few uses of spinlocks; in this section we cover them
in rather more detail.

A spinlock, remember, works through a shared variable. A function may acquire
the lock by setting the variable to a specific value. Any other function needing the
lock will query it and, seeing that it is not available, will ‘‘spin’’ in a busy-wait loop
until it is available. Spinlocks thus need to be used with care. A function that holds
a spinlock for too long can waste much time because other CPUs are forced to
wait.

Spinlocks are repr esented by the type spinlock_t, which, along with the vari-
ous spinlock functions, is declared in <asm/spinlock.h>. Nor mally, a spinlock
is declared and initialized to the unlocked state with a line like:

spinlock_t my_lock = SPIN_LOCK_UNLOCKED;

If, instead, it is necessary to initialize a spinlock at runtime, use spin_lock_init:

spin_lock_init(&my_lock);

Ther e ar e a number of functions (actually macros) that work with spinlocks:

spin_lock(spinlock_t *lock);
Acquir e the given lock, spinning if necessary until it is available. On retur n
fr om spin_lock, the calling function owns the lock.

spin_lock_irqsave(spinlock_t *lock, unsigned long flags);
This version also acquires the lock; in addition, it disables interrupts on the
local processor and stores the current interrupt state in flags. Note that all of
the spinlock primitives are defined as macros, and that the flags argument is
passed directly, not as a pointer.

spin_lock_irq(spinlock_t *lock);
This function acts like spin_lock_ir qsave, except that it does not save the cur-
rent interrupt state. This version is slightly more efficient than
spin_lock_ir qsave, but it should only be used in situations in which you know
that interrupts will not have already been disabled.
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spin_lock_bh(spinlock_t *lock);
Obtains the given lock and prevents the execution of bottom halves.

spin_unlock(spinlock_t *lock);
spin_unlock_irqrestore(spinlock_t *lock, unsigned long

flags);
spin_unlock_irq(spinlock_t *lock);
spin_unlock_bh(spinlock_t *lock);

These functions are the counterparts of the various locking primitives
described previously. spin_unlock unlocks the given lock and nothing else.
spin_unlock_ir qrestor e possibly enables interrupts, depending on the flags
value (which should have come from spin_lock_ir qsave). spin_unlock_ir q
enables interrupts unconditionally, and spin_unlock_bh reenables bottom-half
pr ocessing. In each case, your function should be in possession of the lock
befor e calling one of the unlocking primitives, or serious disorder will result.

spin_is_locked(spinlock_t *lock);
spin_trylock(spinlock_t *lock)
spin_unlock_wait(spinlock_t *lock);

spin_is_locked queries the state of a spinlock without changing it. It retur ns
nonzer o if the lock is currently busy. To attempt to acquire a lock without
waiting, use spin_trylock, which retur ns nonzer o if the operation failed (the
lock was busy). spin_unlock_wait waits until the lock becomes free, but does
not take possession of it.

Many users of spinlocks stick to spin_lock and spin_unlock. If you are using spin-
locks in interrupt handlers, however, you must use the IRQ-disabling versions
(usually spin_lock_ir qsave and spin_unlock_ir qsave) in the noninterrupt code. To
do otherwise is to invite a deadlock situation.

It is worth considering an example here. Assume that your driver is running in its
read method, and it obtains a lock with spin_lock. While the read method is hold-
ing the lock, your device interrupts, and your interrupt handler is executed on the
same processor. If it attempts to use the same lock, it will go into a busy-wait
loop, since your read method already holds the lock. But, since the interrupt rou-
tine has preempted that method, the lock will never be released and the processor
deadlocks, which is probably not what you wanted.

This problem can be avoided by using spin_lock_ir qsave to disable interrupts on
the local processor while the lock is held. When in doubt, use the _ir qsave ver-
sions of the primitives and you will not need to worry about deadlocks. Remem-
ber, though, that the flags value from spin_lock_ir qsave must not be passed to
other functions.

Regular spinlocks work well for most situations encountered by device driver writ-
ers. In some cases, however, ther e is a particular pattern of access to critical data
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that is worth treating specially. If you have a situation in which numerous threads
(pr ocesses, interrupt handlers, bottom-half routines) need to access critical data in
a read-only mode, you may be worried about the overhead of using spinlocks.
Numer ous readers cannot interfer e with each other; only a writer can create prob-
lems. In such situations, it is far more efficient to allow all readers to access the
data simultaneously.

Linux has a differ ent type of spinlock, called a reader-writer spinlock for this case.
These locks have a type of rwlock_t and should be initialized to
RW_LOCK_UNLOCKED. Any number of threads can hold the lock for reading at the
same time. When a writer comes along, however, it waits until it can get exclusive
access.

The functions for working with reader-writer locks are as follows:

read_lock(rwlock_t *lock);
read_lock_irqsave(rwlock_t *lock, unsigned long flags);
read_lock_irq(rwlock_t *lock);
read_lock_bh(rwlock_t *lock);

function in the same way as regular spinlocks.

read_unlock(rwlock_t *lock);
read_unlock_irqrestore(rwlock_t *lock, unsigned long flags);
read_unlock_irq(rwlock_t *lock);
read_unlock_bh(rwlock_t *lock);

These are the various ways of releasing a read lock.

write_lock(rwlock_t *lock);
write_lock_irqsave(rwlock_t *lock, unsigned long flags);
write_lock_irq(rwlock_t *lock);
write_lock_bh(rwlock_t *lock);

Acquir e a lock as a writer.

write_unlock(rwlock_t *lock);
write_unlock_irqrestore(rwlock_t *lock, unsigned long

flags);
write_unlock_irq(rwlock_t *lock);
write_unlock_bh(rwlock_t *lock);

Release a lock that was acquired as a writer.

If your interrupt handler uses read locks only, then all of your code may acquire
read locks with read_lock and not disable interrupts. Any write locks must be
acquir ed with write_lock_ir qsave, however, to avoid deadlocks.

It is worth noting that in kernels built for uniprocessor systems, the spinlock func-
tions expand to nothing. They thus have no overhead (other than possibly
disabling interrupts) on those systems, where they are not needed.
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Using Lock Var iables
The kernel provides a set of functions that may be used to provide atomic (nonin-
terruptible) access to variables. Use of these functions can occasionally eliminate
the need for a more complicated locking scheme, when the operations to be per-
for med ar e very simple. The atomic operations may also be used to provide a sort
of ‘‘poor person’s spinlock’’ by manually testing and looping. It is usually better,
however, to use spinlocks directly, since they have been optimized for this pur-
pose.

The Linux kernel exports two sets of functions to deal with locks: bit operations
and access to the ‘‘atomic’’ data type.

Bit operations

It’s quite common to have single-bit lock variables or to update device status flags
at interrupt time—while a process may be accessing them. The kernel offers a set
of functions that modify or test single bits atomically. Because the whole operation
happens in a single step, no interrupt (or other processor) can interfer e.

Atomic bit operations are very fast, since they perfor m the operation using a single
machine instruction without disabling interrupts whenever the underlying platform
can do that. The functions are architectur e dependent and are declar ed in
<asm/bitops.h>. They are guaranteed to be atomic even on SMP computers
and are useful to keep coherence across processors.

Unfortunately, data typing in these functions is architectur e dependent as well.
The nr argument is mostly defined as int but is unsigned long for a few
architectur es. Her e is the list of bit operations as they appear in 2.1.37 and later:

void set_bit(nr, void *addr);
This function sets bit number nr in the data item pointed to by addr. The
function acts on an unsigned long, even though addr is a pointer to
void.

void clear_bit(nr, void *addr);
The function clears the specified bit in the unsigned long datum that lives
at addr. Its semantics are otherwise the same as set_bit.

void change_bit(nr, void *addr);
This function toggles the bit.

test_bit(nr, void *addr);
This function is the only bit operation that doesn’t need to be atomic; it simply
retur ns the current value of the bit.
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int test_and_set_bit(nr, void *addr);
int test_and_clear_bit(nr, void *addr);
int test_and_change_bit(nr, void *addr);

These functions behave atomically like those listed previously, except that
they also retur n the previous value of the bit.

When these functions are used to access and modify a shared flag, you don’t have
to do anything except call them. Using bit operations to manage a lock variable
that controls access to a shared variable, on the other hand, is more complicated
and deserves an example. Most modern code will not use bit operations in this
way, but code like the following still exists in the kernel.

A code segment that needs to access a shared data item tries to atomically acquire
a lock using either test_and_set_bit or test_and_clear_bit. The usual implementa-
tion is shown here; it assumes that the lock lives at bit nr of address addr. It also
assumes that the bit is either 0 when the lock is free or nonzero when the lock is
busy.

/* try to set lock */
while (test_and_set_bit(nr, addr) != 0)

wait_for_a_while();

/* do your work */

/* release lock, and check... */
if (test_and_clear_bit(nr, addr) == 0)

something_went_wrong(); /* already released: error */

If you read through the kernel source, you will find code that works like this
example. As mentioned before, however, it is better to use spinlocks in new code,
unless you need to perfor m useful work while waiting for the lock to be released
(e.g., in the wait_for_a_while() instruction of this listing).

Atomic integer operations

Ker nel pr ogrammers often need to share an integer variable between an interrupt
handler and other functions. A separate set of functions has been provided to facil-
itate this sort of sharing; they are defined in <asm/atomic.h>.

The facility offer ed by atomic.h is much stronger than the bit operations just
described. atomic.h defines a new data type, atomic_t, which can be accessed
only through atomic operations. An atomic_t holds an int value on all sup-
ported architectur es. Because of the way this type works on some processors,
however, the full integer range may not be available; thus, you should not count
on an atomic_t holding more than 24 bits. The following operations are defined
for the type and are guaranteed to be atomic with respect to all processors of an
SMP computer. The operations are very fast because they compile to a single
machine instruction whenever possible.
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285

22 June 2001 16:39



Chapter 9: Interrupt Handling

void atomic_set(atomic_t *v, int i);
Set the atomic variable v to the integer value i.

int atomic_read(atomic_t *v);
Retur n the current value of v.

void atomic_add(int i, atomic_t *v);
Add i to the atomic variable pointed to by v. The retur n value is void,
because most of the time there’s no need to know the new value. This func-
tion is used by the networking code to update statistics about memory usage
in sockets.

void atomic_sub(int i, atomic_t *v);
Subtract i fr om *v.

void atomic_inc(atomic_t *v);
void atomic_dec(atomic_t *v);

Incr ement or decrement an atomic variable.

int atomic_inc_and_test(atomic_t *v);
int atomic_dec_and_test(atomic_t *v);
int atomic_add_and_test(int i, atomic_t *v);
int atomic_sub_and_test(int i, atomic_t *v);

These functions behave like their counterparts listed earlier, but they also
retur n the previous value of the atomic data type.

As stated earlier, atomic_t data items must be accessed only through these func-
tions. If you pass an atomic item to a function that expects an integer argument,
you’ll get a compiler error.

Going to Sleep Without Races
The one race condition that has been omitted so far in this discussion is the prob-
lem of going to sleep. Generally stated, things can happen in the time between
when your driver decides to sleep and when the sleep_on call is actually per-
for med. Occasionally, the condition you are sleeping for may come about before
you actually go to sleep, leading to a longer sleep than expected. It is a problem
far more general than interrupt-driven I/O, and an efficient solution requir es a lit-
tle knowledge of the internals of sleep_on.

As an example, consider again the following code from the short driver:

while (short_head == short_tail) {
interruptible_sleep_on(&short_queue);
/* ... */

}

In this case, the value of short_head could change between the test in the
while statement and the call to interruptible_sleep_on. In that case, the driver will
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sleep even though new data is available; this condition leads to delays in the best
case, and a lockup of the device in the worst.

The way to solve this problem is to go halfway to sleep before per forming the
test. The idea is that the process can add itself to the wait queue, declare itself to
be sleeping, and then per form its tests. This is the typical implementation:

wait_queue_t wait;
init_waitqueue_entry(&wait, current);

add_wait_queue(&short_queue, &wait);
while (1) {

set_current_state(TASK_INTERRUPTIBLE);
if (short_head != short_tail) /* whatever test your driver needs */
break;
schedule();

}
set_current_state(TASK_RUNNING);
remove_wait_queue(&short_queue, &wait);

This code is somewhat like an unrolling of the internals of sleep_on; we’ll step
thr ough it here.

The code starts by declaring a wait_queue_t variable, initializing it, and adding
it to the driver’s wait queue (which, as you may remember, is of type
wait_queue_head_t). Once these steps have been perfor med, a call to
wake_up on short_queue will wake this process.

The process is not yet asleep, however. It gets closer to that state with the call to
set_curr ent_state, which sets the process’s state to TASK_INTERRUPTIBLE. The
rest of the system now thinks that the process is asleep, and the scheduler will not
try to run it. This is an important step in the ‘‘going to sleep’’ process, but things
still are not done.

What happens now is that the code tests for the condition for which it is waiting,
namely, that there is data in the buffer. If no data is present, a call to schedule is
made, causing some other process to run and truly putting the current process to
sleep. Once the process is woken up, it will test for the condition again, and pos-
sibly exit from the loop.

Beyond the loop, there is just a bit of cleaning up to do. The current state is set to
TASK_RUNNING to reflect the fact that we are no longer asleep; this is necessary
because if we exited the loop without ever sleeping, we may still be in
TASK_INTERRUPTIBLE. Then remove_wait_queue is used to take the process off
the wait queue.

So why is this code free of race conditions? When new data comes in, the inter-
rupt handler will call wake_up on short_queue, which has the effect of setting
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the state of every sleeping process on the queue to TASK_RUNNING. If the
wake_up call happens after the buffer has been tested, the state of the task will be
changed and schedule will cause the current process to continue running—after a
short delay, if not immediately.

This sort of ‘‘test while half asleep’’ pattern is so common in the kernel source that
a pair of macros was added during 2.1 development to make life easier:

wait_event(wq, condition);
wait_event_interruptible(wq, condition);

Both of these macros implement the code just discussed, testing the condi-
tion (which, since this is a macro, is evaluated at each iteration of the loop)
in the middle of the ‘‘going to sleep’’ process.

Backward Compatibility
As we stated at the beginning of this chapter, interrupt handling in Linux presents
relatively few compatibility problems with older kernels. There are a few, how-
ever, which we discuss here. Most of the changes occurred between versions 2.0
and 2.2 of the kernel; interrupt handling has been remarkably stable since then.

Differences in the 2.2 Ker nel
The biggest change since the 2.2 series has been the addition of tasklets in kernel
2.3.43. Prior to this change, the BH bottom-half mechanism was the only way for
interrupt handlers to schedule deferred work.

The set_curr ent_state function did not exist in Linux 2.2 (but sysdep.h implements
it). To manipulate the current process state, it was necessary to manipulate the
task structure dir ectly. For example:

current->state = TASK_INTERRUPTIBLE;

Fur ther Differences in the 2.0 Ker nel
In Linux 2.0, there wer e many more dif ferences between fast and slow handlers.
Slow handlers were slower even before they began to execute, because of extra
setup costs in the kernel. Fast handlers saved time not only by keeping interrupts
disabled, but also by not checking for bottom halves before retur ning fr om the
interrupt. Thus, the delay before the execution of a bottom half marked in an
interrupt handler could be longer in the 2.0 kernel. Finally, when an IRQ line was
being shared in the 2.0 kernel, all of the register ed handlers had to be either fast
or slow; the two modes could not be mixed.
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Most of the SMP issues did not exist in 2.0, of course. Interrupt handlers could
only execute on one CPU at a time, so there was no distinction between disabling
interrupts locally or globally.

The disable_ir q_nosync function did not exist in 2.0; in addition, calls to dis-
able_ir q and enable_ir q did not nest.

The atomic operations were dif ferent in 2.0. The functions test_and_set_bit,
test_and_clear_bit, and test_and_change_bit did not exist; instead, set_bit,
clear_bit, and change_bit retur ned a value and functioned like the modern
test_and_ versions. For the integer operations, atomic_t was just a typedef for
int, and variables of type atomic_t could be manipulated like ints. The
atomic_set and atomic_r ead functions did not exist.

The wait_event and wait_event_interruptible macr os did not exist in Linux 2.0.

Quick Reference
These symbols related to interrupt management were intr oduced in this chapter.

#include <linux/sched.h>
int request_irq(unsigned int irq, void (*handler)(),

unsigned long flags, const char *dev_name, void
*dev_id);

void free_irq(unsigned int irq, void *dev_id);
These calls are used to register and unregister an interrupt handler.

SA_INTERRUPT
SA_SHIRQ
SA_SAMPLE_RANDOM

Flags for request_ir q. SA_INTERRUPT requests installation of a fast handler
(as opposed to a slow one). SA_SHIRQ installs a shared handler, and the third
flag asserts that interrupt timestamps can be used to generate system entropy.

/proc/interrupts
/proc/stat

These filesystem nodes are used to report information about hardware inter-
rupts and installed handlers.

unsigned long probe_irq_on(void);
int probe_irq_off(unsigned long);

These functions are used by the driver when it has to probe to determine
what interrupt line is being used by a device. The result of pr obe_irq_on must
be passed back to pr obe_irq_of f after the interrupt has been generated. The
retur n value of pr obe_irq_of f is the detected interrupt number.

Quick Reference
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void disable_irq(int irq);
void disable_irq_nosync(int irq);
void enable_irq(int irq);

A driver can enable and disable interrupt reporting. If the hardware tries to
generate an interrupt while interrupts are disabled, the interrupt is lost forever.
A driver using a shared handler must not use these functions.

DECLARE_TASKLET(name, function, arg);
tasklet_schedule(struct tasklet_struct *);

Utilities for dealing with tasklets. DECLARE_TASKLET declar es a tasklet with
the given name; when run, the given function will be called with arg. Use
tasklet_schedule to schedule a tasklet for execution.

#include <linux/interrupt.h>
void mark_bh(int nr);

This function marks a bottom half for execution.

#include <linux/spinlock.h>
spinlock_t my_lock = SPINLOCK_UNLOCKED;
spin_lock_init(spinlock_t *lock);
spin_lock(spinlock_t *lock);
spin_lock_irqsave(spinlock_t *lock, unsigned long flags);
spin_lock_irq(spinlock_t *lock);
spin_lock_bh(spinlock_t *lock);
spin_unlock(spinlock_t *lock);
spin_unlock_irqrestore(spinlock_t *lock, unsigned long

flags);
spin_unlock_irq(spinlock_t *lock);
spin_unlock_bh(spinlock_t *lock);
spin_is_locked(spinlock_t *lock);
spin_trylock(spinlock_t *lock)
spin_unlock_wait(spinlock_t *lock);

Various utilities for using spinlocks.

rwlock_t my_lock = RW_LOCK_UNLOCKED;
read_lock(rwlock_t *lock);
read_lock_irqsave(rwlock_t *lock, unsigned long flags);
read_lock_irq(rwlock_t *lock);
read_lock_bh(rwlock_t *lock);
read_unlock(rwlock_t *lock);
read_unlock_irqrestore(rwlock_t *lock, unsigned long flags);
read_unlock_irq(rwlock_t *lock);
read_unlock_bh(rwlock_t *lock);
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write_lock(rwlock_t *lock);
write_lock_irqsave(rwlock_t *lock, unsigned long flags);
write_lock_irq(rwlock_t *lock);
write_lock_bh(rwlock_t *lock);
write_unlock(rwlock_t *lock);
write_unlock_irqrestore(rwlock_t *lock, unsigned long

flags);
write_unlock_irq(rwlock_t *lock);
write_unlock_bh(rwlock_t *lock);

The variations on locking and unlocking for reader-writer spinlocks.

#include <asm/bitops.h>
void set_bit(nr, void *addr);
void clear_bit(nr, void *addr);
void change_bit(nr, void *addr);
test_bit(nr, void *addr);
int test_and_set_bit(nr, void *addr);
int test_and_clear_bit(nr, void *addr);
int test_and_change_bit(nr, void *addr);

These functions atomically access bit values; they can be used for flags or lock
variables. Using these functions prevents any race condition related to concur-
rent access to the bit.

#include <asm/atomic.h>
void atomic_add(atomic_t i, atomic_t *v);
void atomic_sub(atomic_t i, atomic_t *v);
void atomic_inc(atomic_t *v);
void atomic_dec(atomic_t *v);
int atomic_dec_and_test(atomic_t *v);

These functions atomically access integer variables. To achieve a clean com-
pile, the atomic_t variables must be accessed only through these functions.

#include <linux/sched.h>
TASK_RUNNING
TASK_INTERRUPTIBLE
TASK_UNINTERRUPTIBLE

The most commonly used values for the state of the current task. They are
used as hints for schedule.

set_current_state(int state);
Sets the current task state to the given value.

Quick Reference
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void add_wait_queue(struct wait_queue ** p, struct
wait_queue * wait)

void remove_wait_queue(struct wait_queue ** p, struct
wait_queue * wait)

void __add_wait_queue(struct wait_queue ** p, struct
wait_queue * wait)

void __remove_wait_queue(struct wait_queue ** p, struct
wait_queue * wait)

The lowest-level functions that use wait queues. The leading underscores indi-
cate a lower-level functionality. In this case, interrupt reporting must already
be disabled in the processor.

wait_event(wait_queue_head_t queue, condition);
wait_event_interruptible(wait_queue_head_t queue, condi-

tion);
These macros wait on the given queue until the given condition evaluates
true.
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CHAPTER TEN

JUDICIOUS USE OF
DATA TYPES

Befor e we go on to more advanced topics, we need to stop for a quick note on
portability issues. Modern versions of the Linux kernel are highly portable, running
on several very differ ent architectur es. Given the multiplatform natur e of Linux,
drivers intended for serious use should be portable as well.

But a core issue with kernel code is being able both to access data items of
known length (for example, filesystem data structures or registers on device
boards) and to exploit the capabilities of differ ent pr ocessors (32-bit and 64-bit
architectur es, and possibly 16 bit as well).

Several of the problems encountered by kernel developers while porting x86 code
to new architectur es have been related to incorrect data typing. Adherence to strict
data typing and compiling with the -Wall -Wstrict-prototypes flags can prevent
most bugs.

Data types used by kernel data are divided into three main classes: standard C
types such as int, explicitly sized types such as u32, and types used for specific
ker nel objects, such as pid_t. We are going to see when and how each of the
thr ee typing classes should be used. The final sections of the chapter talk about
some other typical problems you might run into when porting driver code from
the x86 to other platforms, and introduce the generalized support for linked lists
exported by recent kernel headers.

If you follow the guidelines we provide, your driver should compile and run even
on platforms on which you are unable to test it.

Use of Standard C Types
Although most programmers are accustomed to freely using standard types like
int and long, writing device drivers requir es some care to avoid typing conflicts
and obscure bugs.
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The problem is that you can’t use the standard types when you need ‘‘a two-byte
filler’’ or ‘‘something repr esenting a four-byte string’’ because the normal C data
types are not the same size on all architectur es. To show the data size of the vari-
ous C types, the datasize pr ogram has been included in the sample files provided
on the O’Reilly FTP site, in the directory misc-pr ogs. This is a sample run of the
pr ogram on a PC (the last four types shown are intr oduced in the next section):

morgana% misc-progs/datasize
arch Size: char shor int long ptr long-long u8 u16 u32 u64
i686 1 2 4 4 4 8  1 2 4 8

The program can be used to show that long integers and pointers feature a dif fer-
ent size on 64-bit platforms, as demonstrated by running the program on differ ent
Linux computers:

arch Size: char shor int long ptr long-long u8 u16 u32 u64
i386 1 2 4 4 4 8  1 2 4 8
alpha 1 2 4 8 8 8  1 2 4 8
armv4l 1 2 4 4 4 8  1 2 4 8
ia64 1 2 4 8 8 8  1 2 4 8
m68k 1 2 4 4 4 8  1 2 4 8
mips 1 2 4 4 4 8  1 2 4 8
ppc 1 2 4 4 4 8  1 2 4 8
sparc 1 2 4 4 4 8  1 2 4 8
sparc64 1 2 4 4 4 8  1 2 4 8

It’s interesting to note that the user space of Linux-spar c64 runs 32-bit code, so
pointers are 32 bits wide in user space, even though they are 64 bits wide in ker-
nel space. This can be verified by loading the kdatasize module (available in the
dir ectory misc-modules within the sample files). The module reports size informa-
tion at load time using printk and retur ns an error (so there’s no need to unload
it):

kernel: arch Size: char short int long ptr long-long u8 u16 u32 u64
kernel: sparc64 1 2 4 8 8  8 1 2 4 8

Although you must be careful when mixing differ ent data types, sometimes there
ar e good reasons to do so. One such situation is for memory addresses, which are
special as far as the kernel is concerned. Although conceptually addresses are
pointers, memory administration is better accomplished by using an unsigned inte-
ger type; the kernel treats physical memory like a huge array, and a memory
addr ess is just an index into the array. Furthermor e, a pointer is easily derefer-
enced; when dealing directly with memory addresses you almost never want to
der efer ence them in this manner. Using an integer type prevents this derefer enc-
ing, thus avoiding bugs. Therefor e, addr esses in the kernel are unsigned long,
exploiting the fact that pointers and long integers are always the same size, at
least on all the platforms currently supported by Linux.
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The C99 standard defines the intptr_t and uintptr_t types for an integer
variable which can hold a pointer value. These types are almost unused in the 2.4
ker nel, but it would not be surprising to see them show up more often as a result
of future development work.

Assigning an Explicit Size to Data Items
Sometimes kernel code requir es data items of a specific size, either to match pre-
defined binary structures* or to align data within structures by inserting ‘‘filler’’
fields (but please refer to “Data Alignment” later in this chapter for information
about alignment issues).

The kernel offers the following data types to use whenever you need to know the
size of your data. All the types are declar ed in <asm/types.h>, which in turn is
included by <linux/types.h>:

u8; /* unsigned byte (8 bits) */
u16; /* unsigned word (16 bits) */
u32; /* unsigned 32-bit value */
u64; /* unsigned 64-bit value */

These data types are accessible only from kernel code (i.e., __KERNEL_ _ must
be defined before including <linux/types.h>). The corresponding signed
types exist, but are rar ely needed; just replace u with s in the name if you need
them.

If a user-space program needs to use these types, it can prefix the names with a
double underscore: __u8 and the other types are defined independent of
__KERNEL_ _. If, for example, a driver needs to exchange binary structures with
a program running in user space by means of ioctl, the header files should declare
32-bit fields in the structures as __u32.

It’s important to remember that these types are Linux specific, and using them hin-
ders porting software to other Unix flavors. Systems with recent compilers will
support the C99-standard types, such as uint8_t and uint32_t; when possible,
those types should be used in favor of the Linux-specific variety. If your code must
work with 2.0 kernels, however, use of these types will not be possible (since only
older compilers work with 2.0).

You might also note that sometimes the kernel uses conventional types, such as
unsigned int, for items whose dimension is architectur e independent. This is
usually done for backward compatibility. When u32 and friends were intr oduced
in version 1.1.67, the developers couldn’t change existing data structures to the

* This happens when reading partition tables, when executing a binary file, or when
decoding a network packet.

Assigning an Explicit Size to Data Items
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new types because the compiler issues a warning when there is a type mismatch
between the structure field and the value being assigned to it.* Linus didn’t expect
the OS he wrote for his own use to become multiplatform; as a result, old struc-
tur es ar e sometimes loosely typed.

Interface-Specific Types
Most of the commonly used data types in the kernel have their own typedef
statements, thus preventing any portability problems. For example, a process iden-
tifier (pid) is usually pid_t instead of int. Using pid_t masks any possible dif-
fer ence in the actual data typing. We use the expression inter face-specific to refer
to a type defined by a library in order to provide an interface to a specific data
structur e.

Even when no interface-specific type is defined, it’s always important to use the
pr oper data type in a way consistent with the rest of the kernel. A jiffy count, for
instance, is always unsigned long, independent of its actual size, so the
unsigned long type should always be used when working with jiffies. In this
section we concentrate on use of ‘‘_t’’ types.

The complete list of _t types appears in <linux/types.h>, but the list is rarely
useful. When you need a specific type, you’ll find it in the prototype of the func-
tions you need to call or in the data structures you use.

Whenever your driver uses functions that requir e such ‘‘custom’’ types and you
don’t follow the convention, the compiler issues a warning; if you use the -Wall
compiler flag and are car eful to remove all the warnings, you can feel confident
that your code is portable.

The main problem with _t data items is that when you need to print them, it’s not
always easy to choose the right printk or printf for mat, and warnings you resolve
on one architectur e reappear on another. For example, how would you print a
size_t, which is unsigned long on some platforms and unsigned int on
some others?

Whenever you need to print some interface-specific data, the best way to do it is
by casting the value to the biggest possible type (usually long or unsigned
long) and then printing it through the corresponding format. This kind of tweak-
ing won’t generate errors or warnings because the format matches the type, and
you won’t lose data bits because the cast is either a null operation or an extension
of the item to a bigger data type.

In practice, the data items we’re talking about aren’t usually meant to be printed,
so the issue applies only to debugging messages. Most often, the code needs only

* As a matter of fact, the compiler signals type inconsistencies even if the two types are just
dif ferent names for the same object, like unsigned long and u32 on the PC.
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to store and compare the interface-specific types, in addition to passing them as
arguments to library or kernel functions.

Although _t types are the correct solution for most situations, sometimes the right
type doesn’t exist. This happens for some old interfaces that haven’t yet been
cleaned up.

The one ambiguous point we’ve found in the kernel headers is data typing for I/O
functions, which is loosely defined (see the section ‘‘Platform Dependencies’’ in
Chapter 8). The loose typing is mainly there for historical reasons, but it can create
pr oblems when writing code. For example, one can get into trouble by swapping
the arguments to functions like outb; if ther e wer e a port_t type, the compiler
would find this type of error.

Other Por tability Issues
In addition to data typing, there are a few other software issues to keep in mind
when writing a driver if you want it to be portable across Linux platforms.

A general rule is to be suspicious of explicit constant values. Usually the code has
been parameterized using prepr ocessor macr os. This section lists the most impor-
tant portability problems. Whenever you encounter other values that have been
parameterized, you’ll be able to find hints in the header files and in the device
drivers distributed with the official kernel.

Time Intervals
When dealing with time intervals, don’t assume that there are 100 jiffies per sec-
ond. Although this is currently true for Linux-x86, not every Linux platform runs at
100 Hz (as of 2.4 you find values ranging from 20 to 1200, although 20 is only
used in the IA-64 simulator). The assumption can be false even for the x86 if you
play with the HZ value (as some people do), and nobody knows what will happen
in future ker nels. Whenever you calculate time intervals using jiffies, scale your
times using HZ (the number of timer interrupts per second). For example, to check
against a timeout of half a second, compare the elapsed time against HZ/2. Mor e
generally, the number of jiffies corresponding to msec milliseconds is always
msec*HZ/1000. This detail had to be fixed in many network drivers when port-
ing them to the Alpha; some of them didn’t work on that platform because they
assumed HZ to be 100.

Page Size
When playing games with memory, remember that a memory page is PAGE_SIZE
bytes, not 4 KB. Assuming that the page size is 4 KB and hard-coding the value is
a common error among PC programmers — instead, supported platforms show
page sizes from 4 KB to 64 KB, and sometimes they differ between differ ent

Other Por tability Issues
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implementations of the same platform. The relevant macros are PAGE_SIZE and
PAGE_SHIFT. The latter contains the number of bits to shift an address to get its
page number. The number currently is 12 or greater, for 4 KB and bigger pages.
The macros are defined in <asm/page.h>; user-space programs can use getpage-
size if they ever need the information.

Let’s look at a nontrivial situation. If a driver needs 16 KB for temporary data, it
shouldn’t specify an order of 2 to get_fr ee_pages. You need a portable solution.
Using an array of #ifdef conditionals may work, but it only accounts for plat-
for ms you care to list and would break on other architectur es, such as one that
might be supported in the future. We suggest that you use this code instead:

int order = (14 - PAGE_SHIFT > 0) ? 14 - PAGE_SHIFT : 0;
buf = get_free_pages(GFP_KERNEL, order);

The solution depends on the knowledge that 16 KB is 1<<14. The quotient of two
numbers is the differ ence of their logarithms (orders), and both 14 and
PAGE_SHIFT ar e orders. The value of order is calculated at compile time, and
the implementation shown is a safe way to allocate memory for any power of two,
independent of PAGE_SIZE.

Byte Order
Be careful not to make assumptions about byte ordering. Whereas the PC stores
multibyte values low-byte first (little end first, thus little-endian), most high-level
platfor ms work the other way (big-endian). Modern processors can operate in
either mode, but most of them prefer to work in big-endian mode; support for lit-
tle-endian memory access has been added to interoperate with PC data and Linux
usually prefers to run in the native processor mode. Whenever possible, your code
should be written such that it does not care about byte ordering in the data it
manipulates. However, sometimes a driver needs to build an integer number out
of single bytes or do the opposite.

You’ll need to deal with endianness when you fill in network packet headers, for
example, or when you are dealing with a peripheral that operates in a specific
byte ordering mode. In that case, the code should include <asm/byteorder.h>
and should check whether __BIG_ENDIAN or __LITTLE_ENDIAN is defined by
the header.

You could code a bunch of #ifdef __LITTLE_ENDIAN conditionals, but there
is a better way. The Linux kernel defines a set of macros that handle conversions
between the processor’s byte ordering and that of the data you need to store or
load in a specific byte order. For example:

u32 __cpu_to_le32 (u32);
u32 __le32_to_cpu (u32);

These two macros convert a value from whatever the CPU uses to an unsigned, lit-
tle-endian, 32-bit quantity and back. They work whether your CPU is big-endian
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or little-endian, and, for that matter, whether it is a 32-bit processor or not. They
retur n their argument unchanged in cases where ther e is no work to be done. Use
of these macros makes it easy to write portable code without having to use a lot of
conditional compilation constructs.

Ther e ar e dozens of similar routines; you can see the full list in <linux/byte-
order/big_endian.h> and <linux/byteorder/little_endian.h>.
After a while, the pattern is not hard to follow. _ _be64_to_cpu converts an
unsigned, big-endian, 64-bit value to the internal CPU repr esentation.
_ _le16_to_cpus, instead, handles signed, little-endian, 16-bit quantities. When deal-
ing with pointers, you can also use functions like _ _cpu_to_le32p, which take a
pointer to the value to be converted rather than the value itself. See the include
file for the rest.

Not all Linux versions defined all the macros that deal with byte ordering. In par-
ticular, the linux/byteor der dir ectory appear ed in version 2.1.72 to make order in
the various <asm/byteorder.h> files and remove duplicate definitions. If you
use our sysdep.h, you’ll be able to use all of the macros available in Linux 2.4
when compiling code for 2.0 or 2.2.

Data Alignment
The last problem worth considering when writing portable code is how to access
unaligned data—for example, how to read a four-byte value stored at an address
that isn’t a multiple of four bytes. PC users often access unaligned data items, but
few architectur es per mit it. Most modern architectur es generate an exception every
time the program tries unaligned data transfers; data transfer is handled by the
exception handler, with a great perfor mance penalty. If you need to access
unaligned data, you should use the following macros:

#include <asm/unaligned.h>
get_unaligned(ptr);
put_unaligned(val, ptr);

These macros are typeless and work for every data item, whether it’s one, two,
four, or eight bytes long. They are defined with any kernel version.

Another issue related to alignment is portability of data structures across platforms.
The same data structure (as defined in the C-language source file) can be com-
piled differ ently on differ ent platfor ms. The compiler arranges structure fields to
be aligned according to conventions that differ from platform to platfor m. At least
in theory, the compiler can even reorder structure fields in order to optimize mem-
ory usage.*

* Field reordering doesn’t happen in currently supported architectur es because it could
br eak inter operability with existing code, but a new architectur e may define field reorder-
ing rules for structures with holes due to alignment restrictions.

Other Por tability Issues
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In order to write data structures for data items that can be moved across architec-
tur es, you should always enforce natural alignment of the data items in addition to
standardizing on a specific endianness. Natural alignment means storing data
items at an address that is a multiple of their size (for instance, 8-byte items go in
an address multiple of 8). To enforce natural alignment while preventing the com-
piler from moving fields around, you should use filler fields that avoid leaving
holes in the data structure.

To show how alignment is enforced by the compiler, the dataalign pr ogram is dis-
tributed in the misc-pr ogs dir ectory of the sample code, and an equivalent
kdataalign module is part of misc-modules. This is the output of the program on
several platforms and the output of the module on the SPARC64:

arch Align: char short int long ptr long-long u8 u16 u32 u64
i386 1 2 4 4 4 4  1 2 4 4
i686 1 2 4 4 4 4  1 2 4 4
alpha 1 2 4 8 8 8  1 2 4 8
armv4l 1 2 4 4 4 4  1 2 4 4
ia64 1 2 4 8 8 8  1 2 4 8
mips 1 2 4 4 4 8  1 2 4 8
ppc 1 2 4 4 4 8  1 2 4 8
sparc 1 2 4 4 4 8  1 2 4 8
sparc64 1 2 4 4 4 8  1 2 4 8

kernel: arch Align: char short int long ptr long-long u8 u16 u32 u64
kernel: sparc64 1 2 4 8 8  8 1 2 4 8

It’s interesting to note that not all platforms align 64-bit values on 64-bit bound-
aries, so you’ll need filler fields to enforce alignment and ensure portability.

Linked Lists
Operating system kernels, like many other programs, often need to maintain lists
of data structures. The Linux kernel has, at times, been host to several linked list
implementations at the same time. To reduce the amount of duplicated code, the
ker nel developers have created a standard implementation of circular, doubly-
linked lists; others needing to manipulate lists are encouraged to use this facility,
intr oduced in version 2.1.45 of the kernel.

To use the list mechanism, your driver must include the file <linux/list.h>.
This file defines a simple structure of type list_head:

struct list_head {
struct list_head *next, *prev;

};

Linked lists used in real code are almost invariably made up of some type of struc-
tur e, each one describing one entry in the list. To use the Linux list facility in your
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code, you need only embed a list_head inside the structures that make up the
list. If your driver maintains a list of things to do, say, its declaration would look
something like this:

struct todo_struct {
struct list_head list;
int priority; /* driver specific */
/* ... add other driver-specific fields */

};

The head of the list must be a standalone list_head structur e. List heads must
be initialized prior to use with the INIT_LIST_HEAD macr o. A ‘‘things to do’’ list
head could be declared and initialized with:

struct list_head todo_list;

INIT_LIST_HEAD(&todo_list);

Alter natively, lists can be initialized at compile time as follows:

LIST_HEAD(todo_list);

Several functions are defined in <linux/list.h> that work with lists:

list_add(struct list_head *new, struct list_head *head);
This function adds the new entry immediately after the list head—nor mally at
the beginning of the list. It can thus be used to build stacks. Note, however,
that the head need not be the nominal head of the list; if you pass a
list_head structur e that happens to be in the middle of the list somewhere,
the new entry will go immediately after it. Since Linux lists are circular, the
head of the list is not generally differ ent fr om any other entry.

list_add_tail(struct list_head *new, struct list_head
*head);

Add a new entry just before the given list head—at the end of the list, in other
words. list_add_tail can thus be used to build first-in first-out queues.

list_del(struct list_head *entry);
The given entry is removed from the list.

list_empty(struct list_head *head);
Retur ns a nonzer o value if the given list is empty.

list_splice(struct list_head *list, struct list_head *head);
This function joins two lists by inserting list immediately after head.

The list_head structur es ar e good for implementing a list of like structures, but
the invoking program is usually more inter ested in the larger structures that make

Linked Lists

301

22 June 2001 16:40



Chapter 10: Judicious Use of Data Types

up the list as a whole. A macro, list_entry, is provided that will map a list_head
structur e pointer back into a pointer to the structure that contains it. It is invoked
as follows:

list_entry(struct list_head *ptr, type_of_struct, field_name);

wher e ptr is a pointer to the struct list_head being used,
type_of_struct is the type of the structure containing the ptr, and
field_name is the name of the list field within the structure. In our
todo_struct structur e fr om befor e, the list field is called simply list. Thus, we
would turn a list entry into its containing structure with a line like this:

struct todo_struct *todo_ptr =
list_entry(listptr, struct todo_struct, list);

The list_entry macr o takes a little getting used to, but is not that hard to use.

The traversal of linked lists is easy: one need only follow the prev and next
pointers. As an example, suppose we want to keep the list of todo_struct
items sorted in descending priority order. A function to add a new entry would
look something like this:

void todo_add_entry(struct todo_struct *new)
{

struct list_head *ptr;
struct todo_struct *entry;

for (ptr = todo_list.next; ptr != &todo_list; ptr = ptr->next) {
entry = list_entry(ptr, struct todo_struct, list);
if (entry->priority < new->priority) {

list_add_tail(&new->list, ptr);
return;

}
}
list_add_tail(&new->list, &todo_struct)

}

The <linux/list.h> file also defines a macro list_for_each that expands to the
for loop used in this code. As you may suspect, you must be careful when modi-
fying the list while traversing it.

Figur e 10-1 shows how the simple struct list_head is used to maintain a list
of data structures.

Although not all features exported by the list.h as it appears in Linux 2.4 are avail-
able with older kernels, our sysdep.h fills the gap by declaring all macros and
functions for use in older kernels.
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Lists in
<linux/list.h>

Effects of the list_entry macro

An empty list

A list head with a two-item list

struct list_head

nextprev

A custom structure
including a list_head

Figur e 10-1. The list_head data structure

Quick Reference
The following symbols were intr oduced in this chapter.

#include <linux/types.h>
typedef u8;
typedef u16;
typedef u32;
typedef u64;

These types are guaranteed to be 8-, 16-, 32-, and 64-bit unsigned integer val-
ues. The equivalent signed types exist as well. In user space, you can refer to
the types as __u8, __u16, and so forth.

#include <asm/page.h>
PAGE_SIZE
PAGE_SHIFT

These symbols define the number of bytes per page for the current architec-
tur e and the number of bits in the page offset (12 for 4-KB pages and 13 for
8-KB pages).

Quick Reference
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#include <asm/byteorder.h>
__LITTLE_ENDIAN
__BIG_ENDIAN

Only one of the two symbols is defined, depending on the architectur e.

#include <asm/byteorder.h>
u32 __cpu_to_le32 (u32);
u32 __le32_to_cpu (u32);

Functions for converting between known byte orders and that of the proces-
sor. Ther e ar e mor e than 60 such functions; see the various files in
include/linux/byteor der/ for a full list and the ways in which they are defined.

#include <asm/unaligned.h>
get_unaligned(ptr);
put_unaligned(val, ptr);

Some architectur es need to protect unaligned data access using these macros.
The macros expand to normal pointer derefer encing for architectur es that per-
mit you to access unaligned data.

#include <linux/list.h>
list_add(struct list_head *new, struct list_head *head);
list_add_tail(struct list_head *new, struct list_head

*head);
list_del(struct list_head *entry);
list_empty(struct list_head *head);
list_entry(entry, type, member);
list_splice(struct list_head *list, struct list_head *head);

Functions for manipulating circular, doubly linked lists.
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CHAPTER ELEVEN

KMOD AND ADVANCED
MODULARIZATION

In this second part of the book, we discuss more advanced topics than we’ve seen
up to now. Once again, we start with modularization.

The introduction to modularization in Chapter 2 was only part of the story; the
ker nel and the modutils package support some advanced features that are mor e
complex than we needed earlier to get a basic driver up and running. The features
that we talk about in this chapter include the kmod pr ocess and version support
inside modules (a facility meant to save you from recompiling your modules each
time you upgrade your kernel). We also touch on how to run user-space helper
pr ograms fr om within kernel code.

The implementation of demand loading of modules has changed significantly over
time. This chapter discusses the 2.4 implementation, as usual. The sample code
works, as far as possible, on the 2.0 and 2.2 kernels as well; we cover the differ-
ences at the end of the chapter.

Loading Modules on Demand
To make it easier for users to load and unload modules, to avoid wasting kernel
memory by keeping drivers in core when they are not in use, and to allow the
cr eation of ‘‘generic’’ kernels that can support a wide variety of hardware, Linux
of fers support for automatic loading and unloading of modules. To exploit this fea-
tur e, you need to enable kmod support when you configure the kernel before you
compile it; most kernels from distributors come with kmod enabled. This ability to
request additional modules when they are needed is particularly useful for drivers
using module stacking.

The idea behind kmod is simple, yet effective. Whenever the kernel tries to access
certain types of resources and finds them unavailable, it makes a special kernel
call to the kmod subsystem instead of simply retur ning an error. If kmod succeeds
in making the resource available by loading one or more modules, the kernel
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continues working; otherwise, it retur ns the error. Virtually any resource can be
requested this way: char and block drivers, filesystems, line disciplines, network
pr otocols, and so on.

One example of a driver that benefits from demand loading is the Advanced Linux
Sound Architectur e (ALSA) sound driver suite, which should (someday) replace the
curr ent sound implementation (Open Sound System, or OSS) in the Linux kernel.*
ALSA is split into many pieces. The set of core code that every system needs is
loaded first. Additional pieces get loaded depending on both the installed hard-
war e (which sound card is present) and the desired functionality (MIDI sequencer,
synthesizer, mixer, OSS compatibility, etc.). Thus, a large and complicated system
can be broken down into components, with only the necessary parts being actu-
ally present in the running system.

Another common use of automatic module loading is to make a ‘‘one size fits all’’
ker nel to package with distributions. Distributors want their kernels to support as
much hardware as possible. It is not possible, however, to simply configure in
every conceivable driver; the resulting kernel would be too large to load (and very
wasteful of system memory), and having that many drivers trying to probe for
hardwar e would be a near-certain way to create conflicts and confusion. With
automatic loading, the kernel can adapt itself to the hardware it finds on each indi-
vidual system.

Requesting Modules in the Ker nel
Any kernel-space code can request the loading of a module when needed, by
invoking a facility known as kmod. kmod was initially implemented as a separate,
standalone kernel process that handled module loading requests, but it has long
since been simplified by not requiring the separate process context. To use kmod,
you must include <linux/kmod.h> in your driver source.

To request the loading of a module, call request_module:

int request_module(const char *module_name);

The module_name can either be the name of a specific module file or the name
of a more generic capability; we’ll look more closely at module names in the next
section. The retur n value from request_module will be 0, or one of the usual nega-
tive error codes if something goes wrong.

Note that request_module is synchronous — it will sleep until the attempt to load
the module has completed. This means, of course, that request_module cannot be
called from interrupt context. Note also that a successful retur n fr om request_mod-
ule does not guarantee that the capability you were after is now available. The
retur n value indicates that request_module was successful in running modpr obe,

* The ALSA drivers can be found at www.alsa-pr oject.org.
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but does not reflect the success status of modpr obe itself. Any number of problems
or configuration errors can lead request_module to retur n a success status when it
has not loaded the module you needed.

Thus the proper usage of request_module usually requir es testing for the existence
of a needed capability twice:

if ( (ptr = look_for_feature()) == NULL) {
/* if feature is missing, create request string */
sprintf(modname, "fmt-for-feature-%i\n", featureid);
request_module(modname); /* and try lo load it */

}
/* Check for existence of the feature again; error if missing */
if ( (ptr = look_for_feature()) == NULL)

return -ENODEV;

The first check avoids redundant calls to request_module. If the feature is not
available in the running kernel, a request string is generated and request_module
is used to look for it. The final check makes sure that the requir ed featur e has
become available.

The User-Space Side
The actual task of loading a module requir es help from user space, for the simple
reason that it is far easier to implement the requir ed degr ee of configurability and
flexibility in that context. When the kernel code calls request_module, a new ‘‘ker-
nel thread’’ process is created, which runs a helper program in the user context.
This program is called modpr obe; we have seen it briefly earlier in this book.

modpr obe can do a great many things. In the simplest case, it just calls insmod
with the name of a module as passed to request_module. Ker nel code, however,
will often call request_module with a more abstract name repr esenting a needed
capability, such as scsi_hostadapter; modpr obe will then find and load the
corr ect module. modpr obe can also handle module dependencies; if a requested
module requir es yet another module to function, modpr obe will load both—
assuming that depmod -a was run after the modules have been installed.*

The modpr obe utility is configured by the file /etc/modules.conf.† See the mod-
ules.conf manpage for the full list of things that can appear in this file. Here is an
overview of the most common sorts of entries:

* Most distributions run depmod -a automatically at boot time, so you don’t need to worry
about that unless you installed new modules after you rebooted. See the modpr obe docu-
mentation for more details.

† On older systems, this file is often called /etc/conf.modules instead. That name still works,
but its use is deprecated.

Loading Modules on Demand
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path[misc]=directory
This directive tells modpr obe that miscellaneous modules can be found in the
misc subdir ectory under the given directory. Other paths worth setting
include boot, which points to a directory of modules that should be loaded at
boot time, and toplevel, which gives a top-level directory under which a
tr ee of module subdirectories may be found. You almost certainly want to
include a separate keep dir ective as well.

keep
Nor mally, a path dir ective will cause modpr obe to discard all other paths
(including the defaults) that it may have known about. By placing a keep
befor e any path dir ectives, you can cause modpr obe to add new paths to the
list instead of replacing it.

alias alias_name real_name
Causes modpr obe to load the module real_name when asked to load
alias_name. The alias name usually identifies a specific capability; it has val-
ues such as scsi_hostadapter, eth0, or sound. This is the means by
which generic requests (‘‘a driver for the first Ethernet card’’) get mapped into
specific modules. Alias lines are usually created by the system installation pro-
cess; once it has figured out what hardware a specific system has, it generates
the appropriate alias entries to get the right drivers loaded.

options [-k] module opts
Pr ovides a set of options (opts) for the given module when it is loaded. If
the -k flag is provided, the module will not be automatically removed by a
modpr obe -r run.

pre-install module command
post-install module command
pre-remove module command
post-remove module command

The first two specify a command to be run either before or after the given
module is installed; the second two run the command before or after module
removal. These directives are useful for causing extra user-space processing to
happen or for running a requir ed daemon process. The command should be
given as a full pathname to avoid possible problems.

Note that, for the removal commands to be run, the module must be removed
with modpr obe. They will not be run if the module is removed with rmmod,
or if the system goes down (gracefully or otherwise).

modpr obe supports far more dir ectives than we have listed here, but the others are
generally only needed in complicated situations.
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A typical /etc/modules.conf looks like this:

alias scsi_hostadapter aic7xxx
alias eth0 eepro100
pre-install pcmcia_core /etc/rc.d/init.d/pcmcia start
options short irq=1
alias sound es1370

This file tells modpr obe which drivers to load to make the SCSI system, Ethernet,
and sound cards work. It also ensures that if the PCMCIA drivers are loaded, a
startup script is invoked to run the card services daemon. Finally, an option is pro-
vided to be passed to the short driver.

Module Loading and Security
The loading of a module into the kernel has obvious security implications, since
the loaded code runs at the highest possible privilege level. For this reason, it is
important to be very careful in how you work with the module-loading system.

When editing the modules.conf file, one should always keep in mind that anybody
who can load kernel modules has complete control over the system. Thus, for
example, any directories added to the load path should be very carefully pro-
tected, as should the modules.conf file itself.

Note that insmod will normally refuse to load any modules that are not owned by
the root account; this behavior is an attempt at a defense against an attacker who
obtains write access to a module directory. You can override this check with an
option to insmod (or a modules.conf line), but doing so reduces the security of
your system.

One other thing to keep in mind is that the module name parameter that you pass
to request_module eventually ends up on the modpr obe command line. If that
module name is provided by a user-space program in any way, it must be very
car efully validated before being handed off to request_module. Consider, for
example, a system call that configures network interfaces. In response to an invo-
cation of ifconfig, this system call tells request_module to load the driver for the
(user-specified) interface. A hostile user can then carefully choose a fictitious inter-
face name that will cause modpr obe to do something improper. This is a real vul-
nerability that was discovered late in the 2.4.0-test development cycle; the worst
pr oblems have been cleaned up, but the system is still vulnerable to malicious
module names.

Module Loading Example
Let’s now try to use the demand-loading functions in practice. To this end, we’ll
use two modules called master and slave, found in the directory misc-modules in
the source files provided on the O’Reilly FTP site.

Loading Modules on Demand
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In order to run this test code without installing the modules in the default module
search path, you can add something like the following lines to your /etc/mod-
ules.conf:

keep
path[misc]=˜rubini/driverBook/src/misc-modules

The slave module perfor ms no function; it just takes up space until removed. The
master module, on the other hand, looks like this:

#include <linux/kmod.h>
#include "sysdep.h"

int master_init_module(void)
{

int r[2]; /* results */

r[0]=request_module("slave");
r[1]=request_module("nonexistent");
printk(KERN_INFO "master: loading results are %i, %i\n", r[0],r[1]);
return 0; /* success */

}

void master_cleanup_module(void)
{ }

At load time, master tries to load two modules: the slave module and one that
doesn’t exist. The printk messages reach your system logs and possibly the con-
sole. This is what happens in a system configured for kmod support when the
daemon is active and the commands are issued on the text console:

morgana.root# depmod -a
morgana.root# insmod ./master.o
master: loading results are 0, 0
morgana.root# cat /proc/modules
slave 248 0 (autoclean)
master 740 0 (unused)
es1370 34832 1

Both the retur n value from request_module and the /pr oc/modules file (described
in ‘‘Initialization and Shutdown’’ in Chapter 2) show that the slave module has
been correctly loaded. Note, however, that the attempt to load nonexistent also
shows a successful retur n value. Because modpr obe was run, request_module
retur ns success, regardless of what happened to modpr obe.

A subsequent removal of master will produce results like the following:

morgana.root# rmmod master
morgana.root# cat /proc/modules
slave 248 0 (autoclean)
es1370 34832 1
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The slave module has been left behind in the kernel, where it will remain until the
next module cleanup pass is done (which is often never on modern systems).

Running User-Mode Helper Prog rams
As we have seen, the request_module function runs a program in user mode (i.e.,
running as a separate process, in an unprivileged processor mode, and in user
space) to help it get its job done. In the 2.3 development series, the kernel devel-
opers made the ‘‘run a user-mode helper’’ capability available to the rest of the
ker nel code. Should your driver need to run a user-mode program to support its
operations, this mechanism is the way to do it. Since it’s part of the kmod imple-
mentation, we’ll look at it here. If you are inter ested in this capability, a look at
ker nel/kmod.c is recommended; it’s not much code and illustrates nicely the use of
user-mode helpers.

The interface for running helper programs is fairly simple. As of kernel 2.4.0-test9,
ther e is a function call_user modehelper; it is used primarily by the hot-plug sub-
system (i.e., for USB devices and such) to perfor m module loading and configura-
tion tasks when a new device is attached to the system. Its prototype is:

int call_usermodehelper(char *path, char **argv, char **envp);

The arguments will be familiar: they are the name of the executable to run, argu-
ments to pass to it (argv[0], by convention, is the name of the program itself),
and the values of any environment variables. Both arrays must be terminated by
NULL values, just like with the execve system call. call_user modehelper will sleep
until the program has been started, at which point it retur ns the status of the oper-
ation.

Helper programs run in this mode are actually run as children of a kernel thread
called keventd. An important implication of this design is that there is no way for
your code to know when the helper program has finished or what its exit status is.
Running helper programs is thus a bit of an act of faith.

It is worth pointing out that truly legitimate uses of user-mode helper programs are
rar e. In most cases, it is better to set up a script to be run at module installation
time that does all needed work as part of loading the module rather than to wire
invocations of user-mode programs into kernel code. This sort of policy is best left
to the user whenever possible.

Inter module Communication
Very late in the pre-2.4.0 development series, the kernel developers added a new
inter face pr oviding limited communication between modules. This intermodule
scheme allows modules to register strings pointing to data of interest, which can
be retrieved by other modules. We’ll look briefly at this interface, using a variation
of our master and slave modules.

Inter module Communication
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We use the same master module, but introduce a new slave module called inter.
All inter does is to make a string and a function available under the name
ime_string (ime means ‘‘intermodule example’’) and ime_function; it looks,
in its entirety, as follows:

static char *string = "inter says ’Hello World’";

void ime_function(const char *who)
{

printk(KERN_INFO "inter: ime_function called by %s\n", who);
}

int ime_init(void)
{

inter_module_register("ime_string", THIS_MODULE, string);
inter_module_register("ime_function", THIS_MODULE, ime_function);
return 0;

}

void ime_cleanup(void)
{

inter_module_unregister("ime_string");
inter_module_unregister("ime_function");

}

This code uses inter_module_r egister, which has this prototype:

void inter_module_register(const char *string, struct module *module,
const void *data);

string is the string other modules will use to find the data; module is a pointer
to the module owning the data, which will almost always be THIS_MODULE; and
data is a pointer to whatever data is to be shared. Note the use of a const
pointer for the data; it is assumed that it will be exported in a read-only mode.
inter_module_r egister will complain (via printk) if the given string is already
register ed.

When the data is no longer to be shared, the module should call inter_mod-
ule_unr egister to clean it up:

void inter_module_unregister(const char *string);

Two functions are exported that can access data shared via inter_module_r egister :

const void *inter_module_get(const char *string);
This function looks up the given string and retur ns the associated data
pointer. If the string has not been register ed, NULL is retur ned.
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const void *inter_module_get_request(const char *string,
const char *module);

This function is like inter_module_get with the added feature that, if the given
string is not found, it will call request_module with the given module name
and then will try again.

Both functions also increment the usage count for the module that register ed the
data. Thus, a pointer obtained with inter_module_get or inter_module_get_r equest
will remain valid until it is explicitly released. At least, the module that created that
pointer will not be unloaded during that time; it is still possible for the module
itself to do something that will invalidate the pointer.

When you are done with the pointer, you must release it so that the other mod-
ule’s usage count will be decremented properly. A simple call to

void inter_module_put(const char *string);

will release the pointer, which should not be used after this call.

In our sample master module, we call inter_module_get_r equest to cause the inter
module to be loaded and to obtain the two pointers. The string is simply printed,
and the function pointer is used to make a call from master into inter. The addi-
tional code in master looks like this:

static const char *ime_string = NULL;
static void master_test_inter();

void master_test_inter()
{

void (*ime_func)();
ime_string = inter_module_get_request("ime_string", "inter");
if (ime_string)

printk(KERN_INFO "master: got ime_string ’%s’\n", ime_string);
else

printk(KERN_INFO "master: inter_module_get failed");
ime_func = inter_module_get("ime_function");
if (ime_func) {

(*ime_func)("master");
inter_module_put("ime_function");

}
}

void master_cleanup_module(void)
{

if (ime_string)
inter_module_put("ime_string");

}

Note that one of the calls to inter_module_ put is deferred until module cleanup
time. This will cause the usage count of inter to be (at least) 1 until master is
unloaded.

Inter module Communication
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Ther e ar e a few other worthwhile details to keep in mind when using the inter-
module functions. First, they are available even in kernels that have been config-
ur ed without support for loadable modules, so there is no need for a bunch of
#ifdef lines to test for that case. The namespace implemented by the intermod-
ule communication functions is global, so names should be chosen with care or
conflicts will result. Finally, intermodule data is stored in a simple linked list; per-
for mance will suffer if large numbers of lookups are made or many strings are
stor ed. This facility is intended for light use, not as a general dictionary subsystem.

Version Control in Modules
One of the main problems with modules is their version dependency, which was
intr oduced in Chapter 2. The need to recompile the module against the headers of
each kernel version being used can become a real pain when you run several cus-
tom modules, and recompiling is not even possible if you run a commercial mod-
ule distributed in binary form.

Fortunately, the kernel developers found a flexible way to deal with version prob-
lems. The idea is that a module is incompatible with a differ ent ker nel version
only if the software inter face of fered by the kernel has changed. The software
inter face, then, can be repr esented by a function prototype and the exact defini-
tion of all the data structures involved in the function call. Finally, a CRC
algorithm* can be used to map all the information about the software inter face to a
single 32-bit number.

The issue of version dependencies is thus handled by mangling the name of each
symbol exported by the kernel to include the checksum of all the information
related to that symbol. This information is obtained by parsing the header files and
extracting the information from them. This facility is optional and can be enabled
at compilation time. Modular kernels shipped by Linux distributors usually have
versioning support enabled.

For example, the symbol printk is exported to modules as something like
printk_R12345678 when version support is enabled, where 12345678 is the
hexadecimal repr esentation of the checksum of the software inter face used by the
function. When a module is loaded into the kernel, insmod (or modpr obe) can
accomplish its task only if the checksum added to each symbol in the kernel
matches the one added to the same symbol in the module.

Ther e ar e some limitations to this scheme. A common source of surprises has been
loading a module compiled for SMP systems into a uniprocessor kernel, or vice

* CRC means ‘‘cyclic redundancy check,’’ a way of generating a short, unique number from
an arbitrary amount of data.

314

22 June 2001 16:40



versa. Because numerous inline functions (e.g., spinlock operations) and symbols
ar e defined differ ently for SMP kernels, it is important that modules and the kernel
agr ee on whether they are built for SMP. Version 2.4 and recent 2.2 kernels throw
an extra smp_ string onto each symbol when compiling for SMP to catch this par-
ticular case. There are still potential traps, however. Modules and the kernel can
dif fer in which version of the compiler was used to build them, which view of
memory they take, which version of the processor they were built for, and more.
The version support scheme can catch the most common problems, but it still
pays to be careful.

But let’s see what happens in both the kernel and the module when version sup-
port is enabled:

• In the kernel itself, the symbol is not modified. The linking process happens
in the usual way, and the symbol table of the vmlinux file looks the same as
befor e.

• The public symbol table is built using the versioned names, and this is what
appears in /pr oc/ksyms.

• The module must be compiled using the mangled names, which appear in the
object files as undefined symbols.

• The loading program (insmod) matches the undefined symbols in the module
with the public symbols in the kernel, thus using the version information.

Note that the kernel and the module must both agree on whether versioning is in
use. If one is built for versioned symbols and the other isn’t, insmod will refuse to
load the module.

Using Ver sion Suppor t in Modules
Driver writers must add some explicit support if their modules are to work with
versioning. Version control can be inserted in one of two places: in the makefile or
in the source itself. Since the documentation of the modutils package describes
how to do it in the makefile, we’ll show you how to do it in the C source. The
master module used to demonstrate how kmod works is able to support versioned
symbols. The capability is automatically enabled if the kernel used to compile the
module exploits version support.

The main facility used to mangle symbol names is the header <linux/modver-
sions.h>, which includes prepr ocessor definitions for all the public kernel sym-
bols. This file is generated as part of the kernel compilation (actually, ‘‘make
depend’’) process; if your kernel has never been built, or is built without version
support, there will be little of interest inside. <linux/modversions.h> must be

Version Control in Modules

315

22 June 2001 16:40



Chapter 11: kmod and Advanced Modularization

included before any other header file, so place it first if you put it directly in your
driver source. The usual technique, however, is to tell gcc to prepend the file with
a compilation command like:

gcc -DMODVERSIONS -include /usr/src/linux/include/linux/modversions.h...

After the header is included, whenever the module uses a kernel symbol, the com-
piler sees the mangled version.

To enable versioning in the module if it has been enabled in the kernel, we must
make sure that CONFIG_MODVERSIONS has been defined in <linux/con-
fig.h>. That header controls what features are enabled (compiled) in the current
ker nel. Each CONFIG_ macr o defined states that the corresponding option is
active.*

The initial part of master.c, ther efor e, consists of the following lines:

#include <linux/config.h> /* retrieve the CONFIG_* macros */
#if defined(CONFIG_MODVERSIONS) && !defined(MODVERSIONS)
# define MODVERSIONS /* force it on */
#endif

#ifdef MODVERSIONS
# include <linux/modversions.h>
#endif

When compiling the file against a versioned kernel, the symbol table in the object
file refers to versioned symbols, which match the ones exported by the kernel
itself. The following screendump shows the symbol names stored in master.o. In
the output of nm, T means ‘‘text,’’ D means ‘‘data,’’ and U means ‘‘undefined.’’ The
‘‘undefined’’ tag denotes symbols that the object file refer ences but doesn’t declare.

00000034 T cleanup_module
00000000 t gcc2_compiled.
00000000 T init_module
00000034 T master_cleanup_module
00000000 T master_init_module

U printk_Rsmp_1b7d4074
U request_module_Rsmp_27e4dc04

morgana% fgrep ’printk’ /proc/ksyms
c011b8b0 printk_Rsmp_1b7d4074

Because the checksums added to the symbol names in master.o ar e derived from
the entire prototypes of printk and request_module, the module is compatible with
a wide range of kernel versions. If, however, the data structures related to either
function get modified, insmod will refuse to load the module because of its incom-
patibility with the kernel.

* The CONFIG_ macr os ar e defined in <linux/autoconf.h>. You should, however,
include <linux/config.h> instead, because the latter is protected from double inclu-
sion, and sources <linux/autoconf.h> inter nally.
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Expor ting Versioned Symbols
The one thing not covered by the previous discussion is what happens when a
module exports symbols to be used by other modules. If we rely on version infor-
mation to achieve module portability, we’d like to be able to add a CRC code to
our own symbols. This subject is slightly trickier than just linking to the kernel,
because we need to export the mangled symbol name to other modules; we need
a way to build the checksums.

The task of parsing the header files and building the checksums is perfor med by
genksyms, a tool released with the modutils package. This program receives the
output of the C prepr ocessor on its own standard input and prints a new header
file on standard output. The output file defines the checksummed version of each
symbol exported by the original source file. The output of genksyms is usually
saved with a .ver suf fix; it is a good idea to stay consistent with this practice.

To show you how symbols are exported, we have created two dummy modules
called export.c and import.c. export exports a simple function called export_func-
tion, which is used by the second module, import.c. This function receives two
integer arguments and retur ns their sum—we are not interested in the function,
but rather in the linking process.

The makefile in the misc-modules dir ectory has a rule to build an export.ver file
fr om export.c, so that the checksummed symbol for export_function can be used
by the import module:

ifdef CONFIG_MODVERSIONS
export.o import.o: export.ver
endif

export.ver: export.c
$(CC) -I$(INCLUDEDIR) $(CFLAGS) -E -D__GENKSYMS_ _ $ˆ | \

$(GENKSYMS) -k 2.4.0 > $@

These lines demonstrate how to build export.ver and add it to the dependencies of
both object files, but only if MODVERSIONS is defined. A few lines added to Make-
file take care of defining MODVERSIONS if version support is enabled in the ker-
nel, but they are not worth showing here. The -k option must be used to tell
genksyms which version of the kernel you are working with. Its purpose is to
deter mine the format of the output file; it need not match the kernel you are using
exactly.

One thing that is worth showing, however, is the definition of the GKSMP symbol.
As mentioned above, a prefix (-p smp_) is added to every checksum if the kernel
is built for SMP systems. The genksyms utility does not add this prefix itself; it must
be told explicitly to do so. The following makefile code will cause the prefix to be
set appropriately:

Version Control in Modules
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ifdef CONFIG_SMP
GENKSYMS += -p smp_

endif

The source file, then, must declare the right prepr ocessor symbols for every con-
ceivable prepr ocessor pass: the input to genksyms and the actual compilation, both
with version support enabled and with it disabled. Moreover, export.c should be
able to autodetect version support in the kernel, as master.c does. The following
lines show you how to do this successfully:

#include <linux/config.h> /* retrieve the CONFIG_* macros */
#if defined(CONFIG_MODVERSIONS) && !defined(MODVERSIONS)
# define MODVERSIONS
#endif

/*
* Include the versioned definitions for both kernel symbols and our
* symbol, *unless* we are generating checksums (__GENKSYMS_ _
* defined) */

#if defined(MODVERSIONS) && !defined(__GENKSYMS_ _)
# include <linux/modversions.h>
# include "export.ver" /* redefine "export_function" to include CRC */
#endif

The code, though hairy, has the advantage of leaving the makefile in a clean state.
Passing the correct flags from make, on the other hand, involves writing long com-
mand lines for the various cases, which we won’t do here.

The simple import module calls export_function by passing the numbers 2 and 2
as arguments; the expected result is therefor e 4. The following example shows that
import actually links to the versioned symbol of export and calls the function. The
versioned symbol appears in /pr oc/ksyms.

morgana.root# insmod ./export.o
morgana.root# grep export /proc/ksyms
c883605c export_function_Rsmp_888cb211 [export]
morgana.root# insmod ./import.o
import: my mate tells that 2+2 = 4
morgana.root# cat /proc/modules
import 312 0 (unused)
export 620 0 [import]

Backward Compatibility
The demand-loading capability was entirely reimplemented in the 2.1 develop-
ment series. Fortunately, very few modules need to be aware of the change in any
way. For completeness, however, we will describe the old implementation here.
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In the 2.0 days, demand loading was handled by a separate, user-space daemon
pr ocess called ker neld. This process connected into the kernel via a special inter-
face and received module load (and unload) requests as they were generated by
ker nel code. There wer e numer ous disadvantages to this scheme, including the
fact that no modules could be loaded until the system initialization process had
gotten far enough to start ker neld.

The request_module function, however, remained unchanged, as did all aspects of
the modules themselves. It was, however, necessary to include <linux/ker-
neld.h> instead of <linux/kmod.h>.

Symbol versioning in the 2.0 kernel did not use the smp_ pr efix on SMP systems.
As a result, insmod would happily load an SMP module into a uniprocessor ker-
nel, or vice versa. The usual result of such a mismatch was extreme chaos.

The ability to run user-mode helper programs and the intermodule communication
mechanism did not exist until Linux 2.4.

Quick Reference
This chapter introduced the following kernel symbols.

/etc/modules.conf
This is the configuration file for modpr obe and depmod. It is used to configure
demand loading and is described in the manpages for the two programs.

#include <linux/kmod.h>
int request_module(const char *name);

This function perfor ms demand loading of modules.

void inter_module_register(const char *string, struct module
*module, const void *data);

void inter_module_unregister(const char *);
inter_module_r egister makes data available to other modules via the inter-
module communication system. When the data is no longer to be shared,
inter_module_unr egister will end that availability.

const void *inter_module_get(const char *string);
const void *inter_module_get_request(const char *string,

const char *module);
void inter_module_put(const char *string);

The first two functions look up a string in the intermodule communication sys-
tem; inter_module_get_r equest also attempts to load the given module if the
string is not found. Both increment the usage count of the module that
exported the string; inter_module_ put should be called to decrement it when
the data pointer is no longer needed.

Quick Reference
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#include <linux/config.h>
CONFIG_MODVERSIONS

This macro is defined only if the current kernel has been compiled to support
versioned symbols.

#ifdef MODVERSIONS
#include <linux/modversions.h>

This header, which exists only if CONFIG_MODVERSIONS is valid, contains
the versioned names for all the symbols exported by the kernel.

__GENKSYMS_ _
This macro is defined by make when prepr ocessing files to be read by
genksyms to build new version codes. It is used to conditionally prevent inclu-
sion of <linux/modversions.h> when building new checksums.

int call_usermodehelper(char *path, char *argv[], char
*envp[]);

This function runs a user-mode program in the keventd pr ocess context.
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CHAPTER TWELVE

LOADING BLOCK
DRIVERS

Our discussion thus far has been limited to char drivers. As we have already men-
tioned, however, char drivers are not the only type of driver used in Linux sys-
tems. Here we tur n our attention to block drivers. Block drivers provide access to
block-oriented devices—those that transfer data in randomly accessible, fixed-size
blocks. The classic block device is a disk drive, though others exist as well.

The char driver interface is relatively clean and easy to use; the block interface,
unfortunately, is a little messier. Ker nel developers like to complain about it. There
ar e two reasons for this state of affairs. The first is simple history—the block inter-
face has been at the core of every version of Linux since the first, and it has
pr oved hard to change. The other reason is perfor mance. A slow char driver is an
undesirable thing, but a slow block driver is a drag on the entire system. As a
result, the design of the block interface has often been influenced by the need for
speed.

The block driver interface has evolved significantly over time. As with the rest of
the book, we cover the 2.4 interface in this chapter, with a discussion of the
changes at the end. The example drivers work on all kernels between 2.0 and 2.4,
however.

This chapter explores the creation of block drivers with two new example drivers.
The first, sbull (Simple Block Utility for Loading Localities) implements a block
device using system memory—a RAM-disk driver, essentially. Later on, we’ll intro-
duce a variant called spull as a way of showing how to deal with partition tables.

As always, these example drivers gloss over many of the issues found in real block
drivers; their purpose is to demonstrate the interface that such drivers must work
with. Real drivers will have to deal with hardware, so the material covered in
Chapter 8 and Chapter 9 will be useful as well.
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One quick note on terminology: the word block as used in this book refers to a
block of data as determined by the kernel. The size of blocks can be differ ent in
dif ferent disks, though they are always a power of two. A sector is a fixed-size unit
of data as determined by the underlying hardware. Sectors are almost always 512
bytes long.

Reg istering the Driver
Like char drivers, block drivers in the kernel are identified by major numbers.
Block major numbers are entir ely distinct from char major numbers, however. A
block device with major number 32 can coexist with a char device using the same
major number since the two ranges are separate.

The functions for registering and unregistering block devices look similar to those
for char devices:

#include <linux/fs.h>
int register_blkdev(unsigned int major, const char *name,

struct block_device_operations *bdops);
int unregister_blkdev(unsigned int major, const char *name);

The arguments have the same general meaning as for char devices, and major
numbers can be assigned dynamically in the same way. So the sbull device regis-
ters itself in almost exactly the same way as scull did:

result = register_blkdev(sbull_major, "sbull", &sbull_bdops);
if (result < 0) {

printk(KERN_WARNING "sbull: can’t get major %d\n",sbull_major);
return result;

}
if (sbull_major == 0) sbull_major = result; /* dynamic */
major = sbull_major; /* Use ‘major’ later on to save typing */

The similarity stops here, however. One differ ence is already evident: regis-
ter_chr dev took a pointer to a file_operations structur e, but register_blkdev
uses a structure of type block_device_operations instead — as it has since
ker nel version 2.3.38. The structure is still sometimes referr ed to by the name
fops in block drivers; we’ll call it bdops to be more faithful to what the structure
is and to follow the suggested naming. The definition of this structure is as fol-
lows:

struct block_device_operations {
int (*open) (struct inode *inode, struct file *filp);
int (*release) (struct inode *inode, struct file *filp);
int (*ioctl) (struct inode *inode, struct file *filp,

unsigned command, unsigned long argument);
int (*check_media_change) (kdev_t dev);
int (*revalidate) (kdev_t dev);

};
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The open, release, and ioctl methods listed here are exactly the same as their char
device counterparts. The other two methods are specific to block devices and are
discussed later in this chapter. Note that there is no owner field in this structure;
block drivers must still maintain their usage count manually, even in the 2.4 ker-
nel.

The bdops structur e used in sbull is as follows:

struct block_device_operations sbull_bdops = {
open: sbull_open,
release: sbull_release,
ioctl: sbull_ioctl,
check_media_change: sbull_check_change,
revalidate: sbull_revalidate,

};

Note that there are no read or write operations provided in the
block_device_operations structur e. All I/O to block devices is normally
buf fered by the system (the only exception is with ‘‘raw’’ devices, which we cover
in the next chapter); user processes do not perfor m dir ect I/O to these devices.
User-mode access to block devices usually is implicit in filesystem operations they
per form, and those operations clearly benefit from I/O buffering. However, even
‘‘dir ect’’ I/O to a block device, such as when a filesystem is created, goes through
the Linux buffer cache.* As a result, the kernel provides a single set of read and
write functions for block devices, and drivers do not need to worry about them.

Clearly, a block driver must eventually provide some mechanism for actually doing
block I/O to a device. In Linux, the method used for these I/O operations is called
request; it is the equivalent of the ‘‘strategy’’ function found on many Unix sys-
tems. The request method handles both read and write operations and can be
somewhat complex. We will get into the details of request shortly.

For the purposes of block device registration, however, we must tell the kernel
wher e our request method is. This method is not kept in the
block_device_operations structur e, for both historical and perfor mance rea-
sons; instead, it is associated with the queue of pending I/O operations for the
device. By default, there is one such queue for each major number. A block driver
must initialize that queue with blk_init_queue. Queue initialization and cleanup is
defined as follows:

#include <linux/blkdev.h>
blk_init_queue(request_queue_t *queue, request_fn_proc *request);
blk_cleanup_queue(request_queue_t *queue);

* Actually, the 2.3 development series added the raw I/O capability, allowing user pro-
cesses to write to block devices without involving the buffer cache. Block drivers, how-
ever, are entir ely unawar e of raw I/O, so we defer the discussion of that facility to the
next chapter.

Reg istering the Driver
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The init function sets up the queue, and associates the driver’s request function
(passed as the second parameter) with the queue. It is necessary to call
blk_cleanup_queue at module cleanup time. The sbull driver initializes its queue
with this line of code:

blk_init_queue(BLK_DEFAULT_QUEUE(major), sbull_request);

Each device has a request queue that it uses by default; the macro
BLK_DEFAULT_QUEUE(major) is used to indicate that queue when needed.
This macro looks into a global array of blk_dev_struct structur es called
blk_dev, which is maintained by the kernel and indexed by major number. The
structur e looks like this:

struct blk_dev_struct {
request_queue_t request_queue;
queue_proc *queue;
void *data;

};

The request_queue member contains the I/O request queue that we have just
initialized. We will look at the queue member shortly. The data field may be
used by the driver for its own data—but few drivers do so.

Figur e 12-1 visualizes the main steps a driver module perfor ms to register with the
ker nel pr oper and deregister. If you compare this figure with Figure 2-1, similari-
ties and differ ences should be clear.

In addition to blk_dev, several other global arrays hold information about block
drivers. These arrays are indexed by the major number, and sometimes also the
minor number. They are declar ed and described in drivers/block/ll_rw_block.c.

int blk_size[][];
This array is indexed by the major and minor numbers. It describes the size of
each device, in kilobytes. If blk_size[major] is NULL, no checking is per-
for med on the size of the device (i.e., the kernel might request data transfers
past end-of-device).

int blksize_size[][];
The size of the block used by each device, in bytes. Like the previous one,
this bidimensional array is indexed by both major and minor numbers. If
blksize_size[major] is a null pointer, a block size of BLOCK_SIZE (cur-
rently 1 KB) is assumed. The block size for the device must be a power of
two, because the kernel uses bit-shift operators to convert offsets to block
numbers.

int hardsect_size[][];
Like the others, this data structure is indexed by the major and minor num-
bers. The default value for the hardware sector size is 512 bytes. With the 2.2
and 2.4 kernels, differ ent sector sizes are supported, but they must always be
a power of two greater than or equal to 512 bytes.
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Figur e 12-1. Registering a Block Device Driver

int read_ahead[];
int max_readahead[][];

These arrays define the number of sectors to be read in advance by the kernel
when a file is being read sequentially. read_ahead applies to all devices of
a given type and is indexed by major number; max_readahead applies to
individual devices and is indexed by both the major and minor numbers.

Reg istering the Driver
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Reading data before a process asks for it helps system perfor mance and over-
all throughput. A slower device should specify a bigger read-ahead value,
while fast devices will be happy even with a smaller value. The bigger the
read-ahead value, the more memory the buffer cache uses.

The primary differ ence between the two arrays is this: read_ahead is
applied at the block I/O level and controls how many blocks may be read
sequentially fr om the disk ahead of the current request. max_readahead
works at the filesystem level and refers to blocks in the file, which may not be
sequential on disk. Kernel development is moving toward doing read ahead at
the filesystem level, rather than at the block I/O level. In the 2.4 kernel, how-
ever, read ahead is still done at both levels, so both of these arrays are used.

Ther e is one read_ahead[] value for each major number, and it applies to
all its minor numbers. max_readahead, instead, has a value for every device.
The values can be changed via the driver’s ioctl method; hard-disk drivers usu-
ally set read_ahead to 8 sectors, which corresponds to 4 KB. The
max_readahead value, on the other hand, is rarely set by the drivers; it
defaults to MAX_READAHEAD, curr ently 31 pages.

int max_sectors[][];
This array limits the maximum size of a single request. It should normally be
set to the largest transfer that your hardware can handle.

int max_segments[];
This array controlled the number of individual segments that could appear in a
cluster ed request; it was removed just before the release of the 2.4 kernel,
however. (See “Clustered Requests” later in this chapter for information on
cluster ed requests).

The sbull device allows you to set these values at load time, and they apply to all
the minor numbers of the sample driver. The variable names and their default val-
ues in sbull ar e as follows:

size=2048 (kilobytes)
Each RAM disk created by sbull takes two megabytes of RAM.

blksize=1024 (bytes)
The software ‘‘block’’ used by the module is one kilobyte, like the system
default.

hardsect=512 (bytes)
The sbull sector size is the usual half-kilobyte value.

rahead=2 (sectors)
Because the RAM disk is a fast device, the default read-ahead value is small.

The sbull device also allows you to choose the number of devices to install. devs,
the number of devices, defaults to 2, resulting in a default memory usage of four
megabytes — two disks at two megabytes each.
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The initialization of these arrays in sbull is done as follows:

read_ahead[major] = sbull_rahead;
result = -ENOMEM; /* for the possible errors */

sbull_sizes = kmalloc(sbull_devs * sizeof(int), GFP_KERNEL);
if (!sbull_sizes)

goto fail_malloc;
for (i=0; i < sbull_devs; i++) /* all the same size */

sbull_sizes[i] = sbull_size;
blk_size[major]=sbull_sizes;

sbull_blksizes = kmalloc(sbull_devs * sizeof(int), GFP_KERNEL);
if (!sbull_blksizes)

goto fail_malloc;
for (i=0; i < sbull_devs; i++) /* all the same blocksize */

sbull_blksizes[i] = sbull_blksize;
blksize_size[major]=sbull_blksizes;

sbull_hardsects = kmalloc(sbull_devs * sizeof(int), GFP_KERNEL);
if (!sbull_hardsects)

goto fail_malloc;
for (i=0; i < sbull_devs; i++) /* all the same hardsect */

sbull_hardsects[i] = sbull_hardsect;
hardsect_size[major]=sbull_hardsects;

For brevity, the error handling code (the target of the fail_malloc goto) has
been omitted; it simply frees anything that was successfully allocated, unregisters
the device, and retur ns a failur e status.

One last thing that must be done is to register every ‘‘disk’’ device provided by the
driver. sbull calls the necessary function (register_disk) as follows:

for (i = 0; i < sbull_devs; i++)
register_disk(NULL, MKDEV(major, i), 1, &sbull_bdops,

sbull_size << 1);

In the 2.4.0 kernel, register_disk does nothing when invoked in this manner. The
real purpose of register_disk is to set up the partition table, which is not supported
by sbull. All block drivers, however, make this call whether or not they support
partitions, indicating that it may become necessary for all block devices in the
futur e. A block driver without partitions will work without this call in 2.4.0, but it
is safer to include it. We revisit register_disk in detail later in this chapter, when we
cover partitions.

The cleanup function used by sbull looks like this:

for (i=0; i<sbull_devs; i++)
fsync_dev(MKDEV(sbull_major, i)); /* flush the devices */

unregister_blkdev(major, "sbull");
/*
* Fix up the request queue(s)

Reg istering the Driver
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*/
blk_cleanup_queue(BLK_DEFAULT_QUEUE(major));

/* Clean up the global arrays */
read_ahead[major] = 0;
kfree(blk_size[major]);
blk_size[major] = NULL;
kfree(blksize_size[major]);
blksize_size[major] = NULL;
kfree(hardsect_size[major]);
hardsect_size[major] = NULL;

Her e, the call to fsync_dev is needed to free all refer ences to the device that the
ker nel keeps in various caches. fsync_dev is the implementation of block_fsync,
which is the fsync ‘‘method’’ for block devices.

The Header File blk.h
All block drivers should include the header file <linux/blk.h>. This file defines
much of the common code that is used in block drivers, and it provides functions
for dealing with the I/O request queue.

Actually, the blk.h header is quite unusual, because it defines several symbols
based on the symbol MAJOR_NR, which must be declared by the driver befor e it
includes the header. This convention was developed in the early days of Linux,
when all block devices had preassigned major numbers and modular block drivers
wer e not supported.

If you look at blk.h, you’ll see that several device-dependent symbols are declar ed
according to the value of MAJOR_NR, which is expected to be known in advance.
However, if the major number is dynamically assigned, the driver has no way to
know its assigned number at compile time and cannot correctly define MAJOR_NR.
If MAJOR_NR is undefined, blk.h can’t set up some of the macros used with the
request queue. Fortunately, MAJOR_NR can be defined as an integer variable and
all will work fine for add-on block drivers.

blk.h makes use of some other predefined, driver-specific symbols as well. The
following list describes the symbols in <linux/blk.h> that must be defined in
advance; at the end of the list, the code used in sbull is shown.

MAJOR_NR
This symbol is used to access a few arrays, in particular blk_dev and blk-
size_size. A custom driver like sbull, which is unable to assign a constant
value to the symbol, should #define it to the variable holding the major
number. For sbull, this is sbull_major.
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DEVICE_NAME
The name of the device being created. This string is used in printing error
messages.

DEVICE_NR(kdev_t device)
This symbol is used to extract the ordinal number of the physical device from
the kdev_t device number. This symbol is used in turn to declar e CUR-
RENT_DEV, which can be used within the request function to determine
which hardware device owns the minor number involved in a transfer request.

The value of this macro can be MINOR(device) or another expression,
according to the convention used to assign minor numbers to devices and par-
titions. The macro should retur n the same device number for all partitions on
the same physical device—that is, DEVICE_NR repr esents the disk number,
not the partition number. Partitionable devices are intr oduced later in this
chapter.

DEVICE_INTR
This symbol is used to declare a pointer variable that refers to the current bot-
tom-half handler. The macros SET_INTR(intr) and CLEAR_INTR ar e used
to assign the variable. Using multiple handlers is convenient when the device
can issue interrupts with differ ent meanings.

DEVICE_ON(kdev_t device)
DEVICE_OFF(kdev_t device)

These macros are intended to help devices that need to perfor m pr ocessing
befor e or after a set of transfers is perfor med; for example, they could be used
by a floppy driver to start the drive motor before I/O and to stop it afterward.
Moder n drivers no longer use these macros, and DEVICE_ON does not even
get called anymore. Portable drivers, though, should define them (as empty
symbols), or compilation errors will result on 2.0 and 2.2 kernels.

DEVICE_NO_RANDOM
By default, the function end_r equest contributes to system entropy (the
amount of collected ‘‘randomness’’), which is used by /dev/random. If the
device isn’t able to contribute significant entropy to the random device,
DEVICE_NO_RANDOM should be defined. /dev/random was introduced in
“Installing an Interrupt Handler” in Chapter 9, where SA_SAMPLE_RANDOM
was explained.

DEVICE_REQUEST
Used to specify the name of the request function used by the driver. The only
ef fect of defining DEVICE_REQUEST is to cause a forward declaration of the
request function to be done; it is a holdover from older times, and most (or
all) drivers can leave it out.

The Header File blk.h
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The sbull driver declares the symbols in the following way:

#define MAJOR_NR sbull_major /* force definitions on in blk.h */
static int sbull_major; /* must be declared before including blk.h */

#define DEVICE_NR(device) MINOR(device) /* has no partition bits */
#define DEVICE_NAME "sbull" /* name for messaging */
#define DEVICE_INTR sbull_intrptr /* pointer to bottom half */
#define DEVICE_NO_RANDOM /* no entropy to contribute */
#define DEVICE_REQUEST sbull_request
#define DEVICE_OFF(d) /* do-nothing */

#include <linux/blk.h>

#include "sbull.h" /* local definitions */

The blk.h header uses the macros just listed to define some additional macros
usable by the driver. We’ll describe those macros in the following sections.

Handling Requests: A Simple
Introduction
The most important function in a block driver is the request function, which per-
for ms the low-level operations related to reading and writing data. This section
discusses the basic design of the request pr ocedure.

The Request Queue
When the kernel schedules a data transfer, it queues the request in a list, ordered
in such a way that it maximizes system perfor mance. The queue of requests is
then passed to the driver’s request function, which has the following prototype:

void request_fn(request_queue_t *queue);

The request function should perfor m the following tasks for each request in the
queue:

1. Check the validity of the request. This test is perfor med by the macro
INIT_REQUEST, defined in blk.h; the test consists of looking for problems
that could indicate a bug in the system’s request queue handling.

2. Perfor m the actual data transfer. The CURRENT variable (a macro, actually) can
be used to retrieve the details of the current request. CURRENT is a pointer to
struct request, whose fields are described in the next section.
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3. Clean up the request just processed. This operation is perfor med by
end_r equest, a static function whose code resides in blk.h. end_r equest han-
dles the management of the request queue and wakes up processes waiting
on the I/O operation. It also manages the CURRENT variable, ensuring that it
points to the next unsatisfied request. The driver passes the function a single
argument, which is 1 in case of success and 0 in case of failure. When
end_r equest is called with an argument of 0, an ‘‘I/O error’’ message is deliv-
er ed to the system logs (via printk).

4. Loop back to the beginning, to consume the next request.

Based on the previous description, a minimal request function, which does not
actually transfer any data, would look like this:

void sbull_request(request_queue_t *q)
{

while(1) {
INIT_REQUEST;
printk("<1>request %p: cmd %i sec %li (nr. %li)\n", CURRENT,

CURRENT->cmd,
CURRENT->sector,
CURRENT->current_nr_sectors);

end_request(1); /* success */
}

}

Although this code does nothing but print messages, running this function pro-
vides good insight into the basic design of data transfer. It also demonstrates a
couple of features of the macros defined in <linux/blk.h>. The first is that,
although the while loop looks like it will never terminate, the fact is that the
INIT_REQUEST macr o per forms a return when the request queue is empty.
The loop thus iterates over the queue of outstanding requests and then retur ns
fr om the request function. Second, the CURRENT macr o always describes the
request to be processed. We get into the details of CURRENT in the next section.

A block driver using the request function just shown will actually work—for a
short while. It is possible to make a filesystem on the device and access it for as
long as the data remains in the system’s buffer cache.

This empty (but verbose) function can still be run in sbull by defining the symbol
SBULL_EMPTY_REQUEST at compile time. If you want to understand how the
ker nel handles differ ent block sizes, you can experiment with blksize= on the
insmod command line. The empty request function shows the internal workings of
the kernel by printing the details of each request.

The request function has one very important constraint: it must be atomic. request
is not usually called in direct response to user requests, and it is not running in the
context of any particular process. It can be called at interrupt time, from tasklets,
or from any number of other places. Thus, it must not sleep while carrying out its
tasks.

Handling Requests: A Simple Introduction
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Perfor ming the Actual Data Transfer
To understand how to build a working request function for sbull, let’s look at how
the kernel describes a request within a struct request. The structure is
defined in <linux/blkdev.h>. By accessing the fields in the request struc-
tur e, usually by way of CURRENT, the driver can retrieve all the information
needed to transfer data between the buffer cache and the physical block device.*
CURRENT is just a pointer into blk_dev[MAJOR_NR].request_queue. The
following fields of a request hold information that is useful to the request function:

kdev_t rq_dev;
The device accessed by the request. By default, the same request function is
used for every device managed by the driver. A single request function deals
with all the minor numbers; rq_dev can be used to extract the minor device
being acted upon. The CURRENT_DEV macr o is simply defined as
DEVICE_NR(CURRENT->rq_dev).

int cmd;
This field describes the operation to be perfor med; it is either READ (fr om the
device) or WRITE (to the device).

unsigned long sector;
The number of the first sector to be transferred in this request.

unsigned long current_nr_sectors;
unsigned long nr_sectors;

The number of sectors to transfer for the current request. The driver should
refer to current_nr_sectors and ignore nr_sectors (which is listed
her e just for completeness). See “Clustered Requests” later in this chapter for
mor e detail on nr_sectors.

char *buffer;
The area in the buffer cache to which data should be written (cmd==READ) or
fr om which data should be read (cmd==WRITE).

struct buffer_head *bh;
The structure describing the first buffer in the list for this request. Buffer heads
ar e used in the management of the buffer cache; we’ll look at them in detail
shortly in “The request structure and the buffer cache.”

Ther e ar e other fields in the structure, but they are primarily meant for internal use
in the kernel; the driver is not expected to use them.

* Actually, not all blocks passed to a block driver need be in the buffer cache, but that’s a
topic beyond the scope of this chapter.
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The implementation for the working request function in the sbull device is shown
her e. In the following code, the Sbull_Dev serves the same function as
Scull_Dev, intr oduced in “scull’s Memory Usage” in Chapter 3.

void sbull_request(request_queue_t *q)
{

Sbull_Dev *device;
int status;

while(1) {
INIT_REQUEST; /* returns when queue is empty */

/* Which "device" are we using? */
device = sbull_locate_device (CURRENT);
if (device == NULL) {

end_request(0);
continue;

}

/* Perform the transfer and clean up. */
spin_lock(&device->lock);
status = sbull_transfer(device, CURRENT);
spin_unlock(&device->lock);
end_request(status);

}
}

This code looks little differ ent fr om the empty version shown earlier; it concerns
itself with request queue management and pushes off the real work to other func-
tions. The first, sbull_locate_device, looks at the device number in the request and
finds the right Sbull_Dev structur e:

static Sbull_Dev *sbull_locate_device(const struct request *req)
{

int devno;
Sbull_Dev *device;

/* Check if the minor number is in range */
devno = DEVICE_NR(req->rq_dev);
if (devno >= sbull_devs) {

static int count = 0;
if (count++ < 5) /* print the message at most five times */

printk(KERN_WARNING "sbull: request for unknown device\n");
return NULL;

}
device = sbull_devices + devno; /* Pick it out of device array */
return device;

}

The only ‘‘strange’’ feature of the function is the conditional statement that limits it
to reporting five errors. This is intended to avoid clobbering the system logs with
too many messages, since end_request(0) alr eady prints an ‘‘I/O error’’

Handling Requests: A Simple Introduction
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message when the request fails. The static counter is a standard way to limit
message reporting and is used several times in the kernel.

The actual I/O of the request is handled by sbull_transfer:

static int sbull_transfer(Sbull_Dev *device, const struct request *req)
{

int size;
u8 *ptr;

ptr = device->data + req->sector * sbull_hardsect;
size = req->current_nr_sectors * sbull_hardsect;

/* Make sure that the transfer fits within the device. */
if (ptr + size > device->data + sbull_blksize*sbull_size) {

static int count = 0;
if (count++ < 5)

printk(KERN_WARNING "sbull: request past end of device\n");
return 0;

}

/* Looks good, do the transfer. */
switch(req->cmd) {

case READ:
memcpy(req->buffer, ptr, size); /* from sbull to buffer */
return 1;

case WRITE:
memcpy(ptr, req->buffer, size); /* from buffer to sbull */
return 1;

default:
/* can’t happen */
return 0;

}
}

Since sbull is just a RAM disk, its ‘‘data transfer’’ reduces to a memcpy call.

Handling Requests: The Detailed View
The sbull driver as described earlier works very well. In simple situations (as with
sbull), the macros from <linux/blk.h> can be used to easily set up a request
function and get a working driver. As has already been mentioned, however, block
drivers are often a perfor mance-critical part of the kernel. Drivers based on the
simple code shown earlier will likely not perfor m very well in many situations,
and can also be a drag on the system as a whole. In this section we get into the
details of how the I/O request queue works with an eye toward writing a faster,
mor e ef ficient driver.
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The I/O Request Queue
Each block driver works with at least one I/O request queue. This queue contains,
at any given time, all of the I/O operations that the kernel would like to see done
on the driver’s devices. The management of this queue is complicated; the perfor-
mance of the system depends on how it is done.

The queue is designed with physical disk drives in mind. With disks, the amount
of time requir ed to transfer a block of data is typically quite small. The amount of
time requir ed to position the head (seek) to do that transfer, however, can be very
large. Thus the Linux kernel works to minimize the number and extent of the
seeks perfor med by the device.

Two things are done to achieve those goals. One is the clustering of requests to
adjacent sectors on the disk. Most modern filesystems will attempt to lay out files
in consecutive sectors; as a result, requests to adjoining parts of the disk are com-
mon. The kernel also applies an ‘‘elevator’’ algorithm to the requests. An elevator
in a skyscraper is either going up or down; it will continue to move in those direc-
tions until all of its ‘‘requests’’ (people wanting on or off) have been satisfied. In
the same way, the kernel tries to keep the disk head moving in the same direction
for as long as possible; this approach tends to minimize seek times while ensuring
that all requests get satisfied eventually.

A Linux I/O request queue is repr esented by a structure of type request_queue,
declar ed in <linux/blkdev.h>. The request_queue structur e looks some-
what like file_operations and other such objects, in that it contains pointers
to a number of functions that operate on the queue—for example, the driver’s
request function is stored there. There is also a queue head (using the functions
fr om <linux/list.h> described in “Linked Lists” in Chapter 10), which points
to the list of outstanding requests to the device.

These requests are, of course, of type struct request; we have already looked
at some of the fields in this structure. The reality of the request structur e is a lit-
tle more complicated, however; understanding it requir es a brief digression into
the structure of the Linux buffer cache.

The request structure and the buffer cache

The design of the request structur e is driven by the Linux memory management
scheme. Like most Unix-like systems, Linux maintains a buf fer cache, a region of
memory that is used to hold copies of blocks stored on disk. A great many “disk”
operations perfor med at higher levels of the kernel — such as in the filesystem
code — act only on the buffer cache and do not generate any actual I/O opera-
tions. Through aggressive caching the kernel can avoid many read operations alto-
gether, and multiple writes can often be merged into a single physical write to
disk.

Handling Requests: The Detailed View
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One unavoidable aspect of the buffer cache, however, is that blocks that are adja-
cent on disk are almost certainly not adjacent in memory. The buffer cache is a
dynamic thing, and blocks end up being scattered widely. In order to keep track
of everything, the kernel manages the buffer cache through buffer_head struc-
tur es. One buffer_head is associated with each data buffer. This structure con-
tains a great many fields, most of which do not concern a driver writer. Ther e ar e
a few that are important, however, including the following:

char *b_data;
The actual data block associated with this buffer head.

unsigned long b_size;
The size of the block pointed to by b_data.

kdev_t b_rdev;
The device holding the block repr esented by this buffer head.

unsigned long b_rsector;
The sector number where this block lives on disk.

struct buffer_head *b_reqnext;
A pointer to a linked list of buffer head structures in the request queue.

void (*b_end_io)(struct buffer_head *bh, int uptodate);
A pointer to a function to be called when I/O on this buffer completes. bh is
the buffer head itself, and uptodate is nonzero if the I/O was successful.

Every block passed to a driver’s request function either lives in the buffer cache,
or, on rar e occasion, lives elsewhere but has been made to look as if it lived in the
buf fer cache.* As a result, every request passed to the driver deals with one or
mor e buffer_head structur es. The request structur e contains a member
(called simply bh) that points to a linked list of these structures; satisfying the
request requir es per forming the indicated I/O operation on each buffer in the list.
Figur e 12-2 shows how the request queue and buffer_head structur es fit
together.

Requests are not made of random lists of buffers; instead, all of the buffer heads
attached to a single request will belong to a series of adjacent blocks on the disk.
Thus a request is, in a sense, a single operation referring to a (perhaps long)
gr oup of blocks on the disk. This grouping of blocks is called clustering, and we
will look at it in detail after completing our discussion of how the request list
works.

* The RAM-disk driver, for example, makes its memory look as if it were in the buffer
cache. Since the ‘‘disk’’ buffer is already in system RAM, there’s no need to keep a copy
in the buffer cache. Our sample code is thus much less efficient than a properly imple-
mented RAM disk, not being concerned with RAM-disk-specific perfor mance issues.
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Figur e 12-2. Buffers in the I/O Request Queue

Request queue manipulation

The header <linux/blkdev.h> defines a small number of functions that manip-
ulate the request queue, most of which are implemented as prepr ocessor macr os.
Not all drivers will need to work with the queue at this level, but a familiarity with
how it all works can be helpful. Most request queue functions will be introduced
as we need them, but a few are worth mentioning here.

struct request *blkdev_entry_next_request(struct list_head
*head);

Retur ns the next entry in the request list. Usually the head argument is the
queue_head member of the request_queue structur e; in this case the
function retur ns the first entry in the queue. The function uses the list_entry
macr o to look in the list.

struct request *blkdev_next_request(struct request *req);
struct request *blkdev_prev_request(struct request *req);

Given a request structure, retur n the next or previous structure in the request
queue.

Handling Requests: The Detailed View
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blkdev_dequeue_request(struct request *req);
Removes a request from its request queue.

blkdev_release_request(struct request *req);
Releases a request structure back to the kernel when it has been completely
executed. Each request queue maintains its own free list of request structures
(two, actually: one for reads and one for writes); this function places a struc-
tur e back on the proper free list. blkdev_r elease_r equest will also wake up any
pr ocesses that are waiting on a free request structure.

All of these functions requir e that the io_request_lock be held, which we will
discuss next.

The I/O request lock

The I/O request queue is a complex data structure that is accessed in many places
in the kernel. It is entirely possible that the kernel needs to add more requests to
the queue at the same time that your driver is taking requests off. The queue is
thus subject to the usual sort of race conditions, and must be protected accord-
ingly.

In Linux 2.2 and 2.4, all request queues are protected with a single global spinlock
called io_request_lock. Any code that manipulates a request queue must hold
that lock and disable interrupts, with one small exception: the very first entry in
the request queue is (by default) considered to be owned by the driver. Failur e to
acquir e the io_request_lock prior to working with the request queue can
cause the queue to be corrupted, with a system crash following shortly thereafter.

The simple request function shown earlier did not need to worry about this lock
because the kernel always calls the request function with the io_request_lock
held. A driver is thus protected against corrupting the request queue; it is also pro-
tected against reentrant calls to the request function. This scheme was designed to
enable drivers that are not SMP aware to function on multiprocessor systems.

Note, however, that the io_request_lock is an expensive resource to hold. As
long as your driver holds this lock, no other requests may be queued to any block
driver in the system, and no other request functions may be called. A driver that
holds this lock for a long time may well slow down the system as a whole.

Thus, well-written block drivers often drop this lock as soon as possible. We will
see an example of how this can be done shortly. Block drivers that drop the
io_request_lock must be written with a couple of important things in mind,
however. First is that the request function must always reacquir e this lock before
retur ning, since the calling code expects it to still be held. The other concern is
that, as soon as the io_request_lock is dropped, the possibility of reentrant
calls to the request function is very real; the function must be written to handle
that eventuality.
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A variant of this latter case can also occur if your request function retur ns while an
I/O request is still active. Many drivers for real hardware will start an I/O opera-
tion, then retur n; the work is completed in the driver’s interrupt handler. We will
look at interrupt-driven block I/O in detail later in this chapter; for now it is worth
mentioning, however, that the request function can be called while these opera-
tions are still in progr ess.

Some drivers handle request function reentrancy by maintaining an internal
request queue. The request function simply removes any new requests from the
I/O request queue and adds them to the internal queue, which is then processed
thr ough a combination of tasklets and interrupt handlers.

How the blk.h macros and functions work

In our simple request function earlier, we wer e not concerned with buffer_head
structur es or linked lists. The macros and functions in <linux/blk.h> hide the
structur e of the I/O request queue in order to make the task of writing a block
driver simpler. In many cases, however, getting reasonable perfor mance requir es a
deeper understanding of how the queue works. In this section we look at the
actual steps involved in manipulating the request queue; subsequent sections
show some more advanced techniques for writing block request functions.

The fields of the request structur e that we looked at earlier—sector, cur-
rent_nr_sectors, and buffer—are really just copies of the analogous infor-
mation stored in the first buffer_head structur e on the list. Thus, a request
function that uses this information from the CURRENT pointer is just processing
the first of what might be many buffers within the request. The task of splitting up
a multibuf fer request into (seemingly) independent, single-buffer requests is han-
dled by two important definitions in <linux/blk.h>: the INIT_REQUEST
macr o and the end_r equest function.

Of the two, INIT_REQUEST is the simpler; all it really does is make a couple of
consistency checks on the request queue and cause a retur n fr om the request
function if the queue is empty. It is simply making sure that there is still work to
do.

The bulk of the queue management work is done by end_r equest. This function,
remember, is called when the driver has processed a single ‘‘request’’ (actually one
buf fer); it has several tasks to perfor m:

1. Complete the I/O processing on the current buffer; this involves calling the
b_end_io function with the status of the operation, thus waking any process
that may be sleeping on the buffer.

Handling Requests: The Detailed View
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2. Remove the buffer from the request’s linked list. If there are further buffers to
be processed, the sector, current_nr_sectors, and buffer fields in
the request structure are updated to reflect the contents of the next
buffer_head structur e in the list. In this case (there are still buffers to be
transferr ed), end_r equest is finished for this iteration and steps 3 to 5 are not
executed.

3. Call add_blkdev_randomness to update the entropy pool, unless
DEVICE_NO_RANDOM has been defined (as is done in the sbull driver).

4. Remove the finished request from the request queue by calling
blkdev_dequeue_r equest. This step modifies the request queue, and thus must
be perfor med with the io_request_lock held.

5. Release the finished request back to the system; io_request_lock is
requir ed her e too.

The kernel defines a couple of helper functions that are used by end_r equest to
do most of this work. The first one is called end_that_r equest_first, which handles
the first two steps just described. Its prototype is

int end_that_request_first(struct request *req, int status, char *name);

status is the status of the request as passed to end_r equest; the name parameter
is the device name, to be used when printing error messages. The retur n value is
nonzer o if there are mor e buf fers to be processed in the current request; in that
case the work is done. Otherwise, the request is dequeued and released with
end_that_r equest_last:

void end_that_request_last(struct request *req);

In end_r equest this step is handled with this code:

struct request *req = CURRENT;
blkdev_dequeue_request(req);
end_that_request_last(req);

That is all there is to it.

Clustered Requests
The time has come to look at how to apply all of that background material to the
task of writing better block drivers. We’ll start with a look at the handling of clus-
ter ed requests. Clustering, as mentioned earlier, is simply the practice of joining
together requests that operate on adjacent blocks on the disk. There are two
advantages to doing things this way. First, clustering speeds up the transfer; clus-
tering can also save some memory in the kernel by avoiding allocation of redun-
dant request structur es.
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As we have seen, block drivers need not be aware of clustering at all;
<linux/blk.h> transpar ently splits each clustered request into its component
pieces. In many cases, however, a driver can do better by explicitly acting on clus-
tering. It is often possible to set up the I/O for several consecutive blocks at the
same time, with an improvement in throughput. For example, the Linux floppy
driver attempts to write an entire track to the diskette in a single operation. Most
high-per formance disk controllers can do “scatter/gather” I/O as well, leading to
large perfor mance gains.

To take advantage of clustering, a block driver must look directly at the list of
buffer_head structur es attached to the request. This list is pointed to by CUR-
RENT->bh; subsequent buffers can be found by following the b_reqnext point-
ers in each buffer_head structur e. A driver perfor ming cluster ed I/O should
follow roughly this sequence of operations with each buffer in the cluster:

1. Arrange to transfer the data block at address bh->b_data, of size
bh->b_size bytes. The direction of the data transfer is CURRENT->cmd (i.e.,
either READ or WRITE).

2. Retrieve the next buffer head in the list: bh->b_reqnext. Then detach the
buf fer just transferred from the list, by zeroing its b_reqnext—the pointer to
the new buffer you just retrieved.

3. Update the request structur e to reflect the I/O done with the buffer that has
just been removed. Both CURRENT->hard_nr_sectors and CUR-
RENT->nr_sectors should be decremented by the number of sectors (not
blocks) transferred from the buffer. The sector numbers CUR-
RENT->hard_sector and CURRENT->sector should be incremented by
the same amount. Perfor ming these operations keeps the request structur e
consistent.

4. Loop back to the beginning to transfer the next adjacent block.

When the I/O on each buffer completes, your driver should notify the kernel by
calling the buffer’s I/O completion routine:

bh->b_end_io(bh, status);

status is nonzero if the operation was successful. You also, of course, need to
remove the request structur e for the completed operations from the queue. The
pr ocessing steps just described can be done without holding the
io_request_lock, but that lock must be reacquir ed befor e changing the queue
itself.

Your driver can still use end_r equest (as opposed to manipulating the queue
dir ectly) at the completion of the I/O operation, as long as it takes care to set the
CURRENT->bh pointer properly. This pointer should either be NULL or it should
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point to the last buffer_head structur e that was transferred. In the latter case,
the b_end_io function should not have been called on that last buffer, since
end_r equest will make that call.

A full-featur ed implementation of clustering appears in drivers/block/floppy.c, while
a summary of the operations requir ed appears in end_r equest, in blk.h. Neither
floppy.c nor blk.h ar e easy to understand, but the latter is a better place to start.

The active queue head

One other detail regarding the behavior of the I/O request queue is relevant for
block drivers that are dealing with clustering. It has to do with the queue head—
the first request on the queue. For historical compatibility reasons, the kernel
(almost) always assumes that a block driver is processing the first entry in the
request queue. To avoid corruption resulting from conflicting activity, the kernel
will never modify a request once it gets to the head of the queue. No further clus-
tering will happen on that request, and the elevator code will not put other
requests in front of it.

Many block drivers remove requests from the queue entirely before beginning to
pr ocess them. If your driver works this way, the request at the head of the queue
should be fair game for the kernel. In this case, your driver should inform the ker-
nel that the head of the queue is not active by calling blk_queue_headactive:

blk_queue_headactive(request_queue_t *queue, int active);

If active is 0, the kernel will be able to make changes to the head of the request
queue.

Multiqueue Block Driver s
As we have seen, the kernel, by default, maintains a single I/O request queue for
each major number. The single queue works well for devices like sbull, but it is
not always optimal for real-world situations.

Consider a driver that is handling real disk devices. Each disk is capable of operat-
ing independently; the perfor mance of the system is sure to be better if the drives
could be kept busy in parallel. A simple driver based on a single queue will not
achieve that—it will perfor m operations on a single device at a time.

It would not be all that hard for a driver to walk through the request queue and
pick out requests for independent drives. But the 2.4 kernel makes life easier by
allowing the driver to set up independent queues for each device. Most high-per-
for mance drivers take advantage of this multiqueue capability. Doing so is not dif-
ficult, but it does requir e moving beyond the simple <linux/blk.h> definitions.

342

22 June 2001 16:41



The sbull driver, when compiled with the SBULL_MULTIQUEUE symbol defined,
operates in a multiqueue mode. It works without the <linux/blk.h> macr os,
and demonstrates a number of the features that have been described in this sec-
tion.

To operate in a multiqueue mode, a block driver must define its own request
queues. sbull does this by adding a queue member to the Sbull_Dev structur e:

request_queue_t queue;
int busy;

The busy flag is used to protect against request function reentrancy, as we will
see.

Request queues must be initialized, of course. sbull initializes its device-specific
queues in this manner:

for (i = 0; i < sbull_devs; i++) {
blk_init_queue(&sbull_devices[i].queue, sbull_request);
blk_queue_headactive(&sbull_devices[i].queue, 0);

}
blk_dev[major].queue = sbull_find_queue;

The call to blk_init_queue is as we have seen before, only now we pass in the
device-specific queues instead of the default queue for our major device number.
This code also marks the queues as not having active heads.

You might be wondering how the kernel manages to find the request queues,
which are buried in a device-specific, private structure. The key is the last line just
shown, which sets the queue member in the global blk_dev structur e. This
member points to a function that has the job of finding the proper request queue
for a given device number. Devices using the default queue have no such func-
tion, but multiqueue devices must implement it. sbull’s queue function looks like
this:

request_queue_t *sbull_find_queue(kdev_t device)
{

int devno = DEVICE_NR(device);

if (devno >= sbull_devs) {
static int count = 0;
if (count++ < 5) /* print the message at most five times */

printk(KERN_WARNING "sbull: request for unknown device\n");
return NULL;

}
return &sbull_devices[devno].queue;

}

Like the request function, sbull_find_queue must be atomic (no sleeping allowed).
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Each queue has its own request function, though usually a driver will use the same
function for all of its queues. The kernel passes the actual request queue into the
request function as a parameter, so the function can always figure out which
device is being operated on. The multiqueue request function used in sbull looks a
little differ ent fr om the ones we have seen so far because it manipulates the
request queue directly. It also drops the io_request_lock while perfor ming
transfers to allow the kernel to execute other block operations. Finally, the code
must take care to avoid two separate perils: multiple calls of the request function
and conflicting access to the device itself.

void sbull_request(request_queue_t *q)
{

Sbull_Dev *device;
struct request *req;
int status;

/* Find our device */
device = sbull_locate_device (blkdev_entry_next_request(&q->queue_head));
if (device->busy) /* no race here - io_request_lock held */

return;
device->busy = 1;

/* Process requests in the queue */
while(! list_empty(&q->queue_head)) {

/* Pull the next request off the list. */
req = blkdev_entry_next_request(&q->queue_head);
blkdev_dequeue_request(req);
spin_unlock_irq (&io_request_lock);
spin_lock(&device->lock);

/* Process all of the buffers in this (possibly clustered) request. */
do {

status = sbull_transfer(device, req);
} while (end_that_request_first(req, status, DEVICE_NAME));
spin_unlock(&device->lock);
spin_lock_irq (&io_request_lock);
end_that_request_last(req);

}
device->busy = 0;

}

Instead of using INIT_REQUEST, this function tests its specific request queue
with the list function list_empty. As long as requests exist, it removes each one in
tur n fr om the queue with blkdev_dequeue_r equest. Only then, once the removal is
complete, is it able to drop io_request_lock and obtain the device-specific
lock. The actual transfer is done using sbull_transfer, which we have already seen.
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Each call to sbull_transfer handles exactly one buffer_head structur e attached
to the request. The function then calls end_that_r equest_first to dispose of that
buf fer, and, if the request is complete, goes on to end_that_r equest_last to clean
up the request as a whole.

The management of concurrency here is worth a quick look. The busy flag is
used to prevent multiple invocations of sbull_r equest. Since sbull_r equest is always
called with the io_request_lock held, it is safe to test and set the busy flag
with no additional protection. (Otherwise, an atomic_t could have been used).
The io_request_lock is dropped before the device-specific lock is acquired. It
is possible to acquire multiple locks without risking deadlock, but it is harder;
when the constraints allow, it is better to release one lock before obtaining
another.

end_that_r equest_first is called without the io_request_lock held. Since this
function operates only on the given request structure, calling it this way is safe—
as long as the request is not on the queue. The call to end_that_r equest_last, how-
ever, requir es that the lock be held, since it retur ns the request to the request
queue’s free list. The function also always exits from the outer loop (and the func-
tion as a whole) with the io_request_lock held and the device lock released.

Multiqueue drivers must, of course, clean up all of their queues at module removal
time:

for (i = 0; i < sbull_devs; i++)
blk_cleanup_queue(&sbull_devices[i].queue);

blk_dev[major].queue = NULL;

It is worth noting, briefly, that this code could be made more efficient. It allocates
a whole set of request queues at initialization time, even though some of them
may never be used. A request queue is a large structure, since many (perhaps
thousands) of request structur es ar e allocated when the queue is initialized. A
mor e clever implementation would allocate a request queue when needed in
either the open method or the queue function. We chose a simpler implementation
for sbull in order to avoid complicating the code.

That covers the mechanics of multiqueue drivers. Drivers handling real hardware
may have other issues to deal with, of course, such as serializing access to a con-
tr oller. But the basic structure of multiqueue drivers is as we have seen here.

Doing Without the Request Queue
Much of the discussion to this point has centered around the manipulation of the
I/O request queue. The purpose of the request queue is to improve perfor mance
by allowing the driver to act asynchronously and, crucially, by allowing the merg-
ing of contiguous (on the disk) operations. For normal disk devices, operations on
contiguous blocks are common, and this optimization is necessary.
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Not all block devices benefit from the request queue, however. sbull, for example,
pr ocesses requests synchronously and has no problems with seek times. For sbull,
the request queue actually ends up slowing things down. Other types of block
devices also can be better off without a request queue. For example, RAID
devices, which are made up of multiple disks, often spread ‘‘contiguous’’ blocks
acr oss multiple physical devices. Block devices implemented by the logical volume
manager (LVM) capability (which first appeared in 2.4) also have an implementa-
tion that is more complex than the block interface that is presented to the rest of
the kernel.

In the 2.4 kernel, block I/O requests are placed on the queue by the function
_ _make_r equest, which is also responsible for invoking the driver’s request func-
tion. Block drivers that need more contr ol over request queueing, however, can
replace that function with their own ‘‘make request’’ function. The RAID and LVM
drivers do so, providing their own variant that, eventually, requeues each I/O
request (with differ ent block numbers) to the appropriate low-level device (or
devices) that make up the higher-level device. A RAM-disk driver, instead, can exe-
cute the I/O operation directly.

sbull, when loaded with the noqueue=1 option on 2.4 systems, will provide its
own ‘‘make request’’ function and operate without a request queue. The first step
in this scenario is to replace _ _make_r equest. The ‘‘make request’’ function pointer
is stored in the request queue, and can be changed with blk_queue_make_r equest:

void blk_queue_make_request(request_queue_t *queue,
make_request_fn *func);

The make_request_fn type, in turn, is defined as follows:

typedef int (make_request_fn) (request_queue_t *q, int rw,
struct buffer_head *bh);

The ‘‘make request’’ function must arrange to transfer the given block, and see to
it that the b_end_io function is called when the transfer is done. The kernel does
not hold the io_request_lock lock when calling the make_r equest_fn func-
tion, so the function must acquire the lock itself if it will be manipulating the
request queue. If the transfer has been set up (not necessarily completed), the
function should retur n 0.

The phrase ‘‘arrange to transfer’’ was chosen carefully; often a driver-specific make
request function will not actually transfer the data. Consider a RAID device. What
the function really needs to do is to map the I/O operation onto one of its con-
stituent devices, then invoke that device’s driver to actually do the work. This
mapping is done by setting the b_rdev member of the buffer_head structur e
to the number of the ‘‘real’’ device that will do the transfer, then signaling that the
block still needs to be written by retur ning a nonzer o value.
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When the kernel sees a nonzero retur n value from the make request function, it
concludes that the job is not done and will try again. But first it will look up the
make request function for the device indicated in the b_rdev field. Thus, in the
RAID case, the RAID driver’s ‘‘make request’’ function will not be called again;
instead, the kernel will pass the block to the appropriate function for the underly-
ing device.

sbull, at initialization time, sets up its make request function as follows:

if (noqueue)
blk_queue_make_request(BLK_DEFAULT_QUEUE(major), sbull_make_request);

It does not call blk_init_queue when operating in this mode, because the request
queue will not be used.

When the kernel generates a request for an sbull device, it will call
sbull_make_r equest, which is as follows:

int sbull_make_request(request_queue_t *queue, int rw,
struct buffer_head *bh)

{
u8 *ptr;

/* Figure out what we are doing */
Sbull_Dev *device = sbull_devices + MINOR(bh->b_rdev);
ptr = device->data + bh->b_rsector * sbull_hardsect;

/* Paranoid check; this apparently can really happen */
if (ptr + bh->b_size > device->data + sbull_blksize*sbull_size) {

static int count = 0;
if (count++ < 5)

printk(KERN_WARNING "sbull: request past end of device\n");
bh->b_end_io(bh, 0);
return 0;

}

/* This could be a high-memory buffer; shift it down */
#if CONFIG_HIGHMEM

bh = create_bounce(rw, bh);
#endif

/* Do the transfer */
switch(rw) {
case READ:
case READA: /* Read ahead */

memcpy(bh->b_data, ptr, bh->b_size); /* from sbull to buffer */
bh->b_end_io(bh, 1);
break;

case WRITE:
refile_buffer(bh);
memcpy(ptr, bh->b_data, bh->b_size); /* from buffer to sbull */
mark_buffer_uptodate(bh, 1);

Handling Requests: The Detailed View
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bh->b_end_io(bh, 1);
break;

default:
/* can’t happen */
bh->b_end_io(bh, 0);
break;

}

/* Nonzero return means we’re done */
return 0;

}

For the most part, this code should look familiar. It contains the usual calculations
to determine where the block lives within the sbull device and uses memcpy to
per form the operation. Because the operation completes immediately, it is able to
call bh->b_end_io to indicate the completion of the operation, and it retur ns 0
to the kernel.

Ther e is, however, one detail that the ‘‘make request’’ function must take care of.
The buffer to be transferred could be resident in high memory, which is not
dir ectly accessible by the kernel. High memory is covered in detail in Chapter 13.
We won’t repeat the discussion here; suffice it to say that one way to deal with the
pr oblem is to replace a high-memory buffer with one that is in accessible memory.
The function cr eate_bounce will do so, in a way that is transparent to the driver.
The kernel normally uses cr eate_bounce befor e placing buffers in the driver’s
request queue; if the driver implements its own make_r equest_fn, however, it must
take care of this task itself.

How Mounting and Unmounting Works
Block devices differ from char devices and normal files in that they can be
mounted on the computer’s filesystem. Mounting provides a level of indirection
not seen with char devices, which are accessed through a struct file pointer
that is held by a specific process. When a filesystem is mounted, there is no pro-
cess holding that file structur e.

When the kernel mounts a device in the filesystem, it invokes the normal open
method to access the driver. However, in this case both the filp and inode
arguments to open ar e dummy variables. In the file structur e, only the f_mode
and f_flags fields hold anything meaningful; in the inode structur e only
i_rdev may be used. The remaining fields hold random values and should not
be used. The value of f_mode tells the driver whether the device is to be
mounted read-only (f_mode == FMODE_READ) or read/write (f_mode ==
(FMODE_READ|FMODE_WRITE)).
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This interface may seem a little strange; it is done this way for two reasons. First is
that the open method can still be called normally by a process that accesses the
device directly — the mkfs utility, for example. The other reason is a historical arti-
fact: block devices once used the same file_operations structur e as char
devices, and thus had to conform to the same interface.

Other than the limitations on the arguments to the open method, the driver does
not really see anything unusual when a filesystem is mounted. The device is
opened, and then the request method is invoked to transfer blocks back and forth.
The driver cannot really tell the differ ence between operations that happen in
response to an individual process (such as fsck) and those that originate in the
filesystem layers of the kernel.

As far as umount is concerned, it just flushes the buffer cache and calls the release
driver method. Since there is no meaningful filp to pass to the release method,
the kernel uses NULL. Since the release implementation of a block driver can’t use
filp->private_data to access device information, it uses inode->i_rdev to
dif ferentiate between devices instead. This is how sbull implements release:

int sbull_release (struct inode *inode, struct file *filp)
{

Sbull_Dev *dev = sbull_devices + MINOR(inode->i_rdev);

spin_lock(&dev->lock);
dev->usage--;
MOD_DEC_USE_COUNT;
spin_unlock(&dev->lock);
return 0;

}

Other driver functions are not affected by the ‘‘missing filp’’ problem because
they aren’t involved with mounted filesystems. For example, ioctl is issued only by
pr ocesses that explicitly open the device.

The ioctl Method
Like char devices, block devices can be acted on by using the ioctl system call.
The only relevant differ ence between block and char ioctl implementations is that
block drivers share a number of common ioctl commands that most drivers are
expected to support.

The commands that block drivers usually handle are the following, declared in
<linux/fs.h>.

BLKGETSIZE
Retrieve the size of the current device, expressed as the number of sectors.
The value of arg passed in by the system call is a pointer to a long value

The ioctl Method
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and should be used to copy the size to a user-space variable. This ioctl com-
mand is used, for instance, by mkfs to know the size of the filesystem being
cr eated.

BLKFLSBUF
Literally, ‘‘flush buffers.’’ The implementation of this command is the same for
every device and is shown later with the sample code for the whole ioctl
method.

BLKRRPART
Rer ead the partition table. This command is meaningful only for partitionable
devices, introduced later in this chapter.

BLKRAGET
BLKRASET

Used to get and change the current block-level read-ahead value (the one
stor ed in the read_ahead array) for the device. For GET, the current value
should be written to user space as a long item using the pointer passed to
ioctl in arg; for SET, the new value is passed as an argument.

BLKFRAGET
BLKFRASET

Get and set the filesystem-level read-ahead value (the one stored in
max_readahead) for this device.

BLKROSET
BLKROGET

These commands are used to change and check the read-only flag for the
device.

BLKSECTGET
BLKSECTSET

These commands retrieve and set the maximum number of sectors per request
(as stored in max_sectors).

BLKSSZGET
Retur ns the sector size of this block device in the integer variable pointed to
by the caller; this size comes directly from the hardsect_size array.

BLKPG
The BLKPG command allows user-mode programs to add and delete parti-
tions. It is implemented by blk_ioctl (described shortly), and no drivers in the
mainline kernel provide their own implementation.
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BLKELVGET
BLKELVSET

These commands allow some control over how the elevator request sorting
algorithm works. As with BLKPG, no driver implements them directly.

HDIO_GETGEO
Defined in <linux/hdreg.h> and used to retrieve the disk geometry. The
geometry should be written to user space in a struct hd_geometry,
which is declared in hdr eg.h as well. sbull shows the general implementation
for this command.

The HDIO_GETGEO command is the most commonly used of a series of HDIO_
commands, all defined in <linux/hdreg.h>. The interested reader can look in
ide.c and hd.c for more infor mation about these commands.

Almost all of these ioctl commands are implemented in the same way for all block
devices. The 2.4 kernel has provided a function, blk_ioctl, that may be called to
implement the common commands; it is declared in <linux/blkpg.h>. Often
the only ones that must be implemented in the driver itself are BLKGETSIZE and
HDIO_GETGEO. The driver can then safely pass any other commands to blk_ioctl
for handling.

The sbull device supports only the general commands just listed, because imple-
menting device-specific commands is no differ ent fr om the implementation of
commands for char drivers. The ioctl implementation for sbull is as follows:

int sbull_ioctl (struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)

{
int err;
long size;
struct hd_geometry geo;

PDEBUG("ioctl 0x%x 0x%lx\n", cmd, arg);
switch(cmd) {

case BLKGETSIZE:
/* Return the device size, expressed in sectors */
if (!arg) return -EINVAL; /* NULL pointer: not valid */
err = ! access_ok (VERIFY_WRITE, arg, sizeof(long));
if (err) return -EFAULT;
size = blksize*sbull_sizes[MINOR(inode->i_rdev)]

/ sbull_hardsects[MINOR(inode->i_rdev)];
if (copy_to_user((long *) arg, &size, sizeof (long)))

return -EFAULT;
return 0;

case BLKRRPART: /* reread partition table: can’t do it */
return -ENOTTY;

case HDIO_GETGEO:

The ioctl Method
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/*
* Get geometry: since we are a virtual device, we have to make
* up something plausible. So we claim 16 sectors, four heads,
* and calculate the corresponding number of cylinders. We set
* the start of data at sector four.
*/

err = ! access_ok(VERIFY_WRITE, arg, sizeof(geo));
if (err) return -EFAULT;
size = sbull_size * blksize / sbull_hardsect;
geo.cylinders = (size & ˜0x3f) >> 6;
geo.heads = 4;
geo.sectors = 16;
geo.start = 4;
if (copy_to_user((void *) arg, &geo, sizeof(geo)))

return -EFAULT;
return 0;

default:
/*
* For ioctls we don’t understand, let the block layer
* handle them.
*/

return blk_ioctl(inode->i_rdev, cmd, arg);
}

return -ENOTTY; /* unknown command */
}

The PDEBUG statement at the beginning of the function has been left in so that
when you compile the module, you can turn on debugging to see which ioctl
commands are invoked on the device.

Remova ble Devices
Thus far, we have ignored the final two file operations in the
block_device_operations structur e, which deal with devices that support
removable media. It’s now time to look at them; sbull isn’t actually removable but
it pretends to be, and therefor e it implements these methods.

The operations in question are check_media_change and revalidate. The former is
used to find out if the device has changed since the last access, and the latter re-
initializes the driver’s status after a disk change.

As far as sbull is concerned, the data area associated with a device is released half
a minute after its usage count drops to zero. Leaving the device unmounted (or
closed) long enough simulates a disk change, and the next access to the device
allocates a new memory area.

This kind of ‘‘timely expiration’’ is implemented using a kernel timer.
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check_media_change
The checking function receives kdev_t as a single argument that identifies the
device. The retur n value is 1 if the medium has been changed and 0 otherwise. A
block driver that doesn’t support removable devices can avoid declaring the func-
tion by setting bdops->check_media_change to NULL.

It’s interesting to note that when the device is removable but there is no way to
know if it changed, retur ning 1 is a safe choice. This is the behavior of the IDE
driver when dealing with removable disks.

The implementation in sbull retur ns 1 if the device has already been removed
fr om memory due to the timer expiration, and 0 if the data is still valid. If debug-
ging is enabled, it also prints a message to the system logger; the user can thus
verify when the method is called by the kernel.

int sbull_check_change(kdev_t i_rdev)
{

int minor = MINOR(i_rdev);
Sbull_Dev *dev = sbull_devices + minor;

PDEBUG("check_change for dev %i\n",minor);
if (dev->data)

return 0; /* still valid */
return 1; /* expired */

}

Revalidation
The validation function is called when a disk change is detected. It is also called
by the various stat system calls implemented in version 2.1 of the kernel. The
retur n value is currently unused; to be safe, retur n 0 to indicate success and a neg-
ative error code in case of error.

The action perfor med by revalidate is device specific, but revalidate usually
updates the internal status information to reflect the new device.

In sbull, the revalidate method tries to allocate a new data area if there is not
alr eady a valid area.

int sbull_revalidate(kdev_t i_rdev)
{

Sbull_Dev *dev = sbull_devices + MINOR(i_rdev);

PDEBUG("revalidate for dev %i\n",MINOR(i_rdev));
if (dev->data)

return 0;

Remova ble Devices
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dev->data = vmalloc(dev->size);
if (!dev->data)

return -ENOMEM;
return 0;

}

Extra Care
Drivers for removable devices should also check for a disk change when the
device is opened. The kernel provides a function to cause this check to happen:

int check_disk_change(kdev_t dev);

The retur n value is nonzero if a disk change was detected. The kernel automati-
cally calls check_disk_change at mount time, but not at open time.

Some programs, however, dir ectly access disk data without mounting the device:
fsck, mcopy, and fdisk ar e examples of such programs. If the driver keeps status
infor mation about removable devices in memory, it should call the kernel
check_disk_change function when the device is first opened. This function uses
the driver methods (check_media_change and revalidate), so nothing special has
to be implemented in open itself.

Her e is the sbull implementation of open, which takes care of the case in which
ther e’s been a disk change:

int sbull_open (struct inode *inode, struct file *filp)
{

Sbull_Dev *dev; /* device information */
int num = MINOR(inode->i_rdev);

if (num >= sbull_devs) return -ENODEV;
dev = sbull_devices + num;

spin_lock(&dev->lock);
/* revalidate on first open and fail if no data is there */
if (!dev->usage) {

check_disk_change(inode->i_rdev);
if (!dev->data)
{

spin_unlock (&dev->lock);
return -ENOMEM;

}
}
dev->usage++;
spin_unlock(&dev->lock);
MOD_INC_USE_COUNT;
return 0; /* success */

}

Nothing else needs to be done in the driver for a disk change. Data is corrupted
anyway if a disk is changed while its open count is greater than zero. The only
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way the driver can prevent this problem from happening is for the usage count to
contr ol the door lock in those cases where the physical device supports it. Then
open and close can disable and enable the lock appropriately.

Partitionable Devices
Most block devices are not used in one large chunk. Instead, the system adminis-
trator expects to be able to partition the device—to split it into several indepen-
dent pseudodevices. If you try to create partitions on an sbull device with fdisk,
you’ll run into problems. The fdisk pr ogram calls the partitions /dev/sbull01,
/dev/sbull02, and so on, but those names don’t exist on the filesystem. More to the
point, there is no mechanism in place for binding those names to partitions in the
sbull device. Something more must be done before a block device can be parti-
tioned.

To demonstrate how partitions are supported, we introduce a new device called
spull, a ‘‘Simple Partitionable Utility.’’ It is far simpler than sbull, lacking the
request queue management and some flexibility (like the ability to change the
hard-sector size). The device resides in the spull dir ectory and is completely
detached from sbull, even though they share some code.

To be able to support partitions on a device, we must assign several minor num-
bers to each physical device. One number is used to access the whole device (for
example, /dev/hda), and the others are used to access the various partitions (such
as /dev/hda1). Since fdisk cr eates partition names by adding a numerical suffix to
the whole-disk device name, we’ll follow the same naming convention in the spull
driver.

The device nodes implemented by spull ar e called pd, for ‘‘partitionable disk.’’ The
four whole devices (also called units) are thus named /dev/pda thr ough /dev/pdd;
each device supports at most 15 partitions. Minor numbers have the following
meaning: the least significant four bits repr esent the partition number (where 0 is
the whole device), and the most significant four bits repr esent the unit number.
This convention is expressed in the source file by the following macros:

#define MAJOR_NR spull_major /* force definitions on in blk.h */
int spull_major; /* must be declared before including blk.h */

#define SPULL_SHIFT 4 /* max 16 partitions */
#define SPULL_MAXNRDEV 4 /* max 4 device units */
#define DEVICE_NR(device) (MINOR(device)>>SPULL_SHIFT)
#define DEVICE_NAME "pd" /* name for messaging */

Partitionable Devices
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The spull driver also hardwires the value of the hard-sector size in order to sim-
plify the code:

#define SPULL_HARDSECT 512 /* 512-byte hardware sectors */

The Gener ic Hard Disk
Every partitionable device needs to know how it is partitioned. The information is
available in the partition table, and part of the initialization process consists of
decoding the partition table and updating the internal data structures to reflect the
partition information.

This decoding isn’t easy, but fortunately the kernel offers ‘‘generic hard disk’’ sup-
port usable by all block drivers. Such support considerably reduces the amount of
code needed in the driver for handling partitions. Another advantage of the
generic support is that the driver writer doesn’t need to understand how the parti-
tioning is done, and new partitioning schemes can be supported in the kernel
without requiring changes to driver code.

A block driver that supports partitions must include <linux/genhd.h> and
should declare a struct gendisk structur e. This structure describes the layout
of the disk(s) provided by the driver; the kernel maintains a global list of such
structur es, which may be queried to see what disks and partitions are available on
the system.

Befor e we go further, let’s look at some of the fields in struct gendisk. You’ll
need to understand them in order to exploit generic device support.

int major
The major number for the device that the structure refers to.

const char *major_name
The base name for devices belonging to this major number. Each device name
is derived from this name by adding a letter for each unit and a number for
each partition. For example, ‘‘hd’’ is the base name that is used to build
/dev/hda1 and /dev/hdb3. In moder n ker nels, the full length of the disk name
can be up to 32 characters; the 2.0 kernel, however, was more restricted.
Drivers wishing to be backward portable to 2.0 should limit the major_name
field to five characters. The name for spull is pd (‘‘partitionable disk’’).

int minor_shift
The number of bit shifts needed to extract the drive number from the device
minor number. In spull the number is 4. The value in this field should be con-
sistent with the definition of the macro DEVICE_NR(device) (see “The
Header File blk.h”). The macro in spull expands to device>>4.
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int max_p
The maximum number of partitions. In our example, max_p is 16, or more
generally, 1 << minor_shift.

struct hd_struct *part
The decoded partition table for the device. The driver uses this item to deter-
mine what range of the disk’s sectors is accessible through each minor num-
ber. The driver is responsible for allocation and deallocation of this array,
which most drivers implement as a static array of max_nr << minor_shift
structur es. The driver should initialize the array to zeros before the kernel
decodes the partition table.

int *sizes
An array of integers with the same information as the global blk_size array.
In fact, they are usually the same array. The driver is responsible for allocating
and deallocating the sizes array. Note that the partition check for the device
copies this pointer to blk_size, so a driver handling partitionable devices
doesn’t need to allocate the latter array.

int nr_real
The number of real devices (units) that exist.

void *real_devices
A private area that may be used by the driver to keep any additional requir ed
infor mation.

void struct gendisk *next
A pointer used to implement the linked list of generic hard-disk structures.

struct block_device_operations *fops;
A pointer to the block operations structure for this device.

Many of the fields in the gendisk structur e ar e set up at initialization time, so the
compile-time setup is relatively simple:

struct gendisk spull_gendisk = {
major: 0, /* Major number assigned later */
major_name: "pd", /* Name of the major device */
minor_shift: SPULL_SHIFT, /* Shift to get device number */
max_p: 1 << SPULL_SHIFT, /* Number of partitions */
fops: &spull_bdops, /* Block dev operations */

/* everything else is dynamic */
};

Partition Detection
When a module initializes itself, it must set things up properly for partition detec-
tion. Thus, spull starts by setting up the spull_sizes array for the gendisk

Partitionable Devices
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structur e (which also gets stored in blk_size[MAJOR_NR] and in the sizes
field of the gendisk structur e) and the spull_partitions array, which holds
the actual partition information (and gets stored in the part member of the
gendisk structur e). Both of these arrays are initialized to zeros at this time. The
code looks like this:

spull_sizes = kmalloc( (spull_devs << SPULL_SHIFT) * sizeof(int),
GFP_KERNEL);

if (!spull_sizes)
goto fail_malloc;

/* Start with zero-sized partitions, and correctly sized units */
memset(spull_sizes, 0, (spull_devs << SPULL_SHIFT) * sizeof(int));
for (i=0; i< spull_devs; i++)

spull_sizes[i<<SPULL_SHIFT] = spull_size;
blk_size[MAJOR_NR] = spull_gendisk.sizes = spull_sizes;

/* Allocate the partitions array. */
spull_partitions = kmalloc( (spull_devs << SPULL_SHIFT) *

sizeof(struct hd_struct), GFP_KERNEL);
if (!spull_partitions)

goto fail_malloc;

memset(spull_partitions, 0, (spull_devs << SPULL_SHIFT) *
sizeof(struct hd_struct));

/* fill in whole-disk entries */
for (i=0; i < spull_devs; i++)

spull_partitions[i << SPULL_SHIFT].nr_sects =
spull_size*(blksize/SPULL_HARDSECT);

spull_gendisk.part = spull_partitions;
spull_gendisk.nr_real = spull_devs;

The driver should also include its gendisk structur e on the global list. There is
no kernel-supplied function for adding gendisk structur es; it must be done by
hand:

spull_gendisk.next = gendisk_head;
gendisk_head = &spull_gendisk;

In practice, the only thing the system does with this list is to implement /pr oc/par-
titions.

The register_disk function, which we have already seen briefly, handles the job of
reading the disk’s partition table.

register_disk(struct gendisk *gd, int drive, unsigned minors,
struct block_device_operations *ops, long size);

Her e, gd is the gendisk structur e that we built earlier, drive is the device num-
ber, minors is the number of partitions supported, ops is the
block_device_operations structur e for the driver, and size is the size of
the device in sectors.
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Fixed disks might read the partition table only at module initialization time and
when BLKRRPART is invoked. Drivers for removable drives will also need to make
this call in the revalidate method. Either way, it is important to remember that reg-
ister_disk will call your driver’s request function to read the partition table, so the
driver must be sufficiently initialized at that point to handle requests. You should
also not have any locks held that will conflict with locks acquired in the request
function. register_disk must be called for each disk actually present on the system.

spull sets up partitions in the revalidate method:

int spull_revalidate(kdev_t i_rdev)
{

/* first partition, # of partitions */
int part1 = (DEVICE_NR(i_rdev) << SPULL_SHIFT) + 1;
int npart = (1 << SPULL_SHIFT) -1;

/* first clear old partition information */
memset(spull_gendisk.sizes+part1, 0, npart*sizeof(int));
memset(spull_gendisk.part +part1, 0, npart*sizeof(struct hd_struct));
spull_gendisk.part[DEVICE_NR(i_rdev) << SPULL_SHIFT].nr_sects =

spull_size << 1;

/* then fill new info */
printk(KERN_INFO "Spull partition check: (%d) ", DEVICE_NR(i_rdev));
register_disk(&spull_gendisk, i_rdev, SPULL_MAXNRDEV, &spull_bdops,

spull_size << 1);
return 0;

}

It’s interesting to note that register_disk prints partition information by repeatedly
calling

printk(" %s", disk_name(hd, minor, buf));

That’s why spull prints a leading string. It’s meant to add some context to the
infor mation that gets stuffed into the system log.

When a partitionable module is unloaded, the driver should arrange for all the
partitions to be flushed, by calling fsync_dev for every supported major/minor pair.
All of the relevant memory should be freed as well, of course. The cleanup func-
tion for spull is as follows:

for (i = 0; i < (spull_devs << SPULL_SHIFT); i++)
fsync_dev(MKDEV(spull_major, i)); /* flush the devices */

blk_cleanup_queue(BLK_DEFAULT_QUEUE(major));
read_ahead[major] = 0;
kfree(blk_size[major]); /* which is gendisk->sizes as well */
blk_size[major] = NULL;
kfree(spull_gendisk.part);
kfree(blksize_size[major]);
blksize_size[major] = NULL;

Partitionable Devices

359

22 June 2001 16:41



Chapter 12: Loading Block Driver s

It is also necessary to remove the gendisk structur e fr om the global list. There is
no function provided to do this work, so it’s done by hand:

for (gdp = &gendisk_head; *gdp; gdp = &((*gdp)->next))
if (*gdp == &spull_gendisk) {

*gdp = (*gdp)->next;
break;

}

Note that there is no unr egister_disk to complement the register_disk function.
Everything done by register_disk is stored in the driver’s own arrays, so there is no
additional cleanup requir ed at unload time.

Partition Detection Using initrd
If you want to mount your root filesystem from a device whose driver is available
only in modularized form, you must use the initr d facility offer ed by modern
Linux kernels. We won’t introduce initr d her e; this subsection is aimed at readers
who know about initr d and wonder how it affects block drivers. More infor mation
on initr d can be found in Documentation/initr d.txt in the kernel source.

When you boot a kernel with initr d, it establishes a temporary running environ-
ment before it mounts the real root filesystem. Modules are usually loaded from
within the RAM disk being used as the temporary root file system.

Because the initr d pr ocess is run after all boot-time initialization is complete (but
befor e the real root filesystem has been mounted), there’s no differ ence between
loading a normal module and loading one living in the initr d RAM disk. If a driver
can be correctly loaded and used as a module, all Linux distributions that have
initr d available can include the driver on their installation disks without requiring
you to hack in the kernel source.

The Device Methods for spull
We have seen how to initialize partitionable devices, but not yet how to access
data within the partitions. To do that, we need to make use of the partition infor-
mation stored in the gendisk->part array by register_disk. This array is made
up of hd_struct structur es, and is indexed by the minor number. The
hd_struct has two fields of interest: start_sect tells where a given partition
starts on the disk, and nr_sects gives the size of that partition.

Her e we will show how spull makes use of that information. The following code
includes only those parts of spull that differ from sbull, because most of the code
is exactly the same.
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First of all, open and close must keep track of the usage count for each device.
Because the usage count refers to the physical device (unit), the following declara-
tion and assignment is used for the dev variable:

Spull_Dev *dev = spull_devices + DEVICE_NR(inode->i_rdev);

The DEVICE_NR macr o used here is the one that must be declared before
<linux/blk.h> is included; it yields the physical device number without taking
into account which partition is being used.

Although almost every device method works with the physical device as a whole,
ioctl should access specific information for each partition. For example, when mkfs
calls ioctl to retrieve the size of the device on which it will build a filesystem, it
should be told the size of the partition of interest, not the size of the whole
device. Here is how the BLKGETSIZE ioctl command is affected by the change
fr om one minor number per device to multiple minor numbers per device. As you
might expect, spull_gendisk->part is used as the source of the partition size.

case BLKGETSIZE:
/* Return the device size, expressed in sectors */
err = ! access_ok (VERIFY_WRITE, arg, sizeof(long));
if (err) return -EFAULT;
size = spull_gendisk.part[MINOR(inode->i_rdev)].nr_sects;
if (copy_to_user((long *) arg, &size, sizeof (long)))
return -EFAULT;
return 0;

The other ioctl command that is differ ent for partitionable devices is BLKRRPART.
Rer eading the partition table makes sense for partitionable devices and is equiva-
lent to revalidating a disk after a disk change:

case BLKRRPART: /* re-read partition table */
return spull_revalidate(inode->i_rdev);

But the major differ ence between sbull and spull is in the request function. In
spull, the request function needs to use the partition information in order to cor-
rectly transfer data for the differ ent minor numbers. Locating the transfer is done
by simply adding the starting sector to that provided in the request; the partition
size information is then used to be sure the request fits within the partition. Once
that is done, the implementation is the same as for sbull.

Her e ar e the relevant lines in spull_r equest:

ptr = device->data +
(spull_partitions[minor].start_sect + req->sector)*SPULL_HARDSECT;

size = req->current_nr_sectors*SPULL_HARDSECT;
/*
* Make sure that the transfer fits within the device.
*/

if (req->sector + req->current_nr_sectors >
spull_partitions[minor].nr_sects) {

Partitionable Devices

361

22 June 2001 16:41



Chapter 12: Loading Block Driver s

static int count = 0;
if (count++ < 5)

printk(KERN_WARNING "spull: request past end of partition\n");
return 0;

}

The number of sectors is multiplied by the hardware sector size (which, remem-
ber, is hardwir ed in spull ) to get the size of the partition in bytes.

Inter rupt-Dr iven Block Driver s
When a driver controls a real hardware device, operation is usually interrupt
driven. Using interrupts helps system perfor mance by releasing the processor dur-
ing I/O operations. In order for interrupt-driven I/O to work, the device being
contr olled must be able to transfer data asynchronously and to generate interrupts.

When the driver is interrupt driven, the request function spawns a data transfer
and retur ns immediately without calling end_r equest. However, the kernel doesn’t
consider a request fulfilled unless end_r equest (or its component parts) has been
called. Therefor e, the top-half or the bottom-half interrupt handler calls
end_r equest when the device signals that the data transfer is complete.

Neither sbull nor spull can transfer data without using the system micropr ocessor;
however, spull is equipped with the capability of simulating interrupt-driven oper-
ation if the user specifies the irq=1 option at load time. When irq is not 0, the
driver uses a kernel timer to delay fulfillment of the current request. The length of
the delay is the value of irq: the greater the value, the longer the delay.

As always, block transfers begin when the kernel calls the driver’s request func-
tion. The request function for an interrupt-driven device instructs the hardware to
per form the transfer and then retur ns; it does not wait for the transfer to complete.
The spull request function perfor ms the usual error checks and then calls
spull_transfer to transfer the data (this is the task that a driver for real hardware
per forms asynchronously). It then delays acknowledgment until interrupt time:

void spull_irqdriven_request(request_queue_t *q)
{

Spull_Dev *device;
int status;
long flags;

/* If we are already processing requests, don’t do any more now. */
if (spull_busy)

return;

while(1) {
INIT_REQUEST; /* returns when queue is empty */

/* Which "device" are we using? */
device = spull_locate_device (CURRENT);
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if (device == NULL) {
end_request(0);
continue;

}
spin_lock_irqsave(&device->lock, flags);

/* Perform the transfer and clean up. */
status = spull_transfer(device, CURRENT);
spin_unlock_irqrestore(&device->lock, flags);
/* ... and wait for the timer to expire -- no end_request(1) */
spull_timer.expires = jiffies + spull_irq;
add_timer(&spull_timer);
spull_busy = 1;
return;

}
}

New requests can accumulate while the device is dealing with the current one.
Because reentrant calls are almost guaranteed in this scenario, the request function
sets a spull_busy flag so that only one transfer happens at any given time.
Since the entire function runs with the io_request_lock held (the kernel,
remember, obtains this lock before calling the request function), there is no need
for particular care in testing and setting the busy flag. Otherwise, an atomic_t
item should have been used instead of an int variable in order to avoid race con-
ditions.

The interrupt handler has a couple of tasks to perfor m. First, of course, it must
check the status of the outstanding transfer and clean up the request. Then, if
ther e ar e further requests to be processed, the interrupt handler is responsible for
getting the next one started. To avoid code duplication, the handler usually just
calls the request function to start the next transfer. Remember that the request
function expects the caller to hold the io_request_lock, so the interrupt han-
dler will have to obtain it. The end_r equest function also requir es this lock, of
course.

In our sample module, the role of the interrupt handler is perfor med by the func-
tion invoked when the timer expires. That function calls end_r equest and sched-
ules the next data transfer by calling the request function. In the interest of code
simplicity, the spull interrupt handler perfor ms all this work at ‘‘interrupt’’ time; a
real driver would almost certainly defer much of this work and run it from a task
queue or tasklet.

/* this is invoked when the timer expires */
void spull_interrupt(unsigned long unused)
{

unsigned long flags

spin_lock_irqsave(&io_request_lock, flags);
end_request(1); /* This request is done - we always succeed */

Inter rupt-Dr iven Block Driver s
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spull_busy = 0; /* We have io_request_lock, no request conflict */
if (! QUEUE_EMPTY) /* more of them? */

spull_irqdriven_request(NULL); /* Start the next transfer */
spin_unlock_irqrestore(&io_request_lock, flags);

}

If you try to run the interrupt-driven flavor of the spull module, you’ll barely notice
the added delay. The device is almost as fast as it was before because the buffer
cache avoids most data transfers between memory and the device. If you want to
perceive how a slow device behaves, you can specify a bigger value for irq=
when loading spull.

Backward Compatibility
Much has changed with the block device layer, and most of those changes hap-
pened between the 2.2 and 2.4 stable releases. Here is a quick summary of what
was differ ent befor e. As always, you can look at the drivers in the sample source,
which work on 2.0, 2.2, and 2.4, to see how the portability challenges have been
handled.

The block_device_operations structur e did not exist in Linux 2.2. Instead,
block drivers used a file_operations structur e just like char drivers. The
check_media_change and revalidate methods used to be a part of that structure.
The kernel also provided a set of generic functions—block_r ead, block_write, and
block_fsync—which most drivers used in their file_operations structur es. A
typical 2.2 or 2.0 file_operations initialization looked like this:

struct file_operations sbull_bdops = {
read: block_read,
write: block_write,
ioctl: sbull_ioctl,
open: sbull_open,
release: sbull_release,
fsync: block_fsync,
check_media_change: sbull_check_change,
revalidate: sbull_revalidate

};

Note that block drivers are subject to the same changes in the file_opera-
tions pr ototypes between 2.0 and 2.2 as char drivers.

In 2.2 and previous kernels, the request function was stored in the blk_dev
global array. Initialization requir ed a line like

blk_dev[major].request_fn = sbull_request;
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Because this method allows for only one queue per major number, the multiqueue
capability of 2.4 kernels is not present in earlier releases. Because there was only
one queue, the request function did not need the queue as an argument, so it took
none. Its prototype was as follows:

void (*request) (void);

Also, all queues had active heads, so blk_queue_headactive did not exist.

Ther e was no blk_ioctl function in 2.2 and prior releases. There was, however, a
macr o called RO_IOCTLS, which could be inserted in a switch statement to
implement BLKROSET and BLKROGET. sysdep.h in the sample source includes an
implementation of blk_ioctl that uses RO_IOCTLS and implements a few other of
the standard ioctl commands as well:

#ifdef RO_IOCTLS
static inline int blk_ioctl(kdev_t dev, unsigned int cmd,

unsigned long arg)
{

int err;

switch (cmd) {
case BLKRAGET: /* return the read-ahead value */

if (!arg) return -EINVAL;
err = ! access_ok(VERIFY_WRITE, arg, sizeof(long));
if (err) return -EFAULT;
PUT_USER(read_ahead[MAJOR(dev)],(long *) arg);
return 0;

case BLKRASET: /* set the read-ahead value */
if (!capable(CAP_SYS_ADMIN)) return -EACCES;
if (arg > 0xff) return -EINVAL; /* limit it */
read_ahead[MAJOR(dev)] = arg;
return 0;

case BLKFLSBUF: /* flush */
if (! capable(CAP_SYS_ADMIN)) return -EACCES; /* only root */
fsync_dev(dev);
invalidate_buffers(dev);
return 0;

RO_IOCTLS(dev, arg);
}
return -ENOTTY;

}
#endif /* RO_IOCTLS */

The BLKFRAGET, BLKFRASET, BLKSECTGET, BLKSECTSET, BLKELVGET, and
BLKELVSET commands were added with Linux 2.2, and BLKPG was added in 2.4.

Backward Compatibility
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Linux 2.0 did not have the max_readahead array. The max_segments array,
instead, existed and was used in Linux 2.0 and 2.2, but device drivers did not nor-
mally need to set it.

Finally, register_disk did not exist until Linux 2.4. There was, instead, a function
called resetup_one_dev, which perfor med a similar function:

resetup_one_dev(struct gendisk *gd, int drive);

register_disk is emulated in sysdep.h with the following code:

static inline void register_disk(struct gendisk *gdev, kdev_t dev,
unsigned minors, struct file_operations *ops, long size)

{
if (! gdev)

return;
resetup_one_dev(gdev, MINOR(dev) >> gdev->minor_shift);

}

Linux 2.0 was differ ent, of course, in not supporting any sort of fine-grained SMP.
Thus, there was no io_request_lock and much less need to worry about con-
curr ent access to the I/O request queue.

One final thing worth keeping in mind: although nobody really knows what will
happen in the 2.5 development series, a major block device overhaul is almost
certain. Many people are unhappy with the design of this layer, and there is a lot
of pressur e to redo it.

Quick Reference
The most important functions and macros used in writing block drivers are sum-
marized here. To save space, however, we do not list the fields of struct
request, struct buffer_head, or struct genhd, and we omit the prede-
fined ioctl commands.

#include <linux/fs.h>
int register_blkdev(unsigned int major, const char *name,

struct block_device_operations *bdops);
int unregister_blkdev(unsigned int major, const char *name);

These functions are in charge of device registration in the module’s initializa-
tion function and device removal in the cleanup function.

#include <linux/blkdev.h>
blk_init_queue(request_queue_t *queue, request_fn_proc

*request);
blk_cleanup_queue(request_queue_t *queue);

The first function initializes a queue and establishes the request function; the
second is used at cleanup time.
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BLK_DEFAULT_QUEUE(major)
This macro retur ns a default I/O request queue for a given major number.

struct blk_dev_struct blk_dev[MAX_BLKDEV];
This array is used by the kernel to find the proper queue for a given request.

int read_ahead[];
int max_readahead[][];

read_ahead contains block-level read-ahead values for every major number.
A value of 8 is reasonable for devices like hard disks; the value should be
gr eater for slower media. max_readahead contains filesystem-level read-
ahead values for every major and minor number, and is not usually changed
fr om the system default.

int max_sectors[][];
This array, indexed by both major and minor number, holds the maximum
number of sectors that should be merged into a single I/O request.

int blksize_size[][];
int blk_size[][];
int hardsect_size[][];

These two-dimensional arrays are indexed by major and minor number. The
driver is responsible for allocating and deallocating the row in the matrix asso-
ciated with its major number. The arrays repr esent the size of device blocks in
bytes (it usually is 1 KB), the size of each minor device in kilobytes (not
blocks), and the size of the hardware sector in bytes.

MAJOR_NR
DEVICE_NAME
DEVICE_NR(kdev_t device)
DEVICE_INTR
#include <linux/blk.h>

These macros must be defined by the driver befor e it includes
<linux/blk.h>, because they are used within that file. MAJOR_NR is the
major number for the device, DEVICE_NAME is the name of the device to be
used in error messages, DEVICE_NR retur ns the minor number of the physical
device referr ed to by a device number, and DEVICE_INTR is a little-used
symbol that points to the device’s bottom-half interrupt handler.

spinlock_t io_request_lock;
The spinlock that must be held whenever an I/O request queue is being
manipulated.

Quick Reference
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struct request *CURRENT;
This macro points to the current request when the default queue is being
used. The request structure describes a data chunk to be transferred and is
used by the driver’s request function.

INIT_REQUEST;
end_request(int status);

INIT_REQUEST checks the next request on the queue and retur ns if there are
no more requests to execute. end_r equest is called at the completion of a
block request.

spinlock_t io_request_lock;
The I/O request lock must be held any time that the request queue is being
manipulated.

struct request *blkdev_entry_next_request(struct list_head
*head);

struct request *blkdev_next_request(struct request *req);
struct request *blkdev_prev_request(struct request *req);
blkdev_dequeue_request(struct request *req);
blkdev_release_request(struct request *req);

Various functions for working with the I/O request queue.

blk_queue_headactive(request_queue_t *queue, int active);
Indicates whether the first request in the queue is being actively processed by
the driver or not.

void blk_queue_make_request(request_queue_t *queue,
make_request_fn *func);

Pr ovides a function to handle block I/O requests directly out of the kernel.

end_that_request_first(struct request *req, int status, char
*name);

end_that_request_last(struct request *req);
Handle the stages of completing a block I/O request. end_that_r equest_last is
only called when all buffers in the request have been processed — that is,
when end_that_r equest_first retur ns 0.

bh->b_end_io(struct buffer_head *bh, int status);
Signals the completion of I/O on the given buffer.

int blk_ioctl(kdev_t dev, unsigned int cmd, unsigned long
arg);

A utility function that implements most of the standard block device ioctl com-
mands.
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int check_disk_change(kdev_t dev);
This function checks to see if a media change has occurred on the given
device, and calls the driver’s revalidate method if a change is detected.

#include<linux/gendisk.h>
struct gendisk;
struct gendisk *gendisk_head;

The generic hard disk allows Linux to support partitionable devices easily. The
gendisk structur e describes a generic disk; gendisk_head is the beginning
of a linked list of structures describing all of the disks on the system.

void register_disk(struct gendisk *gd, int drive, unsigned
minors, struct block_device_operations *ops, long
size);

This function scans the partition table of the disk and rewrites genhd->part
to reflect the new partitioning.

Quick Reference
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CHAPTER THIRTEEN

MMAP AND DMA

This chapter delves into the area of Linux memory management, with an emphasis
on techniques that are useful to the device driver writer. The material in this chap-
ter is somewhat advanced, and not everybody will need a grasp of it. Nonetheless,
many tasks can only be done through digging more deeply into the memory man-
agement subsystem; it also provides an interesting look into how an important part
of the kernel works.

The material in this chapter is divided into three sections. The first covers the
implementation of the mmap system call, which allows the mapping of device
memory directly into a user process’s address space. We then cover the kernel
kiobuf mechanism, which provides direct access to user memory from kernel
space. The kiobuf system may be used to implement ‘‘raw I/O’’ for certain kinds
of devices. The final section covers direct memory access (DMA) I/O operations,
which essentially provide peripherals with direct access to system memory.

Of course, all of these techniques requir e an understanding of how Linux memory
management works, so we start with an overview of that subsystem.

Memor y Management in Linux
Rather than describing the theory of memory management in operating systems,
this section tries to pinpoint the main features of the Linux implementation of the
theory. Although you do not need to be a Linux virtual memory guru to imple-
ment mmap, a basic overview of how things work is useful. What follows is a
fairly lengthy description of the data structures used by the kernel to manage
memory. Once the necessary background has been covered, we can get into
working with these structures.
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Address Types
Linux is, of course, a virtual memory system, meaning that the addresses seen by
user programs do not directly correspond to the physical addresses used by the
hardwar e. Virtual memory introduces a layer of indirection, which allows a num-
ber of nice things. With virtual memory, programs running on the system can allo-
cate far more memory than is physically available; indeed, even a single process
can have a virtual address space larger than the system’s physical memory. Virtual
memory also allows playing a number of tricks with the process’s address space,
including mapping in device memory.

Thus far, we have talked about virtual and physical addresses, but a number of the
details have been glossed over. The Linux system deals with several types of
addr esses, each with its own semantics. Unfortunately, the kernel code is not
always very clear on exactly which type of address is being used in each situation,
so the programmer must be careful.

kernel virtual
addresses

kernel logical
addresses

high memory

low memoryuser process

user process

Key

physical memory address space page mapping

Figur e 13-1. Address types used in Linux

The following is a list of address types used in Linux. Figure 13-1 shows how
these address types relate to physical memory.

User virtual addresses
These are the regular addresses seen by user-space programs. User addresses
ar e either 32 or 64 bits in length, depending on the underlying hardware
architectur e, and each process has its own virtual address space.

Memor y Management in Linux
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Physical addresses
The addresses used between the processor and the system’s memory. Physical
addr esses ar e 32- or 64-bit quantities; even 32-bit systems can use 64-bit physi-
cal addresses in some situations.

Bus addresses
The addresses used between peripheral buses and memory. Often they are the
same as the physical addresses used by the processor, but that is not necessar-
ily the case. Bus addresses are highly architectur e dependent, of course.

Ker nel logical addresses
These make up the normal address space of the kernel. These addresses map
most or all of main memory, and are often treated as if they were physical
addr esses. On most architectur es, logical addresses and their associated physi-
cal addresses differ only by a constant offset. Logical addresses use the hard-
war e’s native pointer size, and thus may be unable to address all of physical
memory on heavily equipped 32-bit systems. Logical addresses are usually
stor ed in variables of type unsigned long or void *. Memory retur ned
fr om kmalloc has a logical address.

Ker nel virtual addresses
These differ from logical addresses in that they do not necessarily have a
dir ect mapping to physical addresses. All logical addresses are ker nel virtual
addr esses; memory allocated by vmalloc also has a virtual address (but no
dir ect physical mapping). The function kmap, described later in this chapter,
also retur ns virtual addresses. Virtual addresses are usually stored in pointer
variables.

If you have a logical address, the macro _ _pa( ) (defined in <asm/page.h>) will
retur n its associated physical address. Physical addresses can be mapped back to
logical addresses with _ _va( ), but only for low-memory pages.

Dif ferent kernel functions requir e dif ferent types of addresses. It would be nice if
ther e wer e dif ferent C types defined so that the requir ed addr ess type were
explicit, but we have no such luck. In this chapter, we will be clear on which
types of addresses are used where.

High and Low Memor y
The differ ence between logical and kernel virtual addresses is highlighted on
32-bit systems that are equipped with large amounts of memory. With 32 bits, it is
possible to address 4 GB of memory. Linux on 32-bit systems has, until recently,
been limited to substantially less memory than that, however, because of the way
it sets up the virtual address space. The system was unable to handle more mem-
ory than it could set up logical addresses for, since it needed directly mapped ker-
nel addresses for all memory.

372

22 June 2001 16:42



Recent developments have eliminated the limitations on memory, and 32-bit sys-
tems can now work with well over 4 GB of system memory (assuming, of course,
that the processor itself can address that much memory). The limitation on how
much memory can be directly mapped with logical addresses remains, however.
Only the lowest portion of memory (up to 1 or 2 GB, depending on the hardware
and the kernel configuration) has logical addresses; the rest (high memory) does
not. High memory can requir e 64-bit physical addresses, and the kernel must set
up explicit virtual address mappings to manipulate it. Thus, many kernel functions
ar e limited to low memory only; high memory tends to be reserved for user-space
pr ocess pages.

The term “high memory” can be confusing to some, especially since it has other
meanings in the PC world. So, to make things clear, we’ll define the terms here:

Low memory
Memory for which logical addresses exist in kernel space. On almost every
system you will likely encounter, all memory is low memory.

High memory
Memory for which logical addresses do not exist, because the system contains
mor e physical memory than can be addressed with 32 bits.

On i386 systems, the boundary between low and high memory is usually set at just
under 1 GB. This boundary is not related in any way to the old 640 KB limit found
on the original PC. It is, instead, a limit set by the kernel itself as it splits the 32-bit
addr ess space between kernel and user space.

We will point out high-memory limitations as we come to them in this chapter.

The Memor y Map and struct page
Historically, the kernel has used logical addresses to refer to explicit pages of
memory. The addition of high-memory support, however, has exposed an obvious
pr oblem with that approach — logical addr esses ar e not available for high memory.
Thus kernel functions that deal with memory are incr easingly using pointers to
struct page instead. This data structure is used to keep track of just about
everything the kernel needs to know about physical memory; there is one
struct page for each physical page on the system. Some of the fields of this
structur e include the following:

atomic_t count;
The number of refer ences ther e ar e to this page. When the count drops to
zer o, the page is retur ned to the free list.

Memor y Management in Linux

373

22 June 2001 16:42



Chapter 13: mmap and DMA

wait_queue_head_t wait;
A list of processes waiting on this page. Processes can wait on a page when a
ker nel function has locked it for some reason; drivers need not normally
worry about waiting on pages, though.

void *virtual;
The kernel virtual address of the page, if it is mapped; NULL, otherwise. Low-
memory pages are always mapped; high-memory pages usually are not.

unsigned long flags;
A set of bit flags describing the status of the page. These include PG_locked,
which indicates that the page has been locked in memory, and
PG_reserved, which prevents the memory management system from work-
ing with the page at all.

Ther e is much more infor mation within struct page, but it is part of the deeper
black magic of memory management and is not of concern to driver writers.

The kernel maintains one or more arrays of struct page entries, which track all
of the physical memory on the system. On most systems, there is a single array,
called mem_map. On some systems, however, the situation is more complicated.
Nonunifor m memory access (NUMA) systems and those with widely discontiguous
physical memory may have more than one memory map array, so code that is
meant to be portable should avoid direct access to the array whenever possible.
Fortunately, it is usually quite easy to just work with struct page pointers with-
out worrying about where they come from.

Some functions and macros are defined for translating between struct page
pointers and virtual addresses:

struct page *virt_to_page(void *kaddr);
This macro, defined in <asm/page.h>, takes a kernel logical address and
retur ns its associated struct page pointer. Since it requir es a logical
addr ess, it will not work with memory from vmalloc or high memory.

void *page_address(struct page *page);
Retur ns the kernel virtual address of this page, if such an address exists. For
high memory, that address exists only if the page has been mapped.

#include <linux/highmem.h>
void *kmap(struct page *page);
void kunmap(struct page *page);

kmap retur ns a ker nel virtual address for any page in the system. For low-
memory pages, it just retur ns the logical address of the page; for high-memory
pages, kmap cr eates a special mapping. Mappings created with kmap should
always be freed with kunmap; a limited number of such mappings is avail-
able, so it is better not to hold on to them for too long. kmap calls are
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additive, so if two or more functions both call kmap on the same page the
right thing happens. Note also that kmap can sleep if no mappings are avail-
able.

We will see some uses of these functions when we get into the example code later
in this chapter.

Page Tables
When a program looks up a virtual address, the CPU must convert the address to a
physical address in order to access physical memory. The step is usually per-
for med by splitting the address into bitfields. Each bitfield is used as an index into
an array, called a page table, to retrieve either the address of the next table or the
addr ess of the physical page that holds the virtual address.

The Linux kernel manages three levels of page tables in order to map virtual
addr esses to physical addresses. The multiple levels allow the memory range to be
sparsely populated; modern systems will spread a process out across a large range
of virtual memory. It makes sense to do things that way; it allows for runtime flexi-
bility in how things are laid out.

Note that Linux uses a three-level system even on hardware that only supports two
levels of page tables or hardware that uses a differ ent way to map virtual
addr esses to physical ones. The use of three levels in a processor-independent
implementation allows Linux to support both two-level and three-level processors
without clobbering the code with a lot of #ifdef statements. This kind of conser-
vative coding doesn’t lead to additional overhead when the kernel runs on two-
level processors, because the compiler actually optimizes out the unused level.

It is time to take a look at the data structures used to implement the paging sys-
tem. The following list summarizes the implementation of the three levels in Linux,
and Figure 13-2 depicts them.

Page Directory (PGD)
The top-level page table. The PGD is an array of pgd_t items, each of which
points to a second-level page table. Each process has its own page directory,
and there is one for kernel space as well. You can think of the page directory
as a page-aligned array of pgd_ts.

Page mid-level Directory (PMD)
The second-level table. The PMD is a page-aligned array of pmd_t items. A
pmd_t is a pointer to the third-level page table. Two-level processors have no
physical PMD; they declare their PMD as an array with a single element,
whose value is the PMD itself—we’ll see in a while how this is handled in C
and how the compiler optimizes this level away.
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Virtual Address (addr)

pgd part pmd part pte part offset

struct page

page.virtual
pte_page(pte_t);
pte_offset(pmd_t, addr);
pmd_offset(pgd_t, addr);
pgd_offset(mm_struct, addr); pgd_val(pgd);

pmd_val(pmd);
pte_val(pte);

Software relationships Hardware relationships

struct mm_struct

Figur e 13-2. The thr ee levels of Linux page tables

Page Table
A page-aligned array of items, each of which is called a Page Table Entry. The
ker nel uses the pte_t type for the items. A pte_t contains the physical
addr ess of the data page.

The types introduced in this list are defined in <asm/page.h>, which must be
included by every source file that plays with paging.

The kernel doesn’t need to worry about doing page-table lookups during normal
pr ogram execution, because they are done by the hardware. Nonetheless, the ker-
nel must arrange things so that the hardware can do its work. It must build the
page tables and look them up whenever the processor reports a page fault, that is,
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whenever the page associated with a virtual address needed by the processor is
not present in memory. Device drivers, too, must be able to build page tables and
handle faults when implementing mmap.

It’s interesting to note how software memory management exploits the same page
tables that are used by the CPU itself. Whenever a CPU doesn’t implement page
tables, the differ ence is only hidden in the lowest levels of architectur e-specific
code. In Linux memory management, therefor e, you always talk about three-level
page tables irrespective of whether they are known to the hardware or not. An
example of a CPU family that doesn’t use page tables is the PowerPC. PowerPC
designers implemented a hash algorithm that maps virtual addresses into a one-
level page table. When accessing a page that is already in memory but whose
physical address has expired from the CPU caches, the CPU needs to read memory
only once, as opposed to the two or three accesses requir ed by a multilevel page
table approach. The hash algorithm, like multilevel tables, makes it possible to
reduce use of memory in mapping virtual addresses to physical ones.

Irr espective of the mechanisms used by the CPU, the Linux software implementa-
tion is based on three-level page tables, and the following symbols are used to
access them. Both <asm/page.h> and <asm/pgtable.h> must be included for
all of them to be accessible.

PTRS_PER_PGD
PTRS_PER_PMD
PTRS_PER_PTE

The size of each table. Two-level processors set PTRS_PER_PMD to 1, to
avoid dealing with the middle level.

unsigned pgd_val(pgd_t pgd)
unsigned pmd_val(pmd_t pmd)
unsigned pte_val(pte_t pte)

These three macros are used to retrieve the unsigned value from the typed
data item. The actual type used varies depending on the underlying architec-
tur e and kernel configuration options; it is usually either unsigned long or,
on 32-bit processors supporting high memory, unsigned long long.
SPARC64 processors use unsigned int. The macros help in using strict data
typing in source code without introducing computational overhead.

pgd_t * pgd_offset(struct mm_struct * mm, unsigned long
address)

pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
pte_t * pte_offset(pmd_t * dir, unsigned long address)

These inline functions* ar e used to retrieve the pgd, pmd, and pte entries

* On 32-bit SPARC processors, the functions are not inline but rather real extern func-
tions, which are not exported to modularized code. Therefor e you won’t be able to use
these functions in a module running on the SPARC, but you won’t usually need to.
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associated with address. Page-table lookup begins with a pointer to struct
mm_struct. The pointer associated with the memory map of the current pro-
cess is current->mm, while the pointer to kernel space is described by
&init_mm. Two-level processors define pmd_offset(dir,add) as
(pmd_t *)dir, thus folding the pmd over the pgd. Functions that scan page
tables are always declared as inline, and the compiler optimizes out any
pmd lookup.

struct page *pte_page(pte_t pte)
This function retur ns a pointer to the struct page entry for the page in this
page-table entry. Code that deals with page-tables will generally want to use
pte_ page rather than pte_val, since pte_ page deals with the processor-depen-
dent format of the page-table entry and retur ns the struct page pointer,
which is usually what’s needed.

pte_present(pte_t pte)
This macro retur ns a boolean value that indicates whether the data page is
curr ently in memory. This is the most used of several functions that access the
low bits in the pte—the bits that are discarded by pte_ page. Pages may be
absent, of course, if the kernel has swapped them to disk (or if they have
never been loaded). The page tables themselves, however, are always present
in the current Linux implementation. Keeping page tables in memory simpli-
fies the kernel code because pgd_of fset and friends never fail; on the other
hand, even a process with a ‘‘resident storage size’’ of zero keeps its page
tables in real RAM, wasting some memory that might be better used else-
wher e.

Each process in the system has a struct mm_struct structur e, which contains
its page tables and a great many other things. It also contains a spinlock called
page_table_lock, which should be held while traversing or modifying the
page tables.

Just seeing the list of these functions is not enough for you to be proficient in the
Linux memory management algorithms; real memory management is much more
complex and must deal with other complications, like cache coherence. The previ-
ous list should nonetheless be sufficient to give you a feel for how page manage-
ment is implemented; it is also about all that you will need to know, as a device
driver writer, to work occasionally with page tables. You can get more infor mation
fr om the include/asm and mm subtr ees of the kernel source.

Virtual Memory Areas
Although paging sits at the lowest level of memory management, something more
is necessary before you can use the computer’s resources efficiently. The kernel
needs a higher-level mechanism to handle the way a process sees its memory.
This mechanism is implemented in Linux by means of virtual memory areas, which
ar e typically referr ed to as areas or VMAs.
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An area is a homogeneous region in the virtual memory of a process, a contiguous
range of addresses with the same permission flags. It corresponds loosely to the
concept of a ‘‘segment,’’ although it is better described as ‘‘a memory object with
its own properties.’’ The memory map of a process is made up of the following:

• An area for the program’s executable code (often called text).

• One area each for data, including initialized data (that which has an explicitly
assigned value at the beginning of execution), uninitialized data (BSS),* and
the program stack.

• One area for each active memory mapping.

The memory areas of a process can be seen by looking in /pr oc/pid/maps (wher e
pid, of course, is replaced by a process ID). /pr oc/self is a special case of
/pr oc/pid, because it always refers to the current process. As an example, here are
a couple of memory maps, to which we have added short comments after a sharp
sign:

morgana.root# cat /proc/1/maps # look at init
08048000-0804e000 r-xp 00000000 08:01 51297 /sbin/init # text
0804e000-08050000 rw-p 00005000 08:01 51297 /sbin/init # data
08050000-08054000 rwxp 00000000 00:00 0 # zero-mapped bss
40000000-40013000 r-xp 00000000 08:01 39003 /lib/ld-2.1.3.so # text
40013000-40014000 rw-p 00012000 08:01 39003 /lib/ld-2.1.3.so # data
40014000-40015000 rw-p 00000000 00:00 0 # bss for ld.so
4001b000-40108000 r-xp 00000000 08:01 39006 /lib/libc-2.1.3.so # text
40108000-4010c000 rw-p 000ec000 08:01 39006 /lib/libc-2.1.3.so # data
4010c000-40110000 rw-p 00000000 00:00 0 # bss for libc.so
bfffe000-c0000000 rwxp fffff000 00:00 0 # zero-mapped stack

morgana.root# rsh wolf head /proc/self/maps #### alpha-axp: static ecoff
000000011fffe000-0000000120000000 rwxp 0000000000000000 00:00 0 # stack
0000000120000000-0000000120014000 r-xp 0000000000000000 08:03 2844 # text
0000000140000000-0000000140002000 rwxp 0000000000014000 08:03 2844 # data
0000000140002000-0000000140008000 rwxp 0000000000000000 00:00 0 # bss

The fields in each line are as follows:

start-end perm offset major:minor inode image.

Each field in /pr oc/*/maps (except the image name) corresponds to a field in
struct vm_area_struct, and is described in the following list.

start
end

The beginning and ending virtual addresses for this memory area.

* The name BSS is a historical relic, from an old assembly operator meaning ‘‘Block started
by symbol.’’ The BSS segment of executable files isn’t stored on disk, and the kernel
maps the zero page to the BSS address range.
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perm
A bit mask with the memory area’s read, write, and execute permissions. This
field describes what the process is allowed to do with pages belonging to the
ar ea. The last character in the field is either p for ‘‘private’’ or s for ‘‘shared.’’

offset
Wher e the memory area begins in the file that it is mapped to. An offset of
zer o, of course, means that the first page of the memory area corresponds to
the first page of the file.

major
minor

The major and minor numbers of the device holding the file that has been
mapped. Confusingly, for device mappings, the major and minor numbers
refer to the disk partition holding the device special file that was opened by
the user, and not the device itself.

inode
The inode number of the mapped file.

image
The name of the file (usually an executable image) that has been mapped.

A driver that implements the mmap method needs to fill a VMA structure in the
addr ess space of the process mapping the device. The driver writer should there-
for e have at least a minimal understanding of VMAs in order to use them.

Let’s look at the most important fields in struct vm_area_struct (defined in
<linux/mm.h>). These fields may be used by device drivers in their mmap
implementation. Note that the kernel maintains lists and trees of VMAs to optimize
ar ea lookup, and several fields of vm_area_struct ar e used to maintain this
organization. VMAs thus can’t be created at will by a driver, or the structures will
br eak. The main fields of VMAs are as follows (note the similarity between these
fields and the /pr oc output we just saw):

unsigned long vm_start;
unsigned long vm_end;

The virtual address range covered by this VMA. These fields are the first two
fields shown in /pr oc/*/maps.

struct file *vm_file;
A pointer to the struct file structur e associated with this area (if any).

unsigned long vm_pgoff;
The offset of the area in the file, in pages. When a file or device is mapped,
this is the file position of the first page mapped in this area.
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unsigned long vm_flags;
A set of flags describing this area. The flags of the most interest to device
driver writers are VM_IO and VM_RESERVED. VM_IO marks a VMA as being a
memory-mapped I/O region. Among other things, the VM_IO flag will prevent
the region from being included in process core dumps. VM_RESERVED tells
the memory management system not to attempt to swap out this VMA; it
should be set in most device mappings.

struct vm_operations_struct *vm_ops;
A set of functions that the kernel may invoke to operate on this memory area.
Its presence indicates that the memory area is a kernel ‘‘object’’ like the
struct file we have been using throughout the book.

void *vm_private_data;
A field that may be used by the driver to store its own information.

Like struct vm_area_struct, the vm_operations_struct is defined in
<linux/mm.h>; it includes the operations listed next. These operations are the
only ones needed to handle the process’s memory needs, and they are listed in
the order they are declar ed. Later in this chapter, some of these functions will be
implemented; they will be described more completely at that point.

void (*open)(struct vm_area_struct *vma);
The open method is called by the kernel to allow the subsystem implementing
the VMA to initialize the area, adjust refer ence counts, and so forth. This
method will be invoked any time that a new refer ence to the VMA is made
(when a process forks, for example). The one exception happens when the
VMA is first created by mmap; in this case, the driver’s mmap method is called
instead.

void (*close)(struct vm_area_struct *vma);
When an area is destroyed, the kernel calls its close operation. Note that
ther e’s no usage count associated with VMAs; the area is opened and closed
exactly once by each process that uses it.

void (*unmap)(struct vm_area_struct *vma, unsigned long
addr, size_t len);

The kernel calls this method to ‘‘unmap’’ part or all of an area. If the entire
ar ea is unmapped, then the kernel calls vm_ops->close as soon as
vm_ops->unmap retur ns.

void (*protect)(struct vm_area_struct *vma, unsigned long,
size_t, unsigned int newprot);

This method is intended to change the protection on a memory area, but is
curr ently not used. Memory protection is handled by the page tables, and the
ker nel sets up the page-table entries separately.
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int (*sync)(struct vm_area_struct *vma, unsigned long,
size_t, unsigned int flags);

This method is called by the msync system call to save a dirty memory region
to the storage medium. The retur n value is expected to be 0 to indicate suc-
cess and negative if there was an error.

struct page *(*nopage)(struct vm_area_struct *vma, unsigned
long address, int write_access);

When a process tries to access a page that belongs to a valid VMA, but that is
curr ently not in memory, the nopage method is called (if it is defined) for the
related area. The method retur ns the struct page pointer for the physical
page, after, perhaps, having read it in from secondary storage. If the nopage
method isn’t defined for the area, an empty page is allocated by the kernel.
The third argument, write_access, counts as ‘‘no-share’’: a nonzero value
means the page must be owned by the current process, whereas 0 means that
sharing is possible.

struct page *(*wppage)(struct vm_area_struct *vma, unsigned
long address, struct page *page);

This method handles write-protected page faults but is currently unused. The
ker nel handles attempts to write over a protected page without invoking the
ar ea-specific callback. Write-pr otect faults are used to implement copy-on-
write. A private page can be shared across processes until one process writes
to it. When that happens, the page is cloned, and the process writes on its
own copy of the page. If the whole area is marked as read-only, a SIGSEGV
is sent to the process, and the copy-on-write is not perfor med.

int (*swapout)(struct page *page, struct file *file);
This method is called when a page is selected to be swapped out. A retur n
value of 0 signals success; any other value signals an error. In case of error,
the process owning the page is sent a SIGBUS. It is highly unlikely that a
driver will ever need to implement swapout; device mappings are not some-
thing that the kernel can just write to disk.

That concludes our overview of Linux memory management data structures. With
that out of the way, we can now proceed to the implementation of the mmap sys-
tem call.

The mmap Device Operation
Memory mapping is one of the most interesting features of modern Unix systems.
As far as drivers are concer ned, memory mapping can be used to provide user
pr ograms with direct access to device memory.

A definitive example of mmap usage can be seen by looking at a subset of the vir-
tual memory areas for the X Window System server:
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cat /proc/731/maps
08048000-08327000 r-xp 00000000 08:01 55505 /usr/X11R6/bin/XF86_SVGA
08327000-08369000 rw-p 002de000 08:01 55505 /usr/X11R6/bin/XF86_SVGA
40015000-40019000 rw-s fe2fc000 08:01 10778 /dev/mem
40131000-40141000 rw-s 000a0000 08:01 10778 /dev/mem
40141000-40941000 rw-s f4000000 08:01 10778 /dev/mem

...

The full list of the X server’s VMAs is lengthy, but most of the entries are not of
inter est her e. We do see, however, thr ee separate mappings of /dev/mem, which
give some insight into how the X server works with the video card. The first map-
ping shows a 16 KB region mapped at fe2fc000. This address is far above the
highest RAM address on the system; it is, instead, a region of memory on a PCI
peripheral (the video card). It will be a control region for that card. The middle
mapping is at a0000, which is the standard location for video RAM in the 640 KB
ISA hole. The last /dev/mem mapping is a rather larger one at f4000000 and is
the video memory itself. These regions can also be seen in /pr oc/iomem:

000a0000-000bffff : Video RAM area
f4000000-f4ffffff : Matrox Graphics, Inc. MGA G200 AGP
fe2fc000-fe2fffff : Matrox Graphics, Inc. MGA G200 AGP

Mapping a device means associating a range of user-space addresses to device
memory. Whenever the program reads or writes in the assigned address range, it
is actually accessing the device. In the X server example, using mmap allows
quick and easy access to the video card’s memory. For a perfor mance-critical
application like this, direct access makes a large differ ence.

As you might suspect, not every device lends itself to the mmap abstraction; it
makes no sense, for instance, for serial ports and other stream-oriented devices.
Another limitation of mmap is that mapping is PAGE_SIZE grained. The kernel
can dispose of virtual addresses only at the level of page tables; therefor e, the
mapped area must be a multiple of PAGE_SIZE and must live in physical memory
starting at an address that is a multiple of PAGE_SIZE. The kernel accommodates
for size granularity by making a region slightly bigger if its size isn’t a multiple of
the page size.

These limits are not a big constraint for drivers, because the program accessing the
device is device dependent anyway. It needs to know how to make sense of the
memory region being mapped, so the PAGE_SIZE alignment is not a problem. A
bigger constraint exists when ISA devices are used on some non-x86 platforms,
because their hardware view of ISA may not be contiguous. For example, some
Alpha computers see ISA memory as a scattered set of 8-bit, 16-bit, or 32-bit items,
with no direct mapping. In such cases, you can’t use mmap at all. The inability to
per form dir ect mapping of ISA addresses to Alpha addresses is due to the incom-
patible data transfer specifications of the two systems. Whereas early Alpha pro-
cessors could issue only 32-bit and 64-bit memory accesses, ISA can do only 8-bit
and 16-bit transfers, and there’s no way to transparently map one protocol onto
the other.

The mmap Device Operation
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Ther e ar e sound advantages to using mmap when it’s feasible to do so. For
instance, we have already looked at the X server, which transfers a lot of data to
and from video memory; mapping the graphic display to user space dramatically
impr oves the throughput, as opposed to an lseek/write implementation. Another
typical example is a program controlling a PCI device. Most PCI peripherals map
their control registers to a memory address, and a demanding application might
pr efer to have direct access to the registers instead of repeatedly having to call
ioctl to get its work done.

The mmap method is part of the file_operations structur e and is invoked
when the mmap system call is issued. With mmap, the kernel perfor ms a good
deal of work before the actual method is invoked, and therefor e the prototype of
the method is quite differ ent fr om that of the system call. This is unlike calls such
as ioctl and poll, wher e the kernel does not do much before calling the method.

The system call is declared as follows (as described in the mmap(2) manual page):

mmap (caddr_t addr, size_t len, int prot, int flags, int fd,
off_t offset)

On the other hand, the file operation is declared as

int (*mmap) (struct file *filp, struct vm_area_struct *vma);

The filp argument in the method is the same as that introduced in Chapter 3,
while vma contains the information about the virtual address range that is used to
access the device. Much of the work has thus been done by the kernel; to imple-
ment mmap, the driver only has to build suitable page tables for the address range
and, if necessary, replace vma->vm_ops with a new set of operations.

Ther e ar e two ways of building the page tables: doing it all at once with a func-
tion called remap_ page_range, or doing it a page at a time via the nopage VMA
method. Both methods have their advantages. We’ll start with the ‘‘all at once’’
appr oach, which is simpler. From ther e we will start adding the complications
needed for a real-world implementation.

Using remap_page_range
The job of building new page tables to map a range of physical addresses is han-
dled by remap_ page_range, which has the following prototype:

int remap_page_range(unsigned long virt_add, unsigned long phys_add,
unsigned long size, pgprot_t prot);

The value retur ned by the function is the usual 0 or a negative error code. Let’s
look at the exact meaning of the function’s arguments:
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virt_add
The user virtual address where remapping should begin. The function builds
page tables for the virtual address range between virt_add and
virt_add+size.

phys_add
The physical address to which the virtual address should be mapped. The
function affects physical addresses from phys_add to phys_add+size.

size
The dimension, in bytes, of the area being remapped.

prot
The ‘‘protection’’ requested for the new VMA. The driver can (and should) use
the value found in vma->vm_page_prot.

The arguments to remap_ page_range ar e fairly straightforward, and most of them
ar e alr eady pr ovided to you in the VMA when your mmap method is called. The
one complication has to do with caching: usually, refer ences to device memory
should not be cached by the processor. Often the system BIOS will set things up
pr operly, but it is also possible to disable caching of specific VMAs via the protec-
tion field. Unfortunately, disabling caching at this level is highly processor depen-
dent. The curious reader may wish to look at the function pgpr ot_noncached fr om
drivers/char/mem.c to see what’s involved. We won’t discuss the topic further
her e.

A Simple Implementation
If your driver needs to do a simple, linear mapping of device memory into a user
addr ess space, remap_ page_range is almost all you really need to do the job. The
following code comes from drivers/char/mem.c and shows how this task is per-
for med in a typical module called simple (Simple Implementation Mapping Pages
with Little Enthusiasm):

#include <linux/mm.h>

int simple_mmap(struct file *filp, struct vm_area_struct *vma)
{

unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;

if (offset >= _&thinsp;_pa(high_memory) || (filp->f_flags & O_SYNC))
vma->vm_flags |= VM_IO;

vma->vm_flags |= VM_RESERVED;

if (remap_page_range(vma->vm_start, offset,
vma->vm_end-vma->vm_start, vma->vm_page_prot))

return -EAGAIN;
return 0;

}

The mmap Device Operation
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The /dev/mem code checks to see if the requested offset (stored in
vma->vm_pgoff) is beyond physical memory; if so, the VM_IO VMA flag is set to
mark the area as being I/O memory. The VM_RESERVED flag is always set to keep
the system from trying to swap this area out. Then it is just a matter of calling
remap_ page_range to create the necessary page tables.

Adding VMA Operations
As we have seen, the vm_area_struct structur e contains a set of operations
that may be applied to the VMA. Now we’ll look at providing those operations in
a simple way; a more detailed example will follow later on.

Her e, we will provide open and close operations for our VMA. These operations
will be called anytime a process opens or closes the VMA; in particular, the open
method will be invoked anytime a process forks and creates a new refer ence to
the VMA. The open and close VMA methods are called in addition to the process-
ing perfor med by the kernel, so they need not reimplement any of the work done
ther e. They exist as a way for drivers to do any additional processing that they
may requir e.

We’ll use these methods to increment the module usage count whenever the VMA
is opened, and to decrement it when it’s closed. In modern ker nels, this work is
not strictly necessary; the kernel will not call the driver’s release method as long as
a VMA remains open, so the usage count will not drop to zero until all refer ences
to the VMA are closed. The 2.0 kernel, however, did not perfor m this tracking, so
portable code will still want to be able to maintain the usage count.

So, we will override the default vma->vm_ops with operations that keep track of
the usage count. The code is quite simple—a complete mmap implementation for
a modularized /dev/mem looks like the following:

void simple_vma_open(struct vm_area_struct *vma)
{ MOD_INC_USE_COUNT; }

void simple_vma_close(struct vm_area_struct *vma)
{ MOD_DEC_USE_COUNT; }

static struct vm_operations_struct simple_remap_vm_ops = {
open: simple_vma_open,
close: simple_vma_close,

};

int simple_remap_mmap(struct file *filp, struct vm_area_struct *vma)
{

unsigned long offset = VMA_OFFSET(vma);

if (offset >= __pa(high_memory) || (filp->f_flags & O_SYNC))
vma->vm_flags |= VM_IO;

vma->vm_flags |= VM_RESERVED;
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if (remap_page_range(vma->vm_start, offset, vma->vm_end-vma->vm_start,
vma->vm_page_prot))

return -EAGAIN;

vma->vm_ops = &simple_remap_vm_ops;
simple_vma_open(vma);
return 0;

}

This code relies on the fact that the kernel initializes to NULL the vm_ops field in
the newly created area before calling f_op->mmap. The code just shown checks
the current value of the pointer as a safety measure, should something change in
futur e ker nels.

The strange VMA_OFFSET macr o that appears in this code is used to hide a differ-
ence in the vma structur e acr oss ker nel versions. Since the offset is a number of
pages in 2.4 and a number of bytes in 2.2 and earlier kernels, <sysdep.h>
declar es the macro to make the differ ence transpar ent (and the result is expressed
in bytes).

Mapping Memory with nopage
Although remap_ page_range works well for many, if not most, driver mmap
implementations, sometimes it is necessary to be a little more flexible. In such situ-
ations, an implementation using the nopage VMA method may be called for.

The nopage method, remember, has the following prototype:

struct page (*nopage)(struct vm_area_struct *vma,
unsigned long address, int write_access);

When a user process attempts to access a page in a VMA that is not present in
memory, the associated nopage function is called. The address parameter will
contain the virtual address that caused the fault, rounded down to the beginning
of the page. The nopage function must locate and retur n the struct page
pointer that refers to the page the user wanted. This function must also take care
to increment the usage count for the page it retur ns by calling the get_ page macr o:

get_page(struct page *pageptr);

This step is necessary to keep the refer ence counts correct on the mapped pages.
The kernel maintains this count for every page; when the count goes to zero, the
ker nel knows that the page may be placed on the free list. When a VMA is
unmapped, the kernel will decrement the usage count for every page in the area.
If your driver does not increment the count when adding a page to the area, the
usage count will become zero prematur ely and the integrity of the system will be
compr omised.
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One situation in which the nopage appr oach is useful can be brought about by the
mr emap system call, which is used by applications to change the bounding
addr esses of a mapped region. If the driver wants to be able to deal with mr emap,
the previous implementation won’t work correctly, because there’s no way for the
driver to know that the mapped region has changed.

The Linux implementation of mr emap doesn’t notify the driver of changes in the
mapped area. Actually, it does notify the driver if the size of the area is reduced
via the unmap method, but no callback is issued if the area increases in size.

The basic idea behind notifying the driver of a reduction is that the driver (or the
filesystem mapping a regular file to memory) needs to know when a region is
unmapped in order to take the proper action, such as flushing pages to disk.
Gr owth of the mapped region, on the other hand, isn’t really meaningful for the
driver until the program invoking mr emap accesses the new virtual addresses. In
real life, it’s quite common to map regions that are never used (unused sections of
pr ogram code, for example). The Linux kernel, therefor e, doesn’t notify the driver
if the mapped region grows, because the nopage method will take care of pages
one at a time as they are actually accessed.

In other words, the driver isn’t notified when a mapping grows because nopage
will do it later, without having to use memory before it is actually needed. This
optimization is mostly aimed at regular files, whose mapping uses real RAM.

The nopage method, therefor e, must be implemented if you want to support the
mr emap system call. But once you have nopage, you can choose to use it exten-
sively, with some limitations (described later). This method is shown in the next
code fragment. In this implementation of mmap, the device method only replaces
vma->vm_ops. The nopage method takes care of ‘‘r emapping’’ one page at a time
and retur ning the address of its struct page structur e. Because we are just
implementing a window onto physical memory here, the remapping step is sim-
ple — we need only locate and retur n a pointer to the struct page for the
desir ed addr ess.

An implementation of /dev/mem using nopage looks like the following:

struct page *simple_vma_nopage(struct vm_area_struct *vma,
unsigned long address, int write_access)

{
struct page *pageptr;
unsigned long physaddr = address - vma->vm_start + VMA_OFFSET(vma);
pageptr = virt_to_page(__va(physaddr));
get_page(pageptr);
return pageptr;

}

int simple_nopage_mmap(struct file *filp, struct vm_area_struct *vma)
{

unsigned long offset = VMA_OFFSET(vma);
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if (offset >= __pa(high_memory) || (filp->f_flags & O_SYNC))
vma->vm_flags |= VM_IO;

vma->vm_flags |= VM_RESERVED;

vma->vm_ops = &simple_nopage_vm_ops;
simple_vma_open(vma);
return 0;

}

Since, once again, we are simply mapping main memory here, the nopage func-
tion need only find the correct struct page for the faulting address and incre-
ment its refer ence count. The requir ed sequence of events is thus to calculate the
desir ed physical address, turn it into a logical address with _ _va, and then finally
to turn it into a struct page with virt_to_ page. It would be possible, in general,
to go directly from the physical address to the struct page, but such code
would be difficult to make portable across architectur es. Such code might be nec-
essary, however, if one were trying to map high memory, which, remember, has
no logical addresses. simple, being simple, does not worry about that (rare) case.

If the nopage method is left NULL, ker nel code that handles page faults maps the
zer o page to the faulting virtual address. The zero page is a copy-on-write page
that reads as zero and that is used, for example, to map the BSS segment. There-
for e, if a process extends a mapped region by calling mr emap, and the driver
hasn’t implemented nopage, it will end up with zero pages instead of a segmenta-
tion fault.

The nopage method normally retur ns a pointer to a struct page. If, for some
reason, a normal page cannot be retur ned (e.g., the requested address is beyond
the device’s memory region), NOPAGE_SIGBUS can be retur ned to signal the
err or. nopage can also retur n NOPAGE_OOM to indicate failures caused by resource
limitations.

Note that this implementation will work for ISA memory regions but not for those
on the PCI bus. PCI memory is mapped above the highest system memory, and
ther e ar e no entries in the system memory map for those addresses. Because there
is thus no struct page to retur n a pointer to, nopage cannot be used in these
situations; you must, instead, use remap_ page_range.

Remapping Specific I/O Regions
All the examples we’ve seen so far are reimplementations of /dev/mem; they
remap physical addresses into user space. The typical driver, however, wants to
map only the small address range that applies to its peripheral device, not all of
memory. In order to map to user space only a subset of the whole memory range,
the driver needs only to play with the offsets. The following lines will do the trick
for a driver mapping a region of simple_region_size bytes, beginning at
physical address simple_region_start (which should be page aligned).
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unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
unsigned long physical = simple_region_start + off;
unsigned long vsize = vma->vm_end - vma->vm_start;
unsigned long psize = simple_region_size - off;

if (vsize > psize)
return -EINVAL; /* spans too high */

remap_page_range(vma_>vm_start, physical, vsize, vma->vm_page_prot);

In addition to calculating the offsets, this code introduces a check that reports an
err or when the program tries to map more memory than is available in the I/O
region of the target device. In this code, psize is the physical I/O size that is left
after the offset has been specified, and vsize is the requested size of virtual
memory; the function refuses to map addresses that extend beyond the allowed
memory range.

Note that the user process can always use mr emap to extend its mapping, possibly
past the end of the physical device area. If your driver has no nopage method, it
will never be notified of this extension, and the additional area will map to the
zer o page. As a driver writer, you may well want to prevent this sort of behavior;
mapping the zero page onto the end of your region is not an explicitly bad thing
to do, but it is highly unlikely that the programmer wanted that to happen.

The simplest way to prevent extension of the mapping is to implement a simple
nopage method that always causes a bus signal to be sent to the faulting process.
Such a method would look like this:

struct page *simple_nopage(struct vm_area_struct *vma,
unsigned long address, int write_access);

{ return NOPAGE_SIGBUS; /* send a SIGBUS */}

Remapping RAM
Of course, a more thor ough implementation could check to see if the faulting
addr ess is within the device area, and perfor m the remapping if that is the case.
Once again, however, nopage will not work with PCI memory areas, so extension
of PCI mappings is not possible. In Linux, a page of physical addresses is marked
as ‘‘reserved’’ in the memory map to indicate that it is not available for memory
management. On the PC, for example, the range between 640 KB and 1 MB is
marked as reserved, as are the pages that host the kernel code itself.

An interesting limitation of remap_ page_range is that it gives access only to
reserved pages and physical addresses above the top of physical memory.
Reserved pages are locked in memory and are the only ones that can be safely
mapped to user space; this limitation is a basic requir ement for system stability.
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Ther efor e, remap_ page_range won’t allow you to remap conventional
addr esses—which include the ones you obtain by calling get_fr ee_page. Instead, it
will map in the zero page. Nonetheless, the function does everything that most
hardwar e drivers need it to, because it can remap high PCI buffers and ISA mem-
ory.

The limitations of remap_ page_range can be seen by running mapper, one of the
sample programs in misc-pr ogs in the files provided on the O’Reilly FTP site. map-
per is a simple tool that can be used to quickly test the mmap system call; it maps
read-only parts of a file based on the command-line options and dumps the
mapped region to standard output. The following session, for instance, shows that
/dev/mem doesn’t map the physical page located at address 64 KB—instead we
see a page full of zeros (the host computer in this examples is a PC, but the result
would be the same on other platforms):

morgana.root# ./mapper /dev/mem 0x10000 0x1000 | od -Ax -t x1
mapped "/dev/mem" from 65536 to 69632
000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
001000

The inability of remap_ page_range to deal with RAM suggests that a device like
scullp can’t easily implement mmap, because its device memory is conventional
RAM, not I/O memory. Fortunately, a relatively easy workaround is available to
any driver that needs to map RAM into user space; it uses the nopage method that
we have seen earlier.

Remapping RAM with the nopage method

The way to map real RAM to user space is to use vm_ops->nopage to deal with
page faults one at a time. A sample implementation is part of the scullp module,
intr oduced in Chapter 7.

scullp is the page oriented char device. Because it is page oriented, it can imple-
ment mmap on its memory. The code implementing memory mapping uses some
of the concepts introduced earlier in ‘‘Memory Management in Linux.’’

Befor e examining the code, let’s look at the design choices that affect the mmap
implementation in scullp.

• scullp doesn’t release device memory as long as the device is mapped. This is
a matter of policy rather than a requir ement, and it is differ ent fr om the behav-
ior of scull and similar devices, which are truncated to a length of zero when
opened for writing. Refusing to free a mapped scullp device allows a process
to overwrite regions actively mapped by another process, so you can test and
see how processes and device memory interact. To avoid releasing a mapped
device, the driver must keep a count of active mappings; the vmas field in the
device structure is used for this purpose.
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• Memory mapping is perfor med only when the scullp order parameter is 0.
The parameter controls how get_fr ee_pages is invoked (see Chapter 7,
“get_fr ee_page and Friends”). This choice is dictated by the internals of
get_fr ee_pages, the allocation engine exploited by scullp. To maximize alloca-
tion perfor mance, the Linux kernel maintains a list of free pages for each allo-
cation order, and only the page count of the first page in a cluster is incre-
mented by get_fr ee_pages and decremented by fr ee_pages. The mmap method
is disabled for a scullp device if the allocation order is greater than zero,
because nopage deals with single pages rather than clusters of pages. (Return
to “A scull Using Whole Pages: scullp” in Chapter 7 if you need a refr esher on
scullp and the memory allocation order value.)

The last choice is mostly intended to keep the code simple. It is possible to cor-
rectly implement mmap for multipage allocations by playing with the usage count
of the pages, but it would only add to the complexity of the example without
intr oducing any interesting information.

Code that is intended to map RAM according to the rules just outlined needs to
implement open, close, and nopage; it also needs to access the memory map to
adjust the page usage counts.

This implementation of scullp_mmap is very short, because it relies on the nopage
function to do all the interesting work:

int scullp_mmap(struct file *filp, struct vm_area_struct *vma)
{

struct inode *inode = INODE_FROM_F(filp);

/* refuse to map if order is not 0 */
if (scullp_devices[MINOR(inode->i_rdev)].order)

return -ENODEV;

/* don’t do anything here: "nopage" will fill the holes */
vma->vm_ops = &scullp_vm_ops;
vma->vm_flags |= VM_RESERVED;
vma->vm_private_data = scullp_devices + MINOR(inode->i_rdev);
scullp_vma_open(vma);
return 0;

}

The purpose of the leading conditional is to avoid mapping devices whose alloca-
tion order is not 0. scullp’s operations are stor ed in the vm_ops field, and a
pointer to the device structure is stashed in the vm_private_data field. At the
end, vm_ops->open is called to update the usage count for the module and the
count of active mappings for the device.

open and close simply keep track of these counts and are defined as follows:
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void scullp_vma_open(struct vm_area_struct *vma)
{

ScullP_Dev *dev = scullp_vma_to_dev(vma);

dev->vmas++;
MOD_INC_USE_COUNT;

}

void scullp_vma_close(struct vm_area_struct *vma)
{

ScullP_Dev *dev = scullp_vma_to_dev(vma);

dev->vmas--;
MOD_DEC_USE_COUNT;

}

The function sculls_vma_to_dev simply retur ns the contents of the vm_pri-
vate_data field. It exists as a separate function because kernel versions prior to
2.4 lacked that field, requiring that other means be used to get that pointer. See
“Backward Compatibility” at the end of this chapter for details.

Most of the work is then perfor med by nopage. In the scullp implementation, the
address parameter to nopage is used to calculate an offset into the device; the
of fset is then used to look up the correct page in the scullp memory tree.

struct page *scullp_vma_nopage(struct vm_area_struct *vma,
unsigned long address, int write)

{
unsigned long offset;
ScullP_Dev *ptr, *dev = scullp_vma_to_dev(vma);
struct page *page = NOPAGE_SIGBUS;
void *pageptr = NULL; /* default to "missing" */

down(&dev->sem);
offset = (address - vma->vm_start) + VMA_OFFSET(vma);
if (offset >= dev->size) goto out; /* out of range */

/*
* Now retrieve the scullp device from the list, then the page.
* If the device has holes, the process receives a SIGBUS when
* accessing the hole.
*/

offset >>= PAGE_SHIFT; /* offset is a number of pages */
for (ptr = dev; ptr && offset >= dev->qset;) {

ptr = ptr->next;
offset -= dev->qset;

}
if (ptr && ptr->data) pageptr = ptr->data[offset];
if (!pageptr) goto out; /* hole or end-of-file */
page = virt_to_page(pageptr);

/* got it, now increment the count */
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get_page(page);
out:

up(&dev->sem);
return page;

}

scullp uses memory obtained with get_fr ee_pages. That memory is addressed using
logical addresses, so all scullp_nopage has to do to get a struct page pointer is
to call virt_to_ page.

The scullp device now works as expected, as you can see in this sample output
fr om the mapper utility. Here we send a directory listing of /dev (which is long) to
the scullp device, and then use the mapper utility to look at pieces of that listing
with mmap.

morgana% ls -l /dev > /dev/scullp
morgana% ./mapper /dev/scullp 0 140
mapped "/dev/scullp" from 0 to 140
total 77
-rwxr-xr-x 1 root root 26689 Mar 2 2000 MAKEDEV
crw-rw-rw- 1 root root 14, 14 Aug 10 20:55 admmidi0
morgana% ./mapper /dev/scullp 8192 200
mapped "/dev/scullp" from 8192 to 8392
0
crw ———- 1 root root 113, 1 Mar 26 1999 cum1
crw ———- 1 root root 113, 2 Mar 26 1999 cum2
crw ———- 1 root root 113, 3 Mar 26 1999 cum3

Remapping Vir tual Addresses
Although it’s rarely necessary, it’s interesting to see how a driver can map a virtual
addr ess to user space using mmap. A true virtual address, remember, is an addr ess
retur ned by a function like vmalloc or kmap—that is, a virtual address mapped in
the kernel page tables. The code in this section is taken from scullv, which is the
module that works like scullp but allocates its storage through vmalloc.

Most of the scullv implementation is like the one we’ve just seen for scullp, except
that there is no need to check the order parameter that controls memory alloca-
tion. The reason for this is that vmalloc allocates its pages one at a time, because
single-page allocations are far more likely to succeed than multipage allocations.
Ther efor e, the allocation order problem doesn’t apply to vmalloced space.

Most of the work of vmalloc is building page tables to access allocated pages as a
continuous address range. The nopage method, instead, must pull the page tables
back apart in order to retur n a struct page pointer to the caller. Ther efor e, the
nopage implementation for scullv must scan the page tables to retrieve the page
map entry associated with the page.
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The function is similar to the one we saw for scullp, except at the end. This code
excerpt only includes the part of nopage that differs from scullp:

pgd_t *pgd; pmd_t *pmd; pte_t *pte;
unsigned long lpage;

/*
* After scullv lookup, "page" is now the address of the page
* needed by the current process. Since it’s a vmalloc address,
* first retrieve the unsigned long value to be looked up
* in page tables.
*/

lpage = VMALLOC_VMADDR(pageptr);
spin_lock(&init_mm.page_table_lock);
pgd = pgd_offset(&init_mm, lpage);
pmd = pmd_offset(pgd, lpage);
pte = pte_offset(pmd, lpage);
page = pte_page(*pte);
spin_unlock(&init_mm.page_table_lock);

/* got it, now increment the count */
get_page(page);
out:
up(&dev->sem);
return page;

The page tables are looked up using the functions introduced at the beginning of
this chapter. The page directory used for this purpose is stored in the memory
structur e for kernel space, init_mm. Note that scullv obtains the
page_table_lock prior to traversing the page tables. If that lock were not held,
another processor could make a change to the page table while scullv was
halfway through the lookup process, leading to erroneous results.

The macro VMALLOC_VMADDR(pageptr) retur ns the correct unsigned long
value to be used in a page-table lookup from a vmalloc addr ess. A simple cast of
the value wouldn’t work on the x86 with kernels older than 2.1, because of a
glitch in memory management. Memory management for the x86 changed in ver-
sion 2.1.1, and VMALLOC_VMADDR is now defined as the identity function, as it
has always been for the other platforms. Its use is still suggested, however, as a
way of writing portable code.

Based on this discussion, you might also want to map addresses retur ned by
ior emap to user space. This mapping is easily accomplished because you can use
remap_ page_range dir ectly, without implementing methods for virtual memory
ar eas. In other words, remap_ page_range is already usable for building new page
tables that map I/O memory to user space; there’s no need to look in the kernel
page tables built by vr emap as we did in scullv.
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The kiobuf Interface
As of version 2.3.12, the Linux kernel supports an I/O abstraction called the ker nel
I/O buffer, or kiobuf. The kiobuf interface is intended to hide much of the com-
plexity of the virtual memory system from device drivers (and other parts of the
system that do I/O). Many features are planned for kiobufs, but their primary use
in the 2.4 kernel is to facilitate the mapping of user-space buffers into the kernel.

The kiobuf Structure
Any code that works with kiobufs must include <linux/iobuf.h>. This file
defines struct kiobuf, which is the heart of the kiobuf interface. This structure
describes an array of pages that make up an I/O operation; its fields include the
following:

int nr_pages;
The number of pages in this kiobuf

int length;
The number of bytes of data in the buffer

int offset;
The offset to the first valid byte in the buffer

struct page **maplist;
An array of page structur es, one for each page of data in the kiobuf

The key to the kiobuf interface is the maplist array. Functions that operate on
pages stored in a kiobuf deal directly with the page structur es—all of the virtual
memory system overhead has been moved out of the way. This implementation
allows drivers to function independent of the complexities of memory manage-
ment, and in general simplifies life greatly.

Prior to use, a kiobuf must be initialized. It is rare to initialize a single kiobuf in
isolation, but, if need be, this initialization can be perfor med with kiobuf_init:

void kiobuf_init(struct kiobuf *iobuf);

Usually kiobufs are allocated in groups as part of a ker nel I/O vector, or kiovec. A
kiovec can be allocated and initialized in one step with a call to alloc_kiovec:

int alloc_kiovec(int nr, struct kiobuf **iovec);

The retur n value is 0 or an error code, as usual. When your code has finished with
the kiovec structure, it should, of course, retur n it to the system:

void free_kiovec(int nr, struct kiobuf **);

The kernel provides a pair of functions for locking and unlocking the pages
mapped in a kiovec:
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int lock_kiovec(int nr, struct kiobuf *iovec[], int wait);
int unlock_kiovec(int nr, struct kiobuf *iovec[]);

Locking a kiovec in this manner is unnecessary, however, for most applications of
kiobufs seen in device drivers.

Mapping User-Space Buffers and Raw I/O
Unix systems have long provided a ‘‘raw’’ interface to some devices—block
devices in particular—which perfor ms I/O directly from a user-space buffer and
avoids copying data through the kernel. In some cases much improved perfor-
mance can be had in this manner, especially if the data being transferred will not
be used again in the near future. For example, disk backups typically read a great
deal of data from the disk exactly once, then forget about it. Running the backup
via a raw interface will avoid filling the system buffer cache with useless data.

The Linux kernel has traditionally not provided a raw interface, for a number of
reasons. As the system gains in popularity, however, mor e applications that expect
to be able to do raw I/O (such as large database management systems) are being
ported. So the 2.3 development series finally added raw I/O; the driving force
behind the kiobuf interface was the need to provide this capability.

Raw I/O is not always the great perfor mance boost that some people think it
should be, and driver writers should not rush out to add the capability just
because they can. The overhead of setting up a raw transfer can be significant,
and the advantages of buffering data in the kernel are lost. For example, note that
raw I/O operations almost always must be synchronous — the write system call
cannot retur n until the operation is complete. Linux currently lacks the mecha-
nisms that user programs need to be able to safely perfor m asynchr onous raw I/O
on a user buffer.

In this section, we add a raw I/O capability to the sbull sample block driver. When
kiobufs are available, sbull actually registers two devices. The block sbull device
was examined in detail in Chapter 12. What we didn’t see in that chapter was a
second, char device (called sbullr), which provides raw access to the RAM-disk
device. Thus, /dev/sbull0 and /dev/sbullr0 access the same memory; the former
using the traditional, buffer ed mode and the second providing raw access via the
kiobuf mechanism.

It is worth noting that in Linux systems, there is no need for block drivers to pro-
vide this sort of interface. The raw device, in drivers/char/raw.c, provides this
capability in an elegant, general way for all block devices. The block drivers need
not even know they are doing raw I/O. The raw I/O code in sbull is essentially a
simplification of the raw device code for demonstration purposes.
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Raw I/O to a block device must always be sector aligned, and its length must be a
multiple of the sector size. Other kinds of devices, such as tape drives, may not
have the same constraints. sbullr behaves like a block device and enforces the
alignment and length requir ements. To that end, it defines a few symbols:

# define SBULLR_SECTOR 512 /* insist on this */
# define SBULLR_SECTOR_MASK (SBULLR_SECTOR - 1)
# define SBULLR_SECTOR_SHIFT 9

The sbullr raw device will be register ed only if the hard-sector size is equal to
SBULLR_SECTOR. Ther e is no real reason why a larger hard-sector size could not
be supported, but it would complicate the sample code unnecessarily.

The sbullr implementation adds little to the existing sbull code. In particular, the
open and close methods from sbull ar e used without modification. Since sbullr is a
char device, however, it needs read and write methods. Both are defined to use a
single transfer function as follows:

ssize_t sbullr_read(struct file *filp, char *buf, size_t size,
loff_t *off)

{
Sbull_Dev *dev = sbull_devices +

MINOR(filp->f_dentry->d_inode->i_rdev);
return sbullr_transfer(dev, buf, size, off, READ);

}

ssize_t sbullr_write(struct file *filp, const char *buf, size_t size,
loff_t *off)

{
Sbull_Dev *dev = sbull_devices +

MINOR(filp->f_dentry->d_inode->i_rdev);
return sbullr_transfer(dev, (char *) buf, size, off, WRITE);

}

The sbullr_transfer function handles all of the setup and teardown work, while
passing off the actual transfer of data to yet another function. It is written as fol-
lows:

static int sbullr_transfer (Sbull_Dev *dev, char *buf, size_t count,
loff_t *offset, int rw)

{
struct kiobuf *iobuf;
int result;

/* Only block alignment and size allowed */
if ((*offset & SBULLR_SECTOR_MASK) || (count & SBULLR_SECTOR_MASK))

return -EINVAL;
if ((unsigned long) buf & SBULLR_SECTOR_MASK)

return -EINVAL;

/* Allocate an I/O vector */
result = alloc_kiovec(1, &iobuf);
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if (result)
return result;

/* Map the user I/O buffer and do the I/O. */
result = map_user_kiobuf(rw, iobuf, (unsigned long) buf, count);
if (result) {

free_kiovec(1, &iobuf);
return result;

}
spin_lock(&dev->lock);
result = sbullr_rw_iovec(dev, iobuf, rw,

*offset >> SBULLR_SECTOR_SHIFT,
count >> SBULLR_SECTOR_SHIFT);

spin_unlock(&dev->lock);

/* Clean up and return. */
unmap_kiobuf(iobuf);
free_kiovec(1, &iobuf);
if (result > 0)

*offset += result << SBULLR_SECTOR_SHIFT;
return result << SBULLR_SECTOR_SHIFT;

}

After doing a couple of sanity checks, the code creates a kiovec (containing a sin-
gle kiobuf) with alloc_kiovec. It then uses that kiovec to map in the user buffer by
calling map_user_kiobuf:

int map_user_kiobuf(int rw, struct kiobuf *iobuf,
unsigned long address, size_t len);

The result of this call, if all goes well, is that the buffer at the given (user virtual)
address with length len is mapped into the given iobuf. This operation can
sleep, since it is possible that part of the user buffer will need to be faulted into
memory.

A kiobuf that has been mapped in this manner must eventually be unmapped, of
course, to keep the refer ence counts on the pages straight. This unmapping is
accomplished, as can be seen in the code, by passing the kiobuf to
unmap_kiobuf.

So far, we have seen how to prepar e a kiobuf for I/O, but not how to actually per-
for m that I/O. The last step involves going through each page in the kiobuf and
doing the requir ed transfers; in sbullr, this task is handled by sbullr_rw_iovec.
Essentially, this function passes through each page, breaks it up into sector-sized
pieces, and passes them to sbull_transfer via a fake request structur e:

static int sbullr_rw_iovec(Sbull_Dev *dev, struct kiobuf *iobuf, int rw,
int sector, int nsectors)

{
struct request fakereq;
struct page *page;
int offset = iobuf->offset, ndone = 0, pageno, result;

The kiobuf Interface
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/* Perform I/O on each sector */
fakereq.sector = sector;
fakereq.current_nr_sectors = 1;
fakereq.cmd = rw;

for (pageno = 0; pageno < iobuf->nr_pages; pageno++) {
page = iobuf->maplist[pageno];
while (ndone < nsectors) {

/* Fake up a request structure for the operation */
fakereq.buffer = (void *) (kmap(page) + offset);
result = sbull_transfer(dev, &fakereq);
kunmap(page);
if (result == 0)

return ndone;
/* Move on to the next one */
ndone++;
fakereq.sector++;
offset += SBULLR_SECTOR;
if (offset >= PAGE_SIZE) {

offset = 0;
break;

}
}

}
return ndone;

}

Her e, the nr_pages member of the kiobuf structur e tells us how many pages
need to be transferred, and the maplist array gives us access to each page. Thus
it is just a matter of stepping through them all. Note, however, that kmap is used
to get a kernel virtual address for each page; in this way, the function will work
even if the user buffer is in high memory.

Some quick tests copying data show that a copy to or from an sbullr device takes
roughly two-thirds the system time as the same copy to the block sbull device. The
savings is gained by avoiding the extra copy through the buffer cache. Note that if
the same data is read several times over, that savings will evaporate—especially
for a real hardware device. Raw device access is often not the best approach, but
for some applications it can be a major improvement.

Although kiobufs remain controversial in the kernel development community,
ther e is interest in using them in a wider range of contexts. There is, for example,
a patch that implements Unix pipes with kiobufs—data is copied directly from
one process’s address space to the other with no buffering in the kernel at all. A
patch also exists that makes it easy to use a kiobuf to map kernel virtual memory
into a process’s address space, thus eliminating the need for a nopage implementa-
tion as shown earlier.
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Direct Memory Access and
Bus Mastering
Dir ect memory access, or DMA, is the advanced topic that completes our overview
of memory issues. DMA is the hardware mechanism that allows peripheral compo-
nents to transfer their I/O data directly to and from main memory without the
need for the system processor to be involved in the transfer. Use of this mecha-
nism can greatly increase throughput to and from a device, because a great deal of
computational overhead is eliminated.

To exploit the DMA capabilities of its hardware, the device driver needs to be able
to correctly set up the DMA transfer and synchronize with the hardware. Unfortu-
nately, because of its hardware natur e, DMA is very system dependent. Each archi-
tectur e has its own techniques to manage DMA transfers, and the programming
inter face is differ ent for each. The kernel can’t offer a unified interface, either,
because a driver can’t abstract too much from the underlying hardware mecha-
nisms. Some steps have been made in that direction, however, in recent kernels.

This chapter concentrates mainly on the PCI bus, since it is currently the most
popular peripheral bus available. Many of the concepts are mor e widely applica-
ble, though. We also touch on how some other buses, such as ISA and SBus, han-
dle DMA.

Over view of a DMA Data Transfer
Befor e intr oducing the programming details, let’s review how a DMA transfer takes
place, considering only input transfers to simplify the discussion.

Data transfer can be triggered in two ways: either the software asks for data (via a
function such as read) or the hardware asynchr onously pushes data to the system.

In the first case, the steps involved can be summarized as follows:

1. When a process calls read, the driver method allocates a DMA buffer and
instructs the hardware to transfer its data. The process is put to sleep.

2. The hardwar e writes data to the DMA buffer and raises an interrupt when it’s
done.

3. The interrupt handler gets the input data, acknowledges the interrupt, and
awakens the process, which is now able to read data.

The second case comes about when DMA is used asynchronously. This happens,
for example, with data acquisition devices that go on pushing data even if nobody
is reading them. In this case, the driver should maintain a buffer so that a subse-
quent read call will retur n all the accumulated data to user space. The steps
involved in this kind of transfer are slightly differ ent:
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1. The hardwar e raises an interrupt to announce that new data has arrived.

2. The interrupt handler allocates a buffer and tells the hardware wher e to trans-
fer its data.

3. The peripheral device writes the data to the buffer and raises another interrupt
when it’s done.

4. The handler dispatches the new data, wakes any relevant process, and takes
car e of housekeeping.

A variant of the asynchronous approach is often seen with network cards. These
cards often expect to see a circular buffer (often called a DMA ring buffer) estab-
lished in memory shared with the processor; each incoming packet is placed in
the next available buffer in the ring, and an interrupt is signaled. The driver then
passes the network packets to the rest of the kernel, and places a new DMA buffer
in the ring.

The processing steps in all of these cases emphasize that efficient DMA handling
relies on interrupt reporting. While it is possible to implement DMA with a polling
driver, it wouldn’t make sense, because a polling driver would waste the perfor-
mance benefits that DMA offers over the easier processor-driven I/O.

Another relevant item introduced here is the DMA buffer. To exploit direct mem-
ory access, the device driver must be able to allocate one or more special buffers,
suited to DMA. Note that many drivers allocate their buffers at initialization time
and use them until shutdown—the word allocate in the previous lists therefor e
means ‘‘get hold of a previously allocated buffer.’’

Allocating the DMA Buffer
This section covers the allocation of DMA buffers at a low level; we will introduce
a higher-level interface shortly, but it is still a good idea to understand the material
pr esented her e.

The main problem with the DMA buffer is that when it is bigger than one page, it
must occupy contiguous pages in physical memory because the device transfers
data using the ISA or PCI system bus, both of which carry physical addresses. It’s
inter esting to note that this constraint doesn’t apply to the SBus (see ‘‘SBus’’ in
Chapter 15), which uses virtual addresses on the peripheral bus. Some architec-
tur es can also use virtual addresses on the PCI bus, but a portable driver cannot
count on that capability.

Although DMA buffers can be allocated either at system boot or at runtime, mod-
ules can only allocate their buffers at runtime. Chapter 7 introduced these tech-
niques: ‘‘Boot-Time Allocation’’ talked about allocation at system boot, while ‘‘The
Real Story of kmalloc’’ and ‘‘get_free_page and Friends’’ described allocation at
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runtime. Driver writers must take care to allocate the right kind of memory when it
will be used for DMA operations—not all memory zones are suitable. In particular,
high memory will not work for DMA on most systems—the peripherals simply
cannot work with addresses that high.

Most devices on modern buses can handle 32-bit addresses, meaning that normal
memory allocations will work just fine for them. Some PCI devices, however, fail
to implement the full PCI standard and cannot work with 32-bit addresses. And
ISA devices, of course, are limited to 16-bit addresses only.

For devices with this kind of limitation, memory should be allocated from the
DMA zone by adding the GFP_DMA flag to the kmalloc or get_fr ee_pages call.
When this flag is present, only memory that can be addressed with 16 bits will be
allocated.

Do-it-your self allocation

We have seen how get_fr ee_pages (and therefor e kmalloc) can’t retur n mor e than
128 KB (or, mor e generally, 32 pages) of consecutive memory space. But the
request is prone to fail even when the allocated buffer is less than 128 KB,
because system memory becomes fragmented over time.*

When the kernel cannot retur n the requested amount of memory, or when you
need more than 128 KB (a common requir ement for PCI frame grabbers, for exam-
ple), an alternative to retur ning -ENOMEM is to allocate memory at boot time or
reserve the top of physical RAM for your buffer. We described allocation at boot
time in ‘‘Boot-Time Allocation’’ in Chapter 7, but it is not available to modules.
Reserving the top of RAM is accomplished by passing a mem= argument to the ker-
nel at boot time. For example, if you have 32 MB, the argument mem=31M keeps
the kernel from using the top megabyte. Your module could later use the follow-
ing code to gain access to such memory:

dmabuf = ioremap( 0x1F00000 /* 31M */, 0x100000 /* 1M */);

Actually, there is another way to allocate DMA space: perfor m aggr essive alloca-
tion until you are able to get enough consecutive pages to make a buffer. We
str ongly discourage this allocation technique if there’s any other way to achieve
your goal. Aggressive allocation results in high machine load, and possibly in a
system lockup if your aggressiveness isn’t correctly tuned. On the other hand,
sometimes there is no other way available.

In practice, the code invokes kmalloc(GFP_ATOMIC) until the call fails; it then
waits until the kernel frees some pages, and then allocates everything once again.

* The word fragmentation is usually applied to disks, to express the idea that files are not
stor ed consecutively on the magnetic medium. The same concept applies to memory,
wher e each virtual address space gets scattered throughout physical RAM, and it becomes
dif ficult to retrieve consecutive free pages when a DMA buffer is requested.
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If you keep an eye on the pool of allocated pages, sooner or later you’ll find that
your DMA buffer of consecutive pages has appeared; at this point you can release
every page but the selected buffer. This kind of behavior is rather risky, though,
because it may lead to a deadlock. We suggest using a kernel timer to release
every page in case allocation doesn’t succeed before a timeout expires.

We’r e not going to show the code here, but you’ll find it in misc-modules/alloca-
tor.c; the code is thoroughly commented and designed to be called by other mod-
ules. Unlike every other source accompanying this book, the allocator is covered
by the GPL. The reason we decided to put the source under the GPL is that it is
neither particularly beautiful nor particularly clever, and if someone is going to use
it, we want to be sure that the source is released with the module.

Bus Addresses
A device driver using DMA has to talk to hardware connected to the interface bus,
which uses physical addresses, whereas program code uses virtual addresses.

As a matter of fact, the situation is slightly more complicated than that. DMA-based
hardwar e uses bus, rather than physical, addr esses. Although ISA and PCI
addr esses ar e simply physical addresses on the PC, this is not true for every plat-
for m. Sometimes the interface bus is connected through bridge circuitry that maps
I/O addresses to differ ent physical addresses. Some systems even have a page-
mapping scheme that can make arbitrary pages appear contiguous to the periph-
eral bus.

At the lowest level (again, we’ll look at a higher-level solution shortly), the Linux
ker nel pr ovides a portable solution by exporting the following functions, defined
in <asm/io.h>:

unsigned long virt_to_bus(volatile void * address);
void * bus_to_virt(unsigned long address);

The virt_to_bus conversion must be used when the driver needs to send address
infor mation to an I/O device (such as an expansion board or the DMA controller),
while bus_to_virt must be used when address information is received from hard-
war e connected to the bus.

DMA on the PCI Bus
The 2.4 kernel includes a flexible mechanism that supports PCI DMA (also known
as bus mastering). It handles the details of buffer allocation and can deal with set-
ting up the bus hardware for multipage transfers on hardware that supports them.
This code also takes care of situations in which a buffer lives in a non-DMA-capa-
ble zone of memory, though only on some platforms and at a computational cost
(as we will see later).

404

22 June 2001 16:42



The functions in this section requir e a struct pci_dev structur e for your
device. The details of setting up a PCI device are cover ed in Chapter 15. Note,
however, that the routines described here can also be used with ISA devices; in
that case, the struct pci_dev pointer should simply be passed in as NULL.

Drivers that use the following functions should include <linux/pci.h>.

Dealing with difficult hardware

The first question that must be answered before per forming DMA is whether the
given device is capable of such operation on the current host. Many PCI devices
fail to implement the full 32-bit bus address space, often because they are modi-
fied versions of old ISA hardware. The Linux kernel will attempt to work with
such devices, but it is not always possible.

The function pci_dma_supported should be called for any device that has address-
ing limitations:

int pci_dma_supported(struct pci_dev *pdev, dma_addr_t mask);

Her e, mask is a simple bit mask describing which address bits the device can suc-
cessfully use. If the retur n value is nonzero, DMA is possible, and your driver
should set the dma_mask field in the PCI device structure to the mask value. For a
device that can only handle 16-bit addresses, you might use a call like this:

if (pci_dma_supported (pdev, 0xffff))
pdev->dma_mask = 0xffff;

else {
card->use_dma = 0; /* We’ll have to live without DMA */
printk (KERN_WARN, "mydev: DMA not supported\n");

}

As of kernel 2.4.3, a new function, pci_set_dma_mask, has been provided. This
function has the following prototype:

int pci_set_dma_mask(struct pci_dev *pdev, dma_addr_t mask);

If DMA can be supported with the given mask, this function retur ns 0 and sets the
dma_mask field; otherwise, -EIO is retur ned.

For devices that can handle 32-bit addresses, there is no need to call
pci_dma_supported.

DMA mappings

A DMA mapping is a combination of allocating a DMA buffer and generating an
addr ess for that buffer that is accessible by the device. In many cases, getting that
addr ess involves a simple call to virt_to_bus; some hardware, however, requir es
that mapping registers be set up in the bus hardware as well. Mapping registers
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ar e an equivalent of virtual memory for peripherals. On systems where these regis-
ters are used, peripherals have a relatively small, dedicated range of addresses to
which they may perfor m DMA. Those addresses are remapped, via the mapping
registers, into system RAM. Mapping registers have some nice features, including
the ability to make several distributed pages appear contiguous in the device’s
addr ess space. Not all architectur es have mapping registers, however; in particular,
the popular PC platform has no mapping registers.

Setting up a useful address for the device may also, in some cases, requir e the
establishment of a bounce buffer. Bounce buffers are created when a driver
attempts to perfor m DMA on an address that is not reachable by the peripheral
device — a high-memory address, for example. Data is then copied to and from the
bounce buffer as needed. Making code work properly with bounce buffers
requir es adher ence to some rules, as we will see shortly.

The DMA mapping sets up a new type, dma_addr_t, to repr esent bus addresses.
Variables of type dma_addr_t should be treated as opaque by the driver; the
only allowable operations are to pass them to the DMA support routines and to
the device itself.

The PCI code distinguishes between two types of DMA mappings, depending on
how long the DMA buffer is expected to stay around:

Consistent DMA mappings
These exist for the life of the driver. A consistently mapped buffer must be
simultaneously available to both the CPU and the peripheral (other types of
mappings, as we will see later, can be available only to one or the other at
any given time). The buffer should also, if possible, not have caching issues
that could cause one not to see updates made by the other.

Str eaming DMA mappings
These are set up for a single operation. Some architectur es allow for signifi-
cant optimizations when streaming mappings are used, as we will see, but
these mappings also are subject to a stricter set of rules in how they may be
accessed. The kernel developers recommend the use of streaming mappings
over consistent mappings whenever possible. There are two reasons for this
recommendation. The first is that, on systems that support them, each DMA
mapping uses one or more mapping registers on the bus. Consistent map-
pings, which have a long lifetime, can monopolize these registers for a long
time, even when they are not being used. The other reason is that, on some
hardwar e, str eaming mappings can be optimized in ways that are not available
to consistent mappings.

The two mapping types must be manipulated in differ ent ways; it’s time to look at
the details.
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Setting up consistent DMA mappings

A driver can set up a consistent mapping with a call to pci_alloc_consistent:

void *pci_alloc_consistent(struct pci_dev *pdev, size_t size,
dma_addr_t *bus_addr);

This function handles both the allocation and the mapping of the buffer. The first
two arguments are our PCI device structure and the size of the needed buffer. The
function retur ns the result of the DMA mapping in two places. The retur n value is
a ker nel virtual address for the buffer, which may be used by the driver; the asso-
ciated bus address, instead, is retur ned in bus_addr. Allocation is handled in this
function so that the buffer will be placed in a location that works with DMA; usu-
ally the memory is just allocated with get_fr ee_pages (but note that the size is in
bytes, rather than an order value).

Most architectur es that support PCI perfor m the allocation at the GFP_ATOMIC pri-
ority, and thus do not sleep. The ARM port, however, is an exception to this rule.

When the buffer is no longer needed (usually at module unload time), it should be
retur ned to the system with pci_fr ee_consistent:

void pci_free_consistent(struct pci_dev *pdev, size_t size,
void *cpu_addr, dma_handle_t bus_addr);

Note that this function requir es that both the CPU address and the bus address be
pr ovided.

Setting up streaming DMA mappings

Str eaming mappings have a more complicated interface than the consistent variety,
for a number of reasons. These mappings expect to work with a buffer that has
alr eady been allocated by the driver, and thus have to deal with addresses that
they did not choose. On some architectur es, str eaming mappings can also have
multiple, discontiguous pages and multipart “scatter-gather” buffers.

When setting up a streaming mapping, you must tell the kernel in which direction
the data will be moving. Some symbols have been defined for this purpose:

PCI_DMA_TODEVICE
PCI_DMA_FROMDEVICE

These two symbols should be reasonably self-explanatory. If data is being sent
to the device (in response, perhaps, to a write system call), PCI_DMA_TODE-
VICE should be used; data going to the CPU, instead, will be marked with
PCI_DMA_FROMDEVICE.
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PCI_DMA_BIDIRECTIONAL
If data can move in either direction, use PCI_DMA_BIDIRECTIONAL.

PCI_DMA_NONE
This symbol is provided only as a debugging aid. Attempts to use buffers with
this ‘‘direction’’ will cause a kernel panic.

For a number of reasons that we will touch on shortly, it is important to pick the
right value for the direction of a streaming DMA mapping. It may be tempting to
just pick PCI_DMA_BIDIRECTIONAL at all times, but on some architectur es ther e
will be a perfor mance penalty to pay for that choice.

When you have a single buffer to transfer, map it with pci_map_single:

dma_addr_t pci_map_single(struct pci_dev *pdev, void *buffer,
size_t size, int direction);

The retur n value is the bus address that you can pass to the device, or NULL if
something goes wrong.

Once the transfer is complete, the mapping should be deleted with
pci_unmap_single:

void pci_unmap_single(struct pci_dev *pdev, dma_addr_t bus_addr,
size_t size, int direction);

Her e, the size and direction arguments must match those used to map the
buf fer.

Ther e ar e some important rules that apply to streaming DMA mappings:

• The buffer must be used only for a transfer that matches the direction value
given when it was mapped.

• Once a buffer has been mapped, it belongs to the device, not the processor.
Until the buffer has been unmapped, the driver should not touch its contents
in any way. Only after pci_unmap_single has been called is it safe for the
driver to access the contents of the buffer (with one exception that we’ll see
shortly). Among other things, this rule implies that a buffer being written to a
device cannot be mapped until it contains all the data to write.

• The buffer must not be unmapped while DMA is still active, or serious system
instability is guaranteed.

You may be wondering why the driver can no longer work with a buffer once it
has been mapped. There are actually two reasons why this rule makes sense. First,
when a buffer is mapped for DMA, the kernel must ensure that all of the data in
that buffer has actually been written to memory. It is likely that some data will
remain in the processor’s cache, and must be explicitly flushed. Data written to the
buf fer by the processor after the flush may not be visible to the device.
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Second, consider what happens if the buffer to be mapped is in a region of mem-
ory that is not accessible to the device. Some architectur es will simply fail in this
case, but others will create a bounce buffer. The bounce buffer is just a separate
region of memory that is accessible to the device. If a buffer is mapped with a
dir ection of PCI_DMA_TODEVICE, and a bounce buffer is requir ed, the contents
of the original buffer will be copied as part of the mapping operation. Clearly,
changes to the original buffer after the copy will not be seen by the device. Simi-
larly, PCI_DMA_FROMDEVICE bounce buffers are copied back to the original
buf fer by pci_unmap_single; the data from the device is not present until that
copy has been done.

Incidentally, bounce buffers are one reason why it is important to get the direction
right. PCI_DMA_BIDIRECTIONAL bounce buffers are copied before and after the
operation, which is often an unnecessary waste of CPU cycles.

Occasionally a driver will need to access the contents of a streaming DMA buffer
without unmapping it. A call has been provided to make this possible:

void pci_sync_single(struct pci_dev *pdev, dma_handle_t bus_addr,
size_t size, int direction);

This function should be called befor e the processor accesses a
PCI_DMA_FROMDEVICE buf fer, and after an access to a PCI_DMA_TODEVICE
buf fer.

Scatter-gather mappings

Scatter-gather mappings are a special case of streaming DMA mappings. Suppose
you have several buffers, all of which need to be transferred to or from the device.
This situation can come about in several ways, including from a readv or writev
system call, a clustered disk I/O request, or a list of pages in a mapped kernel I/O
buf fer. You could simply map each buffer in turn and perfor m the requir ed opera-
tion, but there are advantages to mapping the whole list at once.

One reason is that some smart devices can accept a scatterlist of array pointers
and lengths and transfer them all in one DMA operation; for example, ‘‘zero-copy’’
networking is easier if packets can be built in multiple pieces. Linux is likely to
take much better advantage of such devices in the future. Another reason to map
scatterlists as a whole is to take advantage of systems that have mapping registers
in the bus hardware. On such systems, physically discontiguous pages can be
assembled into a single, contiguous array from the device’s point of view. This
technique works only when the entries in the scatterlist are equal to the page size
in length (except the first and last), but when it does work it can turn multiple
operations into a single DMA and speed things up accordingly.

Finally, if a bounce buffer must be used, it makes sense to coalesce the entire list
into a single buffer (since it is being copied anyway).
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So now you’re convinced that mapping of scatterlists is worthwhile in some situa-
tions. The first step in mapping a scatterlist is to create and fill in an array of
struct scatterlist describing the buffers to be transferred. This structure is
architectur e dependent, and is described in <linux/scatterlist.h>. It will
always contain two fields, however:

char *address;
The address of a buffer used in the scatter/gather operation

unsigned int length;
The length of that buffer

To map a scatter/gather DMA operation, your driver should set the address and
length fields in a struct scatterlist entry for each buffer to be trans-
ferr ed. Then call:

int pci_map_sg(struct pci_dev *pdev, struct scatterlist *list,
int nents, int direction);

The retur n value will be the number of DMA buffers to transfer; it may be less
than nents, the number of scatterlist entries passed in.

Your driver should transfer each buffer retur ned by pci_map_sg. The bus address
and length of each buffer will be stored in the struct scatterlist entries,
but their location in the structure varies from one architectur e to the next. Two
macr os have been defined to make it possible to write portable code:

dma_addr_t sg_dma_address(struct scatterlist *sg);
Retur ns the bus (DMA) address from this scatterlist entry

unsigned int sg_dma_len(struct scatterlist *sg);
Retur ns the length of this buffer

Again, remember that the address and length of the buffers to transfer may be dif-
fer ent fr om what was passed in to pci_map_sg.

Once the transfer is complete, a scatter-gather mapping is unmapped with a call to
pci_unmap_sg:

void pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *list,
int nents, int direction);

Note that nents must be the number of entries that you originally passed to
pci_map_sg, and not the number of DMA buffers that function retur ned to you.

Scatter-gather mappings are str eaming DMA mappings, and the same access rules
apply to them as to the single variety. If you must access a mapped scatter-gather
list, you must synchronize it first:

void pci_dma_sync_sg(struct pci_dev *pdev, struct scatterlist *sg,
int nents, int direction);
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How different architectures support PCI DMA

As we stated at the beginning of this section, DMA is a very hardware-specific
operation. The PCI DMA interface we have just described attempts to abstract out
as many hardware dependencies as possible. There are still some things that show
thr ough, however.

M68K
S/390
Super-H

These architectur es do not support the PCI bus as of 2.4.0.

IA-32 (x86)
MIPS
PowerPC
ARM

These platforms support the PCI DMA interface, but it is mostly a false front.
Ther e ar e no mapping registers in the bus interface, so scatterlists cannot be
combined and virtual addresses cannot be used. Ther e is no bounce buffer
support, so mapping of high-memory addresses cannot be done. The mapping
functions on the ARM architectur e can sleep, which is not the case for the
other platforms.

IA-64
The Itanium architectur e also lacks mapping registers. This 64-bit architectur e
can easily generate addresses that PCI peripherals cannot use, though. The
PCI interface on this platform thus implements bounce buffers, allowing any
addr ess to be (seemingly) used for DMA operations.

Alpha
MIPS64
SPARC

These architectur es support an I/O memory management unit. As of 2.4.0, the
MIPS64 port does not actually make use of this capability, so its PCI DMA
implementation looks like that of the IA-32. The Alpha and SPARC ports,
though, can do full-buffer mapping with proper scatter-gather support.

The differ ences listed will not be problems for most driver writers, as long as the
inter face guidelines are followed.

A simple PCI DMA example

The actual form of DMA operations on the PCI bus is very dependent on the
device being driven. Thus, this example does not apply to any real device; instead,
it is part of a hypothetical driver called dad (DMA Acquisition Device). A driver for
this device might define a transfer function like this:
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int dad_transfer(struct dad_dev *dev, int write, void *buffer,
size_t count)

{
dma_addr_t bus_addr;
unsigned long flags;

/* Map the buffer for DMA */
dev->dma_dir = (write ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
dev->dma_size = count;
bus_addr = pci_map_single(dev->pci_dev, buffer, count,

dev->dma_dir);
dev->dma_addr = bus_addr;

/* Set up the device */
writeb(dev->registers.command, DAD_CMD_DISABLEDMA);
writeb(dev->registers.command, write ? DAD_CMD_WR : DAD_CMD_RD);
writel(dev->registers.addr, cpu_to_le32(bus_addr));
writel(dev->registers.len, cpu_to_le32(count));

/* Start the operation */
writeb(dev->registers.command, DAD_CMD_ENABLEDMA);
return 0;

}

This function maps the buffer to be transferred and starts the device operation.
The other half of the job must be done in the interrupt service routine, which
would look something like this:

void dad_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

struct dad_dev *dev = (struct dad_dev *) dev_id;

/* Make sure it’s really our device interrupting */

/* Unmap the DMA buffer */
pci_unmap_single(dev->pci_dev, dev->dma_addr, dev->dma_size,

dev->dma_dir);

/* Only now is it safe to access the buffer, copy to user, etc. */
...

}

Obviously a great deal of detail has been left out of this example, including what-
ever steps may be requir ed to prevent attempts to start multiple simultaneous
DMA operations.

A quick look at SBus

SPARC-based systems have traditionally included a Sun-designed bus called the
SBus. This bus is beyond the scope of this chapter, but a quick mention is worth-
while. There is a set of functions (declared in <asm/sbus.h>) for perfor ming
DMA mappings on the SBus; they have names like sbus_alloc_consistent and
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sbus_map_sg. In other words, the SBus DMA API looks almost exactly like the PCI
inter face. A detailed look at the function definitions will be requir ed befor e work-
ing with DMA on the SBus, but the concepts will match those discussed earlier for
the PCI bus.

DMA for ISA Devices
The ISA bus allows for two kinds of DMA transfers: native DMA and ISA bus mas-
ter DMA. Native DMA uses standard DMA-controller circuitry on the motherboard
to drive the signal lines on the ISA bus. ISA bus master DMA, on the other hand, is
handled entirely by the peripheral device. The latter type of DMA is rarely used
and doesn’t requir e discussion here because it is similar to DMA for PCI devices, at
least from the driver’s point of view. An example of an ISA bus master is the 1542
SCSI controller, whose driver is drivers/scsi/aha1542.c in the kernel sources.

As far as native DMA is concerned, there are thr ee entities involved in a DMA data
transfer on the ISA bus:

The 8237 DMA controller (DMAC)
The controller holds information about the DMA transfer, such as the direc-
tion, the memory address, and the size of the transfer. It also contains a
counter that tracks the status of ongoing transfers. When the controller
receives a DMA request signal, it gains control of the bus and drives the signal
lines so that the device can read or write its data.

The peripheral device
The device must activate the DMA request signal when it’s ready to transfer
data. The actual transfer is managed by the DMAC; the hardware device
sequentially reads or writes data onto the bus when the controller strobes the
device. The device usually raises an interrupt when the transfer is over.

The device driver
The driver has little to do: it provides the DMA controller with the direction,
bus address, and size of the transfer. It also talks to its peripheral to prepar e it
for transferring the data and responds to the interrupt when the DMA is over.

The original DMA controller used in the PC could manage four “channels,” each
associated with one set of DMA registers. Four devices could store their DMA
infor mation in the controller at the same time. Newer PCs contain the equivalent
of two DMAC devices:* the second controller (master) is connected to the system
pr ocessor, and the first (slave) is connected to channel 0 of the second controller.†

* These circuits are now part of the motherboard’s chipset, but a few years ago they were
two separate 8237 chips.

† The original PCs had only one controller; the second was added in 286-based platforms.
However, the second controller is connected as the master because it handles 16-bit
transfers; the first transfers only 8 bits at a time and is there for backward compatibility.
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The channels are number ed fr om 0 to 7; channel 4 is not available to ISA periph-
erals because it is used internally to cascade the slave controller onto the master.
The available channels are thus 0 to 3 on the slave (the 8-bit channels) and 5 to 7
on the master (the 16-bit channels). The size of any DMA transfer, as stor ed in the
contr oller, is a 16-bit number repr esenting the number of bus cycles. The maxi-
mum transfer size is therefor e 64 KB for the slave controller and 128 KB for the
master.

Because the DMA controller is a system-wide resource, the kernel helps deal with
it. It uses a DMA registry to provide a request-and-fr ee mechanism for the DMA
channels and a set of functions to configure channel information in the DMA con-
tr oller.

Reg istering DMA usage

You should be used to kernel registries — we’ve alr eady seen them for I/O ports
and interrupt lines. The DMA channel registry is similar to the others. After
<asm/dma.h> has been included, the following functions can be used to obtain
and release ownership of a DMA channel:

int request_dma(unsigned int channel, const char *name);
void free_dma(unsigned int channel);

The channel argument is a number between 0 and 7 or, mor e pr ecisely, a posi-
tive number less than MAX_DMA_CHANNELS. On the PC, MAX_DMA_CHANNELS is
defined as 8, to match the hardware. The name argument is a string identifying the
device. The specified name appears in the file /pr oc/dma, which can be read by
user programs.

The retur n value from request_dma is 0 for success and -EINVAL or -EBUSY if
ther e was an error. The former means that the requested channel is out of range,
and the latter means that another device is holding the channel.

We recommend that you take the same care with DMA channels as with I/O ports
and interrupt lines; requesting the channel at open time is much better than
requesting it from the module initialization function. Delaying the request allows
some sharing between drivers; for example, your sound card and your analog I/O
inter face can share the DMA channel as long as they are not used at the same
time.

We also suggest that you request the DMA channel after you’ve requested the
interrupt line and that you release it befor e the interrupt. This is the conventional
order for requesting the two resources; following the convention avoids possible
deadlocks. Note that every device using DMA needs an IRQ line as well; other-
wise, it couldn’t signal the completion of data transfer.
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In a typical case, the code for open looks like the following, which refers to our
hypothetical dad module. The dad device as shown uses a fast interrupt handler
without support for shared IRQ lines.

int dad_open (struct inode *inode, struct file *filp)
{

struct dad_device *my_device;

/* ... */
if ( (error = request_irq(my_device.irq, dad_interrupt,

SA_INTERRUPT, "dad", NULL)) )
return error; /* or implement blocking open */

if ( (error = request_dma(my_device.dma, "dad")) ) {
free_irq(my_device.irq, NULL);
return error; /* or implement blocking open */

}
/* ... */
return 0;

}

The close implementation that matches the open just shown looks like this:

void dad_close (struct inode *inode, struct file *filp)
{

struct dad_device *my_device;

/* ... */
free_dma(my_device.dma);
free_irq(my_device.irq, NULL);
/* ... */

}

As far as /pr oc/dma is concerned, here’s how the file looks on a system with the
sound card installed:

merlino% cat /proc/dma
1: Sound Blaster8
4: cascade

It’s interesting to note that the default sound driver gets the DMA channel at sys-
tem boot and never releases it. The cascade entry shown is a placeholder, indi-
cating that channel 4 is not available to drivers, as explained earlier.

Talking to the DMA controller

After registration, the main part of the driver’s job consists of configuring the DMA
contr oller for proper operation. This task is not trivial, but fortunately the kernel
exports all the functions needed by the typical driver.
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The driver needs to configure the DMA controller either when read or write is
called, or when preparing for asynchronous transfers. This latter task is perfor med
either at open time or in response to an ioctl command, depending on the driver
and the policy it implements. The code shown here is the code that is typically
called by the read or write device methods.

This subsection provides a quick overview of the internals of the DMA controller
so you will understand the code introduced here. If you want to learn mor e, we’d
urge you to read <asm/dma.h> and some hardware manuals describing the PC
architectur e. In particular, we don’t deal with the issue of 8-bit versus 16-bit data
transfers. If you are writing device drivers for ISA device boards, you should find
the relevant information in the hardware manuals for the devices.

The DMA controller is a shared resource, and confusion could arise if more than
one processor attempts to program it simultaneously. For that reason, the con-
tr oller is protected by a spinlock, called dma_spin_lock. Drivers should not
manipulate the lock directly, however; two functions have been provided to do
that for you:

unsigned long claim_dma_lock();
Acquir es the DMA spinlock. This function also blocks interrupts on the local
pr ocessor; thus the retur n value is the usual ‘‘flags’’ value, which must be used
when reenabling interrupts.

void release_dma_lock(unsigned long flags);
Retur ns the DMA spinlock and restor es the previous interrupt status.

The spinlock should be held when using the functions described next. It should
not be held during the actual I/O, however. A driver should never sleep when
holding a spinlock.

The information that must be loaded into the controller is made up of three items:
the RAM address, the number of atomic items that must be transferred (in bytes or
words), and the direction of the transfer. To this end, the following functions are
exported by <asm/dma.h>:

void set_dma_mode(unsigned int channel, char mode);
Indicates whether the channel must read from the device (DMA_MODE_READ)
or write to it (DMA_MODE_WRITE). A third mode exists, DMA_MODE_CAS-
CADE, which is used to release control of the bus. Cascading is the way the
first controller is connected to the top of the second, but it can also be used
by true ISA bus-master devices. We won’t discuss bus mastering here.

void set_dma_addr(unsigned int channel, unsigned int addr);
Assigns the address of the DMA buffer. The function stores the 24 least signifi-
cant bits of addr in the controller. The addr argument must be a bus addr ess
(see “Bus Addresses” earlier in this chapter).
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void set_dma_count(unsigned int channel, unsigned int
count);

Assigns the number of bytes to transfer. The count argument repr esents bytes
for 16-bit channels as well; in this case, the number must be even.

In addition to these functions, there are a number of housekeeping facilities that
must be used when dealing with DMA devices:

void disable_dma(unsigned int channel);
A DMA channel can be disabled within the controller. The channel should be
disabled before the controller is configured, to prevent improper operation
(the controller is programmed via eight-bit data transfers, and thus none of the
pr evious functions is executed atomically).

void enable_dma(unsigned int channel);
This function tells the controller that the DMA channel contains valid data.

int get_dma_residue(unsigned int channel);
The driver sometimes needs to know if a DMA transfer has been completed.
This function retur ns the number of bytes that are still to be transferred. The
retur n value is 0 after a successful transfer and is unpredictable (but not 0)
while the controller is working. The unpredictability reflects the fact that the
residue is a 16-bit value, which is obtained by two 8-bit input operations.

void clear_dma_ff(unsigned int channel)
This function clears the DMA flip-flop. The flip-flop is used to control access
to 16-bit registers. The registers are accessed by two consecutive 8-bit opera-
tions, and the flip-flop is used to select the least significant byte (when it is
clear) or the most significant byte (when it is set). The flip-flop automatically
toggles when 8 bits have been transferred; the programmer must clear the flip-
flop (to set it to a known state) before accessing the DMA registers.

Using these functions, a driver can implement a function like the following to pre-
par e for a DMA transfer:

int dad_dma_prepare(int channel, int mode, unsigned int buf,
unsigned int count)

{
unsigned long flags;

flags = claim_dma_lock();
disable_dma(channel);
clear_dma_ff(channel);
set_dma_mode(channel, mode);
set_dma_addr(channel, virt_to_bus(buf));
set_dma_count(channel, count);
enable_dma(channel);
release_dma_lock(flags);
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return 0;
}

A function like the next one, then, is used to check for successful completion of
DMA:

int dad_dma_isdone(int channel)
{

int residue;
unsigned long flags = claim_dma_lock ();
residue = get_dma_residue(channel);
release_dma_lock(flags);
return (residue == 0);

}

The only thing that remains to be done is to configure the device board. This
device-specific task usually consists of reading or writing a few I/O ports. Devices
dif fer in significant ways. For example, some devices expect the programmer to
tell the hardware how big the DMA buffer is, and sometimes the driver has to read
a value that is hardwired into the device. For configuring the board, the hardware
manual is your only friend.

Backward Compatibility
As with other parts of the kernel, both memory mapping and DMA have seen a
number of changes over the years. This section describes the things a driver writer
must take into account in order to write portable code.

Changes to Memory Management
The 2.3 development series saw major changes in the way memory management
worked. The 2.2 kernel was quite limited in the amount of memory it could use,
especially on 32-bit processors. With 2.4, those limits have been lifted; Linux is
now able to manage all the memory that the processor is able to address. Some
things have had to change to make all this possible; overall, however, the scale of
the changes at the API level is surprisingly small.

As we have seen, the 2.4 kernel makes extensive use of pointers to struct
page to refer to specific pages in memory. This structure has been present in
Linux for a long time, but it was not previously used to refer to the pages them-
selves; instead, the kernel used logical addresses.

Thus, for example, pte_ page retur ned an unsigned long value instead of
struct page *. The virt_to_ page macr o did not exist at all; if you needed to
find a struct page entry you had to go directly to the memory map to get it.
The macro MAP_NR would turn a logical address into an index in mem_map; thus,
the current virt_to_ page macr o could be defined (and, in sysdep.h in the sample
code, is defined) as follows:
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#ifdef MAP_NR
#define virt_to_page(page) (mem_map + MAP_NR(page))
#endif

The MAP_NR macr o went away when virt_to_ page was introduced. The get_ page
macr o also didn’t exist prior to 2.4, so sysdep.h defines it as follows:

#ifndef get_page
# define get_page(p) atomic_inc(&(p)->count)
#endif

struct page has also changed with time; in particular, the virtual field is
pr esent in Linux 2.4 only.

The page_table_lock was introduced in 2.3.10. Earlier code would obtain the
‘‘big kernel lock’’ (by calling lock_ker nel and unlock_ker nel) befor e traversing
page tables.

The vm_area_struct structur e saw a number of changes in the 2.3 develop-
ment series, and more in 2.1. These included the following:

• The vm_pgoff field was called vm_offset in 2.2 and before. It was an off-
set in bytes, not pages.

• The vm_private_data field did not exist in Linux 2.2, so drivers had no
way of storing their own information in the VMA. A number of them did so
anyway, using the vm_pte field, but it would be safer to obtain the minor
device number from vm_file and use it to retrieve the needed information.

• The 2.4 kernel initializes the vm_file pointer before calling the mmap
method. In 2.2, drivers had to assign that value themselves, using the file
structur e passed in as an argument.

• The vm_file pointer did not exist at all in 2.0 kernels; instead, there was a
vm_inode pointer pointing to the inode structur e. This field needed to be
assigned by the driver; it was also necessary to increment inode->i_count
in the mmap method.

• The VM_RESERVED flag was added in kernel 2.4.0-test10.

Ther e have also been changes to the the various vm_ops methods stored in the
VMA:

• 2.2 and earlier kernels had a method called advise, which was never actually
used by the kernel. There was also a swapin method, which was used to bring
in memory from backing store; it was not generally of interest to driver writ-
ers.

• The nopage and wppage methods retur ned unsigned long (i.e., a logical
addr ess) in 2.2, rather than struct page *.

Backward Compatibility
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• The NOPAGE_SIGBUS and NOPAGE_OOM retur n codes for nopage did not
exist. nopage simply retur ned 0 to indicate a problem and send a bus signal
to the affected process.

Because nopage used to retur n unsigned long, its job was to retur n the logical
addr ess of the page of interest, rather than its mem_map entry.

Ther e was, of course, no high-memory support in older kernels. All memory had
logical addresses, and the kmap and kunmap functions did not exist.

In the 2.0 kernel, the init_mm structur e was not exported to modules. Thus, a
module that wished to access init_mm had to dig through the task table to find it
(as part of the init pr ocess). When running on a 2.0 kernel, scullp finds init_mm
with this bit of code:

static struct mm_struct *init_mm_ptr;
#define init_mm (*init_mm_ptr) /* to avoid ifdefs later */

static void retrieve_init_mm_ptr(void)
{

struct task_struct *p;

for (p = current ; (p = p->next_task) != current ; )
if (p->pid == 0)

break;

init_mm_ptr = p->mm;
}

The 2.0 kernel also lacked the distinction between logical and physical addresses,
so the _ _va and _ _pa macr os did not exist. There was no need for them at that
time.

Another thing the 2.0 kernel did not have was maintenance of the module’s usage
count in the presence of memory-mapped areas. Drivers that implement mmap
under 2.0 need to provide open and close VMA operations to adjust the usage
count themselves. The sample source modules that implement mmap pr ovide
these operations.

Finally, the 2.0 version of the driver mmap method, like most others, had a
struct inode argument; the method’s prototype was

int (*mmap)(struct inode *inode, struct file *filp,
struct vm_area_struct *vma);

Changes to DMA
The PCI DMA interface as described earlier did not exist prior to kernel 2.3.41.
Befor e then, DMA was handled in a more dir ect—and system-dependent—way.
Buf fers wer e ‘‘mapped’’ by calling virt_to_bus, and there was no general interface
for handling bus-mapping registers.
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For those who need to write portable PCI drivers, sysdep.h in the sample code
includes a simple implementation of the 2.4 DMA interface that may be used on
older kernels.

The ISA interface, on the other hand, is almost unchanged since Linux 2.0. ISA is
an old architectur e, after all, and there have not been a whole lot of changes to
keep up with. The only addition was the DMA spinlock in 2.2; prior to that kernel,
ther e was no need to protect against conflicting access to the DMA controller. Ver-
sions of these functions have been defined in sysdep.h; they disable and restor e
interrupts, but perfor m no other function.

Quick Reference
This chapter introduced the following symbols related to memory handling. The
list doesn’t include the symbols introduced in the first section, as that section is a
huge list in itself and those symbols are rar ely useful to device drivers.

#include <linux/mm.h>
All the functions and structures related to memory management are proto-
typed and defined in this header.

int remap_page_range(unsigned long virt_add, unsigned long
phys_add, unsigned long size, pgprot_t prot);

This function sits at the heart of mmap. It maps size bytes of physical
addr esses, starting at phys_addr, to the virtual address virt_add. The pro-
tection bits associated with the virtual space are specified in prot.

struct page *virt_to_page(void *kaddr);
void *page_address(struct page *page);

These macros convert between kernel logical addresses and their associated
memory map entries. page_addr ess only works for low-memory pages, or
high-memory pages that have been explicitly mapped.

void *__va(unsigned long physaddr);
unsigned long __pa(void *kaddr);

These macros convert between kernel logical addresses and physical
addr esses.

unsigned long kmap(struct page *page);
void kunmap(struct page *page);

kmap retur ns a ker nel virtual address that is mapped to the given page, creat-
ing the mapping if need be. kunmap deletes the mapping for the given page.

Quick Reference
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#include <linux/iobuf.h>
void kiobuf_init(struct kiobuf *iobuf);
int alloc_kiovec(int number, struct kiobuf **iobuf);
void free_kiovec(int number, struct kiobuf **iobuf);

These functions handle the allocation, initialization, and freeing of kernel I/O
buf fers. kiobuf_init initializes a single kiobuf, but is rarely used; alloc_kiovec,
which allocates and initializes a vector of kiobufs, is usually used instead. A
vector of kiobufs is freed with fr ee_kiovec.

int lock_kiovec(int nr, struct kiobuf *iovec[], int wait);
int unlock_kiovec(int nr, struct kiobuf *iovec[]);

These functions lock a kiovec in memory, and release it. They are unnecessary
when using kiobufs for I/O to user-space memory.

int map_user_kiobuf(int rw, struct kiobuf *iobuf, unsigned
long address, size_t len);

void unmap_kiobuf(struct kiobuf *iobuf);
map_user_kiobuf maps a buffer in user space into the given kernel I/O buffer;
unmap_kiobuf undoes that mapping.

#include <asm/io.h>
unsigned long virt_to_bus(volatile void * address);
void * bus_to_virt(unsigned long address);

These functions convert between kernel virtual and bus addresses. Bus
addr esses must be used to talk to peripheral devices.

#include <linux/pci.h>
The header file requir ed to define the following functions.

int pci_dma_supported(struct pci_dev *pdev, dma_addr_t
mask);

For peripherals that cannot address the full 32-bit range, this function deter-
mines whether DMA can be supported at all on the host system.

void *pci_alloc_consistent(struct pci_dev *pdev, size_t
size, dma_addr_t *bus_addr)

void pci_free_consistent(struct pci_dev *pdev, size_t size,
void *cpuaddr, dma_handle_t bus_addr);

These functions allocate and free consistent DMA mappings, for a buffer that
will last the lifetime of the driver.

PCI_DMA_TODEVICE
PCI_DMA_FROMDEVICE
PCI_DMA_BIDIRECTIONAL
PCI_DMA_NONE

These symbols are used to tell the streaming mapping functions the direction
in which data will be moving to or from the buffer.
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dma_addr_t pci_map_single(struct pci_dev *pdev, void
*buffer, size_t size, int direction);

void pci_unmap_single(struct pci_dev *pdev, dma_addr_t
bus_addr, size_t size, int direction);

Cr eate and destroy a single-use, streaming DMA mapping.

void pci_sync_single(struct pci_dev *pdev, dma_handle_t
bus_addr, size_t size, int direction)

Synchr onizes a buf fer that has a streaming mapping. This function must be
used if the processor must access a buffer while the streaming mapping is in
place (i.e., while the device owns the buffer).

struct scatterlist { /* . . .  */ };
dma_addr_t sg_dma_address(struct scatterlist *sg);
unsigned int sg_dma_len(struct scatterlist *sg);

The scatterlist structur e describes an I/O operation that involves more
than one buffer. The macros sg_dma_addr ess and sg_dma_len may be used to
extract bus addresses and buffer lengths to pass to the device when imple-
menting scatter-gather operations.

pci_map_sg(struct pci_dev *pdev, struct scatterlist *list,
int nents, int direction);

pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *list,
int nents, int direction);

pci_dma_sync_sg(struct pci_dev *pdev, struct scatterlist
*sg, int nents, int direction)

pci_map_sg maps a scatter-gather operation, and pci_unmap_sg undoes that
mapping. If the buffers must be accessed while the mapping is active,
pci_dma_sync_sg may be used to synchronize things.

/proc/dma
This file contains a textual snapshot of the allocated channels in the DMA con-
tr ollers. PCI-based DMA is not shown because each board works indepen-
dently, without the need to allocate a channel in the DMA controller.

#include <asm/dma.h>
This header defines or prototypes all the functions and macros related to
DMA. It must be included to use any of the following symbols.

int request_dma(unsigned int channel, const char *name);
void free_dma(unsigned int channel);

These functions access the DMA registry. Registration must be perfor med
befor e using ISA DMA channels.

Quick Reference
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unsigned long claim_dma_lock();
void release_dma_lock(unsigned long flags);

These functions acquire and release the DMA spinlock, which must be held
prior to calling the other ISA DMA functions described later in this list. They
also disable and reenable interrupts on the local processor.

void set_dma_mode(unsigned int channel, char mode);
void set_dma_addr(unsigned int channel, unsigned int addr);
void set_dma_count(unsigned int channel, unsigned int

count);
These functions are used to program DMA information in the DMA controller.
addr is a bus address.

void disable_dma(unsigned int channel);
void enable_dma(unsigned int channel);

A DMA channel must be disabled during configuration. These functions
change the status of the DMA channel.

int get_dma_residue(unsigned int channel);
If the driver needs to know how a DMA transfer is proceeding, it can call this
function, which retur ns the number of data transfers that are yet to be com-
pleted. After successful completion of DMA, the function retur ns 0; the value
is unpredictable while data is being transferred.

void clear_dma_ff(unsigned int channel)
The DMA flip-flop is used by the controller to transfer 16-bit values by means
of two 8-bit operations. It must be cleared before sending any data to the con-
tr oller.
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CHAPTER FOURTEEN

NETWORK DRIVERS

We are now through discussing char and block drivers and are ready to move on
to the fascinating world of networking. Network interfaces are the third standard
class of Linux devices, and this chapter describes how they interact with the rest of
the kernel.

The role of a network interface within the system is similar to that of a mounted
block device. A block device registers its features in the blk_dev array and other
ker nel structur es, and it then “transmits” and “receives” blocks on request, by
means of its request function. Similarly, a network interface must register itself in
specific data structures in order to be invoked when packets are exchanged with
the outside world.

Ther e ar e a few important differ ences between mounted disks and packet-delivery
inter faces. To begin with, a disk exists as a special file in the /dev dir ectory,
wher eas a network interface has no such entry point. The normal file operations
(r ead, write, and so on) do not make sense when applied to network interfaces, so
it is not possible to apply the Unix “everything is a file” approach to them. Thus,
network interfaces exist in their own namespace and export a differ ent set of
operations.

Although you may object that applications use the read and write system calls
when using sockets, those calls act on a software object that is distinct from the
inter face. Several hundred sockets can be multiplexed on the same physical inter-
face.

But the most important differ ence between the two is that block drivers operate
only in response to requests from the kernel, whereas network drivers receive
packets asynchronously from the outside. Thus, while a block driver is asked to
send a buffer toward the kernel, the network device asks to push incoming
packets toward the kernel. The kernel interface for network drivers is designed for
this differ ent mode of operation.
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Network drivers also have to be prepar ed to support a number of administrative
tasks, such as setting addresses, modifying transmission parameters, and maintain-
ing traffic and error statistics. The API for network drivers reflects this need, and
thus looks somewhat differ ent fr om the interfaces we have seen so far.

The network subsystem of the Linux kernel is designed to be completely protocol
independent. This applies to both networking protocols (IP versus IPX or other
pr otocols) and hardware protocols (Ethernet versus token ring, etc.). Interaction
between a network driver and the kernel proper deals with one network packet at
a time; this allows protocol issues to be hidden neatly from the driver and the
physical transmission to be hidden from the protocol.

This chapter describes how the network interfaces fit in with the rest of the Linux
ker nel and shows a memory-based modularized network interface, which is called
(you guessed it) snull. To simplify the discussion, the interface uses the Ethernet
hardwar e pr otocol and transmits IP packets. The knowledge you acquire from
examining snull can be readily applied to protocols other than IP, and writing a
non-Ether net driver is only differ ent in tiny details related to the actual network
pr otocol.

This chapter doesn’t talk about IP numbering schemes, network protocols, or
other general networking concepts. Such topics are not (usually) of concern to the
driver writer, and it’s impossible to offer a satisfactory overview of networking
technology in less than a few hundred pages. The interested reader is urged to
refer to other books describing networking issues.

The networking subsystem has seen many changes over the years as the kernel
developers have striven to provide the best perfor mance possible. The bulk of this
chapter describes network drivers as they are implemented in the 2.4 kernel. Once
again, the sample code works on the 2.0 and 2.2 kernels as well, and we cover the
dif ferences between those kernels and 2.4 at the end of the chapter.

One note on terminology is called for before getting into network devices. The
networking world uses the term octet to refer to a group of eight bits, which is
generally the smallest unit understood by networking devices and protocols. The
ter m byte is almost never encountered in this context. In keeping with standard
usage, we will use octet when talking about networking devices.

How snull Is Designed
This section discusses the design concepts that led to the snull network interface.
Although this information might appear to be of marginal use, failing to under-
stand this driver might lead to problems while playing with the sample code.

The first, and most important, design decision was that the sample interfaces
should remain independent of real hardware, just like most of the sample code
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used in this book. This constraint led to something that resembles the loopback
inter face. snull is not a loopback interface, however; it simulates conversations
with real remote hosts in order to better demonstrate the task of writing a network
driver. The Linux loopback driver is actually quite simple; it can be found in
drivers/net/loopback.c.

Another feature of snull is that it supports only IP traffic. This is a consequence of
the internal workings of the interface —snull has to look inside and interpret the
packets to properly emulate a pair of hardware inter faces. Real interfaces don’t
depend on the protocol being transmitted, and this limitation of snull doesn’t
af fect the fragments of code that are shown in this chapter.

Assigning IP Numbers
The snull module creates two interfaces. These interfaces are dif ferent from a sim-
ple loopback in that whatever you transmit through one of the interfaces loops
back to the other one, not to itself. It looks like you have two external links, but
actually your computer is replying to itself.

Unfortunately, this effect can’t be accomplished through IP-number assignment
alone, because the kernel wouldn’t send out a packet through interface A that was
dir ected to its own interface B. Instead, it would use the loopback channel without
passing through snull. To be able to establish a communication through the snull
inter faces, the source and destination addresses need to be modified during data
transmission. In other words, packets sent through one of the interfaces should be
received by the other, but the receiver of the outgoing packet shouldn’t be recog-
nized as the local host. The same applies to the source address of received pack-
ets.

To achieve this kind of “hidden loopback,” the snull inter face toggles the least sig-
nificant bit of the third octet of both the source and destination addresses; that is,
it changes both the network number and the host number of class C IP numbers.
The net effect is that packets sent to network A (connected to sn0, the first inter-
face) appear on the sn1 inter face as packets belonging to network B.

To avoid dealing with too many numbers, let’s assign symbolic names to the IP
numbers involved:

• snullnet0 is the class C network that is connected to the sn0 inter face.
Similarly, snullnet1 is the network connected to sn1. The addresses of
these networks should differ only in the least significant bit of the third octet.

• local0 is the IP address assigned to the sn0 inter face; it belongs to snull-
net0. The address associated with sn1 is local1. local0 and local1
must differ in the least significant bit of their third octet and in the fourth
octet.

How snull Is Designed
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• remote0 is a host in snullnet0, and its fourth octet is the same as that of
local1. Any packet sent to remote0 will reach local1 after its class C
addr ess has been modified by the interface code. The host remote1 belongs
to snullnet1, and its fourth octet is the same as that of local0.

The operation of the snull inter faces is depicted in Figure 14-1, in which the host-
name associated with each interface is printed near the interface name.

localnet
lo
localhost

eth0
morgana

sn0
local0

sn1
local1

snullnet0
remote0

snullnet1

remote1

Figur e 14-1. How a host sees its interfaces

Her e ar e possible values for the network numbers. Once you put these lines in
/etc/networks, you can call your networks by name. The values shown were cho-
sen from the range of numbers reserved for private use.

snullnet0 192.168.0.0
snullnet1 192.168.1.0

The following are possible host numbers to put into /etc/hosts:

192.168.0.1 local0
192.168.0.2 remote0
192.168.1.2 local1
192.168.1.1 remote1

The important feature of these numbers is that the host portion of local0 is the
same as that of remote1, and the host portion of local1 is the same as that of
remote0. You can use completely differ ent numbers as long as this relationship
applies.
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Be careful, however, if your computer is already connected to a network. The
numbers you choose might be real Internet or intranet numbers, and assigning
them to your interfaces will prevent communication with the real hosts. For exam-
ple, although the numbers just shown are not routable Internet numbers, they
could already be used by your private network if it lives behind a firewall.

Whatever numbers you choose, you can correctly set up the interfaces for opera-
tion by issuing the following commands:

ifconfig sn0 local0
ifconfig sn1 local1
case "‘uname -r‘" in 2.0.*)

route add -net snullnet0 dev sn0
route add -net snullnet1 dev sn1

esac

Ther e is no need to invoke route with 2.2 and later kernels because the route is
automatically added. Also, you may need to add the netmask 255.255.255.0
parameter if the address range chosen is not a class C range.

At this point, the “remote” end of the interface can be reached. The following
scr eendump shows how a host reaches remote0 and remote1 thr ough the snull
inter face.

morgana% ping -c 2 remote0
64 bytes from 192.168.0.99: icmp_seq=0 ttl=64 time=1.6 ms
64 bytes from 192.168.0.99: icmp_seq=1 ttl=64 time=0.9 ms
2 packets transmitted, 2 packets received, 0% packet loss

morgana% ping -c 2 remote1
64 bytes from 192.168.1.88: icmp_seq=0 ttl=64 time=1.8 ms
64 bytes from 192.168.1.88: icmp_seq=1 ttl=64 time=0.9 ms
2 packets transmitted, 2 packets received, 0% packet loss

Note that you won’t be able to reach any other “host” belonging to the two net-
works because the packets are discarded by your computer after the address has
been modified and the packet has been received. For example, a packet aimed at
192.168.0.32 will leave through sn0 and reappear at sn1 with a destination
addr ess of 192.168.1.32, which is not a local address for the host computer.

The Physical Transpor t of Packets
As far as data transport is concerned, the snull inter faces belong to the Ethernet
class.

snull emulates Ethernet because the vast majority of existing networks—at least
the segments that a workstation connects to—are based on Ethernet technology,
be it 10baseT, 100baseT, or gigabit. Additionally, the kernel offers some

How snull Is Designed
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generalized support for Ethernet devices, and there’s no reason not to use it. The
advantage of being an Ethernet device is so strong that even the plip inter face (the
inter face that uses the printer ports) declares itself as an Ethernet device.

The last advantage of using the Ethernet setup for snull is that you can run tcp-
dump on the interface to see the packets go by. Watching the interfaces with tcp-
dump can be a useful way to see how the two interfaces work. (Note that on 2.0
ker nels, tcpdump will not work properly unless snull’s interfaces show up as
ethx. Load the driver with the eth=1 option to use the regular Ethernet names,
rather than the default snx names.)

As was mentioned previously, snull only works with IP packets. This limitation is
a result of the fact that snull snoops in the packets and even modifies them, in
order for the code to work. The code modifies the source, destination, and check-
sum in the IP header of each packet without checking whether it actually conveys
IP information. This quick-and-dirty data modification destroys non-IP packets. If
you want to deliver other protocols through snull, you must modify the module’s
source code.

Connecting to the Ker nel
We’ll start looking at the structure of network drivers by dissecting the snull
source. Keeping the source code for several drivers handy might help you follow
the discussion and to see how real-world Linux network drivers operate. As a
place to start, we suggest loopback.c, plip.c, and 3c509.c, in order of increasing
complexity. Keeping skeleton.c handy might help as well, although this sample
driver doesn’t actually run. All these files live in drivers/net, within the kernel
source tree.

Module Loading
When a driver module is loaded into a running kernel, it requests resources and
of fers facilities; there’s nothing new in that. And there’s also nothing new in the
way resources are requested. The driver should probe for its device and its hard-
war e location (I/O ports and IRQ line)—but without registering them—as
described in “Installing an Interrupt Handler” in Chapter 9. The way a network
driver is register ed by its module initialization function is differ ent fr om char and
block drivers. Since there is no equivalent of major and minor numbers for net-
work interfaces, a network driver does not request such a number. Instead, the
driver inserts a data structure for each newly detected interface into a global list of
network devices.

Each interface is described by a struct net_device item. The structures for
sn0 and sn1, the two snull inter faces, ar e declar ed like this:
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struct net_device snull_devs[2] = {
{ init: snull_init, }, /* init, nothing more */
{ init: snull_init, }

};

The initialization shown seems quite simple—it sets only one field. In fact, the
net_device structur e is huge, and we will be filling in other pieces of it later on.
But it is not helpful to cover the entire structur e at this point; instead, we will
explain each field as it is used. For the interested reader, the definition of the
structur e may be found in <linux/netdevice.h>.

The first struct net_device field we will look at is name, which holds the
inter face name (the string identifying the interface). The driver can hardwire a
name for the interface or it can allow dynamic assignment, which works like this:
if the name contains a %d for mat string, the first available name found by replac-
ing that string with a small integer is used. Thus, eth%d is turned into the first
available ethn name; the first Ethernet interface is called eth0, and the others
follow in numeric order. The snull inter faces ar e called sn0 and sn1 by default.
However, if eth=1 is specified at load time (causing the integer variable
snull_eth to be set to 1), snull_init uses dynamic assignment, as follows:

if (!snull_eth) { /* call them "sn0" and "sn1" */
strcpy(snull_devs[0].name, "sn0");
strcpy(snull_devs[1].name, "sn1");

} else { /* use automatic assignment */
strcpy(snull_devs[0].name, "eth%d");
strcpy(snull_devs[1].name, "eth%d");

}

The other field we initialized is init, a function pointer. Whenever you register a
device, the kernel asks the driver to initialize itself. Initialization means probing for
the physical interface and filling the net_device structur e with the proper val-
ues, as described in the following section. If initialization fails, the structure is not
linked to the global list of network devices. This peculiar way of setting things up
is most useful during system boot; every driver tries to register its own devices, but
only devices that exist are linked to the list.

Because the real initialization is perfor med elsewher e, the initialization function
has little to do, and a single statement does it:

for (i=0; i<2; i++)
if ( (result = register_netdev(snull_devs + i)) )

printk("snull: error %i registering device \"%s\"\n",
result, snull_devs[i].name);

else device_present++;

Connecting to the Ker nel
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Initializing Each Device
Pr obing for the device should be perfor med in the init function for the interface
(which is often called the “probe” function). The single argument received by init
is a pointer to the device being initialized; its retur n value is either 0 or a negative
err or code, usually -ENODEV.

No real probing is perfor med for the snull inter face, because it is not bound to
any hardware. When you write a real driver for a real interface, the usual rules for
pr obing devices apply, depending on the peripheral bus you are using. Also, you
should avoid registering I/O ports and interrupt lines at this point. Hardware regis-
tration should be delayed until device open time; this is particularly important if
interrupt lines are shar ed with other devices. You don’t want your interface to be
called every time another device triggers an IRQ line just to reply “no, it’s not
mine.”

The main role of the initialization routine is to fill in the dev structur e for this
device. Note that for network devices, this structure is always put together at run-
time. Because of the way the network interface probing works, the dev structur e
cannot be set up at compile time in the same manner as a file_operations or
block_device_operations structur e. So, on exit from dev->init, the dev
structur e should be filled with correct values. Fortunately, the kernel takes care of
some Ethernet-wide defaults through the function ether_setup, which fills several
fields in struct net_device.

The core of snull_init is as follows:

ether_setup(dev); /* assign some of the fields */

dev->open = snull_open;
dev->stop = snull_release;
dev->set_config = snull_config;
dev->hard_start_xmit = snull_tx;
dev->do_ioctl = snull_ioctl;
dev->get_stats = snull_stats;
dev->rebuild_header = snull_rebuild_header;
dev->hard_header = snull_header;
#ifdef HAVE_TX_TIMEOUT
dev->tx_timeout = snull_tx_timeout;
dev->watchdog_timeo = timeout;
#endif
/* keep the default flags, just add NOARP */
dev->flags |= IFF_NOARP;
dev->hard_header_cache = NULL; /* Disable caching */
SET_MODULE_OWNER(dev);

The single unusual feature of the code is setting IFF_NOARP in the flags. This
specifies that the interface cannot use ARP, the Address Resolution Protocol. ARP is
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a low-level Ethernet protocol; its job is to turn IP addr esses into Ethernet Medium
Access Control (MAC) addresses. Since the “remote” systems simulated by snull do
not really exist, there is nobody available to answer ARP requests for them. Rather
than complicate snull with the addition of an ARP implementation, we chose to
mark the interface as being unable to handle that protocol. The assignment to
hard_header_cache is there for a similar reason: it disables the caching of the
(nonexistent) ARP replies on this interface. This topic is discussed in detail later in
this chapter in “MAC Address Resolution.”

The initialization code also sets a couple of fields (tx_timeout and watch-
dog_timeo) that relate to the handling of transmission timeouts. We will cover
this topic thoroughly later in this chapter in “Transmission Timeouts.”

Finally, this code calls SET_MODULE_OWNER, which initializes the owner field of
the net_device structur e with a pointer to the module itself. The kernel uses
this information in exactly the same way it uses the owner field of the
file_operations structur e—to maintain the module’s usage count.

We’ll look now at one more struct net_device field, priv. Its role is similar
to that of the private_data pointer that we used for char drivers. Unlike
fops->private_data, this priv pointer is allocated at initialization time
instead of open time, because the data item pointed to by priv usually includes
the statistical information about interface activity. It’s important that statistical infor-
mation always be available, even when the interface is down, because users may
want to display the statistics at any time by calling ifconfig. The memory wasted
by allocating priv during initialization instead of on open is irrelevant because
most probed interfaces are constantly up and running in the system. The snull
module declares a snull_priv data structure to be used for priv:

struct snull_priv {
struct net_device_stats stats;
int status;
int rx_packetlen;
u8 *rx_packetdata;
int tx_packetlen;
u8 *tx_packetdata;
struct sk_buff *skb;
spinlock_t lock;

};

The structure includes an instance of struct net_device_stats, which is the
standard place to hold interface statistics. The following lines in snull_init allocate
and initialize dev->priv:

dev->priv = kmalloc(sizeof(struct snull_priv), GFP_KERNEL);
if (dev->priv == NULL)

return -ENOMEM;
memset(dev->priv, 0, sizeof(struct snull_priv));
spin_lock_init(& ((struct snull_priv *) dev->priv)->lock);

Connecting to the Ker nel
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Module Unloading
Nothing special happens when the module is unloaded. The module cleanup
function simply unregisters the interfaces from the list after releasing memory asso-
ciated with the private structure:

void snull_cleanup(void)
{

int i;

for (i=0; i<2; i++) {
kfree(snull_devs[i].priv);
unregister_netdev(snull_devs + i);

}
return;

}

Modular ized and Nonmodularized Driver s
Although char and block drivers are the same regardless of whether they’re modu-
lar or linked into the kernel, that’s not the case for network drivers.

When a driver is linked directly into the Linux kernel, it doesn’t declare its own
net_device structur es; the structures declared in drivers/net/Space.c ar e used
instead. Space.c declar es a linked list of all the network devices, both driver-spe-
cific structures like plip1 and general-purpose eth devices. Ethernet drivers
don’t care about their net_device structur es at all, because they use the general-
purpose structures. Such general eth device structures declare ethif_ probe as their
init function. A programmer inserting a new Ethernet interface in the mainstream
ker nel needs only to add a call to the driver’s initialization function to ethif_ probe.
Authors of non-eth drivers, on the other hand, insert their net_device struc-
tur es in Space.c. In both cases only the source file Space.c has to be modified if
the driver must be linked to the kernel proper.

At system boot, the network initialization code loops through all the net_device
structur es and calls their probing (dev->init) functions by passing them a
pointer to the device itself. If the probe function succeeds, the kernel initializes the
next available net_device structur e to use that interface. This way of setting up
drivers permits incremental assignment of devices to the names eth0, eth1, and
so on, without changing the name field of each device.

When a modularized driver is loaded, on the other hand, it declares its own
net_device structur es (as we have seen in this chapter), even if the interface it
contr ols is an Ethernet interface.

The curious reader can learn mor e about interface initialization by looking at
Space.c and net_init.c.
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The net_device Structure in Detail
The net_device structur e is at the very core of the network driver layer and
deserves a complete description. At a first reading, however, you can skip this sec-
tion, because you don’t need a thorough understanding of the structure to get
started. This list describes all the fields, but more to provide a refer ence than to be
memorized. The rest of this chapter briefly describes each field as soon as it is
used in the sample code, so you don’t need to keep referring back to this section.

struct net_device can be conceptually divided into two parts: visible and
invisible. The visible part of the structure is made up of the fields that can be
explicitly assigned in static net_device structur es. All structures in
drivers/net/Space.c ar e initialized in this way, without using the tagged syntax for
structur e initialization. The remaining fields are used internally by the network
code and usually are not initialized at compilation time, not even by tagged initial-
ization. Some of the fields are accessed by drivers (for example, the ones that are
assigned at initialization time), while some shouldn’t be touched.

The Visible Head
The first part of struct net_device is composed of the following fields, in
this order:

char name[IFNAMSIZ];
The name of the device. If the name contains a %d for mat string, the first
available device name with the given base is used; assigned numbers start at
zer o.

unsigned long rmem_end;
unsigned long rmem_start;
unsigned long mem_end;
unsigned long mem_start;

Device memory information. These fields hold the beginning and ending
addr esses of the shared memory used by the device. If the device has differ ent
receive and transmit memories, the mem fields are used for transmit memory
and the rmem fields for receive memory. mem_start and mem_end can be
specified on the kernel command line at system boot, and their values are
retrieved by ifconfig. The rmem fields are never refer enced outside of the
driver itself. By convention, the end fields are set so that end - start is
the amount of available on-board memory.

unsigned long base_addr;
The I/O base address of the network interface. This field, like the previous
ones, is assigned during device probe. The ifconfig command can be used to
display or modify the current value. The base_addr can be explicitly
assigned on the kernel command line at system boot or at load time. The field
is not used by the kernel, like the memory fields shown previously.

The net_device Structure in Detail
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unsigned char irq;
The assigned interrupt number. The value of dev->irq is printed by ifconfig
when interfaces are listed. This value can usually be set at boot or load time
and modified later using ifconfig.

unsigned char if_port;
Which port is in use on multiport devices. This field is used, for example, with
devices that support both coaxial (IF_PORT_10BASE2) and twisted-pair
(IF_PORT_10BASET) Ether net connections. The full set of known port types
is defined in <linux/netdevice.h>.

unsigned char dma;
The DMA channel allocated by the device. The field makes sense only with
some peripheral buses, like ISA. It is not used outside of the device driver
itself, but for informational purposes (in ifconfig).

unsigned long state;
Device state. The field includes several flags. Drivers do not normally manipu-
late these flags directly; instead, a set of utility functions has been provided.
These functions will be discussed shortly when we get into driver operations.

struct net_device *next;
Pointer to the next device in the global linked list. This field shouldn’t be
touched by the driver.

int (*init)(struct net_device *dev);
The initialization function, described earlier.

The Hidden Fields
The net_device structur e includes many additional fields, which are usually
assigned at device initialization. Some of these fields convey information about the
inter face, while some exist only for the benefit of the driver (i.e., they are not used
by the kernel); other fields, most notably the device methods, are part of the ker-
nel-driver interface.

We will list the three groups separately, independent of the actual order of the
fields, which is not significant.

Interface infor mation

Most of the information about the interface is correctly set up by the function
ether_setup. Ether net cards can rely on this general-purpose function for most of
these fields, but the flags and dev_addr fields are device specific and must be
explicitly assigned at initialization time.

Some non-Ethernet interfaces can use helper functions similar to ether_setup.
drivers/net/net_init.c exports a number of such functions, including the following:
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void ltalk_setup(struct net_device *dev);
Sets up the fields for a LocalTalk device.

void fc_setup(struct net_device *dev);
Initializes for fiber channel devices.

void fddi_setup(struct net_device *dev);
Configur es an interface for a Fiber Distributed Data Interface (FDDI) network.

void hippi_setup(struct net_device *dev);
Pr epar es fields for a High-Perfor mance Parallel Interface (HIPPI) high-speed
interconnect driver.

void tr_configure(struct net_device *dev);
Handles setup for token ring network interfaces. Note that the 2.4 kernel also
exports a function tr_setup, which, interestingly, does nothing at all.

Most devices will be covered by one of these classes. If yours is something radi-
cally new and differ ent, however, you will need to assign the following fields by
hand.

unsigned short hard_header_len;
The hardware header length, that is, the number of octets that lead the trans-
mitted packet before the IP header, or other protocol information. The value
of hard_header_len is 14 (ETH_HLEN) for Ethernet interfaces.

unsigned mtu;
The maximum transfer unit (MTU). This field is used by the network layer to
drive packet transmission. Ethernet has an MTU of 1500 octets
(ETH_DATA_LEN).

unsigned long tx_queue_len;
The maximum number of frames that can be queued on the device’s transmis-
sion queue. This value is set to 100 by ether_setup, but you can change it. For
example, plip uses 10 to avoid wasting system memory (plip has a lower
thr oughput than a real Ethernet interface).

unsigned short type;
The hardware type of the interface. The type field is used by ARP to deter-
mine what kind of hardware addr ess the interface supports. The proper value
for Ethernet interfaces is ARPHRD_ETHER, and that is the value set by
ether_setup. The recognized types are defined in <linux/if_arp.h>.

unsigned char addr_len;
unsigned char broadcast[MAX_ADDR_LEN];
unsigned char dev_addr[MAX_ADDR_LEN];

Hardwar e (MAC) address length and device hardware addr esses. The Ethernet
addr ess length is six octets (we are referring to the hardware ID of the

The net_device Structure in Detail
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inter face board), and the broadcast address is made up of six 0xff octets;
ether_setup arranges for these values to be correct. The device address, on the
other hand, must be read from the interface board in a device-specific way,
and the driver should copy it to dev_addr. The hardware addr ess is used to
generate correct Ethernet headers before the packet is handed over to the
driver for transmission. The snull device doesn’t use a physical interface, and
it invents its own hardware addr ess.

unsigned short flags;
Inter face flags, detailed next.

The flags field is a bit mask including the following bit values. The IFF_ pr efix
stands for “interface flags.” Some flags are managed by the kernel, and some are
set by the interface at initialization time to assert various capabilities and other fea-
tur es of the interface. The valid flags, which are defined in <linux/if.h>, are as
follows:

IFF_UP
This flag is read-only for the driver. The kernel turns it on when the interface
is active and ready to transfer packets.

IFF_BROADCAST
This flag states that the interface allows broadcasting. Ethernet boards do.

IFF_DEBUG
This marks debug mode. The flag can be used to control the verbosity of your
printk calls or for other debugging purposes. Although no official driver cur-
rently uses this flag, it can be set and reset by user programs via ioctl, and
your driver can use it. The misc-pr ogs/netifdebug pr ogram can be used to turn
the flag on and off.

IFF_LOOPBACK
This flag should be set only in the loopback interface. The kernel checks for
IFF_LOOPBACK instead of hardwiring the lo name as a special interface.

IFF_POINTOPOINT
This flag signals that the interface is connected to a point-to-point link. It is set
by ifconfig. For example, plip and the PPP driver have it set.

IFF_NOARP
This means that the interface can’t perfor m ARP. For example, point-to-point
inter faces don’t need to run ARP, which would only impose additional traffic
without retrieving useful information. snull runs without ARP capabilities, so
it sets the flag.
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IFF_PROMISC
This flag is set to activate promiscuous operation. By default, Ethernet inter-
faces use a hardware filter to ensure that they receive broadcast packets and
packets directed to that interface’s hardware addr ess only. Packet sniffers such
as tcpdump set promiscuous mode on the interface in order to retrieve all
packets that travel on the interface’s transmission medium.

IFF_MULTICAST
This flag is set by interfaces that are capable of multicast transmission.
ether_setup sets IFF_MULTICAST by default, so if your driver does not sup-
port multicast, it must clear the flag at initialization time.

IFF_ALLMULTI
This flag tells the interface to receive all multicast packets. The kernel sets it
when the host perfor ms multicast routing, only if IFF_MULTICAST is set.
IFF_ALLMULTI is read-only for the interface. We’ll see the multicast flags
used in “Multicasting” later in this chapter.

IFF_MASTER
IFF_SLAVE

These flags are used by the load equalization code. The interface driver
doesn’t need to know about them.

IFF_PORTSEL
IFF_AUTOMEDIA

These flags signal that the device is capable of switching between multiple
media types, for example, unshielded twisted pair (UTP) versus coaxial Ether-
net cables. If IFF_AUTOMEDIA is set, the device selects the proper medium
automatically.

IFF_DYNAMIC
This flag indicates that the address of this interface can change; used with
dialup devices.

IFF_RUNNING
This flag indicates that the interface is up and running. It is mostly present for
BSD compatibility; the kernel makes little use of it. Most network drivers need
not worry about IFF_RUNNING.

IFF_NOTRAILERS
This flag is unused in Linux, but it exists for BSD compatibility.

When a program changes IFF_UP, the open or stop device method is called.
When IFF_UP or any other flag is modified, the set_multicast_list method is
invoked. If the driver needs to perfor m some action because of a modification in
the flags, it must take that action in set_multicast_list. For example, when
IFF_PROMISC is set or reset, set_multicast_list must notify the onboard hardware
filter. The responsibilities of this device method are outlined in “Multicasting.”

The net_device Structure in Detail
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The device methods

As happens with the char and block drivers, each network device declares the
functions that act on it. Operations that can be perfor med on network interfaces
ar e listed in this section. Some of the operations can be left NULL, and some are
usually untouched because ether_setup assigns suitable methods to them.

Device methods for a network interface can be divided into two groups: funda-
mental and optional. Fundamental methods include those that are needed to be
able to use the interface; optional methods implement more advanced functionali-
ties that are not strictly requir ed. The following are the fundamental methods:

int (*open)(struct net_device *dev);
Opens the interface. The interface is opened whenever ifconfig activates it.
The open method should register any system resource it needs (I/O ports,
IRQ, DMA, etc.), turn on the hardware, and increment the module usage
count.

int (*stop)(struct net_device *dev);
Stops the interface. The interface is stopped when it is brought down; opera-
tions perfor med at open time should be reversed.

int (*hard_start_xmit) (struct sk_buff *skb, struct
net_device *dev);

This method initiates the transmission of a packet. The full packet (protocol
headers and all) is contained in a socket buffer (sk_buff) structur e. Socket
buf fers ar e intr oduced later in this chapter.

int (*hard_header) (struct sk_buff *skb, struct net_device
*dev, unsigned short type, void *daddr, void *saddr,
unsigned len);

This function builds the hardware header from the source and destination
hardwar e addr esses that were previously retrieved; its job is to organize the
infor mation passed to it as arguments into an appropriate, device-specific
hardwar e header. eth_header is the default function for Ethernet-like inter-
faces, and ether_setup assigns this field accordingly.

int (*rebuild_header)(struct sk_buff *skb);
This function is used to rebuild the hardware header before a packet is trans-
mitted. The default function used by Ethernet devices uses ARP to fill the
packet with missing information. The rebuild_header method is used rarely in
the 2.4 kernel; har d_header is used instead.

void (*tx_timeout)(struct net_device *dev);
This method is called when a packet transmission fails to complete within a
reasonable period, on the assumption that an interrupt has been missed or the
inter face has locked up. It should handle the problem and resume packet
transmission.
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struct net_device_stats *(*get_stats)(struct net_device
*dev);

Whenever an application needs to get statistics for the interface, this method is
called. This happens, for example, when ifconfig or netstat -i is run. A sample
implementation for snull is introduced in “Statistical Information” later in this
chapter.

int (*set_config)(struct net_device *dev, struct ifmap
*map);

Changes the interface configuration. This method is the entry point for config-
uring the driver. The I/O address for the device and its interrupt number can
be changed at runtime using set_config. This capability can be used by the
system administrator if the interface cannot be probed for. Drivers for modern
hardwar e nor mally do not need to implement this method.

The remaining device operations may be considered optional.

int (*do_ioctl)(struct net_device *dev, struct ifreq *ifr,
int cmd);

Per form inter face-specific ioctl commands. Implementation of those com-
mands is described later in “Custom ioctl Commands.” The corresponding field
in struct net_device can be left as NULL if the interface doesn’t need
any interface-specific commands.

void (*set_multicast_list)(struct net_device *dev);
This method is called when the multicast list for the device changes and when
the flags change. See “Multicasting” for further details and a sample implemen-
tation.

int (*set_mac_address)(struct net_device *dev, void *addr);
This function can be implemented if the interface supports the ability to
change its hardware addr ess. Many interfaces don’t support this ability at all.
Others use the default eth_mac_addr implementation (from
drivers/net/net_init.c). eth_mac_addr only copies the new address into
dev->dev_addr, and it will only do so if the interface is not running.
Drivers that use eth_mac_addr should set the hardware MAC address from
dev->dev_addr when they are configur ed.

int (*change_mtu)(struct net_device *dev, int new_mtu);
This function is in charge of taking action if there is a change in the MTU
(maximum transfer unit) for the interface. If the driver needs to do anything
particular when the MTU is changed, it should declare its own function; other-
wise, the default will do the right thing. snull has a template for the function if
you are inter ested.

The net_device Structure in Detail
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int (*header_cache) (struct neighbour *neigh, struct
hh_cache *hh);

header_cache is called to fill in the hh_cache structur e with the results of an
ARP query. Almost all drivers can use the default eth_header_cache implemen-
tation.

int (*header_cache_update) (struct hh_cache *hh, struct
net_device *dev, unsigned char *haddr);

This method updates the destination address in the hh_cache structur e in
response to a change. Ether net devices use eth_header_cache_update.

int (*hard_header_parse) (struct sk_buff *skb, unsigned char
*haddr);

The har d_header_parse method extracts the source address from the packet
contained in skb, copying it into the buffer at haddr. The retur n value from
the function is the length of that address. Ethernet devices normally use
eth_header_ parse.

Utility fields

The remaining struct net_device data fields are used by the interface to hold
useful status information. Some of the fields are used by ifconfig and netstat to
pr ovide the user with information about the current configuration. An interface
should thus assign values to these fields.

unsigned long trans_start;
unsigned long last_rx;

Both of these fields are meant to hold a jiffies value. The driver is responsible
for updating these values when transmission begins and when a packet is
received, respectively. The trans_start value is used by the networking
subsystem to detect transmitter lockups. last_rx is currently unused, but the
driver should maintain this field anyway to be prepar ed for future use.

int watchdog_timeo;
The minimum time (in jiffies) that should pass before the networking layer
decides that a transmission timeout has occurred and calls the driver’s tx_time-
out function.

void *priv;
The equivalent of filp->private_data. The driver owns this pointer and
can use it at will. Usually the private data structure includes a struct
net_device_stats item. The field is used in “Initializing Each Device,”
later in this chapter.
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struct dev_mc_list *mc_list;
int mc_count;

These two fields are used in handling multicast transmission. mc_count is
the count of items in mc_list. See “Multicasting” for further details.

spinlock_t xmit_lock;
int xmit_lock_owner;

The xmit_lock is used to avoid multiple simultaneous calls to the driver’s
har d_start_xmit function. xmit_lock_owner is the number of the CPU that
has obtained xmit_lock. The driver should make no changes to these fields.

struct module *owner;
The module that “owns” this device structure; it is used to maintain the use
count for the module.

Ther e ar e other fields in struct net_device, but they are not used by net-
work drivers.

Opening and Closing
Our driver can probe for the interface at module load time or at kernel boot.
Befor e the interface can carry packets, however, the kernel must open it and
assign an address to it. The kernel will open or close an interface in response to
the ifconfig command.

When ifconfig is used to assign an address to the interface, it perfor ms two tasks.
First, it assigns the address by means of ioctl(SIOCSIFADDR) (Socket I/O Con-
tr ol Set Interface Address). Then it sets the IFF_UP bit in dev->flag by means
of ioctl(SIOCSIFFLAGS) (Socket I/O Control Set Interface Flags) to turn the
inter face on.

As far as the device is concerned, ioctl(SIOCSIFADDR) does nothing. No
driver function is invoked—the task is device independent, and the kernel per-
for ms it. The latter command (ioctl(SIOCSIFFLAGS)), though, calls the open
method for the device.

Similarly, when the interface is shut down, ifconfig uses ioctl(SIOCSIFFLAGS)
to clear IFF_UP, and the stop method is called.

Both device methods retur n 0 in case of success and the usual negative value in
case of error.

As far as the actual code is concerned, the driver has to perfor m many of the same
tasks as the char and block drivers do. open requests any system resources it
needs and tells the interface to come up; stop shuts down the interface and
releases system resources. There are a couple of additional steps to be perfor med,
however.

Opening and Closing
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First, the hardware addr ess needs to be copied from the hardware device to
dev->dev_addr befor e the interface can communicate with the outside world.
The hardware addr ess can be assigned at probe time or at open time, at the
driver’s will. The snull softwar e inter face assigns it from within open; it just fakes a
hardwar e number using an ASCII string of length ETH_ALEN, the length of Ether-
net hardware addr esses.

The open method should also start the interface’s transmit queue (allow it to
accept packets for transmission) once it is ready to start sending data. The kernel
pr ovides a function to start the queue:

void netif_start_queue(struct net_device *dev);

The open code for snull looks like the following:

int snull_open(struct net_device *dev)
{

MOD_INC_USE_COUNT;

/* request_region(), request_irq(), .... (like fops->open) */

/*
* Assign the hardware address of the board: use "\0SNULx", where
* x is 0 or 1. The first byte is ’\0’ to avoid being a multicast
* address (the first byte of multicast addrs is odd).
*/

memcpy(dev->dev_addr, "\0SNUL0", ETH_ALEN);
dev->dev_addr[ETH_ALEN-1] += (dev - snull_devs); /* the number */

netif_start_queue(dev);
return 0;

}

As you can see, in the absence of real hardware, there is little to do in the open
method. The same is true of the stop method; it just reverses the operations of
open. For this reason the function implementing stop is often called close or
release.

int snull_release(struct net_device *dev)
{

/* release ports, irq and such -- like fops->close */

netif_stop_queue(dev); /* can’t transmit any more */
MOD_DEC_USE_COUNT;
return 0;

}

The function:

void netif_stop_queue(struct net_device *dev);
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is the opposite of netif_start_queue; it marks the device as being unable to trans-
mit any more packets. The function must be called when the interface is closed (in
the stop method) but can also be used to temporarily stop transmission, as
explained in the next section.

Packet Transmission
The most important tasks perfor med by network interfaces are data transmission
and reception. We’ll start with transmission because it is slightly easier to under-
stand.

Whenever the kernel needs to transmit a data packet, it calls the har d_start_trans-
mit method to put the data on an outgoing queue. Each packet handled by the
ker nel is contained in a socket buffer structure (struct sk_buff), whose defi-
nition is found in <linux/skbuff.h>. The structure gets its name from the Unix
abstraction used to repr esent a network connection, the socket. Even if the inter-
face has nothing to do with sockets, each network packet belongs to a socket in
the higher network layers, and the input/output buffers of any socket are lists of
struct sk_buff structur es. The same sk_buff structur e is used to host net-
work data throughout all the Linux network subsystems, but a socket buffer is just
a packet as far as the interface is concerned.

A pointer to sk_buff is usually called skb, and we follow this practice both in
the sample code and in the text.

The socket buffer is a complex structure, and the kernel offers a number of func-
tions to act on it. The functions are described later in “The Socket Buffers;” for
now a few basic facts about sk_buff ar e enough for us to write a working driver.

The socket buffer passed to har d_start_xmit contains the physical packet as it
should appear on the media, complete with the transmission-level headers. The
inter face doesn’t need to modify the data being transmitted. skb->data points to
the packet being transmitted, and skb->len is its length, in octets.

The snull packet transmission code is follows; the physical transmission machinery
has been isolated in another function because every interface driver must imple-
ment it according to the specific hardware being driven.

int snull_tx(struct sk_buff *skb, struct net_device *dev)
{

int len;
char *data;
struct snull_priv *priv = (struct snull_priv *) dev->priv;
len = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len;
data = skb->data;
dev->trans_start = jiffies; /* save the timestamp */

/* Remember the skb, so we can free it at interrupt time */
priv->skb = skb;

Packet Transmission
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/* actual delivery of data is device specific, and not shown here */
snull_hw_tx(data, len, dev);

return 0; /* Our simple device cannot fail */
}

The transmission function thus perfor ms only some sanity checks on the packet
and transmits the data through the hardware-r elated function. That function
(snull_hw_tx) is omitted here since it is entirely occupied with implementing the
trickery of the snull device (including manipulating the source and destination
addr esses) and has little of interest to authors of real network drivers. It is present,
of course, in the sample source for those who want to go in and see how it works.

Controlling Transmission Concurrenc y
The har d_start_xmit function is protected from concurrent calls by a spinlock
(xmit_lock) in the net_device structur e. As soon as the function retur ns,
however, it may be called again. The function retur ns when the software is done
instructing the hardware about packet transmission, but hardware transmission will
likely not have been completed. This is not an issue with snull, which does all of
its work using the CPU, so packet transmission is complete before the transmission
function retur ns.

Real hardware inter faces, on the other hand, transmit packets asynchronously and
have a limited amount of memory available to store outgoing packets. When that
memory is exhausted (which, for some hardware, will happen with a single out-
standing packet to transmit), the driver will need to tell the networking system not
to start any more transmissions until the hardware is ready to accept new data.

This notification is accomplished by calling netif_stop_queue, the function intro-
duced earlier to stop the queue. Once your driver has stopped its queue, it must
arrange to restart the queue at some point in the future, when it is again able to
accept packets for transmission. To do so, it should call:

void netif_wake_queue(struct net_device *dev);

This function is just like netif_start_queue, except that it also pokes the network-
ing system to make it start transmitting packets again.

Most modern network interfaces maintain an internal queue with multiple packets
to transmit; in this way they can get the best perfor mance fr om the network. Net-
work drivers for these devices support having multiple transmisions outstanding at
any given time, but device memory can fill up whether or not the hardware sup-
ports multiple outstanding transmission. Whenever device memory fills to the
point that there is no room for the largest possible packet, the driver should stop
the queue until space becomes available again.
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Tr ansmission Timeouts
Most drivers that deal with real hardware have to be prepar ed for that hardware to
fail to respond occasionally. Interfaces can forget what they are doing, or the sys-
tem can lose an interrupt. This sort of problem is common with some devices
designed to run on personal computers.

Many drivers handle this problem by setting timers; if the operation has not com-
pleted by the time the timer expires, something is wrong. The network system, as
it happens, is essentially a complicated assembly of state machines controlled by a
mass of timers. As such, the networking code is in a good position to detect trans-
mission timeouts automatically.

Thus, network drivers need not worry about detecting such problems themselves.
Instead, they need only set a timeout period, which goes in the watch-
dog_timeo field of the net_device structur e. This period, which is in jiffies,
should be long enough to account for normal transmission delays (such as colli-
sions caused by congestion on the network media).

If the current system time exceeds the device’s trans_start time by at least the
timeout period, the networking layer will eventually call the driver’s tx_timeout
method. That method’s job is to do whatever is needed to clear up the problem
and to ensure the proper completion of any transmissions that were alr eady in
pr ogress. It is important, in particular, that the driver not lose track of any socket
buf fers that have been entrusted to it by the networking code.

snull has the ability to simulate transmitter lockups, which is controlled by two
load-time parameters:

static int lockup = 0;
MODULE_PARM(lockup, "i");

#ifdef HAVE_TX_TIMEOUT
static int timeout = SNULL_TIMEOUT;
MODULE_PARM(timeout, "i");
#endif

If the driver is loaded with the parameter lockup=n, a lockup will be simulated
once every n packets transmitted, and the watchdog_timeo field will be set to
the given timeout value. When simulating lockups, snull also calls
netif_stop_queue to prevent other transmission attempts from occurring.

The snull transmission timeout handler looks like this:

void snull_tx_timeout (struct net_device *dev)
{

struct snull_priv *priv = (struct snull_priv *) dev->priv;

PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies,
jiffies - dev->trans_start);

Packet Transmission
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priv->status = SNULL_TX_INTR;
snull_interrupt(0, dev, NULL);
priv->stats.tx_errors++;
netif_wake_queue(dev);
return;

}

When a transmission timeout happens, the driver must mark the error in the inter-
face statistics and arrange for the device to be reset to a sane state so that new
packets can be transmitted. When a timeout happens in snull, the driver calls
snull_interrupt to fill in the “missing” interrupt and restarts the transmit queue with
netif_wake_queue.

Packet Reception
Receiving data from the network is trickier than transmitting it because an
sk_buff must be allocated and handed off to the upper layers from within an
interrupt handler. The usual way to receive a packet is through an interrupt, unless
the interface is a purely software one like snull or the loopback interface.
Although it is possible to write polling drivers, and a few exist in the official ker-
nel, interrupt-driven operation is much better, both in terms of data throughput
and computational demands. Because most network interfaces are interrupt
driven, we won’t talk about the polling implementation, which just exploits kernel
timers.

The implementation of snull separates the “hardware” details from the device-
independent housekeeping. The function snull_rx is thus called after the hardware
has received the packet and it is already in the computer’s memory. snull_rx
receives a pointer to the data and the length of the packet; its sole responsibility is
to send the packet and some additional information to the upper layers of net-
working code. This code is independent of the way the data pointer and length
ar e obtained.

void snull_rx(struct net_device *dev, int len, unsigned char *buf)
{

struct sk_buff *skb;
struct snull_priv *priv = (struct snull_priv *) dev->priv;

/*
* The packet has been retrieved from the transmission
* medium. Build an skb around it, so upper layers can handle it
*/

skb = dev_alloc_skb(len+2);
if (!skb) {

printk("snull rx: low on mem - packet dropped\n");
priv->stats.rx_dropped++;
return;

}
memcpy(skb_put(skb, len), buf, len);
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/* Write metadata, and then pass to the receive level */
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
skb->ip_summed = CHECKSUM_UNNECESSARY; /* don’t check it */
priv->stats.rx_packets++;
priv->stats.rx_bytes += len;
netif_rx(skb);
return;

}

The function is sufficiently general to act as a template for any network driver, but
some explanation is necessary before you can reuse this code fragment with confi-
dence.

The first step is to allocate a buffer to hold the packet. Note that the buffer alloca-
tion function (dev_alloc_skb) needs to know the data length. The information is
used by the function to allocate space for the buffer. dev_alloc_skb calls kmalloc
with atomic priority; it can thus be used safely at interrupt time. The kernel offers
other interfaces to socket-buffer allocation, but they are not worth introducing
her e; socket buffers are explained in detail in “The Socket Buffers,” later in this
chapter.

Once there is a valid skb pointer, the packet data is copied into the buffer by call-
ing memcpy; the skb_ put function updates the end-of-data pointer in the buffer
and retur ns a pointer to the newly created space.

If you are writing a high-perfor mance driver for an interface that can do full bus-
mastering I/O, there is a possible optimization that is worth considering here.
Some drivers allocate socket buffers for incoming packets prior to their reception,
then instruct the interface to place the packet data directly into the socket buffer’s
space. The networking layer cooperates with this strategy by allocating all socket
buf fers in DMA-capable space. Doing things this way avoids the need for a sepa-
rate copy operation to fill the socket buffer, but requir es being careful with buffer
sizes because you won’t know in advance how big the incoming packet is. The
implementation of a change_mtu method is also important in this situation, since it
allows the driver to respond to a change in the maximum packet size.

The network layer needs to have some information spelled out before it will be
able to make sense of the packet. To this end, the dev and protocol fields must
be assigned before the buffer is passed upstairs. Then we need to specify how
checksumming is to be perfor med or has been perfor med on the packet (snull
does not need to perfor m any checksums). The possible policies for
skb->ip_summed ar e as follows:

CHECKSUM_HW
The device has already perfor med checksums in hardware. An example of a
hardwar e checksum is the SPARC HME interface.

Packet Reception
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CHECKSUM_NONE
Checksums are still to be verified, and the task must be accomplished by sys-
tem software. This is the default in newly allocated buffers.

CHECKSUM_UNNECESSARY
Don’t do any checksums. This is the policy in snull and in the loopback inter-
face.

Finally, the driver updates its statistics counter to record that a packet has been
received. The statistics structure is made up of several fields; the most important
ar e rx_packets, rx_bytes, tx_packets, and tx_bytes, which contain the
number of packets received and transmitted and the total number of octets trans-
ferr ed. All the fields are thor oughly described in “Statistical Information” later in
this chpater.

The last step in packet reception is perfor med by netif_rx, which hands off the
socket buffer to the upper layers.

The Inter rupt Handler
Most hardware inter faces ar e contr olled by means of an interrupt handler. The
inter face interrupts the processor to signal one of two possible events: a new
packet has arrived or transmission of an outgoing packet is complete. This gener-
alization doesn’t always apply, but it does account for all the problems related to
asynchr onous packet transmission. Parallel Line Internet Protocol (PLIP) and Point-
to-Point Protocol (PPP) are examples of interfaces that don’t fit this generalization.
They deal with the same events, but the low-level interrupt handling is slightly dif-
fer ent.

The usual interrupt routine can tell the differ ence between a new-packet-arrived
interrupt and a done-transmitting notification by checking a status register found
on the physical device. The snull inter face works similarly, but its status word is
implemented in software and lives in dev->priv. The interrupt handler for a net-
work interface looks like this:

void snull_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

int statusword;
struct snull_priv *priv;
/*
* As usual, check the "device" pointer for shared handlers.
* Then assign "struct device *dev"
*/

struct net_device *dev = (struct net_device *)dev_id;
/* ... and check with hw if it’s really ours */

if (!dev /*paranoid*/ ) return;

/* Lock the device */
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priv = (struct snull_priv *) dev->priv;
spin_lock(&priv->lock);

/* retrieve statusword: real netdevices use I/O instructions */
statusword = priv->status;
if (statusword & SNULL_RX_INTR) {

/* send it to snull_rx for handling */
snull_rx(dev, priv->rx_packetlen, priv->rx_packetdata);

}
if (statusword & SNULL_TX_INTR) {

/* a transmission is over: free the skb */
priv->stats.tx_packets++;
priv->stats.tx_bytes += priv->tx_packetlen;
dev_kfree_skb(priv->skb);

}

/* Unlock the device and we are done */
spin_unlock(&priv->lock);
return;

}

The handler’s first task is to retrieve a pointer to the correct struct
net_device. This pointer usually comes from the dev_id pointer received as
an argument.

The interesting part of this handler deals with the “transmission done” situation. In
this case, the statistics are updated, and dev_kfr ee_skb is called to retur n the (no
longer needed) socket buffer to the system. If your driver has temporarily stopped
the transmission queue, this is the place to restart it with netif_wake_queue.

Packet reception, on the other hand, doesn’t need any special interrupt handling.
Calling snull_rx (which we have already seen) is all that’s requir ed.

Changes in Link State
Network connections, by definition, deal with the world outside the local system.
They are thus often affected by outside events, and they can be transient things.
The networking subsystem needs to know when network links go up or down,
and it provides a few functions that the driver may use to convey that information.

Most networking technologies involving an actual, physical connection provide a
carrier state; the presence of the carrier means that the hardware is present and
ready to function. Ethernet adapters, for example, sense the carrier signal on the
wir e; when a user trips over the cable, that carrier vanishes, and the link goes
down. By default, network devices are assumed to have a carrier signal present.
The driver can change that state explicitly, however, with these functions:

void netif_carrier_off(struct net_device *dev);
void netif_carrier_on(struct net_device *dev);

Changes in Link State
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If your driver detects a lack of carrier on one of its devices, it should call
netif_carrier_of f to inform the kernel of this change. When the carrier retur ns,
netif_carrier_on should be called. Some drivers also call netif_carrier_of f when
making major configuration changes (such as media type); once the adapter has
finished resetting itself, the new carrier will be detected and traffic can resume.

An integer function also exsists:

int netif_carrier_ok(struct net_device *dev);

This can be used to test the current carrier state (as reflected in the device struc-
tur e).

The Socket Buffers
We’ve now discussed most of the issues related to network interfaces. What’s still
missing is some more detailed discussion of the sk_buff structur e. The structure
is at the core of the network subsystem of the Linux kernel, and we now intro-
duce both the main fields of the structure and the functions used to act on it.

Although there is no strict need to understand the internals of sk_buff, the abil-
ity to look at its contents can be helpful when you are tracking down problems
and when you are trying to optimize the code. For example, if you look in loop-
back.c, you’ll find an optimization based on knowledge of the sk_buff inter nals.
The usual warning applies here: if you write code that takes advantage of knowl-
edge of the sk_buff structur e, you should be prepar ed to see it break with
futur e ker nel releases. Still, sometimes the perfor mance advantages justify the
additional maintenance cost.

We are not going to describe the whole structure her e, just the fields that might be
used from within a driver. If you want to see more, you can look at
<linux/skbuff.h>, wher e the structure is defined and the functions are proto-
typed. Additional details about how the fields and functions are used can be easily
retrieved by grepping in the kernel sources.

The Impor tant Fields
The fields introduced here are the ones a driver might need to access. They are
listed in no particular order.

struct net_device *rx_dev;
struct net_device *dev;

The devices receiving and sending this buffer, respectively.
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union { /* . . .  */ } h;
union { /* . . .  */ } nh;
union { /* . . .  */} mac;

Pointers to the various levels of headers contained within the packet. Each
field of the unions is a pointer to a differ ent type of data structure. h hosts
pointers to transport layer headers (for example, struct tcphdr *th); nh
includes network layer headers (such as struct iphdr *iph); and mac
collects pointers to link layer headers (such as struct ethdr *ethernet).

If your driver needs to look at the source and destination addresses of a TCP
packet, it can find them in skb->h.th. See the header file for the full set of
header types that can be accessed in this way.

Note that network drivers are responsible for setting the mac pointer for
incoming packets. This task is normally handled by ether_type_trans, but non-
Ether net drivers will have to set skb->mac.raw dir ectly, as shown later in
“Non-Ether net Headers.”

unsigned char *head;
unsigned char *data;
unsigned char *tail;
unsigned char *end;

Pointers used to address the data in the packet. head points to the beginning
of the allocated space, data is the beginning of the valid octets (and is usu-
ally slightly greater than head), tail is the end of the valid octets, and end
points to the maximum address tail can reach. Another way to look at it is
that the available buf fer space is skb->end - skb->head, and the cur-
rently used data space is skb->tail - skb->data.

unsigned long len;
The length of the data itself (skb->tail - skb->data).

unsigned char ip_summed;
The checksum policy for this packet. The field is set by the driver on incom-
ing packets, as was described in “Packet Reception.”

unsigned char pkt_type;
Packet classification used in delivering it. The driver is responsible for setting
it to PACKET_HOST (this packet is for me), PACKET_BROADCAST,
PACKET_MULTICAST, or PACKET_OTHERHOST (no, this packet is not for
me). Ethernet drivers don’t modify pkt_type explicitly because
eth_type_trans does it for them.

The remaining fields in the structure are not particularly interesting. They are used
to maintain lists of buffers, to account for memory belonging to the socket that
owns the buffer, and so on.

The Socket Buffers
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Functions Acting on Socket Buffers
Network devices that use a sock_buff act on the structure by means of the offi-
cial interface functions. Many functions operate on socket buffers; here are the
most interesting ones:

struct sk_buff *alloc_skb(unsigned int len, int priority);
struct sk_buff *dev_alloc_skb(unsigned int len);

Allocate a buffer. The alloc_skb function allocates a buffer and initializes both
skb->data and skb->tail to skb->head. The dev_alloc_skb function is a
shortcut that calls alloc_skb with GFP_ATOMIC priority and reserves some
space between skb->head and skb->data. This data space is used for
optimizations within the network layer and should not be touched by the
driver.

void kfree_skb(struct sk_buff *skb);
void dev_kfree_skb(struct sk_buff *skb);

Fr ee a buf fer. The kfr ee_skb call is used internally by the kernel. A driver
should use dev_kfr ee_skb instead, which is intended to be safe to call from
driver context.

unsigned char *skb_put(struct sk_buff *skb, int len);
unsigned char *__skb_put(struct sk_buff *skb, int len);

These inline functions update the tail and len fields of the sk_buff struc-
tur e; they are used to add data to the end of the buffer. Each function’s retur n
value is the previous value of skb->tail (in other words, it points to the
data space just created). Drivers can use the retur n value to copy data by
invoking ins(ioaddr, skb_put( . . . )) or
memcpy(skb_put( . . . ), data, len). The differ ence between the two
functions is that skb_ put checks to be sure that the data will fit in the buffer,
wher eas _ _skb_ put omits the check.

unsigned char *skb_push(struct sk_buff *skb, int len);
unsigned char *__skb_push(struct sk_buff *skb, int len);

These functions decrement skb->data and increment skb->len. They are
similar to skb_ put, except that data is added to the beginning of the packet
instead of the end. The retur n value points to the data space just created. The
functions are used to add a hardware header before transmitting a packet.
Once again, _ _skb_ push dif fers in that it does not check for adequate avail-
able space.

int skb_tailroom(struct sk_buff *skb);
This function retur ns the amount of space available for putting data in the
buf fer. If a driver puts more data into the buffer than it can hold, the system
panics. Although you might object that a printk would be sufficient to tag the
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err or, memory corruption is so harmful to the system that the developers
decided to take definitive action. In practice, you shouldn’t need to check the
available space if the buffer has been correctly allocated. Since drivers usually
get the packet size before allocating a buffer, only a severely broken driver
will put too much data in the buffer, and a panic might be seen as due pun-
ishment.

int skb_headroom(struct sk_buff *skb);
Retur ns the amount of space available in front of data, that is, how many
octets one can “push” to the buffer.

void skb_reserve(struct sk_buff *skb, int len);
This function increments both data and tail. The function can be used to
reserve headroom before filling the buffer. Most Ethernet interfaces reserve 2
bytes in front of the packet; thus, the IP header is aligned on a 16-byte bound-
ary, after a 14-byte Ethernet header. snull does this as well, although the
instruction was not shown in “Packet Reception” to avoid introducing extra
concepts at that point.

unsigned char *skb_pull(struct sk_buff *skb, int len);
Removes data from the head of the packet. The driver won’t need to use this
function, but it is included here for completeness. It decrements skb->len
and increments skb->data; this is how the hardware header (Ethernet or
equivalent) is stripped from the beginning of incoming packets.

The kernel defines several other functions that act on socket buffers, but they are
meant to be used in higher layers of networking code, and the driver won’t need
them.

MAC Address Resolution
An interesting issue with Ethernet communication is how to associate the MAC
addr esses (the interface’s unique hardware ID) with the IP number. Most protocols
have a similar problem, but we concentrate on the Ethernet-like case here. We’ll
try to offer a complete description of the issue, so we will show three situations:
ARP, Ether net headers without ARP (like plip), and non-Ethernet headers.

Using ARP with Ethernet
The usual way to deal with address resolution is by using ARP, the Address Reso-
lution Protocol. Fortunately, ARP is managed by the kernel, and an Ethernet inter-
face doesn’t need to do anything special to support ARP. As long as dev->addr
and dev->addr_len ar e corr ectly assigned at open time, the driver doesn’t need
to worry about resolving IP numbers to physical addresses; ether_setup assigns the
corr ect device methods to dev->hard_header and dev->rebuild_header.

MAC Address Resolution
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Although the kernel normally handles the details of address resolution (and
caching of the results), it calls upon the interface driver to help in the building of
the packet. After all, the driver knows about the details of the physical layer
header, while the authors of the networking code have tried to insulate the rest of
the kernel from that knowledge. To this end, the kernel calls the driver’s
har d_header method to lay out the packet with the results of the ARP query. Nor-
mally, Ethernet driver writers need not know about this process — the common
Ether net code takes care of everything.

Over r iding ARP
Simple point-to-point network interfaces such as plip might benefit from using Eth-
er net headers, while avoiding the overhead of sending ARP packets back and
forth. The sample code in snull also falls into this class of network devices. snull
cannot use ARP because the driver changes IP addresses in packets being transmit-
ted, and ARP packets exchange IP addresses as well. Although we could have
implemented a simple ARP reply generator with little trouble, it is more illustrative
to show how to handle physical-layer headers directly.

If your device wants to use the usual hardware header without running ARP, you
need to override the default dev->hard_header method. This is how snull
implements it, as a very short function.

int snull_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type, void *daddr, void *saddr,
unsigned int len)

{
struct ethhdr *eth = (struct ethhdr *)skb_push(skb,ETH_HLEN);

eth->h_proto = htons(type);
memcpy(eth->h_source, saddr ? saddr : dev->dev_addr, dev->addr_len);
memcpy(eth->h_dest, daddr ? daddr : dev->dev_addr, dev->addr_len);
eth->h_dest[ETH_ALEN-1] ˆ= 0x01; /* dest is us xor 1 */
return (dev->hard_header_len);

}

The function simply takes the information provided by the kernel and formats it
into a standard Ethernet header. It also toggles a bit in the destination Ethernet
addr ess, for reasons described later.

When a packet is received by the interface, the hardware header is used in a cou-
ple of ways by eth_type_trans. We have already seen this call in snull_rx:

skb->protocol = eth_type_trans(skb, dev);

The function extracts the protocol identifier (ETH_P_IP in this case) from the Eth-
er net header; it also assigns skb->mac.raw, removes the hardware header from
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packet data (with skb_ pull), and sets skb->pkt_type. This last item defaults to
PACKET_HOST at skb allocation (which indicates that the packet is directed to
this host), and eth_type_trans changes it according to the Ethernet destination
addr ess. If that address does not match the address of the interface that received it,
the pkt_type field will be set to PACKET_OTHERHOST. Subsequently, unless the
inter face is in promiscuous mode, netif_rx will drop any packet of type
PACKET_OTHERHOST. For this reason, snull_header is careful to make the desti-
nation hardware addr ess match that of the “receiving” interface.

If your interface is a point-to-point link, you won’t want to receive unexpected
multicast packets. To avoid this problem, remember that a destination address
whose first octet has 0 as the least significant bit (LSB) is directed to a single host
(i.e., it is either PACKET_HOST or PACKET_OTHERHOST). The plip driver uses
0xfc as the first octet of its hardware addr ess, while snull uses 0x00. Both
addr esses result in a working Ethernet-like point-to-point link.

Non-Ether net Header s
We have just seen that the hardware header contains some information in addition
to the destination address, the most important being the communication protocol.
We now describe how hardware headers can be used to encapsulate relevant
infor mation. If you need to know the details, you can extract them from the kernel
sources or the technical documentation for the particular transmission medium.
Most driver writers will be able to ignore this discussion and just use the Ethernet
implementation.

It’s worth noting that not all information has to be provided by every protocol. A
point-to-point link such as plip or snull could avoid transferring the whole Ether-
net header without losing generality. The har d_header device method, shown ear-
lier as implemented by snull_header, receives the delivery information — both
pr otocol-level and hardware addr esses—from the kernel. It also receives the 16-bit
pr otocol number in the type argument; IP, for example, is identified by
ETH_P_IP. The driver is expected to correctly deliver both the packet data and
the protocol number to the receiving host. A point-to-point link could omit
addr esses fr om its hardware header, transferring only the protocol number,
because delivery is guaranteed independent of the source and destination
addr esses. An IP-only link could even avoid transmitting any hardware header
whatsoever.

When the packet is picked up at the other end of the link, the receiving function
in the driver should correctly set the fields skb->protocol, skb->pkt_type,
and skb->mac.raw.

skb->mac.raw is a char pointer used by the address-r esolution mechanism
implemented in higher layers of the networking code (for instance, net/ipv4/arp.c).

MAC Address Resolution
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It must point to a machine address that matches dev->type. The possible values
for the device type are defined in <linux/if_arp.h>; Ether net inter faces use
ARPHRD_ETHER. For example, here is how eth_type_trans deals with the Ethernet
header for received packets:

skb->mac.raw = skb->data;
skb_pull(skb, dev->hard_header_len);

In the simplest case (a point-to-point link with no headers), skb->mac.raw can
point to a static buffer containing the hardware addr ess of this interface, proto-
col can be set to ETH_P_IP, and packet_type can be left with its default
value of PACKET_HOST.

Because every hardware type is unique, it is hard to give more specific advice
than already discussed. The kernel is full of examples, however. See, for example,
the AppleTalk driver (drivers/net/appletalk/cops.c), the infrared drivers (such as
drivers/net/ir da/smc_ircc.c), or the PPP driver (drivers/net/ppp_generic.c).

Custom ioctl Commands
We have seen that the ioctl system call is implemented for sockets; SIOCSIFADDR
and SIOCSIFMAP ar e examples of “socket ioctls.” Now let’s see how the third
argument of the system call is used by networking code.

When the ioctl system call is invoked on a socket, the command number is one of
the symbols defined in <linux/sockios.h>, and the function sock_ioctl
dir ectly invokes a protocol-specific function (where “pr otocol” refers to the main
network protocol being used, for example, IP or AppleTalk).

Any ioctl command that is not recognized by the protocol layer is passed to the
device layer. These device-related ioctl commands accept a third argument from
user space, a struct ifreq *. This structure is defined in <linux/if.h>.
The SIOCSIFADDR and SIOCSIFMAP commands actually work on the ifreq
structur e. The extra argument to SIOCSIFMAP, although defined as ifmap, is just
a field of ifreq.

In addition to using the standardized calls, each interface can define its own ioctl
commands. The plip inter face, for example, allows the interface to modify its inter-
nal timeout values via ioctl. The ioctl implementation for sockets recognizes 16
commands as private to the interface: SIOCDEVPRIVATE thr ough SIOCDEVPRI-
VATE+15.

When one of these commands is recognized, dev->do_ioctl is called in the rel-
evant interface driver. The function receives the same struct ifreq * pointer
that the general-purpose ioctl function uses:

int (*do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
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The ifr pointer points to a kernel-space address that holds a copy of the struc-
tur e passed by the user. After do_ioctl retur ns, the structure is copied back to user
space; the driver can thus use the private commands to both receive and retur n
data.

The device-specific commands can choose to use the fields in struct ifreq,
but they already convey a standardized meaning, and it’s unlikely that the driver
can adapt the structure to its needs. The field ifr_data is a caddr_t item (a
pointer) that is meant to be used for device-specific needs. The driver and the pro-
gram used to invoke its ioctl commands should agree about the use of ifr_data.
For example, pppstats uses device-specific commands to retrieve information from
the ppp inter face driver.

It’s not worth showing an implementation of do_ioctl her e, but with the informa-
tion in this chapter and the kernel examples, you should be able to write one
when you need it. Note, however, that the plip implementation uses ifr_data
incorr ectly and should not be used as an example for an ioctl implementation.

Statistical Infor mation
The last method a driver needs is get_stats. This method retur ns a pointer to the
statistics for the device. Its implementation is pretty easy; the one shown works
even when several interfaces are managed by the same driver, because the statis-
tics are hosted within the device data structure.

struct net_device_stats *snull_stats(struct net_device *dev)
{

struct snull_priv *priv = (struct snull_priv *) dev->priv;
return &priv->stats;

}

The real work needed to retur n meaningful statistics is distributed throughout the
driver, wher e the various fields are updated. The following list shows the most
inter esting fields in struct net_device_stats.

unsigned long rx_packets;
unsigned long tx_packets;

These fields hold the total number of incoming and outgoing packets success-
fully transferred by the interface.

unsigned long rx_bytes;
unsigned long tx_bytes;

The number of bytes received and transmitted by the interface. These fields
wer e added in the 2.2 kernel.

Statistical Infor mation
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unsigned long rx_errors;
unsigned long tx_errors;

The number of erroneous receptions and transmissions. There’s no end of
things that can go wrong with packet transmission, and the
net_device_stats structur e includes six counters for specific receive
err ors and five for transmit errors. See <linux/netdevice.h> for the full
list. If possible, your driver should maintain detailed error statistics, because
they can be most helpful to system administrators trying to track down a prob-
lem.

unsigned long rx_dropped;
unsigned long tx_dropped;

The number of packets dropped during reception and transmission. Packets
ar e dr opped when there’s no memory available for packet data. tx_dropped
is rarely used.

unsigned long collisions;
The number of collisions due to congestion on the medium.

unsigned long multicast;
The number of multicast packets received.

It is worth repeating that the get_stats method can be called at any time—even
when the interface is down—so the driver should not release statistic information
when running the stop method.

Multicasting
A multicast packet is a network packet meant to be received by more than one
host, but not by all hosts. This functionality is obtained by assigning special hard-
war e addr esses to groups of hosts. Packets directed to one of the special addresses
should be received by all the hosts in that group. In the case of Ethernet, a multi-
cast address has the least significant bit of the first address octet set in the destina-
tion address, while every device board has that bit clear in its own hardware
addr ess.

The tricky part of dealing with host groups and hardware addr esses is perfor med
by applications and the kernel, and the interface driver doesn’t need to deal with
these problems.

Transmission of multicast packets is a simple problem because they look exactly
like any other packets. The interface transmits them over the communication
medium without looking at the destination address. It’s the kernel that has to
assign a correct hardware destination address; the har d_header device method, if
defined, doesn’t need to look in the data it arranges.
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The kernel handles the job of tracking which multicast addresses are of inter est at
any given time. The list can change frequently, since it is a function of the applica-
tions that are running at any given time and the user’s interest. It is the driver’s job
to accept the list of interesting multicast addresses and deliver to the kernel any
packets sent to those addresses. How the driver implements the multicast list is
somewhat dependent on how the underlying hardware works. Typically, hardware
belongs to one of three classes, as far as multicast is concerned:

• Inter faces that cannot deal with multicast. These interfaces either receive pack-
ets directed specifically to their hardware addr ess (plus broadcast packets), or
they receive every packet. They can receive multicast packets only by receiv-
ing every packet, thus potentially overwhelming the operating system with a
huge number of “uninteresting” packets. You don’t usually count these inter-
faces as multicast capable, and the driver won’t set IFF_MULTICAST in
dev->flags.

Point-to-point interfaces are a special case, because they always receive every
packet without perfor ming any hardware filtering.

• Inter faces that can tell multicast packets from other packets (host-to-host or
br oadcast). These interfaces can be instructed to receive every multicast
packet and let the software deter mine if this host is a valid recipient. The over-
head introduced in this case is acceptable, because the number of multicast
packets on a typical network is low.

• Inter faces that can perfor m hardwar e detection of multicast addresses. These
inter faces can be passed a list of multicast addresses for which packets are to
be received, and they will ignore other multicast packets. This is the optimum
case for the kernel, because it doesn’t waste processor time dropping “uninter-
esting” packets received by the interface.

The kernel tries to exploit the capabilities of high-level interfaces by supporting at
its best the third device class, which is the most versatile. Therefor e, the kernel
notifies the driver whenever the list of valid multicast addresses is changed, and it
passes the new list to the driver so it can update the hardware filter according to
the new information.

Kernel Support for Multicasting
Support for multicast packets is made up of several items: a device method, a data
structur e and device flags.

void (*dev->set_multicast_list)(struct net_device *dev);
This device method is called whenever the list of machine addresses associ-
ated with the device changes. It is also called when dev->flags is modified,
because some flags (e.g., IFF_PROMISC) may also requir e you to repr ogram
the hardware filter. The method receives a pointer to struct net_device
as an argument and retur ns void. A driver not interested in implementing this

Multicasting
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method can leave the field set to NULL.

struct dev_mc_list *dev->mc_list;
This is a linked list of all the multicast addresses associated with the device.
The actual definition of the structure is intr oduced at the end of this section.

int dev->mc_count;
The number of items in the linked list. This information is somewhat redun-
dant, but checking mc_count against 0 is a useful shortcut for checking the
list.

IFF_MULTICAST
Unless the driver sets this flag in dev->flags, the interface won’t be asked
to handle multicast packets. The set_multicast_list method will nonetheless be
called when dev->flags changes, because the multicast list may have
changed while the interface was not active.

IFF_ALLMULTI
This flag is set in dev->flags by the networking software to tell the driver
to retrieve all multicast packets from the network. This happens when multi-
cast routing is enabled. If the flag is set, dev->mc_list shouldn’t be used to
filter multicast packets.

IFF_PROMISC
This flag is set in dev->flags when the interface is put into promiscuous
mode. Every packet should be received by the interface, independent of
dev->mc_list.

The last bit of information needed by the driver developer is the definition of
struct dev_mc_list, which lives in <linux/netdevice.h>.

struct dev_mc_list {
struct dev_mc_list *next; /* Next address in list */
__u8 dmi_addr[MAX_ADDR_LEN]; /* Hardware address */
unsigned char dmi_addrlen; /* Address length */
int dmi_users; /* Number of users */
int dmi_gusers; /* Number of groups */

};

Because multicasting and hardware addr esses ar e independent of the actual trans-
mission of packets, this structure is portable across network implementations, and
each address is identified by a string of octets and a length, just like
dev->dev_addr.

A Typical Implementation
The best way to describe the design of set_multicast_list is to show you some
pseudocode.
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The following function is a typical implementation of the function in a full-fea-
tur ed (ff) driver. The driver is full featured in that the interface it controls has a
complex hardware packet filter, which can hold a table of multicast addresses to
be received by this host. The maximum size of the table is FF_TABLE_SIZE.

All the functions prefixed with ff_ ar e placeholders for hardware-specific opera-
tions.

void ff_set_multicast_list(struct net_device *dev)
{

struct dev_mc_list *mcptr;

if (dev->flags & IFF_PROMISC) {
ff_get_all_packets();
return;

}
/* If there’s more addresses than we handle, get all multicast
packets and sort them out in software. */
if (dev->flags & IFF_ALLMULTI || dev->mc_count > FF_TABLE_SIZE) {

ff_get_all_multicast_packets();
return;

}
/* No multicast? Just get our own stuff */
if (dev->mc_count == 0) {

ff_get_only_own_packets();
return;

}
/* Store all of the multicast addresses in the hardware filter */
ff_clear_mc_list();
for (mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next)

ff_store_mc_address(mc_ptr->dmi_addr);
ff_get_packets_in_multicast_list();

}

This implementation can be simplified if the interface cannot store a multicast
table in the hardware filter for incoming packets. In that case, FF_TABLE_SIZE
reduces to 0 and the last four lines of code are not needed.

As was mentioned earlier, even interfaces that can’t deal with multicast packets
need to implement the set_multicast_list method to be notified about changes in
dev->flags. This approach could be called a “nonfeatured” (nf) implementa-
tion. The implementation is very simple, as shown by the following code:

void nf_set_multicast_list(struct net_device *dev)
{

if (dev->flags & IFF_PROMISC)
nf_get_all_packets();

else
nf_get_only_own_packets();

}

Multicasting
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Implementing IFF_PROMISC is important, because otherwise the user won’t be
able to run tcpdump or any other network analyzers. If the interface runs a point-
to-point link, on the other hand, there’s no need to implement set_multicast_list at
all, because users receive every packet anyway.

Backward Compatibility
Version 2.3.43 of the kernel saw a major rework of the networking subsystem. The
new “softnet” implementation was a great improvement in terms of perfor mance
and clean design. It also, of course, brought changes to the network driver inter-
face — though fewer than one might have expected.

Differences in Linux 2.2
First of all, Linux 2.3.14 renamed the network device structure, which had always
been struct device, to struct net_device. The new name is certainly
mor e appr opriate, since the structure was never meant to describe devices in gen-
eral.

Prior to version 2.3.43, the functions netif_start_queue, netif_stop_queue, and
netif_wake_queue did not exist. Packet transmission was, instead, controlled by
thr ee fields in the device structur e, and sysdep.h implements the three functions
using the three fields when compiling for 2.2 or 2.0.

unsigned char start;
This variable indicated that the interface was ready for operations; it was nor-
mally set to 1 in the driver’s open method. The current implementation is to
call netif_start_queue instead.

unsigned long interrupt;
interrupt was used to indicate that the device was servicing an interrupt—
accordingly, it was set to 1 at the beginning of the interrupt handler and to 0
befor e retur ning. It was never a substitute for proper locking, and its use has
been replaced with internal spinlocks.

unsigned long tbusy;
When nonzero, this variable indicated that the device could handle no more
outgoing packets. Where a 2.4 driver will call netif_stop_queue, older drivers
would set tbusy to 1. Restarting the queue requir ed setting tbusy back to 0
and calling mark_bh(NET_BH).

Nor mally, setting tbusy was sufficient to ensure that the driver’s har d_start_xmit
method would not be called. However, if the networking system decided that a
transmitter lockup must have occurred, it would call that method anyway. There
was no tx_timeout method before softnet was integrated. Thus, pre-softnet drivers
had to explicitly check for a call to har d_start_xmit when tbusy was set and
react accordingly.
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The type of the name field in struct device was differ ent. The 2.2 version was
simply

char *name;

Thus, the storage for the interface name had to be allocated separately, and name
assigned to point to that storage. Usually the device name was stored in a static
variable within the driver. The %d notation for dynamically assigned interface
names was not present in 2.2; instead, if the name began with a null byte or a
space character, the kernel would allocate the next eth name. The 2.4 kernel still
implements this behavior, but its use is deprecated. Starting with 2.5, only the %d
for mat is likely to be recognized.

The owner field (and the SET_MODULE_OWNER macr o) wer e added in kernel
2.4.0-test11, just before the official stable release. Previously, network driver mod-
ules had to maintain their own use counts. sysdep.h defines an empty SET_MOD-
ULE_OWNER for kernels that do not have it; portable code should also continue to
manage its use count manually (in addition to letting the networking system do it).

The link state functions (netif_carrier_on and netif_carrier_of f) did not exist in the
2.2 kernel. The kernel simply did without that information in those days.

Fur ther Differences in Linux 2.0
The 2.1 development series also saw its share of changes to the network driver
inter face. Most took the form of small changes to function prototypes, rather than
sweeping changes to the network code as a whole.

Inter face statistics were kept in a structure called struct 1enet_statistics,
defined in <linux/if_ether.h>. Even non-Ethernet drivers used this structure.
The field names were all the same as the current struct net_device_stats,
but the rx_bytes and tx_bytes fields were not present.

The 2.0 kernel handled transmitter lockups in the same way as 2.2 did. There was,
however, an additional function:

void dev_tint(struct device *dev);

This function would be called by the driver after a lockup had been cleared to
restart the transmission of packets.

A couple of functions had differ ent pr ototypes. dev_kfr ee_skb had a second, inte-
ger argument that was either FREE_READ for incoming packets (i.e., skbs allo-
cated by the driver) or FREE_WRITE for outgoing packets (skbs allocated by the
networking code). Almost all calls to dev_kfr ee_skb in network driver code used
FREE_WRITE. The nonchecking versions of the skb functions (such as
_ _skb_ push) did not exist; sysdep.h in the sample code provides emulation for
these functions under 2.0.

Backward Compatibility
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The rebuild_header method had a differ ent set of arguments:

int (*rebuild_header) (void *eth, struct device *dev,
unsigned long raddr, struct sk_buff *skb);

The Linux kernel also made heavier use of rebuild_header; it did most of the work
that har d_header does now. When snull is compiled under Linux 2.0, it builds
hardwar e headers as follows:

int snull_rebuild_header(void *buff, struct net_device *dev, unsigned long dst,
struct sk_buff *skb)

{
struct ethhdr *eth = (struct ethhdr *)buff;

memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
memcpy(eth->h_dest, dev->dev_addr, dev->addr_len);
eth->h_dest[ETH_ALEN-1] ˆ= 0x01; /* dest is us xor 1 */
return 0;

}

The device methods for header caching were also significantly differ ent in this ker-
nel. If your driver needs to implement these functions directly (very few do), and
it also needs to work with the 2.0 kernel, see the definitions in <linux/netde-
vice.h> to see how things were done in those days.

Probing and HAVE_DEVLIST
If you look at the source for almost any network driver in the kernel, you will find
some boilerplate that looks like this:

#ifdef HAVE_DEVLIST
/*
* Support for an alternate probe manager,
* which will eliminate the boilerplate below.
*/

struct netdev_entry netcard_drv =
{cardname, netcard_probe1, NETCARD_IO_EXTENT, netcard_portlist};
#else
/* Regular probe routine defined here */

Inter estingly, this code has been around since the 1.1 development series, but we
ar e still waiting for the promised alternate probe manager. It is probably safe to
not worry about being prepar ed for this great change, especially since ideas for
how to implement it will likely have changed in the intervening years.
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Quick Reference
This section provides a refer ence for the concepts introduced in this chapter. It
also explains the role of each header file that a driver needs to include. The lists of
fields in the net_device and sk_buff structur es, however, are not repeated
her e.

#include <linux/netdevice.h>
This header hosts the definitions of struct net_device and struct
net_device_stats, and includes a few other headers that are needed by
network drivers.

int register_netdev(struct net_device *dev);
void unregister_netdev(struct net_device *dev);

Register and unregister a network device.

SET_MODULE_OWNER(struct net_device *dev);
This macro will store a pointer to the current module in the device structure
(or in any structure with an owner field, actually); it is used to enable the net-
working subsystem to manage the module’s use count.

netif_start_queue(struct net_device *dev);
netif_stop_queue(struct net_device *dev);
netif_wake_queue(struct net_device *dev);

These functions control the passing of packets to the driver for transmission.
No packets will be transmitted until netif_start_queue has been called.
netif_stop_queue suspends transmission, and netif_wake_queue restarts the
queue and pokes the network layer to restart transmitting packets.

void netif_rx(struct sk_buff *skb);
This function can be called (including at interrupt time) to notify the kernel
that a packet has been received and encapsulated into a socket buffer.

#include <linux/if.h>
Included by netdevice.h, this file declares the interface flags (IFF_ macr os)
and struct ifmap, which has a major role in the ioctl implementation for
network drivers.

void netif_carrier_off(struct net_device *dev);
void netif_carrier_on(struct net_device *dev);
int netif_carrier_ok(struct net_device *dev);

The first two functions may be used to tell the kernel whether a carrier signal
is currently present on the given interface. netif_carrier_ok will test the carrier
state as reflected in the device structure.
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#include <linux/if_ether.h>
ETH_ALEN
ETH_P_IP
struct ethhdr;

Included by netdevice.h, if_ether.h defines all the ETH_ macr os used to repr e-
sent octet lengths (such as the address length) and network protocols (such as
IP). It also defines the ethhdr structur e.

#include <linux/skbuff.h>
The definition of struct sk_buff and related structures, as well as several
inline functions to act on the buffers. This header is included by netdevice.h.

struct sk_buff *alloc_skb(unsigned int len, int priority);
struct sk_buff *dev_alloc_skb(unsigned int len);
void kfree_skb(struct sk_buff *skb);
void dev_kfree_skb(struct sk_buff *skb);

These functions handle the allocation and freeing of socket buffers. Drivers
should normally use the dev_ variants, which are intended for that purpose.

unsigned char *skb_put(struct sk_buff *skb, int len);
unsigned char *__skb_put(struct sk_buff *skb, int len);
unsigned char *skb_push(struct sk_buff *skb, int len);
unsigned char *__skb_push(struct sk_buff *skb, int len);

These functions add data to an skb; skb_ put puts the data at the end of the
skb, while skb_ push puts it at the beginning. The regular versions perfor m
checking to ensure that adequate space is available; double-underscore ver-
sions leave those tests out.

int skb_headroom(struct sk_buff *skb);
int skb_tailroom(struct sk_buff *skb);
void skb_reserve(struct sk_buff *skb, int len);

These functions perfor m management of space within an skb. skb_headr oom
and skb_tailr oom tell how much space is available at the beginning and end,
respectively, of an skb. skb_r eserve may be used to reserve space at the
beginning of an skb, which must be empty.

unsigned char *skb_pull(struct sk_buff *skb, int len);
skb_ pull will “remove” data from an skb by adjusting the internal pointers.

#include <linux/etherdevice.h>
void ether_setup(struct net_device *dev);

This function sets most device methods to the general-purpose implementa-
tion for Ethernet drivers. It also sets dev->flags and assigns the next avail-
able ethx name to dev->name if the first character in the name is a blank
space or the null character.
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unsigned short eth_type_trans(struct sk_buff *skb, struct
net_device *dev);

When an Ethernet interface receives a packet, this function can be called to
set skb->pkt_type. The retur n value is a protocol number that is usually
stor ed in skb->protocol.

#include <linux/sockios.h>
SIOCDEVPRIVATE

This is the first of 16 ioctl commands that can be implemented by each driver
for its own private use. All the network ioctl commands are defined in sock-
ios.h.

Quick Reference
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CHAPTER FIFTEEN

OVERVIEW OF
PERIPHERAL BUSES

Wher eas Chapter 8 introduced the lowest levels of hardware contr ol, this chapter
pr ovides an overview of the higher-level bus architectur es. A bus is made up of
both an electrical interface and a programming interface. In this chapter, we deal
with the programming interface.

This chapter covers a number of bus architectur es. However, the primary focus is
on the kernel functions that access PCI peripherals, because these days the PCI
bus is the most commonly used peripheral bus on desktops and bigger computers,
and the one that is best supported by the kernel. ISA is still common for electronic
hobbyists and is described later, although it is pretty much a bare-metal kind of
bus and there isn’t much to say in addition to what is covered in Chapter 8 and
Chapter 9.

The PCI Interface
Although many computer users think of PCI (Peripheral Component Interconnect)
as a way of laying out electrical wires, it is actually a complete set of specifications
defining how differ ent parts of a computer should interact.

The PCI specification covers most issues related to computer interfaces. We are not
going to cover it all here; in this section we are mainly concerned with how a PCI
driver can find its hardware and gain access to it. The probing techniques dis-
cussed in ‘‘Automatic and Manual Configuration’’ in Chapter 2, and ‘‘Autodetecting
the IRQ Number’’ in Chapter 9 can be used with PCI devices, but the specification
of fers a preferable alternative to probing.

The PCI architectur e was designed as a replacement for the ISA standard, with
thr ee main goals: to get better perfor mance when transferring data between the
computer and its peripherals, to be as platform independent as possible, and to
simplify adding and removing peripherals to the system.
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The PCI bus achieves better perfor mance by using a higher clock rate than ISA; its
clock runs at 25 or 33 MHz (its actual rate being a factor of the system clock), and
66-MHz and even 133-MHz implementations have recently been deployed as well.
Mor eover, it is equipped with a 32-bit data bus, and a 64-bit extension has been
included in the specification (although only 64-bit platforms implement it). Plat-
for m independence is often a goal in the design of a computer bus, and it’s an
especially important feature of PCI because the PC world has always been domi-
nated by processor-specific interface standards. PCI is currently used extensively
on IA-32, Alpha, PowerPC, SPARC64, and IA-64 systems, and some other platforms
as well.

What is most relevant to the driver writer, however, is the support for autodetec-
tion of interface boards. PCI devices are jumperless (unlike most older peripherals)
and are automatically configured at boot time. The device driver, then, must be
able to access configuration information in the device in order to complete initial-
ization. This happens without the need to perfor m any probing.

PCI Addressing
Each PCI peripheral is identified by a bus number, a device number, and a func-
tion number. The PCI specification permits a system to host up to 256 buses. Each
bus hosts up to 32 devices, and each device can be a multifunction board (such as
an audio device with an accompanying CD-ROM drive) with a maximum of eight
functions. Each function can thus be identified at hardware level by a 16-bit
addr ess, or key. Device drivers written for Linux, though, don’t need to deal with
those binary addresses as they use a specific data structure, called pci_dev, to
act on the devices. (We have already seen struct pci_dev, of course, in Chap-
ter 13.)

Most recent workstations feature at least two PCI buses. Plugging more than one
bus in a single system is accomplished by means of bridges, special-purpose PCI
peripherals whose task is joining two buses. The overall layout of a PCI system is
organized as a tree, where each bus is connected to an upper-layer bus up to bus
0. The CardBus PC-card system is also connected to the PCI system via bridges. A
typical PCI system is repr esented in Figure 15-1, where the various bridges are
highlighted.

The 16-bit hardware addr esses associated with PCI peripherals, although mostly
hidden in the struct pci_dev object, are still visible occasionally, especially
when lists of devices are being used. One such situation is the output of lspci (part
of the pciutils package, available with most distributions) and the layout of infor-
mation in /pr oc/pci and /pr oc/bus/pci.* When the hardware addr ess is displayed, it
can either be shown as a 16-bit value, as two values (an 8-bit bus number and an

* Please note that the discussion, as usual, is based on the 2.4 version of the kernel, rele-
gating backward compatibility issues to the end of the chapter.
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PCI Bus 0 PCI Bus 1
Host Bridge PCI Bridge

ISA Bridge

CardBus Bridge

RAM CPU

Figur e 15-1. Layout of a Typical PCI System

8-bit device and function number), or as three values (bus, device, and function);
all the values are usually displayed in hexadecimal.

For example, /pr oc/bus/pci/devices uses a single 16-bit field (to ease parsing and
sorting), while /pr oc/bus/busnumber splits the address into three fields. The fol-
lowing shows how those addresses appear, showing only the beginning of the
output lines:

rudo% lspci | cut -d: -f1-2
00:00.0 Host bridge
00:01.0 PCI bridge
00:07.0 ISA bridge
00:07.1 IDE interface
00:07.3 Bridge
00:07.4 USB Controller
00:09.0 SCSI storage controller
00:0b.0 Multimedia video controller
01:05.0 VGA compatible controller
rudo% cat /proc/bus/pci/devices | cut -d\ -f1,3
0000 0
0008 0
0038 0
0039 0
003b 0
003c b
0048 a
0058 b
0128 a

472

22 June 2001 16:43



The two lists of devices are sorted in the same order, since lspci uses the /pr oc
files as its source of information. Taking the VGA video controller as an example,
0x128 means 01:05.0 when split into bus (eight bits), device (five bits) and func-
tion (three bits). The second field in the two listings shown shows the class of
device and the interrupt number, respectively.

The hardware circuitry of each peripheral board answers queries pertaining to
thr ee addr ess spaces: memory locations, I/O ports, and configuration registers. The
first two address spaces are shar ed by all the devices on a PCI bus (i.e., when you
access a memory location, all the devices see the bus cycle at the same time). The
configuration space, on the other hand, exploits geographical addressing. Configu-
ration transactions (i.e., bus accesses that insist on the configuration space)
addr ess only one slot at a time. Thus, there are no collisions at all with configura-
tion access.

As far as the driver is concerned, memory and I/O regions are accessed in the
usual ways via inb, readb, and so forth. Configuration transactions, on the other
hand, are per formed by calling specific kernel functions to access configuration
registers. With regard to interrupts, every PCI slot has four interrupt pins, and each
device function can use one of them without being concerned about how those
pins are routed to the CPU. Such routing is the responsibility of the computer plat-
for m and is implemented outside of the PCI bus. Since the PCI specification
requir es interrupt lines to be shareable, even a processor with a limited number of
IRQ lines, like the x86, can host many PCI interface boards (each with four inter-
rupt pins).

The I/O space in a PCI bus uses a 32-bit address bus (leading to 4 GB of I/O
ports), while the memory space can be accessed with either 32-bit or 64-bit
addr esses. However, 64-bit addresses are available only on a few platforms.
Addr esses ar e supposed to be unique to one device, but software may erroneously
configur e two devices to the same address, making it impossible to access either
one; the problem never occurs unless a driver is willingly playing with registers it
shouldn’t touch. The good news is that every memory and I/O address region
of fered by the interface board can be remapped by means of configuration trans-
actions. That is, the firmwar e initializes PCI hardware at system boot, mapping
each region to a differ ent addr ess to avoid collisions.* The addresses to which
these regions are curr ently mapped can be read from the configuration space, so
the Linux driver can access its devices without probing. After reading the configu-
ration registers the driver can safely access its hardware.

The PCI configuration space consists of 256 bytes for each device function, and
the layout of the configuration registers is standardized. Four bytes of the

* Actually, that configuration is not restricted to the time the system boots; hot-pluggable
devices, for example, cannot be available at boot time and appear later instead. The main
point here is that the device driver need not change the address of I/O or memory
regions.
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configuration space hold a unique function ID, so the driver can identify its device
by looking for the specific ID for that peripheral.* In summary, each device board
is geographically addressed to retrieve its configuration registers; the information
in those registers can then be used to perfor m nor mal I/O access, without the
need for further geographic addressing.

It should be clear from this description that the main innovation of the PCI inter-
face standard over ISA is the configuration address space. Therefor e, in addition to
the usual driver code, a PCI driver needs the ability to access configuration space,
in order to save itself from risky probing tasks.

For the remainder of this chapter, we’ll use the word device to refer to a device
function, because each function in a multifunction board acts as an independent
entity. When we refer to a device, we mean the tuple ‘‘bus number, device num-
ber, function number,’’ which can be repr esented by a 16-bit number or two 8-bit
numbers (usually called bus and devfn).

Boot Time
To see how PCI works, we’ll start from system boot, since that’s when the devices
ar e configur ed.

When power is applied to a PCI device, the hardware remains inactive. In other
words, the device will respond only to configuration transactions. At power on,
the device has no memory and no I/O ports mapped in the computer’s address
space; every other device-specific feature, such as interrupt reporting, is disabled
as well.

Fortunately, every PCI motherboard is equipped with PCI-aware firmwar e, called
the BIOS, NVRAM, or PROM, depending on the platform. The firmwar e of fers
access to the device configuration address space by reading and writing registers
in the PCI controller.

At system boot, the firmwar e (or the Linux kernel, if so configured) perfor ms con-
figuration transactions with every PCI peripheral in order to allocate a safe place
for any address region it offers. By the time a device driver accesses the device, its
memory and I/O regions have already been mapped into the processor’s address
space. The driver can change this default assignment, but it will never need to do
that.

As suggested, the user can look at the PCI device list and the devices’ configura-
tion registers by reading /pr oc/bus/pci/devices and /pr oc/bus/pci/*/*. The former is a
text file with (hexadecimal) device information, and the latter are binary files that
report a snapshot of the configuration registers of each device, one file per device.

* You’ll find the ID of any device in its own hardware manual. A list is included in the file
pci.ids, part of the pciutils package and of the kernel sources; it doesn’t pretend to be
complete, but just lists the most renowned vendors and devices.
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Configuration Register s and Initialization
As mentioned earlier, the layout of the configuration space is device independent.
In this section, we look at the configuration registers that are used to identify the
peripherals.

PCI devices feature a 256-byte address space. The first 64 bytes are standardized,
while the rest are device dependent. Figure 15-2 shows the layout of the device-
independent configuration space.

- Required Register

- Optional Register

Vendor
ID

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

Device
ID
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Reg

Status
Reg.

Revis-
ion
ID

Class Code Cache
Line

Latency
Timer

Header
Type

BIST
0x00

Base
Address 20x10

Base
Address 3

Base
Address 1

Base
Address 0

CardBus
CIS pointer0x20

Subsytem
Vendor ID

Base
Address 5

Base
Address 4

Subsytem
Device ID

0x30
Expansion ROM
Base Address Reserved IRQ

Line
IRQ
Pin

Min_Gnt Max_Lat

Figur e 15-2. The standar dized PCI configuration registers

As the figure shows, some of the PCI configuration registers are requir ed and
some are optional. Every PCI device must contain meaningful values in the
requir ed registers, whereas the contents of the optional registers depend on the
actual capabilities of the peripheral. The optional fields are not used unless the
contents of the requir ed fields indicate that they are valid. Thus, the requir ed fields
assert the board’s capabilities, including whether the other fields are usable or not.

It’s interesting to note that the PCI registers are always little-endian. Although the
standard is designed to be architectur e independent, the PCI designers sometimes
show a slight bias toward the PC environment. The driver writer should be careful
about byte ordering when accessing multibyte configuration registers; code that
works on the PC might not work on other platforms. The Linux developers have
taken care of the byte-ordering problem (see the next section, ‘‘Accessing the Con-
figuration Space’’), but the issue must be kept in mind. If you ever need to convert

The PCI Interface

475

22 June 2001 16:43



Chapter 15: Over view of Per ipheral Buses

data from host order to PCI order or vice versa, you can resort to the functions
defined in <asm/byteorder.h>, intr oduced in Chapter 10, knowing that PCI
byte order is little-endian.

Describing all the configuration items is beyond the scope of this book. Usually,
the technical documentation released with each device describes the supported
registers. What we’re inter ested in is how a driver can look for its device and how
it can access the device’s configuration space.

Thr ee or five PCI registers identify a device: vendorID, deviceID, and class
ar e the three that are always used. Every PCI manufacturer assigns proper values
to these read-only registers, and the driver can use them to look for the device.
Additionally, the fields subsystem vendorID and subsystem deviceID ar e
sometimes set by the vendor to further differ entiate similar devices.

Let’s look at these registers in more detail.

vendorID
This 16-bit register identifies a hardware manufactur er. For instance, every
Intel device is marked with the same vendor number, 0x8086. Ther e is a
global registry of such numbers, maintained by the PCI Special Interest Group,
and manufacturers must apply to have a unique number assigned to them.

deviceID
This is another 16-bit register, selected by the manufacturer; no official regis-
tration is requir ed for the device ID. This ID is usually paired with the vendor
ID to make a unique 32-bit identifier for a hardware device. We’ll use the
word signatur e to refer to the vendor and device ID pair. A device driver usu-
ally relies on the signature to identify its device; you can find what value to
look for in the hardware manual for the target device.

class
Every peripheral device belongs to a class. The class register is a 16-bit
value whose top 8 bits identify the ‘‘base class’’ (or gr oup). For example,
‘‘ether net’’ and ‘‘token ring’’ are two classes belonging to the ‘‘network’’ group,
while the ‘‘serial’’ and ‘‘parallel’’ classes belong to the ‘‘communication’’ group.
Some drivers can support several similar devices, each of them featuring a dif-
fer ent signatur e but all belonging to the same class; these drivers can rely on
the class register to identify their peripherals, as shown later.

subsystem vendorID
subsystem deviceID

These fields can be used for further identification of a device. If the chip in
itself is a generic interface chip to a local (onboard) bus, it is often used in
several completely differ ent roles, and the driver must identify the actual
device it is talking with. The subsystem identifiers are used to this aim.

Using those identifiers, you can detect and get hold of your device. With version
2.4 of the kernel, the concept of a PCI driver and a specialized initialization
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inter face have been introduced. While that interface is the preferr ed one for new
drivers, it is not available for older kernel versions. As an alternative to the PCI
driver interface, the following headers, macros, and functions can be used by a
PCI module to look for its hardware device. We chose to introduce this backward-
compatible interface first because it is portable to all kernel versions we cover in
this book. Moreover, it is somewhat more immediate by virtue of being less
abstracted from direct hardware management.

#include <linux/config.h>
The driver needs to know if the PCI functions are available in the kernel. By
including this header, the driver gains access to the CONFIG_ macr os, includ-
ing CONFIG_PCI, described next. But note that every source file that includes
<linux/module.h> alr eady includes this one as well.

CONFIG_PCI
This macro is defined if the kernel includes support for PCI calls. Not every
computer includes a PCI bus, so the kernel developers chose to make PCI
support a compile-time option to save memory when running Linux on non-
PCI computers. If CONFIG_PCI is not enabled, every PCI function call is
defined to retur n a failur e status, so the driver may or may not use a prepr o-
cessor conditional to mask out PCI support. If the driver can only handle PCI
devices (as opposed to both PCI and non-PCI device implementations), it
should issue a compile-time error if the macro is undefined.

#include <linux/pci.h>
This header declares all the prototypes introduced in this section, as well as
the symbolic names associated with PCI registers and bits; it should always be
included. This header also defines symbolic values for the error codes
retur ned by the functions.

int pci_present(void);
Because the PCI-related functions don’t make sense on non-PCI computers,
the pci_ present function allows one to check if PCI functionality is available or
not. The call is discouraged as of 2.4, because it now just checks if some PCI
device is there. With 2.0, however, a driver had to call the function to avoid
unpleasant errors when looking for its device. Recent kernels just report that
no device is there, instead. The function retur ns a boolean value of true
(nonzer o) if the host is PCI aware.

struct pci_dev;
The data structure is used as a software object repr esenting a PCI device. It is
at the core of every PCI operation in the system.
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struct pci_dev *pci_find_device (unsigned int vendor,
unsigned int device, const struct pci_dev *from);

If CONFIG_PCI is defined and pci_ present is true, this function is used to
scan the list of installed devices looking for a device featuring a specific signa-
tur e. The from argument is used to get hold of multiple devices with the
same signature; the argument should point to the last device that has been
found, so that the search can continue instead of restarting from the head of
the list. To find the first device, from is specified as NULL. If no (further)
device is found, NULL is retur ned.

struct pci_dev *pci_find_class (unsigned int class, const
struct pci_dev *from);

This function is similar to the previous one, but it looks for devices belonging
to a specific class (a 16-bit class: both the base class and subclass). It is rarely
used nowadays except in very low-level PCI drivers. The from argument is
used exactly like in pci_find_device.

int pci_enable_device(struct pci_dev *dev);
This function actually enables the device. It wakes up the device and in some
cases also assigns its interrupt line and I/O regions. This happens, for exam-
ple, with CardBus devices (which have been made completely equivalent to
PCI at driver level).

struct pci_dev *pci_find_slot (unsigned int bus, unsigned
int devfn);

This function retur ns a PCI device structure based on a bus/device pair. The
devfn argument repr esents both the device and function items. Its use is
extr emely rar e (drivers should not care about which slot their device is
plugged into); it is listed here just for completeness.

Based on this information, initialization for a typical device driver that handles a
single device type will look like the following code. The code is for a hypothetical
device jail and is Just Another Instruction List:

#ifndef CONFIG_PCI
# error "This driver needs PCI support to be available"
#endif

int jail_find_all_devices(void)
{

struct pci_dev *dev = NULL;
int found;

if (!pci_present())
return -ENODEV;

for (found=0; found < JAIL_MAX_DEV;) {
dev = pci_find_device(JAIL_VENDOR, JAIL_ID, dev);
if (!dev) /* no more devices are there */

478

22 June 2001 16:43



break;
/* do device-specific actions and count the device */
found += jail_init_one(dev);

}
return (index == 0) ? -ENODEV : 0;

}

The role of jail_init_one is very device specific and thus not shown here. There
ar e, nonetheless, a few things to keep in mind when writing that function:

• The function may need to perfor m additional probing to ensure that the
device is really one of those it supports. Some PCI peripherals contain a gen-
eral-purpose PCI interface chip and device-specific circuitry. Every peripheral
board that uses the same interface chip has the same signature. Further prob-
ing can either be perfor med by reading the subsystem identifiers or reading
specific device registers (in the device I/O regions, introduced later).

• Befor e accessing any device resource (I/O region or interrupt), the driver must
call pci_enable_device. If the additional probing just discussed requir es access-
ing device I/O or memory space, the function must be called before such
pr obing takes place.

• A network interface driver should make dev->driver_data point to the
struct net_device associated with this interface.

The function shown in the previous code excerpt retur ns 0 if it rejects the device
and 1 if it accepts it (possibly based on the further probing just described).

The code excerpt shown is correct if the driver deals with only one kind of PCI
device, identified by JAIL_VENDOR and JAIL_ID. If you need to support more
vendor/device pairs, your best bet is using the technique introduced later in
“Hardwar e Abstractions,” unless you need to support older kernels than 2.4, in
which case pci_find_class is your friend.

Using pci_find_class requir es that jail_find_all_devices per form a little more work
than in the example. The function should check the newly found device against a
list of vendor/device pairs, possibly using dev->vendor and dev->device. Its
cor e should look like this:

struct devid {unsigned short vendor, device} devlist[] = {
{JAIL_VENDOR1, JAIL_DEVICE1},
{JAIL_VENDOR2, JAIL_DEVICE2},
/* ... */
{ 0, 0 }

};

/* ... */

for (found=0; found < JAIL_MAX_DEV;) {
struct devid *idptr;
dev = pci_find_class(JAIL_CLASS, dev);
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if (!dev) /* no more devices are there */
break;

for (idptr = devlist; idptr->vendor; idptr++) {
if (dev->vendor != idptr->vendor) continue;
if (dev->device != idptr->device) continue;
break;

}
if (!idptr->vendor) continue; /* not one of ours */
jail_init_one(dev); /* device-specific initialization */
found++;

}

Accessing the Configuration Space
After the driver has detected the device, it usually needs to read from or write to
the three address spaces: memory, port, and configuration. In particular, accessing
the configuration space is vital to the driver because it is the only way it can find
out where the device is mapped in memory and in the I/O space.

Because the micropr ocessor has no way to access the configuration space directly,
the computer vendor has to provide a way to do it. To access configuration space,
the CPU must write and read registers in the PCI controller, but the exact imple-
mentation is vendor dependent and not relevant to this discussion because Linux
of fers a standard interface to access the configuration space.

As far as the driver is concerned, the configuration space can be accessed through
8-bit, 16-bit, or 32-bit data transfers. The relevant functions are prototyped in
<linux/pci.h>:

int pci_read_config_byte(struct pci_dev *dev, int where, u8
*ptr);

int pci_read_config_word(struct pci_dev *dev, int where, u16
*ptr);

int pci_read_config_dword(struct pci_dev *dev, int where,
u32 *ptr);

Read one, two, or four bytes from the configuration space of the device identi-
fied by dev. The where argument is the byte offset from the beginning of the
configuration space. The value fetched from the configuration space is
retur ned thr ough ptr, and the retur n value of the functions is an error code.
The wor d and dwor d functions convert the value just read from little-endian to
the native byte order of the processor, so you need not deal with byte order-
ing.
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int pci_write_config_byte (struct pci_dev *dev, int where,
u8 val);

int pci_write_config_word (struct pci_dev *dev, int where,
u16 val);

int pci_write_config_dword (struct pci_dev *dev, int where,
u32 val);

Write one, two, or four bytes to the configuration space. The device is identi-
fied by dev as usual, and the value being written is passed as val. The wor d
and dwor d functions convert the value to little-endian before writing to the
peripheral device.

The preferr ed way to read the configuration variables you need is using the fields
of the struct pci_dev that refers to your device. Nonetheless, you’ll need the
functions just listed if you need to write and read back a configuration variable.
Also, you’ll need the pci_r ead_ functions if you want to keep backward compati-
bility with kernels older than 2.4.*

The best way to address the configuration variables using the pci_r ead_ functions
is by means of the symbolic names defined in <linux/pci.h>. For example, the
following two-line function retrieves the revision ID of a device by passing the
symbolic name for where to pci_r ead_config_byte:

unsigned char jail_get_revision(unsigned char bus, unsigned char fn)
{

unsigned char *revision;

pci_read_config_byte(bus, fn, PCI_REVISION_ID, &revision);
return revision;

}

As suggested, when accessing multibyte values as single bytes the programmer
must remember to watch out for byte-order problems.

Looking at a configuration snapshot

If you want to browse the configuration space of the PCI devices on your system,
you can proceed in one of two ways. The easier path is using the resources that
Linux already offers via /pr oc/bus/pci, although these were not available in version
2.0 of the kernel. The alternative that we follow here is, instead, writing some
code of our own to perfor m the task; such code is both portable across all known
2.x ker nel releases and a good way to look at the tools in action. The source file
pci/pcidata.c is included in the sample code provided on the O’Reilly FTP site.

* The field names in struct pci_dev changed from version 2.2 and 2.4 because the first
layout proved suboptimal. As for 2.0, there was no pci_dev structur e, and the one you
use is a light emulation offer ed by the pci-compat.h header.

The PCI Interface

481

22 June 2001 16:43



Chapter 15: Over view of Per ipheral Buses

This module creates a dynamic /pr oc/pcidata file that contains a binary snapshot
of the configuration space for your PCI devices. The snapshot is updated every
time the file is read. The size of /pr oc/pcidata is limited to PAGE_SIZE bytes (to
avoid dealing with multipage /pr oc files, as introduced in ‘‘Using the /proc Filesys-
tem’’ in Chapter 4). Thus, it lists only the configuration memory for the first
PAGE_SIZE/256 devices, which means 16 or 32 devices according to the plat-
for m you are running on. We chose to make /pr oc/pcidata a binary file to keep
the code simple, instead of making it a text file like most /pr oc files. Note that the
files in /pr oc/bus/pci ar e binary as well.

Another limitation of pcidata is that it scans only the first PCI bus on the system. If
your computer includes bridges to other PCI buses, pcidata ignor es them. This
should not be an issue for sample code not meant to be of real use.

Devices appear in /pr oc/pcidata in the same order used by /pr oc/bus/pci/devices
(but in the opposite order from the one used by /pr oc/pci in version 2.0).

For example, our frame grabber appears fifth in /pr oc/pcidata and (currently) has
the following configuration registers:

morgana% dd bs=256 skip=4 count=1 if=/proc/pcidata | od -Ax -t x1
1+0 records in
1+0 records out
000000 86 80 23 12 06 00 00 02 00 00 00 04 00 20 00 00
000010 00 00 00 f1 00 00 00 00 00 00 00 00 00 00 00 00
000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000030 00 00 00 00 00 00 00 00 00 00 00 00 0a 01 00 00
000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
000100

The numbers in this dump repr esent the PCI registers. Using Figure 15-2 as a refer-
ence, you can look at the meaning of the numbers shown. Alternatively, you can
use the pcidump pr ogram, also found on the FTP site, which formats and labels
the output listing.

The pcidump code is not worth including here because the program is simply a
long table, plus 10 lines of code that scan the table. Instead, let’s look at some
selected output lines:

morgana% dd bs=256 skip=4 count=1 if=/proc/pcidata | ./pcidump
1+0 records in
1+0 records out

Compulsory registers:
Vendor id: 8086
Device id: 1223
I/O space enabled: n
Memory enabled: y
Master enabled: y
Revision id (decimal): 0
Programmer Interface: 00
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Class of device: 0400
Header type: 00
Multi function device: n

Optional registers:
Base Address 0: f1000000
Base Address 0 Is I/O: n
Base Address 0 is 64-bits: n
Base Address 0 is below-1M: n
Base Address 0 is prefetchable: n
Does generate interrupts: y
Interrupt line (decimal): 10
Interrupt pin (decimal): 1

pcidata and pcidump, used with gr ep, can be useful tools for debugging a driver’s
initialization code, even though their task is in part already available in the pciutils
package, included in all recent Linux distributions. Note that, unlike other sample
code accompanying the book, the pcidata.c module is subject to the GPL because
we took the PCI scanning loop from the kernel sources. This shouldn’t matter to
you as a driver writer, because we’ve included the module in the source files only
as a support utility, not as a template to be reused in new drivers.

Accessing the I/O and Memory Spaces
A PCI device implements up to six I/O address regions. Each region consists of
either memory or I/O locations. Most devices implement their I/O registers in
memory regions, because it’s generally a saner approach (as explained in “I/O
Ports and I/O Memory,” in Chapter 8). However, unlike normal memory, I/O reg-
isters should not be cached by the CPU because each access can have side effects.
The PCI device that implements I/O registers as a memory region marks the differ-
ence by setting a ‘‘memory-is-prefetchable’’ bit in its configuration register.* If the
memory region is marked as prefetchable, the CPU can cache its contents and do
all sorts of optimization with it; nonprefetchable memory access, on the other
hand, can’t be optimized because each access can have side effects, exactly like
I/O ports usually have. Peripherals that map their control registers to a memory
addr ess range declare that range as nonprefetchable, whereas something like
video memory on PCI boards is prefetchable. In this section, we use the word
region to refer to a generic I/O address space, either memory-mapped or port-
mapped.

An interface board reports the size and current location of its regions using config-
uration registers — the six 32-bit registers shown in Figure 15-2, whose symbolic
names are PCI_BASE_ADDRESS_0 thr ough PCI_BASE_ADDRESS_5. Since the
I/O space defined by PCI is a 32-bit address space, it makes sense to use the same
configuration interface for memory and I/O. If the device uses a 64-bit address

* The information lives in one of the low-order bits of the base address PCI registers. The
bits are defined in <linux/pci.h>.
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bus, it can declare regions in the 64-bit memory space by using two consecutive
PCI_BASE_ADDRESS registers for each region, low bits first. It is possible for one
device to offer both 32-bit regions and 64-bit regions.

PCI I/O resour ces in Linux 2.4

In Linux 2.4, the I/O regions of PCI devices have been integrated in the generic
resource management. For this reason, you don’t need to access the configuration
variables in order to know where your device is mapped in memory or I/O space.
The preferr ed inter face for getting region information consists of the following
functions:

unsigned long pci_resource_start(struct pci_dev *dev, int
bar);

The function retur ns the first address (memory address or I/O port number)
associated with one of the six PCI I/O regions. The region is selected by the
integer bar (the base address register), ranging from 0 to 5, inclusive.

unsigned long pci_resource_end(struct pci_dev *dev, int
bar);

The function retur ns the last address that is part of the I/O region number
bar. Note that this is the last usable address, not the first address after the
region.

unsigned long pci_resource_flags(struct pci_dev *dev, int
bar);

This function retur ns the flags associated with this resource.

Resource flags are used to define some features of the individual resource. For PCI
resources associated with PCI I/O regions, the information is extracted from the
base address registers, but can come from elsewhere for resources not associated
with PCI devices.

All resource flags are defined in <linux/ioport.h>; the most important of
them are listed here.

IORESOURCE_IO
IORESOURCE_MEM

If the associated I/O region exists, one and only one of these flags is set.

IORESOURCE_PREFETCH
IORESOURCE_READONLY

The flags tell whether a memory region is prefetchable and/or write protected.
The latter flag is never set for PCI resources.

By making use of the pci_r esource_ functions, a device driver can completely
ignor e the underlying PCI registers, since the system already used them to
structur e resource information.
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Peeking at the base address reg isters

By avoiding direct access to the PCI registers, you gain a better hardware abstrac-
tion and forward portability but can get no backward portability. If you want your
device driver to work with Linux versions older than 2.4, you can’t use the beauti-
ful resource interface and must access the PCI registers directly.

In this section we look at how base address registers behave and how they can be
accessed. All of this is obviously superfluous if you can exploit resource manage-
ment as shown previously.

We won’t go into much detail here about the base address registers, because if
you’r e going to write a PCI driver, you will need the hardware manual for the
device anyway. In particular, we are not going to use either the prefetchable bit or
the two ‘‘type’’ bits of the registers, and we’ll limit the discussion to 32-bit periph-
erals. It’s nonetheless interesting to see how things are usually implemented and
how Linux drivers deal with PCI memory.

The PCI specs state that manufacturers must map each valid region to a config-
urable address. This means that the device must be equipped with a pro-
grammable 32-bit address decoder for each region it implements, and a 64-bit
pr ogrammable decoder must be present in any board that exploits the 64-bit PCI
extension.

The actual implementation and use of a programmable decoder is simplified by
the fact that usually the number of bytes in a region is a power of two, for exam-
ple, 32 bytes, 4 KB, or 2 MB. Moreover, it wouldn’t make much sense to map a
region to an unaligned address; 1 MB regions naturally align at an address that is a
multiple of 1 MB, and 32-byte regions at a multiple of 32. The PCI specification
exploits this alignment; it states that the address decoder must look only at the
high bits of the address bus and that only the high bits are programmable. This
convention also means that the size of any region must be a power of two.

Mapping a PCI region in the physical address space is thus perfor med by setting a
suitable value in the high bits of a configuration register. For example, a 1-MB
region, which has 20 bits of address space, is remapped by setting the high 12 bits
of the register; thus, to make the board respond to the 64-MB to 65-MB address
range, you can write to the register any address in the 0x040xxxxx range. In
practice, only very high addresses are used to map PCI regions.

This ‘‘partial decoding’’ technique has the additional advantage that the software
can determine the size of a PCI region by checking the number of nonpro-
grammable bits in the configuration register. To this end, the PCI standard states
that unused bits must always read as 0. By imposing a minimum size of 8 bytes for
I/O regions and 16 bytes for memory regions, the standard can fit some extra
infor mation into the low bits of the base address registers:
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• Bit 0 is the ‘‘space’’ bit. It is set to 0 if the region maps to the memory address
space, and 1 if it maps to the I/O address space.

• Bits 1 and 2 are the ‘‘type’’ bits: memory regions can be marked as 32-bit
regions, 64-bit regions, or ‘‘32-bit regions that must be mapped below 1 MB’’
(an obsolete x86-specific idea, now unused).

• Bit 3 is the ‘‘prefetchable’’ bit, used for memory regions.

It’s apparent from whence information for the resource flags comes.

Detecting the size of a PCI region is simplified by using several bit masks defined
in <linux/pci.h>: the PCI_BASE_ADDRESS_SPACE bit mask is set to
PCI_BASE_ADDRESS_SPACE_MEMORY if this is a memory region, and to
PCI_BASE_ADDRESS_SPACE_IO if it is an I/O region. To know the actual
addr ess wher e a memory region is mapped, you can AND the PCI register with
PCI_BASE_ADDRESS_MEM_MASK to discard the low bits listed earlier. Use
PCI_BASE_ADDRESS_IO_MASK for I/O regions. Please note that PCI regions
may be allocated in any order by device manufacturers; it’s not uncommon to find
devices that use the first and third regions, leaving the second unused.

Typical code for reporting the current location and size of the PCI regions looks
like the following. This code is part of the pcir egions module, distributed in the
same directory as pcidata; the module creates a /pr oc/pciregions file, using the
code shown earlier to generate data. The program writes a value of all 1s to the
configuration register and reads it back to know how many bits of the registers
can be programmed. Note that while the program probes the configuration regis-
ter, the device is actually remapped to the top of the physical address space,
which is why interrupt reporting is disabled during the probe (to prevent a driver
fr om accessing the region while it is mapped to the wrong place).

Despite the PCI specs stating that the I/O address space is 32 bits wide, a few
manufactur ers, clearly x86 biased, pretend that it is 64 KB and do not implement
all 32 bits of the base address register. That’s why the following code (and the ker-
nel proper) ignores high bits of the address mask for I/O regions.

static u32 addresses[] = {
PCI_BASE_ADDRESS_0,
PCI_BASE_ADDRESS_1,
PCI_BASE_ADDRESS_2,
PCI_BASE_ADDRESS_3,
PCI_BASE_ADDRESS_4,
PCI_BASE_ADDRESS_5,
0

};

int pciregions_read_proc(char *buf, char **start, off_t offset,
int len, int *eof, void *data)

{
/* this macro helps in keeping the following lines short */
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#define PRINTF(fmt, args...) sprintf(buf+len, fmt, ## args)
len=0;

/* Loop through the devices (code not printed in the book) */

/* Print the address regions of this device */
for (i=0; addresses[i]; i++) {

u32 curr, mask, size;
char *type;

pci_read_config_dword(dev, addresses[i],&curr);
cli();
pci_write_config_dword(dev, addresses[i],˜0);
pci_read_config_dword(dev, addresses[i],&mask);
pci_write_config_dword(dev, addresses[i],curr);
sti();

if (!mask)
continue; /* there may be other regions */

/*
* apply the I/O or memory mask to current position.
* note that I/O is limited to 0xffff, and 64-bit is not
* supported by this simple implementation
*/

if (curr & PCI_BASE_ADDRESS_SPACE_IO) {
curr &= PCI_BASE_ADDRESS_IO_MASK;

} else {
curr &= PCI_BASE_ADDRESS_MEM_MASK;

}

len += PRINTF("\tregion %i: mask 0x%08lx, now at 0x%08lx\n",
i, (unsigned long)mask,

(unsigned long)curr);
/* extract the type, and the programmable bits */
if (mask & PCI_BASE_ADDRESS_SPACE_IO) {

type = "I/O"; mask &= PCI_BASE_ADDRESS_IO_MASK;
size = (˜mask + 1) & 0xffff; /* Bleah */

} else {
type = "mem"; mask &= PCI_BASE_ADDRESS_MEM_MASK;

size = ˜mask + 1;
}
len += PRINTF("\tregion %i: type %s, size %i (%i%s)\n", i,

type, size,
(size & 0xfffff) == 0 ? size >> 20 :

(size & 0x3ff) == 0 ? size >> 10 : size,
(size & 0xfffff) == 0 ? "MB" :

(size & 0x3ff) == 0 ? "KB" : "B");
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if (len > PAGE_SIZE / 2) {
len += PRINTF("... more info skipped ...\n");
*eof = 1; return len;

}
}

return len;
}

Her e, for example, is what /pr oc/pciregions reports for our frame grabber:

Bus 0, device 13, fun 0 (id 8086-1223)
region 0: mask 0xfffff000, now at 0xf1000000
region 0: type mem, size 4096 (4KB)

It’s interesting to note that the memory size reported by the program just listed can
be overstated. For instance, /pr oc/pciregions reported that a video device had 16
MB of memory when it actually had only 1. This lie is acceptable because the size
infor mation is used only by the firmwar e to allocate address ranges; region over-
sizing is not a problem for the driver writer who knows the internals of the device
and can correctly deal with the address range assigned by the firmwar e. In this
case, device RAM could be added later without the need to change the behavior of
PCI registers while upgrading the RAM.

Such overstating, when present, is reflected in the resource interface, and
pci_r esource_size will report the overstated size.

PCI Interrupts
As far as interrupts are concer ned, PCI is easy to handle. By the time Linux boots,
the computer’s firmwar e has already assigned a unique interrupt number to the
device, and the driver just needs to use it. The interrupt number is stored in con-
figuration register 60 (PCI_INTERRUPT_LINE), which is one byte wide. This
allows for as many as 256 interrupt lines, but the actual limit depends on the CPU
being used. The driver doesn’t need to bother checking the interrupt number,
because the value found in PCI_INTERRUPT_LINE is guaranteed to be the right
one.

If the device doesn’t support interrupts, register 61 (PCI_INTERRUPT_PIN) is 0;
otherwise, it’s nonzero. However, since the driver knows if its device is interrupt
driven or not, it doesn’t usually need to read PCI_INTERRUPT_PIN.

Thus, PCI-specific code for dealing with interrupts just needs to read the configu-
ration byte to obtain the interrupt number that is saved in a local variable, as
shown in the following code. Otherwise, the information in Chapter 9 applies.

result = pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &myirq);
if (result) { /* deal with error */ }

The rest of this section provides additional information for the curious reader, but
isn’t needed for writing drivers.
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A PCI connector has four interrupt pins, and peripheral boards can use any or all
of them. Each pin is individually routed to the motherboard’s interrupt controller,
so interrupts can be shared without any electrical problems. The interrupt con-
tr oller is then responsible for mapping the interrupt wires (pins) to the processor’s
hardwar e; this platform-dependent operation is left to the controller in order to
achieve platform independence in the bus itself.

The read-only configuration register located at PCI_INTERRUPT_PIN is used to
tell the computer which single pin is actually used. It’s worth remembering that
each device board can host up to eight devices; each device uses a single interrupt
pin and reports it in its own configuration register. Dif ferent devices on the same
device board can use differ ent interrupt pins or share the same one.

The PCI_INTERRUPT_LINE register, on the other hand, is read/write. When the
computer is booted, the firmwar e scans its PCI devices and sets the register for
each device according to how the interrupt pin is routed for its PCI slot. The value
is assigned by the firmwar e because only the firmwar e knows how the mother-
board routes the differ ent interrupt pins to the processor. For the device driver,
however, the PCI_INTERRUPT_LINE register is read-only. Interestingly, recent
versions of the Linux kernel under some circumstances can assign interrupt lines
without resorting to the BIOS.

Handling Hot-Pluggable Devices
During the 2.3 development cycle, the kernel developers overhauled the PCI pro-
gramming interface in order to simplify things and support hot-pluggable devices,
that is, those devices that can be added to or removed from the system while the
system runs (such as CardBus devices). The material introduced in this section is
not available in 2.2 and earlier kernels, but is the preferr ed way to go for newer
drivers.

The basic idea being exploited is that whenever a new device appears during the
system’s lifetime, all available device drivers must check whether the new device is
theirs or not. Therefor e, instead of using the classic init and cleanup entry points
for the driver, the hot-plug-aware device driver must register an object with the
ker nel, and the pr obe function for the object will be asked to check any device in
the system to take hold of it or leave it alone.

This approach has no downside: the usual case of a static device list is handled by
scanning the device list once for each device at system boot; modularized drivers
will just unload as usual if no device is there, and an external process devoted to
monitoring the bus will arrange for them to be loaded if the need arises. This is
exactly how the PCMCIA subsystem has always worked, and having it integrated
in the kernel proper allows for more coher ent handling of similar issues with dif-
fer ent hardwar e envir onments.
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While you may object that hot-pluggable PCI is not common these days, the new
driver-object technique proves very useful even for non-hot-plug drivers that must
handle a number of alternative devices. The initialization code is simplified and
str eamlined because it just needs to check the curr ent device against a list of
known devices, instead of actively searching the PCI bus by looping once around
pci_find_class or looping several times around pci_find_device.

But let’s show some code. The design is built around struct pci_driver,
defined in <linux/pci.h> as usual. The structure defines the operations it
implements, and also includes a list of devices it supports (in order to avoid
unneeded calls to its code). In short, here’s how initialization and cleanup are han-
dled, for a hypothetical ‘‘hot plug PCI module’’ (HPPM):

struct pci_driver hppm_driver = { /* .... */ };

int hppm_init_module(void)
{

return pci_module_init(&hppm_driver);
}

int hppm_cleanup_module(void)
{

pci_unregister_driver(&hppm_driver);
}

module_init(hppm);
module_exit(hppm);

That’s all. It’s incredibly easy. The hidden magic is split between the implementa-
tion of pci_module_init and the internals of the driver structure. We’d better follow
a top-down path and start by introducing the relevant functions:

int pci_register_driver(struct pci_driver *drv);
This function inserts the driver in a linked list that is maintained by the system.
That’s how compiled-in device drivers perfor m their initialization; it is not
used directly by modularized code. The retur n value is a count of devices
being handled by the driver.

int pci_module_init(struct pci_driver *drv);
This function is a wrapper over the previous one and is meant to be called by
modularized initialization code. It retur ns 0 for success and -ENODEV if no
device has been found. This is meant to prevent a module from staying in
memory if no device is currently there (expecting the module to be auto-
loaded later if a matching device appears). Since this function is defined as
inline, its behavior actually changes depending on whether MODULE is
defined or not; it can thus be used as a drop-in replacement for pci_r egis-
ter_driver even for nonmodularized code.
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void pci_unregister_driver(struct pci_driver *drv);
This function removes the driver from the linked list of known drivers.

void pci_insert_device(struct pci_dev *dev, struct pci_bus
*bus);

void pci_remove_device(struct pci_dev *dev);
These two functions implement the flip side of the hot-plug system; they are
called by the event handlers associated with plug/unplug events reported by a
bus. The dev structur e is used to scan the list of register ed drivers. There is no
need for device drivers to call them, and they are listed here to help give a
complete view of the design around PCI drivers.

struct pci_driver *pci_dev_driver(const struct pci_dev
*dev);

This is a utility function to look up the driver associated with a device (if any).
It’s used by /pr oc/bus support functions and is not meant to be called by
device drivers.

The pci_dr iver structure

The pci_driver data structure is the core of hot-plug support, and we’ll
describe it in detail to complete the whole picture. The structure is pretty small,
being made of just a few methods and a device ID list.

struct list_head node;
Used to manage a list of drivers. It’s an example of generic lists, which were
intr oduced in “Linked Lists” in Chapter 10; it’s not meant to be used by device
drivers.

char *name;
The name of the driver; it has informational value.

const struct pci_device_id *id_table;
An array that lists which devices are supported by this driver. The pr obe
method will be called only for devices that match one of the items in the
array. If the field is specified as NULL, the pr obe function will be called for
every device in the system. If the field is not NULL, the last item in the array
must be set to 0.

int (*probe)(struct pci_dev *dev, const struct pci_device_id
*id);

The function must initialize the device it is passed and retur n 0 in case of suc-
cess or a negative error code (actually, the error code is not currently used,
but it’s safe to retur n an errno value anyway instead of just -1).
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void (*remove)(struct pci_dev *dev);
The remove method is used to tell the device driver that it should shut down
the device and stop dealing with it, releasing any associated storage. The func-
tion is called either when the device is removed from the system or when the
driver calls pci_unr egister_driver in order to be unloaded from the system.
Unlike pr obe, this method is specific to one PCI device, not to the whole set
handled by this driver; the specific device is passed as an argument.

int (*suspend)(struct pci_dev *dev, u32 state);
int (*resume)(struct pci_dev *dev);

These are the power-management functions for PCI devices. If the device
driver supports power-management features, these two methods should be
implemented to shut down and reactivate the device; they are called by higher
layers at proper times.

The PCI driver object is quite straightforward and a pleasure to use. We think
ther e’s little to add to the field enumeration, because normal hardware-handling
code fits well in this abstraction without the need to tweak it in any way.

The only missing piece left to describe is the struct pci_device_id object.
The structure includes several ID fields, and the actual device that needs to be
driven is matched against all of the fields. Any field can be set to PCI_ANY_ID to
tell the system to effectively ignore it.

unsigned int vendor, device;
The vendor and device IDs of the device this driver is interested in. The val-
ues are matched against registers 0x00 and 0x02 of the PCI configuration
space.

unsigned int subvendor, subdevice;
The sub-IDs, matched against registers 0x2C and 0x2E of the PCI configuration
space. They are used in matching the device because sometimes a ven-
dor/device ID pair identifies a group of devices and the driver can only work
with a few items in the group.

unsigned int class, class_mask;
If the device driver wants to deal with an entire class or a subset thereof, it
can set the previous fields to PCI_ANY_ID and use class identifiers instead.
The class_mask is present to allow both for drivers that want to deal with a
base class and for drivers that are only interested in a subclass. If device selec-
tion is perfor med using vendor/device identifiers, both these fields must be set
to 0 (not to PCI_ANY_ID, since the check is perfor med thr ough a logical
AND with the mask field).
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unsigned long driver_data;
A field left for use by the device driver. It can, for example, differ entiate
between the various devices at compilation time, avoiding tedious arrays of
conditional tests at runtime.

It’s interesting to note that the pci_device_id data structure is just a hint to the
system; the actual device driver is still free to retur n 0 from its pr obe method, thus
refusing the device even if it matched the array of device identifiers. Thus if, for
example, there exist several devices with the same signature, the driver can look
for further information before choosing whether it is able to drive the peripheral
or not.

Hardware Abstractions
We complete the discussion of PCI by taking a quick look at how the system han-
dles the plethora of PCI controllers available on the marketplace. This is just an
infor mative section, meant to show to the curious reader how the object-oriented
layout of the kernel extends down to the lowest levels.

The mechanism used to implement hardware abstraction is the usual structure
containing methods. It’s a powerful technique that adds just the minimal overhead
of derefer encing a pointer to the normal overhead of a function call. In the case of
PCI management, the only hardware-dependent operations are the ones that read
and write configuration registers, because everything else in the PCI world is
accomplished by directly reading and writing the I/O and memory address spaces,
and those are under direct control of the CPU.

The relevant structure for hardware abstraction, thus, includes only six fields:

struct pci_ops {
int (*read_byte)(struct pci_dev *, int where, u8 *val);
int (*read_word)(struct pci_dev *, int where, u16 *val);
int (*read_dword)(struct pci_dev *, int where, u32 *val);
int (*write_byte)(struct pci_dev *, int where, u8 val);
int (*write_word)(struct pci_dev *, int where, u16 val);
int (*write_dword)(struct pci_dev *, int where, u32 val);

};

The structure is defined in <linux/pci.h> and used by drivers/pci/pci.c, wher e
the actual public functions are defined.

The six functions that act on the PCI configuration space have more overhead than
der efer encing a pointer, because they use cascading pointers due to the high
object-orientedness of the code, but the overhead is not an issue in operations that
ar e per formed quite rarely and never in speed-critical paths. The actual implemen-
tation of pci_r ead_config_byte(dev), for instance, expands to:

The PCI Interface
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dev->bus->ops->read_byte();

The various PCI buses in the system are detected at system boot, and that’s when
the struct pci_bus items are created and associated with their features,
including the ops field.

Implementing hardware abstraction via ‘‘hardware operations’’ data structures is
typical in the Linux kernel. One important example is the struct
alpha_machine_vector data structure. It is defined in <asm-
alpha/machvec.h> and it takes care of everything that may change across dif-
fer ent Alpha-based computers.

A Look Back: ISA
The ISA bus is quite old in design and is a notoriously poor perfor mer, but it still
holds a good part of the market for extension devices. If speed is not important
and you want to support old motherboards, an ISA implementation is preferable to
PCI. An additional advantage of this old standard is that if you are an electr onic
hobbyist, you can easily build your own ISA devices, something definitely not pos-
sible with PCI.

On the other hand, a great disadvantage of ISA is that it’s tightly bound to the PC
architectur e; the interface bus has all the limitations of the 80286 processor and
causes endless pain to system programmers. The other great problem with the ISA
design (inherited from the original IBM PC) is the lack of geographical addressing,
which has led to many problems and lengthy unplug-rejumper-plug-test cycles to
add new devices. It’s interesting to note that even the oldest Apple II computers
wer e alr eady exploiting geographical addressing, and they featured jumperless
expansion boards.

Despite its great disadvantages, ISA is still used in several unexpected places. For
example, the VR41xx series of MIPS processors used in several palmtops features
an ISA-compatible expansion bus, strange as it seems. The reason behind these
unexpected uses of ISA is the extreme low cost of some legacy hardware, like
8390-based Ethernet cards, so a CPU with ISA electrical signaling can easily exploit
the awful but cheap PC devices.

Hardware Resour ces
An ISA device can be equipped with I/O ports, memory areas, and interrupt lines.

Even though the x86 processors support 64 kilobytes of I/O port memory (i.e., the
pr ocessor asserts 16 address lines), some old PC hardware decodes only the low-
est 10 address lines. This limits the usable address space to 1024 ports, because
any address in the range 1 KB to 64 KB will be mistaken for a low address by any
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device that decodes only the low address lines. Some peripherals circumvent this
limitation by mapping only one port into the low kilobyte and using the high
addr ess lines to select between differ ent device registers. For example, a device
mapped at 0x340 can safely use port 0x740, 0xB40, and so on.

If the availability of I/O ports is limited, memory access is still worse. An ISA
device can use only the memory range between 640 KB and 1 MB and between 15
MB and 16 MB. The 640-KB to 1-MB range is used by the PC BIOS, by VGA-com-
patible video boards, and by various other devices, leaving little space available
for new devices. Memory at 15 MB, on the other hand, is not directly supported
by Linux, and hacking the kernel to support it is a waste of programming time
nowadays.

The third resource available to ISA device boards is interrupt lines. A limited num-
ber of interrupt lines are routed to the ISA bus, and they are shar ed by all the
inter face boards. As a result, if devices aren’t properly configured, they can find
themselves using the same interrupt lines.

Although the original ISA specification doesn’t allow interrupt sharing across
devices, most device boards allow it.* Interrupt sharing at the software level is
described in ‘‘Interrupt Sharing,’’ in Chapter 9.

ISA Prog ramming
As far as programming is concerned, there’s no specific aid in the kernel or the
BIOS to ease access to ISA devices (like there is, for example, for PCI). The only
facilities you can use are the registries of I/O ports and IRQ lines, described in
‘‘Using Resources’’ (Chapter 2) and ‘‘Installing an Interrupt Handler’’ (Chapter 9).

The programming techniques shown throughout the first part of this book apply to
ISA devices; the driver can probe for I/O ports, and the interrupt line must be
autodetected with one of the techniques shown in ‘‘Autodetecting the IRQ Num-
ber,’’ in Chapter 9.

The helper functions isa_r eadb and friends have been briefly introduced in “Using
I/O Memory” in Chapter 8 and there’s nothing more to say about them.

* The problem with interrupt sharing is a matter of electrical engineering: if a device drives
the signal line inactive—by applying a low-impedance voltage level—the interrupt can’t
be shared. If, on the other hand, the device uses a pull-up resistor to the inactive logic
level, then sharing is possible. This is nowadays the norm. However, ther e’s still a poten-
tial risk of losing interrupt events since ISA interrupts are edge triggered instead of level
trigger ed. Edge-trigger ed interrupts are easier to implement in hardware but don’t lend
themselves to safe sharing.

A Look Back: ISA
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The Plug-and-Play Specification
Some new ISA device boards follow peculiar design rules and requir e a special ini-
tialization sequence intended to simplify installation and configuration of add-on
inter face boards. The specification for the design of these boards is called Plug
and Play (PnP) and consists of a cumbersome rule set for building and configuring
jumperless ISA devices. PnP devices implement relocatable I/O regions; the PC’s
BIOS is responsible for the relocation — reminiscent of PCI.

In short, the goal of PnP is to obtain the same flexibility found in PCI devices
without changing the underlying electrical interface (the ISA bus). To this end, the
specs define a set of device-independent configuration registers and a way to geo-
graphically address the interface boards, even though the physical bus doesn’t
carry per-board (geographical) wiring—every ISA signal line connects to every
available slot.

Geographical addressing works by assigning a small integer, called the Car d Select
Number (CSN), to each PnP peripheral in the computer. Each PnP device features
a unique serial identifier, 64 bits wide, that is hardwired into the peripheral board.
CSN assignment uses the unique serial number to identify the PnP devices. But the
CSNs can be assigned safely only at boot time, which requir es the BIOS to be PnP
awar e. For this reason, old computers requir e the user to obtain and insert a spe-
cific configuration diskette even if the device is PnP capable.

Inter face boards following the PnP specs are complicated at the hardware level.
They are much more elaborate than PCI boards and requir e complex software. It’s
not unusual to have difficulty installing these devices, and even if the installation
goes well, you still face the perfor mance constraints and the limited I/O space of
the ISA bus. It’s much better in our opinion to install PCI devices whenever possi-
ble and enjoy the new technology instead.

If you are inter ested in the PnP configuration software, you can browse
drivers/net/3c509.c, whose probing function deals with PnP devices. Linux 2.1.33
added some initial support for PnP as well, in the directory drivers/pnp.

PC/104 and PC/104+
In the industrial world, two bus architectur es ar e quite fashionable currently:
PC/104 and PC/104+. Both are standard in PC-class single-board computers.

Both standards refer to specific form factors for printed circuit boards as well as
electrical/mechanical specifications for board interconnections. The practical
advantage of these buses is that they allow circuit boards to be stacked vertically
using a plug-and-socket kind of connector on one side of the device.
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The electrical and logical layout of the two buses is identical to ISA (PC/104) and
PCI (PC/104+), so software won’t notice any differ ence between the usual desktop
buses and these two.

Other PC Buses
PCI and ISA are the most commonly used peripheral interfaces in the PC world,
but they aren’t the only ones. Here’s a summary of the features of other buses
found in the PC market.

MCA
Micr o Channel Architectur e (MCA) is an IBM standard used in PS/2 computers and
some laptops. The main problem with Micro Channel is the lack of documenta-
tion, which has resulted in a lack of Linux support for MCA up until recently.

At the hardware level, Micro Channel has more featur es than ISA. It supports mul-
timaster DMA, 32-bit address and data lines, shared interrupt lines, and geographi-
cal addressing to access per-board configuration registers. Such registers are called
Pr ogrammable Option Select, or POS, but they don’t have all the features of the
PCI registers. Linux support for Micro Channel includes functions that are exported
to modules.

A device driver can read the integer value MCA_bus to see if it is running on a
Micr o Channel computer, similar to how it uses pci_ present if it’s interested in PCI
support. If the symbol is a prepr ocessor macr o, the macro
MCA_bus_ _is_a_macro is defined as well. If MCA_bus_ _is_a_macro is
undefined, then MCA_bus is an integer variable exported to modularized code.
Both MCA_BUS and MCA_bus_ _is_a_macro ar e defined in <asm/proces-
sor.h>.

EISA
The Extended ISA (EISA) bus is a 32-bit extension to ISA, with a compatible inter-
face connector; ISA device boards can be plugged into an EISA connector. The
additional wires are routed under the ISA contacts.

Like PCI and MCA, the EISA bus is designed to host jumperless devices, and it has
the same features as MCA: 32-bit address and data lines, multimaster DMA, and
shar ed interrupt lines. EISA devices are configur ed by software, but they don’t
need any particular operating system support. EISA drivers already exist in the
Linux kernel for Ethernet devices and SCSI controllers.

An EISA driver checks the value EISA_bus to determine if the host computer car-
ries an EISA bus. Like MCA_bus, EISA_bus is either a macro or a variable,
depending on whether EISA_bus_ _is_a_macro is defined. Both symbols are
defined in <asm/processor.h>.

Other PC Buses
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As far as the driver is concerned, there is no special support for EISA in the kernel,
and the programmer must deal with ISA extensions by himself. The driver uses
standard EISA I/O operations to access the EISA registers. The drivers that are
alr eady in the kernel can be used as sample code.

VLB
Another extension to ISA is the VESA Local Bus (VLB) interface bus, which
extends the ISA connectors by adding a third lengthwise slot. A device can just
plug into this extra connector (without plugging in the two associated ISA connec-
tors), because the VLB slot duplicates all important signals from the ISA connec-
tors. Such ‘‘standalone’’ VLB peripherals not using the ISA slot are rar e, because
most devices need to reach the back panel so that their external connectors are
available.

The VESA bus is much more limited in its capabilities than the EISA, MCA, and PCI
buses and is disappearing from the market. No special kernel support exists for
VLB. However, both the Lance Ethernet driver and the IDE disk driver in Linux 2.0
can deal with VLB versions of their devices.

SBus
While most computers nowadays are equipped with a PCI or ISA interface bus,
most not-so-recent SPARC-based workstations use SBus to connect their peripher-
als.

SBus is quite an advanced design, although it has been around for a long time. It
is meant to be processor independent (even though only SPARC computers use it)
and is optimized for I/O peripheral boards. In other words, you can’t plug addi-
tional RAM into SBus slots (RAM expansion boards have long been forgotten even
in the ISA world, and PCI does not support them either). This optimization is
meant to simplify the design of both hardware devices and system software, at the
expense of some additional complexity in the motherboard.

This I/O bias of the bus results in peripherals using virtual addr esses to transfer
data, thus bypassing the need to allocate a contiguous DMA buffer. The mother-
board is responsible for decoding the virtual addresses and mapping them to
physical addresses. This requir es attaching an MMU (memory management unit) to
the bus; the chipset in charge of the task is called IOMMU. Although somehow
mor e complex than using physical addresses on the interface bus, this design is
gr eatly simplified by the fact that SPARC processors have always been designed by
keeping the MMU core separate from the CPU core (either physically or at least
conceptually). Actually, this design choice is shared by other smart processor
designs and is beneficial overall. Another feature of this bus is that device boards
exploit massive geographical addressing, so there’s no need to implement an
addr ess decoder in every peripheral or to deal with address conflicts.
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SBus peripherals use the Forth language in their PROMs to initialize themselves.
Forth was chosen because the interpreter is lightweight and therefor e can be easily
implemented in the firmwar e of any computer system. In addition, the SBus speci-
fication outlines the boot process, so that compliant I/O devices fit easily into the
system and are recognized at system boot. This was a great step to support multi-
platfor m devices; it’s a completely differ ent world from the PC-centric ISA stuff we
wer e used to. However, it didn’t succeed for a variety of commercial reasons.

Although current kernel versions offer quite full-featured support for SBus devices,
the bus is so little used nowadays that it’s not worth covering in detail here. Inter-
ested readers can look at source files in ar ch/spar c/kernel and ar ch/spar c/mm.

NuBus
Another interesting but forgotten interface bus is NuBus. It is found on older Mac
computers (those with the M68k family of CPUs).

All of the bus is memory-mapped (like everything with the M68k), and the devices
ar e only geographically addressed. This is good and typical of Apple, as the much
older Apple II already had a similar bus layout. What is bad is that it’s almost
impossible to find documentation on NuBus, due to the close-everything policy
Apple has always followed with its Mac computers (and unlike the previous Apple
II, whose source code and schematics were available at little cost).

The file drivers/nubus/nubus.c includes almost everything we know about this
bus, and it’s interesting reading; it shows how much hard reverse engineering
developers had to do.

Exter nal Buses
One of the most recent entries in the field of interface buses is the whole class of
exter nal buses. This includes USB, FireWir e, and IEEE1284 (parallel-port-based
exter nal bus). These interfaces are somewhat similar to older and not-so-external
technology such as PCMCIA/CardBUS and even SCSI.

Conceptually, these buses are neither full-featured interface buses (like PCI is) nor
dumb communication channels (like the serial ports are). It’s hard to classify the
softwar e that is needed to exploit their features, as it’s usually split into two levels:
the driver for the hardware contr oller (like drivers for PCI SCSI adaptors or PCI
contr ollers intr oduced earlier in “The PCI Interface”) and the driver for the specific
‘‘client’’ device (like sd.c handles generic SCSI disks and so-called PCI drivers deal
with cards plugged in the bus).

But there’s another problem with these new buses. With the exception of USB,
their support is either not mature or is somehow in need of a revision (the latter
condition applies especially to the SCSI kernel subsystem, which is reported to be
far from optimal by several of the best kernel hackers).

Exter nal Buses
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USB
USB, the Universal Serial Bus, is the only external bus that is currently mature
enough to deserve some discussion. Topologically, a USB subsystem is not laid
out as a bus; it is rather a tree built out of several point-to-point links. The links
ar e four-wir e cables (ground, power, and two signal wires) that connect a device
and a hub (just like twisted pair Ethernet). Usually, PC-class computers are
equipped with a ‘‘root hub’’ and offer two plugs for external connections. You can
connect either devices or additional hubs to the plugs.

The bus is nothing exciting at the technological level, as it’s a single-master imple-
mentation in which the host computer polls the various devices. Despite this
intrinsic limit of the bus, it has interesting features, such as the ability for a device
to request a fixed bandwidth for its data transfers in order to reliably support
video and audio I/O. Another important feature of USB is that it acts merely as a
communication channel between the device and the host, without requiring spe-
cific meaning or structure in the data it delivers.*

This is unlike SCSI communication and like standard serial media.

These features, together with the inherent hot-plug capability of the design, make
USB a handy low-cost mechanism to connect (and disconnect) several devices to
the computer without the need to shut the system down, open the cover, and
swear over screws and wires. USB is becoming popular in the PC market but
remains unsuitable for high-speed devices because its maximum transfer rate is 12
Mb per second.

USB is supported by version 2.2.18 (and later) and 2.4.x of the Linux kernel. The
USB controller in any computer belongs to one of two kinds, and both drivers are
part of the standard kernel.

Wr iting a USB Driver
As far as ‘‘client’’ device drivers are concer ned, the approach to USB is similar to
the pci_driver layout: the device driver registers its driver object with the USB
subsystem, and it later uses vendor and device identifiers to identify insertion of its
hardwar e.

The relevant data structure is struct usb_driver, and its typical use is as fol-
lows:

#include <linux/usb.h>

static struct usb_driver sample_usb_driver = {

* Actually, some structuring is there, but it mostly reduces to the requir ement for the com-
munication to fit into one of a few predefined classes: a keyboard won’t allocate band-
width, for example, while a camera will.
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name: "sample",
probe: sample_probe,
disconnect: sample_disconnect,

};

int init_module(void)
{

/* just register it; returns 0 or error code */
return usb_register(&sample_usb_driver);

}

void cleanup_module(void)
{

usb_deregister(&sample_usb_driver);
}

The pr obe function declared in the data structure is called by the USB kernel sub-
system whenever a new device is connected to the system (or when the driver is
loaded if any unclaimed devices are alr eady connected to the bus).

Each device identifies itself by providing the system with vendor, device, and class
identifiers, similar to what PCI devices do. The task of sample_ probe, ther efor e, is
looking into the information it receives and claiming ownership of the device if
suitable.

To claim ownership, the function retur ns a non-NULL pointer that will be used to
identify the device. This will usually be a pointer to the device-specific data struc-
tur e that is at the core of the device driver as a whole.

To exchange information with the device, you’ll then need to tell the USB subsys-
tem how to communicate. This task is perfor med by filling a struct urb (for
USB request block) and by passing it to usb_submit_urb. This step is usually per-
for med by the open method associated with the device special file, or an equiva-
lent function.

Note that not every USB driver needs to implement its own device special files by
requesting a major number and so on. Devices that fall within a class for which
the kernel offers generalized support won’t have their own device files and will
report their information through other means.

An example of generalized management is input handling. If your USB device is
an input device (such as a graphic tablet), you won’t allocate a major number but
rather will register your hardware by calling input_r egister_device. In this case, the
open callback of your input device is in charge of establishing communication by
calling usb_submit_urb.

A USB input driver, ther efor e, must rely on several other system blocks, and most
of them can be modules as well. The module-stacking architectur e for USB input
device drivers is shown in Figure 15-3.

Exter nal Buses
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keybdev.omousedev.ousbkbd.ousbmouse.ousb-uhci.o

usb.core.o input.o

Linux Kernel

Figur e 15-3. Modules involved in USB input management

You’ll find a complete USB device driver in the sample files available on the
O’Reilly FTP site. It is a very simplified keyboard and mouse driver that shows
how to lay out a complete USB driver. To keep it simple, it doesn’t use the input
subsystem to report events but rather posts messages about them using printk.
You’ll need at least a USB keyboard or a USB mouse to test the driver.

Ther e’s quite a lot of documentation on USB available currently, including two
articles by one of your authors, whose style and technical level resembles that of
Linux Device Drivers. These articles even include a more complete USB sample
device driver that uses the input kernel subsystem and can be run by alternative
means if you have no USB devices handy. You can find them at
http://www.linux.it/ker neldocs.

Backward Compatibility
The current implementation of PCI support in the kernel was not available with
version 2.0 of the kernel. With 2.0 the support API was much more raw, because it
lacked the various objects that have been described in this chapter.

The six functions to access the configuration space received as arguments the
16-bit low-level key to the PCI device instead of using a pointer to struct
pci_dev. Also, you had to include <asm/pcibios.h> befor e being able to
read or write to the configuration space.

Fortunately, dealing with the differ ence is not a big problem, and if you include
sysdep.h you’ll be able to use 2.4 semantics even when compiling under 2.0. PCI
support for version 2.0 is available in the header pci-compat.h, automatically
included by sysdep.h when you compile under 2.0. The header, as distributed,
implements the most important functions used to work with the PCI bus.
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If you use pci-compat.h to develop drivers that work all the way from 2.0 through
2.4, you must call pci_r elease_device when you are done with a pci_dev item.
This happens because the fake pci_dev structur es cr eated by the header are allo-
cated with kmalloc, wher eas the real structures of 2.2 and 2.4 are static resources
in the kernel proper. The extra function is defined to do nothing by sysdep.h
whenever compiling for 2.2 or 2.4, so it does no harm. Feel free to look at pcir e-
gions.c or pcidata.c to see portable code in action.

Another relevant differ ence in 2.0 is /pr oc support for PCI. There was no
/pr oc/bus/pci file hierarchy (and no /pr oc/bus at all, actually), only a single
/pr oc/pci file. It was meant more for human reading than for machine reading, and
it was not very readable anyway. Under 2.2 it was possible to select a ‘‘backward-
compatible /pr oc/pci’’ at compile time, but the obsolete file was completely
removed in version 2.4.

The concept of hot-pluggable PCI drivers (and struct pci_driver) is new as
of version 2.4. We do not offer backward-compatible macros to use the feature on
older kernels.

Quick Reference
This section, as usual, summarizes the symbols introduced in the chapter.

#include <linux/config.h>
CONFIG_PCI

This macro should be used to conditionally compile PCI-related code. When a
PCI module is loaded to a non-PCI kernel, insmod complains about several
symbols being unresolved.

#include <linux/pci.h>
This header includes symbolic names for the PCI registers and several vendor
and device ID values.

int pci_present(void);
This function retur ns a boolean value that tells whether the computer we’re
running on has PCI capabilities or not.

struct pci_dev;
struct pci_bus;
struct pci_driver;
struct pci_device_id;

These structures repr esent the objects involved in PCI management. The con-
cept of pci_driver is new as of Linux 2.4, and struct pci_device_id
is central to it.

Quick Reference
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struct pci_dev *pci_find_device(unsigned int vendor,
unsigned int device, struct pci_dev *from);

struct pci_dev *pci_find_class(unsigned int class, struct
pci_dev *from);

These functions are used to look up the device list looking for devices with a
specific signature or belonging to a specific class. The retur n value is NULL if
none is found. from is used to continue a search; it must be NULL the first
time you call either function, and it must point to the device just found if you
ar e searching for more devices.

int pci_read_config_byte(struct pci_dev *dev, int where, u8
*val);

int pci_read_config_word(struct pci_dev *dev, int where, u16
*val);

int pci_read_config_dword(struct pci_dev *dev, int where,
u32 *val);

int pci_write_config_byte (struct pci_dev *dev, int where,
u8 *val);

int pci_write_config_word (struct pci_dev *dev, int where,
u16 *val);

int pci_write_config_dword (struct pci_dev *dev, int where,
u32 *val);

These functions are used to read or write a PCI configuration register.
Although the Linux kernel takes care of byte ordering, the programmer must
be careful about byte ordering when assembling multibyte values from indi-
vidual bytes. The PCI bus is little-endian.

int pci_register_driver(struct pci_driver *drv);
int pci_module_init(struct pci_driver *drv);
void pci_unregister_driver(struct pci_driver *drv);

These functions support the concept of a PCI driver. Wher eas compiled-in
code uses pci_r egister_driver (which retur ns the number of devices that are
managed by this driver), modularized code should call pci_module_init
instead (which retur ns 0 if one or more devices are ther e and -ENODEV if no
suitable device is plugged into the system).

#include <linux/usb.h>
#include <linux/input.h>

The former header is where everything related to USB resides and must be
included by USB device drivers. The latter defines the core of the input sub-
system. Neither of them is available in Linux 2.0.
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struct usb_driver;
int usb_register(struct usb_driver *d);
void usb_deregister(struct usb_driver *d);

usb_driver is the main building block of USB device drivers. It must be
register ed and unregister ed at module load and unload time.

Quick Reference
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CHAPTER SIXTEEN

PHYSICAL LAY OUT OF
THE KERNEL SOURCE

So far, we’ve talked about the Linux kernel from the perspective of writing device
drivers. Once you begin playing with the kernel, however, you may find that you
want to “understand it all.” In fact, you may find yourself passing whole days navi-
gating through the source code and grepping your way through the source tree to
uncover the relationships among the differ ent parts of the kernel.

This kind of “heavy grepping” is one of the tasks your authors perfor m quite
often, and it is an efficient way to retrieve information from the source code.
Nowadays you can even exploit Internet resources to understand the kernel
source tree; some of them are listed in the Preface. But despite Internet resources,
wise use of gr ep,* less, and possibly ctags or etags can still be the best way to
extract information from the kernel sources.

In our opinion, acquiring a bit of a knowledge base before sitting down in front of
your preferr ed shell prompt can be helpful. Therefor e, this chapter presents a
quick overview of the Linux kernel source files based on version 2.4.2. If you’re
inter ested in other versions, some of the descriptions may not apply literally.
Whole sections may be missing (like the drivers/media dir ectory that was intro-
duced in 2.4.0-test6 by moving various preexisting drivers to this new directory).
We hope the following information is useful, even if not authoritative, for brows-
ing other versions of the kernel.

Every pathname is given relative to the source root (usually /usr/sr c/linux), while
filenames with no directory component are assumed to reside in the “current”
dir ectory—the one being discussed. Header files (when named with < and >
angle brackets) are given relative to the include dir ectory of the source tree. We
won’t dissect the Documentation dir ectory, as its role is self-explanatory.

* Usually, find and xar gs ar e needed to build a command line for gr ep. Although not triv-
ial, proficient use of Unix tools is outside of the scope of this book.
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Booting the Ker nel
The usual way to look at a program is to start where execution begins. As far as
Linux is concerned, it’s hard to tell wher e execution begins—it depends on how
you define “begins.”

The architectur e-independent starting point is start_ker nel in init/main.c. This
function is invoked from architectur e-specific code, to which it never retur ns. It is
in charge of spinning the wheel and can thus be considered the “mother of all
functions,” the first breath in the computer’s life. Before start_ker nel, ther e was
chaos.

By the time start_ker nel is invoked, the processor has been initialized, protected
mode* has been entered, the processor is executing at the highest privilege level
(sometimes called supervisor mode), and interrupts are disabled. The start_ker nel
function is in charge of initializing all the kernel data structures. It does this by
calling external functions to perfor m subtasks, since each setup function is defined
in the appropriate kernel subsystem.

The first function called by start_ker nel, after acquiring the kernel lock and print-
ing the Linux banner string, is setup_ar ch. This allows platform-specific C-lan-
guage code to run; setup_ar ch receives a pointer to the local command_line
pointer in start_ker nel, so it can make it point to the real (platform-dependent)
location where the command line is stored. As the next step, start_ker nel passes
the command line to parse_options (defined in the same init/main.c file) so that
the boot options can be honored.

Command-line parsing is perfor med by calling handler functions associated with
each kernel argument (for example, video= is associated with video_setup). Each
function usually ends up setting variables that are used later, when the associated
facility is initialized. The internal organization of command-line parsing is similar
to the init calls mechanism, described later.

After parsing, start_ker nel activates the various basic functionalities of the system.
This includes setting up interrupt tables, activating the timer interrupt, and initializ-
ing the console and memory management. All of this is perfor med by functions
declar ed elsewher e in platform-specific code. The function continues by initializ-
ing less basic kernel subsystems, including buffer management, signal handling,
and file and inode management.

Finally, start_ker nel forks the init ker nel thr ead (which gets 1 as a process ID) and
executes the idle function (again, defined in architectur e-specific code).

The initial boot sequence can thus be summarized as follows:

* This concept only makes sense on the x86 architectur e. Mor e matur e architectur es don’t
find themselves in a limited backward-compatible mode when they power up.

Booting the Ker nel
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1. System fir mware or a boot loader arranges for the kernel to be placed at the
pr oper addr ess in memory. This code is usually external to Linux source code.

2. Architectur e-specific assembly code perfor ms very low-level tasks, like initial-
izing memory and setting up CPU registers so that C code can run flawlessly.
This includes selecting a stack area and setting the stack pointer accordingly.
The amount of such code varies from platform to platfor m; it can range from a
few dozen lines up to a few thousand lines.

3. start_ker nel is called. It acquires the kernel lock, prints the banner, and calls
setup_ar ch.

4. Architectur e-specific C-language code completes low-level initialization and
retrieves a command line for start_ker nel to use.

5. start_ker nel parses the command line and calls the handlers associated with
the keyword it identifies.

6. start_ker nel initializes basic facilities and forks the init thr ead.

It is the task of the init thr ead to perfor m all other initialization. The thread is part
of the same init/main.c file, and the bulk of the initialization (init) calls are per-
for med by do_basic_setup. The function initializes all bus subsystems that it finds
(PCI, SBus, and so on). It then invokes do_initcalls; device driver initialization is
per formed as part of the initcall pr ocessing.

The idea of init calls was added in version 2.3.13 and is not available in older ker-
nels; it is designed to avoid hairy #ifdef conditionals all over the initialization
code. Every optional kernel feature (device driver or whatever) must be initialized
only if configured in the system, so the call to initialization functions used to be
surr ounded by #ifdef CONFIG_FEATURE and #endif. With init calls, each
optional feature declar es its own initialization function; the compilation process
then places a refer ence to the function in a special ELF section. At boot time,
do_initcalls scans the ELF section to invoke all the relevant initialization functions.

The same idea is applied to command-line arguments. Each driver that can receive
a command-line argument at boot time defines a data structure that associates the
argument with a function. A pointer to the data structure is placed into a separate
ELF section, so parse_option can scan this section for each command-line option
and invoke the associated driver function, if a match is found. The remaining argu-
ments end up in either the environment or the command line of the init pr ocess.
All the magic for init calls and ELF sections is part of <linux/init.h>.

Unfortunately, this init call idea works only when no ordering is requir ed acr oss
the various initialization functions, so a few #ifdefs are still present in
init/main.c.

508

22 June 2001 16:44



It’s interesting to see how the idea of init calls and its application to the list of
command-line arguments helped reduce the amount of conditional compilation in
the code:

morgana% grep -c ifdef linux-2.[024]/init/main.c
linux-2.0/init/main.c:120
linux-2.2/init/main.c:246
linux-2.4/init/main.c:35

Despite the huge addition of new features over time, the amount of conditional
compilation dropped significantly in 2.4 with the adoption of init calls. Another
advantage of this technique is that device driver maintainers don’t need to patch
main.c every time they add support for a new command-line argument. The addi-
tion of new features to the kernel has been greatly facilitated by this technique
and there are no mor e hairy cross refer ences all over the boot code. But as a side
ef fect, 2.4 can’t be compiled into older file formats that are less flexible than ELF.
For this reason, uClinux* developers switched from COFF to ELF while porting
their system from 2.0 to 2.4.

Another side effect of extensive use of ELF sections is that the final pass in compil-
ing the kernel is not a conventional link pass as it used to be. Every platform now
defines exactly how to link the kernel image (the vmlinux file) by means of an
ldscript file; the file is called vmlinux.lds in the source tree of each platform. Use
of ld scripts is described in the standard documentation for the binutils package.

Ther e is yet another advantage to putting the initialization code into a special sec-
tion. Once initialization is complete, that code is no longer needed. Since this code
has been isolated, the kernel is able to dump it and reclaim the memory it occu-
pies.

Before Booting
In the previous section, we treated start_ker nel as the first kernel function. How-
ever, you might be interested in what happens befor e that point, so we’ll step back
to take a quick look at that topic. The uninterested reader can jump directly to the
next section.

As suggested, the code that runs before start_ker nel is, for the most part, assembly
code, but several platforms call library C functions from there (most commonly,
inflate, the core of gunzip).

On most common platforms, the code that runs before start_ker nel is mainly
devoted to moving the kernel around after the computer’s firmwar e (possibly with

* uClinux is a version of the Linux kernel that can run on processors without an MMU.
This is typical in the embedded world, and several M68k and ARM processors have no
hardwar e memory management. uClinux stands for microcontr oller Linux, since it’s
meant to run on microcontr ollers rather than full-fledged computers.

Before Booting
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the help of a boot loader) has loaded it into RAM from some other storage, such
as a local disk or a remote workstation over the network.

It’s not uncommon, though, to find some rudimentary boot loader code inside the
boot dir ectory of an architectur e-specific tr ee. For example, ar ch/i386/boot
includes code that can load the rest of the kernel off a floppy disk and activate it.
The file bootsect.S that you will find there, however, can run only off a floppy disk
and is by no means a complete boot loader (for example, it is unable to pass a
command line to the kernel it loads). Nonetheless, copying a new kernel to a
floppy is still a handy way to quickly boot it on the PC.

A known limitation of the x86 platform is that the CPU can see only 640 KB of sys-
tem memory when it is powered on, no matter how large your installed memory
is. Dealing with the limitation requir es the kernel to be compressed, and support
for decompression is available in ar ch/i386/boot together with other code such as
VGA mode setting. On the PC, because of this limit, you can’t do anything with a
vmlinux ker nel image, and the file you actually boot is called zImage or bzImage;
the boot sector described earlier is actually prepended to this file rather than to
vmlinux. We won’t spend more time on the booting process on the x86 platform,
since you can choose from several boot loaders, and the topic is generally well
discussed elsewhere.

Some platforms differ greatly in the layout of their boot code from the PC. Some-
times the code must deal with several variations of the same architectur e. This is
the case, for example, with ARM, MIPS, and M68k. These platforms cover a wide
variety of CPU and system types, ranging from powerful servers and workstations
down to PDAs or embedded appliances. Differ ent envir onments requir e dif ferent
boot code and sometimes even differ ent ld scripts to compile the kernel image.
Some of this support is not included in the official kernel tree published by Linus
and is available only from third-party Concurrent Versions System (CVS) trees that
closely track the official tree but have not yet been merged. Current examples
include the SGI CVS tree for MIPS workstations and the LinuxCE CVS tree for
MIPS-based palm computers. Nonetheless, we’d like to spend a few words on this
topic because we feel it’s an interesting one. Everything from start_ker nel onward
is based on this extra complexity but doesn’t notice it.

Specific ld scripts and makefile rules are needed especially for embedded systems,
and particularly for variants without a memory management unit, which are sup-
ported by uClinux. When you have no hardware MMU that maps virtual addresses
to physical ones, you must link the kernel to be executed from the physical
addr ess wher e it will be loaded in the target platform. It’s not uncommon in small
systems to link the kernel so that it is loaded into read-only memory (usually flash
memory), where it is dir ectly activated at power-on time without the help of any
boot loader.
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When the kernel is executed directly from flash memory, the makefiles, ld scripts,
and boot code work in tight cooperation. The ld rules place the code and read-
only segments (such as the init calls information) into flash memory, while placing
the data segments (data and block started by symbol (BSS)) in system RAM. The
result is that the two sets are not consecutive. The makefile, then, offers special
rules to coalesce all these sections into consecutive addresses and convert them to
a for mat suitable for upload to the target system. Coalescing is mandatory because
the data segment contains initialized data structures that must get written to read-
only memory or otherwise be lost. Finally, assembly code that runs before
start_ker nel must copy over the data segment from flash memory to RAM (to the
addr ess wher e the linker placed it) and zero out the address range associated with
the BSS segment. Only after this remapping has taken place can C-language code
run.

When you upload a new kernel to the target system, the firmwar e ther e retrieves
the data file from the network or from a serial channel and writes it to flash mem-
ory. The intermediate format used to upload the kernel to a target computer varies
fr om system to system, because it depends on how the actual upload takes place.
But in each case, this format is a generic container of binary data used to transfer
the compiled image using standardized tools. For example, the BIN format is
meant to be transferred over a network, while the S3 format is a hexadecimal
ASCII file sent to the target system through a serial cable.* Most of the time, when
powering on the system, the user can select whether to boot Linux or to type
fir mware commands.

The init Process
When start_ker nel forks out the init thr ead (implemented by the init function in
init/main.c), it is still running in kernel mode, and so is the init thr ead. When all
initializations described earlier are complete, the thread drops the kernel lock and
pr epar es to execute the user-space init pr ocess. The file being executed resides in
/sbin/init, /etc/init, or /bin/init. If none of those are found, /bin/sh is run as a
recovery measure in case the real init got lost or corrupted. As an alternative, the
user can specify on the kernel command line which file the init thr ead should
execute.

The procedur e to enter user space is simple. The code opens /dev/console as stan-
dard input by calling the open system call and connects the console to stdout and
stderr by calling dup; it finally calls execve to execute the user-space program.

The thread is able to invoke system calls while running in kernel mode because
init/main.c has declared __KERNEL_SYSCALLS_ _ befor e including
<asm/unistd.h>. The header defines special code that allows kernel code to

* We are not describing the formats or the tools in detail, because the information is readily
available to people researching embedded Linux.

The init Process
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invoke a limited number of system calls just as if it were running in user space.
Mor e infor mation about kernel system calls can be found in
http://www.linux.it/ker neldocs/ksys.

The final call to execve finalizes the transition to user space. There is no magic
involved in this transition. As with any execve call in Unix, this one replaces the
memory maps of the current process with new memory maps defined by the
binary file being executed (you should remember how executing a file means
mapping it to the virtual address space of the current process). It doesn’t matter
that, in this case, the calling process is running in kernel space. That’s transparent
to the implementation of execve, which just finds that there are no previous mem-
ory maps to release before activating the new ones.

Whatever the system setup or command line, the init pr ocess is now executing in
user space and any further kernel operation takes place in response to system calls
coming from init itself or from the processes it forks out.

Mor e infor mation about how the init pr ocess brings up the whole system can be
found in http://www.linux.it/ker neldocs/init. We’ll now proceed on our tour by
looking at the system calls implemented in each source directory, and then at how
device drivers are laid out and organized in the source tree.

The ker nel Director y
Some kernel facilities—those associated with filesystems, memory management,
and networking—live in their own source trees. The ker nel dir ectory of the source
tr ee includes all other basic facilities.

The most important such facility is scheduling. Thus, sched.c, together with
<linux/sched.h>, can be considered the most important source file in the
Linux kernel. In addition to the scheduler proper, implemented by schedule, the
file defines the system calls that control process priorities and all the mechanisms
for sleeping and waking.

The fork and exit system calls are implemented by two files that are named after
them. They are compr ehensive and well-structured files that deal with everything
related to process creation and destruction.

The delivery of kernel messages is implemented in printk.c, which is also con-
cer ned with console management. Console code is not trivial, since the concept of
“console” is pretty abstract nowadays and includes the text screen (either native or
based on the frame buffer), the serial port, and even the printer port.

Other facilities that are implemented in this directory are time handling (time.c),
ker nel timers (timer.c), signal delivery and handling (signal.c), module manage-
ment and related system calls (module.c), the kmod thr ead (kmod.c), systemwide
power management (pm.c), tasklets (softir q.c), and the panic function (panic.c).
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The fs Director y
File handling is at the core of any Unix system, and the fs dir ectory in Linux is the
fattest of all directories. It includes all the filesystems supported by the current
Linux version, each in its own subdirectory, as well as the most important system
calls after fork and exit.

The execve system call lives in exec.c and relies on the various available binary for-
mats to actually interpret the binary data found in the executable files. The most
important binary format nowadays is ELF, implemented by binfmt_elf.c.
binfmt_script.c supports the execution of interpreted files. After detecting the need
for an interpreter (usually on the #! or “shebang” line), the file relies on the other
binary formats to load the interpreter.

Miscellaneous binary formats (such as the Java executable format) can be defined
by the user with a /pr oc inter face defined in binfmt_misc.c. The misc binary for-
mat is able to identify an interpreted binary format based on the contents of the
executable file, and fire the appropriate interpreter with appropriate arguments.
The tool is configured via /pr oc/sys/fs/binfmt_misc.

The fundamental system calls for file access are defined in open.c and
read_write.c. The former also defines close and several other file-access system
calls (chown, for instance). select.c implements select and poll. pipe.c and fifo.c
implement pipes and named pipes. readdir.c implements the getdents system call,
which is how user-space programs read directories (the name stands for “get direc-
tory entries”). Other programming interfaces to access directory data (such as the
readdir inter face) ar e all implemented in user space as library functions, based on
the getdents system call.

Most system calls related to moving files around, such as mkdir, rmdir, rename,
link, symlink, and mknod, are implemented in namei.c, which in turn lays its
foundations on the directory entry cache that lives in dcache.c.

Mounting and unmounting filesystems, as well as support for the use of a tempo-
rary root for initr d, are implemented in super.c.

Of particular interest to device driver writers is devices.c, which implements the
char and block driver registries and acts as dispatcher for all devices. It does so by
implementing the generic open method that is used before the device-specific
file_operations structur e is fetched and used. read and write for block
devices are implemented in block_dev.c, which in turn delegates to buf fer.c every-
thing related to buffer management.

Ther e ar e several other files in this directory, but they are less interesting. The
most important ones are inode.c and file.c, which manage the internal organization
of file and inode data structures; ioctl.c, which implements ioctl; and dquot.c,
which implements quotas.

The fs Director y
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As we suggested, most of the subdirectories of fs host individual filesystem imple-
mentations. However, fs/partitions is not a filesystem type but rather a container
for partition management code. Some files in there are always compiled, regard-
less of kernel configuration, while other files that implement support for specific
partitioning schemes can be individually enabled or disabled.

The mm Director y
The last major directory of kernel source files is devoted to memory management.
The files in this directory implement all the data structures that are used through-
out the system to manage memory-related issues. While memory management is
founded on registers and features specific to a given CPU, we’ve already seen in
Chapter 13 how most of the code has been made platform independent. Interested
users can check how asm/ar ch-arch/mm implements the lowest level for a spe-
cific computer platform.

The kmalloc/kfr ee memory allocation engine is defined in slab.c. This file is a
completely new implementation that replaces what used to live in kmalloc.c. The
latter file doesn’t exist anymore after version 2.0.

While most programmers are familiar with how an operating system manages
memory in blocks and pages, Linux (taking an idea from Sun Microsystem’s
Solaris) uses an additional, more flexible concept called a slab. Each slab is a
cache that contains multiple memory objects of the same size. Some slabs are spe-
cialized and contain structs of a certain type used by a certain part of the kernel;
others are mor e general and contain memory regions of 32 bytes, 64 bytes, and so
on. The advantage of using slabs is that structs or other regions of memory can be
cached and reused with very little overhead; the more ponder ous technique of
allocating and freeing pages is invoked less often.

The other important allocation tool, vmalloc, and the function that lies behind
them all, get_fr ee_pages, are defined in vmalloc.c and page_alloc.c respectively.
Both are pretty straightforward and make interesting reading.

In addition to allocation services, a memory management system must offer mem-
ory mappings. After all, mmap is the foundation of many system activities, includ-
ing the execution of a file. The actual sys_mmap function doesn’t live here,
though. It is buried in architectur e-specific code, because system calls with more
than five arguments need special handling in relation to CPU registers. The func-
tion that implements mmap for all platforms is do_mmap_ pgoff, defined in
mmap.c. The same file implements sys_sendfile and sys_brk. The latter may look
unr elated, because brk is used to raise the maximum virtual address usable by a
pr ocess. Actually, Linux (and most current Unices) creates new virtual address
space for a process by mapping pages from /dev/zer o.
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The mechanisms for mapping a regular file into memory have been placed in
filemap.c; the file acts on pretty low-level data structures within the memory man-
agement system. mpr otect and remap ar e implemented in two files of the same
names; memory locking appears in mlock.c.

When a process has several memory maps active, you need an efficient way to
look for free areas in its memory address space. To this end, all memory maps of a
pr ocess ar e laid out in an Adelson-Velski-Landis (AVL) tree. The software structur e
is implemented in mmap_avl.c.

Swap file initialization and removal (i.e., the swapon and swapof f system calls) are
in swapfile.c. The scope of swap_state.c is the swap cache, and page aging is in
swap.c. What is known as swapping is not defined here. Instead, it is part of man-
aging memory pages, implemented by the kswapd thr ead.

The lowest level of page-table management is implemented by the memory.c file,
which still carries the original notes by Linus when he implemented the first real
memory management features in December 1991. Everything that happens at
lower levels is part of architectur e-specific code (often hidden as macros in the
header files).

Code specific to high-memory management (the memory beyond that which can
be addressed directly by the kernel, especially used in the x86 world to accommo-
date more than 4 GB of RAM without abandoning the 32-bit architectur e) is in
highmem.c, as you may imagine.

vmscan.c implements the kswapd ker nel thr ead. This is the procedur e that looks
for unused and old pages in order to free them or send them to swap space, as
alr eady suggested. It’s a well-commented source file because fine-tuning these
algorithms is the key factor to overall system perfor mance. Every design choice in
this nontrivial and critical section needs to be well motivated, which explains the
good amount of comments.

The rest of the source files found in the mm dir ectory deal with minor but some-
times important details, like the oom_killer, a procedur e that elects which process
to kill when the system runs out of memory.

Inter estingly, the uClinux port of the Linux kernel to MMU-less processors intro-
duces a separate mmnommu dir ectory. It closely replicates the official mm while
leaving out any MMU-related code. The developers chose this path to avoid
adding a mess of conditional code in the mm source tree. Since uClinux is not
(yet) integrated with the mainstream kernel, you’ll need to download a uClinux
CVS tree or tar ball if you want to compare the two directories (both included in
the uClinux tr ee).

The mm Director y
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The net director y
The net dir ectory in the Linux file hierarchy is the repository for the socket
abstraction and the network protocols; these features account for a lot of code,
since Linux supports several differ ent network protocols. Each protocol (IP, IPX,
and so on) lives in its own subdirectory; the directory for IP is called ipv4 because
it repr esents version 4 of the protocol. The new standard (not yet in wide use as
we write this) is called ipv6 and is implemented in Linux as well. Unix-domain
sockets are treated as just another network protocol; their implementation can be
found in the unix subdir ectory.

The network implementation in Linux is based on the same file operations that act
on device files. This is natural, because network connections (sockets) are
described by normal file descriptors. The file socket.c is the locus of the socket file
operations. It dispatches the system calls to one of the network protocols via a
struct proto_ops structur e. This structure is defined by each network proto-
col to map system calls to its specific, low-level data handling operations.

Not every subdirectory of net is used to define a protocol family. There are a few
notable exceptions: cor e, bridge, ether net, sunrpc, and khttpd.

Files in cor e implement generic network features such as device handling, fire-
walls, multicasting, and aliases; this includes the handling of socket buffers
(cor e/skbuff.c) and socket operations that remain independent of the underlying
pr otocol (cor e/sock.c). The device-independent data management that sits near
device-specific code is defined in cor e/dev.c.

The ether net and bridge dir ectories ar e used to implement specific low-level func-
tionalities, specifically, the Ethernet-r elated helper functions described in Chapter
14, and bridging functionality.

sunrpc and khttpd ar e peculiar because they include kernel-level implementations
of tasks that are usually carried out in user space.

In sunrpc you can find support functions for the kernel-level NFS server (which is
an RPC-based service), while khttpd implements a kernel-space web server. Those
services have been brought to kernel space to avoid the overhead of system calls
and context switches during time-critical tasks. Both have demonstrated good per-
for mance in this mode. The khttpd subsystem, however, has already been ren-
der ed obsolete by TUX, which, as of this writing, holds the record for the world’s
fastest web server. TUX will likely be integrated into the 2.5 kernel series.

The two remaining source files within net ar e sysctl_net.c and netsyms.c. The for-
mer is the back end of the sysctl mechanism,* and the latter is just a list of

* sysctl has not been described in this book; interested readers can have a look at Alessan-
dr o’s description of this mechanism at http://www.linux.it/ker neldocs/sysctl.
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EXPORT_SYMBOL declarations. There are several such files all over the kernel,
usually one in each major directory.

ipc and lib
The smallest directories (in size) in the Linux source tree are ipc and lib. The for-
mer is an implementation of the System V interprocess communication primitives,
namely semaphores, message queues, and shared memory; they often get forgot-
ten, but many applications use them (especially shared memory). The latter direc-
tory includes generic support functions, similar to the ones available in the
standard C library.

The generic library functions are a very small subset of those available in user
space, but cover the indispensable things you generally need to write code: string
functions (including simple_atol to convert a string to a long integer with error
checking) and <ctype.h> functions. The most important file in this directory is
vsprintf.c; it implements the function by the same name, which sits at the core of
sprintf and printk. Another important file is inflate.c, which includes the decom-
pr essing code of gzip.

inc lude and arch
In a quick overview of the kernel source code, there’s little to say about headers
and architectur e-specific code. Header files have been introduced all over the
book, so their role (and the separation between include/linux and include/asm)
should already be clear.

Architectur e-specific code, on the other hand, has never been introduced in detail,
but it doesn’t easily lend itself to discussion. Inside each architectur e’s dir ectory
you usually find a file hierarchy similar to the top-level one (i.e., there are mm and
ker nel subdir ectories), but also boot-related code and assembly source files. The
most important assembly file within each supported architectur e is called ker-
nel/entry.S; it’s the back end of the system call mechanism (i.e., the place where
user processes enter kernel mode). Besides that, however, ther e’s little in common
acr oss the various architectur es, and describing them all would make no sense.

Dr iver s
Curr ent Linux kernels support a huge number of devices. Device drivers account
for half of the size of the source tree (actually two-thirds if you exclude architec-
tur e-specific code that you are not using). They account for almost 1500 C-lan-
guage files and more than 800 headers.

The drivers dir ectory itself doesn’t host any source file, only subdirectories (and,
obviously, a makefile).

Dr iver s
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Structuring the huge amount of source code is not easy, and the developers
haven’t followed any strict rules. The original division between drivers/char and
drivers/block is inefficient nowadays, and more dir ectories have been created
according to several differ ent requir ements. Still, the most generic char and block
drivers are found in drivers/char and drivers/block, so we’ll start by visiting those
two.

dr iver s/char
The drivers/char dir ectory is perhaps the most important in the drivers hierarchy,
because it hosts a lot of driver-independent code.

The generic tty layer (as well as line disciplines, tty software drivers, and similar
featur es) is implemented in this directory. console.c defines the linux ter minal
type (by implementing its specific escape sequences and keyboard encoding). vt.c
defines the virtual consoles, including code for switching from one virtual console
to another. Selection support (the cut-and-paste capability of the Linux text con-
sole) is implemented by selection.c; the default line discipline is implemented by
n_tty.c.

Ther e ar e other files that, despite what you might expect, are device independent.
lp.c implements a generic parallel port printer driver that includes a console-on-
line-printer capability. It remains device independent by using the parport device
driver to map operations to actual hardware (as seen in Figure 2-2). Similarly, key-
boar d.c implements the higher levels of keyboard handling; it exports the han-
dle_scancode function so that platform-specific keyboard drivers (like pc_keyb.c, in
the same directory) can benefit from generalized management. mem.c implements
/dev/mem, /dev/null, and /dev/zer o, basic resources you can’t do without.

Actually, since mem.c is never left out of the compilation process, it has been
elected as the home of chr_dev_init, which in turn initializes several other device
drivers if they have been selected for compilation.

Ther e ar e other device-independent and platform-independent source files in
drivers/char. If you are inter ested in looking at the role of each source file, the
best place to start is the makefile for this directory, an interesting and pretty much
self-explanatory file.

dr iver s/block
Like the preceding drivers/char dir ectory, drivers/block has been present in Linux
development for a long time. It used to host all block device drivers, and for this
reason it included some device-independent code that is still present.

The most important file is ll_rw_blk.c (low-level read-write block). It implements
all the request management functions that we described in Chapter 12.
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A relatively new entry in this directory is blkpg.c (added as of 2.3.3). The file
implements generic code for partition and geometry handling in block devices. Its
code, together with the fs/partitions dir ectory described earlier, replaces what was
earlier part of “generic hard disk” support. The file called genhd.c still exists, but
now includes only the generic initialization function for block drivers (similar to
the one for char drivers that is part of mem.c). One of the public functions
exported by blkpg.c is blk_ioctl, cover ed by “The ioctl Method” in Chapter 12.

The last device-independent file found in drivers/block is elevator.o. This file
implements the mechanism to change the elevator function associated with a
block device driver. The functionality can be exploited by means of ioctl com-
mands briefly introduced in “The ioctl Method.”

In addition to the hardware-dependent device drivers you would expect to find in
drivers/block, the directory also includes software device drivers that are inher ently
cr oss-platform, just like the sbull and spull drivers that we introduced in this book.
They are the RAM disk rd.c, the “network block device” nbd.c, and the loopback
block device loop.c. The loopback device is used to mount files as if they were
block devices. (See the manpage for mount, wher e it describes the -o loop option.)
The network block device can be used to access remote resources as block
devices (thus allowing, for example, a remote swap device).

Other files in the directory implement drivers for specific hardware, such as the
various differ ent floppy drives, the old-fashioned x86 XT disk controller, and a few
mor e. Most of the important families of block drivers have been moved to a sepa-
rate directory.

dr iver s/ide
The IDE family of device drivers used to live in drivers/block but has expanded to
the point where they were moved into a separate directory. As a matter of fact, the
IDE interface has been enhanced and extended over time in order to support
mor e than just conventional hard disks. For example, IDE tapes are now sup-
ported as well.

The drivers/ide dir ectory is a whole world of its own, with some generalized code
and its own programming interface. You’ll note in the directory some files that are
just a few kilobytes long; they include only the IDE controller detection code, and
rely on the generalized IDE driver for everything else. They are inter esting reading
if you are curious about IDE drivers.

dr iver s/md
This directory is concerned with implementing RAID functionality and the Logical
Volume Manager abstraction. The code registers its own char and block major
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numbers, so it can be considered a driver just like those traditional drivers;
nonetheless, the code has been kept separate because it has nothing to do with
dir ect hardwar e management.

dr iver s/cdrom
This directory hosts the generic CD-ROM interface. Both the IDE and SCSI cdr om
drivers rely on drivers/cdr om/cdr om.c for some of their functionality. The main
entry points to the file are register_cdr om and unr egister_cdrom; the caller passes
them a pointer to struct cdrom_device_info as the main object involved in
CD-ROM management.

Other files in this directory are concer ned with specific hardware drives that are
neither IDE nor SCSI. Those devices are pretty rare nowadays, as they have been
made obsolete by modern IDE controllers.

dr iver s/scsi
Everything related to the SCSI bus has always been placed in this directory. This
includes both controller-independent support for specific devices (such as hard
drives and tapes) and drivers for specific SCSI controller boards.

Management of the SCSI bus interface is scattered in several files: scsi.c, hosts.c,
scsi_ioctl.c, and a dozen more. If you are inter ested in the whole list, you’d better
br owse the makefile, where scsi_mod-objs is defined. All public entry points
to this group of files have been collected in scsi_syms.c.

Code that supports a specific type of hardware drive plugs into the SCSI core sys-
tem by calling scsi_r egister_module with an argument of MODULE_SCSI_DEV.
This is how disk support is added to the core system by sd.c, CD-ROM support by
sr.c (which, internally, refers to the cdr om_ class of functions), tape support by
st.c, and generic devices by sg.c.

The “generic” driver is used to provide user-space programs with direct access to
SCSI devices. The underlying device can be virtually anything; currently both CD
bur ners and scanner programs rely on the SCSI generic device to access the hard-
war e they drive. By opening the /dev/sg devices, a user-space driver can do any-
thing it needs without specific support in the kernel.

Host adapters (i.e., SCSI controller hardware) can be plugged into the core system
by calling scsi_r egister_module with an argument of MODULE_SCSI_HA. Most
drivers currently do that by using the scsi_module.c facility to register themselves:
the driver’s source file defines its (static) data structures and then includes
scsi_module.c. This file defines standard initialization and cleanup functions, based
on <linux/init.h> and the init calls mechanisms. This technique allows
drivers to serve as either modules or compiled-in functions without any #ifdef
lines.
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Inter estingly, one of the host adapters supported in drivers/scsi is the IDE SCSI
emulation code, a software host adapter that maps to IDE devices. It is used, as an
example, for CD mastering: the system sees all of the drives as SCSI devices, and
the user-space program need only be SCSI aware.

Please note that several SCSI drivers have been contributed to Linux by the manu-
factur ers rather than by your preferr ed hacker community; therefor e not all of
them are fun reading.

dr iver s/net
As you might expect, this directory is the home for most interface adapters. Unlike
drivers/scsi, this directory doesn’t include the actual communication protocols,
which live in the top-level net dir ectory tr ee. Nonetheless, there’s still some bit of
softwar e abstraction implemented in drivers/net, namely, the implementation of
the various line disciplines used by serial-based network communication.

The line discipline is the software layer responsible for the data that traverses the
communication line. Every tty device has a line discipline attached. Each line disci-
pline is identified by a number, and the number, as usual, is specified using a sym-
bolic name. The default Linux line discipline is N_TTY, that is, the normal tty
management routines, defined in drivers/char/n_tty.c.

When PPP, SLIP, or other communication protocols are concer ned, however, the
default line discipline must be replaced. User-space programs switch the discipline
to N_PPP or N_SLIP, and the default will be restor ed when the device is finally
closed. The reason that pppd and slattach don’t exit, after setting up the communi-
cation link is just this: as soon as they exit, the device is closed and the default
line discipline gets restor ed.

The job of initializing network drivers hasn’t yet been transferred to the init calls
mechanism, because some subtle technical details prevent the switch. Initialization
is therefor e still perfor med the old way: the Space.c file perfor ms the initialization
by scanning a list of known hardware and probing for it. The list is controlled by
#ifdef dir ectives that select which devices are actually included at compile time.

dr iver s/sound
Like drivers/scsi and drivers/net, this directory includes all the drivers for sound
cards. The contents of the directory are somewhat similar to the SCSI directory: a
few files make up the core sound system, and individual device drivers stack on
top of it. The core sound system is in charge of requesting the major number
SOUND_MAJOR and dispatching any use of it to the underlying device drivers. A
hardwar e driver plugs into the core by calling sound_install_audiodrv, declar ed in
dev_table.c.
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The list of device-independent files in this directory is pretty long, since it includes
generic support for mixers, generic support for sequencers, and so on. To those
who want to probe further, we suggest using the makefile as a refer ence to what is
what.

dr iver s/video
Her e you find all the frame buffer video devices. The directory is concerned with
video output, not video input. Like /drivers/sound, the whole directory implements
a single char device driver; a core frame buffer system dispatches actual access to
the various frame buffers available on the computer.

The entry point to /dev/fb devices is in fbmem.c. The file registers the major num-
ber and maintains an internal list of which frame buffer device is in charge of each
minor number. A hardwar e driver registers itself by calling register_framebuf fer,
passing a pointer to struct fb_info. The data structure includes everything
that’s needed for specific device management. It includes the open and release
methods, but no read, write, or mmap; these methods are implemented in a gen-
eralized way in fbmem.c itself.

In addition to frame buffer memory, this directory is in charge of frame buffer con-
soles. Because the layout of pixels in frame buffer memory is standardized to
some extent, kernel developers have been able to implement generic console sup-
port for the various layouts of display memory. Once a hardware driver registers
its own struct fb_info, it automatically gets a text console attached to it,
according to its declared layout of video memory.

Unfortunately, there is no real standardization in this area, so the kernel currently
supports 17 differ ent scr een layouts; they range from the fairly standard 16-bit and
32-bit color displays to the hairy VGA and Mac pixel placements. The files con-
cer ned with placing text on frame buffers are called fbcon-name.c.

When the first frame buffer device is register ed, the function register_framebuf fer
calls take_over_console (exported by drivers/char/console.c) in order to actually set
up the current frame buffer as the system console. At boot time, before frame
buf fer initialization, the console is either the native text screen or, if none is there,
the first serial port. The command line starting the kernel, of course, can override
the default by selecting a specific console device. Kernel developers created
take_over_console to add support for frame buffer consoles without complicating
the boot code. (Usually frame buffer drivers depend on PCI or equivalent support,
so they can’t be active too early during the boot process.) The take_over_console
featur e, however, is not limited to frame buffers; it’s available to any code involv-
ing any hardware. If you want to transmit kernel messages using a Morse beeper
or UDP network packets, you can do that by calling take_over_console fr om your
ker nel module.
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dr iver s/input
Input management is another facility meant to simplify and standardize activities
that are common to several drivers, and to offer a unified interface to user space.
The core file here is called input.c. It registers itself as a char driver using
INPUT_MAJOR as its major number. Its role is collecting events from low-level
device drivers and dispatching them to higher layers.

The input interface is defined in <linux/input.h>. Each low-level driver regis-
ters itself by calling input_r egister_device. After registration, users are able to feed
new events to the system by calling input_event.

Higher-level modules can register with input.c by calling input_r egister_handler
and specifying what kind of events they are inter ested in. This is, for example,
how keybdev.c expr esses its interest in keyboard events (which it ultimately feeds
to driver/char/keyboar d.c).

A high-level module can also register its own minor numbers so it can use its own
file operations and become the owner of an input-related special file in /dev. Cur-
rently, however, third-party modules can’t easily register minor numbers, and the
featur e can be used reliably only by the files in drivers/input. Minor numbers can
curr ently be used to support mice, joysticks, and generic even channels in user
space.

dr iver s/media
This directory, introduced as of version 2.4.0-test7, collects other communication
media, currently radio and video input devices. Both the media/radio and
media/video drivers currently stack on video/videodev.c, which implements the
“Video For Linux” API.

video/videodev.c is a generic container. It requests a major number and makes it
available to hardware drivers. Individual low-level drivers register by calling
video_r egister_device. They pass a pointer to their own struct video_device
and an integer that specifies the type of device. Supported devices are frame grab-
bers (VFL_TYPE_GRABBER), radios (VFL_TYPE_RADIO), teletext devices
(VFL_TYPE_VTX), and undecoded vertical-blank information (VFL_TYPE_VBI).

Bus-Specific Director ies
Some of the subdirectories of drivers ar e specific to devices that plug into a partic-
ular bus architectur e. They have been separated from the generic char and block
dir ectories because quite a good deal of code is generic to the bus architectur e (as
opposed to specific to the hardware device).
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The least populated of these directories is drivers/pci. It contains only code that
talks with PCI controllers (or to system BIOS), whereas PCI hardware drivers are
scatter ed all over the place. The PCI interface is so widespread that it makes no
sense to relegate PCI cards to a specific place.

If you are wondering whether ISA has a specific directory, the answer is no. There
ar e no specific ISA support files because the bus offers no resource management
or standardization to build a software layer over it. ISA hardware drivers fit best in
drivers/char or drivers/sound or elsewhere.

Other bus-specific directories range from less known internal computer buses to
widely used external interface standards.

The former class includes drivers/sbus, drivers/nubus, drivers/zorr o (the bus used
in Amiga computers), drivers/dio (the bus of the HP300 class of computers), and
drivers/tc (Turbo Channel, used in MIPS DECstations). Whereas sbus includes both
SBus support functions and drivers for some SBus devices, the others include only
support functions. Hardware drivers based on all of these buses live in drivers/net,
drivers/scsi, or wher ever is appropriate for the actual hardware (with the exception
of a few SBus drivers, as noted). A few of these buses are curr ently used by just
one driver.

Dir ectories devoted to external buses include drivers/usb, drivers/pcmcia,
drivers/parport (generic cross-platfor m parallel port support, which defines a
whole new class of device drivers), drivers/isdn (all ISDN controllers supported by
Linux and their common support functions), drivers/atm (the same, for ATM net-
work connections), and drivers/ieee1394 (Fir eWir e).

Platfor m-Specific Director ies
Sometimes, a computer platform has its own directory tree in the drivers hierarchy.
This has tended to happen when kernel development for that platform has pro-
ceeded alongside the main source tree without being merged for a while. In these
cases, keeping the directory tree separate helped in maintaining the code. Exam-
ples include drivers/acor n (old ARM-based computers), drivers/macintosh,
drivers/sgi (Silicon Graphics workstations), and drivers/s390 (IBM mainframes).
Ther e is little of value, usually, in looking at that code, unless you are inter ested in
the specific platform.

Other Subdirector ies
Ther e ar e other subdirectories in drivers, but they are, in our opinion, currently of
minor interest and very specific use. drivers/mtd implements a Memory Technol-
ogy Device layer, which is used to manage solid-state disks (flash memories and
other kinds of EEPROM). drivers/i2c of fers an implementation of the i2c protocol,

524

22 June 2001 16:44



which is the “Inter Integrated Circuit” two-wire bus used internally by several
moder n peripherals, especially frame grabbers. drivers/i2o, similarly, handles I2O
devices (a proprietary high-speed communication standard for certain PCI devices,
which has been unveiled under pressur e fr om the free software community).
drivers/pnp is a collection of common ISA Plug-and-Play code from various
drivers, but fortunately the PnP hack is not really used nowadays by manufactur-
ers.

Under drivers/ you also find initial support for new device classes that are cur-
rently implemented by a very small range of devices.

That’s the case for fiber channel support (drivers/fc4) and drivers/telephony.
Ther e’s even an empty directory drivers/misc, which claims to be “for misc devices
that really don’t fit anywhere else.” The directory is empty of code, but hosts an
(empty) makefile with the comment just quoted.

The Linux kernel is so huge that it’s impossible to cover it all in a few pages.
Mor eover, it is a moving target, and once you think you are finished, you find that
the new patch released by your preferr ed hackers includes a whole lot of new
material. It may well be that the misc dir ectory in 2.4 is not empty anymore as you
read this.

Although we consider it unlikely, it may even happen that 2.6 or 3.0 will turn out
to be pretty differ ent fr om 2.4; unfortunately, this edition of the book won’t auto-
matically update itself to cover the new releases and will become obsolete over
time. Despite our best efforts to cover the current version of the kernel, both in
this chapter and in the whole book, there’s no substitute for direct refer ence to the
source code.
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