
The

Korn Shell
User and Programming

Manual

Anatole Olczak

Published byAddison-Wesley Publishers Ltd.

Harlow, England � Reading, Massachusetts � Menlo Park, California
Berkeley, California � Reading, Massachusetts � Menlo Park, California
Don Mills, Ontario � Amsterdam � Bonn � Sydney � Mexico City� Tokyo

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. The publisher has made
every attempt to supply trademark information about manufacturers
and their products mentioned in this book. Where those designations
appear in this book and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial or all capital letters.

Cover designed by Hybert Design and Type, Maidenhead using a
photograph by Rosamond Wolff Purcell reproduced by permission
(previously published by Forward Publishing on the 1991 Oracle
calendar).

Firt printed in 1991.
Second Edition: October 1996
Third Edition: August 2000

Copyright © 2000 Anatole Olczak
USA

ISBN 0-201-56548-X

All Rights Reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without
prior written permission from the publisher.

Although the author and publisher have made every attempt to verify
the accuracy of this book, the publisher and author cannot assume any
liability for errors or omissions. No warranty or other guarantee can be
given as to the accuracy or suitability of this documentation for a
particular purpose, nor can the author or publisher be liable for any loss
or damage connected with, or arising out of, the furnishing,
performance, or the use of the materials in this book. All information
in this publication is subject to change without notice.

I

Preface.. xiii
KornShell 93: The Latest Version xvi
Acknowledgements .. xvi
Miscellaneous ... xvii
Conventions .. xvii
Source Code Listing ... xvii

Chapter 1: Introduction .. 1
Major Features .. 2
Where to Get the Korn Shell ... 4
Which Version Do You Have? 5
Logging In ... 5

Changing the Login Shell..................................... 6
Invoking the Korn Shell Separately 7
Using the KornShell in Scripts...................................... 8

Chapter 2: Korn Shell Basics .. 9
Simple Script .. 10
Process Execution .. 10

Multiple Commands ... 11
Continuing Commands ... 11
Background Jobs ... 12
Pipes ... 12
Conditional Execution .. 13
Grouping Commands .. 15

Input/Output Redirection ... 18
Redirecting Standard Output 18

The noclobber Option 20
Redirecting Standard Input 20
File Descriptors ... 21

Redirecting Standard Error......................... 22
More with File Descriptors......................... 23

Here Documents.. 25
Here Documents and File Descriptors 26

Discarding Standard Output 26
File Name Substitution .. 28

Table of Contents

II

Korn Shell User and Programming Manual

The * Character ... 28
The ? Character ... 30
The [] Characters .. 31
The ! Character ... 32
Matching . Files .. 34
Complex Patterns .. 34

*(pattern) ... 34
?(pattern) ... 35
+(pattern) ... 36
@(pattern) ... 36
!(pattern) .. 37
More Complex Patterns 38

Disabling File Name Substitution 38
Command Substitution ... 39

Bourne Shell Compatibility 40
Directing File Input .. 41
Arithmetic Operations .. 41

Tilde Substitution ... 42

Chapter 3: Parameters and Variables 45
Variables ... 46

Accessing Variable Values 46
Variable Attributes.. 48

Lowercase (�l) and Uppercase (�u) 48
Readonly (�r) ... 49
Integer (�i) ... 50
Float (�E,�F) ... 51
Right (�r) and Left (�l) Justify 51
Autoexport (�x) ... 52
Removing Variable Attributes 54
Multiple Attributes 54
Checking Variable Attributes 55

More with Variables ... 55
Unsetting Variables .. 57

Special Parameters ... 58
The ? Parameter .. 58

III

The $ Parameter .. 59
Other Special Parameters 60
Special Reserved Variables 60

Variable Expansion .. 61
$variable, ${variable} .. 61
${#variable} .. 62
${variable:�word}, ${variable�word} 63
${variable:=word}, ${variable=word} 65
${variable:?word}, ${variable:?} 66
${variable:+word}, ${variable+word} 67
${variable#pattern}, ${variable##pattern} 68
${variable%pattern}, ${variable%%pattern}.... 69
${variable//pattern1/pattern2},
${variable/pattern1/pattern2},
${variable#pattern1/pattern2},
${variable/%pattern1/pattern2} 71
${variable:start}, ${variable:start:length} 71

Array Variables .. 72
Array Variable Assignments & Declarations 73
Array Variable Expansion.................................... 75
Array Variable Attributes 77
Array Variable Reassignments 78
Associative Arrays.. 79

Compound Variables.. 80
Quoting .. 81

Single Quotes .. 82
Double Quotes ... 83
Back Quotes .. 85

Chapter 4: Editing Commands .. 87
Terminal Requirements ... 88
Command History File ... 88
The fc Command .. 88

Displaying the Command History File 89
Editing the Command History File 90

In-Line Editor ... 92

Table of Contents

IV

Korn Shell User and Programming Manual

Vi Edit Mode ... 93
Input Mode ... 93
Command Mode .. 94
Moving Around the History File 95
Editing Previous Commands 96

Displaying Long Command Lines 99
Emacs/Gmacs Edit Modes 99

Editing Commands in Emacs/Gmacs Mode 100

Chapter 5: Job Control ... 105
Manipulating Jobs .. 106

Checking Job Status .. 108
Killing Jobs .. 108
Waiting for Jobs .. 109

Background Jobs and I/O .. 109
Job Names ... 112
Leaving Stopped Jobs .. 113

Chapter 6: Performing Arithmetic 115
The let Command ... 116
The ((...)) Command .. 118
Declaring Integer Variables .. 118
Arithmetic Constants.. 120
Arithmetic Operators ... 122

�expression (Unary Minus) 122
!expression (Logical Negation) 122
~expression (Bitwise Negation) 123
expression1 * expression2 (Multiplication) 123
expression1 / expression2 (Division) 124
expression1 % expression2 (Modulo) 124
expression1 + expression2 (Addition)................. 125
expression1 � expression2 (Subtraction) 125
identifier=expression (Assignment) 125
expression1 << expression2 (Left shift) 126
expression1 >> expression2 (Right shift) 126
expression1 <= expression2 (Less than or equal) 127

V

expression1 < expression2 (Less than) 127
expression1 >= expression2 (Greater than or equal) 128
expression1 > expression2 (Greater than) 128
expression1 == expression2 (Equal to) 128
expression1 != expression2 (Not equal to) 129
expression1 & expression2 (Bitwise AND) 129
expression1 ^ expression2 (Bitwise Exclusive OR) 130
expression1 | expression2 (Bitwise OR) 130
expression1 && expression2 (Logical AND) 131
expression1 | | expression2 (Logical OR)............ 131
(expression) (Override Precedence) 132

Random Numbers ... 132

Chapter 7: The Environment ... 135
After You Log In .. 135
The Environment File .. 135
Environment Variables .. 135

The cd Command .. 136
CDPATH . .. 138
PATH . .. 139
TMOUT . .. 139
Mail .. 140

MAILCHECK . .. 140
MAIL 140
MAILPATH 141
New Mail Notification Message 141
TERM . .. 142

Korn Shell Options ... 142
Enabling/Disabling Options 144

The ignoreeof Option 144
The markdirs Option 145
The noclobber Option 145
The nounset Option 146

Displaying the Current Settings........................... 146
Command-line Options .. 148

Aliases ... 149

Table of Contents

VI

Korn Shell User and Programming Manual

Displaying Current Aliases 150
Tracked Aliases... 152
Removing Aliases ... 153

Prompts .. 154
Customizing Your Command Prompt 154

Subshells ... 156
Restricted Shell ... 158

Privileged Mode .. 158

Chapter 8: Writing Korn Shell Scripts 159
Executing Korn Shell Scripts .. 160

Positional Parameters ... 162
Modifying Positional Parameters............... 164

The exit Command ... 166
The [[...]] Command .. 168

Checking Strings ... 169
Checking Patterns .. 170

Checking File Attributes 172
Checking Integer Attributes 173
The ! Operator ... 174
Compound Expressions .. 176

&& - The AND Operator............................ 176
| | - The OR Operator 177

[[...]] vs test and [...] .. 178
Checking File Descriptors.................................... 179

Control Commands... 179
The case Command .. 179

Specifying Patterns with case 181
The for Command .. 183

Other for Syntax .. 185
The if Command ... 187

Other if Syntax: else 188
Other if Syntax: elif 190
if/elif vs case 192

The while Command .. 192
The until Command ... 195

VII

Nested Loops ... 196
Breaking Out of Loops ... 197
The continue Command 199
The select Command .. 200

Other select Syntax 205
The select Menu Format............................. 205

Comments .. 205
Input/Output Commands .. 207

The print Command... 208
Escape Characters 208
print Options ... 212
The echo Command 214

The exec Command .. 214
The read Command.. 217

Reading Input from Files 220
The IFS Variable... 221
More with read 222
Reading Input Interactively 225
The REPLY variable 226

Miscellaneous Programming Features 226
The . Command ... 226
Functions.. 227

Returning Function Exit Status 229
Scope & Availability................................... 229
Using Functions in Korn Shell Scripts 229
Function Variables 230
Displaying Current Functions 231
Autoloading Functions 232
Discipline Functions.................................... 232
FPATH. ... 234
Removing Function Definitions 234

Traps... 235
Ignoring Signals ... 236
Resetting Traps .. 236
Exit & Function Traps 237
Debugging with trap 237

Table of Contents

VIII

Korn Shell User and Programming Manual

Trap Signal Precedence 238
Trapping Keyboard Signals 238

Debugging Korn Shell Scripts 238
Enabling Debug Options 239
Debugging Example 240
Debugging with trap 242

Parsing Command-line Arguments 244
More with Here Documents 246
Co-Processes ... 248

Chapter 9: Miscellaneous Commands 251
The : Command .. 251
The eval Command .. 252
The export Command ... 254
The false Command ... 255
The newgrp Command .. 255
The pwd Command .. 256
The readonly Command ... 256
The set Command .. 257
The time Command ... 259
The times Command .. 259
The true Command .. 260
The ulimit Command ... 260
The umask Command ... 262
The whence Command .. 263

Appendix A: Sample .profile File 265

Appendix B: Sample Environment File 267

Appendix C: C Shell Functionality 269
Directory Functions .. 269
Miscellaneous Commands ... 273

The chdir Command .. 274
The .logout File .. 174

IX

The logout Command ... 274
The setenv Command .. 274
The source Command .. 275

Appendix D: Sample Korn Shell Scripts 277
Display Files - kcat 278
Interactive uucp - kuucp 279
Basename - kbasename . .. 280
Dirname - kdirname 281
Display Files with Line Numbers - knl 281
Find Words - match 282
Simple Calculator - kcalc . .. 283
Search for Patterns in Files - kgrep 284
Calendar Program - kcal 288

Appendix E: Korn Shell Man Page 297

Appendix F: Pdksh... 369

Appendix G: Pdksh Quick Reference............................... 373

Appendix H: Pdksh Man Page ... 409

Index ... 427

Table of Contents

X

Korn Shell User and Programming Manual

List of Tables:

2.1: Command Execution Format .. 17
2.2: Some I/O Redirection Operators 21
2.3: File Descriptors .. 23
2.4: Redirect Operators and File Descriptors 27
2.5: Basic Pattern Matching Characters 33
2.6: Other File Name Patterns .. 37
2.7: Tilde Substitution ... 43

3.1: Assigning Values to Variables .. 47
3.2: Assigning Values/Attributes to Variables...................... 49
3.3: Setting Variable Attributes .. 53
3.4: Some Preset Special Parameters 59
3.5: Variable Expansion Formats ... 69
3.7: More Variable Expansion Formats 73
3.7: Array Variables .. 75

4.1: Vi Input Mode Commands .. 94
4.2: Some Vi Command Mode Commands 97
4.3: Some Emacs/Gmacs In-Line Editor Commands........... 101

5.1: Job Control Commands ... 111
5.2: Job Names ... 113

6.1: Arithmetic Operators ... 117

7.1: Some Korn Shell Environment Variables 143
7.2: Some Korn Shell Options .. 147
7.3: Preset Aliases ... 151

XI

8.1: [[...]] Positional Parameters .. 163
8.2: [[...]] String Operators ... 169
8.3: Some [[...]] File Operators .. 171
8.4: [[...]] Integer Operators.. 175
8.5: Other [[...]] Operators .. 177
8.6: print Escape Characters .. 209
8.7: print Options .. 213
8.8: read Options ... 219
8.9: Korn Shell Debugging Options 238
8.10: Some Frequently Used Signals 243
8.11: Co-Processes .. 249

9.1: ulimit Options .. 261

F.1: Pdksh Build Steps .. 371

Table of Contents

XII

Korn Shell User and Programming Manual

XIII

The Korn Shell User and Programming Manual is designed to be a
reference and learning tool for a range of users - from the novice with
some experience to the pro who is familiar with both the Bourne and C
shells. It contains complete technical information, as well as hands-on
examples and complete programs to help guide you and illustrate all the
features of the Korn shell. This edition of the book has been updated
to cover KornShell93, the latest version of the Korn shell. This book
also assumes that you are familiar with the basic UNIX commands, and
understand file system concepts. You should also be able to login to a
system, and enter basic commands.

If you are an experienced user, you may want to skip Chapter 1 and
the first half of Chapter 2. The first seven chapters deal primarily with
interactive use, while Chapter 8 and 9 cover the programming
concepts.

The goal of this book to teach you the Korn Shell, and this is done by
walking you through examples. So by the time you are finished
reading the book, you'll be comfortable with it, and writing your own
Korn shell scripts.

Preface
Acknowledgements

Miscellaneous
Conventions

Source Code Listing
Other Publications and Services

XIV

Korn Shell User and Programming Manual

But don't just read the book. The best way for you to learn about the
Korn shell is to type in the examples yourself. Then do some
experimentation on your own by either modifying the examples or
coming up with your own commands.

Chapter 1 contains an overview of the major features in the Korn
shell. It covers where to get it, how your login shell is configured, and
setting up the Korn shell to co-exist with other shells while you are on
the learning curve. It also includes brief descriptions of other related
shells, including the Born Again Shell (bash), Mortice Kern ksh (for
PC/Windows), and the public domain Korn shell (pdksh) for Linux.

Chapter 2 covers the Korn shell basics: how commands can work
together to do other things, and some basic shortcuts to improve
productivity, and Korn shell I/O. You'll also be introduced to file
name, command, and tilde substitution: important concepts that are
the basis of much of the Korn shell.

Chapter 3 teaches you about Korn shell variables, variable attributes,
and parameters. You'll learn about all the different types of variable
expansion, including the substring features. Array variables and
quoting are also discussed in detail.

Chapter 4 discusses the Korn shell command history mechanism and
vi and emacs in-line editors. Here you will learn how to call up
previous commands and manipulate them.

Chapter 5 shows you how to manage and manipulate multiple
processes using the job control mechanism, a feature almost directly
copied from the C shell.

In Chapter 6, you will learn how to perform arithmetic with the Korn
shell. It contains sections on multi-base arithmetic, declaring integer-
type variables, and random numbers, along with examples for each
type of arithmetic operator.

XV

Chapter 7 will show you how to set up your own customized
environment: from setting up the prompt how you like it, to
configuring your personal email. Korn shell options, environment
variables, aliases, the .profile file, and subshells are also covered.

In Chapter 8, you are taught how to write programs using the many
Korn shell commands and features. Executing and debugging scripts,
input/output commands, positional parameters, flow control
commands such as case, for, if, select, while, and until are also
discussed. Step-by-step examples are included, and complete usable
scripts are built from the bottom up. For those experienced UNIX
programmers, important differences between the Korn and Bourne
shells are discussed, and something else new to UNIX shell
programming - performance. You'll learn a few tricks that can speed
up execution of your Korn shell scripts.

Chapter 9 covers miscellaneous commands, such as readonly,
ulimit, whence, and Korn shell functions.

Appendix A and B include a sample ready-to-use profile and
environment file.

Appendix C contains the Korn shell versions of a number of C shell
commands and functions.

Appendix D contains the source code listing for a number of handy
ready-to-run Korn shell scripts, including an interactive calendar
program.

Appendix E contains the Korn shell man pages.

Appendix F contains information about pdksh, the public domain
version of the Korn shell for Linux.

Appendix G contains the Pdksh quick reference guide, and Appendix
H contains the Pdksh man page.

Preface

XVI

Korn Shell User and Programming Manual

KornShell 93: The Latest Version

This edition is based on the latest edition of the Korn Shell. There have
been a number of new features and enhancements added to KornShell
93 including:

Datatypes: New data types: floats and structures
Variables: New variable typer: compound and nameref variables
Arrays: Associative arrays and additional commands for array

manipulation
Functions: Discipline functions to support further manipulation of

variables
String Manipulation:

Search, replace, and substring operators

Acknowledgements

Thanks to David Korn for developing the Korn shell, Steven Bourne
for the Bourne shell, and Bill Joy for the C shell. Other thanks to
Mike Veach and Pat Sullivan for contributing to the development of
the Korn shell, and Mark Horton, Bill Joy (again), and Richard
Stallman for developing the vi and emacs editors which were used in
the development of the Korn shell.

Special thanks to Peter Collinson, Cynthia Duquette, Ian Jones, Peter
Kettle, Heather Prenatt, the ASP staff, Aspen Technologies, O'Reilly
& Associates (who reviewed the initial draft of thie book before
publishing their own Korn shell book!), James Lamm, Darian
Edwards and others for reviewing drafts of this book.

XVII

Miscellaneous

The information and material has been tested and verified to the best
of our ability. This does not mean that it is always 100% correct!
Subtle differences and variations may exist between implementations
and features may have changed. And of course there may even be
bugs or mistakes! Please send us any comments or suggestions for
future editions, along with information about your environment.
Please visit our Web site for more information www.aw.com/cseng.

Conventions

For readability sake, the default $ prompt is used in the examples in
this publication. Control characters are given as Ctl followed by the
character in boldface. For example, Ctl-d specifies Control-d and is
entered by pressing the d key while holding down the Control key.
Special keys, like carriage-return and backspace, are enclosed in
<>'s. For example, long command lines are continued onto the next
line using the \ character.

Source Code Listing

If you would like the source code listing to the Korn shell scripts listed
in the appendices, please visit our web site at www.aw.com/cseng.

Preface

XVIII

Korn Shell User and Programming Manual

1

The Korn shell is an interactive command and programming language
that provides an interface to the Unix and other systems. As an
interactive command language, it is responsible for reading and
executing the commands that you enter. For example, when you type
in the date command to check the system date, your login shell is
responsible for interpreting the command before it is executed. It also
provides the ability to customize your working environment. You can
setup your own commands, specify environment variables for other
programs, change your command prompt, and a lot more. As a
programming language, its special commands allow you to write
sophisticated programs. These programs are called scripts in Unix
shell speak and are just text files that contain programs written in the
Korn shell programming language. You can use any Unix editor, such
as vi or emacs to create scripts.

Chapter 1:
Introduction

Major Features
Where to Get the Korn Shell

Which Version Do You Have?
Logging In

Invoking the Korn Shell Separately

2

Korn Shell User and Programming Manual

Major Features

The Korn shell offers compatibility with the Bourne shell, while
providing a more robust programming language and command
interpreter. It also contains some features of the C shell. The major
features of the Korn shell are:

� Improved performance. Programs written in the Korn shell
can run faster than similar programs written in the Bourne or C
shells.

� Bourne shell compatibility. Programs written for the Bourne
shell can run under the Korn shell without modification.

� Command-line editing. Instead of backspacing or retyping,
commands can be edited in vi, emacs, or gmacs mode.

� Command history. Commands are stored in a history file,
which can then be modified and re-executed or just re-executed
as is. The commands are saved, up to a user-specified limit,
across multiple login sessions.

� Enhanced I/O facilities. File descriptors and streams can be
specified. Multiple files can be opened at the same time and
read. Menus can be formatted and processed more easily.

� Added data types and attributes. Variables can now have a
type, as well as size and justification attributes.

� Integer arithmetic support. Integer arithmetic can be
performed in any base from two to thirty-six using variables and
constants. A wide range of arithmetic operators is supported,
including bitwise operators.

3

� Arrays. One-dimensional and associative arrays can be used.

� Improved string manipulation facilities. Substrings can be
generated from the value of strings. Strings can be converted to
upper or lower case.

� Regular expressions. Better support of regular expressions in
variable expansion and filename wildcards has been added.

� Job control. The Korn shell job control feature is virtually the
same as that of the C shell. Programs can be stopped, restarted,
or moved to and from the background. Programs can be
identified for kill with their job numbers.

� Aliases. Programs, and Korn shell scripts, along with their
options can be aliased to a single name.

� New options and variables. These have been added to provide
more control over environment customization.

� Functions. Increases programability by allowing code to be
organized in smaller, more manageable units, similar to
procedures in other languages. Functions also allow Korn shell
programs to be stored in memory.

� Enhanced directory navigation facilities. The previous
directory, and home directory of any user can be referred to
without using pathnames. Components of previous pathnames
can be manipulated to generate new pathnames.

� Enhanced debugging features. More robust diagnostic
facilities have been provided, and functions can be traced
separately.

Chapter 1: Introduction

4

Korn Shell User and Programming Manual

� Other miscellaneous features. New test operators, special
variables, special commands, control commands, command-line
options, and security features have also been added.

Where To Get the Korn Shell

The Korn shell is included as an optional shell, along with the Bourne
and C shells by most vendors, including Sun for Solaris, SCO for
UnixWare, Hewlett-Packard for HP-UX, and others. It is also
available as an unbundled product by many vendors.

The Desktop Kon Shell (dtksh) is another version of the Korn Shell
that is available by many vendors as an upgrade to Korn Shell 88-
based versions. It is usually located in /usr/dt/bin/dtksh.

The Public Domain Korn Shell, or pdksh, as the name suggests, is a
public domain version of the Korn shell. It�s compatible with most any
version of Unix, but is mostly used on Linux-based systems. At the time
of this writing, the current version (5.2.14) has most of the ksh88, as
well as some of the ksh93 and additional features that are not in either.
For more detailed information, refer to Appendices F-H.

David Korn and AT&T offer U/WIN, a non-commercial version of
the Korn Shell for Windows-based systems (NT and 98). It is based
on KornShell98 and contains almost 200 of the popular UNIX
commands. We've included a version in the accompanying CD, but it
is also available from http://www.research.att.com/sw/tools/uwin.

More information including links for the source distribution for the
Korn Shell and U/WIn is available at this URL: http://
www.kornshell.com.

5

Mortice Kern Systems sells a version of the Korn shell for MS-DOS
& Windows. There are also a number of shareware shells that have
Korn shell-like functionality.

Which Version Do You Have?

To determine which version of the Korn shell you are using, run the
following command:

$ print $(.sh.version}
Version 1993-12-28 i

If you dont't get a version back from this command, then you are
probably using an older version of the Korn shell. Try running the
what command on the Korn shell binary (usually located in /bin/ksh)

$ what /bin/ksh
Version 12/28/93

Logging In

A number of things happen before you see the login: prompt on your
terminal. After you enter the login name, the login program is started.
It finishes the process of logging you in by prompting for a password,
checking the /etc/passwd file, and finally starting up your login shell.
Your login shell is specified in the /etc/passwd file like this:

larissa:*:101:12::/home/larissa:/bin/sh
renata:*:102:101::/home/renata:/bin/ksh

For larissa, the login shell is /bin/sh, while for renata it is /bin/ksh.

Chapter 1: Introduction

6

Korn Shell User and Programming Manual

Changing the Login Shell

To make the Korn shell your default login shell, have your system
administrator change it to /bin/ksh or the pathname of wherever the
Korn shell binary is located, or run the chsh command (if available on
your system). Until that is done, you can still run the Korn shell by
simply invoking:

$ ksh

This will give you a Korn subshell. To get back to your login shell,
type Ctl-d (Control-d). If you get an error message complaining
about ksh not being found, you can try to find it by executing:

$ find / —name ksh —print
/usr/local/bin/ksh

Once you've found it, add the directory in which it was found to your
PATH variable. If you're using the Bourne shell, it would be done like
this:

$ PATH=$PATH:/usr/local/bin
$ export PATH
$ ksh

while for the C shell:

% set path=($path /usr/local/bin)
% ksh

You could also invoke the Korn shell with the full pathname:

$ /usr/local/bin/ksh

More about the PATH variable is explained later in Chapter 7.

7

Invoking The Korn Shell Separately

If you would like to use the Korn shell, but keep your login shell the
same, you can avoid conflicts between the two shells by putting all of
your Korn shell environment and startup commands in the
environment file. This is specified by the ENV variable, which could
be set in your Bourne shell .profile file like this:

$ grep ENV $HOME/.profile
ENV=$HOME/.kshrc

or in the C shell .login file:

$ grep ENV $HOME/.login
setenv ENV $HOME/.kshrc

This way, when you invoke the Korn shell, it will know where to look
and find the environment settings. Here are some basic commands
that should be in the environment file:

$ cat $HOME/.kshrc
SHELL=/usr/local/bin/ksh
EDITOR=vi
export SHELL EDITOR

The EDITOR variable specifies the editor to use for command-line
editing. Here it is set to vi, but it can also be set to emacs or gmacs.
This will be covered in detail later in Chapter 7.

Chapter 1: Introduction

8

Korn Shell User and Programming Manual

Using The Korn Shell in Scripts

For those experienced users that are ready to dive into writing some
Korn shell scripts, but do not have their login shells configured for the
Korn shell, make sure to add this to the top of your Korn shell script to
make sure that it is executed by the Korn shell:

#!/bin/ksh

Use the full pathname of ksh if it is not located in /bin.

9

This chapter covers some of the basic features of the Korn shell. If
you've worked with the Bourne and/or C shells, then most of the
Process Execution section will be a review of what you are already
familiar with. The Input/Output Redirection section shows how
you can use the special Korn shell I/O operators with regular
commands to perform more sophisticated programming tasks. The
last three sections in this chapter, File Name Substitution ,
Command Substitution, and Tilde Substitution show you how
these powerful features can be used as shortcuts to help simplify your
work.

Chapter 2:
Korn Shell Basics

Simple Script
Process Execution

Input/Output Redirection
File Name Substitution

Command Substitution
Tilde Substitution

10

Korn Shell User and Programming Manual

Simple Script

Most of this chapter deals with how the Korn shell interacts with
UNIX, but to briefly explain the scripting concept a very simple
example is provided. First of all, ls is a UNIX command that lists the
name of the files in the current directory, and print is a Korn shell
command that displays its argument. Using your favorite UNIX
editor, enter the following text into a file called simple_script.ksh:

print "Here are the current files:"
ls

Assuming that you are using the Korn shell, have execute permission
in your default umask and that you have the current path included in
your environment (this will also be covered later!), run the script like
this:

$ simple_script.ksh
Here are the current files:
simple_script.ksh /tmp report.txt

If this does not work, you cna also try running the script like this:

$ ksh simple_script.ksh
Here are the current files:
simple_script.ksh tmp report.txt

As you can see, a script is just a 'batch' file of commands that is
passed to the Korn shell to be executed. More about writing Korn
shell scripts is covered in Chapter 8.

Process Execution

This section provides a quick overview of how the Korn shell
interacts with UNIX. For the following sections, it is assumed that
you are logged as a regular user, therefore you have the default

11

command prompt - $.

Multiple Commands

Multiple commands can be given on the same line if separated with
the ; character. Notice that the command prompt is not displayed
until the output from all three commands is displayed:

$ pwd ; ls dialins ; echo Hello
/home/anatole
dialins
Hello
$

This is also useful when you want to run something more complex
from the command line, like rename all the files in the current
directory using flow control commands:

$ for i in $(ls); do mv $i $i.bak; done

The for loop command is covered in more detail in Chapter 8.

Continuing Commands

If a command is terminated with a \ character, it is continued on the
next line. Here, the echo arguments are continued onto the next line:

$ echo a b \
> c
a b c

This is often used to make Korn shell scripts mode readable. Refer to
Appendix D for some good examples. The echo command itself can

Chapter 2: Korn Shell Basics

12

Korn Shell User and Programming Manual

be continued onto the next line by using the \ character:

$ ec\
> ho a b c
a b c

Background Jobs

Commands terminated with a & character are run in the background.
The Korn shell does not wait for completion, so another command can
be given, while the current command is running in the background. In
this example, the ls command is run in the background while pwd is
run in the foreground:

$ ls —lR /usr > ls.out &
[1] 221
$ pwd
/home/anatole/bin

This feature is discussed in detail in Chapter 5.

Pipes

The output of a command can be directed as the input to another
command by using the | symbol. Here, a pipe is used to see if root is
logged on by connecting the output of who to grep:

$ who | grep root
root console Sep 12 22:16

It can also be used to count the number of files in a directory by
connecting the ls and wc commands. This shows that there are eleven
files in the current directory:

13

$ ls | wc —l
11

You can also have multiple pipes to connect a series of commands
together. The name of each unique user that is logged on is displayed
using this command:

$ who | cut —f1 —d' ' | sort —u
anatole
root

You could even add another pipe to give you just the count of unique
users:

$ who | cut —f1 —d' ' | sort —u | wc —l
3

Conditional Execution

The Korn shell provides the && and | | operators for simple
conditional execution. First you need to know that when programs
finish executing, they return an exit status that indicates if they ran
successfully or not. A zero exit status usually indicates that a
program executed successfully, while a non-zero exit status usually
indicates that an error occurred.

If two commands are separated with &&, the second command is
only executed if the first command returns a zero exit status. Here,
the echo command is executed, because ls ran successfully:

$ ls temp && echo "File temp exists"
temp
File temp exists

Now, file temp is removed and the same command is run again:

Chapter 2: Korn Shell Basics

14

Korn Shell User and Programming Manual

$ rm temp
$ ls temp && echo "File temp exists"
ls: temp: No such file or directory

If two commands are separated with | |, the second command is only
executed if the first command returns a non-zero exit status. In this
case, the echo command is executed, because ls returned an error:

$ ls temp || echo "File temp does NOT exist"
ls: temp: No such file or directory
File temp does NOT exist

Remember that basic conditional execution using these operators only
works with two commands. Appending more commands to the same
command-line using ; does not cause these to also be conditionally
executed. Here, the touch temp command is executed, regardless if
ls temp failed or not. Only the echo command is conditionally
executed:

$ ls temp || echo "File temp does NOT exist"; \
touch temp
ls: temp: No such file or directory
File temp does NOT exist

The next section talks about how you can conditionally execute more
than one command by using {}'s or () 's. As you can see, the && and
| | operators can come in handy. There are certainly many situations
where they can be more efficient to use than the if command.

There is one more type of logic you can perform using these
operators. You can implement a simple if command by using the &&
and | | operators together like this:

command1 && command2 | | command3

If command1 returns true, then command2 is executed, which causes
command3 to not be executed. If command1 does not return true, then
command2 is not executed, which causes command3 to be executed.

15

Confusing, right? Let's look at a real example to make sense out of
this. Here, if the file temp exists, then one message is displayed, and
if it doesn't exist, the another message is displayed:

$ touch temp
$ ls temp && echo "File temp exists" || echo \
File temp does NOT exist
temp
File temp exists

Now we remove file temp and run the same command:

$ rm temp
$ ls temp && echo "File temp exists" || echo \
"File temp does NOT exist"
ls: temp: No such file or directory
File temp does NOT exist

Although compact, this format may not be considered as readable as
the if command. We look at comparing the && and | | operators to the
if command later in Chapter 8.

Grouping Commands

Multiple commands can be grouped together using { } or () .
Commands enclosed in {} are executed in the current shell. This is
useful for when you want to combine the output from multiple
commands. Here is file temp:

$ cat temp
The rain in Spain
falls mainly on the plain

Let's say we want to add a header to the output, then line-number the
whole thing with the nl command (or pr �n if you don't have nl). We
could try it like this:

Chapter 2: Korn Shell Basics

16

Korn Shell User and Programming Manual

$ echo "This is file temp:" ; cat temp | nl
This is file temp:
1 The rain in Spain
2 falls mainly on the plain

Only the output from cat temp was line numbered. By using {}'s, the
output from both commands is line numbered:

$ { echo "This is file temp:"; cat temp ; } | nl
1 This is file temp:
2 The rain in Spain
3 falls mainly on the plain

There must be whitespace after the opening {, or else you get a syntax
error. One more restriction: commands within the {}'s must be
terminated with a semi-colon when given on one line. This keeps
commands separated so that the Korn shell knows where one command
ends, and another one begins.

This means that commands can be grouped within {}'s even when
separated with newlines like this:

$ { pwd ; echo "First line"
> echo "Last line"
> }
/usr/spool/smail
First line
Last line

Another use for this feature is in conjunction with the && and | |
operators to allow multiple commands to be conditionally executed.
This is similar to the example from the previous section. What we
want this command to do is check if file temp exists, and if it does,
display a message, then remove it. Unfortunately, the way it is
written, rm temp is executed regardless if it exists or not.

$ rm temp
$ ls temp && echo "temp exists.removing";rm temp
ls: temp: No such file or directory
rm: temp: No such file or directory

17

Chapter 2: Korn Shell Basics

Table 2.1: Command Execution Format

command1 ; command2
execute command1 followed by
command2

command & execute command asynchronously in
the background; do not wait for
completion

command1 | command2
pass the standard output of command1
to standard input of command2

command1 && command2
execute command2 if command1
returns zero (successful) exit status

command1 | | command2
execute command2 if command1
returns non-zero (unsuccessful) exit
status

command |& execute command asynchronously with
its standard input and standard output
attached to the parent shell; use read �
p/print �p to manipulate the standard
input/output (see Chapter 8)

command \ continue command onto the next line
{ command ; }

execute command in the current shell
(command) execute command in a subshell

18

Korn Shell User and Programming Manual

By using {}'s, both the echo and rm commands are only executed if
temp exists:

$ touch temp
$ ls temp && { echo "temp exists..removing" ;
> rm temp ; }
temp
temp exists..removing

Commands enclosed in () are executed in a subshell. This is
discussed in detail in Chapter 7.

Input/Output Redirection

The Korn shell provides a number of operators than can be used to
manipulate command input/output and files. For example, you can
save command output to a file. Or instead of typing in the input to a
command, it can be taken from a file. The following sections describe
some of the features of Korn shell I/O redirection.

Redirecting Standard Output

The standard output of a command is by default directed to your
terminal. By using the > symbol, the standard output of a command
can be redirected to a file, instead of your terminal. In this example,
the standard output of the echo command is put into the file p.out:

$ echo "Hello" > p.out
$ cat p.out
Hello

If the file doesn't exist, then it is created. Otherwise, the contents are
usually overwritten. Usually, but not always. If you have the

19

noclobber option set (discussed in the next section), or the file
attributes (permissions and/or ownership) do not permit writing, the
file will not be overwritten. If we change permission on p.out and try
to direct output to it again, we get an error message:

$ chmod 444 p.out
$ echo "Hello again" > pwd.out
/bin/ksh: p.out: cannot create

We'll see in the next section how to force overwriting of existing files
using a variation of the > redirect operator.

You can also use the > command to create an empty file:

$ > tmp
$ ls —s tmp
0 tmp

This is equivalent to touch tmp.

Standard output can be appended to a file by using the >> redirect
operator. Here, the output of find is appended to deadfiles.out:

$ echo "Dead File List" > junk.out
$ find . —name dead.letter —print >>junk.out
$ find . —name core —print >>junk.out
$ cat junk.out
Dead File List
./mail/dead.letter
./bin/core

Standard output is closed with the >&� redirect operator:

$ echo "This is going nowhere" >&—
$

This feature can be used in a Korn shell script to close the output of a
group of commands instead of redirecting the output of each
command individually.

Chapter 2: Korn Shell Basics

20

Korn Shell User and Programming Manual

The noclobber Option

To prevent redirecting output to an existing file, set the noclobber
option. By default, this feature is usually disabled, but can be enabled
with the set �o noclobber command:

$ ls > file.out
$ set —o noclobber

Now when we try to redirect output to file.out, an error message is
returned:

$ ls > file.out
/bin/ksh: file.out: file already exists

The > | operator is used to force overwriting of a file, even if the
noclobber option is enabled. Here, file.out can now be overwritten,
even though the noclobber option is set:

$ ls >| file.out

Redirecting Standard Input

Standard input to a command is redirected from a file using the <
operator. This feature can be used to read in a mail message from a
file, instead of typing it in:

$ mail dick jane spot < mlist

This could also be implemented using a pipe:

$ cat mlist | mail dick jane spot

In both cases, file mlist becomes the standard input to mail.

21

Standard input can be closed with the <&� redirect operator. Here,
the standard input to the wc command is closed:

$ cat mlist | wc —l <&—
0

Not really exciting. This useful when manipulating file descriptors
with the exec command, which is discussed later in Chapter 8.

File Descriptors

File descriptors are used by processes to identify their open files. The
Korn shell automatically assigns file descriptor 0 to standard input for

Chapter 2: Korn Shell Basics

Table 2.2: Some I/O Redirection Operators

< file redirect standard input from file
> file redirect standard output to file. Create

file if non-existent, else overwrite.
>> file append standard output to file. Create

file if non-existent.
>| file redirect standard output to file. Create

file if non-existent, else overwrite even
if noclobber is enabled.

file open file for reading and writing as
standard input

<&� close standard input
>&� close standard output

22

Korn Shell User and Programming Manual

reading, file descriptor 1 to standard output for writing, and file
descriptor 2 to standard error for reading and writing. The file
descriptors 3 through 9 can be used with I/O redirection operators and
are opened, closed, and/or copied with the exec command, which is
discussed later in Chapter 8.

Redirecting Standard Error

Most UNIX commands write their error messages to standard error.
As with standard output, standard error is by default directed to your
terminal, but it can be redirected using the standard error file
descriptor (2) and the > operator. For example, the ls command
displays a message on standard error when you attempt to display
information about a non-existent file:

$ ls tmp
tmp not found

Now, if you do an ls on an existent and non-existent file on the same
command-line, a message about the non-existent file goes to standard
error, while the output for the existent file goes to standard output:

$ ls tmp t.out
tmp not found
t.out

By using the 2> operator, the standard error of the same command is
redirected to ls.out. The standard output is still displayed directly to
your terminal:

$ ls tmp t.out 2>ls.out
t.out
$ cat ls.out
tmp not found

There can be no space between the 2 and > symbol, otherwise the 2 is

23

interpreted as an argument to the command.

More with File Descriptors

The >&n operator causes output to be redirected to file descriptor n.
This is used when you want to direct output to a specific file
descriptor. To send the output of the echo command to standard
error, just add >&2 to the command-line:

$ echo This is going to standard error >&2
This is going to standard error

In the next command, the standard error and output are sent to ls.out
by specifying multiple redirections on the same command line. First,
>&2 causes standard output to be redirected to standard error. Then,
2>ls.out causes standard error (which is now standard output and
standard error) to be sent to ls.out:

$ ls tmp t.out 2>ls.out 1>&2
$ cat ls.out
tmp not found

Chapter 2: Korn Shell Basics

Table 2.3: File Descriptors

0 standard input
1 standard output
2 standard error
3�9 unassigned file descriptors

24

Korn Shell User and Programming Manual

t.out

This command causes output to be redirected to both standard output
and standard error:

$ { echo "This is going to stdout" >&1 ; \
echo "This is going to stderr" >&2 ; }
This is going to stdout
This is going to stderr

If the output of the last command was redirected to a file using the >
operator, then only the standard output would be redirected. The
standard error would still be displayed on your terminal.

$ { echo "This is going to stdout" >&1 ; \
echo "This is going to stderr" >&2 ; } >out
This is going to stderr
$ cat out
This is going to stdout

The n>&m operator causes the output from file descriptors n and m to
be merged. This operator could be used in the previous command to
direct both the standard output and standard error to the same file.

$ { echo "This is going to stdout" >&1 ; \
echo "This is going to stderr" >&2 ; } >out 2>&1
$ cat out
This is going to stdout
This is going to stderr

If you wanted the standard output and standard error appended to the
output file, the >> operator could be used:

$ { echo "This is going to stdout again" >&1 ; \
echo "This is going to stderr again" >&2 ; } \
>>out 2>&1
$ cat out
This is going to stdout
This is going to stderr
This is going to stdout again
This is going to stderr again

25

As seen in the previous example, multiple file descriptor redirections
can also be specified. To close the standard output and standard error
of this ls command:

$ ls tmp t.out >&— 2>&—
$

The print and read commands have special options that allow you to
redirect standard output and input with file descriptors. This is
discussed in Chapter 8.

Here Documents

Here documents is a term used for redirecting multiple lines of
standard input to a command. In looser terms, they allow batch input
to be given to programs and are frequently used to execute interactive
commands from within Korn shell scripts. The format for a here
document is:

command << word
or
command <<�word

where lines that follow are used as standard input to command until
word is read. In the following example, standard input for the cat
command is read until the word END is encountered:

$ cat >> .profile <<END
> export TERM=sun-cmd
> export ORACLE_HOME=/apps/oracle
> END

The other variation, command <<� word, deletes leading tab characters
from the here document. It is often used over the first variation to

Chapter 2: Korn Shell Basics

26

Korn Shell User and Programming Manual

produce more readable code when used within larger scripts. A good
use for here documents is to automate ftp file transfers. This snippet of
code could be used within a larger script to automatically ftp code to
or from another server.

$ ftp <<- END
open aspsun
user anonymous
cd /usr/pub
binary
get ksh.tar.Z
quit
END

Here Documents and File Descriptors

Here documents can also be used with file descriptors. Instead of
reading multiple lines from standard input, multiple lines are read
from file descriptor n until word is read.

command n<< word
or
command n<<�word

Discarding Standard Output

The /dev/null file is like the system trash bin. Anything redirected to
it is discarded by the system.

$ ls >/dev/null

This is not the same as:

$ ls >&—

27

Chapter 2: Korn Shell Basics

Table 2.4: Redirect Operators and File Descriptors

<&n redirect standard input from file descriptor n
>&n redirect standard output to file descriptor n
n< file redirect file descriptor n from file
n>file redirect file descriptor n to file
n>>file redirect file descriptor n to file. Create file if

non-existent, else overwrite.
n>| file redirect file descriptor n to file. Create file

even if noclobber is enabled.
n<&m redirect file descriptor n input from file

descriptor m
n>&m redirect file descriptor n output to file

descriptor m
n file open file for reading and writing as file

descriptor n
n<<word redirect to file descriptor n until word is read
n<<�word redirect to file descriptor n until word is

read; ignore leading tabs
n<&� close file descriptor n for standard input
n>&� close file descriptor n for standard output
print �un args

redirect arguments to file descriptor n. If n is
greater than 2, it must first be opened with
exec. If n is not specified, the default file
descriptor argument is 1 (standard output).

read �un args
read input line from file descriptor n. If n is
greater than 2, it must first be opened with
exec. If n is not specified, the default file
descriptor argument is 0 (standard input).

28

Korn Shell User and Programming Manual

which closes standard output.

File Name Substitution

File name substitution is a feature which allows strings to be
substituted for patterns and special characters. This provides greater
flexibility and saves a lot of typing time. Most frequently this feature
is used to match file names in the current directory, but can also be
used to match arguments in case and [[...]] commands.

The syntax for file name substitution is not the same as regular
expression syntax used in some UNIX commands like ed, grep, and
sed. The examples in the following sections assume that the
following files exist in the current directory:

$ ls —a
. .molog abc dabkup3 mobkup1
.. a dabkup1 dabkup4 mobkup2
.dalog ab dabkup2 dabkup5

The * Character

The * character matches any zero or more characters. This is
probably the most frequently used pattern matching character. If used
alone, * substitutes the names of all the files in the current directory,
except those that begin with the "." character. These must be
explicitly matched. Now, instead of typing in each individual file
name to the cat command:

$ cat dabkup1 dabkup2 dabkup3 dabkup4 ...
. . .

29

You can do this:

$ cat *
. . .

The * character can also be used with other characters to match only
certain file names. Let's say we only wanted to list the monthly
backup files. We could do it like this:

$ ls m*
mobkup1 mobkup2

The m* matches any file name in the current directory that begins
with m, which here would be mobkup1 and mobkup2 . This
command lists file names that end in 2:

$ ls *2
dabkup2 mobkup2

This command lists file names that contain ab. Notice that ab and abc
are also listed:

$ ls *ab*
ab dabkup1 dabkup3 dabkup5
abc dabkup2 dabkup4

Remember that file name substitution only works with files in the
current directory. To match file names in subdirectories, the /
character must be explicitly matched. This pattern would match file
names ending in .Z from any directories one-level under the current
directory:

$ ls */*.Z
bin/smail.Z bin/calc.Z bin/testsh.Z

To search the next level of directories, another /* would need to be
added.

Chapter 2: Korn Shell Basics

30

Korn Shell User and Programming Manual

$ ls */*/*.Z
bin/fdir/foo.Z

Be careful, because on some systems, matching files names in
extremely large directories and subdirectories will generate an
argument list error.

Don't forget that the "." character must be explicitly matched. Here,
the . files in the current directory are listed:

$ echo .*
. .. .dalog .malog

The ? Character

The ? character matches exactly one character. It is useful when the
file name matching criteria is the length of the file name. For
example, to list two-character file names in the current directory, ??
could be used.

$ echo ??
ab

What if you wanted to list the file names in the current directory that
had at three or more characters in the name. The ??? pattern would
match file names that had exactly three characters, but not more. You
could try this:

$ echo ??? ???? ????? . . .

but that is not correct either. As you probably already guessed, the
pattern to use would be ???*, which matches files names with three
charaacters, followed by any zero or more characters. Let's try it:

31

$ echo ???*
abc dabkup1 dabkup2 dabkup3 dabkup4 dabkup5
mobkup1 mobkup2

If you only wanted to list the dabkup*, you could you the following
pattern:

$ echo dabkup?
dabkup1 dabkup2 dabkup3 dabkup4 dabkup5

The [] Characters

The [] characters match a single, multiple, or range of characters. It
is useful for when you want to match certain characters in a specific
character position in the file name. For example, if you wanted to list
the file names in the current directory that began with a or m, you
could do it like this:

$ ls a* m*
a ab abc mobkup1 mobkup2

or do it more easily using []:

$ ls [am]*
a ab abc mobkup1 mobkup2

This command lists file names beginning with d or m, and ending
with any number 1 through 5:

$ echo [dm]*[12345]
dabkup1 dabkup3 dabkup5 mobkup2
dabkup2 dabkup4 mobkup1

You could do the same thing using a range argument instead of listing
out each number:

Chapter 2: Korn Shell Basics

32

Korn Shell User and Programming Manual

$ echo [dm]*[1-5]
dabkup1 dabkup3 dabkup5 mobkup2
dabkup2 dabkup4 mobkup1

In the range argument, the first character must be alphabetically less
than the last character. This means that [c�a] is an invalid range.
This also means that pattern [0�z] matches any alphabetic or
alphanumeric character, [A�z] matches any alphabetic character
(upper and lower case), [0�Z] matches any alphanumeric or upper
case alphabetic character, and [0�9] matches any alphanumeric
character.

Multiple ranges can also be given. The pattern [a�jlmr3�7] would
match files names beginning with the letters a through j, l, m, r, and 3
through 7.

The ! Character

The ! character can be used with [] to reverse the match. In other
words, [!a] matches any character, except a. This is another very
useful pattern matching character, since frequently you want to match
everything except something. For example, if the current directory
contained these files:

$ ls
a abc dabkup2 dabkup4 mobkup1
ab dabkup1 dabkup3 dabkup5 mobkup2

and we wanted to list all of the file names, except those that started
with d, we could do this:

$ ls [0-ce-z]*
a abc mobkup2
ab mobkup1

33

or it could be done more easily using [!d]:

$ ls [!d]*
a abc mobkup2
ab mobkup1

Multiple and range arguments can also be negated. The pattern
[!lro]* would match strings not beginning with l, r, or o, *[!2�5]
would match strings not ending with 2 through 5, and *.[!Z] would
match strings not ending in .Z.

Chapter 2: Korn Shell Basics

Table 2.5: Basic Pattern-Matching Characters

? match any single character
* match zero or more characters,

including null
[abc] match any character or characters

between the brackets
[x �z] match any character or characters in

the range x to z
[a� ce �g] match any character or characters in

the range a to c, e to g
[!abc] match any character or characters not

between the brackets
[!x�z] match any character or characters not

in the range x to z
. strings starting with . must be explicitly

matched

34

Korn Shell User and Programming Manual

Matching . Files

Certain characters like "." (period) must be explicitly matched. This
command matches the file names .a, .b, and .c:

$ ls .[a-c]
.a .b .c

To remove all the files in the current directory that contain a ".",
except those that end in .c or .h:

$ rm *.[!ch]

Complex Patterns

The latest version of the Korn shell also provides other matching
capabilities. Instead of matching only characters, entire patterns can
be given. For demonstration purposes, let's assume that we have a
command called match that finds words in the on-line dictionary,
/usr/dict/words. It's like the grep command, except that Korn shell
patterns are used, instead of regular expression syntax that grep
recognizes. The source code for match is listed in Appendix D.

*(pattern)

This format matches any zero or more occurrences of pattern. You
could find words that contained any number of consecutive A's:

$ match *(A)
A
AAA
AAAAAAAA

35

Multiple patterns can also be given, but they must be separated with a
| character. Let's try it with match:

$ match *(A|i)
A
AAA
AAAAAA
i
ii
iii
iiiiii

This pattern matches anti, antic, antigen, and antique:

$ match anti*(c|gen|que)
anti
antic
antigen
antique

This format is also good for matching numbers. The [1�9]*([0�9])
pattern matches any number 1�9999999* (any number except 0).

?(pattern)

This format matches any zero or one occurrences of pattern. Here we
look for one, two, and three letter words beginning with s:

$ match s?(?|??)
s
sa
sac
sad
...

Here are some more patterns using this format:

Chapter 2: Korn Shell Basics

36

Korn Shell User and Programming Manual

1?([0-9])

matches
1, 10, 11, 12, ..., 19

the?(y|m|[rs]e)

matches
the, they, them, there, these

+(pattern)

This format matches one or more occurrences of pattern. To find any
words beginning with m followed by any number of iss patterns:

$ match m+(iss)*
miss
mississippi

Here is another pattern using this format. It matches any number.

+([0-9])

matches
0-9999999*

@(pattern)

This format matches exactly one occurrence of pattern. Let's look for
words beginning with Ala or Cla:

$ match @([AC]la)*
Alabama
Alameda
Alamo
Alaska
Claire
Clara

37

Clare
...

Now for another number-matching pattern. This one matches any
number 0�9:

@([0-9]

matches
0, 1, 2, 3, ..., 9

!(pattern)

This format matches anything except pattern. To match any string
that does not end in .c, .Z, or .o:

Chapter 2: Korn Shell Basics

Table 2.6: Other File Name Patterns

?(pattern-list) match zero or one occurrence of any
pattern

*(pattern-list) match zero or more occurrences of
any pattern

+(pattern-list) match one or more occurrence of any
pattern

@(pattern-list) match exactly one occurrence of any
pattern

!(pattern-list) match anything except any pattern
pattern-list multiple patterns must be separated

with a | character

38

Korn Shell User and Programming Manual

!(*.c|*.Z|*.o)

or any string that does not contain digits:

!(*[0-9]*)

More Complex Patterns

The complex file patterns can be used together or even nested to
generate even more sophisticated patterns. Here are a few examples:

@([1-9])+([0-9])

matches
1-9999999*

@([2468]|+([1-9])+([02468]))

matches any even numbers
2, 4, 6, 8, ...

@([13579]|+([0-9])+([13579]))

matches any odd numbers
1, 3, 5, 7, ...

Disabling File Name Substitution

File name substitution can be disabled by setting the noglob option
using the set command:

$ set —o noglob

or
$ set —f

The �o noglob and �f options for the set command are the same.
Once file name substitution is disabled, pattern-matching characters

39

like *, ?, and] lose their special meaning:

$ ls a*
a* not found
$ ls b?
b? not found

Now we can create some files that contain special characters in their
names.

$ touch *a b?b c—c d[]d
$ ls
*a b?b c—c d[]d

Within [...] patterns, a \ character is used to remove the meaning of
the special pattern-matching characters. This means that the [*\?]*
pattern would match file names beginning with * or ?.

Command Substitution

Command substitution is a feature that allows output to be expanded
from a command. It can be used to assign the output of a command to
a variable, or to imbed the output of a command within another
command. The format for command substitution is:

$(command)

where command is executed and the output is substituted for the entire
$(command) construct. For example, to print the current date in a
friendly format:

$ echo The date is $(date)
The date is Fri Jul 27 10:41:21 PST 1996

Chapter 2: Korn Shell Basics

40

Korn Shell User and Programming Manual

or see who is logged on:

$ echo $(who —q) are logged on now
root anatole are logged on now

Any commands can be used inside $(...), including pipes, I/O
operators, metacharacters (wildcards), and more. We can find out
how many users are logged on by using the who and wc �l commands:

$ echo $(who | wc —l) users are logged on
There are 3 users logged on

Bourne Shell Compatibility

For compatibility with the Bourne shell, the following format for
command substitution can also be used:

`command `

Using `. . .` command substitution, we could get the names of the files
in the current directory like this:

$ echo `ls` are in this directory
NEWS asp bin pc are this directory

If you wanted a count of the files, a pipe to wc could be added:

$ echo There are `ls | wc —l` files here
There are 4 files here

41

Chapter 2: Korn Shell Basics

Directing File Input

There is also a special form of the $(...) command that is used to
substitute the contents of a file. The format for file input substitution
is:

$(< file)

This is equivalent to $(cat file) or `cat file `, except that it is faster,
because an extra process does not have to be created to execute the
cat command. A good use for this is assigning file contents to
variables, which we will talk about later in Chapter 3.

Arithmetic Operations

Another form of the $(...) command is used to substitute the output of
arithmetic expressions. The value of an arithmetic expression is
returned when enclosed in double parentheses and preceded with a
dollar sign.

$((arithmetic-expression))

Here are a few examples.

$ echo $((3+5))
8
$ echo $((8192*16384%23))
9

Performing arithmetic is discussed in detail in Chapter 6.

42

Korn Shell User and Programming Manual

Tilde Substitution

Tilde substitution is used to substitute the pathname of a user's home
directory for ~user. Words in the command line that start with the
tilde character cause the Korn shell to check the rest of the word up to
a slash. If the tilde character is found alone or is only followed by a
slash, it is replaced with the value of the HOME variable. This is a
handy shortcut borrowed from the C shell. For example, to print the
pathname of your home directory:

$ echo ~
/home/anatole

or to list its contents:

$ ls ~/
NEWS bin pc
asp mail src

If the tilde character is followed by a login name file, it is replaced
with the home directory of that user. Here we change directory to the
tools directory in smith's home directory:

$ cd ~smith/tools
$ pwd
/home/users/admin/smith/tools

If the tilde character is followed by a + or �, it is replaced with the
value of PWD (current directory) and OLDPWD (previous
directory), respectively. This is not very useful for directory
navigation, since cd ~+ leaves you in the current directory. The cd
~� command puts you in the previous directory, but the Korn shell
provides an even shorter shortcut: cd � does the same thing. This is
discussed in Chapter 9.

43

Table 2.7: Tilde Substitution

~ replaced with $HOME
~user replaced with the home directory of user
~� replaced with $OLDPWD (previous

directory)
~+ replaced with $PWD (current directory)

Chapter 2: Korn Shell Basics

44

Korn Shell User and Programming Manual

45

Variables and parameters are used by the Korn shell to store values.
Like other high-level programming languages, the Korn shell
supports data types and arrays. This is a major difference with the
Bourne, C shell, and other scripting languages, which have no
concept of data types.

The Korn shell supports four data types: string, integer, float, and
array. If a data type is not explicitly defined, the Korn shell will
assume that the variable is a string.

By default, all variables are global in scope. However, it is possible to
declare a local variable withing a function. This is discussed in more
detail later in this chapter.

Chapter 3:
Variables and

Parameters
 Variables

Special Parameters
Variable Expansion

Array Variables
Compound Variables

Quoting

46

Korn Shell User and Programming Manual

Variables

Korn shell variable names can begin with an alphabetic (a�Z) or
underscore character, followed by one or more alphanumeric (a�Z,
0�9) or underscore characters. Other variable names that contain
only digits (0�9) or special characters (!, @, #, %, *, ?, $) are
reserved for special parameters set directly by the Korn shell.

To assign a value to a variable, you can simply name the variable and
set it to a value. For example, to assign abc to variable X:

$ X=abc

The typeset command can also be used to assign values, but unless
you are setting attributes, it's a lot more work for nothing. If a value is
not given, the variable is set to null. Here, X is reassigned the null
value:

$ X=

This is not the same as being undefined. As we'll see later, accessing
the value of an undefined variable may return an error, while
accessing the value of a null variable returns the null value.

Accessing Variable Values

To access the value of a variable, precede the name with the $
character. There can be no space between $ and the variable name.
In this example, CBIN is set to /usr/ccs/bin.

$ CBIN=/usr/ccs/bin

47

Now you can just type $CBIN instead of the long pathname:

$ cd $CBIN
$ pwd
/usr/ccs/bin

Here is a new command to go along with this concept: print. It
displays its arguments on your terminal, just like echo.

$ print Hello world!
Hello world!

Here we use print to display the value of CBIN :

$ print $CBIN
/usr/ccs/bin

Chapter 3: Variables and Parameters

Table 3.1: Assigning Values to Variables

variable= declare variable and set
it to null

typeset variable= declare variable and set
it to null

variable=value assign value to variable
typeset variable=value assign value to variable

48

Korn Shell User and Programming Manual

Variable Attributes

Korn shell variables can have one or more attributes that specify their
internal representation, access or scope, or the way they are
displayed. This concept is similar to a data type in other high-level
programming languages, except that in the Korn shell it is not as
restrictive. Variables can be set to integer type for faster arithmetic
operations, read-only so that the value cannot be changed, left/right
justified for formatting purposes, and more. To assign a value and/or
attribute to a Korn shell variable, use the following format with the
typeset command:

typeset �attribute variable=value

or
typeset �attribute variable

Except for readonly, variable attributes can be set before, during, or
after assignment. Functionally it makes no difference. Just
remember that the attribute has precedence over the value. This
means that if you change the attribute after a value has been assigned,
the value may be affected.

Lowercase (�l) and Uppercase (�u) Attributes

These attributes cause the variable values to be changed to lower or
uppercase. For example, the lowercase attribute and uppercase value
ASPD are assigned to variable MYSYS:

$ typeset —l MYSYS=ASPD

Despite the fact that MYSYS was assigned uppercase ASPD, when

49

accessed, the value is displayed in lowercase:

$ print $MYSYS
aspd

This is because the attribute affects the variable value, regardless of
the assignment. Variable attributes can also be changed after
assignment. If we wanted to display variable MYSYS in uppercase,
we could just reset the attribute:

$ typeset —u MYSYS
$ print $MYSYS
ASPD

Readonly (�r) Attribute

Once the readonly attribute is set, a variable cannot be assigned
another value. Here, we use it to set up a restricted PATH:

Chapter 3: Variables and Parameters

Table 3.2: Assigning Values/Attributes to Variables

typeset �attribute variable=value
assign attribute and value to variable

typeset �attribute variable
assign attribute to variable

typeset +attribute variable
remove attribute from variable

50

Korn Shell User and Programming Manual

$ typeset —r PATH=/usr/rbin

If there is an attempt to reset PATH, an error message is generated:

$ PATH=$PATH:/usr/bin:
/bin/ksh: PATH: is read only

We'll come back to this in a few pages. Unlike other variable
attributes, once the readonly attribute is set, it cannot be removed.

The readonly command can also be used to specify a readonly
variable.

Integer (�i) Attribute

The integer attribute (�i) is used to explicitly declare integer
variables. Although it is not necessary to set this attribute when
assigning integer values, there are some benefits to it. We'll cover
this later in Chapter 6. In the meantime, NUM is set to an integer-
type variable and assigned a value:

$ typeset —i NUM=1
$ print $NUM
1

We could also assign NUM the number of users on the system using
command substitution like this:

$ typeset —i NUM=$(who | wc —l)
$ print $NUM
3

There is one restriction on integer variables. Once a variable is set to
integer type, it can't be assigned a non-integer value:

$ typeset —i NUM=abc
/bin/ksh: NUM: bad number

51

The Float (�E, �F) Attribute

The float attributes (�E, �F) are used to declare float variables. The
�E is used to specify the number of significant digits, while �F is used
to specify the precision. We'll cover this later in Chapter 6. In the
following example, X is set to a float variable and assigned a value
using both formats:

$ typeset —E5 X=123.456
$ print $X
123.46
$ typeset —F5 X=123.456
$ print $X
123.45600

The float command can also be used to declare a float variable, but
does not allow for specifying the precision.

Right (�R) and Left (�L) Justify Attributes

The right and left justify attributes cause variable values to be
justified within their width and are be used to format data. Here,
variables A and B are set to right-justify with a field width of 7
characters. Notice that integer values are used, even though the
integer attribute is not set.

$ typeset —R7 A=10 B=10000
$ print :$A:
: 10:
$ print :$B:
: 10000:

If the field width is not large enough for the variable assignment,
the value gets truncated. Variable X is assigned a seven-character
wide value, but the field width is set to 3, so the first four characters
are lost:

Chapter 3: Variables and Parameters

52

Korn Shell User and Programming Manual

$ typeset —R3 X=ABCDEFG
$ print $X
EFG

If a field width is not given, then it is set with the first variable
assignment. Variable Y is assigned a three-character wide value, so
the field width is set to 3.

$ typeset —L Y=ABC
$ print $Y
ABC

Without explicitly resetting the field width, a subsequent assignment

would be restricted to a three-character wide value:

$ Y=ZYXWVUT
$ print $Y
ZYX

Autoexport (�x) Attribute

This is another useful attribute. It allows you to set and export a
variable in one command. Instead of

$ typeset X=abc
$ export X

you can do this:

$ typeset —x X=abc

We could use this attribute to add the /lbin directory to the PATH
variable and export it all in one command:

$ typeset —x PATH=$PATH:/lbin

53

Chapter 3: Variables and Parameters

Table 3.3: Some Variable Attributes

typeset �i var Set the type of var to be integer
typeset �l var Set var to lower case
typeset �L var Left justify var; the field width is

specified by the first assignment
typeset �Ln var Left justify var; set field width to n
typeset �LZn var

Left justify var; set field width to n
and strip leading zeros

typeset �r var Set var to be readonly (same as the
readonly command)

typeset �R var Right justify var; the field width is
specified by the first assignment

typeset �Rn var Right justify var; set field width to n
typeset �RZn var

Right justify var; set field width to n
and fill with leading zeros

typeset �t var Set the user-defined attribute for var.
This has no meaning to the Korn
shell.

typeset �u var Set var to upper case
typeset �x var Automatically export var to the

environment (same as the export
command)

typeset �Z var Same as typeset �RZ

54

Korn Shell User and Programming Manual

Removing Variable Attributes

Except for readonly, variable attributes are removed with the typeset
+attribute command. Assuming that the integer attribute was set on
the NUM variable, we could remove it like this:

$ typeset +i NUM

and then reassign it a non-integer value:

$ NUM=abc

Once the readonly attribute is set, it cannot be removed. When we try
to do this with the PATH variable that was previously set, we get an
error message:

$ typeset +r PATH
/bin/ksh: PATH: is read only

The only way to reassign a readonly variable is to unset it first, then
assign a value from scratch.

Multiple Attributes

Multiple attributes can also be assigned to variables. This command
sets the integer and autoexport attributes for TMOUT:

$ typeset —ix TMOUT=3000

To set and automatically export ORACLE_SID to uppercase prod:

55

$ typeset —ux ORACLE_SID=prod
$ print $ORACLE_SID
PROD

Obviously, some attributes like left and right justify are mutually
exclusive, so they shouldn't be set together.

Checking Variable Attributes

Attributes of Korn shell variables are listed using the typeset �
attribute command. For example, to list all the integer type variables
and their values:

$ typeset —i
ERRNO=0
MAILCHECK=600
PPID=177
RANDOM=22272
SECONDS=4558
TMOUT=0

To list only the names of variables with a specific attribute, use the
typeset + attribute command.

More with Variables

You can do other things with variables, such as assign them the value
of another variable, the output of a command, or even the contents of
a file. Here Y is assigned the value of variable X:

Chapter 3: Variables and Parameters

56

Korn Shell User and Programming Manual

$ X=$HOME
$ Y=$X
$ print $Y
/home/anatole

Variables can be assigned command output using this format:

variable=$(command)
or
variable=`command`

The second format is provided for compatibility with the Bourne
shell. Here, UCSC is set to its internet ID by assigning the output of
the grep and cut commands:

$ UCSC=$(grep UCSC /etc/hosts | cut —f1 —d" ")
$ print $UCSC
128.114.129.1

Variables can also be assigned the contents of files like this:

variable=$(<file)
or
variable=`cat file`

The first format is equivalent to variable=$(cat file). The second
format is much slower, but is provided for compatibility with the
Bourne shell. Here, the FSYS variable is set to the contents of the
/etc/fstab file:

$ FSYS=$(</etc/fstab)
$ print $FSYS
/dev/roota / /dev/rootg /usr

57

Notice that the entries were displayed all on one line, instead of each
on separate lines as in the file. We'll talk about this in the Quoting
section later in this chapter.

A nameref variable is a synonym for another variable and will always
have the same value as its associated variable They are created using
the following formats:

nameref nameref_variable=variable
or
typeset �n nameref_variable=variable

For example:

$ X=abc
$ nameref Y=X
$ print $X
abc
$ print $Y
abc

Unsetting Variables

Variable definitions are removed using the unset command. The
TMOUT variable is not being used, so let's unset it:

$ unset TMOUT

Now to check and see:

$ print $TMOUT

$

Chapter 3: Variables and Parameters

58

Korn Shell User and Programming Manual

This is not the same as being set to null. As we'll see later in this
chapter, variable expansion may be performed differently, depending
on whether the variable value is set to null.

Unsetting either the base or nameref variable will unset both
variables.

$ unset Y
$ print $X

$ print $Y

$

Special Parameters

Some special parameters are automatically set by the Korn shell and
usually cannot be directly set or modified.

The ? Parameter

The ? parameter contains the exit status of the last executed
command. In this example, the date command is executed. It ran
successfully, so the exit status is 0:

$ date +%D
05/24/96
$ print $?
0

Notice that there was no output displayed from the date command.
This is because the >&� I/O operator causes standard output to be
closed. The next command, cp ch222.out /tmp, did not run

59

successfully, so 1 is returned:

$ cp ch222.out /tmp
ch222.out: No such file or directory
$ print $?
1

When used with a pipe, $? contains the exit status of the last
command in the pipeline.

The $ Parameter

The $ parameter contains the process id of the current shell.

$ print $$
178

Chapter 3: Variables and Parameters

Table 3.4: Some Preset Special Parameters

? exit status of the last command
$ process id of the current Korn shell
� current options in effect
! process id of the last background

command or co-process
ERRNO error number returned by most recently

failed system call (system dependent)
PPID process id of the parent shell

60

Korn Shell User and Programming Manual

It is useful in creating unique file names within Korn shell scripts.

$ touch $0.$$
$ ls *.*
ksh.218

Other Special Parameters

The � parameter contains the current options in effect. The output of
the next command shows that the interactive and monitor options
are enabled:

$ print $—
im

To display the error number of the last failed system call, use the
ERRNO variable. Here, an attempt to display a non-existent file
returns an error, so ERRNO is checked for the error number:

$ cat tmp.out
tmp.out: No such file or directory
$ print $ERRNO
2

This is system dependent, so it may not be available on your system.
Check your documentation or /usr/include/sys/errno.h for more
information.

Special Reserved Variables

The Korn shell has two types of reserved variables - those that are set

61

and updated automatically by the Korn shell, and those that are set by
each user or the system administrator. These are listed in detail in
Chapter 7 and Appendix F.

Variable Expansion

Variable expansion is the term used for the ability to access and
manipulate values of variables and parameters. Basic expansion is
done by preceding the variable or parameter name with the $
character. This provides access to the value.

$ UULIB=/usr/lib/uucp
$ print $UULIB
/usr/lib/uucp

Other types of expansion can be used to return portions or the length
of variables, use default or alternate values, check for mandatory
setting, and more.

For the sake of convenience, the term variable will refer to both
variables and parameters in the following sections that discuss
variable expansion.

$variable, ${variable}

This is expanded to the value of variable. The braces are used to
protect or delimit the variable name from any characters that follow.
The next example illustrates why braces are used in variable
expansion. The variable CA is set to ca:

Chapter 3: Variables and Parameters

62

Korn Shell User and Programming Manual

$ CA=ca

What if we wanted to reset CA to california? It could be reset to the
entire value, but to make a point, let's try using the current value like
this:

$ CA=$CAlifornia
$ print $CA

$

Nothing is printed, because without the braces around the variable
CA, the Korn shell looks for a variable named $CAlifornia. None is
found, so nothing is substituted. With the braces around variable CA,
we get the correct value:

$ CA=${CA}lifornia
$ print $CA
california

Braces are also needed when attempting to expand positional
parameters greater than 9. This ensures that both digits are
interpreted as the positional parameter name.

${#variable}

This is expanded to the length of variable. In this example, X is set to
a three-character string, so a length of 3 is returned:

$ X=abc
$ print ${#X}
3

63

Chapter 3: Variables and Parameters

Whitespace in variable values is also counted as characters. Here the
whitespace from the output of the date command is also counted:

$ TODAY=$(date)
$ print ${#TODAY}
28

${variable:�word}, ${variable�word}

This is expanded to the value of variable if it is set and not null,
otherwise word is expanded. This is used to provide a default value if
a variable is not set. In the following example, the variable X is set to
abc. When expanded using this format, the default value abc is used:

$ X=abc
$ print ${X:—cde}
abc

After X is unset, the alternate value cde is used:

$ unset X
$ print ${X:—cde}
cde

Notice that the value of X remains unchanged:

$ print $X

$

64

Korn Shell User and Programming Manual

Let's say we needed a command to get the user name. The problem is
that some people have it set to USER, while others have it set to
LOGNAME. We could use an if command to check one value first,
then the other. This would be quite a few lines of code. Or we could
use this form of variable expansion to have both values checked with
one command. Here, if USER is set, then its value is displayed,
otherwise the value of LOGNAME is displayed.

$ print USER=$USER, LOGNAME=$LOGNAME
USER=anatole, LOGNAME=AO
$ print ${USER:—${LOGNAME}}
anatole

Now we unset USER to check and make sure that LOGNAME is
used:

$ unset USER
$ print ${USER:—${LOGNAME}}
AO

But what if both USER and LOGNAME are not set? Another
variable could be checked like this:

$ print ${USER:—${LOGNAME:—${OTHERVAR}}}

But to demonstrate other ways that the alternate value can be
expanded, let's just use some text.

$ unset USER LOGNAME
$ print ${USER:-${LOGNAME:-USER and LOGNAME \
not set!}}
USER and LOGNAME not set!

In this version, the output of the whoami command is used:

$ print ${USER—${LOGNAME:—$(whoami)}}
anatole

65

Chapter 3: Variables and Parameters

For compatibility with the Bourne shell, it could also be given as:

$ echo ${USER:—${LOGNAME:—`whoami`}}
anatole

Remember that the alternate value is only used and not assigned to
anything. The next section shows how you can assign an alternate
value if a default value is not set. The other format, ${variable�
word}, causes the variable value to be used, even if it is set to null:

$ typeset X=
$ print ${X-cde}

$

${variable:=word}, ${variable=word}

This is expanded to the value of variable if set and not null, otherwise
it is set to word, then expanded. In contrast to the variable expansion
format from the previous section, this format is used to assign a
default value if one is not already set. In the next example, the
variable LBIN is set to /usr/lbin. When expanded using this format,
the default value /usr/lbin is used:

$ LBIN=/usr/lbin
$ print ${LBIN:=/usr/local/bin}
/usr/lbin

After LBIN is unset, this form of variable expansion causes LBIN to
be assigned the alternate value, /usr/local/bin:

$ unset LBIN

66

Korn Shell User and Programming Manual

$ print ${LBIN:=/usr/local/bin}
/usr/local/bin

Notice that LBIN is now set to /usr/local/bin.

$ print $LBIN
/usr/local/bin

Command substitution can also be used in place of word. This
command sets the SYS variable using only one command:

$ unset SYS
$ print ${SYS:=$(hostname)}
aspd

The other format, ${variable=word}, causes the variable value to be
used, even if it is set to null. Here LBIN is not assigned an alternate
value. If := was used instead of =, then LBIN would be set to /
usr/local/bin:

$ LBIN=
$ print ${LBIN=/usr/local/bin}

$

${variable:?word}, ${variable:?},
${variable?word}, ${variable?}

This is expanded to the value of variable if it is set and not null,
otherwise word is printed and the Korn shell exits. If word is omitted,
"parameter null or not set" is printed. This feature is often used in

67

Chapter 3: Variables and Parameters

Korn shell scripts to check if mandatory variables are set. In this
example, variable XBIN is first unset. When expanded, the default
error is printed:

$ unset XBIN
$: ${XBIN:?}
/bin/ksh: XBIN: parameter null or not set

The ? as the word argument causes the default error message to be
used. You could also provide your own error message:

$ print ${XBIN:?Oh my God, XBIN is not set!}
/bin/ksh: XBIN: Oh my God, XBIN is not set!

The other formats, ${variable?word} and ${variable?}, cause the
variable value to be used, even if it is set to null.

${variable:+word }, ${variable+word }

This is expanded to the value of word if variable is set and not null,
otherwise nothing is substituted. This is basically the opposite of the
${variable:�word} format. Instead of using word if variable is not
set, word is used if variable is set. In the first example Y is set to abc.
When expanded, the alternate value def is displayed because Y is set:

$ Y=abc
$ print ${Y:+def}
def

Here, Y is unset. Now when expanded, nothing is displayed:

68

Korn Shell User and Programming Manual

$ unset Y
$ print ${Y:+def}

$

Like the ${variable:�word} format, the alternate value is only used
and not assigned to the variable. Y is still set to null:

$ print $Y

$

The other format, ${variable+word}, causes the variable value to be
used, even if it is set to null:

$ Y=
$ print ${Y+def}
def

${variable#pattern}, ${variable##pattern}

This is expanded to the value of variable with the smallest (#) or
largest (##) part of the left matched by pattern deleted. What these
expansion formats allow you to do is manipulate substrings. To
demonstrate the basic functionality, X is set to a string that contains a
recurring pattern: abcabcabc.

$ X=abcabcabc

When expanded to return the substring that deletes the smallest left
pattern abc, we get abcabc:

$ print ${X#abc*}
abcabc

69

Chapter 3: Variables and Parameters

Table 3.5: Variable Expansion Formats

${#variable} length of variable
${variable:�word}

value of variable if set and not null,
else print word

${variable:=word}
value of variable if set and not null,
else variable is set to word , then
expanded

${variable:+word}
value of word if variable is set and not
null, else nothing is substituted

${variable:?} value of variable if set and not null,
else print "variable: parameter null
or not set"

${variable:?word}
value of variable if set and not null,
else print value of word and exit

${variable#pattern}
value of variable without the smallest
beginning portion that matches pattern

${variable##pattern}
value of variable without the largest
beginning portion that matches pattern

${variable%pattern}
value of variable without the smallest
ending portion that matches pattern

${variable%%pattern}
value of variable without the largest
ending portion that matches pattern

${variable//pattern1/pattern2}
replace all occurrences of pattern1
with pattern2 in variable

70

Korn Shell User and Programming Manual

while the substring that deletes the largest left pattern abc is
abcabcabc, or the entire string:

$ print ${X##abc*}

$

We could use this concept to implement the Korn shell version of the
UNIX basename command. The pattern in this command causes the
last directory to be returned if variable X is set to a full pathname:

$ X=/usr/spool/cron
$ print ${X##*/}
cron

${variable%pattern},
 ${variable%%pattern}

This is expanded to the value of variable with the smallest (%) or
largest (%%) part of the right matched by pattern deleted. This is the
same as the parameter expansion format from the previous section,
except that patterns are matched from the right instead of left side. It
could also be used to display file names without their .suffixes:

$ X=file.Z
$ print ${X%.*}
file

Here, any trailing digits are stripped:

$ X=chap1
$ print ${X%%[0—9]*}
chap
$ X=chap999
$ print ${X%%[0—9]*}
chap

71

The pattern in this command causes it to act like the UNIX dirname
command. Everything except the last directory is returned if variable
X is set to a full pathname.

$ X=/usr/spool/cron
$ print ${X%/*}
/usr/spool

${variable//pattern1/pattern2},
${variable/pattern1/pattern2},
${variable#pattern1/pattern2},
${variable/%pattern1/pattern2}

The Korn shell supports four search and replace operations on
variables. This example changes all occurrences of abc in X to xyz:

$ X=abcabcabc
$ print ${X//abc/xyz}
xyzxyzxyz

while this one only changes the first occurrence of abc in X to xyz:

$ X=abcabcabc
$ print ${X/abc/xyz}
xyzabcabc

See Table 3.6 for detailed explanation of the other formats.

${variable:start}, ${variable:start:length}

This format returns a substring. The first returns variable from character
position start to end, while the second returns length characters from

Chapter 3: Variables and Parameters

72

Korn Shell User and Programming Manual

variable from character position start to end. For example, this returns
the first 3 characters of X:

$ X=abcdefghij
$ print {$X:0:3}
abc

while this example returns the value of X starting at character position
5:

$ X=abcdefghij
$ print {$X:5}
fghij

Array Variables

One-dimensional arrays are supported by the Korn shell. Arrays can
have a maximum of 4096 elements. Array subscripts start at 0 and go
up to 4096 (or the maximum element minus one). Any variable can
become a one-dimensional array by simply referring to it with a
subscript. Here, variable X is set to A:

$ X=A

By explicitly assigning X[1] a value, variable X is transformed into an
array variable:

$ X[1]=B

The original assignment to variable X is not lost. The first array
element (X[0]) is still assigned A.

73

Array Variable Assignments &
Declarations

Arrays can be assigned values by using normal variable assignment
statements, the set �A command, or the typeset command:

Chapter 3: Variables and Parameters

Table 3.6: More Variable Expansion Formats

${variable//pattern1/pattern2}
replace all occurrences of pattern1
with pattern2 in variable

${variable/pattern1/pattern2}
replace first occurrence of pattern1
with pattern2 in variable

${variable/#pattern1/pattern2}
replace first occurrence of pattern1
with pattern2 in variable if variable
begins with pattern1

${variable/%pattern1/pattern2}
replace last occurrence of pattern1
with pattern2 in variable if variable
ends with pattern1

${variable:start}
return variable from character position
start to end

${variable:start:length}
return length characters from variable
from character position start to end

74

Korn Shell User and Programming Manual

variable[0]=value variable[1]=value . . . variable[n]=value
or
set �A variable value0 value1 . . . valuen
or
typeset variable[0]=value variable[1]=value . . . \
variable[n]=value

The only difference between the formats, is that with the set
command format, the values are assigned to the array variable
sequentially starting from element zero. In the other formats, the
array elements can be assigned values in any order. This example
assigns the week day names to the array variable DAY using normal
variable assignment format:

75

Array Variable Expansion

Array variables are expanded in the same manner as normal variables
and parameters: using the $ character. Without a subscript value, an
array variable refers to the first element, or element 0.

$ print $DAYS is the same as $DAY[0]
Mon is the same as Mon

To access the value of a specific array variable element use a

Chapter 3: Variables and Parameters

Table 3.7: Array Variables

${array}, $array array element zero
${array[n]} array element n
${array[n+2]} array element n+2
${array[$i]} array element $i
${array[*]}, ${array[@]}

all elements of an array
${#array[*]}, ${#array[@]}

number of array elements
${#array[n] length of array element n
${!array[*]}, ${!array[@]}

all initialized subscript values
${!array[*]:n:x} x array elements starting with

element n
${!array[@]:n} all array elements starting with

element n

76

Korn Shell User and Programming Manual

subscript. Array variable names and subscripts must be enclosed in
braces for proper expansion:

$ print ${DAY[3]} ${DAY[5]}
Thu Sat

If an element does not exist, nothing is substituted:

$ print ${DAY[25]}

$

All the elements of an array can be accessed by using the * or @ as
the subscript value. They both return the same value. These
examples print the values of all the elements of the DAY array
variable:

$ print ${DAY[*]}
Mon Tue Wed Thu Fri Sat Sun
$ print ${DAY[@]}
Mon Tue Wed Thu Fri Sat Sun

The number of elements of an array variable is returned by using the #
in front of the array variable name and using * or @ as the subscript
value. Let's try it with DAY:

$ print ${#DAY[*]}
7
$ print ${#DAY[@]}
7

To get values for a subset of an array, use this format:

${variable[*]:start_subscript:num_elements}
or
${variable[@]:start_subscript}

77

Arithmetic expressions can be used to return a subscript value. This
example prints the fifth element of the DAY array variable.
Remember that array subscripts start with 0, so the third array element
has a subscript of 2, and the fifth element has a subscript of 4:

$ print ${DAY[4/2]}
Wed
$ print ${DAY[7-6+5-4+3-2+1]
Fri

Variable expansion can also be used to generate a subscript value.

$ X=6
$ print ${DAY[$X]}
Sun

Array Variable Attributes

As with ordinary variables, attributes can be assigned to array-type
variables. Arrays can also be declared, and assigned values and
attributes with the typeset command:

typeset �attribute variable[0]=value variable[1]=value . . .

Once set, attributes apply to all elements of an array. This example
sets the uppercase attribute for the DAY array variable using the
typeset �u command:

$ typeset —u DAY

Chapter 3: Variables and Parameters

78

Korn Shell User and Programming Manual

Now all the element values are displayed in upper case:

$ print ${DAY[*]}
MON TUE WED THU FRI SAT SUN

Array element attributes can be set before or after assignment. Here,
XVAR is initially assigned lowercase aaa, bbb, and ccc:

$ set —A XVAR aaa bbb ccc
$ print ${XVAR[*]}
aaa bbb ccc

Now, the uppercase, left-justify, two-character-wide attributes are set
and the new element values are displayed. Notice that the third
character from each element has been dropped, and the value is now
in uppercase:

$ typeset —uL2 XVAR
$ print ${XVAR[*]}
AA BB CC

Array Variable Reassignments

Besides using regular array-element[n]=value or typeset array-
element[n]=value syntax to reassign values, array variables can also
have their values reassigned with the set +A command:

set +A variable value0 value1 . . .

This is helpful when you don't want to reassign values to all the
elements of an array. In this example, the array variable X is assigned
six values:

79

$ set —A X one two three d e f
$ print ${X[*]}
one two three d e f

Using the set +A command, the first three elements are reassigned a,
b, and c:

$ set +A X a b c
$ print ${X[*]}
a b c d e f

Notice that values of the fourth, fifth, and sixth elements have not
been affected.

Associative Arrays

This version of the Korn shell also supports associative arrays, that is
arrays that use string subscripts rather than integer subscripts.
Associative arrays are declared using this format:

typeset �A variable

where variable is the name of the associative array. Additional
arguments can be given to the typeset command to specify a data
type. For example, we can create an associative array to store some
exchange rates:

$ typeset -AE exchange_rate
$ exchange_rate["DM"]=1.7
$ exchange_rate["FF"]=.15
$ exchange_rate["AS"]=.04

To display a list of associative array subscripts:

Chapter 3: Variables and Parameters

80

Korn Shell User and Programming Manual

${!variable[*]} or ${!variable[@]}

To display the values for all or parts of an associative array:

${!variable[subscript]}

For example, all and a specific exchange rate is displayed here:

$ print ${!exchange_rate[*]}
0.15 1.7
$ print "The DM exchange rate is:${exchange_rate[DM]}"
1.7

Compound Variables

The Korn shell also support compound variables, which are similar to
structures or records in other languages, that is a meta-datatype which
is a group of related values, each of which can have a different data
type. The syntax for declaring compund variables is:

compound_variable=(
[datatype] field1[=value]
. . .
[datatype] fieldn[=value]

)

For example, we can use a compound variable to manage employee
information:

$ employee=(
typeset name=Allenby
integer id=1243
float salary=9000.50
)

81

The syntax to display the value of a compound variable field is:

${compound_variable.field}

Here we access the employee compound variable:

$ print $employee
(typeset -E salary=9000.5 name=Allenby typeset -i

id=1243)
$ print ${employee.name}
Allenby

Quoting

Quotes are used when assigning values containing whitespace or
special characters, to delimit parameters and variables, and to assign
command output.

There are three types of quotes: single quotes, double quotes, and
back quotes. Single and double quotes are similar, except for the way
they handle some special characters. Back quotes are used for
command output assignment.

Look what happens when you try to perform a variable assignment
using a value that contains whitespace without enclosing it in quotes:

$ GREETING=Hello world
/bin/ksh: world: not found
$ print $GREETING

$

No assignment is made. To assign Hello world to GREETING, you
would need to enclose the entire string in quotes, like this:

Chapter 3: Variables and Parameters

82

Korn Shell User and Programming Manual

$ GREETING='Hello world'
$ print $GREETING
Hello world

Single Quotes

Single quotes are also used to hide the meaning of special characters
like $, *, \, !, ", ` and /. Any characters between single quotes, except
another single quote, are displayed without interpretation as special
characters:

$ print '* $ \ ! ` / "'
* $ \ ! ` / "

This also means that variable and command substitution does not take
place within single quotes (because $ and `` lose their special
meaning). If you want to access the value of a variable, use double
quotes instead of single quotes (discussed in the next section). So,
instead of displaying /home/anatole, we get $HOME:

$ print '$HOME'
$HOME

and instead of the date, we get `date`:

$ print 'Today is `date`'
Today is `date`

Korn shell command substitution $(...) also doesn't work in single
quotes, because of the $ character. You may be thinking what good
are single quotes anyway? Well, there are still some good uses for
them. You could print a menu border like this:

83

$ print '******************MENU*****************'
******************MENU******************

or use the $ character as the dollar symbol:

$ print 'Pass GO — Collect $200'
Pass GO — Collect $200

You couldn't do that with double quotes! Actually there are quite a
few good uses for single quotes. They can be used to print a double-
quoted string:

$ print '"This is in double quotes"'
"This is in double quotes"

or just to surround plain old text that has embedded whitespace. This
improves readability by separating the command from the argument.
Variables can be set to null with single quotes:

$ X=''

Single quotes are also used to assign values to aliases and trap
commands, and prevent alias substitution, but we'll get to that later.

Double Quotes

Double quotes are like single quotes, except that they do not remove
the meaning of the special characters $, `, and \ . This means that
variable and command substitution is performed.

$ DB="$HOME:`pwd`"
$ print $DB
/home/anatole:/tmp

Chapter 3: Variables and Parameters

84

Korn Shell User and Programming Manual

Double quotes also preserve embedded whitespace and newlines.
Here are some examples:

$ print "Line 1
> Line 2"
Line 1
Line 2
$ print "A B"
A B

The > is the secondary prompt, and is displayed whenever the Korn
shell needs more input. In this case, it waits for the closing double
quote:

$ ADDR="ASP,Inc
> PO Box 23837
> San Jose CA 95153 USA
> (800)777-UNIX * (510)531-5615"

Without double quotes around ADDR, we get this:

$ print $ADDR
ASP,Inc PO Box 23837 San Jose CA 95153 USA (800) 777-

UNIX * (510)531-5615

Not quite what we wanted. Let's try it again:

$ print "$ADDR"
ASP,Inc
PO Box 23837
San Jose CA 95153 USA
(800)777-UNIX * (510)531-5615

There are also other uses for double quotes. You can set a variable to
null:

$ NULL=""
$ print $NULL

$

85

or display single quotes.

$ print "'This is in single quotes'"
'This is in single quotes'

If you really wanted to display the $, `, \, or " characters using double
quotes, escape them with a backslash like this:

$ print "\$HOME is set to $HOME"
$HOME is set to /home/anatole
$ print "\`=back-quote \\=slash \"=double-quote"
`=back-quote \=slash "=double-quote

Back Quotes

Back quotes are used to assign the output of a command to a variable.
This format, from the Bourne shell, is accepted by the Korn shell but
considered obsolescent. This command sets the variable SYS to the
system name:

$ SYS=`uuname —l`
$ print $SYS
aspd

Chapter 3: Variables and Parameters

86

Korn Shell User and Programming Manual

87

One of the major features of the Korn shell is the ability to manipulate
current and previous commands using the built-in
editors and the fc command.

If you make a mistake on the current command line, instead of having
to backspace to fix it, or killing the entire line and starting over, you
can use the in-line editor to make the correction much more quickly
and efficiently.

If you want to re-execute a command, instead of having to type it in
all over again, you can use the command re-entry feature to call it
back up. You can even make changes to it before re-executing!

Chapter 4:
Editing

Commands
Terminal Requirements
Command History File

The fc Command
In-Line Editor

88

Korn Shell User and Programming Manual

Terminal Requirements

The in-line editor and command re-entry features require that the
terminal accepts <RETURN> as carriage return without line-feed,
and the space character to overwrite the current character on the
screen and move right. Some terminals (ADM and HP 2621) may
require special settings. For more information, see Appendix E.

Command History File

The Korn shell stores the commands that you enter at your terminal in
a file, called the command history file. This file is specified by the
HISTFILE variable. If not set, the default is $HOME/.sh_history.

The number of commands accessible via the command history file is
specified by the HISTSIZE variable. If not set, the last 128
commands are saved, starting from your most recent command. The
command history file operates on a first-in, last-out basis, so that as
new commands are entered, the oldest commands are not accessible.

There are two ways to access the command history file: using the fc
command, or the in-line editor. These are discussed in the following
sections.

The fc Command

The fc command allows you to list, or edit and re-execute history file
commands. It is the simplest interface to the command history file
provided with the Korn shell. The fc command also allows you to
manipulate the history file using your own choice of editors.

89

Displaying the Command History File

The command history file can be displayed using the fc command in a
number of ways: with or without command numbers, using a range of
line numbers, in reverse order, and more. The format for displaying
the command history file with the fc �l command is:

fc �l[nr] [range]

where the �n option causes the command numbers to not be
displayed, and the �r option specifies reverse order (latest commands
first). The range of commands to list is given as:

n1 [n2] display list from command n1 to
command n2. If n2 is not specified,
display all the commands from current
command back to command n1.

�count display the last count commands
string display all the previous commands

back to the command that matches
string

If no range argument is given, the last sixteen commands are listed.
Let's look at the last five commands:

$ fc —l —5
250 set
251 vi /etc/env
252 . /etc/env
253 set
254 alias
255 functions

The history command is equivalent to fc �l. It is much easier to
remember than fc �l, especially for C shell users. The last command
could also be given like this. Notice that the order is reversed.

Chapter 4: Editing Commands

90

Korn Shell User and Programming Manual

$ history —r —5
255 functions
254 alias
253 set
252 . /etc/env
251 vi /etc/env
250 set

By using a string instead of a count argument, we could search
backward for a specific command.

$ history —r set
258 fc —lr set
257 fc —ln —10
256 fc —l 250 265
255 functions
254 alias
253 set

The argument set could also be given as s, or se, since partial strings
are also matched. This means that the string f would match functions
and fc, while fu would only match functions.

Editing the Command History File

Besides displaying the command history file, it can also be edited
using the fc command with the following format:

fc [�e editor] [�r] [range]
or
fc �e � [old=new] [command]

where the �e editor option is used to specify an editor. If not given,
the value of the FCEDIT variable is used, and if not set, the default /
bin/ed is used. The �r option reverses the order of the commands, so
that the latest commands are displayed first. The first format allows
you to edit a list of commands before re-executing. The range of

91

commands to edit is given as:

n1 n2 edit list from command n1 to command
n2

n edit command n
�n edit the last nth command
string edit the previous command that

matches string

If no range argument is given, the last command is edited. The
second format listed allows you to edit and re-execute a single
command, where old=new specifies to replace the string old with new
before re-executing, and command specifies which command to
match. The command can be given as:

n edit and re-execute command number
n

�n edit and re-execute the last nth
command

string edit and re-execute the most previous
command that matches string

If no command argument is given, the last command is edited.
Command 173 could be edited and re-executed like this:

$ fc —e — 173

Another way to do this is with the r command. It is the same as the fc
�e � command. Using r, the last command could also be given as:

$ r 173

As you can see, using the r command is easier to use (and remember)
than the fc � e � command. What else can be done with this
command? The substitution feature is used to make minor changes to
a previous command. Let's start with print Hello:

Chapter 4: Editing Commands

92

Korn Shell User and Programming Manual

$ print Hello
Hello

We could change Hello to something else like this.

$ r Hello=Goodbye print
print Goodbye
Goodbye

The next section covers an easier way to edit and re-execute
commands using the in-line editor.

In-Line Editor

In-line editing provides the ability to edit the current or previous
commands before executing them. There are three in-line editing
modes available: emacs, gmacs, and vi. The in-line editing mode is
specified by setting the EDITOR or VISUAL variables, but if neither
variables are set, the default is /bin/ed. The in-line editing mode can
also be specified with the set �o command like this:

$ set —o option

where option can be emacs, gmacs, or vi. This is usually specified in
your $HOME/.profile file.

The size of the editing window is specified by the COLUMNS
variable. The default is 80, unless COLUMNS is set. Some systems
use the window size as the default. The size of your command prompt
also affects the width of the editing window.

In the examples in the following sections, the Before column shows
what was displayed at the prompt, the Command column lists the edit
mode command, and the After column displays the result. The
underbar character (_) represents the cursor. Control characters are
given as Ctl followed by the character in boldface. For example, Ctl-

93

h specifies Control-h and is entered by pressing the h key while
holding down the Control key.

Vi Edit Mode

If you know the UNIX vi text editor, then learning how to use the vi
in-line editor is relatively easy. The vi in-line editor is a subset of the
vi editor program, so most of the commands are the same.

In vi edit mode, there are two operating modes: input and command.
Operating in and out of input mode is virtually the same. Commands
are entered and executed just as if you were not using the in-line
editor. As soon as you press the <ESCAPE> key, you are put in
command mode. This is where you can enter your vi commands to
access and edit commands from the history file, or current command
line.

Input Mode

Once the vi edit mode is set, you are placed in input mode. If the vi
mode is set in your .profile file, then you are automatically in input
mode whenever the Korn shell starts up. As stated in the previous
section, operating in and out of vi input mode is virtually the same.

The next example shows some of the basic vi input mode commands.
We start with "print Hi again world". The Ctl-w commands delete
the strings world, and again, then the Ctl-h command deletes i. The
@ command kills the entire line, and we get a new command prompt.

Chapter 4: Editing Commands

94

Korn Shell User and Programming Manual

Before Command After

$ print Hi again world_ Ctl-w $ print Hi again _

$ print Hi again _ Ctl-w $ print Hi _

$ print Hi _ Ctl-h $ print Hi_

$ print Hi_ Ctl-h $ print H_

$ print H_ Ctl-h $ print _

$ print _ @ $ _

The Erase and Kill characters can be set with the stty command.

Command Mode

When you press the <ESCAPE> key in vi input mode, you are put in
command mode. This is where the vi commands can be given to edit

Table 4.1: Vi Input Mode Commands

Ctl-h, #, <BACKSPACE>
delete the previous character (system
dependent)

Ctl-d terminate the shell
Ctl-x, @ kill the entire line (system dependent)
<RETURN> execute the current line
\ escape the next Erase or Kill character
Ctl-v escape the next character
Ctl-w delete the previous word

95

a single command from the history file. Editing commands can be
given until the <RETURN> key is pressed, then the result is executed.
To cancel current editing, press the <ESCAPE> key again. If you
enter an invalid command, or a search command fails, the Korn shell
will cause your terminal to beep or flash.

Table 4.2 lists the basic commands available in command mode. A
complete listing of the commands can be found in Appendix E.

Moving Around the History File

In this example, we navigate through the command history file using
some basic vi edit mode commands. Assume that these are the last
two commands that were executed:

$ history —2
339 pwd
340 date
341 history —2

At the command prompt, the <ESCAPE> key is pressed to enter
command mode, then a series of k commands are given to
successively retrieve the previous command. The j command is
given to retrieve the next commands, until we get to the date
command. After the <RETURN> key is pressed, date is executed.

Before Command After

$ _ <ESCAPE>k $ history -2

$ history -2 k $ date

$ date k $ pwd

$ pwd j $ date

$ date <RETURN>

Chapter 4: Editing Commands

96

Korn Shell User and Programming Manual

Of course, a more efficient way to retrieve the date command would
be with a single backward search command, <ESCAPE>/
da<RETURN>. Notice that da is used to match date.

Before Command After

$ _ <ESCAPE>/da<RETURN> $ date

$ date <RETURN>

Editing Previous Commands

In the next example, we want to change the word Hello to Goodbye in
the print command. The <ESCAPE> key is pressed to enter
command mode. Then the k command retrieves the last command,
and the h command moves the cursor left one character. The b
command is given to move the cursor back one word, to the beginning
of world. Another b command is given, and the cursor is at the
beginning of Hello. Now the cw command is used to change the word
Hello, and we can type over the new word Goodbye. When we are
finished typing, the <RETURN> is pressed, and the result is executed.

Before Command After

$ print Hello world_ <ESCAPE> $ print Hello worl d

$ print Hello worl d h $ print Hello wor ld

$ print Hello wor ld b $ print Hello world

$ print Hello world b $ print Hello world

$ print Hello world cwGoodbye $ print Goodby e world

$ print Goodby e world <RETURN>

There are a number of ways that the same results could have been
achieved. The cursor could have been moved back to Hello using FH
(move left to character H), and then deleted using dw (delete word).

97

Chapter 4: Editing Commands

Table 4.2: Some Vi Command Mode Commands

h, <BACKSPACE>
move left one character

l, <SPACE> move right one character
b move left one word
B move left one word; ignore punctuation
w move right one word
W move right one word; ignore

punctuation
e move to the end of the next word
E move to end of next word; ignore

punctuation
^ move to beginning of the line
$ move to end of line
fc move right to character c
Fc move left to character c
a add text after the current character
A append text to end of the current line
i insert text left of the current character
rc replace current character with c
x delete the current character
u undo the last text modification

command
k get previous command from history

file
j get next command from history file
/string search backward in the history file for

command that matches string
?string search forward in the history file for

command that matches string
. repeat the last text modification

command
~ toggle the case of the current character

98

Korn Shell User and Programming Manual

Goodbye could have then been inserted using the i (insert) command.

Let's say we want to just add an exclamation point to the print
Hello world command. Instead of typing it all over again, we enter
<ESCAPE> for command mode and k to get the last command. Then
the $ command moves the cursor to the end of the line, and the a!
command appends the ! character. After the <RETURN> key is
pressed, print Hello world! is displayed.

Before Command After

$ _ <ESCAPE>k $ print Goodbye world

$ print Hello world $ $ print Hello worl d

$ print Hello worl d a! $ print Hello world! _

$ print Hello world! _ <RETURN>

Here, a typo is spotted in the chmod command. Instead of
backspacing fourteen times to make the correction, or killing the
entire line and typing over, we enter command mode by pressing
<ESCAPE>. The ^ command moves the cursor to the beginning of
the line, and e (end of word) moves it to the s character, where we
want to make the correction. The rd command (replace current
character with d) is given, followed by <RETURN> to execute.

Before Command After

$ chmos 777 /tmp/foo_ <ESCAPE> $ chmos 777 /tmp/fo o

$ chmos 777 /tmp/fo o ^ $ chmos 777 /tmp/foo

$ chmos 777 /tmp/foo e $ chmo s 777 /tmp/foo

$ chmo s 777 /tmp/foo rd $ chmo d 777 /tmp/foo

$ chmo d 777 /tmp/foo <RETURN>

99

Displaying Long Command Lines

For lines longer than the window width, a mark is displayed at the end
of the line to indicate the position. Only part of the command is
displayed. The text position markers can be:

> line extends to the right of the edit window
< line extends to the left of the edit window
* line extends on both sides of the edit window

Moving around the command line makes different parts of the
command line visible. If the cursor is moved past the last character,
the line is redisplayed with the cursor in the middle of the screen. The
COLUMNS variable setting, and the size of your command prompt
also affect the width of the editing window.

Emacs/Gmacs Edit Modes

Like the vi in-line editor, the emacs/gmacs in-line editor is also
basically a subset of the same text editors. However, there are a few
commands in the emacs/gmacs in-line editors that are not in the
regular program.

 This only difference between the emacs and gmacs editors is the way
Ctl-t is handled. In emacs mode, Ctl-t transposes the current and
next character. In gmacs mode, Ctl-t transposes the previous two
characters.

Table 4.3 lists the basic commands available in emacs/gmacs edit
mode. Appendix E contains a complete listing of the commands.

Chapter 4: Editing Commands

100

Korn Shell User and Programming Manual

Editing Commands in Emacs/Gmacs Mode

Before we look at some emacs/gmacs in-line editor command
examples, here are the last three commands from the history file:

$ history —r —n —3
history —r —n —3
grep ksh /etc/passwd
print $PATH
cd /usr/etc/yp

In the following example, the Ctl-n and Ctl-p commands are used to
get the next and previous commands from the history file. Assuming
that history �r �n �3 just completed execution, the Ctl-p command
brings it back, and another Ctl-p goes back to grep. To get back to
the cd command, the Ctl-r command is given. The <RETURN> key
is pressed, and the current directory is changed to /usr/etc/yp.

Before Command After

$ _ Ctl-p $ history -n -3_

$ history -n -3_ Ctl-p $ grep x /etc/passwd_

$ grep x /etc/passwd_ Ctl-rcd $ cd /usr/etc/yp_

$ cd /usr/etc/yp_ <RETURN>

In the next example, we want to make a correction to the current
command line. The Ctl-b commands moves the cursor one character
left, then Esc-b moves the cursor one word left. The Ctl-d command
deletes character C, and Ctl-]E moves forward to the next E
character. The <RETURN> key is pressed, and the result is executed.

101

Chapter 4: Editing Commands

Table 4.3: Some Emacs/Gmacs In-Line Edit Commands

Ctl-b move left one character
Ctl-f move right one character
Esc-b move left one word
Esc-f move right one word
Ctl-a move to beginning of line
Ctl-e move to end of line
Ctl-]c move right to character c
Ctl-h delete preceding character
Ctl-x, @ kill the entire line
Ctl-k delete from cursor to end of line
Ctl-d delete current character
Esc-d delete current word
Ctl-w delete from cursor to mark
Ctl-y undo last delete (w/Esc-p)
Ctl-p get previous command from history

file
Ctl-n get next command from history file
Ctl-rstring search backward in history file for

command that contains string
Ctl-c change current character to upper case
Esc-l change current character to lower case
Esc-p save to buffer from cursor to mark
Esc-<SPACE>

mark current location
Ctl-l redisplay current line

102

Korn Shell User and Programming Manual

Before Command After

$ print AB CD EF_ Ctl-b $ print AB CD E F

$ print AB CD E F Esc-b $ print AB CD EF

$ print AB CD EF Ctl-d $ print AB D EF

$ print AB D EF ^E $ print AB D EF

$ print AB D EF <RETURN>

What about inserting text? To add characters to the command line, in
emacs/gmacs mode, you just type them in. Characters are inserted
before the cursor. Here we get the last command using Ctl-p. Then
we move to the beginning of the line using Ctl-a, and to the next word
with Esc-f. Ctl-k deletes to the end of the line, and we insert hello by
typing it in. To display hello, we just press <RETURN>.

Before Command After

$ _ Ctl-p $ print AB D EF_

$ print AB D EF_ Ctl-a $ print AB D EF

$ print AB D EF Esc-f $ print _AB D EF

$ print AB D EF Ctl-k $ print_

$ print_ hello $ print hello_

$ print hello_ <RETURN>

This example shows another way in which a command can be edited
using emacs/gmacs mode. The Ctl-a command moves the cursor to
the beginning of the line, and ^]s moves to the s character. The Ctl-d
command deletes s, then d is typed in. The <RETURN> key is
pressed, and the command is run.

Before Command After

$ chmos 777 /tm/foo_ Ctl-a $ chmos 777 /tmp/foo

$ chmos 777 /tm/foo ^]s $ chmo s 777 /tmp/foo

103

$ chmo s 777 /tm/foo Ctl-d $ chmo 777 /tmp/foo

$ chmo 777 /tm/foo d $ chmo d 777 /tmp/foo

$ chmo d 777 /tmp/foo <RETURN>

Chapter 4: Editing Commands

104

Korn Shell User and Programming Manual

105

The Korn shell provides a job control mechanism that is virtually
identical to the C shell version of BSD UNIX. Job control allows
programs to be stopped and restarted, moved between the foreground
and background, their processing status to be displayed, and more. To
enable the job control feature, the monitor option must be enabled with
the set command:

$ set —o monitor

or
$ set —m

This can be put into the .profile file so that job control is automatically
enabled at login. On most systems that provide the job control
mechanism, this option is automatically enabled for interactive shells.

Chapter 5:
Job Control

Manipulating Jobs
Checking Job Status

Background Jobs and I/O
Job Names

Leaving Stopped Jobs

106

Korn Shell User and Programming Manual

It can be checked by executing the set �o command. Let's see if it is
set:

$ set —o | grep monitor
monitor on

If a command is run in the background, the Korn shell returns a job
number and process id. Here, the find command is assigned job
number 1 and process id 1435:

$ find / —name core —exec rm —rf {} \; &
[1] 1435

The next command is assigned job number 2 and process id 1437:

$ cpio —iBcdu < /dev/rmt0 &
[2] 1437

When background jobs are completed, a message is given before the
next prompt is displayed. This is done so that other work is not
interfered with. In this example, the ls command is put in the
background. Although it finished before the sleep command, the
completion message is not displayed until sleep is finished:

$ ls —x > ls.out &
[3] 1438
$ sleep 30
[3] + Done ls —x > ls.out &
$

Manipulating Jobs

Jobs running in the foreground are suspended by typing Ctl-z (Control-
z) . So instead of waiting for the long-running split command to
complete, it is interrupted using Ctl-z:

107

$ split —5000 hugefile
Ctl-z
[3] + Stoppedsplit —5000 hugefile
$

Stopped and backgrounded jobs are brought back into the foreground
with the fg command. If no argument is given, the current (most
recently stopped or backgrounded) job is used. The stopped split job
is brought back into the foreground with fg:

$ fg
split —5000 hugefile

Stopped jobs are put into the background with the bg command. If no
argument is given, the most recently stopped job is used. In the next
example, we want to put the split job back in the background. It is
currently running in the foreground, so it must first be suspended with
Ctl-z again:

$ fg
split —5000 hugefile
Ctl-z

Now, it can be put into the background using bg:

$ bg
[3] split —5000 hugefile &

The split job is brought into the foreground with fg, and we are back
to where we started. This time we use the job number as the argument
to fg:

$ fg %3
split —5000 hugefile

Chapter 5: Job Control

108

Korn Shell User and Programming Manual

Checking Job Status

The status and other information about all jobs is displayed using the
jobs command. The following jobs output shows that there is one
stopped job, and two running jobs. The + indicates the current job,
and � indicates the previous job:

$ jobs
[3] + Stopped split —5000 hugefile
[2] — Running find / —name core —print &
[1] Running sleep 25 &

The jobs �l command shows the same information, along with the
process ids, while jobs �p only gives you the process ids.

$ jobs —l
[3] + 466 Stopped split —5000 hugefile
[2] — 465 Running find / —name core —print &
[1] 463 Running sleep 25 &

Killing Jobs

Stopped or background jobs are terminated with the kill command.
Unlike bg or fg, a job argument must be given. Here, a sleep
command is put in the background, then killed:

$ sleep 100 &
[1] 254
$ kill %1

It could also be given as kill 254.

109

Waiting for Jobs

You can make the Korn shell wait for some or all background jobs to
complete with the wait command. If no argument is given, the Korn
shell waits for all background jobs to complete.

Background Jobs and I/O

Jobs being executed in the background will stop if they attempt to
read input from your terminal. If you tried to interactively remove
$PUBDIR/junk in the background, this is what would happen:

$ rm —i $PUBDIR/junk &
[2] +Stopped (tty input) rm —i $PUBDIR/junk &

The job is stopped because it needs to prompt you for input. The rm
�i job is brought back into the foreground with the fg command and
its' prompt is displayed:

$ fg %2
rm —i $PUBDIR/junk
rm: remove /usr/spool/uucppublic/junk? y

By default, jobs send their output to your terminal, even while running
in the background. Here, the find command sends its' output to the
terminal, even though it is running in the background:

$ find / —name core —print &
[2] 1453
$ /usr/lbin/core
/home/anatole/bin/core

Chapter 5: Job Control

110

Korn Shell User and Programming Manual

That can be annoying, especially if you are in the middle of something
else. To avoid this problem, redirect the output of background jobs to
a file. Make sure to be careful with the redirection. If you don't
redirect standard error, error messages will go to your terminal and
not to the output file. Let's kill the find job, then restart it and send the
output to c.out:

$ kill %2
[2] + Terminated find / —name core —print>c.out &
$ find / —name core —print >c.out &
[2] 1453
$ jobs
[2] — Runningfind / —name core —print &
[1] Runningsleep 1000 &

We can work on something else until we get the completion message.

[2] +Done find / —name core —print>c.out &

There are other ways to deal with job output. Jobs being executed in
the background are prevented from generating output by setting stty
tostop. Let's run the find job again with the tostop option enabled:

$ stty tostop
$ find / —name core —print &
[2] 1460

Now when the job has some output, we get this message:

[1] + Stopped(tty output) find / —name core —print &

The only way to see the find output is to bring the job back into the
foreground.

$ fg
/usr/lbin/core
/home/anatole/bin/core

111

Chapter 5: Job Control

Table 5.1: Job Control Commands

bg put the current stopped job in the
background

bg %n put the stopped job n in the background
fg move the current background job into

the foreground
fg %n move background job n into the

foreground
jobs display the status of all jobs
jobs �l display the status of all jobs along with

their process ids
jobs �p display the process ids of all jobs
kill %n kill job n
kill �l list all valid signal names
kill �signal %n

send the specified signal to job n
set �m, set �o monitor

enable job control; execute
background jobs in a separate process
group, and report the exit status of
background jobs

stty tostop prevent background jobs from
generating output

stty �tostop allow background jobs to generate
output (default)

wait wait for all background jobs to
complete

wait %n wait for background job n to complete
Ctl-z stop the current job

112

Korn Shell User and Programming Manual

The stty tostop command can be put into your profile file so that
background job output is by default disabled.

The nohup command can also be used to direct output from
background jobs. It causes standard output and standard error to be
automatically sent to nohup.out, or whatever file you give it. One
added benefit. The nohup command will keep jobs running, even if
you log out. Here we run the find job again using nohup. First we
need to enable background job output:

$ stty —tostop
$ nohup find / —name core —print &
[2] 1469
$ wait
Sending output to 'nohup.out'
[2] + Done nohup find / —name core —print &

The find job output is in nohup.out:

$ cat nohup.out
/usr/lbin/core
/home/anatole/bin/core

Job Names

Most people use the job number to refer to a job, because one number
is easy to remember. However, jobs can be referred to in a number of
other ways: by process id, current/previous job, or all or part of a job
name. If we had these jobs:

$ jobs —l
[3] + 466 Stopped split —5000 hugefile
[2] — 465 Running find / —name —print &
[1] 463 Running sleep 25 &

113

Then the split job could be referred to as %3, %+, %%, 466, %split,
or %?sp, the find job could be referred to as %2, %�, 465, %find, or
%?f, and the sleep could be referred to as %1, 463, %sleep, or %?sl.

Leaving Stopped Jobs

The Korn shell displays a warning message if you try to exit from the
shell while jobs are stopped.

$ stty tostop
$ date &
[1] 541
[1] + Stopped(tty output) date &
$ exit
You have stopped jobs

Chapter 5: Job Control

Table 5.2: Job Names

%n job n
%+, %% current job
%� previous job
%string job whose name begins with string
%?string job that matches part or all of string

114

Korn Shell User and Programming Manual

115

The Korn shell provides the ability to perform integer arithmetic in
any base from two to thirty-six using built-in commands. It executes
much faster than using the expr command, since it doesn't have to
start another process. It can also be used instead of the test command
for integer comparisons. In addition, all of the operators from the C
programming language (except ++, ��, and ?:) are now supported by
the Korn shell.

Chapter 6:
Performing
Arithmetic

The let Command
The ((...)) Command

Declaring Integer Variables
Arithmetic Constants
Arithmetic Operators

Random Numbers

116

Korn Shell User and Programming Manual

The let Command

Integer arithmetic can be done with the let command and arithmetic
expressions. The format for the let command is:

let "arithmetic-expression"

where arithmetic-expressions can contain constants, operators, and
Korn shell variables. Double quotes are used with arithmetic
expressions that contain white space or operators that have special
meaning to the Korn shell. For example, variable X can be set to the
sum of 1+1 like this:

$ let "X=1 + 1"
$ print $X
2

then incremented:

$ let "X=X + 1"
$ print $X
3

Notice that in arithmetic expressions, regular variables can be
referenced by name only, and do not have to be preceded by $ for
substitution to be performed. Both

$ let "X=X + 1"

and
$ let "X=$X + 1"

are equivalent. The first format is preferred because parameter
expansion does not have to be performed. This causes it to be
executed faster.

117

Chapter 6: Performing Arithmetic

Table 6.1: Arithmetic Operators (in order of
precedence)

� unary minus
! logical negation
~ bitwise negation
*, /, % multiplication, division, remainder

(modulo)
+, � addition, subtraction
<<, >> left shift, right shift
<=, < less than or equal to, less than
 >=, > greater than or equal to, greater than
== equal to
!= not equal to
& bitwise AND
^ bitwise exclusive OR
| bitwise OR
&& logical AND
| | logical OR
= assignment
*=, /=, %= multiply assign, divide assign, modulo

assign
+=, �= increment, decrement
<<=, >>= left shift assign, right shift assign
&=, ^=, |= bitwise AND assign, bitwise exclusive

OR assign, bitwise OR assign
(...) grouping (used to override precedence

rules)

118

Korn Shell User and Programming Manual

Arithmetic expressions are made up of constants, variables or any of
the arithmetic operators in Table 6.1.

The ((...)) Command

The ((...)) command is equivalent to the let command, except that all
characters between the ((and)) are treated as quoted arithmetic
expressions. This is more convenient to use than let, because many of
the arithmetic operators have special meaning to the Korn shell. The
following commands are equivalent:

$ let "X=X + 1"

and
$ ((X=X + 1))

Before the Korn shell let and ((...)) commands, the only way to
perform arithmetic was with expr. For example, to do the same
increment X operation using expr:

$ X=`expr $X + 1`

In tests on a few systems, the let command performed the same
operation 35-60 times faster! That is quite a difference.

Declaring Integer Variables

As with ordinary variables, integer variables need not be declared. A
variable can simply be given an integer value, and then used in an
arithmetic expression.

119

$ X=12
$ ((Y=X * 3))
$ print $Y
36

However, variables can be explicitly declared integer type by using
the typeset �i command. The following example sets the DAYS and
MONTHS variables to be integer type:

$ typeset —i DAYS MONTHS=12

There is also another command called integer, which is equivalent to
typeset �i. It could be used to declare the DAYS and MONTHS
variables like this:

$ integer DAYS MONTHS=12

Variables do not have to be explicitly declared integer type to be used
in arithmetic expressions. It may improve performance, but what you
really gain with declaring integer variables is stricter type checking
on assignments. Integer variables cannot be assigned non-integer
values:

$ integer I=abc
/bin/ksh: I: bad number

Another benefit to declaring integer variables is that arithmetic can be
performed directly on integer variables without using the let or ((...))
commands, as long as the integer value is being assigned a value. In
other words, you can do this:

$ integer DAYS="4 + 3"

instead of
$ ((DAYS=4 + 3))

or
$ let "DAYS=4 + 3"

Chapter 6: Performing Arithmetic

120

Korn Shell User and Programming Manual

This also means that integer variables can be assigned values using
arithmetic expressions when declared. Let's try it with the MONTHS
variable:

$ integer MONTHS="36 / 3"
$ print $MONTHS
12

Arithmetic Constants

The format for arithmetic constants is:

number
or
base#number

where base is a whole number between 2 and 36, and number is any
non-negative integer. If not specified, the default base is 10. The
arithmetic base of a variable can be set with the typeset �in
command, or by prepending base# to the value. In this example,
variable X is set to 5 in base 2 using both formats:

$ typeset —i2 X=5

or
$ typeset —i X=2#101

When variable X is expanded, the value is written in base 2:

$ print $X
2#101

121

If you want to display the value of X in another base, just reset the
base with the typeset �in command. Here it is reset to base 3:

$ typeset —i3 X
$ print $X
3#12

Arithmetic can be performed on numbers with different bases. Here
is an example - X is set to 7 in base 2:

$ typeset —i X=2#111

Y is set to 8 in base 5:

$ typeset —i5 Y=8

and Z is set to base 16:

$ typeset —i16 Z

Now, X and Y are added together and the result is put in Z:

$ Z=X+Y
$ print $Z
16#f

We could convert the result to octal by resetting the base of Z using
the typeset �in command like this:

$ typeset —i8 Z
$ print $Z
8#17

Chapter 6: Performing Arithmetic

122

Korn Shell User and Programming Manual

Arithmetic Operators

The following sections contain examples for each of the arithmetic
operators available to the Korn shell. Table 6.1 lists all of the
arithmetic operators available to the Korn shell in order of
precedence.

�expression (Unary Minus)

Evaluates to the negative value of expression.

$ ((X=—7))
$ ((Y=—X + 2))
$ print — "$X $Y"
—7 9

The print � command is used so that the negative sign is not
interpreted as an argument.

!expression (Logical Negation)

The ! operator returns 0 (true) for expressions that do not evaluate to
zero, or 1 (false) if they do.

$ X=0
$ ((X=!X)); print "$X"
1
$ ((X=!X)); print "$X"
0

123

~expression (Bitwise Negation)

Evaluates to the bitwise negated value (one's complement) of
expression. It returns a value that contains a 1 in each bit position
where expression contains 0, and a 0 in each bit position where
expression contains 1.

$ X=2#011
$ ((X=~X)); print — "$X"
—2#100

expression1 * expression2
(Multiplication)
expression1 *= expression2 (Multiply
assign)

Evaluates to the product of expression1 multiplied by expression2.
The second format assigned the result of the evaluation to
expression1.

$ ((X=5 * 4)); print "$X"
20
$ ((X=3 * 1 * 2 * 4)); print "$X"
24
$ ((X*=2)); print "$X"
48

Chapter 6: Performing Arithmetic

124

Korn Shell User and Programming Manual

expression1 / expression2 (Division)
expression1 /= expression2
(Divide assign)

Evaluates to the quotient of expression1 divided by expression2. The
second format assigned the result of the evaluation to expression1.

$ Y=50
$ ((X=Y / 10)); print "$X"
5
$ ((X=21 / 5)); print "$X"
4
$ ((X/=2)); print "$X"
2

expression1 % expression2 (Modulo)
expression1 %= expression2
(Modulo assign)

Evaluates to the remainder of expression1 divided by expression2.
The second format assigned the result of the evaluation to
expression1.

$ ((X=20 % 7)); print "$X"
6
$ ((X=11 % 4)); print "$X"
3
$ ((X%=2)); print "$X"
1

125

expression1 + expression2 (Addition)
expression1 += expression2 (Increment)

Evaluates to the sum of expression1 and expression2. The second
format assigned the result of the evaluation to expression1.

$ ((X=1 + 2)); print "$X"
3
$ ((X=4 + 1 + 3)); print "$X"
8
$ ((X+=1)); print "$X"
9

expression1 � expression2 (Subtraction)
expression1 �= expression2 (Decrement)

Evaluates to the difference of expression1 and expression2. The
second format assigned the result of the evaluation to expression1.

$ ((X=3 — 1)); print "$X"
2
$ ((X=X — 1)); print "$X"
1
$ ((X—=1)); print "$X"
0

identifier =expression (Assignment)

Assigns identifier the value of expression.

Chapter 6: Performing Arithmetic

126

Korn Shell User and Programming Manual

$ ((X=12)); print "$X"
12
$ Y=7
$ ((X=Y)); print "$X"
2

expression1 << expression2 (Left shift)
expression1 <<= expression2
(Left shift assign)

Left shift expression1 by the number of bits specified in expression2.
The second format assigned the result of the evaluation to
expression1.

$ typeset —i2 X
$ ((X=2#11 << 1)); print "$X"
2#110
$ ((X=2#110 << 2)); print "$X"
2#11000
$ ((X=2#11000 << 3)); print "$X"
2#11000000

expression1 >> expression2 (Right shift)
expression1 >>= expression2
(Right shift assign)

Right shift expression1 by the number of bits from expression2. The
second format assigned the result of the evaluation to expression1.

$ typeset —i2 X
$ ((X=2#10101 >> 2)); print "$X"
2#101

127

$ ((X=2#101 >> 1)); print "$X"
2#10
$ ((X>>=1)); print "$X"
2#1

expression1 <= expression2
(Less than or equal)

Evaluates to 0 (true) if expression1 is less than or equal to
expression2, otherwise evaluates to 1 (false).

$ ((1 <= 2)) && print "1 is less than 2"
1 is less than 2
$ ((3 <= 2)) || print "3 is not less than 2"
3 is not less than 2

expression1 < expression2 (Less than)

Evaluates to 0 (true) if expression1 is less than expression2, otherwise
evaluates to 1 (false).

$ ((1 < 2)); print "$?"
0
$ ((3 < 2)); print "$?"
1

Chapter 6: Performing Arithmetic

128

Korn Shell User and Programming Manual

expression1 >= expression2
(Greater than or equal)

Evaluates to 0 (true) if expression1 is greater than or equal to
expression2, otherwise evaluates to 1 (false).

$ ((3 >= 2)) && print "3 is greater than 2"
3 is greater than 2
$ ((1 >= 2)) || print "1 is not greater than 2"
1 is not greater than 2

expression1 > expression2
(Greater than)

Evaluates to 0 (true) if expression1 is greater expression2, otherwise
evaluates to 1 (false).

$ ((3 > 2)); print $?
0
$ ((1 > 2)); print $?
1

expression1 == expression2 (Equal to)

Evaluates to 0 (true) if expression1 is equal to expression2, otherwise
evaluates to 1 (false).

$ ((3 == 3)) && print "3 is equal to 3"

129

3 is equal to 3
$ ((4 == 3)) || print "4 is not equal to 3"
4 is not equal to 3

expression1 != expression2
(Not equal to)

Evaluates to 0 (true) if expression1 is not equal to expression2,
otherwise evaluates to 1 (false).

$ ((4 != 3)); print "$?"
0
$ ((3 != 3)); print "$?"
1

expression1 & expression2
(Bitwise AND)
expression1 &= expression2
(Bitwise AND assign)

Returns a value that contains a 1 in each bit where there is a 1 in both
expressions, and a 0 in every other bit. The second format assigned
the result of the evaluation to expression1.

$ typeset —i2 X
$ ((X=2#11 & 2#10)); print "$X"
2#10
$ ((X=2#101 & 2#111)); print "$X"
2#101
$ ((X&=2#001)); print "$X"
2#1

Chapter 6: Performing Arithmetic

130

Korn Shell User and Programming Manual

expression1 ^ expression2
(Bitwise Exclusive OR)
expression1 ^= expression2
(Bitwise XOR assign)

Returns a value that contains a 1 in each bit where there is a 1 in only
one of the expressions, and a 0 in every other bit. The second format
assigned the result of the evaluation to expression1.

$ typeset —i2 X
$ ((X=2#11 ^ 2#10)); print "$X"
2#1
$ ((X=2#101 ^ 2#011)); print "$X"
2#110
$ ((X^=2#100)); print "$X"
2#10

expression1 | expression2 (Bitwise OR)
expression1 |=expression2
(Bitwise OR assign)

Returns a value that contains a 1 in each bit where there is a 1 in either
of the expressions, and a 0 in every other bit. The second format
assigned the result of the evaluation to expression1.

$ typeset —i2 X
$ ((X=2#11 | 2#10)); print "$X"
2#11
$ ((X=2#101 | 2#011)); print "$X"
2#111
$ ((X|=2#1001)); print "$X"
2#1111

131

expression1 && expression2
(Logical AND)

If expression1 evaluates to 0 (true), expression2 is evaluated. The
value of the entire expression is 0 (true) only if expression1 and
expression2 are both true. Since both X and Y are equal to 1, the
entire expression returns 0, and the print command is executed:

$ X=1 Y=1
$ ((X==1 && Y==1)) && print "X and Y equal 1"
X and Y equal 1

Now only X is equal to 1, so the entire expression returns 1, and the
print command is not executed:

$ unset Y
$ ((X==1 && Y==1)) && print "X and Y equal 1"
$

expression1 || expression2 (Logical OR)

If expression1 evaluates to non-zero (false), expression2 is evaluated.
The value of the entire expression is 0 (true) if either expression1 or
expression2 are true. Since X is less than 2, the entire expression
returns 0, and the print command is executed:

$ X=1 Y=2
$ ((X<2 || Y<5)) && print "X or Y less than 2"
X or Y less than 2

Now, neither X nor Y are less than 2, so the entire expression returns
1, and the print command is not executed:

Chapter 6: Performing Arithmetic

132

Korn Shell User and Programming Manual

$ X=2 Y=2
$ ((X<2 || Y<5)) && print "X or Y less than 2"
$

(expression) (Override Precedence)

The () operators are used to override precedence rules. In the next
expression, normal precedence rules cause the Y * Z operation to be
performed first:

$ X=1 Y=2 Z=3
$ ((TMP=X + Y * Z))
$ print $TMP
7

If the expression is rewritten using the precedence override operators,
the X + Y operation is performed first:

$ ((TMP=(X + Y) * Z))
$ print $TMP
9

Random Numbers

The Korn shell provides a special variable, RANDOM, which is used
to generate random numbers in the range from 0 to 32767. It
generates a different random number each time it is referenced:

$ print $RANDOM
27291

133

$ print $RANDOM
5386
$ print $RANDOM
6884

You can also initialize a sequence of random numbers by setting
RANDOM to a value. Here, RANDOM is set to 7. When
subsequently accessed, the values 2726 and 18923 are returned:

$ RANDOM=7
$ print $RANDOM
2726
$ print $RANDOM
18923

When RANDOM is reset to 7 again, the same numbers are returned:

$ RANDOM=7
$ print $RANDOM
2726
$ print $RANDOM
18923

If RANDOM is unset, the special meaning is removed, even if reset.

Chapter 6: Performing Arithmetic

134

Korn Shell User and Programming Manual

135

Chapter 7:
The Environment

After You Log In
The Environment File

Environment Variables
Korn Shell Options

Aliases
Prompts

Subshells
Restricted Shell

Besides executing commands and being a programming language, the
Korn shell also provides a number of commands, variables, and
options that allow you to customize your working environment.

After You Log In

After you login, the Korn shell performs a number of actions before it
displays the command prompt. Usually it first looks for /etc/profile.
If it exists, it is read in and executed. The /etc/profile file contains
system-wide environment settings, such as a basic PATH setting, a
default TERM variable, the system umask value and more. The
Korn shell then reads and executes $HOME/.profile. This file

136

Korn Shell User and Programming Manual

contains your local environment settings, such as your search path,
execution options, local variables, aliases, and more. A sample
profile file is included in Appendix A.

The Environment File

Once the profile files are processed, the Korn shell checks the
environment file, which is specified by the ENV variable. The
environment file usually contains aliases, functions, options,
variables and other environment settings that you want available to
subshells. Besides being processed at login, the environment file is
processed each time a new Korn shell is invoked. There is no default
value for ENV, so if not specifically set, this feature is not enabled. A
sample environment file is included in Appendix B.

Because the environment file must be opened and read each time a
new Korn shell is invoked, performance can be adversely affected by
having a large environment file with lots of functions.

Environment Variables

There are a number of variables provided by the Korn shell that allow
you to customize your working environment. Some are automatically
set by the Korn shell, some have a default value if not set, while others
have no value unless specifically set.

Table 7.1 lists some of the Korn shell variables. The following
sections cover some of the important variables and how they affect
your working environment. All the available variables are listed in
the Appendix E.

137

The cd Command

New functionality has been added to the cd command. You can
change back to your previous directory with:

$ cd —

It also causes the name of the new current directory to be displayed.
Here, we start in /home/anatole/bin, then change directory to /usr/
spool/news/lib:

$ cd /usr/spool/news/lib

Now we cd back to /home/anatole/bin:

$ cd —
/home/anatole/bin

Another cd �, and we are back in /usr/spool/news/lib:

$ cd —
/usr/spool/news/lib

You can also change directories by substituting parts of the current
pathname with something else using this format:

cd string1 string2

where string1 in the current pathname is substituted with string2. The
new current working directory is displayed after the move. In this
example, we start in /usr/spool/uucp:

$ pwd
/usr/spool/uucp

By substituting uucp with cron, we change directoryto /usr/spool/
cron:

Chapter 7: The Environment

138

Korn Shell User and Programming Manual

$ cd uucp cron
/usr/spool/cron

CDPATH

The CDPATH variable is provided to make directory navigation
easier. It contains a list of colon-separated directories to check when
a full pathname is not given to the cd command. Each directory in
CDPATH is searched from left-to-right for a directory that matches
the cd argument. A : alone in CDPATH stands for the current
directory. This CDPATH:

$ print $CDPATH
:/home/anatole:/usr/spool

indicates to check the current directory first, /home/anatole, then /
usr/spool when cd is not given a full pathname. Instead of typing cd
/usr/spool/uucp, you could just type cd uucp:

$ cd uucp
/usr/spool/uucp

Or to change directory to /home/anatole/bin, you could type cd bin:

$ cd bin
/home/anatole/bin

There is no default for CDPATH, so if it not specifically set, this
feature is not enabled.

Make sure that only frequently used directories are included, because

139

if CDPATH is too large, performance can be adversely affected by
having to check so many directories each time cd is invoked.

PATH

The PATH variable contains a list of colon-separated directories to
check when a command is invoked. Each directory in PATH is
searched from left-to-right for a file whose name matches the
command name. If not found, an error message is displayed. A :
alone in PATH specifies to check the current directory. This PATH
setting specifies to check the /bin directory first, then /usr/bin, /
usr/spool/news/bin, and finally the current directory:

$ print $PATH
/bin:/usr/bin:/usr/spool/news/bin:

Don't let PATH get too large, because performance can be adversely
affected by having to check so many directories each time a command
is invoked.

If not set, the default value for PATH is /bin:/usr/bin.

TMOUT

The TMOUT variable specifies the number of seconds that the Korn
shell will wait for input before displaying a 60-second warning
message and exiting. If not set, the default used is 0, which disables
the timeout feature. To set a 10-minute timer, set TMOUT to 600:

Chapter 7: The Environment

140

Korn Shell User and Programming Manual

$ TMOUT=600

This variable is usually set by the system administrator in the /etc/
profile file.

Mail

The Korn shell provides a number of variables that allow you to
specify your mailbox file, how often to check for mail, what your mail
notification message is, and a search path for mailbox files.

MAILCHECK

The MAILCHECK variable specifies how often, in seconds, to
check for new mail. If not set, or set to zero, new mail is checked
before each new prompt is displayed. Otherwise, the default setting is
600 seconds (10 minutes).

MAIL

The MAIL variable contains the name of a single mailbox file to
check for new mail. It is not used if MAILPATH is set.

141

MAILPATH

The MAILPATH variable contains a colon-separated list of mailbox
files to check for new mail and is used if you want to read multiple
mailboxes. It overrides the MAIL variable if both are set. This
MAILPATH setting specifies to check two mailbox files, /
home/anatole/mbox and /news/mbox.

$ print $MAILPATH
MAILPATH=/home/anatole/mbox:/news/mbox

Just so you don't think you can go snooping around someone else's
mailbox, this only works if you have read permission on the mailbox
file.

If MAILPATH is not set, there is no default.

New Mail Notification Message

When you get new mail, the Korn shell displays this message on your
terminal right before the prompt:

you have mail in mailbox-file

You can also create your own mail notification message by appending
a ? followed by your message to the mailbox files given in
MAILPATH. If you wanted your message to be "New mail alert",
then MAILPATH would be set like this:

$ MAILPATH=~anatole/mbox?'New mail alert'

Chapter 7: The Environment

142

Korn Shell User and Programming Manual

What if you had two mailboxes set in MAILPATH? How would you
know which one to read? For this reason, the Korn shell has the _
(underscore) variable. When given in the new mail notification
message, it is substituted for the name of the mail box file. This
MAILPATH setting:

$ MAILPATH=~anatole/mbox?'Check $_':\
/news/mbox?'Check $_'

would cause "Check /home/anatole/mbox"or "Check /news/mbox"
to be displayed if new mail was received in either of the mailboxes.

TERM

The TERM variable specifies your terminal type, and is usually set
by your system administrator in the global /etc/profile file. If it's not
set there, then it's probably in your ~/.profile file. You can tell if it's
not set correctly by invoking vi on an existent file. If you get garbage
on your screen or the vi commands are not working correctly, try
resetting the TERM variable to something else:

$ typeset —x TERM= term-type

Then try running vi again and see what happens.

Korn Shell Options

The Korn shell has a number of options that specify your environment
and control execution. There are options that cause background jobs
to be run at a lower priority, prevent files from being overwritten with
redirection operators, disable filename expansion, specify the vi-style

143

Chapter 7: The Environment

Table 7.1: Some Korn Shell Environment Variables

CDPATH search path for cd when not given a
full pathname (no default)

COLUMNS window width for in-line edit mode
and select command lists (default 80)

EDITOR pathname of the editor for in-line
editing (default /bin/ed)

ENV pathname of the environment file (no
default)

HISTFILE pathname of the history file (default
$HOME/.sh_history)

HISTSIZE number of commands to save in the
command history file (default 128)

HOME home directory
IFS internal field separator (default space,

tab, newline)
LANG locale
MAIL name of mail file
MAILCHECK specifies how often to check for mail

(default 600 seconds)
MAILPATH search path for mail files (no default)
PATH search path for commands (default

/bin:/usr/bin:)
PS1 primary prompt string (default $, #)
PS2 secondary prompt string (default >)
PS3 select command prompt (default #?)
PS4 debug prompt string (default +)
SHELL pathname of the shell
TERM specifies your terminal type (no

default)
TMOUT Korn shell timeout variable (default 0)
VISUAL pathname of the editor for in-line

editing

144

Korn Shell User and Programming Manual

in-line command editor, and more.

Table 7.2 lists some of the Korn shell options, along with the default
values (these may differ on your system). All of the options are listed
in Appendix E.

Enabling/Disabling Options

Korn shell options are enabled with the set �ooption or set �option
command. For example, the noglob option disables file name
substitution and can be set using either of these commands :

$ set —f

or
$ set —o noglob

Options can also be enabled by specifying them on the ksh command
line. Here, a Korn subshell is started with the emacs option enabled:

$ ksh —o emacs

Options can be disabled with the set +o option or set +option
command. In this example, the noglob option is disabled:

$ set +o noglob

The ignoreeof Option

If this option is enabled, you get this message when you try to log off

145

using Ctl-d:

$ set —o ignoreeof
$ Ctl-d
Use 'exit' to terminate this shell

By default, this option is disabled.

The markdirs Option

When enabled, a trailing / is appended to directory names resulting
from file name substitution. It's like the ls �o or �F options, except
that you only see the results on file name substitution, not on directory
listings. This means that / is added to directory names when you do
this:

$ ls *

but not this:

$ ls

By default, the markdirs option is disabled.

The noclobber Option

The noclobber option prevents I/O redirection from truncating or
clobbering existing files. Let's enable the option and give it a try:

$ set —o noclobber
$ ls>ls.out
$ ls>ls.out
/bin/ksh: ls.out: file already exists

Chapter 7: The Environment

146

Korn Shell User and Programming Manual

If noclobber is enabled, and you really want to overwrite a file, use
the >| operator:

$ ls>|ls.out

By default, this option is disabled.

The nounset Option

If the nounset option is disabled, then the Korn shell
interprets unset variables as if their values were null.

$ unset X
$ print "X is set to: $X"
X is set to:

If enabled, the Korn shell displays an error message when it
encounters unset variables and causes scripts to abort:

$ set —o nounset
$ unset X
$ print $X
/bin/ksh: X: parameter not set

Displaying the Current Settings

The setting of the current options is displayed with the set �o
command. The first field is the option name, and the second field
shows if the option is enabled or disabled:

$ set —o
allexport off

147

Chapter 7: The Environment

Table 7.2: Some Korn Shell Options

set �a, set �o allexport
automatically export variables when
defined

set �o bgnice execute all background jobs at a lower
priority

set �o emacs, set �o gmacs
use emacs/gmacs in-line editor

set �o ignoreeof
do not exit on end of file; use exit (default
Ctl-d)

set �o markdirs
display trailing / on directory names
resulting from file name substitution

set �m, set �o monitor
enable job control (system dependent)

set �n, set �o noexec
read commands without executing
them

set �o noclobber
prevent I/O redirection from truncating
existing files

set �f, set �o noglob
disable file name expansion

set �u, set �o nounset
return error on substitution of unset
variables

set �h, set �o trackall
make commands tracked aliases when
first encountered

set �o vi use vi-style editor for in-line editing
set �x, set �o xtrace

display commands and arguments as
they are executed

148

Korn Shell User and Programming Manual

bgnice on
emacs off
errexit off
gmacs off
ignoreeof off
interactive on
keyword off
markdirs off
monitor on
noexec off
noclobber off
noglob off
nolog off
nounset off
privileged off
restricted off
trackall off
verbose off
vi on
viraw on
xtrace off

Command-line Options

Besides the options from the set command, the following options can
also be specified on the ksh command line:

�c string read and execute the commands from string
�i execute in interactive mode
�r run a restricted shell
�s read commands from standard input

These cannot be enabled with the set command.

149

Aliases

Aliases are command name macros used as shorthand for other
commands, especially frequently used ones. This saves a lot of
typing time. Aliases are defined with the alias name= value
command. For example, we could create an alias for the print
command like this:

$ alias p=print

Whenever p is invoked, print is executed:

$ p Hello
Hello

Make sure to enclose the value in quotes if it contains whitespace.
Here we create an alias l that is set to the ls �Fac command:

$ alias l="ls —Fac"

Now when you type in l, ls �Fac is executed:

$ l
./
../
compress.Z*
func.Z*
test/
uncompress.Z*
. . .

Alias values can contain any text, including special characters, like
wild-cards, pipes, or I/O redirection operators. Let's change alias l so
that the output is piped to the more command:

$ alias l="ls —Fac | more"

But what if you wanted to make this a global alias by setting it in the

Chapter 7: The Environment

150

Korn Shell User and Programming Manual

/etc/profile file, and some people wanted to use more, while others
wanted to use pg? We could add the PAGER variable to the l alias,
and let each user set PAGER to whatever they wanted.

$ alias l="ls —Fac | ${PAGER:—/bin/pg}"

Notice that if PAGER is not set, the default /bin/pg will be used. One
last point. Using double quotes cause alias values to be expanded
only when the alias is set. This means that if we reset PAGER after l
is defined, it would have no effect on the alias. To have the alias
value expanded each time it is invoked, use single quotes like this:

$ alias l='ls —Fac | ${PAGER:—/bin/pg}'

Now whenever PAGER is redefined, the next time alias l is invoked,
it uses the new value.

If an alias value ends with a blank, then the next word following the
alias is also checked if it an alias. Here we set two aliases: p and h.
When invoked, we get h instead of Hello.

$ alias p='print' h=Hello
$ p h
h

After the p alias is reset with a trailing blank, h gets substituted in the
next command correctly:

$ alias p='print ' h=Hello
$ p h
Hello

Displaying Current Aliases

A list of the current aliases is displayed using the alias command

151

without arguments:

$ alias
autoload=typeset —fu
cd=_cd
echo=print —
functions=typeset —f
h=Hello
hash=alias —t —
history=fc —l
integer=typeset —i
l=ls —Fac | more
ls=/usr/bin/ls

Chapter 7: The Environment

Table 7.3: Preset Aliases

Alias Value Definition
autoload typeset �fu define an

a u t o l o a d i n g
function

echo print � display arguments
functions typeset �f display list of

functions
hash alias �t � display list of

tracked aliases
history fc �l list commands from

history file
integer typeset �i declare integer

variable
r fc �e � re-execute previous

command
stop kill �STOP suspend job
type whence �v display information

about commands

152

Korn Shell User and Programming Manual

mv=/usr/bin/mv
nohup=nohup
p=print
r=fc —e —
rm=/usr/bin/rm
stop=kill —STOP
suspend=kill —STOP $$
type=whence —v
vi=SHELL=/bin/sh vi

Exported aliases are displayed using the alias �x command.

Tracked Aliases

Tracked aliases are used to associate an alias with the full pathname
of a program. When a tracked alias is invoked, instead of searching
each directory in PATH, the full pathname of the corresponding
command is returned from the alias table. This speeds execution by
eliminating the path search.

Most implementations of the Korn shell come with a few default
tracked aliases. These are usually set to frequently used commands.
Tracked aliases and their values can be displayed with the alias �t
command. Let's see what we've got:

$ alias —t
ls=/usr/bin/ls
mv=/usr/bin/mv
rm=/usr/bin/rm
vi=/usr/ucb/vi

On this version of the Korn shell, the ls, mv, rm, and vi commands are
standard tracked aliases. On other implementations, they may be
different.

Tracked aliases are basically the same as regular aliases, except that

153

they are defined using the following format:

alias —t name

Notice that a value is not given, as in normal alias �name =value
syntax. This is because the Korn shell assigns a value automatically
by doing a search on PATH. In the case of the tracked alias ls, the
value is set to /usr/bin/ls, since /usr/bin is the first directory in
PATH that contains ls.

We could set up a tracked alias for the cp command like this:

$ alias —t cp

If the trackall option is set (set �h, or set �o trackall), then the Korn
shell attempts to generate tracked aliases for all commands that it
encounters for the first time. By default, this option is usually
disabled.

Tracked aliases become undefined if the PATH variable is unset.
However, they continue to be tracked aliases. The next reference to
the tracked alias causes the value to be reassigned.

Removing Aliases

Aliases are removed with the unalias command. Let's try it with the l
alias:

$ unalias l

Now when invoked, it returns an error.

$ l
/bin/ksh: l: not found

Chapter 7: The Environment

154

Korn Shell User and Programming Manual

If you want to prevent an alias from being interpreted as one without
having to delete it, just enclose it in single quotes. This is useful for
when aliases are named after commands or functions. For example,
on systems that alias cd to the _cd function, the real built-in cd
command could be invoked like this:

$ 'cd'

Prompts

There are a number of prompt variables in the Korn shell: PS1 and
PS2 are two of them. PS1 contains your primary prompt string and is
displayed by the Korn shell when it is ready to read a command. If not
specified, the default is $ for regular users, and # for superusers.

PS2 specifies the secondary prompt string and is displayed whenever
the Korn shell needs more input. For example, when you enter
<RETURN> before a complete command has been given, or continue
a command onto the next line with the \ character, the PS2 variable is
displayed. If not specified, the default for PS2 is the > character.

$ print "Here is
> another line"
Here is another line

Customizing Your Command Prompt

By default, the command prompt is set to the $ character. But you
could set it to something else by simply reassigning a value to the PS1
variable. For example, you could have the prompt give you a greeting

155

message like this:

$ typeset —x PS1="Good morning "

As soon as you press the <RETURN> key, the prompt is reset.

Good morning: pwd
/home/anatole
Good morning:

The current command number can be displayed by putting a ! in the
prompt variable PS1 like this:

$ typeset —x PS1="!:Good morning:"
154: Good morning:

If you really want to display a ! in the prompt, use !!:

$ typeset —x PS1="Hello there!!"
Hello there!

Now let's make a fancy prompt that will display the command number
and the current working directory. Besides ! for the command
number, we'll need the PWD variable for the current working
directory.

$ typeset —x PS1="!:$PWD> "

Just to make sure it works, let's change directories:

167:/home/anatole> cd /tmp
168:/tmp> cd /usr/spool/news/comp/sources
169:/usr/spool/news/comp/sources>

Don't go overboard with this. If you are using the in-line editor,
remember that the prompt size affects the edit window width.

Chapter 7: The Environment

156

Korn Shell User and Programming Manual

Subshells

Subshells are generated whenever you enclose commands in ()'s,
perform command substitution, for background processes, and for co-
processes (discussed later in Chapter 8). A subshell is a separate
copy of the parent shell, so variables, functions, and aliases from the
parent shell are available to the subshell. However, subshells cannot
change the value of parent shell variables, functions, or aliases. So if
we set LOCALVAR to a value in the current shell:

$ LOCALVAR="This is the original value"

then check the value in a subshell, we see that it is defined:

$ (print $LOCALVAR)
This is the original value

If we set it in the subshell to another value:

$ (LOCALVAR="This is the new value")

then check the value in the parent shell, we see that LOCALVAR is
still set to the original value:

$ print $LOCALVAR
This is the original value

By default, things like variables, aliases, and functions from the
current environment are not available to separate invocations of the
Korn shell unless explicitly exported or exported in the environment
file. For example, variables are exported with the typeset �x
command. Let's look at LOCALVAR again. It wasn't exported, so if
we start a new Korn shell, LOCALVAR is not defined:

$ ksh
$ print $LOCALVAR

157

Chapter 7: The Environment

$ exit

Once exported, it is available to the new Korn shell:

$ typeset —x LOCALVAR
$ ksh
$ print $LOCALVAR
This is the original value

As with subshells, environment settings are not passed back to the
parent Korn shell. If LOCALVAR is set to another value in the
separate Korn shell:

$ LOCALVAR="This is the new value"

then we exit back to the parent shell, we see that LOCALVAR is still
set to the original value:

$ exit
$ print $LOCALVAR
This is the original value

If the allexport option is enabled (set �a, or set �o allexport),
variables are automatically exported when defined. By default, this
option is disabled.

Aliases can also be exported to separate Korn shells with the alias �x
command. If we wanted to use the l alias in a separate Korn shell, it
would have to be exported like this:

$ alias —x l

158

Korn Shell User and Programming Manual

Restricted Shell

This is a version of the shell that allows restricted access to UNIX.
Running under rsh is equivalent to ksh, except that the following is not
allowed:

� changing directories
� setting the value of ENV, PATH, or SHELL variables
� specifying path or command names containing /
� redirecting output of a command with >, >|, <>, or >>

These restrictions apply only after the .profile and environment files
have been processed.

Privileged Mode

Privileged mode allows execution of the environment and .profile
files to be controlled. When enabled, the ~/.profile and environment
files are not executed. Instead, /etc/suid_profile is read and
executed.

The /etc/suid_profile file can be configured by the system
administrator to control execution of setuid Korn shell scripts, track
su invocations, set a default readonly PATH, log commands, and
more.

By default, privileged mode is disable, but is enabled whenever the
real and effective user or group ids are not the same.

159

Besides providing a working environment and executing commands,
the Korn shell is also a high-level programming language that can be
used to write programs. In Korn shell terminology, these programs
are called scripts. Korn shell scripts can contain anything that you
enter at the command prompt: regular UNIX commands, Korn shell
commands, your own programs and scripts, or even commands from
other UNIX shells! Unlike many high-level programming languages,
Korn shell scripts are interpreted, so they do not have to be compiled.
This makes the Korn shell ideal for prototyping.

Chapter 8:
Writing Korn
Shell Scripts

Executing Korn Shell Scripts
The [[...]] Command
Control Commands

Input/Output Commands
Misc Programming Features

160

Korn Shell User and Programming Manual

Executing Korn Shell Scripts

Let's make a Korn shell script out of the print Hello world command
by putting it into a file like this:

$ print "print Hello world" >prhello

Before Korn shell scripts can be executed, they must be made
executable by setting the execute and read bits with the chmod
command:

$ chmod 755 prhello

or
$ chmod +rx prhello

Assuming that the current directory is in the search path $PATH,
prhello can now be executed by simply invoking it by name:

$ prhello
Hello world

Korn shell scripts can also be executed by invoking them as the first
argument to ksh:

$ ksh prhello
Hello world

Now we can use prhello like any other command. The output can be
directed to a file:

$ prhello >p.out
$ cat p.out
Hello world

It can be used with a pipe:

$ prhello | wc

161

1 2 12

or with command substitution:

$ print "We always say \"$(prhello)\""
We always say "Hello world"

By default, Korn shell scripts are run in a separate environment. This
means that variables from the current environment are not available to
Korn shell scripts unless explicitly exported, and variables defined in
Korn shell scripts are not passed back to the parent shell. Just to
prove it, here is a demonstration. The checkvar Korn shell script
does just one thing: it prints the value of LOCALVAR.

$ cat checkvar
print "LOCALVAR is set to: $LOCALVAR"

If LOCALVAR is set to something in the current environment, and
checkvar is run, we see that LOCALVAR is not defined:

$ LOCALVAR="This is the original value"
$ checkvar
LOCALVAR is set to:

If we export LOCALVAR, then its' value will be available to
checkvar:

$ typeset —x LOCALVAR
$ checkvar
LOCALVAR is set to: This is the original value

To show that Korn shell script environments cannot modify variable
values in the parent shell, we'll change checkvar to reassign a value
to LOCALVAR.

$ cat checkvar
print "LOCALVAR is set to: $LOCALVAR"
LOCALVAR="This is a new value"
print "The new LOCALVAR is set to: $LOCALVAR"

Chapter 8: Writing Korn Shell Scripts

162

Korn Shell User and Programming Manual

Now when it is run, LOCALVAR is set to the new value:

$ checkvar
LOCALVAR is set to: This is the original value
The new LOCALVAR is set to:This is a new value

Meanwhile, back in the parent shell, LOCALVAR has not been
affected.

$ print $LOCALVAR
This is the original value

If the allexport option is enabled (set �a, or set �o allexport),
variables are automatically exported when defined. By default, this
option is disabled.

Positional Parameters

Positional parameters are special variables used to keep track of
arguments to the Korn shell, scripts, and functions. Positional
parameter names contain only digits and cannot be set directly using
variable=value syntax. By default, parameter zero (or $0) is set to the
name of the shell, script or function.

$ print $0
/bin/ksh

The remaining parameters 1 to n are set to each of the arguments
passed to the shell, script or function. For example, if you invoke a
Korn shell script called ptest and pass the arguments A, B, and C,
then in the script ptest, $0 would be set to ptest, $1 to A, $2 to B, and
$3 to C.

163

$ ptest A B C

 $3
 $2
 $1

 $0

Chapter 8: Writing Korn Shell Scripts

Table 8.1: Positional Parameters

$0 name of script or function or pathname
of Korn shell for set

$n nth argument to script, function, or set
${n} nth argument to script, function, or set

when n is greater than 9
$# number of positional parameters
$*, $@ all positional parameters separated

with a blank
"$*" all positional parameters enclosed in

double quotes
${*:X} all X to the last positional parameters

"${*:X}" all X to the last positional parameters
enclosed in double quotes

${*:X:n} n positional parameters beginning with
Xth

"${*:X:n}" n positional parameters beginning with
Xth enclosed in double quotes

164

Korn Shell User and Programming Manual

There are three special Korn shell variables that provide information
about the current positional parameters. The first is $#, and it
contains the number of positional parameters. The other two are $@
and $*, and they both contain all the positional parameters. So in the
above ptest example, $# would be 3, and both $* and $@ would be A
B C. Here is a Korn shell script that manipulates positional
parameters. It displays the name of the current script, the number of
positional parameters, and the value of each of the positional
parameters:

$ cat check_params
print "Script name: $0"
print "Number of args passed: $#"
print "Arguments passed: $*"
print "Arg 1=$1, Arg 2=$2, Arg 3=$3"

If executed with no arguments, this is the output:

$ check_params
Script name: check_params
Number of args passed: 0
Arguments passed:
Arg 1=, Arg 2=, Arg 3=

while if executed with the arguments A and B:

$ check_params A B
Script name: check_params
Number of args passed: 2
Arguments passed: A B
Arg 1=A, Arg 2=B, Arg 3=

Modifying Positional Parameters

By default, $0 is set to the name of the shell, script or function. It
cannot be set or modified. The remaining parameters from $1 to $n
can be reassigned with the shift command.

165

The shift command, with no arguments, shifts positional parameters
left once, so that $1 takes the value of $2, $2 takes the value of $3, and
so on. The original value of $1 is lost.

Let's change the check_params script so that it shifts the positional
parameters left once:

$ cat check_params
print "Script name: $0"
print "Number of args passed: $#"
print "Arguments passed: $*"
print "Arg 1=$1, Arg 2=$2, Arg 3=$3"
shift
print "Number of remaining args: $#"
print "Remaining args: $*"
print "Arg 1=$1, Arg 2=$2, Arg 3=$3"

When we run it again with the arguments A B:

$ check_params A B
Script name: check_params
Number of args passed: 2
Arguments passed: A B
Arg 1=A, Arg 2=B, Arg 3=
Number of remaining args: 1
Remaining args: B
Arg 1=B, Arg 2=, Arg 3=

After the shift command, $1 is set to B and $2 is unset. The original
value of $1 is lost.

The positional parameters can be shifted left more than once by
providing an integer argument to the shift command: shift n.

Now let's try something else with positional parameters. Here is a
Korn shell script called kuucp. It uses uucp to copy a file to the
public directory on the rnihd system.

$ cat kuucp

Chapter 8: Writing Korn Shell Scripts

166

Korn Shell User and Programming Manual

PUBDIR=${PUBDIR:—/usr/spool/uucppublic}
uucp $1 rnihd!$PUBDIR/$1
print "Copied $1 to rnihd!$PUBDIR/$1"

So instead of typing this long command line:

$ uucp n.out rnihd!/usr/spool/uucppublic/n.out

we can do this:

$ kuucp n.out

and in the script, $1 gets substituted with n.out in both the source and
target file arguments. We could extend this further to be able to uucp
files to any system by having a system name given as another
command-line argument. Now $1 is used for the source and target
file, and $2 for the remote system name.

$ cat kuucp
PUBDIR=${PUBDIR:—/usr/spool/uucppublic}
uucp $1 $2!$PUBDIR/$1
print "Copied $1 to $2!$PUBDIR/$1"

To send the file msg.c to the uucp public directory on the unisf
system, kuucp would be invoked like this:

$ kuucp msg.c unisf

$1 would be substituted with the msg.c, and $2 with unisf. Notice
that the destination directory is taken from PUBDIR variable. If it's
not set, the default uucp public directory is used.

The exit command

In Chapter 2, we learned that UNIX programs return an exit status. And
that a zero exit status indicates successful execution, while a non-zero
exit status indicates failure. The exit command allows you to terminate

167

execution from anywhere in a Korn shell script and return an exit value
using this format:

exit
or
exit n

where n is the exit status to return. If n is not specified, the exit
status of the previous command is used. If you don't use exit, then
scripts finish after the last command is executed.

Take a look at the kuucp script again. What happens if an error
occurs? For example, if the file argument is entered incorrectly, or it
doesn't exist? The uucp command will fail, but the status message
following will still get displayed. Here is a good place for exit. It
could be used to terminate execution and return a non-zero exit status
if for some reason the uucp command failed. To get the exit status,
$? is checked after uucp is run. If it is non-zero, then we display our
own error message and exit. Otherwise, the next command is
executed and the script terminates successfully.

$ cat kuucp
PUBDIR=${PUBDIR:—/usr/spool/uucpublic}
uucp $1 $2!$PUBDIR/$1 2>&—
(($? != 0)) && {print "Got uucp error"; exit 1;}
print "Copied $1 to $2!$PUBDIR/$1"

By the way, the 2>&� just traps the uucp error messages. We don't
need to see them anymore, since kuucp is now doing its own error
processing. Now when kuucp is run on a non-existent file, this is
what happens:

$ kuucp nofile unisf
Got uucp error
$ print $?
1

Chapter 8: Writing Korn Shell Scripts

168

Korn Shell User and Programming Manual

The exit command does one more thing. If given at the command
prompt, it terminates your login shell.

The [[...]] Command

The [[...]] command is used to evaluate conditional expressions with
file attributes, strings, integers, and more. The basic format is:

 [[expression]]

where expression is the condition you are evaluating. There must be
whitespace after the opening brackets, and before the closing
brackets. Whitespace must also separate the expression arguments
and operators. For example, these are incorrect:

[[$X=$Y]]
[[$X = $Y]]

while this is correct:

[[$X == $Y]]

Notice that there is white space between $X, $Y, and the = operator.

If the expression evaluates to true, then a zero exit status is returned,
otherwise the expression evaluates to false and a non-zero exit status
is returned.

If you are familiar with the test and [...] commands, then you'll
recognize that [[...]] is just a new and improved version of the same
commands. It basically functions the same way, except that a number
of new operators are available.

169

Checking Strings

We could use the [[...]] command to check if a variable is set to a
certain value. Here, variable X is assigned abc, then evaluated in this
expression:

$ X=abc
$ [[$X = abc]] && print "X is set to abc"
X is set to abc

Chapter 8: Writing Korn Shell Scripts

Table 8.2: [[...]] String Operators

�n string true if length of string is not zero
�o option true if option is set
�z string true if length of string is zero
string1 = string2

true if string1 is equal to string2
string1 != string2

true if string1 is not equal to string2
string = pattern

true if string matches pattern
string != pattern

true if string does not match pattern
string1 < string2

true if string1 less than string2
string1 > string2

true if string1 greater than string2

170

Korn Shell User and Programming Manual

Using the test and [...] commands, the same command could be
written as:

test "$X" = abc && print "X is set to abc"

or
["$X" = abc] && print "X is set to abc"

To check if a variable is set to null, the �z option can be used:

[[—z $VAR]] && print "VAR is set to null"

or it could be compared to the null string like this:

[[$VAR = ""]] && "VAR is set to null"

Checking Patterns

The Korn shell also lets you compare strings to patterns. We could
check if X begins with a 'a' like this:

$ X=abc
$ [[$X = a*]] && print "$X matches a*"
abc matches a*

or if it's a three-character string:

$ [[$X = ???]] && print "$X has exactly 3 \
characters"

abc has exactly 3 characters

Using the +([0�9]) pattern, we could check if X is set to a number:

$ X=123
$ [[$X = +([0—9])]] && print "$X is a number"
123 is a number

Table 8.2 lists the most commonly used [[...]] string operators.

171

Chapter 8: Writing Korn Shell Scripts

Table 8.3: Some [[...]] File Operators

�a file true if file exists
�d file true if file exists and is a directory
�f file true if file exists and is a regular file
�G file true if file exists and its group id

matches the effective group id of the
current process

�L file true if file exists and is a symbolic link
�Ofile true if file exists and its user id matches

the effective user id of the current
process

�r file true if file exists and is readable
�s file true if file exists and its size is greater than

zero
�S file true if file exists and is a socket
�u file true if file exists and its set user-id bit is

set
�w file true if file exists and is writable
�x file true if file exists and is executable. If

file is a directory, then true indicates
that the directory is searchable.

file1 �ef file2 true if file1 exists and is another name
for file2

file1 �nt file2 true if file1 exists and is newer than
file2

file1 � ot file2 true if file1 exists and is older than file2

172

Korn Shell User and Programming Manual

Checking File Attributes

Because manipulating files is so important in programming, the Korn
shell provides a whole range of file operators. The most basic
operation to perform on a file is to see if it exists, and that can be done
using the �a operator. This is a new Korn shell file operator. Make
sure you don't get it confused with the logical AND operator used by
the test and [...] commands, which is also written as �a.

$ touch tmp
$ [[—a tmp]] && print "File tmp exists"
File tmp exists

This only indicates that it exists, but not much else. It may be a
directory, or a symbolic link, but using this operator, that's all we
know. If we wanted more information, the �f or �d operators could
tell us if a file existed and was a regular file (�f) or if it was just a
directory (�d). Let's try the �f operator on the tmp file:

$ [[–f tmp]] && print "File tmp exists and \
is a regular file"
File tmp exists and is a regular file

If we tried the �d operator on the tmp file, it would evaluate to false,
because it isn't a directory:

$ [[–d tmp]] && print "File tmp exists and \
is a regular file"
$

While on a directory it would evaluate to true:

$ mkdir tmpdir
$ [[–d tmpdir]] && print "Directory tmp exists"
Directory tmp exists

This conditional command checks if $FILE is readable, and if not,
prints an error message and exits:

173

[[–r $FILE]]||{ print $FILE not readable; exit 1; }

while this one checks if $FILE is writable:

[[–w $FILE]]||{ print $FILE not writable; exit 1; }

Here are a couple of new file operators: �nt and �ot. They compare
two files and return true if file1 is newer than (�nt) or older than (�
ot) file2.

$ touch tfile2
$ touch tfile1
$ [[tfile1 —nt tfile2]]&&print "tfile1 is \
newer than tfile2"
tfile1 is newer than tfile2

Let's switch the files in the expression and try the �ot operator:

$ [[tfile2 —ot tfile1]]&&print "tfile2 is \
older than tfile1"
tfile2 is older than tfile1

Table 8.3 lists the most commonly used [[...]] file operators.

Checking Integer Attributes

The [[...]] command provides a few integer operators that allow
integers to be compared. It is frequently used to check the number of
command-line arguments. This expression evaluates to true if there
are less than or equal to three positional parameters set:

[[$# —le 3]] && print "3 or less args given"

The last expression is equivalent to checking if there are less than four
positional parameters set:

Chapter 8: Writing Korn Shell Scripts

174

Korn Shell User and Programming Manual

[[$# —lt 4]] && print "Less than 4 args given"

 The number of users logged on could be checked like this:

$ [[$(who | wc —l) —gt 10]] && print "More \
than 10 users are logged on"
More than 10 users are logged on

In many cases, the [[...]] integer operators may be sufficient for
evaluating expressions that contain integers. To perform other
arithmetic operations, use the ((...)) command (discussed in Chapter
6). It offers the same arithmetic comparison operators as the [[...]]
command, plus many others. Besides offering more arithmetic
operators, the ((...)) command provides substantial performance
improvements over the [[...]] and test commands. The last command
could also be given as:

(($(who | wc —l) > 10)) && print "More than \
10 users are logged on"

Using an arithmetic expression, the number of command-line
arguments can be checked like this:

(($# < 4)) && print "Less than 4 args"

Table 8.4 lists the most commonly used [[...]] integer operators.

The ! Operator

The ! operator negates the result of any [[...]] expression when used
like this:

[[! expression]]

For example, to check if X is not equal to abc:

175

$ X=xyz
$ [[! $X = abc]] && print "$X not equals abc"
xyz not equals abc

or if a file doesn't exist:

$ rm tmp
$ [[! —f tmp]] && print "tmp does NOT exist"
tmp does NOT exist

There is one logical operator that can only be implemented with the !
operator. There is no [[...]] file operator that will evaluate to true on a
zero-length file.

$ >emptyfile
$ [[! —s emptyfile]] && print "emptyfile is empty"
emptyfile is empty

Chapter 8: Writing Korn Shell Scripts

Table 8.4: [[...]] Integer Operators

exp1 �eq exp2 true if exp1 is equal to exp2
exp1 �ne exp2 true if exp1 is not equal to exp2
exp1 �le exp2 true if exp1 is less than or equal to

exp2
exp1 �lt exp2 true if exp1 is less than exp2
exp1 �ge exp2 true if exp1 is greater than or equal to

exp2
exp1 �gt exp2 true if exp1 is greater than exp2

176

Korn Shell User and Programming Manual

Compound Expressions

Expressions can also be combined with the && and | | operators to
form compound expressions.

&& - The AND Operator

The && operator is used with the [[...]] command to test if multiple
expressions are true using this format:

[[expression1 && expression2]]

We could check if two variables were set to specific values like this:

$ X=abc Y=def

177

|| - The OR Operator

The | | operator is used with the [[...]] command to test if expression1
OR expression2 are true using this format:

[[expression1 | | expression2]]

This expression checks if $FILE was readable or executable:

[[—r $FILE || —w $FILE]]

while this one checks is either variables were set to your name:

Chapter 8: Writing Korn Shell Scripts

Table 8.5: Other [[...]] Operators

[[expression1 && expression2]]
true if both expression1 and expression2 are
true

[[expression1 || expression2]]
true either expression1 or expression2 are true

[[(expression)]]
true if expression evaluates to true. The ()'s
are used to override the precedence rules.

[[!expression]]
true if expression evaluates to false

178

Korn Shell User and Programming Manual

[[$USER=$(whoami) || $LOGNAME=$(whoami)]]

Multiple | | operators can also be given in one [[...]] command. We
could check if $FILE was readable, writable, or executable like this:

[[—r $FILE || —w $FILE || —x $FILE]]

Like with the && operator, in some versions of the Korn shell,
multiple | | operators cannot be given in one [[...]] command unless
grouped with parentheses.

[[...]] vs test and [...]

The [[...]] command is preferred to test and [...], since many of the
errors associated with test and [...] do not occur. For example, when
comparing two variables where one is set to null or unset, the test and
[...] commands return a syntax error if the variable is not surrounded
in double quotes. Here, X is unset, while Y is set to 1:

$ unset X
$ Y=1

Without double quotes around the variable names, the test and [...]
commands return a syntax error:

$ test $X = $Y && print "X and Y are equal"
/bin/ksh: test: argument expected

or
$ [$X = $Y] && print "X and Y are equal"
/bin/ksh: test: argument expected

while the [[...]] command does not (unless the nounset option is

179

enabled):

$ [[$X = $Y]] && print "X and Y are equal"
X and Y are equal

Checking File Descriptors

On systems that support the /dev/fd directory for naming open files,
the files argument in expressions can be given as /dev/fd/n so that the
test is applied to the open file associated with file descriptor n. This
command checks to see if standard input (file descriptor 0) is
readable:

$ [[—r /dev/fd/0]] && print "Stdin is readable"
Stdin is readable

Control Commands

The Korn shell provides a number of control-flow commands
typically found in high-level programming languages. The following
sections cover these special commands.

The case Command

The case command provides multiple-branch capability. It is used to
compare a single value against a number of other values. Commands
associated with that value are executed when a match is made. The

Chapter 8: Writing Korn Shell Scripts

180

Korn Shell User and Programming Manual

syntax for the case command is:

case value in
pattern1) command

command ;;
pattern2) command

command ;;
. . .
patternn) command

command ;;
esac

where value is compared to pattern1, pattern2, ... patternn. When a
match is found, the commands associated with that pattern up to the
double semi-colons are executed.

The following Korn shell script demonstrates a simple case
statement. It successively compares the command-line argument
given to �a, �b, or �c and then prints out which flag was given. First,
it checks to make sure that at least one command-line argument is
given:

$ cat checkargs
(($#<1)) && { print Not enough args; exit 1; }

case $1 in
—a) print — "—a flag given" ;;
—b) print — "—b flag given" ;;
—c) print — "—c flag given" ;;

esac
$ checkargs —b
—b flag given
$ checkargs —a
—a flag given

The �d argument is given in the next invocation. It doesn't match any

181

of the patterns, so nothing is printed:

$ checkargs —d
$

Specifying Patterns with case

The same patterns used in file name substitution can also be used in
case statements to match patterns. For example, the * pattern is
frequently used to specify a default pattern. It will always match if no
other match is made. Another pattern, @([1�9])*([0�9]), will match
any number 1�9999999*. Let's expand the checkargs script to match
on any type of argument using some special pattern-matching
characters.

$ cat checkargs
case $1 in

—@([a-z]))
print "Lowercase argument given: $1" ;;

—@([A-Z]))
print "Uppercase argument given: $1" ;;

@([1-9])*([0-9]))
print "Integer argument given: $1" ;;

"") print "No argument given" ;;
*) print "Invalid argument given" ;;

esac

Here is sample output:

$ checkargs —a
Lowercase argument given: —a
$ checkargs 99
Integer argument given: 99
$ checkargs —C
Uppercase argument given: —C
$ checkargs 0
Invalid argument given

Chapter 8: Writing Korn Shell Scripts

182

Korn Shell User and Programming Manual

$ checkargs
No argument given

Notice that the �@(a�z) and �@(A�Z) patterns cause a � followed by
only one character to be matched. An argument like �axyz would
cause the invalid argument message to be printed:

$ checkargs —axyz
Invalid argument given!

The �+([A�z]) case pattern would allow for multiple characters to
follow the � character. Multiple case patterns can be given, as long as
they are separated with a | character. For example, the pattern

—a | —b | —c

would match �a, �b, or �c. The new Korn shell pattern matching
formats also allow multiple case patterns to be given like this:

?(pattern1 | pattern2 | ... | patternn)

matches zero or one occurrence of any pattern

*(pattern1 | pattern2 | ... | patternn)

matches zero or more occurrences of any pattern

@(pattern1 | pattern2 | ... | patternn)

matches exactly one occurrence of any pattern

+(pattern1 | pattern2 | ... | patternn)

matches one or more occurrence of any pattern

!(pattern1 | pattern2 | ... | patternn)

matches all strings except those that match any pattern

183

The for Command

The for command is used to execute commands a specified number of
times. In programming terminology, this iterative execution of
commands is called a loop, so you may also hear the for command
referred to as a for loop. The basic syntax for the for command is:

for variable in word1 word2 . . . wordn
do

commands
done

The commands are executed once for each word, and for each
execution, variable is set to word. So if there were three words, the
commands would be executed three times, with variable set to word1
in the first execution, word2 in the second execution, and word3 in the
third and last execution. Here is a simple for loop:

$ cat floop
integer LOOPNUM=1
for X in A B C
do

print "Loop $LOOPNUM: X=$X"
((LOOPNUM+=1))

done

When executed, it prints out the loop number and the value of X for
each loop.

$ floop
Loop 1: X=A
Loop 2: X=B
Loop 3: X=C

Remember the kuucp script that we wrote earlier in this chapter? We
could use it with a for loop to uucp multiple files to a remote system

Chapter 8: Writing Korn Shell Scripts

184

Korn Shell User and Programming Manual

like this:

$ for FILE in chap1 chap2 chap3
> do
> print "Copying $FILE to ukas"
> kuucp $FILE ukas
> done
Copying chap1 to ukas
Copying chap2 to ukas
Copying chap3 to ukas

Notice that this for loop was run from the prompt, and not from a
script. Korn shell control commands are like any other commands,
and can be entered at the command prompt. This is useful when you
want to run something quickly without having to edit a file.

File name substitution, command substitution, and variable
substitution can also be used to generate a list of word arguments for
the for command. The first line of the previous command could have
been given as:

for FILE in chap[1-3]

or
for FILE in $(ls chap[1-3])

or
CHAPS=$(ls chap[1-3])
for FILE in $CHAPS

The $* and $@ variables can be used to loop on command-line
arguments like this:

for variable in $*
do

commands
done

This is the same as:

185

for variable in $1 $2 $3 . . .
do

commands
done

This idea could be used to make a Korn shell script that uucp's a
variable number of files to ukas:

$ cat myuucp
for FILE in $*
do

print "Copying $FILE to ukas"
kuucp $FILE ukas

done

Now to uucp just one file to ukas:

$ myuucp chap1
Copying chap1 to ukas

or all the chap files to ukas:

$ myuucp chap*
Copying chap1 to ukas
Copying chap2 to ukas
Copying chap3 to ukas
...

With no argument, nothing is displayed:

$ myuucp
$

Other for Syntax

The for command can also be used without the list of word
arguments:

Chapter 8: Writing Korn Shell Scripts

186

Korn Shell User and Programming Manual

for variable
do

commands
done

The commands are executed once for each positional parameter, and
variable is set to each successive positional parameter. It is
equivalent to:

for variable in "$@"
do

commands
done

The myuucp script could be modified to use this format and still do
the same thing.

$ cat myuucp
for FILE
do

print "Copying $FILE to ukas"
kuucp $FILE ukas

done

Use this format to enter the for command on one line:

for var in word1 word2 . . . wordn ; do commands ; done
or
for var ; do commands ; done

Notice the ; character before the do and done commands. This is
needed so that the do and done commands are separated from the
previous commands.

187

The if Command

The if command is used to execute commands if a given condition is
true. The basic syntax of the if command is:

if command1
then

commands
fi

If command1 returns a zero exit status, then the commands between
then and fi are executed. Otherwise, the commands are skipped. For
example, if ANSWER is set to YES, then the print command is
executed.

if [[$ANSWER = YES]]
then

print "Ok, the answer is $ANSWER"
fi

Here is a Korn shell script that uses the if command to check if a file
exists, before trying to copy it.

$ cat fileck
FILE=$1

if [[-f $FILE]]
then

print "Copying $FILE to PUBDIR"
cp $FILE /usr/spool/uucppublic

fi

We could add another if command to check the number of arguments.
If there is less than one command-line argument, a usage message is
printed and the script exits.

Chapter 8: Writing Korn Shell Scripts

188

Korn Shell User and Programming Manual

$ cat fileck
if (($# < 1))
then

print "Usage: $0 file"
exit 1

fi
FILE=$1
if [[—f $FILE]]
then

print "Copying $FILE to PUBDIR"
cp $FILE /usr/spool/uucppublic

fi

The command-line argument check in fileck could have been written
using the && operator like this:

(($# < 1)) && {print "Usage:$0 file"; exit 1;}

This version is more compact, albeit less readable than the previous
one using the if command.

Use this format if you want to give an if command on one line:

if command1 ; then command2 ; fi

The ; characters are needed to separate then and fi from the previous
commands.

Other if Syntax: else

This form of the if command is used to execute one set of commands
if a condition is true, or another set of commands if the condition is
not true.

189

if command1
then

commands
else

commands
fi

If command1 returns a zero exit status, then the commands between
then and else are executed. If command1 returns a non-zero exit
status, then commands between else and fi are executed. In this
example, if ANSWER is YES, then the print command is executed.
Otherwise, it exits:

if [[$ANSWER = YES]]
then

print "Ok, the answer is $ANSWER"
else

exit 1
fi

We could add the else part to the if command in fileck to make sure
the file existed before it was copied:

$ cat fileck
if (($# < 1))
then

print "Usage: $0 file"
exit 1

fi
FILE=$1

if [[—f $FILE]]
then

print "Copying $FILE to PUBDIR"
cp $FILE /usr/spool/uucppublic

else
print "$FILE non-existent"
exit 2

fi

Chapter 8: Writing Korn Shell Scripts

190

Korn Shell User and Programming Manual

Here is some sample output:

$ fileck
Usage: fileck file
$ fileck nofile
nofile non-existent
$ fileck log.out
Copying log.out to PUBDIR

Notice that exit 1 was used for a usage error, while exit 2 was used for
the non-existent file error. In Korn shell scripts, especially large
ones, it's a good idea to use different exit codes for different types of
error conditions. It can be helpful in debugging.

$ fileck; print $?
Usage: fileck file
1
$ fileck nofile; print $?
nofile non-existent
2
$ fileck log.out; print $?
Copying log.out to PUBDIR
0

Other if Syntax: elif

This form of the if command is used to execute one set of commands
if one condition is true, another set of commands if another condition
is true, and so on, or else execute a set of commands if none of the
conditions are true. The syntax for this if command is:

if command1
then

commands
elif command2
then

191

commands
. . .
elif commandn
then

commands
else

commands
fi

If command1 returns a zero exit status, or command2 returns a zero
exit status, or commandn returns a zero exit status, then execute the
commands corresponding to the if/elif that returned a zero exit status.
Otherwise, if all the if/elif commands return a non-zero exit status,
execute the commands between else and fi. This if format is much
easier to explain with an example. The following Korn shell script
checks how many users are logged on, and prints the appropriate
message:

$ cat whonu
USERS=$(who | wc —l)
if ((USERS == 1))
then

print "There is 1 user logged on."
elif ((USERS == 2))
then

print "There are 2 users logged on."
elif ((USERS == 3))
then

print "There are 3 users logged on."
else

print "More than 4 users are logged on."
fi

If USERS equals 1, 2, or 3, then the corresponding if/elif..then clause
is executed:

$ whonu

Chapter 8: Writing Korn Shell Scripts

192

Korn Shell User and Programming Manual

There are 3 users logged on.

Otherwise, the else clause is executed:

$ whonu
More than 4 users are logged on.

if/elif vs case

When there are more than a few conditions to check, the case
statement should be considered instead of if/elif. Not only is it more
readable, but less code is actually needed. The whonu script could be
written using a case statement like this:

USERS=$(who | wc —l)
case $USERS in

1) print "There is 1 user logged on" ;;
2) print "There are 2 users logged on" ;;
3) print "There are 3 users logged on" ;;

193

while command1
do

commands
done

where command1 is executed, and if the exit status is zero, the
commands between do and done are executed. Command1 is executed
again, and if the exit status is zero, the commands between do and done
are also executed again. This continues until command1 returns a non-
zero exit status. The listargs script loops on the command-line
arguments. For each loop, the positional parameter $1 is displayed,
then the positional parameters are shifted. This continues until the
number of positional parameters is 0.

$ cat listargs
while (($# != 0))
do

print $1
shift

done

In the first loop, $# equals 4, so the value of $1 is printed and the
positional parameters are shifted left once. In the second loop, $#
equals 3 and the loop commands are executed again. This continues
until the fourth loop, where after the print command, shift sets $# to
0. Back at the top of the loop on the fifth try, $# is now 0, so the
commands between do and done are skipped. Execution continues
with commands following done.

$ listargs A B C D
A
B
C
D

Chapter 8: Writing Korn Shell Scripts

194

Korn Shell User and Programming Manual

The following while command loops until there is no LOCKFILE.
Every 30 seconds, it wakes up to check if it's still there.

$ while [[—f LOCKFILE]]
> do
> print "LOCKFILE still exists"
> sleep 30
> done
LOCKFILE still exists
LOCKFILE still exists
. . .

You've heard the term "stuck in an endless loop". Well, here is one for
you. This command will loop forever, since the true command always
returns a zero exit status:

$ while true
> do
> print "Looping forever..."
> done
Looping forever...
Looping forever...
Looping forever...
. . .

To give the while command on one line, use this format:

while command1 ; do commands ; done

Just like with if and for command on-line formats, the ; characters are
needed to separate do and done from the previous commands.

195

The until Command

The until command is another looping command. It's like the while
command, except that instead of looping while the condition is true, it
loops while the condition is false. So you can think of it as the
opposite of the while command. The syntax for the until command
is:

until command1
do

commands
done

where commands are executed until command1 returns a zero exit
status. To demonstrate the differences between the until and while
commands, let's rewrite the listargs script. In this version that uses
the until command, $# is checked if it equals 0 before looping. This
is in contrast to the while version that checked if $# was not equal to
0 before looping.

$ cat listargs
until (($# == 0))
do

 print $1
 shift

done

Here is sample output:

$ listargs A B
A
B

Just to prove that almost any while loop can be rewritten using until,
let's take the second example from the while section and rewrite it.

Chapter 8: Writing Korn Shell Scripts

196

Korn Shell User and Programming Manual

Now instead of looping while LOCKFILE exists, we loop until it is
non-existent:

$ until [[! —f LOCKFILE]]
> do
> print "LOCKFILE still exists"
> sleep 30
> done
LOCKFILE still exists
LOCKFILE still exists
. . .

Even the forever loop can be rewritten using until:

$ until false
> do
> print "Looping forever..."
> done
Looping forever...
Looping forever...
Looping forever...
. . .

Nested Loops

There is another type of loop that is used to loop inside of another
loop. In programming terms, this is called a nested loop. For
example, in this script, the loops work together to count from 10 to 35
in increments of 5. The for i in 1 2 3 is called the outer loop, and the
for j in 0 5 is called the inner loop.

$ cat nloop
for i in 1 2 3
do

for j in 0 5
do

197

print "ij"
done

done

For each outer loop, the inner loop is executed twice. So, the first
inner loop sets j to 0, and the second inner loop sets j to 5. This is
repeated for each outer loop. The output explains this much better.

$ nloop
10
15
20
25
30
35

Breaking Out of Loops

You may want to exit from a loop before the loop condition is
satisfied. This is where the break command comes in. It causes an
exit from a loop-type command, but not from the entire script. Once
you break from a loop, execution continues with the next command
following the loop. For example, we could change the listargs script
so that if a character argument was not given, the while loop would be
terminated.

$ cat listargs
while (($# != 0))
do

if [[$1 = +([A-z])]]
then

print "$1: arg ok"
shift

else
print "$1: Invalid argument!"
break

Chapter 8: Writing Korn Shell Scripts

198

Korn Shell User and Programming Manual

fi
done
print "Finished with args"
. . .

Here is sample output. Notice that the command following the while
loop is executed after the break. If you wanted to terminate the entire
script, exit would have to be used instead of break.

$ listargs A 1 B
A: arg ok
1: Invalid argument!
Finished with args

The break command can also be used to exit from a nested loop using
this format:

break n

where n specifies the nth enclosing loop to exit from. Here is a new
version of the nloop script that breaks out of both loops if i equals 2
and j equals 0:

$ cat nloop
for i in 1 2 3
do

for j in 0 5
do

if ((i == 2 && j == 0))
then

break 2
else

print "ij"
fi

done
done

Now the output would be:

199

$ nloop
10
15

If break was used instead of break 2, then only the inner for loop
would have been terminated, and execution would have continued with
i set to 3 in the outer loop, and j set to 0 in the inner loop.

The continue Command

The continue command causes execution to continue at the top of the
current loop. It's like the break command, except instead of exiting
from the loop completely, only the remaining commands in the
current loop are skipped. Let's change the listargs script so that
instead of exiting on an invalid argument, it just prints out the error
message, but continues execution.

$ cat listargs
while (($# != 0))
do

if [[$1 = +([A-z])]]
then

print "$1: arg ok"
shift

else
print "$1: Invalid argument!"
shift
continue

fi
done
print "Finished with args"
. . .

Here is more sample output. Notice that this time, even though an
invalid argument was given, the next command-line argument was
processed.

Chapter 8: Writing Korn Shell Scripts

200

Korn Shell User and Programming Manual

$ listargs A 1 B
A: arg ok
1: Invalid argument!
B: arg ok
Finished with args

Like with the break command, an integer argument can be given to
the continue command to skip commands from nested loops.

The select Command

This is the last loop command we'll talk about. The select command
is used to display a simple menu that contains numbered items, and a
prompt message. The syntax for the select command is:

select variable in word1 word2 . . . wordn
do

commands
done

where word1 through wordn are displayed as numbered menu choices
followed by a prompt (default #?). If the response is in the range 1
through n, then variable is set to the corresponding word, REPLY is
set to the response, and the commands are executed. Execution
continues until a break, exit, return, or EOF is encountered. Here is
a simple select command that displays three numbered choices:
Choice-A, Choice-B, and Choice-C.

$ cat stest
select i in Choice-A Choice-B Choice-C
do

print "You picked selection $REPLY: $i"
done

201

At the first prompt, selection 1 is entered, so REPLY is set to 1, i is
set to Choice-A and the value is printed. At the next prompt,
selection 3 is entered, so REPLY is set to 3, i is set to Choice-C and
the value of i is displayed again.

$ stest
1) Choice-A
2) Choice-B
3) Choice-C
#? 1
You picked selection 1: Choice-A
#? 3
You picked selection 3: Choice-C

Here the <RETURN> key is pressed, so the menu is just redisplayed:

#? <RETURN>
1) Choice-A
2) Choice-B
3) Choice-C

What if we enter an invalid choice?

1) Choice-A
2) Choice-B
3) Choice-C
#? 5
You picked selection 5:
#?

The print command was still run, but because an invalid choice was
given, i was not set to anything. Let's add an if command to check the
value inside the loop.

$ cat stest
select i in Choice-A Choice-B Choice-C
do

if [[$i = Choice-[A-C]]]
then

print "You picked selection $REPLY: $i"
else

Chapter 8: Writing Korn Shell Scripts

202

Korn Shell User and Programming Manual

print "$REPLY: Invalid choice!"
continue

fi
done

Now it works!

$ stest
1) Choice-A
2) Choice-B
3) Choice-C
#? 2
You picked selection 2: Choice-B
#? 5
5: Invalid choice!
#? 1
You picked selection 1: Choice-A

A different prompt can be used by setting the PS3 variable like this:

$ typeset —x PS3="Enter selection>"

Now when stest is run again, the new message prompt is displayed:

$ stest
1) Choice-A
2) Choice-B
3) Choice-C
Enter selection>3
You picked selection 3: Choice-C

The select and case commands are used in this Korn shell script to
provide a simple menu interface to a few UNIX commands. Notice
that the LIST FILES portion runs in a subshell so that the prompt
(PS3) can be changed without having to reset it each time for the rest
of the script.

203

$ cat smenu
PS3="Enter selection>"
select CMD in "CURRENT DIRECTORY NAME" \
"LIST FILES" MAIL DONE
do

case $CMD in
CURRENT*)

pwd ;;
LIST*)

(PS3="List which directory?"
select DIR in HOME PUBDIR TOOLS \

DONE
do

case $DIR in
HOME)

ls $HOME ;;
PUBDIR)

ls $PUBDIR ;;
TOOLS)

ls ~/tools ;;
DONE) break ;;

204

Korn Shell User and Programming Manual

2) LIST FILES
3) MAIL
4) DONE
Enter selection>1
/home/anatole/tbin

If 2 is given, then another menu is displayed that gives you four
numbered choices: HOME, PUBDIR, TOOLS, and DONE .
Choices 1 through 3 cause contents of a directory to be listed, while
choice 4 takes you back to the main menu.

1) CURRENT DIRECTORY NAME
2) LIST FILES
3) MAIL
4) DONE
Enter selection>2
1) HOME
2) PUBDIR
3) TOOLS
4) DONE
List which directory?1
NEWS dialins nohup.out proc.doc
asp mail pc tools
bin newauto.bat pers
List which directory?4
1) CURRENT DIRECTORY NAME
2) LIST FILES
3) MAIL
4) DONE
Enter selection>

If 3 is entered, mail is invoked, and if 4 is entered, we exit from the
script:

Enter selection>3
No mail.
1) CURRENT DIRECTORY NAME
2) LIST FILES
3) MAIL

205

4) DONE
Enter selection>4
$

Other select Syntax

The select command can also be used without the list of word
arguments:

select variable
do

commands
done

It functions the same way as the previous select syntax, except that
the positional parameters are displayed as numbered menu choices
from 1 to n, instead of the words from the word list. It is equivalent to:

select variable in "$@"
do

commands
done

The select Menu Format

The format of the select menu can be controlled by assigning values
to the LINES and COLUMNS variables. The LINES variable
specifies the number of lines to use for the menu. The menu choices
are displayed vertically until about two-thirds of lines specified by
LINES are filled. The COLUMNS variable specifies the menu

Chapter 8: Writing Korn Shell Scripts

206

Korn Shell User and Programming Manual

width. This example displays how the COLUMNS and LINES
variables affect a select menu. With the default setting, the stest
menu is displayed like this:

$ stest
1) Choice-A
2) Choice-B
3) Choice-C
Enter selection>

If LINES is set to 2, the menu choices are displayed on one line:

$ typeset —x LINES=2
$ stest
1) Choice-A 2) Choice-B 3) Choice-C
Enter selection>

while if COLUMNS is set to 50, the menu choices are displayed
closer together on one line:

$ typeset —x COLUMNS=50
$ stest
1) Choice-A 2) Choice-B 3) Choice-C
Enter selection>

If these variables are not explicitly set, the default used is 80 for
COLUMNS, and 24 for LINES.

Comments

Comments are used in Korn shell scripts for debugging and
documentation purposes. They provide a way to include text that is
not executed. Good commenting makes it easier for you or someone
else to read your scripts. Words beginning with # up to end of the
current line are treated as comments and ignored. The listargs script

207

could be commented like this:

$ cat listargs
listargs — List arguments

Loop on each argument
while (($# != 0))
do

Make sure argument is alphanumeric
if [[$1 = +([A-z])]]
then

print "$1: arg ok"
shift

else
print "$1: Invalid argument!"
shift
continue

fi
done

The # character can also be used to make your Korn shell scripts
compatible with other shells. Any Korn shell script that begins with:

#!interpreter

is run by the given interpreter. So, for the C and Bourne shell users on
your system, if you want your shell scripts to be run by the Korn shell
(assuming it is installed in /bin), make sure they start with this:

#!/bin/ksh

Input/Output Commands

The Korn shell provides a number of input/output commands, which
are covered in the following sections.

Chapter 8: Writing Korn Shell Scripts

208

Korn Shell User and Programming Manual

The print Command

You've already seen this command a hundred times since it was
introduced in Chapter 3, but here it is again. This is a more formal
definition of the command that describes the other things it can be
used for. The print command displays arguments according to
options with this format:

print [options] arguments

Without options, special characters, or quotes, each argument is
displayed separated with a space, and all the arguments are
terminated with a newline:

$ print X Y Z
X Y Z

Notice that all the extra whitespace between the arguments was
truncated. We could keep the whitespace by enclosing the arguments
in quotes like this:

$ print "X Y Z"
X Y Z

Escape Characters

There are a number of special escape characters that allow you to
format the print arguments. For example, to display arguments on
separate lines, instead of using multiple print commands:

$ print X; print Y; print Z

209

X
Y
Z

the arguments could be separated with the newline escape character
\n:

$ print "X\nY\nZ"
X
Y
Z

Chapter 8: Writing Korn Shell Scripts

Table 8.6: print Escape Characters

\a bell character
\b backspace
\c line without ending newline (remaining

arguments ignored)
\f formfeed
\n newline
\r return
\t tab
\v vertical tab
\\ backslash
\0x 8-bit character whose ASCII code is

the 1-, 2-, or 3-digit octal number x

210

Korn Shell User and Programming Manual

The print arguments could be double-spaced like this:

$ print "X\n\nY\n\nZ"
X

Y

Z

Make sure escape characters are enclosed in quotes. Otherwise they
are not interpreted correctly. Here, without the quotes, \n is
interpreted as an escaped 'n', and not as the newline escape character:

$ print X\nY\nZ
XnYnZ

The \ character can also be used to quote the escape characters:

$ print X\\nY\\nZ
X
Y
Z

A tab can be displayed with the \t escape character:

$ print "X\tY\tZ"
X Y Z

The \c escape character causes the trailing newline to be dropped
from the output. It is often used to create prompts.

$ print "Enter choice: \c"
Enter choice: $

Notice that the command prompt was displayed following the
argument, and not on the next line.

The \r escape character causes a carriage return without line feed to

211

be displayed and can be used to format non-fixed length data. This
command prints an R on the right side, then the \r escape character
moves the cursor back to the beginning of the same line and prints an
L on the left side followed by TEXT:

$ print ' R\rLTEXT'
LTEXT R
$ print ' R\rL TEXT'
L TEXTR

Notice that the L and R characters are lined up, while TEXT is in a
different position in both commands. In the Bourne shell, this is the
easiest way to display non-fixed-length data in a fixed-length format.
In the Korn shell, the same display could be created by using a fixed-
length variable. First, variable X is set to ten-character wide, left-
justified with a value of TEXT. Notice that {}'s must be given to
delimit the variable name X:

$ typeset —L10 X=TEXT
$ print "L${X}R"
LTEXT R

To right-justify the value of X, the right-justify attribute is set:

$ typeset —R10 X
$ print "L${X}R"
L TEXTR

This print command displays a message and beeps:

$ print "Unexpected error!\a"
Unexpected error!<BEEP>

Using octal codes, the previous command could be given like this:

$ print "Unexpected error!\007"
Unexpected error!<BEEP>

Chapter 8: Writing Korn Shell Scripts

212

Korn Shell User and Programming Manual

print Options

The print command has a number of options that affect the way its
arguments are interpreted. The � option is used if you want to print
arguments that begin with a � character. In the next command,
without the � argument, �Z is interpreted as an option and causes an
error to be returned:

$ print —Z
/bin/ksh: print: bad options(s)
$ print — —Z
—Z

The �n option is used when you don't want the trailing newline to be
printed:

$ print —n "Enter choice:"
Enter choice:$

This is equivalent to:

$ print "Enter choice:\c"
Enter choice:$

The �r option causes the special escape characters to be ignored.
Here, \t is printed without interpretation as the tab character:

$ print —r 'a\tb'
a\tb

The �R option is the same as �r, except that it also causes arguments
beginning with � (except �n) to be interpreted as regular arguments
and not as options.

213

$ print —R — '—a\tb'
— —a\tb

The �s option redirects the given arguments to the history file.

$ print —s "This is a history entry"
$ history —2
165 This is a history entry
166 history —2

Chapter 8: Writing Korn Shell Scripts

Table 8.7: print Options

� treat everything following � as an
argument, even if it begins with �

�n do not add a ending newline to the
output

�p redirect the given arguments to a co-
process

�r ignore the \ escape conventions
�R ignore the \ escape conventions; do not

interpret �arguments as options
(except �n)

�s redirect the given arguments to the
history file

�un redirect arguments to file descriptor n.
If the file descriptor is greater than 2, it
must first be opened with the exec
command. If n is not specified, the
default file descriptor is 1.

214

Korn Shell User and Programming Manual

The �u option is used to redirect arguments to a specific file
descriptor. Instead of displaying a message to standard error like this:

$ print "This is going to standard error >&2
This is going to standard error

the print �u2 command can be used.

$ print —u2 "This is going to standard error"
This is going to standard error

The echo Command

The echo command displays its' arguments on standard output and is
provided for compatibility with the Bourne shell. In the Korn shell,
echo is an exported alias set to "print �".

The exec Command

The exec command is used to perform I/O redirection with file
descriptors 0 through 9 using this format:

exec I/O-redirection-command

The I/O redirection performed by the exec command stays in effect
until specifically closed, changed, or if the script or shell terminates.
We could use this idea so direct standard output to a file. First, let's
start a subshell. You know that 1>std.out directs standard output to
std.out. So if we put the exec command in front of it, all subsequent
standard output will be redirected.

215

$ ksh
$ exec 1>std.out

Now anything that goes to standard output is redirected to std.out
until file descriptor 1 is specifically reset.

$ pwd
$ whoami
$ print "Where is this going?"

Notice that standard error is still attached to your terminal:

$ print —u2 "This is going to standard error"
This is going to standard error

Let's exit from the subshell, and take a look at the output file:

$ exit
$ cat std.out
/home/anatole/bin
anatole
Where is this going?

Here, file redir.out is opened as file descriptor 5 for reading and
writing:

$ exec 5<>redir.out

Now the print command writes something to file descriptor 5:

$ print —u5 "This is going to fd 5"

and the cat command reads from it:

$ cat <&5

Chapter 8: Writing Korn Shell Scripts

216

Korn Shell User and Programming Manual

This is going to fd 5

To finish up, we use another exec to close file descriptor 5:

$ exec 5<&—

Any subsequent attempts to write to it or read from it would generate
this error message:

$ print —u5 "Trying to write to fd 5 again"
/bin/ksh: 5: bad file unit number

Standard input can be taken from a file like this:

exec 0<file

Commands could be read in from file, and it would be almost as if you
typed them at your terminal.

The exec command can also be used to replace the current program
with a new one. For example, you know that if you wanted to run the
C shell, you could invoke it as a subshell like this:

$ csh
{aspd:1}

But why have the extra parent shell process hanging around if you
don't need it? In this case, the exec command could be used to
replace the current shell with the C shell:

$ exec csh

217

{aspd:1}

Now if you exited from the C shell, you would be logged out.

Here is another application. Remember the smenu script from the
select command section? You could make a full-blown UNIX
interface menu out of it by adding some more commands. If you
wanted to set it up as a login shell, this would need to be added to a
.profile file:

exec smenu

and execution would be restricted to smenu.

The read Command

The read command is used to read input from a terminal or file. The
basic format for the read command is:

read variables

where a line is read from standard input. Each word in the input is
assigned to a corresponding variable, so the first variable gets the first
word, the second variable the second word, and so on. Here, "This is
output" is read in to the variables X, Y, and Z. The first word of the
input is This, so it is assigned to the first variable X. The second word
is is, so it is assigned to the second variable Y. The third word is
output, so it is assigned to Z.

$ print "This is output" | read X Y Z

Chapter 8: Writing Korn Shell Scripts

218

Korn Shell User and Programming Manual

$ print $X
This
$ print $Y
is
$ print $Z
output

If there aren't enough variables for all the words in the input, the last
variable gets all the remaining words. This command is the same as
the last one, except that an extra string "again" is given.

$ print "This is output again " | read X Y Z
$ print $X
This
$ print $Y
is

Because there are four strings, but only three variables, Z gets the
remaining unassigned words:

$ print $Z
output again

If one variable argument is given to the read command, it gets
assigned the entire line. Here, the variable LINE is set to the entire
line:

$ print "This is output again" | read LINE
$ print $LINE
This is output again

The kuucp script could be modified so that it prompted for a source
file and target system. This is just a bare-bones script that
demonstrates the use of the read command. A usable version is
included in Appendix D.

219

$ cat kuucp
PUBDIR=${PUBDIR:—/usr/spool/uucpublic}

Prompt for source file
print —n "Enter source file: "
read SOURCE

Prompt for remote system name
print —n "Enter remote system name: "
read RSYS

print "Copying $SOURCE to $RSYS!$PUBDIR/$SOURCE"
uucp $SOURCE $RSYS!$PUBDIR/$SOURCE

Here is some sample output:

$ kuucp
Enter source file: rt.c
Enter remote system name: mhhd

Chapter 8: Writing Korn Shell Scripts

Table 8.8: read Options

�p read input line from a co-process
�r do not treat \ as the line continuation

character
� s save a copy of input line in the command

history file
�un read input line from file descriptor n. If

the file descriptor is greater than 2, it
must first be opened with the exec
command. If n is not specified, the
default file descriptor is 0.

220

Korn Shell User and Programming Manual

Copying rt.c to mhhd!/usr/spool/uucppublic/rt.c

Reading Input from Files

Besides reading input from your terminal, the read command is also
used to read input from a file. The read command by itself will only
read one line of input, so you need a looping command with it. To
read in the contents of a file, use this format:

exec 0< file
while read variable
do

commands
done

The exec command opens file for standard input, and the while
command causes input to be read a line at a time until there is no more
input. If the exec open on file fails, the script will exit with this error
message:

script-name: file: cannot open

Here is a stripped-down version of kcat. It is a simple version of the
UNIX cat command. It displays the given file on standard output one
line at a time.

$ cat kcat
exec 0<$1
while read LINE
do

print $LINE
done

In terms of performance, it is about 3-4 times slower than the UNIX
cat command, but it will do for demonstration purposes. Here is

221

sample output:

$ kcat test.input
1: All work and no play makes Jack a dull boy.
2: All work and no play makes Jack a dull boy.
3: All work and no play makes Jack a dull boy.
. . .

The real version of the kcat command is listed in Appendix D.

Here is an alternate format that will also work for reading input from
files:

cat file | while read variable
do

commands
done

On the systems tested, the exec format for reading input from files
was about 40-60 times faster than the last version above. It may be
different on your system, but that's still a significant performance
improvement.

The IFS Variable

The read command normally uses the IFS (Internal Field Separator)
variable as the word separators. The default for IFS is space, tab, or
newline character, in that order, but it can be set to something else. It
is useful for when you want to read data that is not separated with
whitespace. In this example, IFS is set to a comma:

$ IFS=,

then the print arguments are separated with the new word separator

Chapter 8: Writing Korn Shell Scripts

222

Korn Shell User and Programming Manual

for read:

$ print 'This,is,output' | read WORD1 WORD2 WORD3
$ print $WORD1 $WORD2 $WORD3
This is output

By setting IFS to :, the fields in the /etc/passwd file could be read into
separate variables.

$ cat ifs_test
IFS=:
exec 0</etc/passwd
while read -r NAME PASS UID GID COMM HOME SHELL
do

print "Account name= $NAME
Home directory= $HOME
Login Shell= $SHELL"
done

Here is sample output:

$ ifs_test
Account name= root
Home directory= /
Login Shell= /bin/ksh
Account name= anatole
Home directory= /home/anatole
Login Shell= /bin/ksh
. . .

More with read

Another format for the read command is:

read options [variables]

223

where input is read and assigned to variables according to the given
options. The �u option is used to read input from a specific file
descriptor. If the file descriptor is greater than 2, then it must first be
opened with the exec command. Let's look at the stripped-down
version of kcat again. It could be changed to prompt to continue
before displaying the next line like this:

$ cat kcat
exec 0<$1
while read LINE
do

print $LINE
print —n "Do you want to continue?"
read ANSWER
[[$ANSWER = @([Nn])*]] && exit 1

done

Here is the test.input file again:

$ cat test.input
1: All work and no play makes Jack a dull boy.
2: All work and no play makes Jack a dull boy.
3: All work and no play makes Jack a dull boy.
. . .

When the new version of kcat is run, the output looks strange. Can
you figure out the problem? The reason is that we redirected standard
input from test.input, but we are also expecting the input to
ANSWER from standard input. In the first loop, line 1 from
test.input is assigned to LINE. The next read command, which is
inside the loop, reads the next line into ANSWER. In the second
loop, we're up to line 3, so it gets assigned to LINE, and so on.

$ kcat test.input
1: All work and no play makes Jack a dull boy.
Do you want to continue?3: All work and no play
makes Jack a dull boy.
Do you want to continue?
. . .

Chapter 8: Writing Korn Shell Scripts

224

Korn Shell User and Programming Manual

Instead of redirecting standard input (file descriptor 0) from
test.input, we could redirect it from another file descriptor and read it
using the �u option. Then it wouldn't interfere with read ANSWER
which is expecting input from standard input. Here is the new and
improved version:

$ cat kcat
exec 4<$1
while read -u4 LINE
do

print $LINE
print —n "Do you want to continue?"
read ANSWER
[[$ANSWER = @([Nn])*]] && exit 1

done

Now it works.

$ kcat test.input
1: All work and no play makes Jack a dull boy.
Do you want to continue?<RETURN>
2: All work and no play makes Jack a dull boy.
Do you want to continue?<RETURN>
3: All work and no play makes Jack a dull boy.
Do you want to continue?n
$

The �s option saves a copy of the input in the history file. Here is an
example:

$ print "This is a history entry" | read —s HVAR

Just to make sure, let's look at both the history file

$ history —2
170 This is a history entry
171 history —2

and HVAR:

225

$ print $HVAR
This is a history entry

Reading Input Interactively

The read command allows input to be read interactively using this
format:

read name?prompt

where prompt is displayed on standard error and the response is read
into name. So instead of using two commands to display a prompt and
read the input:

$ print —n "Enter anything: "
$ read ANSWER

The same thing can be done with one command.

$ read ANSWER?"Enter anything: "
Enter anything: ANYTHING

Here is ANSWER:

$ print $ANSWER
ANYTHING

Let's change the kuucp script (again) so that this format of the read
command was used:

$ cat kuucp
PUBDIR=${PUBDIR:—/usr/spool/uucpublic}

read SOURCE?"Enter source file: "
read RSYS?"Enter remote system name: "

Chapter 8: Writing Korn Shell Scripts

226

Korn Shell User and Programming Manual

print "Copying $SOURCE to $RSYS!$PUBDIR/$SOURCE"
uucp $SOURCE $RSYS!$PUBDIR/$SOURCE

The REPLY variable

If no variables are given to the read command, the input is
automatically assigned to the REPLY variable. Here, ANYTHING
is read into REPLY:

$ print ANYTHING | read
$ print $REPLY
ANYTHING

Miscellaneous Programming Features

The next sections cover some miscellaneous programming features.

The . Command

The . command reads in a complete file, then executes the commands
in it as if they were typed in at the prompt. This is done in the current
shell, so any variable, alias, or function settings stay in effect. It is
typically used to read in and execute a profile, environment, alias, or
functions file. Here the .profile file is read in and executed:

$. .profile

The following example illustrates the difference between executing
files as Korn shell scripts and reading/executing them using the .

227

command. The .test file sets the variable X:

$ cat .test
X=ABC

When the .test file is executed as a Korn shell script, variable X is not
defined in the current environment, because scripts are run in a
subshell:

$ ksh .test
$ print $X

$

After the .test file is read in and executed using the . command, notice
that the variable X is still defined:

$. .test
$ print $X
ABC

The standard search path, PATH, is checked if the file is not in the
current directory.

Functions

Functions are a form of commands like aliases, scripts, and programs.
They differ from Korn shell scripts, in that they do not have to be read
in from the disk each time they are referenced, so they execute faster.
Functions differ from aliases, in that functions can take arguments.
They provide a way to organize scripts into routines like in other high-
level programming languages. Since functions can have local
variables, recursion is possible. Functions are most efficient for
commands with arguments that are invoked fairly often, and are
defined with the following format:

Chapter 8: Writing Korn Shell Scripts

228

Korn Shell User and Programming Manual

function name {
commands

}

To maintain compatibility with the Bourne shell, functions can also be
declared with this POSIX-style format:

function-name() {
commands

}

These types of functions have many limitations compared to Korn
shell style functions, such as no support for local variables.

Here is a function called md that makes a directory and cd's to it:

$ cat md
function md {

(($# < 1)) && { print "$0: dir"; exit 1; }
mkdir $1 && cd $1
pwd

}

To be able to execute a function, it must first be read in. This is done
with the . command:

$. md

Now the md function can be invoked. Here, we try it with the dtmp
directory:

$ md dtmp
/home/anatole/dtmp

Functions are executed in the current environment, so any variables
and option settings are available to them.

229

Returning Function Exit Status

The return command is used to return from a function to the invoking
Korn shell script and pass back an exit value. The syntax for the
return command is:

return
or
return n

where n is a return value to pass back to the invoking Korn shell script
or shell. If a return value is not given, the exit status of the last
command is used. To exit from a function and the invoking Korn
shell script, use the exit command from inside the function.

Scope & Availability

By default, functions are not available to subshells. This means that a
regular function that was read in your working environment, .profile
file, or environment file would not be available in a Korn shell script.
To export a function, use the typeset �fx command:

typeset �fx function-name

To make a function available across separate invocations of the Korn
shell, include the typeset �fx function-name command in the
environment file.

Using Functions in Korn Shell Scripts

Functions are very useful in Korn shell scripts. Not only because you

Chapter 8: Writing Korn Shell Scripts

230

Korn Shell User and Programming Manual

can organize scripts into routines, but it also provides a way to
consolidate redundant sequences of commands. For example, instead
printing out an error message and exiting each time an error condition
is encountered, an all-purpose error function can be created. The
arguments passed to it are the message to display and the exit code:

$ cat error
function error {

print ${1:—"unexplained error encountered"}
exit ${2:—1}

}

If function error is called without arguments, then you get the default
error message "unexplained error encountered" and a default exit
code if 1. Now on a non-existent file error, function error could be
called like this:

error "$FILE:non-existent or not accessible" 3

It can save quite a bit of code, and it's easier to maintain. One more
thing. Because functions need to be read in before they can be
invoked, it's a good idea to put all function definitions at the top of
Korn shell scripts.

Function Variables

All function variables, except those explicitly declared locally within
the function with the typeset command, are inherited and shared by
the calling Korn shell script. In this example, the X, Y, and Z
variables are set within and outside of the function f:

$ cat ftest
X=1
function f {

Y=2
typeset Z=4

231

print "In function f, X=$X, Y=$Y, Z=$Z"
X=3

}
f
print "Outside function f, X=$X, Y=$Y, Z=$Z"

Notice that when executed, all the variable values are shared between
the function and calling script, except for variable Z, because it is
explicitly set to a local function variable using the typeset command.
The value is not passed back to the calling Korn shell script:

$ ftest
In function f, X=1, Y=2, Z=4
Outside function f, X=3, Y=2, Z=

The current working directory, aliases, functions, traps, and open files
from the invoking script or current environment are also shared with
functions.

Displaying Current Functions

The list of currently available functions are displayed using the
typeset �f command:

$ typeset —f
function _cd
{

'cd' $1
PS1="$PS0$PWD> "

}
function md
{

mkdir $1 && 'cd' $1
}

Chapter 8: Writing Korn Shell Scripts

232

Korn Shell User and Programming Manual

Autoloading Functions

To improve performance, functions can be specified to autoload.
This causes the function to be read in when invoked, instead of each
time a Korn shell script is invoked, and is used with functions that are
not invoked frequently. To define an autoloading function, use the
typeset �fu function-name command. Here, lsf is made an
autoloading function:

$ typeset —fu lsf

The autoload alias can also be used to define an autoloading function.
On most systems, it is preset to typeset �fu.

The FPATH variable which contains the pathnames to search for
autoloading functions must be set and have at least one directory for
autoloading functions to work.

Discipline Functions

Discipline functions are a new feature in KornShell 93. They are a
special type of function used to manipulate variables. They are
defined but not specifically called. Rather, they are called whenever
the variable associated with the function is accessed.

There are some specific rules as to how discipline functions are
named and accessed. First of all, discipline functions are named using
this syntax:

name.function

Notice the the funcion has two parts separated with a dot. The first
part name corresponds to the name of a variable, and the second part
must be get, set , or unset. These correspond to the following

233

operations on the variable:

get whnever the base discipline variable is accessed
set whnever the base discipline variable is set
unset whnever the base discipline variable is unset

For example, the discipline function LBIN.get , LBIN.set ,
LBIN.unset is called whenever the variable LBIN is accessed, set, or
unset.

All three discipline functions are optional, so not all need to be
specified.

Within a discipline function, the following special reserved variables
can be used:

.sh.name name of current variable

.sh.value value of the current variable

.sh.subscript name of the subscript (if array variable)

From a practical perspective, discipline functions are often used to
help debug by tracing the setting and current value of variables in
running scripts. Here is a function that can be used to trace setting the
value of X:

function X.set {
print "DEBUG: ${.sh.name} = ${.sh.value}"

}

Discipline functions are also a good place to centralize your variable
assignment validation rules. Here is a function that checks to make
sure that X it set ao a number between 3 and 10:

function X.set {
if ((.sh.value<3 || .sh.value >10))
then
print "Bad value for ${.sh.name}: ${.sh.value}"

Chapter 8: Writing Korn Shell Scripts

234

Korn Shell User and Programming Manual

fi
}

Note that builtin functions can also be used as additional discipline
functions.

FPATH

The FPATH variable contains a list of colon-separated directories to
check when an autoloading function is invoked. It is analogous to
PATH and CDPATH, except that the Korn shell checks for function
files, instead of commands or directories. Each directory in FPATH
is searched from left-to-right for a file whose name matches the name
of the function. Once found, it is read in and executed in the current
environment. With the following FPATH setting, if an autoloading
function lsf was invoked, the Korn shell would check for a file called
lsf in /home/anatole/.fdir, then /etc/.functions, and if existent, read
and execute it:

$ print $FPATH
/home/anatole/.fdir:/etc/.functions

There is no default value for FPATH, so if not specifically set, this
feature is not enabled.

Removing Function Definitions

Functions are removed by using the unset �f command. Here, the rd
function is removed:

$ unset —f rd

and when invoked, it is now undefined:

235

$ rd
/bin/ksh: not found

Multiple function names can also be given to the unset �f command.

Traps

The trap command is used to execute commands when the specified
signals are received.

trap commands signals

Trap commands are useful in controlling side effects from Korn shell
scripts. For example, if you have a script that creates a number of
temporary files, and you hit the <BREAK> or <DELETE> key in the
middle of execution, you may inadvertently leave the temporary files.
By setting a trap command, the temporary files can be cleaned up on
an error or interrupt.

The trap_test script creates some files, then removes them when an
interrupt is received. Notice that the trap command is surrounded in
single quotes. This is so that the FILES variable is evaluated when
the signal is received, not when the trap is set.

$ cat trap_test

236

Korn Shell User and Programming Manual

If an invalid trap is set, an error is generated.

Ignoring Signals

The trap command can be used to ignore signals by specifying null as
the command argument:

trap "" signals

This could be used to make all or part of a Korn shell script
uninterruptable using normal interrupt keys like Ctl-c. This trap
command causes signals 2 and 3 to be ignored:

 $ trap "" 2 3

The "" argument must be in this type of trap command, otherwise the
trap is reset.

Resetting Traps

The trap command can also be used to reset traps to their default
action by omitting the command argument:

trap � signals
or
trap signals

237

Exit & Function Traps

A trap can be set to execute when a Korn shell script exits. This is
done by using a 0 or EXIT as the signals argument to the trap
command:

trap 'commands' 0
or
trap 'commands' EXIT

This could be used to consolidate Korn shell script cleanup functions
into one place. The trap_test script contains a trap command that
causes a message to be printed out when the script finishes executing:

$ cat trap_test
trap 'print exit trap being executed' EXIT
print "This is just a test"
$ trap_test
This is just a test
exit trap being executed

If set within a function, the commands are executed when the function
returns to the invoking script. This feature is used to implement the C
shell logout function in Appendix C.

Debugging with trap

The trap command can be helpful in debugging Korn shell scripts.
The special signal arguments DEBUG and ERR are provided to

Chapter 8: Writing Korn Shell Scripts

238

Korn Shell User and Programming Manual

execute trap commands after each command or only when
commands in a script fail. This is discussed in the next section.

Trap Signal Precedence

If multiple traps are set, the order of precedence is:

� DEBUG
� ERR
� Signal Number
� EXIT

Trapping Keyboard Signals

The Korn shell traps KEYBD signals (sent when you type a character)
and automatically assigns the following reserved variables:

.sh.edchar contains last character of key sequence

.sh.edtext contains current input line

.sh.edmode contains NULL character (or escape character
is user in command mode)

.sh.edcol contains position within the current line

Debugging Korn Shell Scripts

The Korn shell provides a number of options that are useful in
debugging scripts: noexec, verbose, and xtrace. The noexec option
causes commands to be read without being executed. It is used to

239

check for syntax errors in Korn shell scripts. The verbose option
causes the input to be displayed as it is read. The xtrace option
causes the commands in a script to be displayed as they are executed.
This is the most useful, general debugging option.

Enabling Debug Options

These options are enabled in the same way other options are enabled.
You can invoke the script with the option enabled:

Chapter 8: Writing Korn Shell Scripts

Table 8.9: Korn Shell Debugging Options

set �e, set �o errexit
execute ERR trap (if set) on non-zero
exit status from any commands

set �n, set �o noexec
read commands without executing
them

set �v, set �o verbose
display input lines as they are read

set �x, set �o xtrace
display commands and arguments as
they are executed

typeset �ft function
display the commands and arguments
from function as they are executed

240

Korn Shell User and Programming Manual

$ ksh — option script

invoke a subshell with the option enabled:

$ ksh — option
$ script

set the option globally before invoking the script:

$ set — option
$ script

or set the option within the script.

$ cat script
. . .
set — option
. . .

Debugging Example

Here is a Korn shell script called dbtest. It sets variable X to ABC,
then checks the value and prints a message. Notice that there is an
unmatched double quote on line 2:

$ cat dbtest
X=ABC
if [$X" = "foo"]
then

print "X is set to ABC"
fi

When run with the noexec option, the syntax error is flagged:

241

$ ksh —n dbtest
dbtest[2]: syntax error at line 2: `"' unmatched

When an error is detected while executing a Korn shell script, the
name of the script or function, the error message, and the line number
enclosed in []'s are displayed. For functions, the line number relative
to the beginning of the function is displayed. The dbtest script is
fixed and run again with the noexec option:

$ ksh —n dbtest
$

No error is flagged this time, but also notice that no output is
generated. This is because the noexec option causes the commands to
be read, but not executed. Now, the dbtest script is run with the
xtrace option:

$ ksh —x dbtest
+ alias —x echo=print —
+ alias —x vi=SHELL=/bin/sh vi
+ PS0=!:
+ PS1=!:/home/anatole/bin>
+ typeset —fx cd md
+ typeset —x EDITOR=vi
+ X=ABC
+ [X = ABC]
+ print X is set to ABC
X is set to ABC

Now there is a lot of output, most of which is execution trace output
from processing of the environment file. The value of PS4 is
displayed in front of each line of execution trace. If not explicitly
reset, the default is the + character. The line number can also be
included in the debug prompt by including LINENO in the PS4
setting.

Chapter 8: Writing Korn Shell Scripts

242

Korn Shell User and Programming Manual

$ typeset —x PS4='[$LINENO] '

Now the line number is displayed in brackets in the trace output:

$ ksh —x dbtest
[11] alias —x echo=print —
[12] alias —x vi=SHELL=/bin/sh vi
[13] PS0=!:
[14] PS1=!:/home/anatole/bin>
[15] typeset —fx cd md
[16] typeset —x EDITOR=vi
[1] X=ABC
[2] [X = ABC]
[4] print X is set to ABC
X is set to ABC

When the dbtest script is run without any debugging options, this is
the output:

$ dbtest
X is set to ABC

Debugging with trap

The trap command can also be helpful in debugging Korn shell
scripts. The syntax for this type of trap command is:

trap commands DEBUG
or
trap commands ERR

If the trap command is set with DEBUG, then the trap commands are
executed after each command in the script is executed. The following
trap command causes pwd to be executed after each command if the
variable DB_MODE is set to yes , otherwise a normal trap is

243

executed.

if [[$DB_MODE = yes]]
then

trap "pwd" DEBUG
else

trap "rm —rf $TMPFILE; exit 1" 1 2 15
fi

If set with ERR and the errexit (�e) option is enabled, the trap is
executed after commands that have a non-zero (unsuccessful) exit
status. This case statement causes a different trap to be set,
depending on the debug flag. If the debug flag is 0, then a normal trap
is set, which removes some temporary files on normal or abnormal
termination. If the debug flag is 1, then an ERR trap is set, which
causes the line number to be displayed when an error occurs. If the
debug flag is 2, then a DEBUG trap is set, which causes the line
number and current working directory to be displayed.

case $DB_FLAG in
0) # Default trap - perform cleanup

trap "rm —rf $FILES; exit 1" 0 1 2 15 ;;

Table 8.10: Some Frequently-Used Signals

0 shell exit 3 quit
1 hangup 15 terminate
2 interrupt

Chapter 8: Writing Korn Shell Scripts

244

Korn Shell User and Programming Manual

1) # Execute trap for failed commands only
set —o errexit
trap 'print Error at $LINENO' ERR ;;

2) # Execute trap for all commands
trap 'print At $LINENO; pwd' DEBUG ;;

*) # Invalid debug flag
print "Invalid debug flag" ; exit 1 ;;

esac

Parsing Command-line Arguments

Here is an alternative to using case to parse command-line arguments:
the getopts command. It works with the OPTARG and OPTIND
variables to parse command-line arguments using this format:

getopts optstring name args
or
getopts optstring name

where optstring contains the list of legal options, name is the variable
that will contain the given option letter, and args is the list of
arguments to check. If not given, the positional parameters are
checked instead. If an option begins with a +, then + is prepended to
name. In all other cases, name is set to the option letter only.

There are some requirements on option format with the getopts
command. Options must begin with a + or �, and option arguments
can be separated from the options with or without whitespace. This
getopts command specifies that a, b, and c are valid options, and
OPT will be set to the given option:

getopts abc OPT

245

A : after an option in optstring indicates that the option needs an
argument, and OPTARG is set to the option argument. This getopts
command specifies that the a, b, and c are valid options, and that
options a and c have arguments:

getopts a:bc: OPT

If optstring begins with a :, then OPTARG is set to any invalid
options given, and name is set to ?. If an option argument is missing,
name is set to ":". In the following Korn shell script, the getopts
command is used in conjunction with the case command to process
options and their arguments. The ":a:bc:" options string specifies
that options a and c need arguments, and that invalid options are
processed.

$ cat getopts_test
while getopts :a:bc: OPT
do

case $OPT in
a|+a) print "$OPT received" ;;
b|+b) print "$OPT received" ;;
c|+c) print "$OPT received" ;;
:) print "$OPTARG needs arg" \exit ;;
\?) print "$OPTARG:bad option"exit ;;

esac
done

Here the +b and �b options are given:

$ getopts_test +b —b
+b received
b received

The c option needs an argument, so an error message is displayed:

$ getopts_test —c
c needs arg

Chapter 8: Writing Korn Shell Scripts

246

Korn Shell User and Programming Manual

Here, an invalid option is given:

$ getopts_test —x
x: bad option

The OPTIND variable is set by the getopts command to the index of
the next argument. It is initialized to 1 when a new function, Korn
shell, or script is invoked.

More with Here Documents

The here document feature is also used in shareware software
distribution. Multiple here documents are put into one file, and when
executed, generate all the modules separately. Here is an example
Korn shell archive file called archive_test:

$ cat archive_test
print "Extracting a"
cat >a <<—END

This is file a.
END
print "Extracting b"
cat >b <<—END

This is file b.
END
print "Extracting c"
cat >c <<—END

This is file c.
END

When executed, it generates three files: a, b, and c.

$ ls
archive_test

247

$ archive_test
Extracting a
Extracting b
Extracting c

This feature also allows you to edit a file from within a Korn shell script.
The htest script edits the file tmp and inserts one line:

$ cat htest
ed — tmp <<EOF
a
This is a new line
.
w
q
EOF

After the htest Korn shell script is run, here is the result:

$ htest
$ cat tmp
This is a new line

The <<� operator is the same as <<, except that leading tab characters
from each standard input line including the line with word are ignored.
This is used to improve program readability by allowing the here
document to be indented along with the rest of the code in Korn shell
scripts.

The here document feature is also useful for generating form letters.
The hmail script shows how to send a mail message to multiple users
using this feature.

$ cat hmail
for i in terry larry mary
do

mail $i <<—END

Chapter 8: Writing Korn Shell Scripts

248

Korn Shell User and Programming Manual

$(date)
Have a good holiday $i!

END
done

Co-Processes

Co-processes are commands that are terminated with a |& character.
They are executed in the background, but have their standard input
and output attached to the current shell. The print �p command is
used to write to the standard input of a co-process, while read �p is
used to read from the standard output of a co-process. Here, the
output of the date command is read into the DATE variable using the
read �p command:

$ date |&
[2] 241
$ read —p DATE
$ print $DATE
Thu Jul 18 12:23:57 PST 1996

Co-processes can be used to edit a file from within a Korn shell script.
In this example, we start with file co.text:

$ cat co.text
This is line 1
This is line 2
This is line 3

It is edited using a co-process, so the job number and process id are
returned:

$ ed — co.text |&
[3] 244

The command (display line 3) is written to the co-process using print
�p. The output of the ed command is then read into the LINE

249

variable using read LINE:

$ print —p 3p
$ read —p LINE
$ print $LINE
This is line 3

The next commands delete line 2, then send the write and quit
commands to ed via the co-process:

$ print —p 2d
$ print —p w
$ print —p q
[3] + Done ed — co.text |&

Table 8.11: Co-Processes

command |& execute command in the background
with the standard input and output
attached to the shell

n<&p redirect input from co-process to file
descriptor n. If n is not specified, use
standard input.

n>&p redirect output of co-process to file
descriptor n. If n is not specified, use
standard output.

print �p write to the standard input of a co-
process

read �p read from the standard output of a co-
process

Chapter 8: Writing Korn Shell Scripts

250

Korn Shell User and Programming Manual

After editing from the co-process, co.text file looks like this:

$ cat co.text
This is line 1
This is line 3

251

The following sections cover miscellaneous Korn shell commands.
Many of these are used in Korn shell scripts. The rest work with your
environment and system resources.

The : Command

The : command is the null command. If specified, arguments are
expanded. It is typically used as a no-op, to check if a variable is set,
or for endless loops. The : command here is used to check if LBIN is
set.

$: ${LBIN:?}
LBIN: parameter null or not set

If given in a Korn shell script, it would cause it to exit with an error if
LBIN was not set.

Chapter 9:
Miscellaneous

Commands

252

Korn Shell User and Programming Manual

This example counts the number of lines in the file ftext, then prints
the total. The : command is used as a no-op, since we only want to
print the total number of lines after the entire file has been read, not
after each line.

$ integer NUM=0
$ exec 0<ftext && while read LINE && ((NUM+=1))
> do
> :
> done; print $NUM
7

In the following Korn shell script, the : command is used to loop
continuously until fred is logged on.

$ cat fred_test
while :
do

FRED=$(who | grep fred)
if [[$FRED != ""]]
then

print "Fred is here!"
exit

else
sleep 30

fi
done

The eval Command

The eval command reads and executes commands using the following
format:

eval commands

253

It causes commands to be expanded twice. For simple commands,
there is no difference in execution with or without eval:

$ eval print ~
/home/anatole

Here is a more complicated command that illustrates the use of eval.
We want the contents of the stext file redirected when variable X is
accessed.

$ cat stext
She sells seashells by the seashore.

First, variable X is set to "<stext":

$ X="<stext"

When the value of X is printed using simple variable expansion, it
generates an error:

$ cat $X
<stext: No such file or directory

Using the eval command, X is first expanded to <stext, then the
command cat <stext is executed. This causes the contents of stext to
be displayed:

$ eval cat $X
She sells seashells by the seashore.

In this Korn shell script, the eval command is used to display the last
command-line argument:

Chapter 9: Miscellaneous Commands

254

Korn Shell User and Programming Manual

$ cat eval_test
print "Total command-line arguments is $#"
print "The last argument is $$#"

What you want is $# to be expanded first to the number of arguments,
then $n to be expanded to the value of the last argument. Without the
eval command, this is the output of eval_test:

$ eval_test a b c
Total command-line arguments is 3
The last argument is 581#

The output 581# is generated because $$ is first expanded to the
process id. Using the eval command to expand the print command
twice, we get the correct result.

$ cat eval_test
print "Total command-line arguments is $#"
print "The last argument is $(eval print \$$#)"
$ eval_test1 a b c
The number of command-line arguments is 3
The last argument is c

The \ is needed so that the $ character is ignored on the first
expansion. After the first expansion, the $(eval print \$$#) command
becomes $(print $3). This is then expanded to c.

The export Command

The export command sets and/or exports variables to the
environment. It is equivalent to typeset �x, except when used within
functions. Here, the PATH variable is set and exported:

255

$ export PATH=$PATH:/usr/5bin

Multiple variables can be given to the export command. In this
example, the variables A, B, C, and D are set and/or exported:

$ export A B=1 C D=2

If no arguments are specified, the export command lists the names
and values of exported variables:

$ export
EDITOR=vi
HOME=/home/anatole
LOGNAME=anatole
PATH=/usr/bin:/usr/ucb:/usr/etc:/usr/5bin:
PWD=/home/anatole/asp/pubs/ksh/v2
SHELL=/bin/ksh
TERM=sun
USER=anatole

The false Command

The false command returns a non-zero exit status. That's all. It is
often used to generate infinite until loops. In some versions of the
Korn shell, false is a preset alias let 0. In either case, it does the same
thing.

The newgrp Command

The newgrp command changes the group id and is equivalent to
"exec /bin/newgrp group". In this example, the group id is changed

Chapter 9: Miscellaneous Commands

256

Korn Shell User and Programming Manual

from users to networks:

$ id
uid=100(anatole) gid=101(users)
$ newgrp networks
uid=100(anatole) gid=12(networks)

Without arguments, newgrp resets the group-id to the default:

$ newgrp
uid=100(anatole) gid=101(users)

The pwd Command

The pwd command prints the current working directory. It is a Korn
shell built-in command and is equivalent to the print �r � $PWD
command.

The readonly Command

The readonly command sets the value and/or readonly attribute of
variables. It is equivalent to the typeset �r command, except that
when used within a function, a local variable is not created. This
command sets X to readonly and assigns it a value of 1:

$ readonly X=1

This is equivalent to:

257

$ typeset —r X=1

Multiple variables can be given to the readonly command.

$ readonly X Y=1 Z=2

If no arguments are given, a list of readonly variables and their values
is displayed:

$ readonly
Z=1
Y=1
Z=2
PPID=175

The set Command

Besides manipulating Korn shell options, the set command can be used
to display a list of your local and exported variables.

$ set
EDITOR=vi
ENV=${HOME:—.}/.env
FCEDIT=/bin/ed
HOME=/home/anatole
LOGNAME=anatole
MAILCHECK=600
PATH=:/usr/bin:/usr/ucb:/usr/5bin
PPID=180
. . .

It can also be used to "manually" reset positional parameters. For
example:

Chapter 9: Miscellaneous Commands

258

Korn Shell User and Programming Manual

$ set X Y Z

would set $1 to X, $2 to Y, $3 to Z, and $# to 3:

$ print $1 $2 $3 $#
X Y Z 3

The positional parameters $@ and $* would be set X Y Z:

$ print $*
X Y Z
$ print $@
X Y Z

The $* and $@ parameters are basically the same, except for the way
they are expanded when surrounded with double quotes. The
positional parameters in $@ are interpreted as separate strings, while
in the $*, they are interpreted as a single string. Using $@, the wc
command counts three separate strings

$ print "$@" | wc —w
3

while with $*, only one string is counted:

$ print "$*" | wc —w
1

To manually set positional parameters that begin with the � character,
use the set � command.

$ set — —X —Y —Z
$ print — $*
—X —Y —Z

259

All the positional parameters can be unset with the set �� command:

$ set A B C
$ print $*
A B C
$ set ——
$ print $*

$

The time Command

The time command is a built-in command in the Korn shell and
functions the same as the UNIX times command. Here, the ls
command is timed. It indicates the amount of elapsed, user, and
system time spent executing the ls command:

$ time ls /usr/spool/uucppublic
mail

real 0m0.33s
user 0m0.05s
sys 0m0.18s

The times Command

The times command displays the amount of time the current Korn
shell and child processes. The first line shows the total user and
system time (in hundredths of a second) for the current Korn shell,
while the second line shows the totals for the child processes.

Chapter 9: Miscellaneous Commands

260

Korn Shell User and Programming Manual

The true Command

The true command does one thing: return a zero exit status. It is often
used to generate infinite loops for argument-processing. In some
versions of the Korn shell, true is a preset alias ":". It also returns a
zero exit status.

The ulimit Command

The ulimit command manipulates system resource limits for current
and child processes using the following format:

ulimit [options]
or
ulimit [options] n

where n indicates to set a resource limit to n (except with the �a
option). If n is not given, the specified resource limit is displayed. If
no option is given, the default �f (file size limit) is used. Here, all the
current resource limits are displayed:

$ ulimit —a
time(seconds) unlimited
memory(kbytes) unlimited
data(kbytes) 4294901761
stack(kbytes) 2048
file(blocks) unlimited
coredump(blocks) unlimited

This command sets the core dump size limit to 500 blocks:

$ ulimit —c 500

261

To disable generation of core dumps, the dump size should be set to 0
blocks:

$ ulimit —c 0

To display the current file size write limit, use ulimit without
arguments:

$ ulimit
unlimited

Chapter 9: Miscellaneous Commands

Table 9.1: ulimit Options

�a displays all the current resource limits
�c n set the core dump size limit to n 512-

byte blocks
�d n set the data area size limit to n

kilobytes
�f n set the child process file write limit to n

512-byte blocks (default)
�m n set the physical memory size limit to n

kilobytes
�s n set the stack area size limit to n

kilobytes
�t n set the process time limit to n seconds

262

Korn Shell User and Programming Manual

Table 9.1 lists the ulimit options. If a size argument is not given, the
current limit is displayed.

The ulimit command is system dependent. Some systems may have
different resource limits, and some may not allow changing resource
limits. Check your local system documentation for discrepancies.

The umask Command

The umask command sets the file-creation mask using this format:

umask mask

where mask is an octal number or symbolic value that correspond to
the permissions to be disabled. Here, the write and execute
permissions for group and others are removed:

$ umask 033
$ touch tmp
$ ls -l tmp
-rw-r--r-- 1 root 9 Sep 2 11:18 tmp

This umask command adds write permission to the group:

$ umask 013
$ touch tmp1
$ ls -l tmp1
-rw-rw-r-- 1 root 9 Sep 2 11:19 tmp1

To remove read permission for other using symbolic format:

263

$ umask o-r
$ touch tmp2
-rw-rw---- 1 root 9 Sep 2 11:23 tmp2

With no arguments, umask displays the current value. This umask is
set to remove write permission for group and others:

$ umask
022

The whence Command

The whence command is used to display information about a
command, like if it is an alias, built-in Korn shell command, function,
reserved Korn shell word, or just a regular UNIX command. The
format for the whence command is:

whence name
or
whence �v name

where name is the command or whatever you want to get information
about. Here, the whence command shows that history is set to fc �l:

$ whence history
fc —l

The �v option causes more information to be provided about the
command. Now we see that history is an exported alias:

$ whence —v history
history is an exported alias for fc —l

Chapter 9: Miscellaneous Commands

264

Korn Shell User and Programming Manual

and until is a keyword:

$ whence —v until
until is a keyword

For compatibility with the Bourne shell, a preset alias type is set to
whence �v.

$ type md
md is an exported function

265

This section contains a sample .profile file. Notice that the
environment variables are set and exported with one typeset
command. This speeds up processing of the .profile file.

#
Sample .profile File
#

Set/export environment variables

266

Korn Shell User and Programming Manual

267

This section contains a sample environment file. It sets the global
functions, aliases, and prompt variable.

#
Sample env File
#

Function md - make a directory and _cd to it
function md {

mkdir $1 && _cd $1
}

Set up the echo alias
alias -x echo='print -'

Set temporary prompt variable to the command number
followed by a colon
PS0='!:'

Appendix B:
Sample

Environment
File

268

Korn Shell User and Programming Manual

Function _cd - changes directories, then sets the
command prompt to: "command-number:pathname>"
function _cd {

if (($# == 0))
then

'cd'
PS1="$PS0$PWD> "

fi

if (($# == 1))
then

'cd' $1
PS1="$PS0$PWD> "

fi

if (($# == 2))
then

'cd' $1 $2
PS1="$PS0$PWD> "

fi
}

Alias the cd command to the _cd function
alias -x cd=_cd

Export the _cd and md functions
typeset -fx _cd md

269

This section contains the source code listings for the C Shell directory
management functions, and other miscellaneous C Shell commands.

Directory Functions

These Korn shell functions implement the C shell directory
management commands: dirs, popd, and pushd. They can be put
into a separate cshfuncs file and read in with the . command when
necessary. Their basic functionality is:

dirs display directory stack
popd remove directory stack entry and cd to it
pushd add directory stack entry and cd to it

The dirs function lists the current directory stack.

Appendix C:
C Shell

Functionality
Directory Functions

Miscellaneous Commands

270

Korn Shell User and Programming Manual

With no argument, the popd function removes the top entry (previous
working directory) from the directory stack and changes directory to
it. If a +n argument is given, then the nth directory stack entry (nth
previous working directory) is removed.

With no argument, the pushd function switches the top two entries
(current and previous working directory) and changes directory to the
previous working directory. This is equivalent to "cd �". If a
directory argument is given, pushd puts the directory on the
top of the directory stack and changes directory to it. If a +n
argument is given, pushd puts the nth directory stack entry (nth
previous working directory) on the top of the stack and changes
directory to it.

#
Sample C Shell Directory Management Functions
#

Function fcd - verify accessibility before changing
to target directory
function fcd
{

Make sure directory exists
if [[! -d $1]]
then

print "$1: No such file or directory"
return 1

else
Make sure directory is searchable
if [[! -x $1]]
then

print "$1: Permission denied"
return 1

fi
fi

Otherwise change directory to it
cd $1
return 0

}

271

Function dirs - display directory stack
function dirs
{

Display current directory and directory stack
print "$PWD ${DSTACK[*]}"

}

Function pushd - add entry to directory stack
function pushd
{

Set stack depth (number of stack entries)
integer DEPTH=${#DSTACK[*]}

case $1 in

"")# No argument - switch top 2 stack elements
if ((${#DSTACK[*]} < 1))
then

print "$0: Only one stack entry."
return 1

else
fcd ${DSTACK[0]} || return
DSTACK[0]=$OLDPWD
dirs

fi
;;

+@([1-9])*([0-9]))
Number argument 1-999* - move entry to top
of directory stack and cd to it
integer ENTRY=${1#+}
if ((${#DSTACK[*]} < $ENTRY))
then

print "$0: Directory stack not that deep"
return 1

else
fcd ${DSTACK[ENTRY-1]} || return
DSTACK[ENTRY-1]=$OLDPWD
dirs

fi
;;

*) # Directory argument - verify argument

Appendix C: C Shell Functionality

272

Korn Shell User and Programming Manual

before changing directory and adjusting
rest of directory stack
fcd $1 || return
until ((DEPTH == 0))
do

DSTACK[DEPTH]=${DSTACK[DEPTH-1]}
((DEPTH-=1))

done
DSTACK[DEPTH]=$OLDPWD
dirs
;;

esac
}

Function popd - remove entry from directory stack
function popd
{

Set stack depth (number of stack entries)
integer i=0 DEPTH=${#DSTACK[*]} ENTRY=${1#+}
case $1 in

"")
No argument - discard top stack entry
if ((${#DSTACK[*]} < 1))
then

print "$0: Directory stack empty."
return 1

else
fcd ${DSTACK[0]} || return
while ((i < (DEPTH-1)))
do

DSTACK[i]=${DSTACK[i+1]}
((i+=1))

done
unset DSTACK[i]
dirs

fi
;;

+@([1-9])*([0-9]))
Number argument 1-999* - discard nth
stack entry
if ((${#DSTACK[*]} < ENTRY))
then

273

print "$0: Directory stack not that deep"
return 1

else
while ((ENTRY < DEPTH))
do

DSTACK[ENTRY-1]=${DSTACK[ENTRY]}
((ENTRY+=1))

done
unset DSTACK[ENTRY-1]
dirs

fi
;;

Invalid argument given
*) print "$0: Invalid argument."

return 1
;;

esac
}

Miscellaneous Commands

The following sections contain Korn shell equivalents of some
miscellaneous C shell commands and functions.

The .logout File

In the C shell, commands in the ~/.logout file are executed on
exit. If the following command is added to the ~/.profile file,
then the same thing will happen in the Korn shell:

trap '. ~/.logout' EXIT

Appendix C: C Shell Functionality

274

Korn Shell User and Programming Manual

The chdir Command

The C shell chdir command changes to the specified directory and
can be set to a Korn shell alias like this:

alias chdir='cd'

The logout Command

The C shell logout command is equivalent to the exit command. It
can be set to a Korn shell alias:

alias logout='exit 0'

The setenv Command

The C shell setenv command is used to set/display variables and can
be invoked like this:

setenv display a list of variables
setenv variable

set variable to null
setenv variable value

set variable to value, then export it

It can be set to a Korn shell function like this:

function setenv {
set —o allexport
typeset TMP="$1=$2"
eval $(print ${1+$TMP})
typeset —x $1

}

275

The source Command

The C shell source reads and executes a file in the current
environment. It can be aliased to the Korn shell . command:

alias source=.

Appendix C: C Shell Functionality

276

Korn Shell User and Programming Manual

277

This appendix contains listings for some Korn shell scripts. The
source for these scripts can also be downloaded from our Web site
lised in the Preface.

Appendix D:
Sample

Korn Shell
Scripts

Display Files - kcat
Interactive uucp - kuucp
Basename - kbasename

Dirname - kdirname
Display Files with Line Numbers - knl

Find Words - match
Simple Calculator - kcalc

Search for Patterns in Files - kgrep
Calendar Program - kcal

278

Korn Shell User and Programming Manual

Display Files - kcat

Here is a simple Korn shell version of the UNIX cat command. It is
only 3-4 times slower than the UNIX version (on a 100-line file),
because it uses the exec command for the file I/O.

#!/bin/ksh
#
kcat - Korn shell version of cat
#

Check usage
if (($# < 1))
then

print "Usage: $0 file ..."
exit 1

fi

Process each file
while (($# > 0))
do

Make sure file exists
if [[! -f $1]]
then

print "$1: non-existent or not accessible"
else

Open file for input
exec 0<$1
while read LINE
do

Display output
print $LINE

done
fi

Get next file argument
shift

done

279

Interactive uucp - kuucp

Here is an interactive version of the uucp command. Instead of
looking for a system name in the uucp systems file using grep, the
remote system name is verified by using file I/O substitution and Korn
shell patterns.

#!/bin/ksh
#
kuucp - Korn shell interactive uucp
#

Check usage
if (($# > 0))
then

print "Usage: $0"
exit 1

fi

Set variables
PUBDIR=${PUBDIR:-/usr/spool/uucpublic}

This sets UUSYS to the contents of the HDB-UUCP
Systems file. It may be different on your system.
UUSYS=$(</usr/lib/uucp/Systems)

Get source file
read SOURCE?"Enter source file: "

Check source file
if [[! -f $SOURCE]]
then

print "$SOURCE: non-existent or not accessible"
exit 2

fi

Get remote system name
read RSYS?"Enter remote system name: "

Check remote system name. It looks for a pattern
match on the system name in the UUSYS file
#

Appendix D: Sample Korn Shell Scripts

280

Korn Shell User and Programming Manual

For the Bourne shell or older versions
of Korn shell, this could be given as:
if [[$(grep ^$RSYS $UUSYS) != ""]]
if [[$UUSYS != *$RSYS*]]
then

print "$RSYS: Invalid system name"
exit 2

fi

print "Copying $SOURCE to $RSYS!$PUBDIR/$SOURCE"
uucp $SOURCE $RSYS!$PUBDIR/$SOURCE

Basename - kbasename

This is the Korn shell version of the UNIX basename command. It is
used to return the last part of a pathname. A suffix can also be given
to be stripped from the resulting base directory. The substring feature
is used to get the basename and strip off the suffix.

#!/bin/ksh
#
kbasename - Korn shell basename
#

Check arguments
if (($# == 0 || $# > 2))
then

print "Usage: $0 string [suffix]"
exit 1

fi

Get the basename
BASE=${1##*/}

See if suffix arg was given
if (($# > 1))
then

Display basename without suffix
print ${BASE%$2}

281

else
Display basename
print $BASE

fi

Dirname - kdirname

Here is the Korn shell version of the UNIX dirname command. It
returns a pathname minus the last directory. As in kbasename, the
substring feature does all the work.

#!/bin/ksh
#
kdirname - Korn shell dirname
#

Check arguments
if (($# == 0 || $# > 1))
then

print "Usage: $0 string"
exit 1

fi

Get the dirname
print ${1%/*}

Display Files with Line Numbers - knl

This is a simple Korn shell version of the UNIX nl command. It
displays line-numbered output.

#!/bin/ksh
#
knl - Korn Shell line-numbering filter

Appendix D: Sample Korn Shell Scripts

282

Korn Shell User and Programming Manual

#

Initialize line number counter
integer LNUM=1

Check usage
if (($# == 0))
then

print "Usage: $0 file . . ."
exit 1

fi

Process each file
for FILE
do

Make sure file exists
if [[! -f $FILE]]
then

print "$FILE: non-existent or not readable"
exit 1

else
Open file for reading
exec 0< $FILE

Read each line, print out with line number
while read -r LINE
do

print "$LNUM: $LINE"
((LNUM+=1))

done
fi

Reset line number counter
LNUM=1

done

Find Words - match

The match command uses Korn shell pattern-matching characters to
find words in a dictionary. It can be used to help with crossword

283

puzzles, or test your patterns.

#!/bin/ksh
#
match - Korn shell word-finder
#

Check usage
if (($# < 1 || $# > 2))
then

print "Usage: $0 pattern [file]"
exit 1

fi

Check/set DICT to word dictionary
: ${DICT:=${2:-/usr/dict/words}}

Open $DICT for input
exec 0<$DICT

Read each word into WORD
while read WORD
do

This command didn't work on all systems. If
it doesn't on yours, use this instead of
exec 0<$DICT:
cat $DICT | while read WORD
#
If WORD matches the given pattern,
print the match
[[$WORD = $1]] && print - $WORD

done

Simple Calculator - kcalc

This Korn shell script implements a simple expr-like command.
Arithmetic expressions are passed in as arguments, and the result is
displayed. Parentheses for grouping must be escaped.

Appendix D: Sample Korn Shell Scripts

284

Korn Shell User and Programming Manual

#!/bin/ksh
#
kcalc - Korn Shell calculator
#

Initialize expression
integer EXPR

Check usage
if (($# == 0))
then

print "$0: Must provide expression arguments."
exit 1

fi

Set/evaluate EXPR
((EXPR=$*))

Print result
print $EXPR

Searching for Patterns in Files - kgrep

This is the Korn shell version of the UNIX grep command. The �b
option is not supported, and the �i flag causes multi-character
expressions to be matched in both all upper-case or all lower-case
(kgrep �i AbC test matches AbC, abc, or ABC in test, but not aBc
or other permutations). Here are the supported options:

�c display the number of lines that contain
the given pattern

�i ignore case of letters during
comparison (see above)

�l display only names of files with
matching lines once

�n display the output with line numbers
�s do not display error messages
�v display all lines, except those that

285

match the given expression

#!/bin/ksh
#
kgrep - Korn Shell grep program
#

Declare default flags
CFLAG= IFLAG= LFLAG= NFLAG= SFLAG= VFLAG=
integer LNUM=0 COUNT=0 TOT_COUNT=0

Disable file name generation
set -f

Check usage
if (($# < 2))
then

print "Usage: $0 [options] expression files"
exit 1

fi

Parse command-line options
while true
do

case $1 in
-b*) print "b option not supported" ;;
-c*) CFLAG=1 ;;
-i*) IFLAG=1 ;;
-l*) LFLAG=1 ;;
-n*) NFLAG=1 ;;
-s*) SFLAG=1 ;;
-v*) VFLAG=1 ;;
-*) print "$0: unknown flag $1"

exit 2 ;;
*) PATTERN=$1

shift
break ;;

esac
shift

done

Set no-print flags
NOPRINT=$VFLAG$CFLAG$LFLAG

Appendix D: Sample Korn Shell Scripts

286

Korn Shell User and Programming Manual

V_NOPRINT=$CFLAG$LFLAG

Set upper/lower pattern
typeset -u UCPATTERN=$PATTERN
typeset -l LCPATTERN=$PATTERN

Check for file arg
if (($# == 0))
then

print "Must have file argument"
exit 1

fi

Process files
for FILE
do

Open file for standard input
exec 0 <$FILE

Read each line in file
while read -r LINE
do

Increment line number counter
((LNUM+=1))

Check each line for the pattern
case $LINE in

See if PATTERN matches input
$PATTERN)

if [[$VFLAG = ""]]
then

287

288

Korn Shell User and Programming Manual

[[$CFLAG != ""]] && print $TOT_COUNT

Exit successfully
exit 0

Calendar Program - kcal

This is a Korn shell script that implements a menu-driven calendar
program. It supports addition, deletion, modification, and listing of
calendar entries. It also provides the ability to find the calendar entry
for the current day and list all calendar entries.

#!/bin/ksh
#
kcal - Korn Shell calendar program
#

Process errors
function error {

print ${1:-"unexplained error encountered"}
exit ${2}

}

Check arguments
if (($# > 0))
then

error "Usage: $0" 1
fi

Use environment variable setting or default
: ${CALFILE:=$HOME/.calfile}

Create calendar file if non-existent; flag
creation error
if [[! -f $CALFILE]]
then

print "Creating default $HOME/.calfile"
> $HOME/.calfile || error "$HOME/.calfile: \
cannot create" 1

fi

289

Variable declaration/assignment

290

Korn Shell User and Programming Manual

else
Get day
typeset -R2 DA=$DATE

Set to current year
YR=$(date +%y)
DATE=$DATE$YR

fi

Now check indiv values
Day must be in range 01-31
if ((DA < 01 || DA > 31))
then

print "$DA: invalid day \
format - try again"
continue

fi
Month must be 01-12
if ((MO < 01 || MO > 12))
then

print "$MO: invalid \
month format - try again"
continue

fi

Set date format mm-dd-yy
DATE=$MO-$DA-$YR
break ;;

*) # Invalid format
print "$DATE: invalid date \
format - try again" ;;

esac ;;

Invalid date given
*) print "$DATE: invalid format - try again" ;;

esac
done

}

Add new calendar entry
function addentry {

291

$CLEAR
ENTRY="$DATE"

For existent entry, just add more data
COUNT=$(grep -c "^$DATE" $CALFILE)
if ((COUNT > 0))
then

changeentry
return

fi

Prompt for input
print "Enter info for $DATE: (enter <Return> by itself

when finished)"
while true
do

read LINE?"=>"
if [[-n $LINE]]
then

ENTRY="$ENTRY,$LINE"
else

break
fi

done

Append to calendar file
print $ENTRY>>$CALFILE

Sort the calendar file
sort -o $CALFILE $CALFILE

}

function formatentry {
$CLEAR

typeset IFS="," \

292

Korn Shell User and Programming Manual

format output
(exec 0 <$FILE
while read -r ENTRY
do

print "$BORDER\n$BORDER1"
set $ENTRY
typeset -L35 LINE="DATE: $1"
print "* $LINE*"
shift
print "$BORDER1"
for i
do

LINE="$i"
print "* $LINE*"

done
print "$BORDER1"

done
print "$BORDER"
) | $PAGER

else
print "No entries found."

fi

Prompt to continue
until [[$REPLY = ""]]
do

read REPLY?"Enter <Return> to continue..."
done

}

Find specific entry
function findentry {

$CLEAR
Check for entry - put it in temp found file
grep $DATE $CALFILE >/tmp/.FOUND$$

Format found entries
formatentry /tmp/.FOUND$$

}

Change an entry
function changeentry {

Find specific entry - put it in temp found file

293

grep $DATE $CALFILE | tr ',' '\012'>/tmp/.FOUND$$

Return if no entry was found
if [[! -s /tmp/.FOUND$$]]
then

$CLEAR
read TMP?"Entry for $DATE not found - press

<Return> to continue"
return

fi

Prompt again for change
while [[$REPLY != ""]]
do

read REPLY?"Change/Add to entry for <$DATE>?"
case $REPLY in

[yY]* | "")
break ;;

[nN]*) print "Ok, aborting entry
change"

return ;;

*) print "Invalid reply - try again." ;;

esac
done

Edit the temporary found file
${EDITOR:-vi} /tmp/.FOUND$$

Remove the specified original entry
grep -v $DATE $CALFILE > /tmp/.CHANGE$$

Put back new change in record format.
Add trailing \n

294

Korn Shell User and Programming Manual

}

Remove specific entry
function delentry {

Look for entry
grep $DATE $CALFILE >/tmp/.FOUND$$

Return if not found
if [[! -s /tmp/.FOUND$$]]
then

$CLEAR
read TMP?"Entry for $DATE not found - press

<Return> to continue"
return

fi

Prompt to delete
while [[$REPLY != ""]]
do

read REPLY?"Delete entry for <$DATE>?"
case $REPLY in

[yY]* | "")
break ;;

[nN]*)
print "ok, aborting delete";

return ;;

*) print "Invalid reply - try again."
;;

esac
done
Merge changes - put them in temporary file
grep -v $DATE $CALFILE > /tmp/.DEL$$

Put back new file
cat /tmp/.DEL$$ > $CALFILE

Clean up tmp files
rm -rf /tmp/.DEL$$ /tmp/.FOUND$$

}

295

 Set menu selection prompt
PS3="Enter selection or <Return> for default menu:"

Display menu
while true
do

$CLEAR
select i in "Add calendar entry" "Delete calendar

entry" "Change calendar entry" "Find calendar entry" "List
all calendar entries" "List todays calendar entry" "Exit"

do
case $i in

"Add calendar entry")
checkdate
addentry
$CLEAR ;;

"Delete calendar entry")
checkdate
delentry
$CLEAR ;;

"Change calendar entry")
checkdate
changeentry
$CLEAR ;;

"Find calendar entry")
checkdate
findentry
$CLEAR ;;

"List all calendar entries")
formatentry $CALFILE
$CLEAR ;;

"List todays calendar entry")
DATE=$(date +%m-%d-%y)
findentry
$CLEAR ;;

"Exit")
exit ;;

*) print "\aInvalid selection \c"
read TMP?"- press <Return> to

continue"
$CLEAR
continue ;;

esac
done

done

Appendix D: Sample Korn Shell Scripts

296

Korn Shell User and Programming Manual

297

ksh, rsh - Korn shell, a standard/restricted command and
programming language

Synopsis
ksh [+/�abcefhikmnoprstuvxCD] [�R] [+/�o option] [�
][arg]
rsh [+/�abcefhikmnoprstuvxCD] [�R] [+/�o option] [�
][arg]

Description
Ksh is a command and programming language that executes
commands read from a terminal or a file. Rsh is a restricted
version of the standard command interpreter ksh; it is used to
set up login names and execution environments whose
capabilities are more controlled than those of the standard
Korn shell. See Invocation below for the meaning of
arguments to the shell.

Appendix E:
Korn Shell
Man Page

298

Korn Shell User and Programming Manual

Definitions.
A metacharacter is one of the following characters:

; & () | < > new-line space tab

A blank is a tab or a space. An identifier is a sequence of letters,
digits, or underscores starting with a letter or underscore.
Identifiers are used as components of variable names. A vname
is a sequence of one or more identifiers separated by a . and
optionally preceded by a .. Vnames are used as function and
variable names. A word is a sequence of characters from the
character set defined by the current locale, excluding non-
quoted metacharacters.

A command is a sequence of characters in the syntax of the
shell language. The shell reads each command and carries out
the desired action either directly or by invoking separate
utilities. A built-in command is a command that is carried out
by the shell without creating a separate process. Some
commands are built-in purely for convenience and are not
documented here. Built-ins that cause side effects in the shell
environment and built-ins that are found before performing a
path search (see Execution below) are documented here. For
historical reasons, some of these built-ins behave differently
than other built-ins and are called special built-ins.

Commands.
A simple-command is a list of variable assignments (see Variable
Assignments below) or a sequence of blank separated words
which may be preceded by a list of variable assignments (see
Environment below). The first word specifies the name of the
command to be executed. Except as specified below, the
remaining words are passed as arguments to the invoked
command. The command name is passed as argument 0 (see
exec(2)). The value of a simple-command is its exit status; 0-
255 if it terminates normally; 256+signum if it terminates

299

abnormally (the name of the signal corresponding to the exit
status can be obtained via the -l option of the kill built-in utility).

A pipeline is a sequence of one or more commands separated by
|. The standard output of each command but the last is connected
by a pipe(2) to the standard input of the next command. Each
command, except possibly the last, is run as a separate process;
the shell waits for the last command to terminate. The exit status
of a pipeline is the exit status of the last command. Each
pipeline can be preceded by the reserved word ! which causes
the exit status of the pipeline to become 0 if the exit status of the
last command is non-zero, and 1 if the exit status of the last
command is 0.

A list is a sequence of one or more pipelines separated by ;, &,
|&, &&, or | |, and optionally terminated by ;, &, or |&. Of these
five symbols, ;, &, and |& have equal precedence, which is
lower than that of && and | |. The symbols && and | | also have
equal precedence. A semicolon (;) causes sequential execution
of the preceding pipeline; an ampersand (&) causes
asynchronous execution of the preceding pipeline (i.e., the
shell does not wait for that pipeline to finish). The symbol |&
causes asynchronous execution of the preceding pipeline with
a two-way pipe established to the parent shell; the standard
input and output of the spawned pipeline can be written to and
read from by the parent shell by applying the redirection
operators <& and >& with arg p to commands and by using -p
option of the built-in commands read and print described later.
The symbol && (| |) causes the list following it to be executed
only if the preceding pipeline returns a zero (non-zero) value.
One or more new-lines may appear in a list instead of a
semicolon, to delimit a command.

A command is either a simple-command or one of the following.
Unless otherwise stated, the value returned by a command is
that of the last simple-command executed in the command.

Appendix E: Korn Shell Man Page

300

Korn Shell User and Programming Manual

for identifier [in word ...] ; do list ; done
Each time a for command is executed, identifier is set
to the next word taken from the in word list. If in word
... is omitted, then the for command executes the do
list once for each positional parameter that is set (see
Parameter Substitution below). Execution ends
when there are no more words in the list.

for (([expr1] ; [expr2] ; [expr3])) ;do list ;done
The arithmetic expression expr1 is evaluated first (see
Arithmetic Evaluation below). The arithmetic
expression expr2 is repeatedly evaluated until it
evaluates to zero and when non-zero, list is executed
and the arithmetic expression expr3 evaluated. If any
expression is omitted, then it behaves as if it evaluated
to 1.

select identifier [in word ...] ; do list ; done
A select command prints on standard error (file
descriptor 2), the set of words, each preceded by a
number. If in word ... is omitted, then the positional
parameters are used instead (see Parameter
Substitution below). The PS3 prompt is printed and a
line is read from the standard input. If this line consists
of the number of one of the listed words, then the value
of the parameter identifier is set to the word
corresponding to this number. If this line is empty the
selection list is printed again. Otherwise the value of the
parameter identifier is set to null. The contents of the
line read from standard input is saved in the parameter
REPLY. The list is executed for each selection until a
break or end-of-file is encountered.

case word in [[(]pattern [| pattern] ...) list ;; ... esac
A case command executes the list associated with the

301

first pattern that matches word. The form of the patterns
is the same as that used for file-name generation (see
File Name Generation below).

if list ; then list elif list ; then list ... ; else list ; fi
The list following if is executed and, if it returns a zero
exit status, the list following the first then is executed.
Otherwise, the list following elif is executed and, if its
value is zero, the list following the next then is executed.
Failing that, the else list is executed. If no else list or
then list is executed, then the if command returns a zero
exit status.

while list ; do list ; done
until list ; do list ; done

A while command repeatedly executes the while list
and, if the exit status of the last command in the list is
zero, executes the do list; otherwise the loop terminates.
If no commands in the do list are executed, then the
while command returns a zero exit status; until may be
used in place of while to negate the loop termination
test.

(list) Execute list in a separate environment. Note, that if two
adjacent open parentheses are needed for nesting, a
space must be inserted to avoid arithmetic evaluation as
described below.

{list;} list is simply executed. Note that unlike the
metacharacters (and), { and } are reserved words and
must at the beginning of a line or after a ; in order to be
recognized.

[[expression]]
Evaluates expression and returns a zero exit status when

Appendix E: Korn Shell Man Page

302

Korn Shell User and Programming Manual

expression is true. See Conditional Expressions below,
for a description of expression.

function identifier {list;}
identifier () {list;}

Define a function which is referenced by identifier.
The body of the function is the list of commands
between { and }. (See Functions below).

time pipeline
The pipeline is executed and the elapsed time as well as
the user and system time are printed on standard error.

The following reserved words are only recognized as the first
word of a command and when not quoted:

if then else elif fi case esac for while until do done { }
function select time [[]] !

Variable Assignments.

One or more variable assignments can start a simple command
or can be arguments to the typeset, export, or readonly special
built-in commands. The syntax for an assignment is of the form:

varname =word
varname [word]=word

No space is permitted between varname and the = or
between = and word .

varname =(assign_list)
No space is permitted between varname and the =. An
assign_list can be one of the following:

word ...
Indexed array assignment.

303

[word]=word . . .
Associative array assignment.

assignment . . .
Nested variable assignment.

typeset [options] assignment . . .
Nested variable assignment. Multiple assignments can
be specified by separating each of them with a ;.

Comments.
A word beginning with # causes that word and all the
following characters up to a new-line to be ignored.

Aliasing.
The first word of each command is replaced by the text of an
alias if an alias for this word has been defined. An alias name
consists of any number of characters excluding metacharacters,
quoting characters, file expansion characters, parameter
expansion and command substitution characters, and =. The
replacement string can contain any valid shell script including
the metacharacters listed above. The first word of each command
in the replaced text, other than any that are in the process of
being replaced, will be tested for aliases. If the last character of
the alias value is a blank then the word following the alias will
also be checked for alias substitution. Aliases can be used to
redefine built-in commands but cannot be used to redefine the
reserved words listed above. Aliases can be created and listed
with the alias command and can be removed with the unalias
command.

Aliasing is performed when scripts are read, not while they are
executed. Therefore, for an alias to take effect, the alias
definition command has to be executed before the command
which references the alias is read.

The following aliases are compiled into the shell but can be
unset or redefined:

Appendix E: Korn Shell Man Page

304

Korn Shell User and Programming Manual

autoload=�typeset -fu�
command=�command �
fc=hist
float=�typeset -E�
functions=�typeset -f�
hash=�alias -t - -�
history=�hist -l�
integer=�typeset -i�
nameref=�typeset -n�
nohup=�nohup �
r=�hist -s�
redirect=�command exec�
stop=�kill -s STOP�
suspend=�kill -s STOP $$�
times=�{ { time;} 2>&1;}�
type=�whence -v�

Tilde Substitution.
After alias substitution is performed, each word is checked to
see if it begins with an unquoted ~. For tilde substitution, word
also refers to the word portion of parameter expansion (see
Parameter Expansion below). If it does, then the word up to
a / is checked to see if it matches a user name in the password
database (often the /etc/passwd file). If a match is found, the ~
and the matched login name are replaced by the login directory
of the matched user. If no match is found, the original text is left
unchanged. A ~ by itself, or in front of a /, is replaced by
$HOME. A ~ followed by a + or - is replaced by the value of
$PWD and $OLDPWD respectively.

In addition, when expanding a variable assignment, tilde
substitution is attempted when the value of the assignment
begins with a ~, and when a ~ appears after a :. The : also
terminates a ~ login name.

305

Command Substitution.
The standard output from a command enclosed in parentheses
preceded by a dollar sign ($()) or a pair of grave accents (� �
) may be used as part or all of a word; trailing new-lines are
removed. In the second (obsolete) form, the string between the
quotes is processed for special quoting characters before the
command is executed (see Quoting below). The command
substitution $(cat file) can be replaced by the equivalent but
faster $(<file) .

Arithmetic Substitution.
An arithmetic expression enclosed in double parentheses
preceded by a dollar sign ($(())) is replaced by the value of the
arithmetic expression within the double parentheses.

Process Substitution.
This feature is only available on versions of the UNIX
operating system that support the /dev/fd directory for naming
open files. Each command argument of the form <(list) or
>(list) will run process list asynchronously connected to some
file in /dev/fd . The name of this file will become the
argument to the command. If the form with > is selected then
writing on this file will provide input for list. If < is used, then
the file passed as an argument will contain the output of the
list process. For example,

paste <(cut �f file1) <(cut �f3 file2) | tee >(process1)
>(process2)

cuts fields 1 and 3 from the files file1 and file2 respectively,
pastes the results together, and sends it to the processes
process1 and process2, as well as putting it onto the standard
output. Note that the file, which is passed as an argument to
the command, is a UNIX system pipe(2) so programs that
expect to lseek(2) on the file will not work.

Appendix E: Korn Shell Man Page

306

Korn Shell User and Programming Manual

Parameter Expansion.
A parameter is a variable, one or more digits, or any of the
characters *, @, #, ?, -, $, and !\ . A variable is denoted by a
vname. To create a variable whose vname contains a ., a
variable whose vname consists of everything before the last .
must already exist. A variable has a value and zero or more
attributes. Variables can be assigned values and attributes by
using the typeset special built-in command. The attributes
supported by the shell are described later with the typeset
special built-in command. Exported variables pass values and
attributes to the environment.

The shell supports both indexed and associative arrays. An
element of an array variable is referenced by a subscript. A
subscript for an indexed array is denoted by an
arithmeticexpression (see Arithmetic Evaluation below)
between a [and a]. To assign values to an indexed array, use
set -A vname value The value of all subscripts must be in
the range of 0 through 4095. Indexed arrays need not be
declared. Any reference to a variable with a valid subscript is
legal and an array will be created if necessary.

An associative array is created with the -A option to typeset. A
subscript for an associative array is denoted by a string enclosed
between [and].

Referencing any array without a subscript is equivalent to
referencing the array with subscript 0.

The value of a variable may be assigned by writing:

vname=value [vname=value] . . .
or
vname[subscript]=value [vname[subscript]=value] . . .

Note that no space is allowed before or after the =.

307

A nameref is a variable that is a reference to another variable.
A nameref is created with the -n attribute of typeset. The value
of the variable at the time of the typeset command becomes the
variable that will be referenced whenever the nameref variable
is used. The name of a nameref cannot contain a .. When a
variable or function name contains a ., and the portion of the
name up to the first . matches the name of a nameref, the
variable referred to is obtained by replacing the nameref portion
with the name of the variable referenced by the nameref. A
nameref provides a convenient way to refer to the variable
inside a function whose name is passed as an argument to a
function. For example, if the name of a variable is passed as the
first argument to a function, the command

typeset -n var=$1

inside the function causes references and assignments to var to
be references and assignments to the variable whose name has
been passed to the function.

If either of the floating point attributes, -E, or -F, or the integer
attribute, -i, is set for vname, then the value is subject to
arithmetic evaluation as described below.

Positional parameters, parameters denoted by a number, may
be assigned values with the set special built-in command.

Parameter $0 is set from argument zero when the shell is
invoked.

The character $ is used to introduce substitutable parameters.

${parameter }
The shell reads all the characters from ${ to the
matching } as part of the same word even if it contains
braces or metacharacters. The value, if any, of the

Appendix E: Korn Shell Man Page

308

Korn Shell User and Programming Manual

parameter is substituted. The braces are required when
parameter is followed by a letter, digit, or underscore
that is not to be interpreted as part of its name, when
the variable name contains a ., or when a variable is
subscripted. If parameter is one or more digits then it
is a positional parameter. A positional parameter of
more than one digit must be enclosed in braces. If
parameter is * or @, then all the positional parameters,
starting with $1, are substituted (separated by a field
separator character). If an array vname with subscript
* or @ is used, then the value for each of the elements
is substituted, separated by the first character of the
value of IFS.

${#parameter }
If parameter is * or @, the number of positional
parameters is substituted. Otherwise, the length of the
value of the parameter is substituted.

${#vname[*]}
${#vname[@]}

The number of elements in the array vname is
substituted.

${!vname }
Expands to the name of the variable referred to by
vname. This will be vname except when vname is a
name reference.

${!vname [subscript]}
Expands to name of the subscript unless subscript is *
or @. When subscript is *, the list of array subscripts
for vname is generated. For a variable that is not an
array, the value is 0 if the variable is set. Otherwise it
is null. When subscript is @, same as above, except
that when used in double quotes, each array subscript
yields a separate argument.

${!prefix *}
Expands to the names of the variables whose names
begin with prefix.

309

${parameter :-word }
If parameter is set and is non-null then substitute its
value; otherwise substitute word.

${parameter :=word }
If parameter is not set or is null then set it to word; the
value of the parameter is then substituted. Positional
parameters may not be assigned to in this way.

${parameter :?word }
If parameter is set and is non-null then substitute its
value; otherwise, print word and exit from the shell (if
not interactive). If word is omitted then a standard
message is printed.

${parameter :+word }
If parameter is set and is non-null then substitute word;
otherwise substitute nothing.

${parameter :offset :length }
${parameter :offset }
Expands to the portion of the value of parameter starting at the
character (counting from 0) determined by expanding offset as
an arithmetic expression and consisting of the number of
characters determined by the arithmetic expression defined by
length. In the second form, the remainder of the value is used.
If parameter is * or @, or is an array name indexed by * or @,
then offset and length refer to the array index and number of
elements respectively.
${parameter #pattern }
${parameter ##pattern }

If the shell pattern matches the beginning of the value
of parameter, then the value of this expansion is the
value of the parameter with the matched portion
deleted; otherwise the value of this parameter is
substituted. In the first form the smallest matching
pattern is deleted and in the second form the largest
matching pattern is deleted. When parameter is @, *,
or an array variable with subscript @ or *, the
substring operation is applied to each element in turn.

Appendix E: Korn Shell Man Page

310

Korn Shell User and Programming Manual

${parameter %pattern }
${parameter %%pattern }

If the shell pattern matches the end of the value of
parameter, then the value of this expansion is the value
of the parameter with the matched part deleted;
otherwise substitute the value of parameter. In the first
form the smallest matching pattern is deleted and in
the second form the largest matching pattern is
deleted. When parameter is @, *, or an array variable
with subscript @ or *, the substring operation is
applied to each element in turn.

${parameter /pattern /string }
${parameter //pattern /string }
${parameter /#pattern /string }
${parameter /%pattern /string }

Expands parameter and replaces the longest match of
pattern with the given string. Each occurrence of \n in
string is replaced by the portion of parameter that
matches the n -th sub-pattern. In the first form, only the
first occurrence of pattern is replaced. In the second
form, each match for pattern is replaced by the given
string. The third form restricts the pattern match to the
beginning of the string while the fourth form restricts
the pattern match to the end of the string. When string
is null, the pattern will be deleted and the / in front of
string may be omitted. When parameter is @, *, or an
array variable with subscript @ or *, the substitution
operation is applied to each element in turn.

In the above, word is not evaluated unless it is to be used as the
substituted string, so that, in the following example, pwd is
executed only if d is not set or is null:

print ${d:- $(pwd) }

If the colon (:) is omitted from the above expressions, then the

311

shell only checks whether parameter is set or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.
- Options supplied to the shell on invocation or by the

set command.
? The decimal value returned by the last executed

command.
$ The process number of this shell.
_ Initially, the value of _ is an absolute pathname of the

shell or script being executed as passed in the
environment. Subsequently it is assigned the last
argument of the previous command. This parameter is
not set for commands which are asynchronous. This
parameter is also used to hold the name of the
matching MAIL file when checking for mail.

! The process number of the last background command
invoked.

.sh.edchar
This variable contains the value of the keyboard
character (or sequence of characters if the first
character is an ESC, ascii 033) that has been entered
when processing a KEYBD trap (see KeyBindings
below). If the value is changed as part of the trap
action, then the new value replaces the key (or key
sequence) that caused the trap.

.sh.edcol
The character position of the cursor at the time of the
most recent KEYBD trap.

.sh.edmode
The value is set to ESC when processing a KEYBD
trap while in vi insert mode. (See ViEditingMode
below.) Otherwise, .sh.edmode is null when
processing a KEYBD trap.

.sh.edtext
The characters in the input buffer at the time of the

Appendix E: Korn Shell Man Page

312

Korn Shell User and Programming Manual

most recent KEYBD trap. The value is null when not
processing a KEYBD trap.

.sh.name
Set to the name of the variable at the time that a
discipline function is invoked.

.sh.subscript
Set to the name subscript of the variable at the time
that a discipline function is invoked.

.sh.value
Set to the value of the variable at the time that the set
discipline function is invoked.

.sh.version
Set to a value that identifies the version of this shell.

LINENO
The current line number within the script or function
being executed.

OLDPWD
The previous working directory set by the cd
command.

OPTARG
The value of the last option argument processed by the
getopts built-in command.

OPTIND
The index of the last option argument processed by the
getopts built-in command.

PPID The process number of the parent of the shell.
PWD The present working directory set by the cd command.
RANDOM

Each time this variable is referenced, a random
integer, uniformly distributed between 0 and 32767, is
generated. The sequence of random numbers can be
initialized by assigning a numeric value to RANDOM.

REPLY
This variable is set by the select statement and by the
read built-in command when no arguments are
supplied.

313

SECONDS
Each time this variable is referenced, the number of
seconds since shell invocation is returned. If this
variable is assigned a value, then the value returned
upon reference will be the value that was assigned plus
the number of seconds since the assignment.

The following variables are used by the shell:

CDPATH
The search path for the cd command.

COLUMNS
If this variable is set, the value is used to define the
width of the edit window for the shell edit modes and
for printing select lists.

EDITOR
If the value of this variable ends in emacs, gmacs, or
vi and the VISUAL variable is not set, then the
corresponding option (see special built-in command
set below) will be turned on.

ENV If this variable is set, then parameter expansion,
command substitution, and arithmetic substitution are
performed on the value to generate the pathname of the
script that will be executed when the shell is invoked
(see Invocation below). This file is typically used for
alias and function definitions.

FCEDIT
Obsolete name for the default editor name for the hist
command. FCEDIT is not used when HISTEDIT is
set.

FIGNORE
A pattern that defines the set of filenames that will be
ignored when performing filename matching.

FPATH
The search path for function definitions. This path is
searched for a file with the same name as the function

Appendix E: Korn Shell Man Page

314

Korn Shell User and Programming Manual

or command when a function with the -u attribute is
referenced and when a command is not found. If an
executable file with the name of that command is
found, then it is read and executed in the current
environment.

HISTCMD
Number of the current command in the history file.

HISTEDIT
Name for the default editor name for the hist
command.

HISTFILE
If this variable is set when the shell is invoked, then the
value is the pathname of the file that will be used to
store the command history (see CommandRe-entry
below).

HISTSIZE
If this variable is set when the shell is invoked, then the
number of previously entered commands that are
accessible by this shell will be greater than or equal to
this number. The default is 128.

HOME
The default argument (home directory) for the cd
command.

IFS Internal field separators, normally space, tab, and
new-line that are used to separate the results of
command substitution or parameter expansion and to
separate fields with the built-in command read. The
first character of the IFS variable is used to separate
arguments for the �$*� substitution (see Quoting
below). Each single occurrence of an IFS character in
the string to be split, that is not in the isspace character
class, and any adjacent characters in IFS that are in the
isspace character class, delimit a field. One or more
characters in IFS that belong to the isspace character
class, delimit a field. In addition, if the same isspace
character appears consecutively inside IFS, this

315

character is treated as if it were not in the isspace class,
so that if IFS consists of two tab characters, then two
adjacent tab characters delimit a null field.

LANG This variable determines the locale category for any
category not specifically selected with a variable
starting with LC_ or LANG.

LC_ALL
This variable overrides the value of the LANG
variable and any other LC_ variable.

LC_COLLATE
This variable determines the locale category for
character collation information.

LC_CTYPE
This variable determines the locale category for
character handling functions. It determines the
character classes for pattern matching (see
FileNameGeneration below).

LC_NUMERIC
This variable determines the locale category for the
decimal point character.

LINES
If this variable is set, the value is used to determine the
column length for printing select lists. Select lists will
print vertically until about two-thirds of LINES lines
are filled.

MAIL
If this variable is set to the name of a mail file and the
MAILPATH variable is not set, then the shell informs
the user of arrival of mail in the specified file.

MAILCHECK
This variable specifies how often (in seconds) the shell
will check for changes in the modification time of any
of the files specified by the MAILPATH or MAIL
variables. The default value is 600 seconds. When the
time has elapsed the shell will check before issuing the
next prompt.

Appendix E: Korn Shell Man Page

316

Korn Shell User and Programming Manual

MAILPATH
A colon (:) separated list of file names. If this variable
is set, then the shell informs the user of any
modifications to the specified files that have occurred
within the last MAILCHECK seconds. Each file
name can be followed by a ? and a message that will be
printed. The message will undergo parameter
expansion, command substitution, and arithmetic
substitution with the variable $_ defined as the name of
the file that has changed. The default message is
youhavemailin$_ .

PATH
The search path for commands (see Execution below).
The user may not change PATH if executing under
rsh (except in .profile).

PS1 The value of this variable is expanded for parameter
expansion, command substitution, and arithmetic
substitution to define the primary prompt string which
by default is �$ �. The character ! in the primary
prompt string is replaced by the command number (see
CommandRe-entry below). Two successive
occurrences of ! will produce a single ! when the
prompt string is printed.

PS2 Secondary prompt string, by default �> �.
PS3 Selection prompt string used within a select loop, by

default �#? �.
PS4 The value of this variable is expanded for parameter

evaluation, command substitution, and arithmetic
substitution and precedes each line of an execution
trace. By default, PS4 is �+ �. In addition when PS4 is
unset, the execution trace prompt is also �+ �.

SHELL
The pathname of the shell is kept in the environment.
At invocation, if the basename of this variable is rsh,
rksh, or krsh, then the shell becomes restricted.

TMOUT

317

If set to a value greater than zero, TMOUT will be the
default timeout value for the read built-in command.
The select compound command terminates after
TMOUT seconds when input is from a terminal.
Otherwise, the shell will terminate if a line is not
entered within the prescribed number of seconds while
reading from a terminal. (Note that the shell can be
compiled with a maximum bound for this value which
cannot be exceeded.)

VISUAL
If the value of this variable ends in emacs, gmacs, or vi
then the corresponding option (see Special Command
set below) will be turned on. The value of VISUAL
overrides the value of EDITOR.

The shell gives default values to PATH, PS1, PS2, PS3, PS4,
MAILCHECK, FCEDIT, TMOUT and IFS, while HOME,
SHELL, ENV, and MAIL are not set at all by the shell
(although HOME is set by login(1)). On some systems MAIL
and SHELL are also set by login(1).

Field Splitting.
After parameter expansion and command substitution, the
results of substitutions are scanned for the field separator
characters (those found in IFS) and split into distinct fields
where such characters are found. Explicit null fields (� � or �
�) are retained. Implicit null fields (those resulting from
parameters that have no values or command substitutions with
no output) are removed.

File Name Generation.
Following splitting, each field is scanned for the characters *,
?, (, and [unless the -f option has been set. If one of these
characters appears, then the word is regarded as a pattern. Each
file name component that contains any pattern character is
replaced with a lexicographically sorted set of names that

Appendix E: Korn Shell Man Page

318

Korn Shell User and Programming Manual

matches the pattern from that directory. If no file name is found
that matches the pattern, then that component of the filename is
left unchanged. If FIGNORE is set, then each file name
component that matches the pattern defined by the value of
FIGNORE is ignored when generating the matching filenames.
The names . and .. are also ignored. If FIGNORE is not set, the
character . at the start of each file name component will be
ignored unless the first character of the pattern corresponding
to this component is the character . itself. Note, that for other
uses of pattern matching the / and . are not treated specially.

* Matches any string, including the null string.
? Matches any single character.
[. . .]

Matches any one of the enclosed characters. A pair of
characters separated by - matches any character
lexically between the pair, inclusive. If the first
character following the opening [is a ! then any
character not enclosed is matched. A - can be included
in the character set by putting it as the first or last
character.

Within [and] , character classes can be specified with
the syntax [:class:] where class is one of the following
classes defined in the ANSI-C standard:

alnum alpha blank cntrl digit graph lower print
punct space upper xdigit

Within [and] , an equivalence class can be specified
with the syntax [=c=] which matches all characters
with the same primary collation weight (as defined by
the current locale) as the character c .
Within [and] , [.symbol.] matches the collating
symbol symbol.

319

A pattern-list is a list of one or more patterns separated from
each other with a & or |. A & signifies that all patterns must be
matched whereas | requires that only one pattern be matched.
Composite patterns can be formed with one or more of the
following sub-patterns:

?(pattern-list)
Optionally matches any one of the given patterns.

*(pattern-list)
Matches zero or more occurrences of the given
patterns.

+(pattern-list)
Matches one or more occurrences of the given
patterns.

@(pattern-list)
Matches exactly one of the given patterns.

!(pattern-list)
Matches anything except one of the given patterns.

Each sub-pattern in a composite pattern is numbered, starting at
1, by the location of the (

320

Korn Shell User and Programming Manual

command argument, "$*" is equivalent to "$1d$2d..." , where
d is the first character of the IFS parameter, whereas "$@" is

321

The following math library functions can be used with an
arithmetic expression:

abs acos asin atan cos cosh exp int log sin sinh sqrt tan tanh

An internal representation of a variable as a double precision
floating point can be specified with the -E [n] or -F [n] option
of the typeset special built-in command. The -E option causes
the expansion of the value to be represented using scientific
notation when it is expanded. The optional option argument n
defines the number of significant figures. The -F option causes
the expansion to be represented as a floating decimal number
when it is expanded. The optional option argument n defines the
number of places after the decimal point in this case.

An internal integer representation of a variable can be specified
with the -i [n] option of the typeset special built-in command.
The optional option argument n specifies an arithmetic base to
be used when expanding the variable. If you do not specify an
arithmetic base, the first assignment to the variable determines
the arithmetic base.

Arithmetic evaluation is performed on the value of each
assignment to a variable with the -E, -F, or -i attribute. Assigning
a floating point number to a variable whose type is an integer
causes the fractional part to be truncated.

Prompting.
When used interactively, the shell prompts with the value of
PS1 after expanding it for parameter expansion, command
substitution, and arithmetic substitution, before reading a
command. In addition, each single ! in the prompt is replaced by
the command number. A !! is required to place ! in the prompt.
If at any time a new-line is typed and further input is needed to
complete a command, then the secondary prompt (i.e., the
value of PS2) is issued.

Appendix E: Korn Shell Man Page

322

Korn Shell User and Programming Manual

Conditional Expressions.
A conditional expression is used with the [[compound command
to test attributes of files and to compare strings. Field splitting
and file name generation are not performed on the words
between [[and]]. Each expression can be constructed from one
or more of the following unary or binary expressions:

 string True, if string is not null.
-a file Same as -e below. This is obsolete.
-b file True, if file exists and is a block special file.
-c file True, if file exists and is a character special file.
-d file True, if file exists and is a directory.
-e file True, if file exists.
-f file True, if file exists and is an ordinary file.
-g file True, if file exists and it has its setgid bit set.
-k file True, if file exists and it has its sticky bit set.
-n string True, if length of string is non-zero.
-o option True, if option named option is on.
-p file True, if file exists and is a fifo special file or a

pipe.
-r file True, if file exists and is readable by current

process.
-s file True, if file exists and has size greater than zero.
-t fildes True, if file descriptor number fildes is open and

associated with a terminal device.
-u file True, if file exists and it has its setuid bit set.
-w file True, if file exists and is writable by current

process.
-x file True, if file exists and is executable by current

process. If file exists and is a directory, then true
if the current process has permission to search in
the directory.

-z string True, if length of string is zero.
-L file True, if file exists and is a symbolic link.
-O file True, if file exists and is owned by the effective

user id of this process.

323

-G file True, if file exists and its group matches the
effective group id of this process.

-S file True, if file exists and is a socket.
file1 -nt file2

True, if file1 exists and file2 does not, or file1 is
newer than file2.

file1 -ot file2
True, if file2 exists and file1 does not, or file1 is
older than file2.

file1 -ef file2
True, if file1 and file2 exist and refer to the same
file.

string == pattern
True, if string matches pattern. Any part of
pattern can be quoted to cause it to be matched as
a string.

string = pattern
Same as == above, but is obsolete.

string != pattern
True, if string does not match pattern.

string1 < string2
True, if string1 comes before string2 based on
ASCII value of their characters.

string1 > string2
True, if string1 comes after string2 based on
ASCII value of their characters.

The following obsolete arithmetic comparisons are also
permitted:

exp1 -eq exp2
True, if exp1 is equal to exp2.

exp1 -ne exp2
True, if exp1 is not equal to exp2.

exp1 -lt exp2
True, if exp1 is less than exp2.

Appendix E: Korn Shell Man Page

324

Korn Shell User and Programming Manual

exp1 -gt exp2
True, if exp1 is greater than exp2.

exp1 -le exp2
True, if exp1 is less than or equal to exp2.

exp1 -ge exp2
True, if exp1 is greater than or equal to exp2.

In each of the above expressions, if file is of the form /dev/fd/
n, where n is an integer, then the test is applied to the open file
whose descriptor number is n.

A compound expression can be constructed from these primitives
by using any of the following, listed in decreasing order of
precedence.

(expression)
True, if expression is true. Used to group
expressions.

! expression True if expression is false.
expression1 && expression2

True, if expression1 and expression2 are both
true.

expression1 || expression2
True, if either expression1 or expression2 is true.

Input/Output.
Before a command is executed, its input and output may be
redirected using a special notation interpreted by the shell. The
following may appear anywhere in a simple-command or may
precede or follow a command and are not passed on to the
invoked command. Command substitution, parameter
expansion, and arithmetic substitution occur before word or
digit is used except as noted below. File name generation
occurs only if the shell is interactive and the pattern matches a
single file. Field splitting is not performed.

325

In each of the following redirections, if file is of the form /dev/
tcp/host/port, or /dev/udp/host/port, where host is a hostname
or host address, and port is an integer port number, then the
redirection attempts to make a tcp or udp connection to the
corresponding socket.

<word Use file word as standard input (file descriptor
0).

>word Use file word as standard output (file
descriptor 1). If the file does not exist then it is
created. If the file exists, and the noclobber
option is on, this causes an error; otherwise, it
is truncated to zero length.

 >|word Same as >, except that it overrides the
noclobber option.

>>word Use file word as standard output. If the file
exists then output is appended to it (by first
seeking to the end-of-file); otherwise, the file is
created.

word Open file word for reading and writing as
standard input.

<<[�]word The Korn shell input is read up to a line that is
the same as word, or to an end-of-file. No
parameter substitution, command substitution
or file name generation is performed on word.
The resulting document, called a here-
document, becomes the standard input. If any
character of word is quoted, then no
interpretation is placed upon the characters of
the document; otherwise, parameter and
command substitution occurs, \new-line is
ignored, and \ must be used to quote the
characters \, $, `, and the first character of
word. If � is appended to <<, then all leading
tabs are stripped from word and from the
document.

Appendix E: Korn Shell Man Page

326

Korn Shell User and Programming Manual

 <&digit The standard input is duplicated from file
descriptor digit (see dup(2)). Similarly for the
standard output using >& digit.

<&� The standard input is closed. Similarly for the
standard output using >&�.

<&p The input from the co-process is moved to
standard input.

>&p The output to the co-process is moved to standard
output.

If one of the above is preceded by a digit, then the file
descriptor number referred to is that specified by the digit
(instead of the default 0 or 1). For example:

... 2>&1

means file descriptor 2 is to be opened for writing as a
duplicate of file descriptor 1.

The order in which redirections are specified is significant.
The Korn shell evaluates each redirection in terms of the file
descriptor/file association at the time of evaluation. For
example:

... 1 >fname 2>&1

first associates file descriptor 1 with file fname. It then
associates file descriptor 2 with the file associated with file
descriptor 1 (i.e. fname). If the order of redirections were
reversed, file descriptor 2 would be associated with the
terminal (assuming file descriptor 1 had been) and then file
descriptor 1 would be associated with file fname.

If a command is followed by & and job control is not active,
then the default standard input for the command is the empty

327

file /dev/null. Otherwise, the environment for the execution
of a command contains the file descriptors of the invoking
shell as modified by input/output specifications.

Environment.
The environment (see environ(7)) is a list of name-value pairs
that is passed to an executed program in the same way as a
normal argument list. The names must be identifiers and the
values are character strings. The shell interacts with the
environment in several ways. On invocation, the shell scans the
environment and creates a variable for each name found, giving
it the corresponding value and attributes and marking it export.
Executed commands inherit the environment. If the user modifies
the values of these variables or creates new ones, using the
export or typeset-x commands, they become part of the
environment. The environment seen by any executed command
is thus composed of any name-value pairs originally inherited
by the shell, whose values may be modified by the current shell,
plus any additions which must be noted in export or typeset-x
commands.

The environment for any simple-command or function may be
augmented by prefixing it with one or more variable assignments.
A variable assignment argument is a word of the form
identifier=value. Thus:

TERM=450 cmd args and
(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned
except for special built-in commands listed below - those that
are preceded with a dagger).

If the obsolete -k option is set, all variable assignment arguments
are placed in the environment, even if they occur after the
command name. The following first prints a=b c and then c:

Appendix E: Korn Shell Man Page

328

Korn Shell User and Programming Manual

echo a=b c
set -k
echo a=b c

This feature is intended for use with scripts written for early
versions of the shell and its use in new scripts is strongly
discouraged. It is likely to disappear someday.

Functions.
For historical reasons, there are two ways to define functions,
the name() syntax and the function name syntax, described in
the Commands section above. Shell functions are read in and
stored internally. Alias names are resolved when the function is
read. Functions are executed like commands with the arguments
passed as positional parameters. (See Execution below.)

Functions defined by the function name syntax and called by
name execute in the same process as the caller and share all
files and present working directory with the caller. Traps
caught by the caller are reset to their default action inside the
function. A trap condition that is not caught or ignored by the
function causes the function to terminate and the condition to be
passed on to the caller. A trap on EXIT set inside a function is
executed in the environment of the caller after the function
completes. Ordinarily, variables are shared between the calling
program and the function. However, the typeset special built-
in command used within a function defines local variables
whose scope includes the current function and all functions it
calls. Errors within functions return control to the caller.

Functions defined with the name() syntax and functions defined
with the function name syntax that are invoked with the .
special built-in are executed in the caller�s environment and
share all variables and traps with the caller. Errors within these
function executions cause the script that contains them to abort.

329

The special built-in command return is used to return from
function calls.

Function names can be listed with the -f or +f option of the
typeset special built-in command. The text of functions, when
available, will also be listed with -f. Functions can be undefined
with the -f option of the unset special built-in command.

Ordinarily, functions are unset when the shell executes a shell
script. Functions that need to be defined across separate
invocations of the shell should be placed in a directory and the
FPATH variable should contain the name of this directory.
They may also be specified in the ENV file.

Discipline Functions.
Each variable can have zero or more discipline functions
associated with it. The shell initially understands the discipline
names get, set, and unset but on most systems others can be
added at run time via the C programming interface extension
provided by the builtin built-in utility. If the get discipline is
defined for a variable, it is invoked whenever the given variable
is referenced. If the variable .sh.value is assigned a value inside
the discipline function, the referenced variable will evaluate to
this value instead. If the set discipline is defined for a variable,
it is invoked whenever the given variable is assigned a value.
The variable .sh.value is given the value of the variable before
invoking the discipline, and the variable will be assigned the
value of .sh.value after the discipline completes. If .sh.value is
unset inside the discipline, then that value is unchanged. If the
unset discipline is defined for a variable, it is invoked whenever
the given variable is unset. The variable will not be unset unless
it is unset explicitly from within this discipline function.

The variable .sh.name contains the name of the variable for
which the discipline function is called, .sh.subscript is the
subscript of the variable, and .sh.value will contain the value

Appendix E: Korn Shell Man Page

330

Korn Shell User and Programming Manual

being assigned inside the .set discipline function. For the set
discipline, changing .sh.value will change the value that gets
assigned.

Jobs.
If the monitor option of the set command is turned on, an
interactive shell associates a job with each pipeline. It keeps
a table of current jobs, printed by the jobs command, and
assigns them small integer numbers. When a job is started
asynchronously with &, the shell prints a line which looks
like:

[1] 1234

indicating that the job which was started asynchronously was
job number 1 and had one (top-level) process, whose process
id was 1234.

This paragraph and the next require features that are not in all
versions of the UNIX operating system and may not apply. If
you are running a job and wish to do something else you may
hit the key ^Z (control-Z) which sends a STOP signal to the
current job. The shell will then normally indicate that the job
has been 'Stopped', and print another prompt. You can then
manipulate the state of this job, putting it in the background
with the bg command, or run some other commands and then
eventually bring the job back into the foreground with the
foreground command fg. A ^Z takes effect immediately and
is like an interrupt in that pending output and unread input are
discarded when it is typed.

A job being run in the background will stop if it tries to read
from the terminal. Background jobs are normally allowed to
produce output, but this can be disabled by giving the
command "stty tostop". If you set this tty option, then
background jobs will stop when they try to produce output like

331

they do when they try to read input.

There are several ways to refer to jobs in the shell. A job can
be referred to by the process id of any process of the job or by
one of the following:

%number The job with the given number.
%string Any job whose command line begins with

string.
%?string Any job whose command line contains string.
%% Current job.
%+ Equivalent to %%.
%� Previous job.

The shell learns immediately whenever a process changes
state. It normally informs you whenever a job becomes
blocked so that no further progress is possible, but only just
before it prints a prompt. This is done so that it does not
otherwise disturb your work.

When the monitor mode is on, each background job that
completes triggers any trap set for CHLD.

When you try to leave the shell while jobs are running or
stopped, you will be warned that "You have
stopped(running) jobs.". You may use the jobs command to
see what they are. If you do this or immediately try to exit
again, the shell will not warn you a second time, and the
stopped jobs will be terminated.

Signals.
The INT and QUIT signals for an invoked command are
ignored if the command is followed by & and job monitor
option is not active. Otherwise, signals have the values
inherited by the shell from its parent (but see also the trap
command below).

Appendix E: Korn Shell Man Page

332

Korn Shell User and Programming Manual

Execution.
Each time a command is read, the above substitutions are
carried out. If the command name matches one of the Special
Built-in Commands listed below, it is executed within the
current shell process. Next, the command name is checked to
see if it matches a user defined function. If it does, the positional
parameters are saved and then reset to the arguments of the
function call. A function is also executed in the current shell
process. When the function completes or issues a return, the
positional parameter list is restored. For functions defined with
the function name syntax, any trap set on EXIT within the
function is executed. The exit value of a function is the value of
the last command executed. If a command name is not a special
built-in command or a user defined function, but it is one of the
built-in commands listed below, it is executed in the current
shell process.

The shell variable PATH defines the search path for the
directory containing the command. Alternative directory names
are separated by a colon (:). The default path is /bin:/usr/bin:
(specifying /bin, /usr/bin, and the current directory in that
order). The current directory can be specified by two or more
adjacent colons, or by a colon at the beginning or end of the path
list. If the command name contains a /, then the search path is
not used. Otherwise, each directory in the path is searched for
an executable file that is not a directory. If the shell determines
that there is a built-in version of a command corresponding to
a given pathname, this built-in is invoked in the current process.
A process is created and an attempt is made to execute the
command via exec(2). If the file has execute permission but is
not an a.out file, it is assumed to be a file containing shell
commands. A separate shell is spawned to read it. All non-
exported variables are removed in this case. If the shell command
file doesn�t have read permission, or if the setuid and/or setgid
bits are set on the file, then the shell executes an agent whose
job it is to set up the permissions and execute the shell with the

333

shell command file passed down as an open file. A parenthesized
command is executed in a sub-shell without removing non-
exported variables.

Command Re-entry.
The text of the last HISTSIZE (default 128) commands entered
from a terminal device is saved in a history file. The file
$HOME/.sh_history is used if the HISTFILE variable is not
set or if the file it names is not writable. A shell can access the
commands of all interactive shells which use the same named
HISTFILE. The built-in command hist is used to list or edit a
portion of this file. The portion of the file to be edited or listed
can be selected by number or by giving the first character or
characters of the command. A single command or range of
commands can be specified. If you do not specify an editor
program as an argument to hist then the value of the variable
HISTEDIT is used. If HISTEDIT is unset, the obsolete variable
FCEDIT is used. If FCEDIT is not defined, then /bin/ed is
used. The edited command(s) is printed and re-executed upon
leaving the editor unless you quit without writing. The -s option
(and in obsolete versions, the editor name -) is used to skip the
editing phase and to re-execute the command. In this case a
substitution parameter of the form old=new can be used to
modify the command before execution. For example, with the
preset alias r, which is aliased to �hist -s�, typing `r bad=good
c� will re-execute the most recent command which starts with
the letter c, replacing the first occurrence of the string bad with
the string good.

In-line Editing Options
Normally, each command line entered from a terminal device
is simply typed followed by a new-line (�RETURN� or �LINE
FEED�). If either the emacs, gmacs, or vi option is active, the
user can edit the command line. To be in either of these edit
modes set the corresponding option. An editing option is
automatically selected each time the VISUAL or EDITOR

Appendix E: Korn Shell Man Page

334

Korn Shell User and Programming Manual

variable is assigned a value ending in either of these option
names.

The editing features require that the user�s terminal accept
�RETURN� as carriage return without line feed and that a space
(� �) must overwrite the current character on the screen.

The editing modes implement a concept where the user is
looking through a window at the current line. The window width
is the value of COLUMNS if it is defined, otherwise 80. If the
window width is too small to display the prompt and leave at
least 8 columns to enter input, the prompt is truncated from the
left. If the line is longer than the window width minus two, a
mark is displayed at the end of the window to notify the user. As
the cursor moves and reaches the window boundaries the
window will be centered about the cursor. The mark is a > (<,
*) if the line extends on the right (left, both) side(s) of the
window.

The search commands in each edit mode provide access to the
history file. Only strings are matched, not patterns, although a
leading ^ in the string restricts the match to begin at the first
character in the line.

Each of the edit modes has an operation to list the files or
commands that match a partially entered word. When applied
to the first word on the line, or the first word after a ;, |, &, or
(, and the word does not begin with ~ or contain a /, the list of
aliases, functions, and executable commands defined by the
PATH variable that could match the partial word is displayed.
Otherwise, the list of files that match the given word is displayed.
If the partially entered word does not contain any file expansion
characters, a * is appended before generating these lists. After
displaying the generated list, the input line is redrawn. These
operations are called command name listing and file name
listing, respectively. There are additional operations, referred

335

to as command name completion and file name completion,
which compute the list of matching commands or files, but
instead of printing the list, replace the current word with a
complete or partial match. For file name completion, if the
match is unique, a / is appended if the file is a directory and a
space is appended if the file is not a directory. Otherwise, the
longest common prefix for all the matching files replaces the
word. For command name completion, only the portion of the
file names after the last / are used to find the longest command
prefix. If only a single name matches this prefix, then the word
is replaced with the command name followed by a space.

Key Bindings.
The KEYBD trap can be used to intercept keys as they are typed
and change the characters that are actually seen by the shell.
This trap is executed after each character (or sequence of
characters when the first character is ESC) is entered while
reading from a terminal. The variable .sh.edchar contains the
character or character sequence which generated the trap.
Changing the value of .sh.edchar in the trap action causes the
shell to behave as if the new value were entered from the
keyboard rather than the original value.

The variable .sh.edcol is set to the input column number of the
cursor at the time of the input. The variable .sh.edmode is set
to ESC when in vi insert mode (see below) and is null otherwise.
By prepending ${.sh.editmode} to a value assigned to
.sh.edchar it will cause the shell to change to control mode if
it is not already in this mode.

This trap is not invoked for characters entered as arguments to
editing directives, or while reading input for a character search.

Emacs Editing Mode
This mode is entered by enabling either the emacs or gmacs
option. The only difference between these two modes is the way

Appendix E: Korn Shell Man Page

336

Korn Shell User and Programming Manual

they handle ^T. To edit, the user moves the cursor to the point
needing correction and then inserts or deletes characters or
words as needed. All the editing commands are control characters
or escape sequences. The notation for control characters is
caret (^) followed by the character. For example, ^F is the
notation for control F. This is entered by depressing �f� while
holding down the �CTRL� (control) key. The �SHIFT� key is not
depressed. (The notation ^? indicates the DEL (delete) key.)

The notation for escape sequences is M- followed by a character.
For example, M-f (pronounced Meta f) is entered by depressing
ESC (ascii 033) followed by �f�. (M-F would be the notation for
ESC followed by �SHIFT� (capital) �F�.)

All edit commands operate from any place on the line (not just
at the beginning). Neither the �RETURN� nor the �LINE FEED�
key is entered after edit commands except when noted.

^F Move cursor forward (right) one character.
M-f Move cursor forward one word. (The emacs

editor's idea of a word is a string of characters
consisting of only letters, digits and
underscores.)

^B Move cursor backward (left) one character.
M-b Move cursor backward one word.
^A Move cursor to start of line.
^E Move cursor to end of line.
b^]char Move cursor forward to character char on

current line.
M-^]char Move cursor back to character char on current

line.
^X^X Interchange the cursor and mark.
erase Delete previous character. (User defined erase

character as defined by the stty command,
usually ^H or #.)

^D Delete current character.

337

M-d Delete current word.
M-^H (Meta-backspace) Delete previous word.
M-h Delete previous word.
M-^? (Meta-Delete) Delete previous word (if your

interrupt character is (Delete, the default) then
this command will not work).

^T Transpose current character with next character
in emacs mode. Transpose two previous
characters in gmacs mode.

^C Capitalize current character.
M-c Capitalize current word.
M-l Change the current word to lower case.
^K Delete from the cursor to the end of the line. If

preceded by a numerical parameter whose value
is less than the current cursor position, then
delete from given position up to the cursor. If
preceded by a numerical parameter whose value
is greater than the current cursor position, then
delete from cursor up to given cursor position.

^W Kill from the cursor to the mark.
M-p Push the region from the cursor to the mark on

the stack.
kill (User defined kill character as defined by the

stty command, usually ^G or @.) Kill the
entire current line. If two kill characters are
entered in succession, all kill characters from
then on cause a line feed (useful when using
paper terminals).

^Y Restore last item removed from line. (Yank
item back to the line.)

^L Line feed and print current line.
^@ (Null character) Set mark.
M-space (Meta space) Set mark.
^J (New line) Execute the current line.
^M (Return) Execute the current line.
eof End-of-file character, normally ^D , is

Appendix E: Korn Shell Man Page

338

Korn Shell User and Programming Manual

processed as an End-of-file only if the current
line is null.

^P Fetch previous command. Each time ^P is
entered the previous command back in time is
accessed. Moves back one line when not on
the first line of a multi-line command.

M-< Fetch the least recent (oldest) history line.
M-> Fetch the most recent (youngest) history line.
^N Fetch next command line. Each time ^N is

entered the next command line forward in time
is accessed.

^Rstring Reverse search history for a previous
command line containing string. If a parameter
of zero is given, the search is forward. String is
terminated by a Return or Newline. If string is
preceded by a ^, the matched line must begin
with string. If string is omitted, then the next
command line containing the most recent string
is accessed. In this case a parameter of zero
reverses the direction of the search.

^O Operate - Execute the current line and fetch the
next line relative to current line from the
history file.

M-digits (Escape) Define numeric parameter, the digits
are taken as a parameter to the next command.
The commands that accept a parameter are ^F,
^B, erase, ^C, ^D, ^K, ^R, ^P, ^N, M-., M-
^], M-_, M-b, M-c, M-d, M-f, M-h, M-l and
M-^H.

M- letter Soft-key - Your alias list is searched for an
alias by the name letter and if an alias of this
name is defined, its value will be inserted on
the input queue. The letter must not be one of
the above meta-functions.

M-] letter Soft-key - Your alias list is searched for an
alias by the name letter and if an alias of this

339

name is defined, its value will be inserted on
the input queue. The can be used to program
functions keys on many terminals.

M-. The last word of the previous command is
inserted on the line. If preceded by a numeric
parameter, the value of this parameter
determines which word to insert rather than the
last word.

M-_ Same as M-..
M-* Attempt file name generation on the current

word. An asterisk is appended if the word
doesn't match any file or contain any special
pattern characters.

M-Esc File name completion. Replaces the current
word with the longest common prefix of all
filenames matching the current word with an
asterisk appended. If the match is unique, a / is
appended if the file is a directory and a space is
appended if the file is not a directory.

M-= List files matching current word pattern if an
asterisk were appended.

^U Multiply parameter of next command by 4.
\ Escape next character. Editing characters, the

user's erase, kill and interrupt (normally ^?)
characters may be entered in a command line
or in a search string if preceded by a \. The \
removes the next character's editing features
(if any).

^V Display version of the Korn shell.
M-# Insert a # at the beginning of the line and

execute it. This causes a comment to be
inserted in the history file.

Vi Editing Mode
There are two typing modes. Initially, when you enter a
command you are in the input mode. To edit, the user enters

Appendix E: Korn Shell Man Page

340

Korn Shell User and Programming Manual

control mode by typing Escape (033) and moves the cursor to
the point needing correction and then inserts or deletes
characters or words as needed. Most control commands
accept an optional repeat count prior to the command.

When in vi mode on most systems, canonical processing is
initially enabled and the command will be echoed again if the
speed is 1200 baud or greater and it contains any control
characters or less than one second has elapsed since the
prompt was printed. The Escape character terminates
canonical processing for the remainder of the command and
the user can then modify the command line. This scheme has
the advantages of canonical processing with the type-ahead
echoing of raw mode.

If the option viraw is also set, the terminal will always have
canonical processing disabled. This mode is implicit for
systems that do not support two alternate end of line
delimiters, and may be helpful for certain terminals.

Input Edit Commands
By default the editor is in input mode.
erase (User defined erase character as defined by the

stty command, usually ^H or #.) Delete
previous character.

^W Delete the previous blank separated word.
^D Terminate the shell.
^V Escape next character. Editing characters, the

user's erase or kill characters may be entered in
a command line or in a search string if
preceded by a ^V. The ^V removes the next
character's editing features (if any).

\ Escape the next erase or kill character.
Motion Edit Commands

These commands will move the cursor.
[count]l Cursor forward (right) one character.

341

[count]w Cursor forward one alpha-numeric word.
[count]W Cursor to the beginning of the next word that

follows a blank.
[count]e Cursor to end of word.
[count]E Cursor to end of the current blank delimited

word.
[count]h Cursor backward (left) one character.
[count]b Cursor backward one word.
[count]B Cursor to preceding blank separated word.
[count]l Cursor to column 1 count.
[count]f c Find the next character c in the current line.
[count]F c Find the previous character c in the current

line.
[count]t c Equivalent to f followed by h.
[count]T c Equivalent to F followed by l.
[count]; Repeats count times, the last single character

find command, f, F, t, or T.
[count], Reverses the last single character find

command count times.
0 Cursor to start of line.
^ Cursor to first non-blank character in line.
$ Cursor to end of line.

Search Edit Commands
These commands access your command history.
[count] k Fetch previous command. Each time k is

entered the previous command back in time is
accessed.

[count]� Equivalent to k.
[count]j Fetch next command. Each time j is entered

the next command forward in time is accessed.
[count]+ Equivalent to j.
[count]G The command number count is fetched. The

default is the least recent history command.
/string Search backward through history for a previous

command containing string . String is
terminated by a Return or Newline. If string

Appendix E: Korn Shell Man Page

342

Korn Shell User and Programming Manual

is preceded by a ^, the matched line must begin
with string. If string is null the previous string
will be used.

? string Same as / except that search will be in the
forward direction.

n Search for next match of the last pattern to / or
? commands.

N Search for next match of the last pattern to / or
?, but in reverse direction. Search history for
the string entered by the previous / command.

Text Modification Edit Commands
These commands will modify the line.
a Enter input mode and enter text after the

current character.
A Append text to the end of the line. Equivalent

to $a.
[count]cmotion
c[count]motion

Delete current character through the character
that motion would move the cursor to and enter
input mode. If motion is c, the entire line will
be deleted and input mode entered.

C Delete the current character through the end of
line and enter input mode c$. Equivalent to c$.

S Equivalent to cc.
D Delete the current character through the end of

line. Equivalent to d$.
[count]dmotion
d[count]motion

Delete current character through the character
that motion would move to. If motion is d, the
entire line will be deleted.

i Enter input mode and insert text before the
current character.

I Insert text before the beginning of the line.
Equivalent to i.

343

[count]P Place the previous text modification before the
cursor.

[count]p Place the previous text modification after the
cursor.

R Enter input mode and replace characters on the
screen with characters you type overlay
fashion.

[count]rc Replace the count character(s) starting at the
current cursor position with c, and advance the
cursor.

[count]x Delete current character.
[count]X Delete preceding character.
[count]. Repeat the previous text modification

command.
[count]~ Invert the case of the count character(s)

starting at the current cursor position and
advance the cursor.

[count]_ Causes the count word of the previous
command to be appended and input mode
entered. The last word is used if count is
omitted. Causes an * to be appended to the
current word and file name generation
attempted. If no match is found, it rings the
bell. Otherwise, the word is replaced by the
matching pattern and input mode is entered.

\ Filename completion. Replaces the current
word with the longest common prefix of all
filenames matching the current word with an
asterisk appended. If the match is unique, a / is
appended if the file is a directory and a space is
appended if the file is not a directory.

Other Edit Commands
Miscellaneous commands.

[count]ymotion
y[count]motion

Yank current character through character that

Appendix E: Korn Shell Man Page

344

Korn Shell User and Programming Manual

motion would move the cursor to and puts them
into the delete buffer. The text and cursor are
unchanged.

Y Yanks from current position to end of line.
Equivalent to y$.

u Undo the last text modifying command.
U Undo all the text modifying commands

performed on the line.
[count]v Returns the command fc �e ${VISUAL:�

${EDITOR:�vi}} count in the input buffer. If
count is omitted, then the current line is used.

^L Line feed and print current line. Has effect
only in control mode.

^J (New line) Execute the current line, regardless
of mode.

^M (Return) Execute current line, regardless of
mode.

Sends the line after inserting a # in front of the
line. If line already commented, then remove
the # character. Useful for causing the current
line to be inserted in the history without being
executed.

= List the file names that match the current word
if an asterisk were appended it.

@letter Your alias list is searched for an alias letter and
if defined, its value is inserted on the input
queue.

% find the matching (), {}

Built-in Commands.
The following simple-commands are executed in the shell
process. Input/Output redirection is permitted. Unless otherwise
indicated, the output is written on file descriptor 1 and the exit
status, when there is no syntax error, is zero. Except for :, true,
false, echo, command , newgrp, and login, all built-in
commands accept � to indicate end of options. They also

345

interpret the option -? as a help request and print a usage
message on standard error. Commands that are preceded by one
or two § symbols are special built-in commands and are treated
specially in the following ways:

1. Variable assignment lists preceding the command
remain in effect when the command completes.

2. I/O redirections are processed after variable
assignments.

3. Errors cause a script that contains them to abort.
4. They are not valid function names.
5. Words following a command preceded by §§ that are

in the format of a variable assignment are expanded
with the same rules as a variable assignment. This
means that tilde substitution is performed after the =
sign and field splitting and file name generation are not
performed.

§ : [arg . . .]
The command only expands parameters.

§ . name [arg . . .]
If name is a function defined with the function name
reserved word syntax, the function is executed in the
current environment (as if it had been defined with the
name() syntax.) Otherwise if name refers to a file, the
file is read in its entirety and the commands are
executed in the current shell environment. The search
path specified by PATH is used to find the directory
containing the file. If any arguments arg are given,
they become the positional parameters while
processing the . command and the original positional
parameters are restored upon completion. Otherwise
the positional parameters are unchanged. The exit
status is the exit status of the last command executed.

§§ alias [-ptx] [name[=value]] . . .
alias with no arguments prints the list of aliases in the

Appendix E: Korn Shell Man Page

346

Korn Shell User and Programming Manual

form name=value on standard output. The -p option
causes the word alias to be inserted before each one.
When one or more arguments are given, an alias is
defined for each name whose value is given. A trailing
space in value causes the next word to be checked for
alias substitution. The obsolete -t option is used to set
and list tracked aliases. The value of a tracked alias is
the full pathname corresponding to the given name.
The value becomes undefined when the value of
PATH is reset but the alias remains tracked. Without
the -t option, for each name in the argument list for
which no value is given, the name and value of the
alias is printed. The obsolete -x option has no effect.
The exit status is non-zero if a name is given, but no
value, and no alias has been defined for the name .

bg [job . . .]
This command is only on systems that support job
control. Puts each specified job into the background.
The current job is put in the background if job is not
specified. See Jobs for a description of the format of
job.

§ break [n]
Exit from the enclosing for , while , until , or select
loop, if any. If n is specified, then break n levels.

builtin [-ds] [-f file] [name . . .]
If name is not specified, and no -f option is specified,
the built-ins are printed on standard output. The -s
option prints only the special built-ins. Otherwise,
each name represents the pathname whose basename
is the name of the built-in. The entry point function
name is determined by prepending b_ to the built-in
name. Special built-ins cannot be bound to a pathname
or deleted. The -d option deletes each of the given
built-ins. On systems that support dynamic loading,
the -f option names a shared library containing the
code for built-ins. Once a library is loaded, its symbols

347

become available for subsequent invocations of
builtin. Multiple libraries can be specified with
separate invocations of the builtin command.
Libraries are searched in the reverse order in which
they are specified. When a library is loaded, it looks
for a function in the library whose name is lib_init()
and invokes this function with an argument of 0.

cd [-LP] [arg]
cd [-LP] old new

This command can be in either of two forms. In the
first form it changes the current directory to arg. If arg
is - the directory is changed to the previous directory.
The shell variable HOME is the default arg. The
variable PWD is set to the current directory. The shell
variable CDPATH defines the search path for the
directory containing arg. Alternative directory names
are separated by a colon (:). The default path is <null>
(specifying the current directory). Note that the current
directory is specified by a null path name, which can
appear immediately after the equal sign or between the
colon delimiters anywhere else in the path list. If arg
begins with a / then the search path is not used.
Otherwise, each directory in path is searched for arg.

The second form of cd substitutes the string new for
the string old in the current directory name, PWD, and
tries to change to this new directory.

By default, symbolic link names are treated literally
when finding the directory name. This is equivalent to
the -L option. The -P option causes symbolic links to
be resolved when determining the directory. The last
instance of -L or -P on the command line determines
which method is used. The cd command may not be
executed by rsh .

Appendix E: Korn Shell Man Page

348

Korn Shell User and Programming Manual

command [-pvV] name [arg . . .]
Without the -v or -V options, command executes name
with the arguments given by arg. The -p option causes
a default path to be searched rather than the one
defined by the value of PATH. Functions will not be
searched for when finding name. In addition, if name
refers to a special built-in, none of the special
properties associated with the leading daggers will be
honored. (For example, the predefined alias
redirect=�command exec� prevents a script from
terminating when an invalid redirection is given.) With
the -v option, command is equivalent to the built-in
whence command described below. The -V option
causes command to act like whence -v.

§ continue [n]
Resume the next iteration of the enclosing for while
until or select loop. If n is specified then resume at the
nth enclosing loop.

disown [job . . .]
Causes the shell not to send a HUP signal to each given
job, or all active jobs if job is omitted, when a login
shell terminates.

echo arg ...
When the first arg does not begin with a -, and none of
the arguments contain a \, then echo prints each of its
arguments separated by a space and terminated by a
new-line. Otherwise, the behavior of echo is system
dependent and print or printf described below should
be used. See echo(1) for usage and description.

§ eval [arg ...]
The arguments are read as input to the shell and the
resulting command(s) executed.

§ exec [arg ...]
If arg is given, the command specified by the
arguments is executed in place of this shell without
creating a new process. The -c option causes the

349

environment to be cleared before applying variable
assignments associated with the exec invocation. The -
a option causes name rather than the first arg, to
become argv[0] for the new process. Input/output
arguments may appear and affect the current process.
If arg is not given, the effect of this command is to
modify file descriptors as prescribed by the input/
output redirection list. In this case, any file descriptor
numbers greater than 2 that are opened with this
mechanism are closed when invoking another
program.

§ exit [n]
Causes the shell to exit with the exit status specified by
n. The value will be the least significant 8 bits of the
specified status. If n is omitted, then the exit status is
that of the last command executed. An end-of-file will
also cause the shell to exit except for a shell which has
the ignoreeof option (see set below) turned on.

§§ export [-p] [name [=value]] . . .
If name is not given, the names and values of each
variable with the export attribute are printed with the
values quoted in a manner that allows them to be re-
input. The -p option causes the word export to be
inserted before each one. Otherwise, the given names
are marked for automatic export to the environment of
subsequently-executed commands.

false Does nothing, and exits 1. Used with until for infinite
loops.

fg [job . . .]
This command is only on systems that support job
control. Each job specified is brought to the
foreground and waited for in the specified order.
Otherwise, the current job is brought into the
foreground. See Jobs for a description of the format of
job.

getconf [name [pathname]]

Appendix E: Korn Shell Man Page

350

Korn Shell User and Programming Manual

Prints the current value of the configuration parameter
given by name. The configuration parameters are
defined by the IEEE POSIX 1003.1 and IEEE POSIX
1003.2 standards. (See pathconf(2) and sysconf(2).)
The pathname argument is required for parameters
whose value depends on the location in the file system.
If no arguments are given, getconf prints the names
and values of the current configuration parameters.
The pathname / is used for each of the parameters that
requires pathname.

getopts [-a name] optstring vname [arg . . .]
Checks arg for legal options. If arg is omitted, the
positional parameters are used. An option argument
begins with a + or a -. An option not beginning with +
or - or the argument - - ends the options. optstring
contains the letters that getopts recognizes. If a letter
is followed by a :, that option is expected to have an
argument. The options can be separated from the
argument by blanks. The option -? causes getopts to
generate a usage message on standard error. The -a
argument can be used to specify the name to use for
the usage message, which defaults to $0 .
getopts places the next option letter it finds inside
variable vname each time it is invoked. The option
letter will be prepended with a + when arg begins with
a +. The index of the next arg is stored in OPTIND.
The option argument, if any, gets stored in OPTARG.
A leading : in optstring causes getopts to store the
letter of an invalid option in OPTARG, and to set
vname to ? for an unknown option and to : when a
required option is missing. Otherwise, getopts prints
an error message. The exit status is non-zero when
there are no more options.
There is no way to specify any of the options :, +, -, ?,
[, and]. The option # can only be specified as the first
option.

351

hist [-e ename] [-nlr] [first [last]]
hist -s [old\=new] [command]

In the first form, a range of commands from first to last
is selected from the last HISTSIZE commands that
were typed at the terminal. The arguments first and
last may be specified as a number or as a string. A
string is used to locate the most recent command
starting with the given string. A negative number is
used as an offset to the current command number. If
the -l option is selected, the commands are listed on
standard output. Otherwise, the editor program ename
is invoked on a file containing these keyboard
commands. If ename is not supplied, then the value of
the variable HISTEDIT is used. If HISTEDIT is not
set, then FCEDIT (default /bin/ed) is used as the
editor. When editing is complete, the edited
command(s) is executed if the changes have been
saved. If last is not specified, then it will be set to first.
If first is not specified, the default is the previous
command for editing and -16 for listing. The option -r
reverses the order of the commands and the option -n
suppresses command numbers when listing. In the
second form, command is interpreted as first described
above and defaults to the last command executed. The
resulting command is executed after the optional
substitution old =new is performed.

jobs [-lnp] [job \. . .]
Lists information about each given job; or all active
jobs if job is omitted. The -l option lists process ids in
addition to the normal information. The -n option only
displays jobs that have stopped or exited since last
notified. The -p option causes only the process group
to be listed. See Jobs for a description of the format of
job.

kill [-s signame] job . . .
kill [-n signum] job . . .

Appendix E: Korn Shell Man Page

352

Korn Shell User and Programming Manual

kill -l [sig . . .]
Sends either the TERM (terminate) signal or the
specified signal to the specified jobs or processes.
Signals are either given by number with the -n option
or by name with the -s option (as given in <signal.h>,
stripped of the prefix �SIG� with the exception that
SIGCLD is named CHLD). For backward
compatibility, the n and s can be omitted and the
number or name placed immediately after the -. If the
signal being sent is TERM (terminate) or HUP
(hangup), then the job or process will be sent a CONT
(continue) signal if it is stopped. The argument job can
be the process id of a process that is not a member of
one of the active jobs. See Jobs for a description of the
format of job. In the third form, kill -l, if sig is not
specified, the signal names are listed. Otherwise, for
each sig that is a name, the corresponding signal
number is listed. For each sig that is a number, the
signal name corresponding to the least significant 8
bits of sig is listed.

let arg ...
Each arg is a separate arithmetic expression to be
evaluated. See ArithmeticEvaluation above, for a
description of arithmetic expression evaluation.
The exit status is 0 if the value of the last expression is
non-zero, and 1 otherwise.

§ newgrp [arg . . .]
Equivalent to exec /bin/newgrp arg

print [-Rnprs] [-u unit] [-f format] [arg . . .]
With no options or with option - or - -, each arg is
printed on standard output. The -f option causes the
arguments to be printed as described by printf. In this
case, any n, r, R options are ignored. Otherwise,
unless the -R or -r, are specified, the following escape
conventions will be applied: \a The alert
character (ascii 07).

353

\b The backspace character (ascii 010).
\c Causes print to end without processing more

arguments and not adding a new-line.
\f The formfeed character (ascii 014).
\n The new-line character (ascii 012).
\r The carriage return character (ascii 015).
\t The tab character (ascii 011).
\v The vertical tab character (ascii 013).
\E The escape character (ascii 033).
\\The backslash character \.
\0x The character defined by the 1, 2, or 3-digit

octal string given by x.
The -R option will print all subsequent arguments and
options other than -n. The -p option causes the
arguments to be written onto the pipe of the process
spawned with |& instead of standard output. The -s
option causes the arguments to be written onto the
history file instead of standard output. The -u option
can be used to specify a one digit file descriptor unit
number unit on which the output will be placed. The
default is 1. If the option -n is used, no new-line is
added to the output.

printf format [arg . . .]
The arguments arg are printed on standard output in
accordance with the ANSI-C formatting rules
associated with the format string format. If the number
of arguments exceeds the number of format
specifications, the format string is reused to format
remaining arguments. The following extensions can
also be used:
· A %b format can be used instead of %s to

cause escape sequences in the corresponding
arg to be expanded as described in print.

· A %P format can be used instead of %s to
cause arg to be interpreted as an extended
regular expression and be printed as a shell

Appendix E: Korn Shell Man Page

354

Korn Shell User and Programming Manual

pattern.
· A %q format can be used instead of %s to

cause the resulting string to be quoted in a
manner than can be reinput to the shell.

· The precision field of the %d format can be
followed by a . and the output base.

pwd [-LP]
Outputs the value of the current working directory.
The -L option is the default; it prints the logical name
of the current directory. If the -P option is given, all
symbolic links are resolved from the name. The last
instance of -L or -P on the command line determines
which method is used.

read [-Aprs] [-d delim] [-t timeout] [-u unit] [
vname?prompt] [vname . . .]
The shell input mechanism. One line is read and is
broken up into fields using the characters in IFS as
separators. The escape character, \, is used to remove
any special meaning for the next character and for line
continuation. The -d option causes the read to continue
to the first character of delim rather than new-line. In
raw mode, -r, the \ character is not treated specially.
The first field is assigned to the first vname, the second
field to the second vname, etc., with leftover fields
assigned to the last vname. The -A option causes the
variable vname to be unset and each field that is read to
be stored in successive elements of the indexed array
vname. The -p option causes the input line to be taken
from the input pipe of a process spawned by the shell
using |&. If the -s option is present, the input will be
saved as a command in the history file. The option -u
can be used to specify a one digit file descriptor unit
unit to read from. The file descriptor can be opened
with the exec special built-in command. The default
value of unit n is 0. The option -t is used to specify a
timeout in seconds when reading from a terminal or

355

pipe. If vname is omitted, then REPLY is used as the
default vname. An end-of-file with the -p option
causes cleanup for this process so that another can be
spawned. If the first argument contains a ?, the
remainder of this word is used as a prompt on standard
error when the shell is interactive. The exit status is 0
unless an end-of-file is encountered or read has timed
out.

§§ readonly [-p] [vname[=value]] . . .
If vname is not given, the names and values of each
variable with the readonly attribute is printed with the
values quoted in a manner that allows them to be re-
inputted. The -p option causes the word readonly to be
inserted before each one. Otherwise, the given vnames
are marked readonly and these names cannot be
changed by subsequent assignment.

§ return [n]
Causes a shell function or . script to return to the
invoking script with the exit status specified by n. The
value will be the least significant 8 bits of the specified
status. If n is omitted, then the return status is that of
the last command executed. If return is invoked while
not in a function or a . script, then it behaves the same
as exit.

§ set [±Cabefhkmnopstuvx] [±o [option]] . . . [±A vname
] [arg . . .]

The options for this command have meaning as follows:
-A Array assignment. Unset the variable vname and

assign values sequentially from the arg list. If +A is
used, the variable vname is not unset first.

-C Prevents redirection > from truncating existing files.
Files that are created are opened with the O_EXCL
mode. Requires >| to truncate a file when turned on.

-a All subsequent variables that are defined are
automatically exported.

-b Prints job completion messages as soon as a

Appendix E: Korn Shell Man Page

356

Korn Shell User and Programming Manual

background job changes state rather than waiting for
the next prompt.

-e If a command has a non-zero exit status, execute the
ERR trap, if set, and exit. This mode is disabled while
reading profiles.

-f Disables file name generation.
-h Each command becomes a tracked alias when first

encountered.
-k (Obsolete). All variable assignment arguments are

placed in the environment for a command, not just
those that precede the command name.

-m Background jobs will run in a separate process group
and a line will print upon completion. The exit status of
background jobs is reported in a completion message.
On systems with job control, this option is turned on
automatically for interactive shells.

-n Read commands and check them for syntax errors, but
do not execute them. Ignored for interactive shells.

-o The following argument can be one of the following
option names:
allexport Same as -a.
errexit Same as -e.
bgnice All background jobs are run at a lower

priority. This is the default mode.
emacs Puts you in an emacs style in-line editor

for command entry.
gmacs Puts you in a gmacs style in-line editor

for command entry.
ignoreeof The shell will not exit on end-of-file.

The command exit must be used.
keyword Same as -k.
markdirs All directory names resulting from file

name generation have a trailing /
appended.

monitor Same as -m.
noclobber Same as -C.

357

noexec Same as -n.
noglob Same as -f.
nolog Do not save function definitions in the

history file.
notify Same as -b.
nounset Same as -u.
privileged Same as -p.
verbose Same as -v.
trackall Same as -h.
vi Puts you in insert mode of a vi style in-

line editor until you hit the escape
character 033. This puts you in control
mode. A return sends the line.

viraw Each character is processed as it is
typed in vi mode.

xtrace Same as -x.
If no option name is supplied, then the current option settings
are printed.
-p Disables processing of the $HOME/.profile file and

uses the file /etc/suid_profile instead of the ENV file.
This mode is on whenever the effective uid (gid) is not
equal to the real uid (gid). Turning this off causes the
effective uid and gid to be set to the real uid and gid.

-s Sort the positional parameters lexicographically.
-t (Obsolete). Exit after reading and executing one

command.
-u Treat unset parameters as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are

executed.
- - Do not change any of the options; useful in setting $1

to a value beginning with -. If no arguments follow this
option then the positional parameters are unset.

As an obsolete feature, if the first arg is - then the -x
and -v options are turned off and the next arg is treated

Appendix E: Korn Shell Man Page

358

Korn Shell User and Programming Manual

as the first argument. Using + rather than - causes
these options to be turned off. These options can also
be used upon invocation of the shell. The current set of
options may be found in $-. Unless -A is specified, the
remaining arguments are positional parameters and are
assigned, in order, to $1 $2 If no arguments are
given, then the names and values of all variables are
printed on the standard output.

§ shift [n]
The positional parameters from $n+1 . . . are renamed
$1 . . . , default n is 1. The parameter n can be any
arithmetic expression that evaluates to a non-negative
number less than or equal to $#.

sleep seconds
Suspends execution for the number of decimal seconds
or fractions of a second given by seconds.

§ trap [-p] [action] [sig] . . .
The -p option causes the trap action associated with
each trap as specified by the arguments to be printed
with appropriate quoting. Otherwise, action will be
processed as if it were an argument to eval when the
shell receives signal(s) sig. Each sig can be given as a
number or as the name of the signal. Trap commands
are executed in order of signal number. Any attempt to
set a trap on a signal that was ignored on entry to the
current shell is ineffective. If action is omitted and the
first sig is a number, or if action is -, then the trap(s) for
each sig are reset to their original values. If action is
the null string then this signal is ignored by the shell
and by the commands it invokes. If sig is ERR then
action will be executed whenever a command has a
non-zero exit status. If sig is DEBUG then action will
be executed before each command. If sig is 0 or EXIT
and the trap statement is executed inside the body of a
function, then the command action is executed after
the function completes. If sig is 0 or EXIT for a trap

359

set outside any function then the command action is
executed on exit from the shell. If sig is KEYBD, then
action will be executed whenever a key is read while in
emacs, gmacs, or vi mode. The trap command with no
arguments prints a list of commands associated with
each signal number.

true Does nothing, and exits 0. Used with while for infinite
loops.

§§ typeset [±AHflnprtux] [±EFLRZi[n]] [vname [
=value]] . . .
Sets attributes and values for shell variables and
functions. When invoked inside a function, a new
instance of the variable vname is created. The
variable�s value and type are restored when the
function completes. The following list of attributes
may be specified:

-A Declares vname to be an associative array. Subscripts
are strings rather than arithmetic expressions.

-E Declares vname to be a double precision floating point
number. If n is non-zero, it defines the number of
significant figures that are used when expanding
vname. Otherwise, ten significant figures will be used.

-F Declares vname to be a double precision floating point
number. If n is non-zero, it defines the number of
places after the decimal point that are used when
expanding vname . Otherwise ten places after the
decimal point will be used.

-H This option provides UNIX to host-name file mapping
on non-UNIX machines.

-L Left justify and remove leading blanks from value. If n
is non-zero, it defines the width of the field, otherwise
it is determined by the width of the value of first
assignment. When the variable is assigned to, it is
filled on the right with blanks or truncated, if
necessary, to fit into the field. The -R option is turned
off.

Appendix E: Korn Shell Man Page

360

Korn Shell User and Programming Manual

-R Right justify and fill with leading blanks. If n is non-
zero, it defines the width of the field, otherwise it is
determined by the width of the value of first
assignment. The field is left filled with blanks or
truncated from the end if the variable is reassigned.
The -L option is turned off.

-Z Right justify and fill with leading zeros if the first non-
blank character is a digit and the -L option has not
been set. Remove leading zeros if the -L option is also
set. If n is non-zero, it defines the width of the field,
otherwise it is determined by the width of the value of
first assignment.

-f The names refer to function names rather than variable
names. No assignments can be made and the only
other valid options are -t, -u and -x. The -t option turns
on execution tracing for this function. The -u option
causes this function to be marked undefined. The
FPATH variable will be searched to find the function
definition when the function is referenced.

-i Declares vname to be represented internally as integer.
The right hand side of an assignment is evaluated as an
arithmetic expression when assigning to an integer. If
n is non-zero, it defines the output arithmetic base,
otherwise the output base will be ten.

-l All upper-case characters are converted to lower-case.
The upper-case option, -u, is turned off.

-n Declares vname to be a reference to the variable whose
name is defined by the value of variable vname. This is
usually used to reference a variable inside a function
whose name has been passed as an argument.

-r The given vnames are marked readonly and these
names cannot be changed by subsequent assignment.

-t Tags the variables. Tags are user definable and have
no special meaning to the shell.

-u All lower-case characters are converted to upper-case.
The lower-case option, -l, is turned off.

361

-x The given vnames are marked for automatic export to
the environment of subsequently-executed commands.
Variables whose names contain a . cannot be exported.

The -i attribute cannot be specified along with -R, -L, -Z, or -
f.

Using + rather than - causes these options to be turned off. If no
vname arguments are given, a list of vnames (and optionally the
values) of the variables is printed. (Using + rather than - keeps
the values from being printed.) The -p option causes typeset
followed by the option letters to be printed before each name
rather than the names of the options. If any option other than -
p is given, only those variables which have all of the given
options are printed. Otherwise, the vnames and attributes of all
variables are printed.
ulimit [-HSacdfmnpstv] [limit]

Set or display a resource limit. The available resource
limits are listed below. Many systems do not support
one or more of these limits. The limit for a specified
resource is set when limit is specified. The value of
limit can be a number in the unit specified below with
each resource, or the value unlimited. The -H and -S
options specify whether the hard limit or the soft limit
for the given resource is set. A hard limit cannot be
increased once it is set. A soft limit can be increased
up to the value of the hard limit. If neither the H nor S
options is specified, the limit applies to both. The
current resource limit is printed when limit is omitted.
In this case, the soft limit is printed unless H is
specified. When more than one resource is specified,
then the limit name and unit is printed before the value.

-a Lists all of the current resource limits.
-c The number of 512-byte blocks on the size of core

dumps.

Appendix E: Korn Shell Man Page

362

Korn Shell User and Programming Manual

-d The number of K-bytes on the size of the data area.
-f The number of 512-byte blocks on files that can be

written by the current process or by child processes
(files of any size may be read).

-m The number of K-bytes on the size of physical
memory.

-n The number of file descriptors plus 1.
-p The number of 512-byte blocks for pipe buffering.
-s The number of K-bytes on the size of the stack area.
-t The number of CPU seconds to be used by each

process.
-v The number of K-bytes for virtual memory.

If no option is given, -f is assumed.

umask [-S] [mask]
The user file-creation mask is set to mask (see
umask(2)). mask can either be an octal number or a
symbolic value as described in chmod(1). If a
symbolic value is given, the new umask value is the
complement of the result of applying mask to the
complement of the previous umask value. If mask is
omitted, the current value of the mask is printed. The -
S option causes the mode to be printed as a symbolic
value. Otherwise, the mask is printed in octal.

§ unalias [-a] name . . .
The aliases given by the list of names are removed
from the alias list. The -a option causes all the aliases
to be unset.

§unset [-fnv] vname . . .
The variables given by the list of vnames are
unassigned, i.e., their values and attributes are erased.
Readonly variables cannot be unset. If the -f option is
set, then the names refer to function names. If the -v
option is set, then the names refer to variable names.
The -f option overrides -v. If -n is set and name is a

363

name reference, then name will be unset rather than
the variable that it references. The default is
equivalent to -v. Unsetting LINENO, MAILCHECK,
OPTARG , OPTIND , RANDOM , SECONDS ,
TMOUT, and _ removes their special meaning even if
they are subsequently assigned to.

wait [job . . .]
Wait for the specified job and report its termination
status. If job is not given, then all currently active child
processes are waited for. The exit status from this
command is that of the last process waited for. See
Jobs for a description of the format of job.

whence [-afpv] name . . .
For each name, indicate how it would be interpreted if
used as a command name.
The -v option produces a more verbose report. The -f
options skips the search for functions. The -p option
does a path search for name even if name is an alias, a
function, or a reserved word. The -a option is similar to
the -v option but causes all interpretations of the given
name to be reported.

Invocation.
If the shell is invoked by exec(2), and the first character of
argument zero ($0) is -, then the shell is assumed to be a login
shell and commands are read from /etc/profile and then from
either .profile in the current directory or $HOME/.profile, if
either file exists. Next, for interactive shells, commands are
read from the file named by performing parameter expansion,
command substitution, and arithmetic substitution on the value
of the environment variable ENV if the file exists. If the -s
option is not present and arg is, then a path search is performed
on the first arg to determine the name of the script to execute.
The script arg must have read permission and any setuid and
setgid settings will be ignored. If the script is not found on the
path, arg is processed as if it named a built-in command or

Appendix E: Korn Shell Man Page

364

Korn Shell User and Programming Manual

function. Commands are then read as described below; the
following options are interpreted by the shell when it is invoked:
-c If the -c option is present, then commands are read

from the first arg. Any remaining arguments become
positional parameters starting at 0.

-s If the -s option is present or if no arguments remain,
then commands are read from the standard input. Shell
output, except for the output of the specialbuiltin-
incommands listed above, is written to file descriptor
2.

-i If the -i option is present or if the shell input and output
are attached to a terminal (as told by tcgetattr(2)), then
this shell is interactive. In this case TERM is ignored
(so that kill 0 does not kill an interactive shell) and
INTR is caught and ignored (so that wait is
interruptible). In all cases, QUIT is ignored by the
shell.

-r If the -r option is present, the shell is a restricted shell.
-D A list of all double quoted strings that are preceded by

a $ will be printed on standard output and the shell will
exit. This set of strings will be subject to language
translation when the locale is not C or POSIX. No
commands will be executed.

-I filename
The -R filename option is used to generate a cross
reference database that can be used by a separate
utility to find definitions and references for variables
and commands.

The remaining options and arguments are described under the
set command above. An optional - as the first argument is
ignored.

Rsh Only.
Rsh is used to set up login names and execution environments
whose capabilities are more controlled than those of the standard
shell. The actions of rsh are identical to those of sh , except that

365

the following are disallowed:

- changing directory (see cd(1))
- setting or unsetting the value or attributes of SHELL,
ENV, or PATH
- specifying path or command names containing /
- redirecting output (>, >|, , and >>)
- adding or deleting built-in commands

The restrictions above are enforced after .profile and the ENV
files are interpreted.

When a command to be executed is found to be a shell procedure,
rsh invokes sh to execute it. Thus, it is possible to provide to the
end-user shell procedures that have access to the full power of
the standard shell, while imposing a limited menu of commands;
this scheme assumes that the end-user does not have write and
execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile has
complete control over user actions, by performing guaranteed
setup actions and leaving the user in an appropriate directory
(probably not the login directory).

The system administrator often sets up a directory of commands
(e.g., /usr/rbin) that can be safely invoked by rsh.

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the
shell to return a non-zero exit status. Otherwise, the shell
returns the exit status of the last command executed (see also
the exit command above). If the shell is being used non-
interactively, then execution of the shell file is abandoned. Run
time errors detected by the shell are reported by printing the
command or function name and the error condition. If the line
number that the error occurred on is greater than one, then the
line number is also printed in square brackets ([]) after the

Appendix E: Korn Shell Man Page

366

Korn Shell User and Programming Manual

command or function name.
CAVEATS

If a command is executed, and then a command with the same
name is installed in a directory in the search path before the
directory where the original command was found, the shell will
continue to exec the original command. Use the -t option of the
alias command to correct this situation.

Some very old shell scripts contain a ̂ as a synonym for the pipe
character |.

Using the hist built-in command within a compound command
will cause the whole command to disappear from the history
file.

The built-in command . file reads the whole file before any
commands are executed. Therefore, alias and unalias commands
in the file will not apply to any commands defined in the file.

Traps are not processed while a job is waiting for a foreground
process. Thus, a trap on CHLD won�t be executed until the
foreground job terminates.

It is a good idea to leave a space after the comma operator in
arithmetic expressions to prevent the comma from being
interpreted as the decimal point character in certain locales.

367

Appendix E: Korn Shell Man Page

368

Korn Shell User and Programming Manual

369

Appendix F:
Pdksh

The Public Domain Korn Shell, or pdksh, is a free, public domain
version of the Korn shell. It�s compatible with most any version of Unix
such as SCO, BSD, Solaris, HP-UX, but is mostly used on Linux-based
systems. It has most of the features of ksh88, as well as some ksh93 and
additional features that are not in either. Here are a few of the features
not in pdksh:

� Exported aliases and functions
� Set -t
� Signals/traps not cleared during functions
� Trap DEBUG, local ERR and EXIT traps in functions
� ERRNO parameter
� Float and structure datatypes
� Compound and nameref variables
� Associative arrays
� Discipline functions
� Search, replace, and substring operators

The source distribution contains more details on features not found in
pdksh as well as current bugs/anomolies.

370

Korn Shell User and Programming Manual

Downloading the Source

It�s bundled with versions of Linux, including Red Hat�s, and the
source distribution is available from the following sites:

ftp://ftp.cs.mun.ca/pub/pdksh/

The following sites have been known to mirror the
above directory:

Austria:
http://gd.tuwien.ac.at/utils/shells/pdksh/

France:
ftp://ftp.lip6.fr/pub/unix/shells/pdksh/

United Kingdom:
ftp://ftp.demon.net/pub/mirrors/pdksh/

United States:
ftp://ftp.rge.com/pub/shells/pdksh/

More information is available at this URL: http://www.kornshell.com/
resources/.

Building Pdksh

Once downloaded, it is fairly easy to build a runnable version. The first
step is to run the configure script. This is a GNU script that will generate
a Makefile and config.h files. Some of the useful options to configure
are:

prefix=PATH
indicates the directory tree under which the binary and
man page are installed (ie, PATH/bin/ksh and

371

PATH/man/man1/ksh.1). The default prefix is /usr/
local.

exec-prefix=PATH
overrides -prefix for machine dependent files

program-prefix=pd
install binary and man page as pdksh and pdksh.1

verbose
show what is being defined as script runs

There is also an option to enable/disable features during the configure
step. More information about this can be viewed by running "configure
-help | more".

Appendix F: Pdksh

Table F.1: Pdksh Build Steps

1) configure configure PDKSH and prepare
for build

2) make build binaries and docs
3) make check verify the build
4) make install run the installation step
5) set default shell add pdksh path to /etc/shells (for

default login shell). This step is
optional.

372

Korn Shell User and Programming Manual

For the Red Hat distribution of Linux, make sure that /dev/tty has mode
0666 (not mode 0644). Otherwise, you will get warnings about not
being able to do job control.

The next step is to actually build the binary or runnable version and is
done by running "make". If you get compile/link errors, look at the
Readme file in the distribution for details. You may need to obtain the
GNU public domain C compiler if you don�t have one with your system.

Once you�ve built the binary, you can sanity check it by running "make
check". If you don�t have Perl available, you can also do this by running
"ENV= pdksh misc/Bugs pdksh", where pdksh is the path to pdksh.

If it checks out ok, you can then install it by running "make install". If
you want to make pdksh your default login shell, then you should add
this to the /etc/shells file.

373

Appendix G:
Pdksh

Quick Reference

COMMAND EXECUTION

The primary prompt (PS1 - default $ or # for super-users) is displayed
whenever the Korn shell is ready to read a command. The secondary
prompt (PS2 - default >) is displayed when the Korn shell needs more
input.

Command Execution Format

command1 ; command2
execute command1 followed by command2

command & execute command asynchronously in the background;
do not wait for completion

command1 | command2
pass the standard output of command1 to standard
input of command2

command1 && command2
execute command2 if command1 returns zero
(successful) exit status

command1 | | command2
execute command2 if command1 returns non-zero
(unsuccessful) exit status

374

Korn Shell User and Programming Manual

command |& execute command asynchronously with its standard
input and output attached to the parent shell; use read
�p/print �p to manipulate the standard input/output

command \continue command onto the next line
{ command ; } execute command in the current shell
(command) execute command in a subshell

REDIRECTING INPUT/OUTPUT

The Korn shell provides a number of operators that can be used to
manipulate command input/output, files, and co-processes.

I/O Redirection Operators

<file redirect standard input from file
>file redirect standard output to file. Create file if non-

existent, else overwrite.
>>file append standard output to file. Create file if non-

existent.
>|file redirect standard output to file. Create file if non-

existent, else overwrite even if noclobber is set.
file open file for reading & writing as standard input

<&� close standard input
>&� close standard output
<&n redirect standard input from file descriptor n
>&n redirect standard output to file descriptor n
n<file redirect file descriptor n from file
n>file redirect file descriptor n to file
n>>file redirect file descriptor n to file. Create file if non-

existent, else overwrite.
n>|file redirect file descriptor n to file. Create file if non-

existent, else overwrite even if noclobber is set.
n<&m redirect file descriptor n from file descriptor m
n>&m redirect file descriptor n to file descriptor m
n file open file for reading & writing as file descriptor n
n<<word redirect to file descriptor n until word is read

375

n<<�word redirect to file descriptor n until word is read; ignore
leading tabs

n<&� close file descriptor n for standard input
n>&� close file descriptor n for standard output
n<&p redirect input from co-process to file descriptor n. If n

is not specified, use standard input.
n>&p redirect output of co-process to file descriptor n. If n is

not specified, use standard output.

FILENAME SUBSTITUTION

File name substitution is a feature which allows special characters
and patterns to substituted with file names in the current directory, or
arguments to the case and [[...]] commands.

Pattern-Matching Characters/Patterns

? match any single character
* match zero or more characters, including null
[abc] match any characters between the brackets
[x�z] match any characters in the range x to z
[a�c e�g] match any characters in the range a to c, e to g
[!abc] match any characters not between the brackets
[!x�z] match any characters not in the range x to z
. strings starting with '.' must be explicitly matched
?(pattern-list) match zero or one occurrence of any pattern
*(pattern-list) match zero or more occurrences of any pattern
+(pattern-list) match one or more occurrence of any pattern
@(pattern-list)

match exactly one occurrence of any pattern
!(pattern-list) match anything except any pattern
pattern-list multiple patterns must be separated with a '|' character

Appendix G: Pdksh Quick Reference

376

Korn Shell User and Programming Manual

VARIABLES

Like in other high-level progamming languages, variables are used by
the Korn shell to store values. Variable names can begin with an
alphabetic or underscore character, followed by one or more
alphanumeric or underscore characters. Other variable names that
contain only digits or special characters are reserved for special
variables (called parameters) set directly by the Korn shell. Data
types (called attributes) and one-dimensional arrays are also
supported by the Korn shell.

Variable/Attribute Assignment Format

variable= declare variable and set it to null
typeset variable=

declare variable and set it to null. If used within a
function, then a local variable is declared.

variable=value
assign value to variable

typeset variable=value
assign value to variable. If used within a function,
then a local variable is declared.

typeset �attribute variable=value
assign attribute and value to variable

typeset �attribute variable
assign attribute to variable

typeset +attribute variable
remove attribute from variable (except readonly)

Variable/Attribute Listing Format

typeset �attribute
display a list of variable names and their values that
have attribute set

typeset +attribute
display a list of variable names that have attribute set

377

VARIABLE ATTRIBUTES

Variables can have one or more attributes that specify their internal
representation, scope, or the way they are displayed.

Variable Attribute Assignment Format

typeset �H variable
Set UNIX to host-name file mapping for non-UNIX
systems

typeset �i variable
Set variable to be integer type

typeset �in variable
Set variable to be integer type with base n

typeset �l variable
Set variable to lower case

typeset �L variable
Left justify variable; the field width is specified by the
first assignment

typeset �Ln variable
Left justify variable; set field width to n

typeset �LZn variable
Left justify variable; set field width to n and strip
leading zeros

typeset �r variable
Set variable to be readonly (same as readonly)

typeset �R variable
Right justify variable; the field width is specified by
the first assignment

typeset �Rn variable
Right justify variable; set field width to n

typeset �RZn variable
Right justify variable; set field width to n and fill with
leading zeros

typeset �t variable
Set the user-defined attribute for variable. This has no
meaning to the Korn shell.

Appendix G: Pdksh Quick Reference

378

Korn Shell User and Programming Manual

typeset �u variable
Set variable to upper case

typeset �x variable
Automatically export variable to the environment
(same as export)

typeset �Z variable
Same as typeset �RZ

VARIABLE SUBSTITUTION

Variable values can be accessed and manipulated using variable
expansion. Basic expansion is done by preceding the variable name
with the $ character. Other types of expansion can be used to return
portions or the length of variables, use default or alternate values,
assign default or alternate values, and more.

Variable Expansion Format

${variable} value of variable
${#variable} length of variable
${variable:�word}

value of variable if set and not null, else print word. If
: is omitted, variable is only checked if it is set.

${variable:=word}
value of variable if set and not null, else variable is set
to word, then expanded. If : is omitted, variable is only
checked if it is set.

${variable:?} value of variable if set and not null, else print
"variable: parameter null or not set". If : is omitted,
variable is only checked if it is set.

${variable:?word}
value of variable if set and not null, else print value of
word and exit. If : is omitted, variable is only checked
if it is set.

${variable:+word}
value of word if variable is set and not null, else

379

nothing is substituted. If : is omitted, variable is only
checked if it is set.

${variable#pattern}
value of variable without the smallest beginning
portion that matches pattern

${variable##pattern}
value of variable without the largest beginning portion
that matches pattern

${variable%pattern}
value of variable without the smallest ending portion
that matches pattern

${variable%%pattern}
value of variable without the largest ending portion
that matches pattern

SPECIAL PARAMETERS

Some special parameters are automatically set by the Korn shell, and
usually cannot be directly set or modified.

Special Parameters

$# number of positional parameters
$@ all positional parameters ("$1", "$2", ..., "$n")
$* all positional parameters ("$1 $2 ... $n")
$? exit status of the last command
$$ process id of the current shell
$ � current options in effect
$! process id of last background command

SPECIAL VARIABLES

There are a number of variables provided by the Korn shell that allow
you to customize your working environment. Some are automatically
set by the Korn shell, some have a default value if not set, while others
have no value unless specifically set.

Appendix G: Pdksh Quick Reference

380

Korn Shell User and Programming Manual

Special Variables

CDPATH search path for cd when not given a full pathname (no
default)

COLUMNS window width for in-line edit mode and select
command lists (default 80)

EDITOR pathname of the editor for in-line editing (default /bin/
ed)

ENV pathname of the environment file (no default)
FCEDIT default editor for the fc command
FPATH search path for auto-loaded functions

pathname of the history file
HISTFILE pathname of the history file (default $HOME/

.sh_history)
HISTSIZE number of commands to save in history file (default

128)
HOME home directory
IFS internal field separator (default space, tab, newline)
LINES specifies column length for select lists
MAIL name of mail file
MAILCHECK

specifies how often to check for mail (default 600
seconds)

MAILPATH search path for mail files (no default)
OLDPWD previous working directory
OPTARG value of the last getopts option argument
OPTIND index of the last getopts option argument
PATH search path for commands (default /bin:/usr/bin:)
PPID process id of the parent shell
PS1 primary prompt string (default $, #)
PS2 secondary prompt string (default >)
PS3 select command prompt (default #?)
PS4 debug prompt string (default +)
RANDOM contains a random number
REPLY contains input to read command when no variables

given

381

SECONDS contains number of seconds since Korn shell
invocation

SHELL pathname of shell
TERM specifies your terminal type (no default)
TMOUT Korn shell timeout variable (default 0)
VISUAL pathname of the editor for in-line editing

ARRAY VARIABLES

One-dimensional arrays are supported by the Korn shell. On most
systems, arrays can have a maximum of 512 elements. Array
subscripts start at 0 and go up to 511. Any variable can become an
array by simply referring to it with a subscript.

Array Variable Assignment Format

variable[0]=value variable[1]=value ... variable[n]=value
set �A variable value0 value1 ... valuen
typeset variable[0]=value variable[1]=value ... variable[n]=value

assign values to array variable elements
set +A variable value0 value1 ... valuen

reassign values to array variable elements
typeset �attributes variable[0]=value variable[1]=value . . .

variable[n]=value
assign attributes and values to array variable elements

typeset �attributes variable
assign attributes to array variable

typeset +attributes variable
remove attributes from array variable (except
readonly)

Array Variable Evaluation

${array}, $array
array element zero

${array[n]} array element n
${array[*]}, ${array[@]}

all elements of an array

Appendix G: Pdksh Quick Reference

382

Korn Shell User and Programming Manual

${#array[*]}, ${#array[@]}
number of array elements

${#array[n]} length of array element n

MISC SUBSTITUTION

$(command) replace with the standard output of command
$((arithmetic-expression)

replace with the result of arithmetic-expression
$(<file) replace with the contents of file
`command ` replace with the standard output of command
~ replace with $HOME
~user replace with the home directory of user
~ � replace with $OLDPWD (previous directory)
~+ replace with $PWD (current directory)

QUOTING

Quotes are used when assigning values containing whitespace or
special characters, to delimit variables, and to assign command
output. They also improve readability by separating arguments from
commands.

'...' remove the special meaning of enclosed characters
except '

"..." remove the special meaning of enclosed characters
except $, ', and \

\c remove the special meaning of character c
`command ` replace with the standard output of command

IN-LINE EDITORS

In-line editing provides the ability to edit the current or previous
commands before executing them. There are three in-line editing
modes available: emacs, gmacs, and vi. The emacs and gmacs modes

383

are basically the same, except for the way Ctl-t is handled. The in-
line editing mode is specified by setting the EDITOR or VISUAL
variables, or with the set �o command. The editing window width is
specified by the COLUMNS variable. For lines longer than the
window width, a mark is displayed to notify position. The marks >, <,
and * specify that the line extends to the right, left, or both sides of the
window.

Vi Input Mode Commands

#, <Backspace>
delete previous character

Ctl-d terminate the Korn shell
Ctl-v escape next character
Ctl-w delete previous word
Ctl-x, @ kill the entire line
<Return> execute current line
\ escape next erase or kill character

Vi Motion Edit Commands

[n]h, [n]<Backspace>
move left one character

[n]l, [n]<Space>
move forward one character

[n]b move backward one word
[n]B move backward one word; ignore punctuation
[n]w move forward one word
[n]W move forward one word; ignore punctuation
[n]e move to end of next word
[n]E move to end of next word; ignore punctuation
[n]fc move forward to character c
[n]Fc move backward to character c
[n]tc move forward to character before character c
[n]Tc move backward to character before character c
[n]; repeat last f, F, t, or T command

Appendix G: Pdksh Quick Reference

384

Korn Shell User and Programming Manual

[n], repeat last f, F, t, or T command, but in opposite
direction

0 move cursor to start of line
^ move cursor to first non-blank character in line
$ move cursor to end of line

Vi Search/Edit History Commands

[n]G get last command (or command n)
[n]j, [n]+ get next command from history file
[n]k, [n]� get previous command from history file
n repeat last / or ? search
N repeat last / or ? search, except in opposite direction
/string search backward in history file for command that

matches string
?string search forward in history file for command that

matches string

Vi Text Modification Commands

a add text after current character
A append text to end of current line
[n]cX, c[n]X change current character up to cursor position defined

by X
[n]dX, d[n]X delete current character up to cursor position defined

by X
[n]yX, y[n]X copy current character up to cursor position defined by

X into buffer
X used to define ending cursor position for c, d, or y

commands
b backwards to beginning of word
e cursor to end of current word
w cursor to beginning of next word
W B E same as w b e, but ignore punctuation
0 before cursor to end of current line
$ cursor to end of current line

385

C change current character to end of line
D delete current character through end of line
i insert text left of the current character
I insert text before beginning of line
[n]p put previously yanked/deleted text after cursor
[n]P put previously yanked/deleted text before cursor
[n]rc replace current character with c
R replace text from cursor to <ESCAPE>
S delete entire line and enter input mode
yy copy current line into buffer
[n]x delete current character
[n]X delete previous character
[n]. repeat last text modification command
[n]~ toggle case of current character
[n]_ append last word of previous ksh command
\replace current word with filename that matches

word*. For unique matches, append a / to directories
and " " (space) for files.

Vi Other Edit Commands

u undo last text modification command
U undo text modification commands on current line
[n]v return output of fc �e command
Ctl-l redisplay current line
Ctl-j execute current line
Ctl-m execute current line
insert a # (comment) at beginning of current line
= list files that match current word*
* replace current word with files that match word*
@_c insert value of alias c

Emacs/Gmacs In-Line Editor Commands

Ctl-b move left one character
Ctl-f move right one character

Appendix G: Pdksh Quick Reference

386

Korn Shell User and Programming Manual

Esc-b move left one word
Esc-f move right one word
Ctl-a move to beginning of line
Ctl-e move to end of line
Ctl-h delete preceding character
Ctl-x delete the entire line
Ctl-k delete from cursor to end of line
Ctl-d delete current character
Esc-d delete current word
Ctl-w delete from cursor to mark
Ctl-y undo last delete (w/Esc-p)
Ctl-p get previous command from history file
Ctl-n get next command from history file
Ctl-o execute current command line and get next command

line
Ctl-rstring search backward in history file for command that

contains string
Ctl-c change current character to upper case
Esc-c change current word to upper case
Esc-l change current character to lower case
Esc-p save to buffer from cursor to mark
Esc-<SPACE>, Ctl-@

mark current location
Ctl-l redisplay current line
Ctl-]c move cursor forward to character c
Ctl-xCtl-x interchange the cursor and mark
erase delete previous character
Esc-Ctl-h delete previous word
Esc-h delete previous word
Ctl-t transpose current and next character (emacs)
Ctl-t transpose two previous characters (gmacs)
Ctl-j execute current line
Ctl-m execute current line
Esc-< get oldest command line
Esc-> get previous command line

387

Esc-n define numeric parameter n for next command
(command can be Ctl-c, Ctl-d, Ctl-k, Ctl-n, Ctl-p,
Ctl-r, Esc-., Ctl-]c, Esc-_, Esc-b, Esc-c, Esc-d, Esc-f,
Esc-h, Esc-l, Esc-Ctl-h)

Esc-c insert value of alias _c (c cannot be b, c, d, f, h, l, or p)
Esc-., Esc-_ insert last word of previous command
Esc-Esc replace current word with filename that matches

word*. For unique matches, append a / to directories
and " " (space) for files

Esc-= list files that match current word*
Ctl-u multiply parameter of next command by 4
\ escape next character
Ctl-v display version of shell
Esc-# insert a # (comment) at beginning of current line

JOB CONTROL

Job control is a process manipulation feature found in the Korn shell.
It allows programs to be stopped and restarted, moved between the
foreground and background, their processing status to be displayed,
and more. To enable job control, the monitor option must be enabled.
By default, this is enabled on systems that support the job control
feature. When a program is run in the background, a job number and
process id are returned.

Job Control Commands

bg put current stopped job in the background
bg %n put stopped job n in the background
fg move current background job into the foreground
fg %n move background job n into the foreground
jobs display status of all jobs
jobs �l display status of all jobs along with process ids
jobs �p display process ids of all jobs
kill �l list all valid signal names
kill [�signal] %n

send specified signal to job n (default 9)

Appendix G: Pdksh Quick Reference

388

Korn Shell User and Programming Manual

set �m, set �o monitor
enable job control

stty [�]tostop allow/prevent background jobs from generating output
wait wait for all background jobs to complete
wait %n wait for background job n to complete
Ctl-z stop the current job

Job Name Format

%n job n
%+, %% current job
%� previous job
%string job whose name begins with string
%?string job that matches part or all of string

ARITHMETIC

Integer arithmetic is performed with the let and ((...)) commands. All
of the operators from the C programming language (except ++, � �,
and ?:) are supported by the Korn shell. The format for arithmetic
constants is:

number
or
base#number

where base is a decimal number between 2 and 36 that specifies the
arithmetic base. If not specified, the default is base 10. The arithmetic
base can also be set with the typeset �i command.

Arithmetic Commands

let "arithmetic-expression"
((arithmetic-expression))

evaluate arithmetic expression
integer variable

declare an integer variable
integer variable=integer-value

389

declare an integer variable and set it to a value
integer variable="arithmetic-assignment-expression"

declare an integer variable and assign it the value of
the arithmetic-assignment-expression

typeset �in variable[=value]
declare a base n integer variable, and optionally assign
it a value

Arithmetic Operators

� unary minus
! logical negation
~ bitwise negation
*, /, % multiplication, division, remainder (modulo)
+, � addition, subtraction
<<, >> left shift, right shift
<=, < less than or equal to, less than
 >=, > greater than or equal to, greater than
==, != equal to, not equal to
& bitwise AND
^ bitwise exclusive OR
| bitwise OR
&& logical AND
|| logical OR
= assignment
*=, /=, %= multiply assign, divide assign, modulo assign
+=, �= increment, decrement
<<=, >>= left shift assign, right shift assign
&=, ^=, |= bitwise AND assign, bitwise exclusive OR assign,

bitwise OR assign
(...) grouping (used to override precedence rules)

OPTIONS

The Korn shell has a number of options that specify your environment
and control execution. They can be enabled/disabled with the set

Appendix G: Pdksh Quick Reference

390

Korn Shell User and Programming Manual

command or on the ksh command line.

Enabling/Disabling Options

ksh [�/+options]
enable/disable specified options

set [�/+options]
enable/disable specified options

List of Options

�a automatically export variables that are defined
�b execute all background jobs at a lower priority
�c cmds read and execute cmds (w/ksh only)
� e execute ERR trap (if set) on non-zero exit status

from any commands
�f disable file name expansion
�h make commands tracked aliases when first

encountered
�i execute in interactive mode (w/ksh only)
�k put variable assignment arguments in environment
�m enable job control (system dependent)
�n read commands without executing them
�o allexport automatically export variables that are defined
�o bgnice execute all background jobs at a lower priority
�o emacs use emacs-style editor for in-line editing
�o errexit execute ERR trap (if set) on non-zero exit status

from any commands
�o gmacs use gmacs-style editor for in-line editing
�o ignoreeof do not exit on end of file (default Ctl-d); use exit
�o keyword put variable assignment arguments in environment
�o markdirs display trailing / on directory names resulting from

file name substitution
�o monitor enable job control (system dependent)
�o noclobber prevent I/O redirection from truncating existing files
�o noexec read commands without executing them

391

�o noglob disable file name expansion
�o nolog do not save function definitions in history file
�o nounset return error on substitution of unset variables
�o privileged disable processing of $HOME/.profile, and use /

etc/suid_profile instead of ENV file
�o trackall make commands tracked aliases when first

encountered
�o verbose display input lines as they are read
�o vi use vi-style editor for in-line editing
�o viraw process each character as it is typed in vi mode
�o xtrace display commands and arguments as executed
�p disable processing of $HOME/.profile, and use /

etc/suid_profile instead of ENV file
� r run a restricted shell (w/ksh only)
� s read commands from standard input
�u return error on substitution of unset variables
�v display input lines as they are read
�x display commands and arguments as executed
� disable �v and �x flags; don't process remaining

flags

ALIASES

Aliases are command macros and are used as shorthand for other
commands, especially frequently-used ones.

Alias Commands

alias display a list of aliases and their values
alias name display the value for alias name
alias name='value'

create an alias name set to value
alias �t display a list of tracked aliases
alias �t name='value'

create a tracked alias name set to value
unalias name remove the alias name

Appendix G: Pdksh Quick Reference

392

Korn Shell User and Programming Manual

Some Preset Aliases

Alias Value Definition
autoload typeset �fu define an autoloading function
echo print � display arguments
functions typeset �f display list of functions
hash alias �t � display list of tracked aliases
history fc �l list commands from history file
integer typeset �i declare integer variable
r fc �e � re-execute previous command
stop kill �STOP suspend job
type whence �v display information about

commands

CONDITIONAL EXPRESSIONS

The [[...]] command is used to evaluate conditional expressions with
file attributes, strings, and integers. The basic format is:

[[expression]]

where expression is the condition you are evaluating. There must be
whitespace after the opening brackets, and before the closing
brackets. Whitespace must also separate the expression arguments
and operators. If the expression evaluates to true, then a zero exit
status is returned, otherwise the expression evaluates to false and a
non-zero exit status is returned.

[[...]] String Operators

�n string true if length of string is not zero
�o option true if option is set
�z string true if length of string is zero
string1 = string2 true if string1 is equal to string2
string1 != string2 true if string1 is not equal to string2
string = pattern true if string matches pattern
string != pattern true if string does not match pattern
string1 < string2 true if string1 is less than string2

393

string1 > string2 true if string1 is greater than string2

[[...]] File Operators

�a file true if file exists
�b file true if file exists and is a block special file
�c file true if file exists and is a character special file
�d file true if file exists and is a directory
�f file true if file exists is a regular file
�g file true if file exists and its setgid bit is set
�G file true if file exists and its group id matches the current

effective group id
�k file true if file exists and its sticky bit is set
�L file true if file exists and is a symbolic link
�O file true if file exists and is owned by the effective user id
�p file true if file exists and is a fifo special file or a pipe
�r file true if file exists and is readable
�s file true if file exists and its size is greater than zero
�S file true if file exists and is a socket
�t n true if file descriptor n is open and associated with a

terminal device
�u file true if file exists and its set user-id bit is set
�w file true if file exists and is writable
�x file true if file exists and is executable. If file is a directory,

then true indicates that the directory is readable.
file1 �ef file2 true if file1 and file2 exist and refer to same file
file1 �nt file2 true if file1 exists and is newer than file2
file1 �ot file2 true if file1 exists and is older than file2

[[...]] Integer Operators

exp1 �eq exp2 true if exp1 is equal to exp2
exp1 �ne exp2 true if exp1 is not equal to exp2
exp1 �le exp2 true if exp1 is less than or equal to exp2
exp1 �lt exp2 true if exp1 is less than exp2
exp1 �ge exp2 true if exp1 is greater than or equal to exp2
exp1 �gt exp2 true if exp1 is greater than exp2

Appendix G: Pdksh Quick Reference

394

Korn Shell User and Programming Manual

Other [[...]] Operators

!expression true if expression is false
(expression) true if expression is true; used to group expressions
[[expression1 && expression2]]

true if both expression1 and expression2 are true
[[expression1 || expression2]]

true either expression1 or expression2 are true

CONTROL COMMANDS

case value in
pattern1) commands1 ;;
pattern2) commands2 ;;
. . .
patternn) commandsn ;;

esac
Execute commands associated with the pattern that matches value.

for variable in word1 word2 . . . wordn
do

commands
done
Execute commands once for each word, setting variable to successive
words each time.

for variable
do

commands
done
Execute commands once for each positional parameter, setting
variable to successive positional parameters each time.

if command1
then

commands
fi

395

Execute commands if command1 returns a zero exit status.

if command1
then

commands2
else

commands3
fi
Execute commands2 if commands1 returns a zero exit status,
otherwise execute commands3.

if command1
then

commands
elif command2
then

commands
. . .
elif commandn
then

commands
else

commands
fi
If command1 returns a zero exit status, or command2 returns a zero
exit status, or commandn returns a zero exit status, then execute the
commands corresponding to the if/elif that returned a zero exit status.
Otherwise, if all the if/elif commands return a non-zero exit status,
execute the commands between else and fi.

select variable in word1 word2 . . . wordn
do

commands
done
Display a menu of numbered choices word1 through wordn followed
by a prompt (#? or $PS3). Execute commands for each menu

Appendix G: Pdksh Quick Reference

396

Korn Shell User and Programming Manual

selection, setting variable to each selection and REPLY to the
response until a break, exit, or EOF is encountered.

select variable
do

commands
done
Display a menu of numbered choices for each positional parameter
followed by a prompt (#? or $PS3). Execute commands for each
menu selection, setting variable to each selection and REPLY to the
response until a break, exit, or EOF is encountered.

until command1
do

commands
done
Execute commands until command1 returns a zero exit status

while command1
do

commands
done
Execute commands while command1 returns a zero exit status.

COMMANDS

: null command; returns zero exit status
. file read and execute commands in file
break exit from current enclosing for, select, until, or while

loop
break n exit from nth enclosing for, select, until, or while loop
cd dir change directory to dir(default $HOME)
cd dir1 dir2 change to directory where dir1 in current pathname is

substituted with dir2
cd � change directory to previous directory

397

echo args display arguments
eval cmds read and execute commands
exec I/O-redirection-command

perform I/O redirection on file descriptors
exec command

replace current process with command
exit exit from current program with exit status of the last

command. If given at command prompt, terminate the
login shell.

exit n exit from current program with exit status n
export display list of exported variables
export var=val

set var to value and export
export vars export vars
false return non-zero exit status
fc �l[options] [range]

display range commands from history file according to
options. If no range argument given, display last 16
commands.Options can be:
�n do not display command numbers
�r reverse order (latest commands first)
and range can be:
n1 [n2] display list from command n1 to command

n2. If n2 not specified, display all
commands from current command back to
command n1.

�count display last count commands
string display all previous commands back to

command that matches string
fc [options] [range]

edit and re-execute range commands from history file
according to options. If no range argument given, edit
and re-execute last command. Options can be:
�e editor use specified editor (default FCEDIT or /

bin/ed)

Appendix G: Pdksh Quick Reference

398

Korn Shell User and Programming Manual

�r reverse order (latest commands first)
and range can be:
n1 n2 edit command n1 to command n2
n edit command n
�n edit previous nth command
string use all the previous commands back to the

command that matches string
fc �e � [old=new] [command]

edit and re-execute command where old=new specified
to replace string old with new before executing. If no
command argument is given, use last command. The
command can be given as:
n edit and re-execute command number n
�n edit and re-execute last nth command
string edit and re-execute most previous

command that matches string
getopts optsring name arguments

parse arguments, using optstring as list of valid
options; save option letter in name

getopts optsring name
parse positional parameters, using optstring as list of
valid options; save option letter in name

newgrp change group-id to default group-id
newgrp gid change group id to gid
pwd display pathname of current directory
readonly display a list of readonly variables
readonly var set var to be readonly
readonly var=value

set var to value and make it readonly
set display list of current variables and their values
set �o display current option settings
set args set positional parameters
set �args set positional parameters that begin with �
set �s sort positional parameters
set � � unset positional parameters

399

shift shift positional parameters once left
shift n shift positional parameters n times left
test expression

evaluate expression
time command

display elapsed, user, and system time spent executing
command

times display total user and system time for current Korn
shell and its child processes

trap commands signals
execute commands when signals are received

trap "" signals
ignore signals

trap signals, trap �signals
reset traps to their default values

trap commands 0, trap commands EXIT
execute commands on exit

trap display a list of current traps
trap commands DEBUG

execute commands after each command is executed
trap commands ERR

if errexit (�e) option enabled, execute commands after
commands that have a non-zero exit status

true return a non-zero exit status
typeset display a list of current variables and their values
ulimit [options] n

set a resource limit to n. If n is not given, the specified
resource limit is displayed. If no option given, file size
limit (�f) is displayed.
� a displays all current resource limits
�c n set core dump size limit to n 512-byte blocks
�d n set data area size limit to n kilobytes
�f n set child process file write limit to n 512-byte

blocks (default)
�m n set physical memory size limit to n kilobytes

Appendix G: Pdksh Quick Reference

400

Korn Shell User and Programming Manual

�s n set stack area size limit to n kilobytes
�t n set process time limit to n seconds

umask display current file creation mask value
umask mask set default file creation mask to mask
unset var remove definition of var
whence name display information about name
whence �v name

display more information about name

FUNCTIONS

Functions are a form of commands like aliases, and scripts. They
differ from Korn shell scripts, in that they do not have to read in from
the disk each time they are referenced, so they execute faster. They
also provide a way to organize scripts into routines, like in other high-
level programming languages. Since functions can have local
variables, recursion is possible. Functions are defined with the
following format:

function name { commands ; }

Local function variables are declared with the typeset command
within the function.

Function Commands

return return from a function
return n return from a function; pass back return value of n
typeset �f display a list of functions and their definitions
typeset +f display a list of function names only
typeset �fu display a list of autoloading functions
typeset �fu name

make function name autoloading
typeset �ft name

display function commands and arguments as they are
executed

401

unset �f name
remove function name

THE PRINT COMMAND

print [options] arguments
display arguments according to options

print Options

� treat everything following � as an argument, even if it
begins with �

�n do not add a ending newline to output
�p redirect the given arguments to a co-process
�r ignore \ escape conventions
�R ignore \ escape conventions; do not interpret �

arguments as options (except �n)
�s redirect given arguments to history file
�un redirect arguments to file descriptor n.If file descriptor

is greater than 2, it must first be opened with exec. If n
is not specified, default file descriptor is 1 (standard
output).

print Escape Characters

\a Bell character
\b Backspace
\c Line without ending newline
\f Formfeed
\n Newline
\r Return
\t Tab
\v Vertical tab
\\ Backslash
\0x 8-bit character whose ASCII code is the 1-, 2-, or 3-

digit octal number x

Appendix G: Pdksh Quick Reference

402

Korn Shell User and Programming Manual

THE READ COMMAND

read [options] variables
read input into variables according to options

read name?prompt
display prompt and read the response into name

read Options

�p read input line from a co-process
�r do not treat \ as line continuation character
�s save a copy of input line in command history file
�un read input line from file descriptor n.If file descriptor

is greater than 2, it must first be opened with exec. If n
is not specified, default file descriptor is 0.

MISC

anything following a # to the end of the current line is
treated as a comment and ignored

#!interpreter if the first line of a script starts with this, then the script
is run by the specified interpreter

rsh running under the restricted shell is equivalent to ksh,
except that the following is not allowed:
� changing directories
� setting value of ENV, PATH, or SHELL
� specifying path or command names containing /
� redirecting command output command with >, >|, <>,
or >>

DEBUGGING KORN SHELL SCRIPTS

The Korn shell provides a number of options that are useful in
debugging scripts: noexec (�n), verbose (�v), and xtrace (�x). The
noexec (�n) option causes commands to be read without being
executed and is used to check for syntax errors. The verbose (�v)
option causes the input to displayed as it is read. The xtrace (�x)
option causes commands in Korn shell scripts to be displayed as they

403

are executed. This is the most useful, general debugging option. For
example, tscript could be run in trace mode if invoked "ksh �x
tscript".

FILES

$HOME/.profile
contains local environment settings, such as the search path,
execution options, local variables, aliases, and more. At login
time, it is read in and executed after the /etc/profile file.

$HOME/.sh_history
contains previously executed commands

$ENV contains the name of the file that has aliases, function, options,
variables, and other environment settings that are to be
available to subshells

EXAMPLE COMMANDS

Execute multiple commands on one line
$ pwd ; ls tmp ; print "Hello world"

Run the find command in the background
$ find . —name tmp.out —print &

Connect the output of who to grep
$ who | grep fred

Talk to fred if he is logged on
$ { who | grep fred ; } && talk fred

Send ls output to ls.out, even if noclobber is set
$ ls >| ls.out

Append output of ls to ls.out
$ ls >> ls.out

Send invite.txt to dick, jane, and spot
$ mail dick jane spot < invite.txt

List file names that begin with z
$ ls z*

List two, three, and four character file names
$ ls ?? ??? ????

List file names that begin with a, b, or c
$ ls [a-c]*

Appendix G: Pdksh Quick Reference

404

Korn Shell User and Programming Manual

List file names that do not end with .c
$ ls *[!.c]

List file names that contain any number of consecutive x's
$ ls *(x)

List file names that contain only numbers
$ ls +([0-9])

List file names tha do not end in .c, .Z, or .o
$ ls !(*.c|*.Z|*.o)

Set NU to the number of users that are logged on
$ NU=$(who | wc —l)

Set HOSTS to the contents of the /etc/hosts file
$ HOSTS=$(</etc/hosts)

Set TOTAL to the sum of 4 + 3
$ TOTAL=$((4+3))

Change directory to jane's home directory
$ cd ~jane

Set the right-justify attribute on variable SUM and set it to 70
$ typeset —R SUM=70

Set and export the variable LBIN
$ typeset —x LBIN=/usr/lbin

Set the field width of SUM to 5
$ typeset —R5 SUM

Remove the lowercase attribute from MSYS
$ typeset +l MSYS

Unset variable LBIN
$ unset LBIN

Display the length of variable FNAME
$ print ${#FNAME}

Set SYS to the hostname if not set, then display its value
$ print ${SYS:=$(hostname)}

Display an error message if XBIN is not set
$: ${XBIN:?}

Display the base directory in LBIN
$ print ${LBIN##*/}

Set array variable MONTHS to the first four month names
$ set —A MONTHS jan feb mar apr

Display element 3 of the XBUF array variable
$ print ${XBUF[3]}

Display the length of the TMP array element 2
$ print ${#TMP[2]}

405

Display $HOME set to /home/anatole
$ print '$HOME set to' $HOME

Display the value of $ENV
$ print $ENV

Display the last five commands from the history file
$ history —5

Retrieve last print command in vi edit mode
$ set —o vi; <ESCAPE>/^print<RETURN>

Bring background job 3 into the foreground
$ fg %3

Display all information about current jobs
$ jobs —l

Terminate job 5
$ kill %5

Increment variable X
$ integer X; ((X+=1))

Set variable X to 5 in base 2
$ typeset —i2 X=5

Set variable X to 20 modulo 5
$ ((X=20%5))

Set Y to 5*4 if X equals 3
$ ((X==3 && (Y=5*4)))

Terminate the Korn shell if no input given in 30 minutes
$ TMOUT=1800

Automatically export variables when defined
$ set —o allexport

Set diagnostic mode
$ set —x

Create an alias for the ls command
$ alias l='ls —FAc | ${PAGER:—/bin/pg}'

Create a tracked alias for the cp -r command
$ alias —t "cp —r"

Put the command number and current directory in the prompt
$ typeset —x PS1="!:$PWD> "

Check if variable X is set to a number
$ [[$X=+([0-9])]] && print "$X is num"

Check if X is set to null
$ [[—z $X]] && print "X set to null"

Check if FILE1 is newer than FILE2
$ [[$FILE1 —nt $FILE2]]

Appendix G: Pdksh Quick Reference

406

Korn Shell User and Programming Manual

Check if VAR is set to ABC
$ [[$VAR = ABC]]

Check if the bgnice option is set
$ [[—o bgnice]] && print "bgnice set"

Check if TMP is a readable directory
$ [[—d $TMP && —x $TMP]]

Check the number of arguments
$(($#==0)) && {print "Need arg"; exit 1;}

Display an error message, then beep
$ print "Unexpected error!\a"

Display a message on standard error
$ print —u2 "This is going to stderr"

Write a message to the command history file
$ print —s "su attempted on $(date)"

Take standard input from FILE
$ exec 0<FILE

Open file descriptor 5 for reading and writing
$ exec <> 5

Display a prompt and read the reply into ANSWER
$ read ANSWER?"Enter response: "

Create a function md that creates a directory and cd's to it
$ function md {mkdir $1 && cd $1 ; pwd}

Set a trap to ignore signals 2 and 3
$ trap "" 2 3

Run dbtest in noexec mode
$ ksh —n dbtest

Set a trap to execute pwd after each command
$ trap "pwd" DEBUG

Set X to 1 and make it readonly
$ readonly X=1

Set VAR to 1 and export it
$ export VAR=1

Set the positional parametersto A B C
$ set A B C

Set the file size creation limit to 1000 blocks
$ ulimit 1000

Disable core dumps
$ ulimit —c 0

Add group write permission to the file creation mask
$ umask 013

407

Return information about the true command
$ whence —v true

Appendix G: Pdksh Quick Reference

408

Korn Shell User and Programming Manual

409

Appendix H:
Pdksh Man Page

ksh - Public domain Korn shell

Synopsis
ksh [+-abCefhikmnprsuvxX] [+-o option] [[-c command-
string [command-name] | -s | file] [argument ...]]

Description
ksh is a command interpreter that is intended for both interactive
and shell script use. Its command language is a superset of the
sh(1) shell language.

Shell Startup
The following options can be specified only on the command
line:

-c command-string
the shell executes the command(s) contained in
command-string

-i interactive mode - see below
-l login shell

see below interactive mode
-s the shell reads commands from standard input; all

non-option arguments are positional parameters
-r restricted mode - see below

In addition to the above, the options described in the set built-
in command can also be used on the command line.

410

Korn Shell User and Programming Manual

If neither the -c nor the -s options are specified, the first non-
option argument specifies the name of a file the shell reads
commands from; if there are no non-option arguments, the shell
reads commands from standard input. The name of the shell
(i.e., the contents of the $0) parameter is determined as follows:
if the -c option is used and there is a non-option argument, it is
used as the name; if commands are being read from a file, the
file is used as the name; otherwise the name the shell was called
with (i.e., argv[0]) is used.

A shell is interactive if the -i option is used or if both standard
input and standard error are attached to a tty. An interactive
shell has job control enabled (if available), ignores the INT,
QUIT and TERM signals, and prints prompts before reading
input (see PS1 and PS2 parameters). For non-interactive shells,
the trackall option is on by default (see set command below).

A shell is restricted if the -r option is used or if either the
basename of the name the shell is invoked with or the SHELL
parameter match the pattern *r*sh (e.g., rsh, rksh, rpdksh,
etc.). The following restrictions come into effect after the shell
processes any profile and $ENV files:

� the cd command is disabled
� the SHELL, ENV and PATH parameters can�t be changed
� command names can�t be specified with absolute or
relative paths
� the -p option of the command built-in can�t be used
� redirections that create files can�t be used (i.e., >, >|, >>,
<>)

A shell is privileged if the -p option is used or if the real user-
id or group-id does not match the effective user-id or group-id
(see getuid(2),
getgid(2)). A privileged shell does not process $HOME/.profile
nor the ENV parameter (see below), instead the file /etc/

411

suid_profile is processed. Clearing the privileged option causes
the shell to set its effective user-id (group-id) to its real user-id
(group-id).

If the basename of the name the shell is called with (i.e.,
argv[0]) starts with - or if the -l option is used, the shell is
assumed to be a login shell and the shell reads and executes the
contents of /etc/profile and $HOME/.profile if they exist and
are readable.

If the ENV parameter is set when the shell starts (or, in the case
of login shells, after any profiles are processed), its value is
subjected to parameter, command, arithmetic and tilde
substitution and the resulting file (if any) is read and executed.
If ENV parameter is not set (and not null) and pdksh was
compiled with the DEFAULT_ENV macro defined, the file
named in that macro is included (after the above mentioned
substitutions have been performed).

The exit status of the shell is 127 if the command file specified
on the command line could not be opened, or non-zero if a fatal
syntax error occurred during the execution of a script. In the
absence of fatal errors, the exit status is that of the last command
executed, or zero, if no command is executed.

Command Syntax
The shell begins parsing its input by breaking it into words.
Words, which are sequences of characters, are delimited by
unquoted white-space characters (space, tab and newline) or
meta-characters (<, >, |, ;, &, (and)). Aside from delimiting
words, spaces and tabs are ignored, while newlines usually
delimit commands. The meta-characters are used in building
the following tokens: <, <&, <<, >, >&, >>, etc. are used to
specify redirections (see Input/Output Redirection below); |
is used to create pipelines; |& is used to create co-processes (see
Co-Processes below); ; is used to separate commands; & is

Appendix H: Pdksh Man Page

412

Korn Shell User and Programming Manual

used to create asynchronous pipelines; && and || are used to
specify conditional execution; ;; is used in case statements; ((..
)) are used in arithmetic expressions; and lastly, (..) are used
to create subshells.

White-space and meta-characters can be quoted individually

413

that all command constructs have an exit status: for external
commands, this is related to the status returned by wait(2) (if
the command could not be found, the exit status is 127, if it
could not be executed, the exit status is 126); the exit status of
other command constructs (built-in commands, functions,
compound-commands, pipelines, lists, etc.) are all well defined
and are described where the construct is described. The exit
status of a command consisting only of parameter assignments
is that of the last command substitution performed during the
parameter assignment or zero if there were no command
substitutions.

Commands can be chained together using the | token to form
pipelines, in which the standard output of each command but
the last is piped (see pipe(2)) to the standard input of the
following command. The exit status of a pipeline is that of its
last command. A pipeline may be prefixed by the ! reserved
word which causes the exit status of the pipeline to be logically
complemented: if the original status was 0 the complemented
status will be 1, and if the original status was not 0, then the
complemented status will be 0.

Lists of commands can be created by separating pipelines by
any of the following tokens: &&, ||, &, |& and ;. The first two
are for conditional execution: cmd1 && cmd2 executes cmd2
only if the exit status of cmd1 is zero; || is the opposite - cmd2
is executed only if the exit status of cmd1 is non-zero. && and
|| have equal precedence which is higher than that of &, |& and
;, which also have equal precedence. The & token causes the
preceding command to be executed asynchronously, that is, the
shell starts the command, but does not wait for it to complete
(the shell does keep track of the status of asynchronous
commands - see Job Control below). When an asynchronous
command is started when job control is disabled (i.e., in most
scripts), the command is started with signals INT and QUIT
ignored and with input redirected from /dev/null (however,

Appendix H: Pdksh Man Page

414

Korn Shell User and Programming Manual

redirections specified in the asynchronous command have
precedence). The |& operator starts a co-process which is
special kind of asynchronous process (see Co-Processes below).
Note that a command must follow the && and || operators,
while a command need not follow &, |& and ;. The exit status
of a list is that of the last command executed, with the exception
of asynchronous lists, for which the exit status is 0.

Compound commands are created using the following reserved
words - these words are only recognized if they are unquoted
and if they are used as the first word of a command (i.e., they
can�t be preceded by parameter assignments or redirections):

case else function then ! do esac if time [[done fi in until
{ elif for select while }

Note: Some shells (but not this one) execute control structure
commands in a subshell when one or more of their file descriptors
are redirected, so any environment changes inside them may
fail. To be portable, the exec statement should be used instead
to redirect file descriptors before the control structure.

In the following compound command descriptions, command
lists (denoted as list) that are followed by reserved words must
end with a semi-colon, a newline or a (syntactically correct)
reserved word. For example,

{ echo foo; echo bar; }
{ echo foo; echo bar}
{ { echo foo; echo bar; } }

are all valid, but

{ echo foo; echo bar }

is not.

415

(list) Execute list in a subshell. There is no implicit way to
pass environment changes from a subshell back to its
parent.

{ list } Compound construct; list is executed, but not in a
subshell. Note that { and } are reserved words, not
meta-characters.

case word in [[(] pattern [| pattern] ...) list ;;] ... esac
The case statement attempts to match word against the
specified patterns; the list associated with the first
successfully matched pattern is executed. Patterns
used in case statements are the same as those used for
file name patterns except that the restrictions
regarding . and / are dropped. Note that any unquoted
space before and after a pattern is stripped; any space
with a pattern must be quoted. Both the word and the
patterns are subject to parameter, command, and
arithmetic substitution as well as tilde substitution. For
historical reasons, open and close braces may be used
instead of in and esac (e.g., case $foo { *) echo bar;
}). The exit status of a case statement is that of the
executed list; if no list is executed, the exit status is
zero.

for name [in word ... term] do list done
where term is either a newline or a ;. For each word in
the specified word list, the parameter name is set to the
word and list is executed. If in is not used to specify a
word list, the positional parameters (�$1�, �$2�, etc.)
are used instead. For historical reasons, open and close
braces may be used instead of do and done (e.g., for i;
{ echo $i; }). The exit status of a for statement is the
last exit status of list; if list is never executed, the exit
status is zero.

if list then list [elif list then list] ... [else list] fi
If the exit status of the first list is zero, the second list is
executed; otherwise the list following the elif, if any, is
executed with similar consequences. If all the lists

Appendix H: Pdksh Man Page

416

Korn Shell User and Programming Manual

following the if and elifs fail (i.e., exit with non-zero
status), the list following the else is executed. The exit
status of an if statement is that of non-conditional list
that is executed; if no non-conditional list is executed,
the exit status is zero.

select name [in word ... term] do list done
where term is either a newline or a ;. The select
statement provides an automatic method of presenting
the user with a menu and selecting from it. An
enumerated list of the specified words is printed on
standard error, followed by a prompt (PS3, normally
�#? �). A number corresponding to one of the
enumerated words is then read from standard input,
name is set to the selected word (or is unset if the
selection is not valid), REPLY is set to what was read
(leading/trailing space is stripped), and list is
executed. If a blank line (i.e., zero or more IFS
characters) is entered, the menu is re-printed without
executing list. When list completes, the enumerated
list is printed if REPLY is null, the prompt is printed
and so on. This process is continues until an end-of-file
is read, an interrupt is received or a break statement is
executed inside the loop. If in word ... is omitted, the
positional parameters are used (i.e., �$1�, �$2�, etc.).
For historical reasons, open and close braces may be
used instead of do and done (e.g., select i; { echo $i;
}). The exit status of a select statement is zero if a
break statement is used to exit the loop, non-zero
otherwise.

until list do list done
This works like while, except that the body is executed
only while the exit status of the first list is non-zero.

while list do list done
A while is a prechecked loop. Its body is executed as
often as the exit status of the first list is zero. The exit

417

status of a while statement is the last exit status of the
list in the body of the loop; if the body is not executed,
the exit status is zero.

function name { list }
Defines the function name. See Functions below.
Note that redirections specified after a function
definition are performed whenever the function is
executed, not when the function definition is executed.

name () command
Mostly the same as function. See Functions below.

time [-p] [pipeline]
The time reserved word is described in the Command
Execution section.

((expression))
The arithmetic expression expression is evaluated;
equivalent to let �expression�. See Arithmetic
Expressions and the let command below.

[[expression]]
Similar to the test and [...] commands (described
later), with the following exceptions: Field splitting
and file name generation are not performed on
arguments. The -a (and) and -o (or) operators are
replaced with && and ||, respectively. Operators (e.g.,
-f, =, !, etc.) must be unquoted. The second operand of
!= and = expressions are patterns (e.g., the comparison
in [[foobar = f*r]] succeeds). There are two
additional binary operators: < and > which return true
if their first string operand is less than, or greater than,
their second string operand, respectively. The single
argument form of test, which tests if the argument has
non-zero length, is not valid - explicit operators must
be always be used, e.g., instead of [str] use [[-n str]]

Parameter, command and arithmetic substitutions are
performed as expressions are evaluated and lazy
expression evaluation is used for the && and ||

Appendix H: Pdksh Man Page

418

Korn Shell User and Programming Manual

operators. This means that in the statement [[-r foo
&& $(< foo) = b*r]] the $(< foo) is evaluated if and
only if the file foo exists and is readable.

Quoting
Quoting is used to prevent the shell from treating characters or

419

autoload=�typeset -fu�
functions=�typeset -f�
hash=�alias -t�
history=�fc -l�
integer=�typeset -i�
local=�typeset�
login=�exec login�
newgrp=�exec newgrp�
nohup=�nohup �
r=�fc -e -�
stop=�kill -STOP�
suspend=�kill -STOP $$�
type=�whence -v�

Tracked aliases allow the shell to remember where it found a
particular command. The first time the shell does a path search
for a command that is marked as a tracked alias, it saves the full
path of the command. The next time the command is executed,
the shell checks the saved path to see that it is still valid, and if
so, avoids repeating the path search. Tracked aliases can be
listed and created using alias -t. Note that changing the PATH
parameter clears the saved paths for all tracked aliases. If the
trackall option is set (i.e., set -o trackall or set -h), the shell
tracks all commands. This option is set automatically for non-
interactive shells. For interactive shells, only the following
commands are automatically tracked: cat, cc, chmod, cp, date,
ed, emacs, grep, ls, mail, make, mv, pr, rm, sed, sh, vi and
who.

Substitution
The first step the shell takes in executing a simple-command is
to perform substitutions on the words of the command. There
are three kinds of substitution: parameter, command and
arithmetic. Parameter substitutions, which are described in
detail in the next section, take the form $name or ${...};
command substitutions take the form $(command) or �command�;

Appendix H: Pdksh Man Page

420

Korn Shell User and Programming Manual

and arithmetic substitutions take the form $((expression)). If a
substitution appears outside of double quotes, the results of the
substitution are generally subject to word or field splitting
according to the current value of the IFS parameter. The IFS
parameter specifies a list of characters which are used to break
a string up into several words; any characters from the set
space, tab and newline that appear in the IFS characters are
called IFS white space. Sequences of one or more IFS white
space characters, in combination with zero or one non-IFS
white space characters delimit a field. As a special case,
leading and trailing IFS white space is stripped (i.e., no leading
or trailing empty field is created by it); leading or trailing non-
IFS white space does create an empty field. Example: if IFS is
set to �:�, the sequence of characters �A:B::D� contains four
fields: �A�, �B�, �� and �D�. Note that if the IFS parameter is set
to the null string, no field splitting is done; if the parameter is
unset, the default value of space, tab and newline is used.

The results of substitution are, unless otherwise specified, also
subject to brace expansion and file name expansion (see the
relevant sections below).

A command substitution is replaced by the output generated by
the specified command, which is run in a subshell. For
$(command) substitutions, normal quoting rules are used when
command is parsed, however, for the �command� form, a \
followed by any of $, � or \ is stripped (a \ followed by any other
character is unchanged). As a special case in command
substitutions, a command of the form < file is interpreted to
mean substitute the contents of file ($(< foo) has the same effect
as $(cat foo), but it is carried out more efficiently because no
process is started). NOTE: $(command) expressions are
currently parsed by finding the matching parenthesis, regardless
of quoting. This will hopefully be fixed soon.

Arithmetic substitutions are replaced by the value of the specified

421

expression. For example, the command echo $((2+3*4)) prints
14. See Arithmetic Expressions for a description of an
expression.

Parameters
Parameters are shell variables; they can be assigned values and
their values can be accessed using a parameter substitution. A
parameter name is either one of the special single punctuation
or digit character parameters described below, or a letter
followed by zero or more letters or digits (�_� counts as a letter).
The later form can be treated as arrays by appending an array
index of the form: [expr] where expr is an arithmetic expression.
Array indicies are currently limited to the range 0 through 1023,
inclusive. Parameter substitutions take the form $name, ${name}
or ${name[expr]}, where name is a parameter name. If
substitution is performed on a parameter (or an array parameter
element) that is not set, a null string is substituted unless the
nounset option (set -o nounset or set -u) is set, in which case
an error occurs. Parameters can be assigned values in a number
of ways. First, the shell implicitly sets some parameters like #,
PWD, etc.; this is the only way the special single character
parameters are set. Second, parameters are imported from the
shell�s environment at startup. Third, parameters can be assigned
values on the command line, for example, �FOO=bar� sets the
parameter FOO to bar; multiple parameter assignments can be
given on a single command line and they can be followed by a
simple-command, in which case the assignments are in effect
only for the duration of the command (such assignments are
also exported, see below for implications of this). Note that both
the parameter name and the = must be unquoted for the shell to
recognize a parameter assignment. The fourth way of setting a
parameter is with the export, readonly and typeset commands;
see their descriptions in the Command Execution section.
Fifth, for and select loops set parameters as well as the getopts,
read and set -A commands. Lastly, parameters can be assigned
values using assignment operators inside arithmetic expressions

Appendix H: Pdksh Man Page

422

Korn Shell User and Programming Manual

(see Arithmetic Expressions below) or using the
${name=value} form of parameter substitution (see below).

Parameters with the export attribute (set using the export or
typeset -x commands, or by parameter assignments followed
by simple commands) are put in the environment (see
environ(5)) of commands run by the shell as name=value pairs.
The order in which parameters appear in the environment of a
command is unspecified. When the shell starts up, it extracts
parameters and their values from its environment and
automatically sets the export attribute for those parameters.

Modifiers can be applied to the ${name} form of parameter
substitution:

${name:-word}
if name is set and not null, it is substituted, otherwise
word is substituted.

${name:+word}
if name is set and not null, word is substituted,
otherwise nothing is substituted.

${name:=word}
if name is set and not null, it is substituted, otherwise it
is assigned word and the resulting value of name is
substituted.

${name:?word}
if name is set and not null, it is substituted, otherwise
word is printed on standard error (preceded by name:)
and an error occurs (normally causing termination of a
shell script, function or .-script). If word is omitted the
string �parameter null or not set� is used instead. In
the above modifiers, the : can be omitted, in which
case the conditions only depend on name being set (as
opposed to set and not null). If word is needed,
parameter, command, arithmetic and tilde substitution
are performed on it; if word is not needed, it is not

423

evaluated.

The following forms of parameter substitution can also be used:

${#name}
The number of positional parameters if name is *, @ or
is not specified, or the length of the string value of
parameter name.

${#name[*]}, ${#name[@]}
The number of elements in the array name.

${name#pattern}, ${name##pattern}
If pattern matches the beginning of the value of
parameter name, the matched text is deleted from the
result of substitution. A single # results in the shortest
match, two #�s results in the longest match.

${name%pattern}, ${name%%pattern}
Like ${..#..} substitution, but it deletes from the end of
the value.

The following special parameters are implicitly set by the shell
and cannot be set directly using assignments:

! Process id of the last background process started. If no
background processes have been started, the
parameter is not set.

The number of positional parameters (i.e., $1, $2,
etc.).

$ The process ID of the shell, or the PID of the original
shell if it is a subshell.

- The concatenation of the current single letter options
(see set command below for list of options).

? The exit status of the last non-asynchronous command
executed. If the last command was killed by a signal,
$? is set to 128 plus the signal number.

0 The name the shell was invoked with (i.e., argv[0]), or
the command-name if it was invoked with the -c option

Appendix H: Pdksh Man Page

424

Korn Shell User and Programming Manual

and the command-name was supplied, or the file
argument, if it was supplied. If the posix option is not
set, $0 is the name of the current function or script.

1 ... 9 The first nine positional parameters that were supplied
to the shell, function or .-script. Further positional
parameters may be accessed using ${number}.

* All positional parameters (except parameter 0), i.e., $1
$2 $3.... If used outside of double quotes, parameters
are separate words (which are subjected to word
splitting); if used within double quotes, parameters are
separated by the first character of the IFS parameter
(or the empty string if IFS is null).

@ Same as $*, unless it is used inside double quotes, in
which case a separate word is generated for each
positional parameter - if there are no positional
parameters, no word is generated (�$@� can be used to
access arguments, verbatim, without loosing null
arguments or splitting arguments with spaces).

The following parameters are set and/or used by the
shell:

_ (underscore)
When an external command is executed by the shell,
this parameter is set in the environment of the new
process to the path of the executed command. In
interactive use, this parameter is also set in the parent
shell to the last word of the previous command. When
MAILPATH messages are evaluated, this parameter
contains the name of the file that changed (see
MAILPATH parameter below).

CDPATH
Search path for the cd built-in command. Works the
same way as PATH for those directories not beginning
with / in cd commands. Note that if CDPATH is set
and does not contain . nor an empty path, the current

425

directory is not searched.
COLUMNS

Set to the number of columns on the terminal or
window. Currently set to the cols value as reported by
stty(1) if that value is non-zero. This parameter is used
by the interactive line editing modes, and by select, set
-o and kill -l commands to format information in
columns.

EDITOR
If the VISUAL parameter is not set, this parameter
controls the command line editing mode for interactive
shells. See VISUAL parameter below for how this
works.

ENV If this parameter is found to be set after any profile
files are executed, the expanded value is used as a
shell start-up file. It typically contains function and
alias definitions.

ERRNO
Integer value of the shell�s errno variable - indicates
the reason the last system call failed. Not
implemented yet.

EXECSHELL
If set, this parameter is assumed to contain the shell
that is to be used to execute commands that execve(2)
fails to execute and which do not start with a �#! shell�
sequence.

FCEDIT
The editor used by the fc command (see below).

FPATH
Like PATH, but used when an undefined function is
executed to locate the file defining the function. It is
also searched when a command can�t be found using
PATH. See Functions below for more information.

HISTFILE
The name of the file used to store history. When
assigned to, history is loaded from the specified file.

Appendix H: Pdksh Man Page

426

Korn Shell User and Programming Manual

Also, several invocations of the shell running on the
same machine will share history if their HISTFILE
parameters all point at the same file. NOTE: if
HISTFILE isn�t set, no history file is used. This is
different from the original Korn shell, which uses
$HOME/.sh_history; in future, pdksh may also use a
default history file

427

