
17.1. subprocess — Subprocess
management

New in version 2.4.

The subprocess module allows you to spawn new processes, connect to
their input/output/error pipes, and obtain their return codes. This module
intends to replace several older modules and functions:

os.system
os.spawn*
os.popen*
popen2.*
commands.*

Information about how this module can be used to replace the older
functions can be found in the subprocess-replacements section.

See also: POSIX users (Linux, BSD, etc.) are strongly encouraged to
install and use the much more recent subprocess32 module instead of
the version included with python 2.7. It is a drop in replacement with
better behavior in many situations.

PEP 324 – PEP proposing the subprocess module

17.1.1. Using the subprocess Module

The recommended way to launch subprocesses is to use the following
convenience functions. For more advanced use cases when these do not
meet your needs, use the underlying Popen interface.

subprocess.call(args, *, stdin=None, stdout=None, stderr=None,
shell=False)

Run the command described by args. Wait for command to complete,
then return the returncode attribute.

The arguments shown above are merely the most common ones,
described below in Frequently Used Arguments (hence the slightly
odd notation in the abbreviated signature). The full function signature

https://pypi.org/project/subprocess32/
https://www.python.org/dev/peps/pep-0324

is the same as that of the Popen constructor - this functions passes all
supplied arguments directly through to that interface.

Examples:

>>> subprocess.call(["ls", "-l"])
0

>>> subprocess.call("exit 1", shell=True)
1

Warning: Using shell=True can be a security hazard. See the
warning under Frequently Used Arguments for details.

Note: Do not use stdout=PIPE or stderr=PIPE with this function as
that can deadlock based on the child process output volume. Use
Popen with the communicate() method when you need pipes.

subprocess.check_call(args, *, stdin=None, stdout=None, stderr=None,
shell=False)

Run command with arguments. Wait for command to complete. If the
return code was zero then return, otherwise raise CalledProcessError.
The CalledProcessError object will have the return code in the
returncode attribute.

The arguments shown above are merely the most common ones,
described below in Frequently Used Arguments (hence the slightly
odd notation in the abbreviated signature). The full function signature
is the same as that of the Popen constructor - this functions passes all
supplied arguments directly through to that interface.

Examples:

>>> subprocess.check_call(["ls", "-l"])
0

>>> subprocess.check_call("exit 1", shell=True)
Traceback (most recent call last):
 ...
subprocess.CalledProcessError: Command 'exit 1' returned non-zero exit status 1

New in version 2.5.

Warning: Using shell=True can be a security hazard. See the
warning under Frequently Used Arguments for details.

Note: Do not use stdout=PIPE or stderr=PIPE with this function as
that can deadlock based on the child process output volume. Use
Popen with the communicate() method when you need pipes.

subprocess.check_output(args, *, stdin=None, stderr=None,
shell=False, universal_newlines=False)

Run command with arguments and return its output as a byte string.

If the return code was non-zero it raises a CalledProcessError. The
CalledProcessError object will have the return code in the returncode
attribute and any output in the output attribute.

The arguments shown above are merely the most common ones,
described below in Frequently Used Arguments (hence the slightly
odd notation in the abbreviated signature). The full function signature
is largely the same as that of the Popen constructor, except that stdout
is not permitted as it is used internally. All other supplied arguments
are passed directly through to the Popen constructor.

Examples:

>>> subprocess.check_output(["echo", "Hello World!"])
'Hello World!\n'

>>> subprocess.check_output("exit 1", shell=True)
Traceback (most recent call last):
 ...
subprocess.CalledProcessError: Command 'exit 1' returned non-zero exit status 1

To also capture standard error in the result, use
stderr=subprocess.STDOUT:

>>> subprocess.check_output(
... "ls non_existent_file; exit 0",
... stderr=subprocess.STDOUT,
... shell=True)
'ls: non_existent_file: No such file or directory\n'

New in version 2.7.

Warning: Using shell=True can be a security hazard. See the
warning under Frequently Used Arguments for details.

Note: Do not use stderr=PIPE with this function as that can
deadlock based on the child process error volume. Use Popen with
the communicate() method when you need a stderr pipe.

subprocess.PIPE
Special value that can be used as the stdin, stdout or stderr argument
to Popen and indicates that a pipe to the standard stream should be
opened.

subprocess.STDOUT
Special value that can be used as the stderr argument to Popen and
indicates that standard error should go into the same handle as
standard output.

exception subprocess.CalledProcessError
Exception raised when a process run by check_call() or
check_output() returns a non-zero exit status.

returncode

Exit status of the child process.

cmd

Command that was used to spawn the child process.

output

Output of the child process if this exception is raised by
check_output(). Otherwise, None.

17.1.1.1. Frequently Used Arguments

To support a wide variety of use cases, the Popen constructor (and the
convenience functions) accept a large number of optional arguments. For
most typical use cases, many of these arguments can be safely left at
their default values. The arguments that are most commonly needed are:

args is required for all calls and should be a string, or a

sequence of program arguments. Providing a sequence of
arguments is generally preferred, as it allows the module to
take care of any required escaping and quoting of arguments
(e.g. to permit spaces in file names). If passing a single string,
either shell must be True (see below) or else the string must
simply name the program to be executed without specifying
any arguments.

stdin, stdout and stderr specify the executed program’s
standard input, standard output and standard error file
handles, respectively. Valid values are PIPE, an existing file
descriptor (a positive integer), an existing file object, and None.
PIPE indicates that a new pipe to the child should be created.
With the default settings of None, no redirection will occur; the
child’s file handles will be inherited from the parent.
Additionally, stderr can be STDOUT, which indicates that the
stderr data from the child process should be captured into the
same file handle as for stdout.

When stdout or stderr are pipes and universal_newlines is
True then all line endings will be converted to '\n' as
described for the universal newlines 'U' mode argument to
open().

If shell is True, the specified command will be executed
through the shell. This can be useful if you are using Python
primarily for the enhanced control flow it offers over most
system shells and still want convenient access to other shell
features such as shell pipes, filename wildcards, environment
variable expansion, and expansion of ~ to a user’s home
directory. However, note that Python itself offers
implementations of many shell-like features (in particular, glob,
fnmatch, os.walk(), os.path.expandvars(), os.path.expanduser(),
and shutil).

Warning: Executing shell commands that incorporate
unsanitized input from an untrusted source makes a
program vulnerable to shell injection, a serious security flaw
which can result in arbitrary command execution. For this
reason, the use of shell=True is strongly discouraged in

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/glossary.html#term-universal-newlines
https://docs.python.org/2/library/functions.html#open
https://docs.python.org/2/library/glob.html#module-glob
https://docs.python.org/2/library/fnmatch.html#module-fnmatch
https://docs.python.org/2/library/os.html#os.walk
https://docs.python.org/2/library/os.path.html#os.path.expandvars
https://docs.python.org/2/library/os.path.html#os.path.expanduser
https://docs.python.org/2/library/shutil.html#module-shutil
http://en.wikipedia.org/wiki/Shell_injection#Shell_injection

cases where the command string is constructed from
external input:

>>> from subprocess import call
>>> filename = input("What file would you like to display?\n")
What file would you like to display?
non_existent; rm -rf / #
>>> call("cat " + filename, shell=True) # Uh-oh. This will end badly...

shell=False disables all shell based features, but does not
suffer from this vulnerability; see the Note in the Popen

constructor documentation for helpful hints in getting
shell=False to work.

When using shell=True, pipes.quote() can be used to
properly escape whitespace and shell metacharacters in
strings that are going to be used to construct shell
commands.

These options, along with all of the other options, are described in more
detail in the Popen constructor documentation.

17.1.1.2. Popen Constructor

The underlying process creation and management in this module is
handled by the Popen class. It offers a lot of flexibility so that developers
are able to handle the less common cases not covered by the
convenience functions.

class subprocess.Popen(args, bufsize=0, executable=None, stdin=None,
stdout=None, stderr=None, preexec_fn=None, close_fds=False,
shell=False, cwd=None, env=None, universal_newlines=False,
startupinfo=None, creationflags=0)

Execute a child program in a new process. On Unix, the class uses
os.execvp()-like behavior to execute the child program. On Windows,
the class uses the Windows CreateProcess() function. The arguments
to Popen are as follows.

args should be a sequence of program arguments or else a single
string. By default, the program to execute is the first item in args if
args is a sequence. If args is a string, the interpretation is platform-

https://docs.python.org/2/library/pipes.html#pipes.quote
https://docs.python.org/2/library/os.html#os.execvp

dependent and described below. See the shell and executable
arguments for additional differences from the default behavior. Unless
otherwise stated, it is recommended to pass args as a sequence.

On Unix, if args is a string, the string is interpreted as the name or
path of the program to execute. However, this can only be done if not
passing arguments to the program.

Note: shlex.split() can be useful when determining the correct
tokenization for args, especially in complex cases:

>>> import shlex, subprocess
>>> command_line = raw_input()
/bin/vikings -input eggs.txt -output "spam spam.txt" -cmd "echo '$MONEY'"
>>> args = shlex.split(command_line)
>>> print args
['/bin/vikings', '-input', 'eggs.txt', '-output', 'spam spam.txt', '-cmd', "echo '$MONEY'"]
>>> p = subprocess.Popen(args) # Success!

Note in particular that options (such as -input) and arguments
(such as eggs.txt) that are separated by whitespace in the shell go
in separate list elements, while arguments that need quoting or
backslash escaping when used in the shell (such as filenames
containing spaces or the echo command shown above) are single
list elements.

On Windows, if args is a sequence, it will be converted to a string in a
manner described in Converting an argument sequence to a string on
Windows. This is because the underlying CreateProcess() operates
on strings.

The shell argument (which defaults to False) specifies whether to use
the shell as the program to execute. If shell is True, it is
recommended to pass args as a string rather than as a sequence.

On Unix with shell=True, the shell defaults to /bin/sh. If args is a
string, the string specifies the command to execute through the shell.
This means that the string must be formatted exactly as it would be
when typed at the shell prompt. This includes, for example, quoting or
backslash escaping filenames with spaces in them. If args is a
sequence, the first item specifies the command string, and any
additional items will be treated as additional arguments to the shell

https://docs.python.org/2/library/shlex.html#shlex.split

itself. That is to say, Popen does the equivalent of:

Popen(['/bin/sh', '-c', args[0], args[1], ...])

On Windows with shell=True, the COMSPEC environment variable
specifies the default shell. The only time you need to specify
shell=True on Windows is when the command you wish to execute is
built into the shell (e.g. dir or copy). You do not need shell=True to
run a batch file or console-based executable.

Warning: Passing shell=True can be a security hazard if
combined with untrusted input. See the warning under Frequently
Used Arguments for details.

bufsize, if given, has the same meaning as the corresponding
argument to the built-in open() function: 0 means unbuffered, 1

means line buffered, any other positive value means use a buffer of
(approximately) that size. A negative bufsize means to use the
system default, which usually means fully buffered. The default value
for bufsize is 0 (unbuffered).

Note: If you experience performance issues, it is recommended
that you try to enable buffering by setting bufsize to either -1 or a
large enough positive value (such as 4096).

The executable argument specifies a replacement program to
execute. It is very seldom needed. When shell=False, executable
replaces the program to execute specified by args. However, the
original args is still passed to the program. Most programs treat the
program specified by args as the command name, which can then be
different from the program actually executed. On Unix, the args name
becomes the display name for the executable in utilities such as ps. If
shell=True, on Unix the executable argument specifies a replacement
shell for the default /bin/sh.

stdin, stdout and stderr specify the executed program’s standard
input, standard output and standard error file handles, respectively.
Valid values are PIPE, an existing file descriptor (a positive integer),
an existing file object, and None. PIPE indicates that a new pipe to the
child should be created. With the default settings of None, no

redirection will occur; the child’s file handles will be inherited from the
parent. Additionally, stderr can be STDOUT, which indicates that the
stderr data from the child process should be captured into the same
file handle as for stdout.

If preexec_fn is set to a callable object, this object will be called in the
child process just before the child is executed. (Unix only)

If close_fds is true, all file descriptors except 0, 1 and 2 will be closed
before the child process is executed. (Unix only). Or, on Windows, if
close_fds is true then no handles will be inherited by the child
process. Note that on Windows, you cannot set close_fds to true and
also redirect the standard handles by setting stdin, stdout or stderr.

If cwd is not None, the child’s current directory will be changed to cwd
before it is executed. Note that this directory is not considered when
searching the executable, so you can’t specify the program’s path
relative to cwd.

If env is not None, it must be a mapping that defines the environment
variables for the new process; these are used instead of inheriting the
current process’ environment, which is the default behavior.

Note: If specified, env must provide any variables required for the
program to execute. On Windows, in order to run a side-by-side
assembly the specified env must include a valid SystemRoot.

If universal_newlines is True, the file objects stdout and stderr are
opened as text files in universal newlines mode. Lines may be
terminated by any of '\n', the Unix end-of-line convention, '\r', the
old Macintosh convention or '\r\n', the Windows convention. All of
these external representations are seen as '\n' by the Python
program.

Note: This feature is only available if Python is built with universal
newline support (the default). Also, the newlines attribute of the file
objects stdout, stdin and stderr are not updated by the
communicate() method.

If given, startupinfo will be a STARTUPINFO object, which is passed to
the underlying CreateProcess function. creationflags, if given, can be

https://en.wikipedia.org/wiki/Side-by-Side_Assembly
https://docs.python.org/2/glossary.html#term-universal-newlines

CREATE_NEW_CONSOLE or CREATE_NEW_PROCESS_GROUP. (Windows only)

17.1.1.3. Exceptions

Exceptions raised in the child process, before the new program has
started to execute, will be re-raised in the parent. Additionally, the
exception object will have one extra attribute called child_traceback,
which is a string containing traceback information from the child’s point of
view.

The most common exception raised is OSError. This occurs, for example,
when trying to execute a non-existent file. Applications should prepare for
OSError exceptions.

A ValueError will be raised if Popen is called with invalid arguments.

check_call() and check_output() will raise CalledProcessError if the called
process returns a non-zero return code.

17.1.1.4. Security

Unlike some other popen functions, this implementation will never call a
system shell implicitly. This means that all characters, including shell
metacharacters, can safely be passed to child processes. Obviously, if
the shell is invoked explicitly, then it is the application’s responsibility to
ensure that all whitespace and metacharacters are quoted appropriately.

17.1.2. Popen Objects

Instances of the Popen class have the following methods:

Popen.poll()
Check if child process has terminated. Set and return returncode
attribute.

Popen.wait()
Wait for child process to terminate. Set and return returncode

attribute.

https://docs.python.org/2/library/exceptions.html#exceptions.OSError
https://docs.python.org/2/library/exceptions.html#exceptions.OSError
https://docs.python.org/2/library/exceptions.html#exceptions.ValueError

Warning: This will deadlock when using stdout=PIPE and/or
stderr=PIPE and the child process generates enough output to a
pipe such that it blocks waiting for the OS pipe buffer to accept
more data. Use communicate() to avoid that.

Popen.communicate(input=None)
Interact with process: Send data to stdin. Read data from stdout and
stderr, until end-of-file is reached. Wait for process to terminate. The
optional input argument should be a string to be sent to the child
process, or None, if no data should be sent to the child.

communicate() returns a tuple (stdoutdata, stderrdata).

Note that if you want to send data to the process’s stdin, you need to
create the Popen object with stdin=PIPE. Similarly, to get anything
other than None in the result tuple, you need to give stdout=PIPE
and/or stderr=PIPE too.

Note: The data read is buffered in memory, so do not use this
method if the data size is large or unlimited.

Popen.send_signal(signal)
Sends the signal signal to the child.

Note: On Windows, SIGTERM is an alias for terminate().
CTRL_C_EVENT and CTRL_BREAK_EVENT can be sent to
processes started with a creationflags parameter which includes
CREATE_NEW_PROCESS_GROUP.

New in version 2.6.

Popen.terminate()
Stop the child. On Posix OSs the method sends SIGTERM to the
child. On Windows the Win32 API function TerminateProcess() is
called to stop the child.

New in version 2.6.

Popen.kill()
Kills the child. On Posix OSs the function sends SIGKILL to the child.

On Windows kill() is an alias for terminate().

New in version 2.6.

The following attributes are also available:

Warning: Use communicate() rather than .stdin.write, .stdout.read or
.stderr.read to avoid deadlocks due to any of the other OS pipe buffers
filling up and blocking the child process.

Popen.stdin
If the stdin argument was PIPE, this attribute is a file object that
provides input to the child process. Otherwise, it is None.

Popen.stdout
If the stdout argument was PIPE, this attribute is a file object that
provides output from the child process. Otherwise, it is None.

Popen.stderr
If the stderr argument was PIPE, this attribute is a file object that
provides error output from the child process. Otherwise, it is None.

Popen.pid
The process ID of the child process.

Note that if you set the shell argument to True, this is the process ID
of the spawned shell.

Popen.returncode
The child return code, set by poll() and wait() (and indirectly by
communicate()). A None value indicates that the process hasn’t
terminated yet.

A negative value -N indicates that the child was terminated by signal
N (Unix only).

17.1.3. Windows Popen Helpers

The STARTUPINFO class and following constants are only available on
Windows.

class subprocess.STARTUPINFO
Partial support of the Windows STARTUPINFO structure is used for
Popen creation.

dwFlags

A bit field that determines whether certain STARTUPINFO attributes
are used when the process creates a window.

si = subprocess.STARTUPINFO()
si.dwFlags = subprocess.STARTF_USESTDHANDLES | subprocess.STARTF_USESHOWWINDOW

hStdInput

If dwFlags specifies STARTF_USESTDHANDLES, this attribute is the
standard input handle for the process. If STARTF_USESTDHANDLES is
not specified, the default for standard input is the keyboard
buffer.

hStdOutput

If dwFlags specifies STARTF_USESTDHANDLES, this attribute is the
standard output handle for the process. Otherwise, this attribute
is ignored and the default for standard output is the console
window’s buffer.

hStdError

If dwFlags specifies STARTF_USESTDHANDLES, this attribute is the
standard error handle for the process. Otherwise, this attribute is
ignored and the default for standard error is the console
window’s buffer.

wShowWindow

If dwFlags specifies STARTF_USESHOWWINDOW, this attribute can be any
of the values that can be specified in the nCmdShow parameter for
the ShowWindow function, except for SW_SHOWDEFAULT. Otherwise,
this attribute is ignored.

SW_HIDE is provided for this attribute. It is used when Popen is
called with shell=True.

17.1.3.1. Constants

https://msdn.microsoft.com/en-us/library/ms686331(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms633548(v=vs.85).aspx

The subprocess module exposes the following constants.

subprocess.STD_INPUT_HANDLE
The standard input device. Initially, this is the console input buffer,
CONIN$.

subprocess.STD_OUTPUT_HANDLE
The standard output device. Initially, this is the active console screen
buffer, CONOUT$.

subprocess.STD_ERROR_HANDLE
The standard error device. Initially, this is the active console screen
buffer, CONOUT$.

subprocess.SW_HIDE
Hides the window. Another window will be activated.

subprocess.STARTF_USESTDHANDLES
Specifies that the STARTUPINFO.hStdInput, STARTUPINFO.hStdOutput, and
STARTUPINFO.hStdError attributes contain additional information.

subprocess.STARTF_USESHOWWINDOW
Specifies that the STARTUPINFO.wShowWindow attribute contains
additional information.

subprocess.CREATE_NEW_CONSOLE
The new process has a new console, instead of inheriting its parent’s
console (the default).

This flag is always set when Popen is created with shell=True.

subprocess.CREATE_NEW_PROCESS_GROUP
A Popen creationflags parameter to specify that a new process group
will be created. This flag is necessary for using os.kill() on the
subprocess.

This flag is ignored if CREATE_NEW_CONSOLE is specified.

17.1.4. Replacing Older Functions with the
subprocess Module

https://docs.python.org/2/library/os.html#os.kill

In this section, “a becomes b” means that b can be used as a
replacement for a.

Note: All “a” functions in this section fail (more or less) silently if the
executed program cannot be found; the “b” replacements raise OSError
instead.

In addition, the replacements using check_output() will fail with a
CalledProcessError if the requested operation produces a non-zero
return code. The output is still available as the output attribute of the
raised exception.

In the following examples, we assume that the relevant functions have
already been imported from the subprocess module.

17.1.4.1. Replacing /bin/sh shell backquote

output=`mycmd myarg`

becomes:

output = check_output(["mycmd", "myarg"])

17.1.4.2. Replacing shell pipeline

output=`dmesg | grep hda`

becomes:

p1 = Popen(["dmesg"], stdout=PIPE)
p2 = Popen(["grep", "hda"], stdin=p1.stdout, stdout=PIPE)
p1.stdout.close() # Allow p1 to receive a SIGPIPE if p2 exits.
output = p2.communicate()[0]

The p1.stdout.close() call after starting the p2 is important in order for p1
to receive a SIGPIPE if p2 exits before p1.

Alternatively, for trusted input, the shell’s own pipeline support may still be
used directly:

https://docs.python.org/2/library/exceptions.html#exceptions.OSError

output=`dmesg | grep hda`

becomes:

output=check_output("dmesg | grep hda", shell=True)

17.1.4.3. Replacing os.system()

status = os.system("mycmd" + " myarg")
becomes
status = subprocess.call("mycmd" + " myarg", shell=True)

Notes:

Calling the program through the shell is usually not required.

A more realistic example would look like this:

try:
 retcode = call("mycmd" + " myarg", shell=True)
 if retcode < 0:
 print >>sys.stderr, "Child was terminated by signal", -retcode
 else:
 print >>sys.stderr, "Child returned", retcode
except OSError as e:
 print >>sys.stderr, "Execution failed:", e

17.1.4.4. Replacing the os.spawn family

P_NOWAIT example:

pid = os.spawnlp(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg")
==>
pid = Popen(["/bin/mycmd", "myarg"]).pid

P_WAIT example:

retcode = os.spawnlp(os.P_WAIT, "/bin/mycmd", "mycmd", "myarg")
==>
retcode = call(["/bin/mycmd", "myarg"])

Vector example:

https://docs.python.org/2/library/os.html#os.system
https://docs.python.org/2/library/os.html#os.spawnl

os.spawnvp(os.P_NOWAIT, path, args)
==>
Popen([path] + args[1:])

Environment example:

os.spawnlpe(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg", env)
==>
Popen(["/bin/mycmd", "myarg"], env={"PATH": "/usr/bin"})

17.1.4.5. Replacing os.popen(), os.popen2(),
os.popen3()

pipe = os.popen("cmd", 'r', bufsize)
==>
pipe = Popen("cmd", shell=True, bufsize=bufsize, stdout=PIPE).stdout

pipe = os.popen("cmd", 'w', bufsize)
==>
pipe = Popen("cmd", shell=True, bufsize=bufsize, stdin=PIPE).stdin

(child_stdin, child_stdout) = os.popen2("cmd", mode, bufsize)
==>
p = Popen("cmd", shell=True, bufsize=bufsize,
 stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdin, child_stdout) = (p.stdin, p.stdout)

(child_stdin,
 child_stdout,
 child_stderr) = os.popen3("cmd", mode, bufsize)
==>
p = Popen("cmd", shell=True, bufsize=bufsize,
 stdin=PIPE, stdout=PIPE, stderr=PIPE, close_fds=True)
(child_stdin,
 child_stdout,
 child_stderr) = (p.stdin, p.stdout, p.stderr)

(child_stdin, child_stdout_and_stderr) = os.popen4("cmd", mode,
 bufsize)
==>
p = Popen("cmd", shell=True, bufsize=bufsize,
 stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True)
(child_stdin, child_stdout_and_stderr) = (p.stdin, p.stdout)

On Unix, os.popen2, os.popen3 and os.popen4 also accept a sequence

https://docs.python.org/2/library/os.html#os.popen
https://docs.python.org/2/library/os.html#os.popen2
https://docs.python.org/2/library/os.html#os.popen3

as the command to execute, in which case arguments will be passed
directly to the program without shell intervention. This usage can be
replaced as follows:

(child_stdin, child_stdout) = os.popen2(["/bin/ls", "-l"], mode,
 bufsize)
==>
p = Popen(["/bin/ls", "-l"], bufsize=bufsize, stdin=PIPE, stdout=PIPE
(child_stdin, child_stdout) = (p.stdin, p.stdout)

Return code handling translates as follows:

pipe = os.popen("cmd", 'w')
...
rc = pipe.close()
if rc is not None and rc >> 8:
 print "There were some errors"
==>
process = Popen("cmd", shell=True, stdin=PIPE)
...
process.stdin.close()
if process.wait() != 0:
 print "There were some errors"

17.1.4.6. Replacing functions from the popen2 module

(child_stdout, child_stdin) = popen2.popen2("somestring", bufsize, mode
==>
p = Popen("somestring", shell=True, bufsize=bufsize,
 stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)

On Unix, popen2 also accepts a sequence as the command to execute, in
which case arguments will be passed directly to the program without shell
intervention. This usage can be replaced as follows:

(child_stdout, child_stdin) = popen2.popen2(["mycmd", "myarg"], bufsize
 mode)
==>
p = Popen(["mycmd", "myarg"], bufsize=bufsize,
 stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)

popen2.Popen3 and popen2.Popen4 basically work as subprocess.Popen,

https://docs.python.org/2/library/popen2.html#module-popen2
https://docs.python.org/2/library/popen2.html#popen2.Popen3
https://docs.python.org/2/library/popen2.html#popen2.Popen4

except that:

Popen raises an exception if the execution fails.

the capturestderr argument is replaced with the stderr argument.

stdin=PIPE and stdout=PIPE must be specified.

popen2 closes all file descriptors by default, but you have to specify
close_fds=True with Popen.

17.1.5. Notes

17.1.5.1. Converting an argument sequence to a string
on Windows

On Windows, an args sequence is converted to a string that can be
parsed using the following rules (which correspond to the rules used by
the MS C runtime):

1. Arguments are delimited by white space, which is either a space or
a tab.

2. A string surrounded by double quotation marks is interpreted as a
single argument, regardless of white space contained within. A
quoted string can be embedded in an argument.

3. A double quotation mark preceded by a backslash is interpreted as
a literal double quotation mark.

4. Backslashes are interpreted literally, unless they immediately
precede a double quotation mark.

5. If backslashes immediately precede a double quotation mark, every
pair of backslashes is interpreted as a literal backslash. If the
number of backslashes is odd, the last backslash escapes the next
double quotation mark as described in rule 3.

