
11/29/23, 2:48 PM 54.6. Writing your handler: The Event class

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/event-handlers.html 1/4

Next / Previous / Contents

Tkinter 8.5 reference: a GUI for
Python

54.6. Writing your handler: The Event class

The sections above tell you how to describe what events you want to handle, and how to bind them. Now let us turn to the
writing of the handler that will be called when the event actually happens.

The handler will be passed an Event object that describes what happened. The handler can be either a function or a method.
Here is the calling sequence for a regular function:

def handlerName(event):

And as a method:

 def handlerName(self, event):

The attributes of the Event object passed to the handler are described below. Some of these attributes are always set, but
some are set only for certain types of events.

.char If the event was related to a KeyPress or KeyRelease for a key that produces a regular ASCII character,
this string will be set to that character. (For special keys like delete, see the .keysym attribute, below.)

.delta For MouseWheel events, this attribute contains an integer whose sign is positive to scroll up, negative to
scroll down. Under Windows, this value will be a multiple of 120; for example, 120 means scroll up one
step, and -240 means scroll down two steps. Under MacOS, it will be a multiple of 1, so 1 means scroll up
one step, and -2 means scroll down two steps. For Linux mouse wheel support, see the note on the Button
event binding in Section 54.3, “Event types”.

.height If the event was a Configure, this attribute is set to the widget's new height in pixels.

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/extra-args.html
https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/key-names.html
https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/index.html
https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/event-types.html

11/29/23, 2:48 PM 54.6. Writing your handler: The Event class

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/event-handlers.html 2/4

.keycode For KeyPress or KeyRelease events, this attribute is set to a numeric code that identifies the key.
However, it does not identify which of the characters on that key were produced, so that “x” and “X” have
the same .keyCode value. For the possible values of this field, see Section 54.5, “Key names”.

.keysym For KeyPress or KeyRelease events involving a special key, this attribute is set to the key's string name,
e.g., 'Prior' for the PageUp key. See Section 54.5, “Key names” for a complete list of .keysym names.

.keysym_num
For KeyPress or KeyRelease events, this is set to a numeric version of the .keysym field. For regular keys
that produce a single character, this field is set to the integer value of the key's ASCII code. For special
keys, refer to Section 54.5, “Key names”.

.num
If the event was related to a mouse button, this attribute is set to the button number (1, 2, or 3). For mouse
wheel support under Linux, bind Button-4 and Button-5 events; when the mouse wheel is scrolled up,
this field will be 4, or 5 when scrolled down.

.serial An integer serial number that is incremented every time the server processes a client request. You can use
.serial values to find the exact time sequence of events: those with lower values happened sooner.

.state An integer describing the state of all the modifier keys. See the table of modifier masks below for the
interpretation of this value.

.time This attribute is set to an integer which has no absolute meaning, but is incremented every millisecond.
This allows your application to determine, for example, the length of time between two mouse clicks.

.type A numeric code describing the type of event. For the interpretation of this code, see Section 54.3, “Event
types”.

.widget Always set to the widget that caused the event. For example, if the event was a mouse click that happened
on a canvas, this attribute will be the actual Canvas widget.

.width If the event was a Configure, this attribute is set to the widget's new width in pixels.

.x The x coordinate of the mouse at the time of the event, relative to the upper left corner of the widget.

.y The y coordinate of the mouse at the time of the event, relative to the upper left corner of the widget.

.x_root The x coordinate of the mouse at the time of the event, relative to the upper left corner of the screen.

.y_root The y coordinate of the mouse at the time of the event, relative to the upper left corner of the screen.

Use these masks to test the bits of the .state value to see what modifier keys and buttons were pressed during the event:

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/key-names.html
https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/key-names.html
https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/key-names.html
https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/event-types.html
https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/event-types.html

11/29/23, 2:48 PM 54.6. Writing your handler: The Event class

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/event-handlers.html 3/4

Mask Modifier

0x0001 Shift.

0x0002 Caps Lock.

0x0004 Control.

0x0008 Left-hand Alt.

0x0010 Num Lock.

0x0080 Right-hand Alt.

0x0100 Mouse button 1.

0x0200 Mouse button 2.

0x0400 Mouse button 3.

Here's an example of an event handler. Under Section 54.1, “Levels of binding”, above, there is an example showing how to
bind mouse button 2 clicks on a canvas named self.canv to a handler called self.__drawOrangeBlob(). Here is that
handler:

 def __drawOrangeBlob(self, event):
 '''Draws an orange blob in self.canv where the mouse is.
 '''
 r = 5 # Blob radius
 self.canv.create_oval(event.x-r, event.y-r,
 event.x+r, event.y+r, fill='orange')

When this handler is called, the current mouse position is (event.x, event.y). The .create_oval() method draws a
circle whose bounding box is square and centered on that position and has sides of length 2*r.

Next: 54.7. The extra arguments trick
Contents: Tkinter 8.5 reference: a GUI for Python
Previous: 54.5. Key names
Home: About New Mexico Tech

John W. Shipman
Comments welcome: tcc-doc@nmt.edu

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/binding-levels.html
https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/extra-args.html
https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/index.html
https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/key-names.html
http://www.nmt.edu/
mailto:tcc-doc@nmt.edu

11/29/23, 2:48 PM 54.6. Writing your handler: The Event class

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/event-handlers.html 4/4

Last updated: 2013-12-31 17:59
URL: http://www.nmt.edu/tcc/help/pubs/tkinter/web/event-handlers.html

