

Python GUI Programming with
Tkinter
Second Edition

Design and build functional and user-friendly GUI
applications

Alan D. Moore

BIRMINGHAM—MUMBAI

Python GUI Programming with Tkinter
Second Edition

Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Tushar Gupta
Acquisition Editor – Peer Reviews: Suresh Jain
Project Editor: Namrata Katare
Content Development Editor: Lucy Wan
Copy Editor:�SaÀs�Editing
Technical Editor: Karan Sonawane
Proofreader:�SaÀs�Editing
Indexer: Subalakshmi Govindhan
Presentation Designer: Ganesh Bhadwalkar

First published: May 2018
Second edition: October 2021

Production reference: 1261021

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80181-592-5

www.packt.com

Contributors

About the author
Alan D. Moore has been coding in Python since 2005. He lives in Franklin,
Tennessee, where he develops database apps for the local government. His technical
interests include Python, JavaScript, Linux, and analog electronics. In his free time,
he publishes coding videos on the YouTube channel Alan D Moore Codes, makes
music, builds guitar effects, volunteers at his church and scout troop, and helps his
wife�raise�their�Àve�children.

Profound thanks to Lucy and Alejandro, without whom this book
would be riddled with errors; to Cara and the kids for their support and
encouragement; and to the Python and Tcl/Tk communities for providing
such great software. God bless you all!

About the reviewer
Alejandro Rodas de Paz is a computer engineer from Seville, Spain. He has
developed�several�professional�and�academic�Python�projects,�from�artiÀcial�
intelligence algorithms to DevOps scripting.

Prior to this publication, Alejandro wrote the Packt titles Python Game Development by
Example and Tkinter GUI Application Development Cookbook. He also collaborated as a
technical reviewer on the book Tkinter GUI Application Development Hotshot.

I would like to thank and dedicate this work to my sister Belen, whose next
year will be the beginning of a long and joyful journey. Wish you all the
best on this next chapter of life.

[v]

Table of Contents
Preface xvii
Chapter 1: Introduction to Tkinter 1

Introducing Tkinter and Tk 2
Choosing Tkinter 2
Installing Tkinter 3

Installing Python 3.9 on Windows 3
Installing Python 3 on macOS 4
Installing Python 3 and Tkinter on Linux 4

Introducing IDLE 4
Using the shell mode of IDLE 5
Using the editor mode of IDLE 5
IDLE as a Tkinter example 6

Creating a Tkinter Hello World 7
An overview of basic Tkinter 9

Building a GUI with Tkinter widgets 10
Arranging our widgets with geometry managers 14
Making the form actually do something 19
Handling data with Tkinter control variables 21

Using control variables in a callback function 26
The importance of control variables 28

Summary 28
Chapter 2: Designing GUI Applications 29

Analyzing a problem at ABQ AgriLabs 29
Assessing the problem 30
Gathering information about the problem 30

Interviewing the interested parties 31
Analyzing what we've found out 33

Information from the data originators 34

Table of Contents

[vi]

Information from the users of the application 35
Information from technical support 36
Information from the data consumer 36

Documenting�speci¿cation�requirements� 37
Contents�of�a�simple�speci¿cation� 38
Writing�the�ABQ�data�entry�program�speci¿cation� 39

Designing the application 42
Deciding on input widgets 42
Grouping�our�¿elds� 44
Laying out the form 45
Laying out the application 47

Evaluating technology options 49
Summary 50

Chapter�3:�Creating�Basic�Forms�with�Tkinter�and�Ttk�Widgets� 51
The Ttk widget set 51

The Label widget 52
The Entry widget 53
The Spinbox widget 54
The Checkbutton widget 56
The Radiobutton widget 57
The Combobox widget 58
The Text widget 59

Text widget indices 60
The Button widget 62
The LabelFrame widget 62

Implementing the application 64
First steps 65
Building the data record form 66

The Record Information section 67
The Environment Data section 69
The Plant Data section 70
Finishing the GUI 72

Writing the callback functions 73
The Reset function 73
The Save callback 74

Finishing up and testing 78
Summary� 79

Chapter 4: Organizing Our Code with Classes 81
A primer on Python classes 81

The advantages of using classes 82
Classes are an integral part of Python 82
Classes make relationships between data and functions explicit 82

Table of Contents

[vii]

Classes help create reusable code 83
Syntax of class creation 83

Attributes and methods 83
Magic attributes and methods 86
Public, private, and protected members 88

Inheritance and subclasses 90
Using classes with Tkinter 91

Improving Tkinter classes 91
Creating compound widgets 93
Building encapsulated components 95

Subclassing Tk 97
Rewriting our application using classes 100

Adding a StringVar to the Text widget 100
Passing in a variable 101
Synchronizing the widget to the variable 101
Synchronizing the variable to the widget 102

Creating a more advanced LabelInput() 103
Creating a form class 106
Creating an application class 112

Summary 114
Chapter�5:�Reducing�User�Error�with�Validation�and�Automation� 117
Validating�user�input� 117

Strategies to prevent data errors 118
Validation in Tkinter 119

The validate argument 120
The validatecommand argument 120
The invalidcommand argument 122

Creating�validated�widget�classes� 123
Creating�a�Date�¿eld� 125

Implementing validated widgets in our GUI 129
Introducing the power of multiple inheritance 129
Building a validating mixin class 132
Building validating input widgets with ValidatedMixin 136

Requiring data 136
Creating a Date widget 137
A better Combobox widget 138
A range-limited Spinbox widget 140
Validating Radiobutton widgets 144

Updating our form with validated widgets 146
Implementing validation interaction between form widgets 149

Dynamically updating the Spinbox range 149
Dynamic�disabling�of�¿elds� 154

Displaying errors 156
Preventing form submission on error 157

Table of Contents

[viii]

Automating input 159
Date automation 160
Automating Plot, Lab, Time, and Technician 161

Summary 162
Chapter�6:�Planning�for�the�Expansion�of�Our�Application� 163

Separating concerns 164
The MVC pattern 164

What is a model? 165
What is a view? 165
What is a controller? 166

Why complicate our design? 166
Structuring�our�application�directory� 167

Basic directory structure 167
The�abq_data_entry.py�¿le� 168
The�README.rst�¿le� 169
Populating the docs folder 170
Making a Python package 170

Splitting�our�application�into�multiple�¿les� 172
Creating the models module 172
Moving the widgets 179
Moving the views 180

Removing redundancy in our view logic 181
Using custom events to remove tight coupling 185

Creating�the�application�¿le� 186
Running the application 188

Using version control software 189
A super-quick guide to using Git 189
Initializing�and�con¿guring�a�Git�repository� 190
Adding and committing code 190
Viewing and using our commits 191

Summary 192
Chapter�7:�Creating�Menus�with�Menu�and�Tkinter�Dialogs� 193

Solving problems in our application 194
Planning solutions to the issues 194

Implementing Tkinter dialogs 196
Error dialogs with the Tkinter messagebox 196
Showing error dialogs in ABQ Data Entry 199
Using�¿ledialog� 201
Using simpledialog and creating a custom dialog 204

Creating a Login dialog using simpledialog 205
Incorporating the LoginDialog in our class 208

Designing the application menu 211
The Tkinter Menu widget 211

Table of Contents

[ix]

Using Checkbutton and Radiobutton items 213
Implementing the ABQ application menu 215

Adding a Help menu 216
Adding a File menu 217
Adding a settings menu 220
Finishing the menu 222

Persisting settings 223
Building a model for settings persistence 224
Using the settings model in our application 228

Summary� 230
Chapter�8:�Navigating�Records�with�Treeview�and�Notebook� 231
Implementing�read�and�update�in�the�model� 231

Adding read and update to the CSVModel class 232
Implementing get_all_records() 233
Implementing get_record() 235
Adding update capability to save_record() 236

The�Ttk�Treeview� 237
Anatomy of a Treeview 238
Building�a�¿le�browser� 239
Creating�and�con¿guring�a�Treeview� 240
Populating a Treeview with data 242
Sorting Treeview records 244
Using Treeview virtual events 247

Implementing a record list with Treeview 248
Creating the RecordList class 249
Con¿guring�a�Treeview�widget� 250
Adding a scrollbar for the Treeview 252
Populating the Treeview 253

Adding the record list to the application 254
Modifying the record form for read and update 255

Adding a current record property 255
Adding a label to show what is being edited 255
Adding a load_record() method 256

Updating the application layout 257
The Ttk Notebook widget 259
Adding a notebook to our application 261

Adding and updating application callbacks 262
The _show_recordlist() method 263
The _populate_recordlist() method 264
The _new_record() method 265
The _open_record() method 266
The _on_save() method 267

Main menu changes 267
Testing our program 268

Summary 269

Table of Contents

[x]

Chapter�9:�Improving�the�Look�with�Styles�and�Themes� 271
Working�with�images�in�Tkinter� 272

Tkinter PhotoImage 272
PhotoImage and variable scope 273

Using Pillow for extended image support 274
Adding the company logo to ABQ Data Entry 277

Dealing with the image path problem 278
Setting a window icon 281
Adding icons to buttons and menus 282

Using BitmapImage 286
Styling�Tkinter�widgets� 287

Widget color properties 287
Using widget properties on the MainMenu 288

Styling widget content with tags 291
Styling our record list with tags 294

Working�with�fonts�in�Tkinter� 297
Con¿guring�Tkinter�fonts� 297
Con¿guring�fonts�with�strings�and�tuples� 298
The font module 299

Giving users font options in ABQ Data Entry 302
Styling�Ttk�widgets� 305

TTk styling breakdown 306
Exploring a Ttk widget 307
Using themes 312

Adding some color to ABQ Data Entry 313
Adding styles to individual form widgets 316
Fixing the error colors 318
Styling input widgets on error 319

Setting themes 321
Building a theme selector 321

Summary� 325
Chapter�10:�Maintaining�Cross-Platform�Compatibility� 327
Writing�cross-platform�Python� 327
Filenames�and�¿le�paths�across�platforms� 328

Path separators and drives 328
Case sensitivity 331
Symbolic links 332
Path variables 333

Inconsistent library and feature support 334
Python's platform-limited libraries 334
Checking low-level function compatibility 335
The dangers of the subprocess module 336

Text�¿le�encodings�and�formats� 336
Graphical and console modes 337

Table of Contents

[xi]

Writing code that changes according to the platform 338
Writing�cross-platform�Tkinter� 341
Tkinter�version�diႇerences�across�platforms� 341
Application menus across platforms 342

Menu widget capabilities 342
Menu guidelines and standards 346
Menus and accelerator keys 347

Cross-platform fonts 347
Cross-platform theme support 348
Window zoomed state 348

Improving�our�application's�cross-platform�compatibility� 349
Storing preferences correctly 349
Specifying�an�encoding�for�our�CSV�¿le� 351
Making platform-appropriate menus 351

Preparing our MainMenu class 351
Adding accelerators 355
Building the Windows menu 357
Building the Linux menu 359
Building the macOS menu 360
Creating and using our selector function 363

Summary� 365
Chapter�11:�Creating�Automated�Tests�with�unittest� 367
Automated�testing�basics� 367

A simple unit test 368
The unittest module 370

Writing a test case 371
TestCase assertion methods 373
Fixtures 374
Using Mock and patch 375
Running multiple unit tests 377

Testing�Tkinter�code� 377
Managing asynchronous code 378
Simulating user actions 378

Specifying an event sequence 379
Managing focus and grab 380
Getting widget information 381

Writing�tests�for�our�application� 381
Testing the data model 381
Testing�¿le�reading�in�get_all_records()� 383
Testing�¿le�saving�in�save_record()� 385
More tests on the models 387

Testing our Application object 387
Testing our widgets 392

Unit testing the ValidatedSpinbox widget 393

Table of Contents

[xii]

Integration testing the ValidatedSpinbox widget 395
Testing our mixin class 400

Summary 402
Chapter�12:�Improving�Data�Storage�with�SQL� 403

PostgreSQL 404
Installing�and�con¿guring�PostgreSQL� 404
Con¿guring�PostgreSQL�using�the�GUI�utility� 405
Con¿guring�PostgreSQL�using�the�command�line� 405

Modeling relational data 406
Primary keys 406

Using surrogate primary keys 407
Normalization 408

First normal form 409
Second normal form 410
Third normal form 411
More normalization forms 411

Entity-relationship diagrams 412
Assigning data types 414

Creating the ABQ database 415
Creating our tables 415

Creating the lookup tables 415
The lab_checks table 417
The plot_checks table 417

Creating a view 419
Populating the lookup tables 420

Connecting to PostgreSQL with psycopg2 420
psycopg2 basics 421
Parameterized queries 423
Special cursor classes 425

Integrating SQL into our application 426
Creating a new model 426

Saving data 431
Getting the current seed sample for the plot 434

Adjusting the Application class for the SQL backend 435
Implementing SQL logins 435
Updating the Application._on_save() method 437
Removing�¿le-based�code� 438

Adjusting the DataRecordForm for SQL data 438
Reordering�¿elds� 438
Fixing the load_record() method 439
Improving�auto-¿ll� 440

Updating the RecordList for the SQLModel 441
We're done! 444

Summary 444

Table of Contents

[xiii]

Chapter�13:�Connecting�to�the�Cloud� 447
HTTP�using�urllib� 447

HTTP transaction fundamentals 448
HTTP status codes 448

Basic downloading with urllib.request 449
Generating POST requests 450

Downloading weather data to ABQ Data Entry 451
Creating a weather data model 451
Parsing the XML weather data 453
Implementing weather data storage 456

Adding the GUI elements for weather download 458
RESTful�HTTP�using�requests� 461

Understanding RESTful web services 461
The Python requests library 462

Installing and using requests 462
Interacting with authenticated sites using Session 463
The requests.Response object 465

Implementing a REST backend 466
The authenticate() method 468
The�upload_¿le()�method� 470
The�check_¿le()�method� 470
The�get_¿le()�method� 471

Integrating REST upload into the application 471
Creating a CSV extract 472
Creating the upload callback 473
Finishing up 476

SFTP�using�paramiko� 478
Setting up SSH services for testing 478
Installing and using paramiko 479

Using paramiko 479
Inspecting our connection 481
Using SFTP 481

Implementing an SFTP model 482
Uploading�¿les� 485
Checking�a�¿le's�existence� 486

Using SFTPModel in our application 487
Finishing up 490

Summary 491
Chapter 14: Asynchronous Programming with
Thread�and�Queue� 493
Tkinter's�event�queue� 494

Event queue control 494
The update() methods 494
The after() methods 495

Table of Contents

[xiv]

Common uses of event queue control 496
Smoothing out display changes 496
Mitigating GUI freezes 497

Running code in the background with threads 500
The threading module 500

Tkinter and thread safety 502
Converting our network functions to threaded execution 503

Using the threaded uploader 505
Passing messages using a queue 506
The Queue object 506
Using queues to communicate between threads 508

Adding a communication queue to our threaded uploader 510
Creating a communications protocol 511
Sending messages from the uploader 513
Handling queue messages 514

Using locks to protect shared resources 516
Understanding the Lock object 516
Using a Lock object to prevent concurrent uploads 518

Threading and the GIL 518
Summary 519

Chapter�15:�Visualizing�Data�Using�the�Canvas�Widget� 521
Drawing and animation with Tkinter's Canvas 521

Drawing on the Canvas 522
Rectangles and squares 522
Ovals, circles, and arcs 524
Lines 525
Polygons 526
Text 526
Images 527
Tkinter widgets 527
Canvas items and state 528

Canvas object methods 528
Scrolling the Canvas 530
Animating Canvas objects 533
Setting�up�the�playing�¿eld� 533
Setting our players 534
Animating the racers 535
Running the game loop and detecting a win condition 539

Creating simple graphs using Canvas 542
Creating the model method 543
Creating the chart view 544
Updating the application 549

Advanced graphs using Matplotlib 551
Data model method 551

Table of Contents

[xv]

Creating the bubble chart view 552
Updating the Application class 555

Summary 558
Chapter�16:�Packaging�with�setuptools�and�cxFreeze� 559

Creating distributable packages with setuptools 559
Preparing our package for distribution 560
Creating�a�requirements.txt�¿le� 560
Creating�a�pyproject.toml�¿le� 562
Adding�a�license�¿le� 563
Making our package executable 564

Con¿guring�a�setup.py�script� 565
Basic metadata arguments 566
Packages and dependencies 567
Adding�extra�¿les� 569
De¿ning�commands� 570
Testing�the�con¿guration� 571

Creating and using source distributions 571
Testing our source distribution 572

Building a wheel distribution 573
Creating�executables�with�cx_Freeze� 575

First steps with cx_Freeze 575
The build_exe options 577
Including�external�¿les� 578
Building executables 580

Cleaning up the build 580
Building Windows executables with cx_Freeze 581
Building�a�Windows�installer�¿le� 582

Building macOS executables with cx_Freeze 586
Building macOS application bundles 586
Building�macOS�.dmg�¿les� 587

588Summary�
Appendices 589
A: A Quick Primer on reStructuredText 591
B:�A�Quick�SQL�Tutorial� 603
Other Books You May Enjoy 619
Index 625

[xvii]

Preface
Writing a book involves much more than the application of grammar and
punctuation rules. In the same way, developing an application requires more than a
knowledge of programming languages and library APIs. A mere mastery of syntax
rules�and�function�calls�is�not�in�itself�sufÀcient�for�designing�applications�that�
empower�users�to�perform�work,�safeguard�valuable�data,�and�produce�Áawless�
output. As programmers, we also need to be able to interpret user requests and
expectations into effective interface designs and pick the best technologies to
implement them. We need to be able to organize large code bases, test them, and
maintain them in a way that keeps them manageable and free from careless errors.

This book aims to be much more than a reference manual for a particular GUI toolkit.
As�we�walk�through�a�Àctitious�workplace�scenario,�you�will�get�a�taste�of�what�it's�
like�to�be�an�application�programmer�in�a�small�ofÀce�environment.�In�addition�to�
learning Tkinter and a few other useful libraries, you will learn many of the skills
you need to move from being a writer of short scripts to a writer of fully-featured
graphical�applications.�By�the�time�you've�Ànished�the�book,�you�should�feel�
conÀdent�that�you�can�develop�a�simple�but�useful�data-oriented�application�for�a�
working environment.

Who�this�book�is�for
This�book�is�for�beginners�who�have�learned�the�basics�of�Python�but�haven't�written�
much�beyond�simple�scripts.�We'll�walk�you�step-by-step�through�designing�and�
creating�a�larger�application,�and�we'll�introduce�you�to�skills�that�will�help�you�
advance as a programmer.

It's�also�aimed�at�those�who�have�used�Python�for�data�science,�web�development,�
or system administration, but who now want to branch out into creating GUI
applications.�We'll�go�through�the�knowledge�and�skills�required�to�create�local�GUI�
applications.

Preface

[xviii]

Finally, this book may also be useful for experienced Python programmers who
just�want�to�learn�Tkinter,�as�much�of�the�book�details�the�Àner�points�of�using�the�
Tkinter library.

What�this�book�covers
Chapter 1, Introduction to Tkinter, introduces you to the basics of the Tkinter library
and walks you through creating a basic Tkinter application. It will also introduce you
to IDLE as an example of a Tkinter application.

Chapter 2, Designing GUI Applications, goes through the process of turning a set of
user requirements into a design that we can implement.

Chapter 3, Creating Basic Forms with Tkinter and Ttk Widgets, shows you how to create
a�basic�data�entry�application�that�appends�entered�data�to�a�CSV�Àle.

Chapter 4, Organizing Our Code with Classes, will introduce you to general object-
oriented�programming�techniques�as�well�as�Tkinter-speciÀc�uses�for�classes�that�will�
make our GUI programs more maintainable and understandable.

Chapter 5, Reducing User Error with Validation and Automation, demonstrates how to
automatically�populate�and�validate�data�in�our�form's�inputs.

Chapter 6, Planning for the Expansion of Our Application, familiarizes you with how
to�break�a�single-Àle�script�intelligently�into�multiple�Àles,�how�to�build�a�Python�
module that you can import, and how to separate the concerns of a large codebase to
make it more manageable.

Chapter 7, Creating Menus with Menu and Tkinter Dialogs, outlines the creation of a
main menu using Tkinter. It will also show the use of several built-in dialog types to
implement common menu functionality.

Chapter 8, Navigating Records with Treeview and Notebook, details the construction of
a data record navigation system using the Ttk Treeview and Notebook, as well as
the conversion of our application from append-only to full read, write, and update
capabilities.

Chapter 9, Improving the Look with Styles and Themes, informs you of how to change
the colors, fonts, and widget styles of your application, and how to use them to make
your application more usable and attractive.

Chapter 10, Maintaining Cross-Platform Compatibility, goes over Python and Tkinter
techniques to keep your application running smoothly across Windows, macOS, and
Linux systems.

Preface

[xix]

Chapter 11, Creating Automated Tests with unittest, discusses how to verify your code
with automated unit tests and integration tests.

Chapter 12, Improving Data Storage with SQL, takes you through the conversion of our
application�from�CSV�Áat-Àle�storage�to�SQL�database�storage.�You'll�learn�all�about�
SQL�and�relational�data�models�as�well.

Chapter 13, Connecting to the Cloud, covers how to work with network resources such
as�HTTP�servers,�REST�services,�and�SFTP�servers.�You'll�learn�to�interact�with�these�
services�to�download�and�upload�data�and�Àles.

Chapter 14, Asynchronous Programming with Thread and Queue, explains how to use
asynchronous and multithreaded programming to keep our application responsive
during long-running processes.

Chapter 15, Visualizing Data Using the Canvas Widget, teaches you how to work with
the�Tkinter�Canvas�widget�to�create�visualizations�and�animations.�You'll�also�learn�
how to integrate Matplotlib charts and build a simple game.

Chapter 16, Packaging with setuptools and cxFreeze, explores preparing your Python
application for distribution as a Python package or a standalone executable.

To get the most out of this book
This book expects that you know the basics of Python 3. You should know how to
write�and�run�simple�scripts�using�built-in�types�and�functions,�how�to�deÀne�your�
own functions, and how to import modules from the standard library.

You can follow this book on a computer running a current version of Microsoft
Windows, Apple macOS, or a distribution of GNU/Linux. Ensure that you have
Python 3 and Tcl/Tk installed (Chapter 1, Introduction to Tkinter, contains instructions
for Windows, macOS, and Linux) and that you have a code editing environment
with which you are comfortable (we suggest IDLE since it comes with Python
and uses Tkinter. We do not recommend the use of Jupyter, Spyder, or similar
environments aimed at analytical Python rather than application development). In
the�later�chapters,�you'll�need�access�to�the�internet�so�that�you�can�install�Python�
packages�and�the�PostgreSQL�database.

Download�the�example�code�¿les
The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Python-GUI-Programming-with-Tkinter-2E. We also have other
code bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

Preface

[xx]

Download the color images
We�also�provide�a�PDF�Àle�that�has�color�images�of�the�screenshots/diagrams�
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801815925_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
Àlenames,�Àle�extensions,�pathnames,�dummy�URLs,�user�input,�and�Twitter�
handles. For example: "Save the code in solve_the_worlds_problems.py and execute
it by typing python solve_the_worlds_problems.py at a terminal prompt."

A block of code is set as follows:

import tkinter as tk

root = tk.TK()
def solve():
 raise NotImplemented("Sorry!")
tk.Button(
 root, text="Solve the world's problems", command=solve
).pack()
root.mainloop()

When we wish to draw your attention to a particular part of a code block, especially
to indicate changes to existing code, the relevant lines or items are set in bold:

import tkinter as tk
from tkinter import messagebox

root = tk.TK()
def solve():
 messagebox.showinfo('The answer?', 'Bananas?')
tk.Button(
 root, text="Solve the world's problems", command=solve
).pack()
root.mainloop()

Note that all Python code in the book uses 2-space indents rather than the
conventional 4-space indents.

Preface

[xxi]

Any command-line input or output is written with a $ indicating the prompt, as
follows:

$ mkdir Bananas
$ cp plantains.txt Bananas/

Command line input intended for the Python shell or REPL is printed with a prompt
of >>>, like so:

>>> print('This should be run in a Python shell')
'This should be run in a Python shell'

Expected output from the shell is printed on a line with no prompt.

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes. For example: "Select System info from the
Administration panel."

Executing Python and pip
When we need to instruct the reader to execute a Python script in this book, we
indicate a command line such as the following:

$ python myscript.py

Depending�on�your�operating�system�or�Python�conÀguration,�the�python command
may execute Python 2.x rather than Python 3.x. You can verify this by running the
following command:

$ python --version
Python 3.9.7

Warnings or important notes appear like this.

 Tips and tricks appear like this.

Preface

[xxii]

If this command outputs Python 2 rather than 3 on your system, you will need to
alter any python commands so that your code is executed in Python 3. Typically, that
means using the python3 command instead, like so:

$ python3 myscript.py

The same caveat applies to the pip command used to install libraries from the Python
Package Index. You may need to use the pip3 command instead to install libraries to
your Python 3 environment, for example:

$ pip3 install --user requests

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com,�and�mention�the�book's�title�in�the�
subject of your message. If you have questions about any aspect of this book, please
email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you would report this to us. Please visit http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packtpub.com.

Preface

[xxiii]

Share Your Thoughts
Once�you've�read�Python GUI Programming with Tkinter, Second Edition,�we'd�love�to�
hear your thoughts! Please click here to go straight to the Amazon review page
for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure
we're�delivering�excellent�quality�content.

[1]

1
Introduction to Tkinter

Welcome,�Python�coder!�If�you've�learned�the�basics�of�Python�and�want�to�start�
designing powerful GUI applications, this book is for you.

By now, you have no doubt experienced the power and simplicity of Python.
Perhaps�you've�written�web�services,�performed�data�analysis,�or�administered�
servers.�Perhaps�you've�written�a�game,�automated�routine�tasks,�or�simply�played�
around�with�code.�But�now�you're�ready�to�tackle�the�GUI.

With so much emphasis on web, mobile, and server-side programming, the
development of simple desktop GUI applications seems increasingly like a lost art;
many otherwise experienced developers have never learned to create one. What a
tragedy! Desktop computers still play a vital role in work and home computing,
and the ability to build simple, functional applications for this ubiquitous platform
should�be�a�part�of�every�software�developer's�toolbox.�Fortunately,�for�Python�
coders, that ability is well within reach thanks to Tkinter.

In this chapter, you will cover the following topics:

• In Introducing Tkinter and Tk,�you'll�learn�about�Tkinter,�a�fast,�fun,�easy-
to-learn GUI library built in to the Python Standard Library; and IDLE, an
editor and development environment written in Tkinter.

• In An overview of basic Tkinter,�you'll�learn�the�basics�of�Tkinter�with�a�"Hello�
World" program and create a Survey application.

Introduction to Tkinter

[2]

Introducing Tkinter and Tk
The Tk widget library originates from the Tool Command Language (Tcl)
programming language. Tcl and Tk were created by John Ousterhout while he was
a professor at Berkeley in the late 1980s as an easier way to program the engineering
tools being used at the university. Because of its speed and relative simplicity, Tcl/
Tk rapidly grew in popularity among academic, engineering, and Unix programmers.
Much like Python itself, Tcl/Tk originated on the Unix platform and only later
migrated�to�macOS�and�Windows.�Tk's�practical�intent�and�Unix�roots�still�inform�its�
design today, and its simplicity compared to other toolkits is still a major strength.

Tkinter is a Python interface to the Tk GUI library and has been a part of the Python
standard library since 1994 with the release of Python version 1.1, making it the de-
facto GUI library for Python. Documentation for Tkinter, along with links for further
study, can be found in the standard library documentation at https://docs.python.
org/3/library/tkinter.html.

Choosing Tkinter
Python coders who want to build a GUI have several toolkit options to choose from;
unfortunately,�Tkinter�is�often�maligned�or�ignored�as�a�legacy�option.�To�be�fair,�it's�
not a glamorous technology that you can describe in trendy buzzwords and glowing
hype. However, Tkinter is not only adequate for a wide variety of applications but
also�has�some�advantages�that�can't�be�ignored:

• Tkinter is in the standard library: With few exceptions, Tkinter is available
wherever Python is available. There is no need to install pip, create virtual
environments, compile binaries, or search the web for installation packages.
For simple projects that need to be done quickly, this is a clear advantage.

• Tkinter is stable: While Tkinter development has not stopped, it is slow and
evolutionary. The API has been stable for years, the changes mainly being
additional�functionality�and�bug�Àxes.�Your�Tkinter�code�will�likely�run�
unaltered for years or decades to come.

• Tkinter is only a GUI toolkit: Unlike some other GUI libraries, Tkinter
doesn't�have�its�own�threading�library,�network�stack,�or�Àlesystem�API.�It�
relies�on�regular�Python�libraries�for�such�things,�so�it's�perfect�for�applying�a�
GUI to existing Python code.

• Tkinter is simple and no-nonsense: Tkinter is very basic and to-the-point; it
can be used effectively in both procedural and object-oriented GUI designs.
To�use�Tkinter,�you�don't�have�to�learn�hundreds�of�widget�classes,�a�markup�
or templating language, a new programming paradigm, client-server
technologies, or a different programming language.

Chapter 1

[�3�]

Tkinter is not perfect, of course. It also has some disadvantages:

• Tkinter's default look and feel is dated:�Tkinter's�default�appearance�has�
long lagged behind current trends, and it still bears a few artifacts from the
1990s Unix world. While it lacks niceties like animated widgets, gradients,
or scalable graphics, it has nevertheless improved a great deal in the last
few years, thanks to updates in Tk itself and the addition of themed widget
libraries.�We'll�learn�how�to�Àx�or�avoid�some�of�Tkinter's�more�archaic�
defaults throughout the book.

• Tkinter lacks more complex widgets: Tkinter is missing advanced widgets
like rich text editors, 3D graphics embedding, HTML viewers, or specialized
input�widgets.�As�we'll�see�later�in�this�book,�Tkinter�gives�us�the�ability�to�
create complex widgets by customizing and combining its simple ones.

Tkinter might be the wrong choice for a game UI or slick commercial application;
however,�for�data-driven�applications,�simple�utilities,�conÀguration�dialogs,�and�
other business logic applications, Tkinter offers all that is needed and more. In this
book�we're�going�to�be�working�through�the�development�of�data�entry�application�
for a workplace environment, something that Tkinter can handle admirably.

Installing Tkinter
Tkinter is included in the Python standard library for the Windows and macOS
distributions.�So,�if�you�have�installed�Python�on�these�platforms�using�the�ofÀcial�
installers,�you�don't�need�to�do�anything�to�install�Tkinter.

However,�we're�going�to�be�exclusively�focused�on�Python�3.9�for�this�book;�so,�you�
need to make sure that you have this version or later installed.

Installing�Python�3.9�on�Windows
You can obtain Python 3 installers for Windows from the python.org website by
performing the following steps:

1. Go to https://www.python.org/downloads/windows.
2. Select the latest Python 3 release. At the time of writing, the latest version is

3.9.2.
3. Under the Files section, select the Windows executable installer appropriate

to�your�system's�architecture�(x86�for�32-bit�Windows,�x86-64�for�64-bit�
Windows;�if�you're�unsure,�x86�will�work�on�either).

4. Launch the downloaded installer.

Introduction to Tkinter

[4]

5. Click on Customize installation. Make sure the tcl/tk and IDLE option is
checked (it should be by default).

6. Continue through the installer with all defaults.

Installing�Python�3�on�macOS
As of this writing, macOS ships with Python 2.7 built in. However, Python 2 was
ofÀcially�deprecated�in�2020,�and�the�code�in�this�book�will�not�work with it, so
macOS users will need to install Python 3 to follow this book.

Follow this procedure to install Python3 on macOS:

1. Go to https://www.python.org/downloads/mac- osx/ .
2. Select the latest Python 3 release. At the time of writing, the latest version is

3.9.2.
3. Under the Files section, select and download the macOS 64-bit/32-bit

installer.
4. Launch the .pkg�Àle�that�you've�downloaded�and�follow�the�steps�of�the�

install wizard, selecting defaults.

Installing�Python�3�and�Tkinter�on�Linux
Most Linux distributions include both Python 2 and Python 3; however, Tkinter is
not always�bundled�with�it�or�installed�by�default.�To�Ànd�out�if�Tkinter�is�installed,�
open a Terminal and try the following command:

$ python3 -m tkinter

This should open a simple window showing some information about Tkinter. If you
get ModuleNotFoundError instead, you will need to use your package manager to
install�your�distribution's�Tkinter�package�for�Python�3.�In�most�major�distributions,�
including Debian, Ubuntu, Fedora, and openSUSE, this package is called python3-tk.

Introducing IDLE
IDLE is an�integrated�development�environment�that�is�bundled�with�the�ofÀcial�
Python�software�distributions�for�Windows�and�macOS�(it's�readily�available�in�most�
Linux distributions as well, usually as idle or idle3).

Chapter 1

[5]

IDLE is written in Python using Tkinter, and it provides us with not only an
editing environment for Python but also a great example of Tkinter in action. So,
while�IDLE's�rudimentary�feature�set�may�not�be�considered�professional�grade�
by experienced Python coders, and while you may already have a preferred
environment for writing Python code, I encourage you to spend some time using
IDLE as you go through this book.

IDLE�has�two�primary�modes:�shell�mode�and�editor�mode.�We'll�take�a�look�at�those�
in this section.

Using the shell mode of IDLE
When you launch IDLE, you begin in shell mode, which is simply a Python Read-
Evaluate-Print-Loop (REPL) similar to what you get when you type python in a
Terminal window.

You�can�see�IDLE's�shell�mode�in�this�screenshot:

Figure�1.1:�IDLE's�shell�mode

IDLE's�shell�has�some�nice�features�that�you�don't�get�from�the�command-line�REPL,�
like syntax highlighting and tab completion. The REPL is essential to the Python
development process, as it gives you the ability to test code in real time and inspect
classes�and�APIs�without�having�to�write�complete�scripts.�We'll�use�the�shell�mode�
in�later�chapters�to�explore�the�features�and�behaviors�of�modules.�If�you�don't�have�
a shell window open, you can open one by clicking on Run | Python Shell in the
IDLE menu.

Using the editor mode of IDLE
Editor mode is for creating Python�script�Àles,�which�you�can�later�run.�When�the�
book�tells�you�to�create�a�new�Àle,�this�is�the�mode�you'll�use.�To�open�a�new�Àle�in�
the editor mode, simply navigate to File | New File in the menu or hit Ctrl + N on
the keyboard.

Introduction to Tkinter

[6]

This�image�shows�IDLE's�Àle�editor:

Figure�1.2:�IDLE's�Àle�editor

You can run your script without leaving IDLE by hitting the F5 key in the editor mode;
IDLE will open a shell-mode window to execute the script and display the output.

IDLE as a Tkinter example
Before we start coding�with�Tkinter,�let's�take�a�quick�look�at�what�you�can�do�with�
it�by�inspecting�some�of�IDLE's�UI.�Navigate�to�Options | ConÀgure�IDLE from
the�main�menu�to�open�IDLE's�conÀguration�settings.�Here�you�can�change�IDLE's�
fonts, colors and theme, keyboard shortcuts, and default behaviors, as shown in this
screenshot:

Figure�1.3:�IDLE�conÀguration�settings

Chapter 1

[�7�]

Consider some of the following components that make up this user interface:

• There are drop-down menus that allow you to select between large sets of
options.

• There are checkable buttons that allow you to select between small sets of
options.

• There are many push buttons that you can click on to execute actions.
• There is a text window that can display multi-colored text.
• There are labeled frames that contain groups of components.
• There are tabs across the top of the screen to select different sections of the

conÀguration.

In Tkinter (as in most GUI libraries), each of these components is known as a widget;
we're�going�to�meet�these�widgets�and�more�throughout�this�book�and�learn�how�
to�use�them�as�they've�been�used�here.�We'll�begin,�however,�with�something�much�
simpler.

Creating�a�Tkinter�Hello�World
One of the grand traditions in any programming language or library is to create a
"Hello World" program: that is, a program that displays Hello World�and�exits.�Let's�
walk through creating a "Hello World" application for Tkinter and talk about the
pieces of it along the way.

First,�create�a�new�Àle�called�hello_tkinter.py in IDLE or your favorite editor, and
enter the following code:

"""Hello World application for Tkinter"""
import tkinter as tk

The�Àrst�line�is�called a docstring, and every Python script should start with one.
At a minimum, it should give the name of the program but can also include details
about how to use it, who wrote it, and what it requires.

The second line imports the tkinter module into our program. Although Tkinter is
in the standard library, we have to import it before we can use any of its classes or
functions.

Sometimes, you may see this import written as from tkinter import *. That
approach is called a wildcard import, and it results in all the objects being brought
into the global namespace.�While�popular�in�tutorials�for�its�simplicity,�it's�a�bad�idea�
in actual code as there is a possibility of a collision between our own variable names
and all names in the tkinter module, which can cause subtle bugs.

Introduction to Tkinter

[8]

To�avoid�this,�we're�going�to�keep�tkinter in its own namespace; however, to keep
the�code�concise,�we'll�alias�tkinter to tk. This convention will be used throughout
the book.

Every Tkinter program must have exactly one root window, which represents both
the�top-level�window�of�our�application,�and�the�application�itself.�Let's�create�our�
root window, like so:

root = Tk()

The root window is an instance of the Tk class. We create it by calling Tk()�as�we've�
done here. This object must exist before we can create any other Tkinter objects, and
when it is destroyed, the application quits.

Now,�let's�create�a�widget�to�put�in�our�window:

label = Label(root, text="Hello World")

This is a Label�widget,�which�is�just�a�panel�that�can�display�some�text.�The�Àrst�
argument to any Tkinter widget is always the parent widget (sometimes called
master widget); in this�case,�we've�passed�in�a�reference�to�our�root�window.�The�
parent widget is the widget on which our Label will be placed, so this Label will
be directly on the root window of the application. Widgets in a Tkinter GUI are
arranged in a hierarchy, each widget being contained by another all the way up to
the root window.

We've�also�passed�in�a�keyword�argument,�text.�This�argument,�of�course,�deÀnes�
the text that will be placed on the widget. For most Tkinter widgets, the majority of
conÀguration�is�done�using�keyword�arguments�like�this.

Now�that�we've�created�a�widget,�we�need�to�actually�place�it�on�the�GUI:

label.pack()

The pack() method of the Label widget is called a geometry manager method. Its job
is to determine how the widget will be attached to its parent widget, and to draw it
there.�Without�this�call,�your�widget�would�exist�but�you�wouldn't�see�it�anywhere�
on the window. pack()�is�one�of�three�geometry�managers,�which�we'll�learn�more�
about in the next section.

The last line of our program looks like this:

root.mainloop()

Chapter 1

[9]

This�line�starts�our�application's�event loop.�The�event�loop�is�an�inÀnite�loop�that�
continually processes any events that happen during the execution of the program.
Events can be things like keystrokes, mouse clicks, or other user-generated activity.
This loop runs until the program exits, so any code after this line will not be run until
the main window is closed. For this reason, this line is usually the last one in any
Tkinter program.

Run the program in IDLE by hitting F5, or in your Terminal by typing the following
command:

$ python hello_tkinter.py

You should see a very tiny window pop up with the text Hello World as shown here:

Figure 1.4: Our "Hello World" application

Feel free to play around with this script by adding more widgets before the
root.mainloop() call. You can add more Label objects, or try some Button (which
creates a clickable button) or Entry�(which�creates�a�text�Àeld)�widgets.�Just�like�
Label, these widgets are initialized with a parent object (use root) and a text
parameter.�Don't�forget�to�call�pack() on each widget to place them on the root
window.

When�you're�ready,�move�on�to�the�next�section�where�we'll�create�a�more�interesting�
application.

An overview of basic Tkinter
As exciting as it may�be�to�see�that�Àrst�GUI�window�pop�up�on�the�screen,�"Hello�
World"�is�not�a�terribly�interesting�application.�Let's�start�again�and�dig�a�little�
deeper into Tkinter as we build a slightly larger program. Since the next chapter will
see�you�landing�a�job�at�a�Àctitious�agricultural�laboratory�studying�fruit�plants,�let's�
create a little program to gauge your opinions about bananas.

Example code for all chapters in this book can be downloaded
from https://github.com/PacktPublishing/Python-GUI-
Programming-with-Tkinter-2E. You may want to download
these now so you can follow along.

Introduction to Tkinter

[10]

Building a GUI with Tkinter widgets
Start�a�new�Àle�in your editor called banana_survey.py, and begin by importing
tkinter like so:

banana_survey.py
"""A banana preferences survey written in Python with Tkinter"""

import tkinter as tk

As with hello_tkinter.py, we need to create a root window before we can create
any widgets or other Tkinter objects:

root = tk.Tk()

Once�again,�we've�called�this�object�root. The root�window�can�be�conÀgured�in�
various ways; for example, we can give it a window title or set its size like so:

set the title
root.title('Banana interest survey')
set the root window size
root.geometry('640x480+300+300')
root.resizable(False, False)

The title() method sets our window title (that is, the name that shows up in the
task manager and in the window decorations), while geometry() sets the window
size.�In�this�case,�we're�telling�the�root�window�to�be�640�by�480�pixels.�The�+300+300
sets the position of the window on the screen — in this case, 300 pixels from the
top and 300 pixels from the left (the position portion is optional, if you only care
about the size). Notice that the argument to geometry() is a string. In Tcl/Tk, every
argument is treated as a string. Since Tkinter is just a wrapper that passes arguments
on�to�Tcl/Tk,�we'll�often�Ànd�that�strings�are�used�to�conÀgure�Tkinter�objects�–�even�
when�we�might�expect�to�use�integers�or�Áoats.

The resizable() method sets whether or not our window can be resized horizontally
and vertically, respectively. True means the window can be resized in that direction,
False means its dimension�is�Àxed.�In�this�case,�we�want�to�prevent�the�resizing�
of�the�window�so�that�we�don't�have�to�worry�about�making�the�layout�Áexible�to�
window size changes.

Now�let's�start�adding�widgets�to�our�survey.�We've�already�met�the�Label widget, so
let's�add�one:

title = tk.Label(
 root,

Chapter 1

[11]

 text='Please take the survey',
 font=('Arial 16 bold'),
 bg='brown',
 fg='#FF0'
)

As�we�saw�in�our�"Hello�World"�example,�the�Àrst�argument�passed�to�any�Tkinter�
widget is the parent widget on which the new widget will be placed. In this case,
we'll�be�placing�this�Label widget on the root window. The remaining arguments to
a�widget�are�speciÀed�as�keyword�arguments.�Here,�we've�speciÀed�the�following:

• text, which is the text the label will display.
• font,�which�speciÀes�the�family,�size,�and�weight�of�the�font�used�to�display�

the�text.�Notice�again�that�the�font�settings�are�speciÀed�as�a�simple�string,�
just as our geometry settings were.

• bg,�which�sets�the�background�color�for�the�widget.�We've�used�a�color�name�
here; Tkinter recognizes a great many color names, similar to those used by
CSS or X11.

• fg,�which�sets�the�foreground�(text)�color�for�the�widget.�In�this�case,�we've�
speciÀed�a�short�hexadecimal�string,�in�which�the�three�characters�represent�
the red, green, and blue values respectively. We can also use a six-character
hex string (for example, #FFE812)�for�Àner-grained�control�over�the�color.

In Chapter 9, Improving the Look with Styles and Themes,�we'll�learn�more�sophisticated�
ways�to�set�up�fonts�and�colors,�but�this�will�work�just�Àne�for�now.

Tkinter has many interactive widgets for data entry, of course, the simplest being the
Entry widget:

name_label = tk.Label(root, text='What is your name?')
name_inp = tk.Entry(root)

The Entry widget is just a simple text-input box designed for a single line of text.
Most�input�widgets�in�Tkinter�do�not�include�a�label�of�any�kind,�so�we've�added�one�
to make it clear to our user what the entry box is for.

One exception to that is the Checkbutton�widget,�which�we'll�create�next:

eater_inp = tk.Checkbutton(
 root,
 text='Check this box if you eat bananas'
)

Introduction to Tkinter

[12]

A Checkbutton creates a check box input; it includes a label that sits next to the box,
and we can set its text using the text argument.

For entering numbers, Tkinter provides the Spinbox�widget.�Let's�add�one:

num_label = tk.Label(
 root,
 text='How many bananas do you eat per day?'
)
num_inp = tk.Spinbox(root, from_=0, to=1000, increment=1)

A Spinbox is like an Entry, but features arrow buttons that can increment and
decrement the number�in�the�box.�We've�used�several�arguments�to�conÀgure�it�here:

• The from_ and to arguments set the minimum and maximum values that
the buttons will decrement or increment to, respectively. Notice that from_
has an extra underscore at the end; this is not a typo! Since from is a Python
keyword�(used�in�importing�modules),�it�can't�be�used�as�a�variable�name,�so�
the Tkinter authors chose to use from_ instead.

• The increment argument sets how much the arrow buttons will increase or
decrease the number.

Tkinter has several widgets that allow you to choose from preset selection values;
one of the simplest is Listbox, which looks like this:

color_label = tk.Label(
 root,
 text='What is the best color for a banana?'
)
color_inp = tk.Listbox(root, height=1) # Only show selected item
add choices
color_choices = (
 'Any', 'Green', 'Green-Yellow',
 'Yellow', 'Brown Spotted', 'Black'
)
for choice in color_choices:
 color_inp.insert(tk.END, choice)

The Listbox takes a height�argument�that�speciÀes�how�many�lines�are�visible;�by�
default�the�box�is�big�enough�to�show�all�the�options.�We've�changed�that�to�1 so that
only the currently selected option is visible. The others can be accessed using the
arrow keys.

Chapter 1

[�13�]

To add options to the box, we need to call its insert() method and add each option
one�at�a�time.�We've�done�that�here�using�a�for loop to save�repetitive�coding.�The�Àrst�
argument to insert�speciÀes�where�we�want�to�insert�the�option;�note�that�we've�used�
a special constant provided by tkinter, tk.END. This is one of many special constants
deÀned�in�Tkinter�for�certain�conÀguration�values.�In�this�case,�tk.END means the end
of the widget, so that each choice that we insert will be placed at the end.

Another way to let a user select between a small number of options is the
Radiobutton widget; these are like Checkbutton widgets, but, similar to the
mechanical preset buttons in (very, very old) car radios, they only allow one to be
checked�at�a�time.�Let's�create�a�few�Radiobutton widgets:

plantain_label = tk.Label(root, text='Do you eat plantains?')
plantain_frame = tk.Frame(root)
plantain_yes_inp = tk.Radiobutton(plantain_frame, text='Yes')
plantain_no_inp = tk.Radiobutton(plantain_frame, text='Ewww, no!')

Notice�what�we've�done�here�with�plantain_frame:�we've�created�a�Frame object
and used it as the parent widget for each of the Radiobutton widgets. A Frame is
simply�a�blank�panel�with�nothing�on�it,�and�it's�useful�for�organizing�our�layout�
hierarchically.�We'll�use�Frame widgets quite often in this book for keeping groups of
widgets together.

Entry�widgets�work�Àne�for�single-line�strings,�but�how�about�multi-line�strings?�For�
those, Tkinter offers us the Text widget, which we create like this:

banana_haiku_label = tk.Label(
 root,
 text='Write a haiku about bananas'
)
banana_haiku_inp = tk.Text(root, height=3)

The Text�widget�is�capable�of�much�more�than�just�multi-line�text,�and�we'll�explore�
a few of its more advanced capabilities in Chapter 9, Improving the Look with Styles and
Themes.�For�now,�though,�we'll�just�use�it�for�text.

Our GUI would not be complete without a submit button for our survey, which is
provided by the Button class, like so:

submit_btn = tk.Button(root, text='Submit Survey')

We'll�use�this�button to submit the survey and display some output. What widget
could we use to display that output? It turns out that Label objects are useful for
more than just static messages; we can use them to display messages at runtime as
well.

Introduction to Tkinter

[14]

Let's�add�one�for�our�program�output:

output_line = tk.Label(root, text='', anchor='w', justify='left')

Here�we've�created�the�Label widget with no text (since we have no output yet).
We're�also�using�a�couple�of�additional�arguments for Label:

• anchor determines which side of the widget the text will be stuck to if the
widget is wider than the text. Tkinter sometimes uses cardinal directions
(North,�South,�East,�and�West)�abbreviated�to�their�Àrst�letter�whenever�it�
needs to specify a side of a widget; in this case, the string 'w' indicates the
West (or left) side of the widget.

• justify determines which side the text will align to when there are multiple
lines of code. Unlike anchor, it uses conventional 'left', 'right', and
'center' options.

anchor and justify may seem redundant, but they have slightly different behavior.
In a multiline text situation, the text could be aligned to the center of each line, but
the whole collection of lines could be anchored to the west side of the widget, for
example. In other words, anchor affects the whole block of text with respect to the
containing widget, while justify affects the individual lines of text with respect to
the other lines.

Tkinter�has�many�more�widgets,�and�we'll�meet�many�of�them�throughout�the�
remainder of the book.

Arranging our widgets with geometry
managers
If you were to add root.mainloop() to this script and execute it as-is, you would
see… a blank window. Hmmm, what happened to all those widgets we just created?
Well, you may remember from hello_tkinter.py that we need to use a geometry
manager like pack() to actually place them somewhere on their parent widgets.

Tkinter has three geometry manager methods available:

• pack() is the oldest, and simply adds widgets to one of the four sides of a
window sequentially.

• grid() is newer and preferred, and allows you to place widgets within a
2-dimensional grid table.

Chapter 1

[15]

• place() is a�third�option,�which�allows�you�to�put�widgets�at�speciÀc�pixel�
coordinates. It is not recommended, as it responds poorly to changes in
window�sizes,�font�sizes,�and�screen�resolution,�so�we�won't�be�using�it�in�
this book.

While pack()�is�certainly�Àne�for�simple�layouts�involving�a�handful�of�widgets,�it�
doesn't�scale�so�well�to�more�complex�layouts�without�an�inordinate�amount�of�Frame
widget nesting. For this reason, most Tkinter programmers rely on the more modern
grid() geometry manager. As the name suggests, grid() allows you to lay out
widgets on a 2-dimensional grid, much like a spreadsheet document or HTML table.
In�this�book,�we'll�focus�primarily�on�grid().

Let's�start�laying�out�the�widgets�of�our�GUI�using�grid(), beginning with the title
label:

title.grid()

By default, a call to grid() will place the widget in the Àrst�column (column 0) of the
next empty row. Thus, if we were to simply call grid() on the next widget, it would
end�up�directly�under�the�Àrst.�However,�we�can�also�be�explicit�about�this�using�the�
row and column arguments, like so:

name_label.grid(row=1, column=0)

Rows and columns count from the top-left corner of the widget, starting with 0.
Thus, row=1, column=0�places�the�widget�in�the�second�row�at�the�Àrst�column.�If�we�
want an additional column, all we need to do is place a widget in it, like so:

name_inp.grid(row=1, column=1)

The grid automatically expands whenever we add a widget to a new row or column.
If a widget is larger than the current width of the column, or height of the row,
all the cells in that column or row are expanded to accommodate it. We can tell a
widget to span multiple columns or multiple rows using the columnspan and rowspan
arguments, respectively. For example, it might be nice to have our title span the
width�of�the�form,�so�let's�amend�it�accordingly:

title.grid(columnspan=2)

As columns and rows expand, the widgets do not expand with them by default. If
we want them to expand, we need to use the sticky argument, like this:

eater_inp.grid(row=2, columnspan=2, sticky='we')

Introduction to Tkinter

[16]

sticky tells Tkinter to stick the sides of the widget to the sides of its containing cell
so that the widget will stretch as the cell expands. Like the anchor argument we
learned about above, sticky takes cardinal directions: n, s, e, and w.�In�this�case�we've�
speciÀed�West�and�East,�which�will�cause�the�widget�to�stretch�horizontally�if�the�
column expands further.

As�an�alternative�to�the�strings,�we�can�also�use�Tkinter's�constants�as�arguments�to�
sticky:

num_label.grid(row=3, sticky=tk.W)
num_inp.grid(row=3, column=1, sticky=(tk.W + tk.E))

There is no real difference between using constants and string literals as far as
Tkinter is concerned; however, the advantage of using constants is that your editing
software�can�more�easily�identify�if�you've�used�a�constant�that�doesn't�exist�than�an�
invalid string.

The grid() method allows us to add padding to our widgets as well, like so:

color_label.grid(row=4, columnspan=2, sticky=tk.W, pady=10)
color_inp.grid(row=5, columnspan=2, sticky=tk.W + tk.E, padx=25)

padx and pady indicate external�padding�–�that�is,�they�will�expand�the�containing�cell,�
but not the widget. ipadx and ipady, on the other hand, indicate internal padding.
Specifying these arguments will expand the widget itself (and consequently the
containing cell).

Figure 1.5: Internal padding (ipadx, ipady) versus external padding (padx, pady)

Tkinter does not allow us to mix geometry managers on the same parent widget;
once�we've�called�grid() on any child widget, a call to the pack() or place() method
on a sibling widget will generate an error, and vice versa.

Chapter 1

[�17�]

We�can,�however,�use�a�different�geometry�manager�on�the�sibling�widget's�children.�
For example, we can use pack() to place the child widgets on the plantain_frame
widgets, as shown here:

plantain_yes_inp.pack(side='left', fill='x', ipadx=10, ipady=5)
plantain_no_inp.pack(side='left', fill='x', ipadx=10, ipady=5)
plantain_label.grid(row=6, columnspan=2, sticky=tk.W)
plantain_frame.grid(row=7, columnspan=2, stick=tk.W)

The plantain_label and plantain_frame widgets, as children of root, must be placed
with grid(); plantain_yes and plantain_no are children of plantain_frame, though,
so we can choose to use pack() (or place()) on them if we wish. The following
diagram illustrates this:

Figure�1.6:�Each�widget's�children�must�use�the�same�geometry�manager�method

This ability to choose the geometry manager for each container widget gives us
enormous�Áexibility�in�how�we�lay�out�a�GUI.�While�the�grid() method is certainly
capable of specifying most layouts, there are times when the semantics of pack() or
place() make more sense for a piece of our interface.

Although the pack() geometry manager shares some arguments
with grid(), like padx and pady, most of the arguments are
different. For example, the side argument used in the example
determines which side widgets will be packed from, and the fill
argument determines on which axis the widget will expand.

Introduction to Tkinter

[18]

Let's�add�the�last�few�widgets�to�our�window:

banana_haiku_label.grid(row=8, sticky=tk.W)
banana_haiku_inp.grid(row=9, columnspan=2, sticky='NSEW')
submit_btn.grid(row=99)
output_line.grid(row=100, columnspan=2, sticky='NSEW')

Note�that�we've�stuck�the�Text widget (banana_haiku_inp) to all four sides of its
container. This will cause it to expand both vertically and horizontally as the grid is
stretched.�Also�notice�that�we've�skipped�to�rows�99�and�100�for�the�last�two�widgets.�
Remember that unused rows are collapsed into nothing, so by skipping rows or
columns we can leave space for future expansion of our GUI.

By default, Tkinter will make our window just large enough to contain all the
widgets we place on it; but what happens if our window (or containing frame)
becomes larger than the space required by our widgets? By default, the widgets will
remain as they are, stuck to the upper-left side of the application. If we want the
GUI�to�expand�and�Àll�the�space�available,�we�have�to�tell�the�parent�widget�which�
columns�and�rows�of�the�grid�will�expand.�We�do�this�by�using�the�parent�widget's�
columnconfigure() and rowconfigure() methods.

For example, if we want our second column (the one containing most of the input
widgets) to expand into unused space, we can do this:

root.columnconfigure(1, weight=1)

The�Àrst�argument�speciÀes�which�column�(counting�from�0)�we�want�to�affect.�The�
keyword argument weight takes an integer which will determine how much of the
extra�space�the�column�will�get.�With�only�one�column�speciÀed,�any�value�greater�
than 0 will cause that column to expand into the leftover space.

The rowconfigure() method works the same way:

root.rowconfigure(99, weight=2)
root.rowconfigure(100, weight=1)

This�time,�we've�given�two�rows�a�weight value, but note that row 99 is given a
weight of 2 while 100 is given a weight of 1.�In�this�conÀguration,�any�extra�vertical�
space will be divided between rows 99 and 100, but row 99 will get twice as much of
it as row 100.

As you can see, using a combination of grid(), pack() sub-frames, and some careful
planning, we can achieve complex GUI layouts fairly easily in Tkinter.

Chapter 1

[19]

Making the form actually do something
We've�got�a�nice�form all laid out now, complete with a submit button; so how do we
make it actually do something? If you have only written procedural code in the past,
you�may�be�confused�about�how�the�Áow�of�code�works�in�a�GUI�application.�Unlike�
a procedural script, the GUI cannot simply execute all the code from top to bottom.
Instead, it has to respond to user actions, such as a button click or a keystroke,
whenever and in whatever order they happen. Such actions are known as events.
To make the program respond to an event, we need to bind the event to a function,
which we call a callback.

There are a few ways to bind events to callback functions in Tkinter; for a button, the
simplest�is�to�conÀgure�its�command attribute, like so:

submit_btn.configure(command=on_submit)

The command argument�can�be�speciÀed�when�creating�a�widget�(for�example,�
submit_btn = Button(root, command=on_submit)), or after creation of the widget
using its configure() method. configure()�allows�you�to�change�a�widget's�
conÀguration�after�it's�created,�by�passing�in�arguments�just�as�you�would�when�
creating the widget.

In either case, command�speciÀes�a�reference to a callback function to be called when
the button is clicked. Note that we do not put parentheses after the function name
here; doing so would cause the function to be called and its return value would be
assigned to command. We only want a reference to the function here.

The callback function needs to exist before we can pass it to command. So, before the
call to submit_btn.configure(),�let's�create�the�on_submit() function:

def on_submit():
 """To be run when the user submits the form"""
 pass

submit_btn.configure(command=on_submit)

It is conventional to name callback functions in the format on_<event_name> when
they�are�speciÀcally�created�to�respond�to�a�particular�event.�However,�it's�not�
required, nor always appropriate (for example, if a function is a callback for many
events).

A�more�powerful�method�of�binding�events�is�to�use�the�widget's�bind() method,
which we will discuss in more detail in Chapter 6, Planning for the Expansion of Our
Application.

Introduction to Tkinter

[20]

Our on_submit()�callback�is�rather�boring�at�the�moment,�so�let's�make�it�better.�
Remove the pass statement and add in this code:

def on_submit():
 """To be run when the user submits the form"""

 name = name_inp.get()
 number = num_inp.get()

 selected_idx = color_inp.curselection()
 if selected_idx:
 color = color_inp.get(selected_idx)
 else:
 color = ''
 haiku = banana_haiku_inp.get('1.0', tk.END)

 message = (
 f'Thanks for taking the survey, {name}.\n'
 f'Enjoy your {number} {color} bananas!'
)
 output_line.configure(text=message)
 print(haiku)

The�Àrst�thing�we'll�do�in�this�function�is�retrieve�values�from�some�of�the�inputs.�For�
many inputs, the get() method is used to retrieve the current value of the widget.
Note that this value will be returned as a string, even in the case of our Spinbox.

For our list widget, color, things are more complicated. Its get() method requires
an index number for a choice, and returns the text for that index number. We can
use�the�widget's�curselection() method to get the selected index. If there are no
selections�made,�the�selected�index�will�be�an�empty�tuple.�In�that�case,�we'll�just�set�
color to an empty string. If there is a selection, we can pass the value to get().

Getting data from the Text widget is again slightly different. Its get() method
requires two values, one for a starting location and another for an ending location.
These�follow�a�special�syntax�(which�we'll�discuss�in�Chapter 3, Creating Basic Forms
with Tkinter and Ttk Widgets), but basically 1.0�means�the�Àrst�character�of�the�Àrst�
line, and tk.END is a constant that represents the end of the Text widget.

Retrieving data from our Checkbutton and Radiobutton is not
possible�without�using�Tkinter�control�variables,�which�we'll�
talk about in the section below, Handling data with Tkinter control
variables.

