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Preface
Writing a book involves much more than the application of grammar and 
punctuation rules. In the same way, developing an application requires more than a 
knowledge of programming languages and library APIs. A mere mastery of syntax 
rules�and�function�calls�is�not�in�itself�sufÀcient�for�designing�applications�that�
empower�users�to�perform�work,�safeguard�valuable�data,�and�produce�Áawless�
output. As programmers, we also need to be able to interpret user requests and 
expectations into effective interface designs and pick the best technologies to 
implement them. We need to be able to organize large code bases, test them, and 
maintain them in a way that keeps them manageable and free from careless errors.

This book aims to be much more than a reference manual for a particular GUI toolkit. 
As�we�walk�through�a�Àctitious�workplace�scenario,�you�will�get�a�taste�of�what�it's�
like�to�be�an�application�programmer�in�a�small�ofÀce�environment.�In�addition�to�
learning Tkinter and a few other useful libraries, you will learn many of the skills 
you need to move from being a writer of short scripts to a writer of fully-featured 
graphical�applications.�By�the�time�you've�Ànished�the�book,�you�should�feel�
conÀdent�that�you�can�develop�a�simple�but�useful�data-oriented�application�for�a�
working environment.

Who�this�book�is�for
This�book�is�for�beginners�who�have�learned�the�basics�of�Python�but�haven't�written�
much�beyond�simple�scripts.�We'll�walk�you�step-by-step�through�designing�and�
creating�a�larger�application,�and�we'll�introduce�you�to�skills�that�will�help�you�
advance as a programmer.

It's�also�aimed�at�those�who�have�used�Python�for�data�science,�web�development,�
or system administration, but who now want to branch out into creating GUI 
applications.�We'll�go�through�the�knowledge�and�skills�required�to�create�local�GUI�
applications.
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Finally, this book may also be useful for experienced Python programmers who 
just�want�to�learn�Tkinter,�as�much�of�the�book�details�the�Àner�points�of�using�the�
Tkinter library.

What�this�book�covers
Chapter 1, Introduction to Tkinter, introduces you to the basics of the Tkinter library 
and walks you through creating a basic Tkinter application. It will also introduce you 
to IDLE as an example of a Tkinter application.

Chapter 2, Designing GUI Applications, goes through the process of turning a set of 
user requirements into a design that we can implement.

Chapter 3, Creating Basic Forms with Tkinter and Ttk Widgets, shows you how to create 
a�basic�data�entry�application�that�appends�entered�data�to�a�CSV�Àle.

Chapter 4, Organizing Our Code with Classes, will introduce you to general object-
oriented�programming�techniques�as�well�as�Tkinter-speciÀc�uses�for�classes�that�will�
make our GUI programs more maintainable and understandable.

Chapter 5, Reducing User Error with Validation and Automation, demonstrates how to 
automatically�populate�and�validate�data�in�our�form's�inputs.

Chapter 6, Planning for the Expansion of Our Application, familiarizes you with how 
to�break�a�single-Àle�script�intelligently�into�multiple�Àles,�how�to�build�a�Python�
module that you can import, and how to separate the concerns of a large codebase to 
make it more manageable.

Chapter 7, Creating Menus with Menu and Tkinter Dialogs, outlines the creation of a 
main menu using Tkinter. It will also show the use of several built-in dialog types to 
implement common menu functionality.

Chapter 8, Navigating Records with Treeview and Notebook, details the construction of 
a data record navigation system using the Ttk Treeview and Notebook, as well as 
the conversion of our application from append-only to full read, write, and update 
capabilities.

Chapter 9, Improving the Look with Styles and Themes, informs you of how to change 
the colors, fonts, and widget styles of your application, and how to use them to make 
your application more usable and attractive.

Chapter 10, Maintaining Cross-Platform Compatibility, goes over Python and Tkinter 
techniques to keep your application running smoothly across Windows, macOS, and 
Linux systems.
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Chapter 11, Creating Automated Tests with unittest, discusses how to verify your code 
with automated unit tests and integration tests.

Chapter 12, Improving Data Storage with SQL, takes you through the conversion of our 
application�from�CSV�Áat-Àle�storage�to�SQL�database�storage.�You'll�learn�all�about�
SQL�and�relational�data�models�as�well.

Chapter 13, Connecting to the Cloud, covers how to work with network resources such 
as�HTTP�servers,�REST�services,�and�SFTP�servers.�You'll�learn�to�interact�with�these�
services�to�download�and�upload�data�and�Àles.

Chapter 14, Asynchronous Programming with Thread and Queue, explains how to use 
asynchronous and multithreaded programming to keep our application responsive 
during long-running processes.

Chapter 15, Visualizing Data Using the Canvas Widget, teaches you how to work with 
the�Tkinter�Canvas�widget�to�create�visualizations�and�animations.�You'll�also�learn�
how to integrate Matplotlib charts and build a simple game.

Chapter 16, Packaging with setuptools and cxFreeze, explores preparing your Python 
application for distribution as a Python package or a standalone executable.

To get the most out of this book
This book expects that you know the basics of Python 3. You should know how to 
write�and�run�simple�scripts�using�built-in�types�and�functions,�how�to�deÀne�your�
own functions, and how to import modules from the standard library.

You can follow this book on a computer running a current version of Microsoft 
Windows, Apple macOS, or a distribution of GNU/Linux. Ensure that you have 
Python 3 and Tcl/Tk installed (Chapter 1, Introduction to Tkinter, contains instructions 
for Windows, macOS, and Linux) and that you have a code editing environment 
with which you are comfortable (we suggest IDLE since it comes with Python 
and uses Tkinter. We do not recommend the use of Jupyter, Spyder, or similar 
environments aimed at analytical Python rather than application development). In 
the�later�chapters,�you'll�need�access�to�the�internet�so�that�you�can�install�Python�
packages�and�the�PostgreSQL�database.

Download�the�example�code�¿les
The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Python-GUI-Programming-with-Tkinter-2E. We also have other 
code bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!
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Download the color images
We�also�provide�a�PDF�Àle�that�has�color�images�of�the�screenshots/diagrams�
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801815925_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, 
Àlenames,�Àle�extensions,�pathnames,�dummy�URLs,�user�input,�and�Twitter�
handles. For example: "Save the code in solve_the_worlds_problems.py and execute 
it by typing python solve_the_worlds_problems.py at a terminal prompt."

A block of code is set as follows:

import tkinter as tk

root = tk.TK()
def solve():
  raise NotImplemented("Sorry!")
tk.Button(
  root, text="Solve the world's problems", command=solve
).pack()
root.mainloop()

When we wish to draw your attention to a particular part of a code block, especially 
to indicate changes to existing code, the relevant lines or items are set in bold:

import tkinter as tk
from tkinter import messagebox

root = tk.TK()
def solve():
  messagebox.showinfo('The answer?', 'Bananas?')
tk.Button(
  root, text="Solve the world's problems", command=solve
).pack()
root.mainloop()

Note that all Python code in the book uses 2-space indents rather than the 
conventional 4-space indents.
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Any command-line input or output is written with a $ indicating the prompt, as 
follows:

$ mkdir Bananas
$ cp plantains.txt Bananas/

Command line input intended for the Python shell or REPL is printed with a prompt 
of >>>, like so:

>>> print('This should be run in a Python shell')
'This should be run in a Python shell'

Expected output from the shell is printed on a line with no prompt.

Bold: Indicates a new term, an important word, or words that you see on the screen, 
for example, in menus or dialog boxes. For example: "Select System info from the 
Administration panel."

Executing Python and pip
When we need to instruct the reader to execute a Python script in this book, we 
indicate a command line such as the following:

$ python myscript.py

Depending�on�your�operating�system�or�Python�conÀguration,�the�python command 
may execute Python 2.x rather than Python 3.x. You can verify this by running the 
following command:

$ python --version
Python 3.9.7

Warnings or important notes appear like this.

 Tips and tricks appear like this.
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If this command outputs Python 2 rather than 3 on your system, you will need to 
alter any python commands so that your code is executed in Python 3. Typically, that 
means using the python3 command instead, like so:

$ python3 myscript.py

The same caveat applies to the pip command used to install libraries from the Python 
Package Index. You may need to use the pip3 command instead to install libraries to 
your Python 3 environment, for example:

$ pip3 install --user requests

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com,�and�mention�the�book's�title�in�the�
subject of your message. If you have questions about any aspect of this book, please 
email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, 
mistakes do happen. If you have found a mistake in this book, we would be grateful 
if you would report this to us. Please visit http://www.packtpub.com/submit-errata, 
selecting your book, clicking on the Errata Submission Form link, and entering the 
details.

Piracy: If you come across any illegal copies of our works in any form on the 
Internet, we would be grateful if you would provide us with the location address 
or website name. Please contact us at copyright@packtpub.com with a link to the 
material.

If you are interested in becoming an author: If there is a topic that you have 
expertise in and you are interested in either writing or contributing to a book, please 
visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a 
review on the site that you purchased it from? Potential readers can then see and use 
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we're�delivering�excellent�quality�content.





[ 1 ]

1
Introduction to Tkinter

Welcome,�Python�coder!�If�you've�learned�the�basics�of�Python�and�want�to�start�
designing powerful GUI applications, this book is for you.

By now, you have no doubt experienced the power and simplicity of Python. 
Perhaps�you've�written�web�services,�performed�data�analysis,�or�administered�
servers.�Perhaps�you've�written�a�game,�automated�routine�tasks,�or�simply�played�
around�with�code.�But�now�you're�ready�to�tackle�the�GUI.

With so much emphasis on web, mobile, and server-side programming, the 
development of simple desktop GUI applications seems increasingly like a lost art; 
many otherwise experienced developers have never learned to create one. What a 
tragedy! Desktop computers still play a vital role in work and home computing, 
and the ability to build simple, functional applications for this ubiquitous platform 
should�be�a�part�of�every�software�developer's�toolbox.�Fortunately,�for�Python�
coders, that ability is well within reach thanks to Tkinter.

In this chapter, you will cover the following topics:

• In Introducing Tkinter and Tk,�you'll�learn�about�Tkinter,�a�fast,�fun,�easy-
to-learn GUI library built in to the Python Standard Library; and IDLE, an 
editor and development environment written in Tkinter.

• In An overview of basic Tkinter,�you'll�learn�the�basics�of�Tkinter�with�a�"Hello�
World" program and create a Survey application.



Introduction to Tkinter

[ 2 ]

Introducing Tkinter and Tk
The Tk widget library originates from the Tool Command Language (Tcl) 
programming language. Tcl and Tk were created by John Ousterhout while he was 
a professor at Berkeley in the late 1980s as an easier way to program the engineering 
tools being used at the university. Because of its speed and relative simplicity, Tcl/
Tk rapidly grew in popularity among academic, engineering, and Unix programmers. 
Much like Python itself, Tcl/Tk originated on the Unix platform and only later 
migrated�to�macOS�and�Windows.�Tk's�practical�intent�and�Unix�roots�still�inform�its�
design today, and its simplicity compared to other toolkits is still a major strength.

Tkinter is a Python interface to the Tk GUI library and has been a part of the Python 
standard library since 1994 with the release of Python version 1.1, making it the de-
facto GUI library for Python. Documentation for Tkinter, along with links for further 
study, can be found in the standard library documentation at https://docs.python.
org/3/library/tkinter.html.

Choosing Tkinter
Python coders who want to build a GUI have several toolkit options to choose from; 
unfortunately,�Tkinter�is�often�maligned�or�ignored�as�a�legacy�option.�To�be�fair,�it's�
not a glamorous technology that you can describe in trendy buzzwords and glowing 
hype. However, Tkinter is not only adequate for a wide variety of applications but 
also�has�some�advantages�that�can't�be�ignored:

• Tkinter is in the standard library: With few exceptions, Tkinter is available 
wherever Python is available. There is no need to install pip, create virtual 
environments, compile binaries, or search the web for installation packages. 
For simple projects that need to be done quickly, this is a clear advantage.

• Tkinter is stable: While Tkinter development has not stopped, it is slow and 
evolutionary. The API has been stable for years, the changes mainly being 
additional�functionality�and�bug�Àxes.�Your�Tkinter�code�will�likely�run�
unaltered for years or decades to come.

• Tkinter is only a GUI toolkit: Unlike some other GUI libraries, Tkinter 
doesn't�have�its�own�threading�library,�network�stack,�or�Àlesystem�API.�It�
relies�on�regular�Python�libraries�for�such�things,�so�it's�perfect�for�applying�a�
GUI to existing Python code.

• Tkinter is simple and no-nonsense: Tkinter is very basic and to-the-point; it 
can be used effectively in both procedural and object-oriented GUI designs. 
To�use�Tkinter,�you�don't�have�to�learn�hundreds�of�widget�classes,�a�markup�
or templating language, a new programming paradigm, client-server 
technologies, or a different programming language.



Chapter 1

[�3�]

Tkinter is not perfect, of course. It also has some disadvantages:

• Tkinter's default look and feel is dated:�Tkinter's�default�appearance�has�
long lagged behind current trends, and it still bears a few artifacts from the 
1990s Unix world. While it lacks niceties like animated widgets, gradients, 
or scalable graphics, it has nevertheless improved a great deal in the last 
few years, thanks to updates in Tk itself and the addition of themed widget 
libraries.�We'll�learn�how�to�Àx�or�avoid�some�of�Tkinter's�more�archaic�
defaults throughout the book.

• Tkinter lacks more complex widgets: Tkinter is missing advanced widgets 
like rich text editors, 3D graphics embedding, HTML viewers, or specialized 
input�widgets.�As�we'll�see�later�in�this�book,�Tkinter�gives�us�the�ability�to�
create complex widgets by customizing and combining its simple ones.

Tkinter might be the wrong choice for a game UI or slick commercial application; 
however,�for�data-driven�applications,�simple�utilities,�conÀguration�dialogs,�and�
other business logic applications, Tkinter offers all that is needed and more. In this 
book�we're�going�to�be�working�through�the�development�of�data�entry�application�
for a workplace environment, something that Tkinter can handle admirably.

Installing Tkinter
Tkinter is included in the Python standard library for the Windows and macOS 
distributions.�So,�if�you�have�installed�Python�on�these�platforms�using�the�ofÀcial�
installers,�you�don't�need�to�do�anything�to�install�Tkinter.

However,�we're�going�to�be�exclusively�focused�on�Python�3.9�for�this�book;�so,�you�
need to make sure that you have this version or later installed.

Installing�Python�3.9�on�Windows
You can obtain Python 3 installers for Windows from the python.org website by 
performing the following steps:

1. Go to https://www.python.org/downloads/windows.
2. Select the latest Python 3 release. At the time of writing, the latest version is 

3.9.2.
3. Under the Files section, select the Windows executable installer appropriate 

to�your�system's�architecture�(x86�for�32-bit�Windows,�x86-64�for�64-bit�
Windows;�if�you're�unsure,�x86�will�work�on�either).

4. Launch the downloaded installer.
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5. Click on Customize installation. Make sure the tcl/tk and IDLE option is 
checked (it should be by default).

6. Continue through the installer with all defaults.

Installing�Python�3�on�macOS
As of this writing, macOS ships with Python 2.7 built in. However, Python 2 was 
ofÀcially�deprecated�in�2020,�and�the�code�in�this�book�will�not�work with it, so 
macOS users will need to install Python 3 to follow this book.

Follow this procedure to install Python3 on macOS:

1. Go to https://www.python.org/downloads/mac- osx/ .
2. Select the latest Python 3 release. At the time of writing, the latest version is 

3.9.2.
3. Under the Files section, select and download the macOS 64-bit/32-bit 

installer.
4. Launch the .pkg�Àle�that�you've�downloaded�and�follow�the�steps�of�the�

install wizard, selecting defaults.

Installing�Python�3�and�Tkinter�on�Linux
Most Linux distributions include both Python 2 and Python 3; however, Tkinter is 
not always�bundled�with�it�or�installed�by�default.�To�Ànd�out�if�Tkinter�is�installed,�
open a Terminal and try the following command:

$ python3 -m tkinter

This should open a simple window showing some information about Tkinter. If you 
get ModuleNotFoundError instead, you will need to use your package manager to 
install�your�distribution's�Tkinter�package�for�Python�3.�In�most�major�distributions,�
including Debian, Ubuntu, Fedora, and openSUSE, this package is called python3-tk.

Introducing IDLE
IDLE is an�integrated�development�environment�that�is�bundled�with�the�ofÀcial�
Python�software�distributions�for�Windows�and�macOS�(it's�readily�available�in�most�
Linux distributions as well, usually as idle or idle3). 
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IDLE is written in Python using Tkinter, and it provides us with not only an 
editing environment for Python but also a great example of Tkinter in action. So, 
while�IDLE's�rudimentary�feature�set�may�not�be�considered�professional�grade�
by experienced Python coders, and while you may already have a preferred 
environment for writing Python code, I encourage you to spend some time using 
IDLE as you go through this book.

IDLE�has�two�primary�modes:�shell�mode�and�editor�mode.�We'll�take�a�look�at�those�
in this section.

Using the shell mode of IDLE
When you launch IDLE, you begin in shell mode, which is simply a Python Read-
Evaluate-Print-Loop (REPL) similar to what you get when you type python in a 
Terminal window.

You�can�see�IDLE's�shell�mode�in�this�screenshot:

Figure�1.1:�IDLE's�shell�mode

IDLE's�shell�has�some�nice�features�that�you�don't�get�from�the�command-line�REPL,�
like syntax highlighting and tab completion. The REPL is essential to the Python 
development process, as it gives you the ability to test code in real time and inspect 
classes�and�APIs�without�having�to�write�complete�scripts.�We'll�use�the�shell�mode�
in�later�chapters�to�explore�the�features�and�behaviors�of�modules.�If�you�don't�have�
a shell window open, you can open one by clicking on Run | Python Shell in the 
IDLE menu.

Using the editor mode of IDLE
Editor mode is for creating Python�script�Àles,�which�you�can�later�run.�When�the�
book�tells�you�to�create�a�new�Àle,�this�is�the�mode�you'll�use.�To�open�a�new�Àle�in�
the editor mode, simply navigate to File | New File in the menu or hit Ctrl + N on 
the keyboard.
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This�image�shows�IDLE's�Àle�editor:

Figure�1.2:�IDLE's�Àle�editor

You can run your script without leaving IDLE by hitting the F5 key in the editor mode; 
IDLE will open a shell-mode window to execute the script and display the output.

IDLE as a Tkinter example
Before we start coding�with�Tkinter,�let's�take�a�quick�look�at�what�you�can�do�with�
it�by�inspecting�some�of�IDLE's�UI.�Navigate�to�Options | ConÀgure�IDLE from 
the�main�menu�to�open�IDLE's�conÀguration�settings.�Here�you�can�change�IDLE's�
fonts, colors and theme, keyboard shortcuts, and default behaviors, as shown in this 
screenshot:

Figure�1.3:�IDLE�conÀguration�settings
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Consider some of the following components that make up this user interface:

• There are drop-down menus that allow you to select between large sets of 
options.

• There are checkable buttons that allow you to select between small sets of 
options.

• There are many push buttons that you can click on to execute actions.
• There is a text window that can display multi-colored text.
• There are labeled frames that contain groups of components.
• There are tabs across the top of the screen to select different sections of the 

conÀguration.

In Tkinter (as in most GUI libraries), each of these components is known as a widget; 
we're�going�to�meet�these�widgets�and�more�throughout�this�book�and�learn�how�
to�use�them�as�they've�been�used�here.�We'll�begin,�however,�with�something�much�
simpler.

Creating�a�Tkinter�Hello�World
One of the grand traditions in any programming language or library is to create a 
"Hello World" program: that is, a program that displays Hello World�and�exits.�Let's�
walk through creating a "Hello World" application for Tkinter and talk about the 
pieces of it along the way.

First,�create�a�new�Àle�called�hello_tkinter.py in IDLE or your favorite editor, and 
enter the following code:

"""Hello World application for Tkinter"""
import tkinter as tk

The�Àrst�line�is�called a docstring, and every Python script should start with one. 
At a minimum, it should give the name of the program but can also include details 
about how to use it, who wrote it, and what it requires.

The second line imports the tkinter module into our program. Although Tkinter is 
in the standard library, we have to import it before we can use any of its classes or 
functions.

Sometimes, you may see this import written as from tkinter import *. That 
approach is called a wildcard import, and it results in all the objects being brought 
into the global namespace.�While�popular�in�tutorials�for�its�simplicity,�it's�a�bad�idea�
in actual code as there is a possibility of a collision between our own variable names 
and all names in the tkinter module, which can cause subtle bugs. 
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To�avoid�this,�we're�going�to�keep�tkinter in its own namespace; however, to keep 
the�code�concise,�we'll�alias�tkinter to tk. This convention will be used throughout 
the book.

Every Tkinter program must have exactly one root window, which represents both 
the�top-level�window�of�our�application,�and�the�application�itself.�Let's�create�our�
root window, like so:

root = Tk()

The root window is an instance of the Tk class. We create it by calling Tk()�as�we've�
done here. This object must exist before we can create any other Tkinter objects, and 
when it is destroyed, the application quits.

Now,�let's�create�a�widget�to�put�in�our�window:

label = Label(root, text="Hello World")

This is a Label�widget,�which�is�just�a�panel�that�can�display�some�text.�The�Àrst�
argument to any Tkinter widget is always the parent widget (sometimes called 
master widget); in this�case,�we've�passed�in�a�reference�to�our�root�window.�The�
parent widget is the widget on which our Label will be placed, so this Label will 
be directly on the root window of the application. Widgets in a Tkinter GUI are 
arranged in a hierarchy, each widget being contained by another all the way up to 
the root window.

We've�also�passed�in�a�keyword�argument,�text.�This�argument,�of�course,�deÀnes�
the text that will be placed on the widget. For most Tkinter widgets, the majority of 
conÀguration�is�done�using�keyword�arguments�like�this.

Now�that�we've�created�a�widget,�we�need�to�actually�place�it�on�the�GUI:

label.pack()

The pack() method of the Label widget is called a geometry manager method. Its job 
is to determine how the widget will be attached to its parent widget, and to draw it 
there.�Without�this�call,�your�widget�would�exist�but�you�wouldn't�see�it�anywhere�
on the window. pack()�is�one�of�three�geometry�managers,�which�we'll�learn�more�
about in the next section.

The last line of our program looks like this:

root.mainloop()



Chapter 1

[ 9 ]

This�line�starts�our�application's�event loop.�The�event�loop�is�an�inÀnite�loop�that�
continually processes any events that happen during the execution of the program. 
Events can be things like keystrokes, mouse clicks, or other user-generated activity. 
This loop runs until the program exits, so any code after this line will not be run until 
the main window is closed. For this reason, this line is usually the last one in any 
Tkinter program.

Run the program in IDLE by hitting F5, or in your Terminal by typing the following 
command:

$ python hello_tkinter.py

You should see a very tiny window pop up with the text Hello World as shown here:

Figure 1.4: Our "Hello World" application

Feel free to play around with this script by adding more widgets before the  
root.mainloop() call. You can add more Label objects, or try some Button (which 
creates a clickable button) or Entry�(which�creates�a�text�Àeld)�widgets.�Just�like�
Label, these widgets are initialized with a parent object (use root) and a text 
parameter.�Don't�forget�to�call�pack() on each widget to place them on the root 
window.

When�you're�ready,�move�on�to�the�next�section�where�we'll�create�a�more�interesting�
application.

An overview of basic Tkinter
As exciting as it may�be�to�see�that�Àrst�GUI�window�pop�up�on�the�screen,�"Hello�
World"�is�not�a�terribly�interesting�application.�Let's�start�again�and�dig�a�little�
deeper into Tkinter as we build a slightly larger program. Since the next chapter will 
see�you�landing�a�job�at�a�Àctitious�agricultural�laboratory�studying�fruit�plants,�let's�
create a little program to gauge your opinions about bananas.

Example code for all chapters in this book can be downloaded 
from https://github.com/PacktPublishing/Python-GUI-
Programming-with-Tkinter-2E. You may want to download 
these now so you can follow along.
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Building a GUI with Tkinter widgets
Start�a�new�Àle�in your editor called banana_survey.py, and begin by importing 
tkinter like so:

# banana_survey.py
"""A banana preferences survey written in Python with Tkinter"""

import tkinter as tk

As with hello_tkinter.py, we need to create a root window before we can create 
any widgets or other Tkinter objects:

root = tk.Tk()

Once�again,�we've�called�this�object�root. The root�window�can�be�conÀgured�in�
various ways; for example, we can give it a window title or set its size like so:

# set the title
root.title('Banana interest survey')
# set the root window size
root.geometry('640x480+300+300')
root.resizable(False, False)

The title() method sets our window title (that is, the name that shows up in the 
task manager and in the window decorations), while geometry() sets the window 
size.�In�this�case,�we're�telling�the�root�window�to�be�640�by�480�pixels.�The�+300+300 
sets the position of the window on the screen — in this case, 300 pixels from the 
top and 300 pixels from the left (the position portion is optional, if you only care 
about the size). Notice that the argument to geometry() is a string. In Tcl/Tk, every 
argument is treated as a string. Since Tkinter is just a wrapper that passes arguments 
on�to�Tcl/Tk,�we'll�often�Ànd�that�strings�are�used�to�conÀgure�Tkinter�objects�–�even�
when�we�might�expect�to�use�integers�or�Áoats.

The resizable() method sets whether or not our window can be resized horizontally 
and vertically, respectively. True means the window can be resized in that direction, 
False means its dimension�is�Àxed.�In�this�case,�we�want�to�prevent�the�resizing�
of�the�window�so�that�we�don't�have�to�worry�about�making�the�layout�Áexible�to�
window size changes.

Now�let's�start�adding�widgets�to�our�survey.�We've�already�met�the�Label widget, so 
let's�add�one:

title = tk.Label(
  root,
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  text='Please take the survey',
  font=('Arial 16 bold'),
  bg='brown',
  fg='#FF0'
)

As�we�saw�in�our�"Hello�World"�example,�the�Àrst�argument�passed�to�any�Tkinter�
widget is the parent widget on which the new widget will be placed. In this case, 
we'll�be�placing�this�Label widget on the root window. The remaining arguments to 
a�widget�are�speciÀed�as�keyword�arguments.�Here,�we've�speciÀed�the�following:

• text, which is the text the label will display.
• font,�which�speciÀes�the�family,�size,�and�weight�of�the�font�used�to�display�

the�text.�Notice�again�that�the�font�settings�are�speciÀed�as�a�simple�string,�
just as our geometry settings were.

• bg,�which�sets�the�background�color�for�the�widget.�We've�used�a�color�name�
here; Tkinter recognizes a great many color names, similar to those used by 
CSS or X11.

• fg,�which�sets�the�foreground�(text)�color�for�the�widget.�In�this�case,�we've�
speciÀed�a�short�hexadecimal�string,�in�which�the�three�characters�represent�
the red, green, and blue values respectively. We can also use a six-character 
hex string (for example, #FFE812)�for�Àner-grained�control�over�the�color.

In Chapter 9, Improving the Look with Styles and Themes,�we'll�learn�more�sophisticated�
ways�to�set�up�fonts�and�colors,�but�this�will�work�just�Àne�for�now.

Tkinter has many interactive widgets for data entry, of course, the simplest being the 
Entry widget:

name_label = tk.Label(root, text='What is your name?')
name_inp = tk.Entry(root)

The Entry widget is just a simple text-input box designed for a single line of text. 
Most�input�widgets�in�Tkinter�do�not�include�a�label�of�any�kind,�so�we've�added�one�
to make it clear to our user what the entry box is for.

One exception to that is the Checkbutton�widget,�which�we'll�create�next:

eater_inp = tk.Checkbutton(
  root,
  text='Check this box if you eat bananas'
)
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A Checkbutton creates a check box input; it includes a label that sits next to the box, 
and we can set its text using the text argument.

For entering numbers, Tkinter provides the Spinbox�widget.�Let's�add�one:

num_label = tk.Label(
  root,
  text='How many bananas do you eat per day?'
)
num_inp = tk.Spinbox(root, from_=0, to=1000, increment=1)

A Spinbox is like an Entry, but features arrow buttons that can increment and 
decrement the number�in�the�box.�We've�used�several�arguments�to�conÀgure�it�here:

• The from_ and to arguments set the minimum and maximum values that 
the buttons will decrement or increment to, respectively. Notice that from_ 
has an extra underscore at the end; this is not a typo! Since from is a Python 
keyword�(used�in�importing�modules),�it�can't�be�used�as�a�variable�name,�so�
the Tkinter authors chose to use from_ instead.

• The increment argument sets how much the arrow buttons will increase or 
decrease the number.

Tkinter has several widgets that allow you to choose from preset selection values; 
one of the simplest is Listbox, which looks like this:

color_label = tk.Label(
  root,
  text='What is the best color for a banana?'
)
color_inp = tk.Listbox(root, height=1)  # Only show selected item
# add choices
color_choices = (
  'Any', 'Green', 'Green-Yellow',
  'Yellow', 'Brown Spotted', 'Black'
  )
for choice in color_choices:
  color_inp.insert(tk.END, choice)

The Listbox takes a height�argument�that�speciÀes�how�many�lines�are�visible;�by�
default�the�box�is�big�enough�to�show�all�the�options.�We've�changed�that�to�1 so that 
only the currently selected option is visible. The others can be accessed using the 
arrow keys.
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To add options to the box, we need to call its insert() method and add each option 
one�at�a�time.�We've�done�that�here�using�a�for loop to save�repetitive�coding.�The�Àrst�
argument to insert�speciÀes�where�we�want�to�insert�the�option;�note�that�we've�used�
a special constant provided by tkinter, tk.END. This is one of many special constants 
deÀned�in�Tkinter�for�certain�conÀguration�values.�In�this�case,�tk.END means the end 
of the widget, so that each choice that we insert will be placed at the end.

Another way to let a user select between a small number of options is the 
Radiobutton widget; these are like Checkbutton widgets, but, similar to the 
mechanical preset buttons in (very, very old) car radios, they only allow one to be 
checked�at�a�time.�Let's�create�a�few�Radiobutton widgets:

plantain_label = tk.Label(root, text='Do you eat plantains?')
plantain_frame = tk.Frame(root)
plantain_yes_inp = tk.Radiobutton(plantain_frame, text='Yes')
plantain_no_inp = tk.Radiobutton(plantain_frame, text='Ewww, no!')

Notice�what�we've�done�here�with�plantain_frame:�we've�created�a�Frame object 
and used it as the parent widget for each of the Radiobutton widgets. A Frame is 
simply�a�blank�panel�with�nothing�on�it,�and�it's�useful�for�organizing�our�layout�
hierarchically.�We'll�use�Frame widgets quite often in this book for keeping groups of 
widgets together.

Entry�widgets�work�Àne�for�single-line�strings,�but�how�about�multi-line�strings?�For�
those, Tkinter offers us the Text widget, which we create like this:

banana_haiku_label = tk.Label(
  root, 
  text='Write a haiku about bananas'
)
banana_haiku_inp = tk.Text(root, height=3)

The Text�widget�is�capable�of�much�more�than�just�multi-line�text,�and�we'll�explore�
a few of its more advanced capabilities in Chapter 9, Improving the Look with Styles and 
Themes.�For�now,�though,�we'll�just�use�it�for�text.

Our GUI would not be complete without a submit button for our survey, which is 
provided by the Button class, like so:

submit_btn = tk.Button(root, text='Submit Survey')

We'll�use�this�button to submit the survey and display some output. What widget 
could we use to display that output? It turns out that Label objects are useful for 
more than just static messages; we can use them to display messages at runtime as 
well. 
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Let's�add�one�for�our�program�output:

output_line = tk.Label(root, text='', anchor='w', justify='left')

Here�we've�created�the�Label widget with no text (since we have no output yet). 
We're�also�using�a�couple�of�additional�arguments for Label:

• anchor determines which side of the widget the text will be stuck to if the 
widget is wider than the text. Tkinter sometimes uses cardinal directions 
(North,�South,�East,�and�West)�abbreviated�to�their�Àrst�letter�whenever�it�
needs to specify a side of a widget; in this case, the string 'w' indicates the 
West (or left) side of the widget.

• justify determines which side the text will align to when there are multiple 
lines of code. Unlike anchor, it uses conventional 'left', 'right', and 
'center' options.

anchor and justify may seem redundant, but they have slightly different behavior. 
In a multiline text situation, the text could be aligned to the center of each line, but 
the whole collection of lines could be anchored to the west side of the widget, for 
example. In other words, anchor affects the whole block of text with respect to the 
containing widget, while justify affects the individual lines of text with respect to 
the other lines.

Tkinter�has�many�more�widgets,�and�we'll�meet�many�of�them�throughout�the�
remainder of the book.

Arranging our widgets with geometry 
managers
If you were to add root.mainloop() to this script and execute it as-is, you would 
see… a blank window. Hmmm, what happened to all those widgets we just created? 
Well, you may remember from hello_tkinter.py that we need to use a geometry 
manager like pack() to actually place them somewhere on their parent widgets.

Tkinter has three geometry manager methods available:

• pack() is the oldest, and simply adds widgets to one of the four sides of a 
window sequentially.

• grid() is newer and preferred, and allows you to place widgets within a 
2-dimensional grid table.



Chapter 1

[ 15 ]

• place() is a�third�option,�which�allows�you�to�put�widgets�at�speciÀc�pixel�
coordinates. It is not recommended, as it responds poorly to changes in 
window�sizes,�font�sizes,�and�screen�resolution,�so�we�won't�be�using�it�in�
this book.

While pack()�is�certainly�Àne�for�simple�layouts�involving�a�handful�of�widgets,�it�
doesn't�scale�so�well�to�more�complex�layouts�without�an�inordinate�amount�of�Frame 
widget nesting. For this reason, most Tkinter programmers rely on the more modern 
grid() geometry manager. As the name suggests, grid() allows you to lay out 
widgets on a 2-dimensional grid, much like a spreadsheet document or HTML table. 
In�this�book,�we'll�focus�primarily�on�grid().

Let's�start�laying�out�the�widgets�of�our�GUI�using�grid(), beginning with the title 
label:

title.grid()

By default, a call to grid() will place the widget in the Àrst�column (column 0) of the 
next empty row. Thus, if we were to simply call grid() on the next widget, it would 
end�up�directly�under�the�Àrst.�However,�we�can�also�be�explicit�about�this�using�the�
row and column arguments, like so:

name_label.grid(row=1, column=0)

Rows and columns count from the top-left corner of the widget, starting with 0. 
Thus, row=1, column=0�places�the�widget�in�the�second�row�at�the�Àrst�column.�If�we�
want an additional column, all we need to do is place a widget in it, like so:

name_inp.grid(row=1, column=1)

The grid automatically expands whenever we add a widget to a new row or column. 
If a widget is larger than the current width of the column, or height of the row, 
all the cells in that column or row are expanded to accommodate it. We can tell a 
widget to span multiple columns or multiple rows using the columnspan and rowspan 
arguments, respectively. For example, it might be nice to have our title span the 
width�of�the�form,�so�let's�amend�it�accordingly:

title.grid(columnspan=2)

As columns and rows expand, the widgets do not expand with them by default. If 
we want them to expand, we need to use the sticky argument, like this:

eater_inp.grid(row=2, columnspan=2, sticky='we')
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sticky tells Tkinter to stick the sides of the widget to the sides of its containing cell 
so that the widget will stretch as the cell expands. Like the anchor argument we 
learned about above, sticky takes cardinal directions: n, s, e, and w.�In�this�case�we've�
speciÀed�West�and�East,�which�will�cause�the�widget�to�stretch�horizontally�if�the�
column expands further.

As�an�alternative�to�the�strings,�we�can�also�use�Tkinter's�constants�as�arguments�to�
sticky:

num_label.grid(row=3, sticky=tk.W)
num_inp.grid(row=3, column=1, sticky=(tk.W + tk.E))

There is no real difference between using constants and string literals as far as 
Tkinter is concerned; however, the advantage of using constants is that your editing 
software�can�more�easily�identify�if�you've�used�a�constant�that�doesn't�exist�than�an�
invalid string.

The grid() method allows us to add padding to our widgets as well, like so:

color_label.grid(row=4, columnspan=2, sticky=tk.W, pady=10)
color_inp.grid(row=5, columnspan=2, sticky=tk.W + tk.E, padx=25)

padx and pady indicate external�padding�–�that�is,�they�will�expand�the�containing�cell,�
but not the widget. ipadx and ipady, on the other hand, indicate internal padding. 
Specifying these arguments will expand the widget itself (and consequently the 
containing cell).

Figure 1.5: Internal padding (ipadx, ipady) versus external padding (padx, pady)

Tkinter does not allow us to mix geometry managers on the same parent widget; 
once�we've�called�grid() on any child widget, a call to the pack() or place() method 
on a sibling widget will generate an error, and vice versa. 
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We�can,�however,�use�a�different�geometry�manager�on�the�sibling�widget's�children.�
For example, we can use pack() to place the child widgets on the plantain_frame 
widgets, as shown here:

plantain_yes_inp.pack(side='left', fill='x', ipadx=10, ipady=5)
plantain_no_inp.pack(side='left', fill='x', ipadx=10, ipady=5)
plantain_label.grid(row=6, columnspan=2, sticky=tk.W)
plantain_frame.grid(row=7, columnspan=2, stick=tk.W)

The plantain_label and plantain_frame widgets, as children of root, must be placed 
with grid(); plantain_yes and plantain_no are children of plantain_frame, though, 
so we can choose to use pack() (or place()) on them if we wish. The following 
diagram illustrates this:

Figure�1.6:�Each�widget's�children�must�use�the�same�geometry�manager�method

This ability to choose the geometry manager for each container widget gives us 
enormous�Áexibility�in�how�we�lay�out�a�GUI.�While�the�grid() method is certainly 
capable of specifying most layouts, there are times when the semantics of pack() or 
place() make more sense for a piece of our interface.

Although the pack() geometry manager shares some arguments 
with grid(), like padx and pady, most of the arguments are 
different. For example, the side argument used in the example 
determines which side widgets will be packed from, and the fill 
argument determines on which axis the widget will expand.
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Let's�add�the�last�few�widgets�to�our�window:

banana_haiku_label.grid(row=8, sticky=tk.W)
banana_haiku_inp.grid(row=9, columnspan=2, sticky='NSEW')
submit_btn.grid(row=99)
output_line.grid(row=100, columnspan=2, sticky='NSEW')

Note�that�we've�stuck�the�Text widget (banana_haiku_inp) to all four sides of its 
container. This will cause it to expand both vertically and horizontally as the grid is 
stretched.�Also�notice�that�we've�skipped�to�rows�99�and�100�for�the�last�two�widgets.�
Remember that unused rows are collapsed into nothing, so by skipping rows or 
columns we can leave space for future expansion of our GUI.

By default, Tkinter will make our window just large enough to contain all the 
widgets we place on it; but what happens if our window (or containing frame) 
becomes larger than the space required by our widgets? By default, the widgets will 
remain as they are, stuck to the upper-left side of the application. If we want the 
GUI�to�expand�and�Àll�the�space�available,�we�have�to�tell�the�parent�widget�which�
columns�and�rows�of�the�grid�will�expand.�We�do�this�by�using�the�parent�widget's�
columnconfigure() and rowconfigure() methods.

For example, if we want our second column (the one containing most of the input 
widgets) to expand into unused space, we can do this:

root.columnconfigure(1, weight=1)

The�Àrst�argument�speciÀes�which�column�(counting�from�0)�we�want�to�affect.�The�
keyword argument weight takes an integer which will determine how much of the 
extra�space�the�column�will�get.�With�only�one�column�speciÀed,�any�value�greater�
than 0 will cause that column to expand into the leftover space.

The rowconfigure() method works the same way:

root.rowconfigure(99, weight=2)
root.rowconfigure(100, weight=1)

This�time,�we've�given�two�rows�a�weight value, but note that row 99 is given a 
weight of 2 while 100 is given a weight of 1.�In�this�conÀguration,�any�extra�vertical�
space will be divided between rows 99 and 100, but row 99 will get twice as much of 
it as row 100.

As you can see, using a combination of grid(), pack() sub-frames, and some careful 
planning, we can achieve complex GUI layouts fairly easily in Tkinter.
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Making the form actually do something
We've�got�a�nice�form all laid out now, complete with a submit button; so how do we 
make it actually do something? If you have only written procedural code in the past, 
you�may�be�confused�about�how�the�Áow�of�code�works�in�a�GUI�application.�Unlike�
a procedural script, the GUI cannot simply execute all the code from top to bottom. 
Instead, it has to respond to user actions, such as a button click or a keystroke, 
whenever and in whatever order they happen. Such actions are known as events. 
To make the program respond to an event, we need to bind the event to a function, 
which we call a callback.

There are a few ways to bind events to callback functions in Tkinter; for a button, the 
simplest�is�to�conÀgure�its�command attribute, like so:

submit_btn.configure(command=on_submit)

The command argument�can�be�speciÀed�when�creating�a�widget�(for�example,� 
submit_btn = Button(root, command=on_submit)), or after creation of the widget 
using its configure() method. configure()�allows�you�to�change�a�widget's�
conÀguration�after�it's�created,�by�passing�in�arguments�just�as�you�would�when�
creating the widget.

In either case, command�speciÀes�a�reference to a callback function to be called when 
the button is clicked. Note that we do not put parentheses after the function name 
here; doing so would cause the function to be called and its return value would be 
assigned to command. We only want a reference to the function here.

The callback function needs to exist before we can pass it to command. So, before the 
call to submit_btn.configure(),�let's�create�the�on_submit() function:

def on_submit():
  """To be run when the user submits the form"""
  pass

submit_btn.configure(command=on_submit)

It is conventional to name callback functions in the format on_<event_name> when 
they�are�speciÀcally�created�to�respond�to�a�particular�event.�However,�it's�not�
required, nor always appropriate (for example, if a function is a callback for many 
events).

A�more�powerful�method�of�binding�events�is�to�use�the�widget's�bind() method, 
which we will discuss in more detail in Chapter 6, Planning for the Expansion of Our 
Application.
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Our on_submit()�callback�is�rather�boring�at�the�moment,�so�let's�make�it�better.�
Remove the pass statement and add in this code:

def on_submit():
  """To be run when the user submits the form"""

  name = name_inp.get()
  number = num_inp.get()

  selected_idx = color_inp.curselection()
  if selected_idx:
    color = color_inp.get(selected_idx)
  else:
    color = ''
  haiku = banana_haiku_inp.get('1.0', tk.END)

  message = (
    f'Thanks for taking the survey, {name}.\n'
    f'Enjoy your {number} {color} bananas!'
  )
  output_line.configure(text=message)
  print(haiku)

The�Àrst�thing�we'll�do�in�this�function�is�retrieve�values�from�some�of�the�inputs.�For�
many inputs, the get() method is used to retrieve the current value of the widget. 
Note that this value will be returned as a string, even in the case of our Spinbox.

For our list widget, color, things are more complicated. Its get() method requires 
an index number for a choice, and returns the text for that index number. We can 
use�the�widget's�curselection() method to get the selected index. If there are no 
selections�made,�the�selected�index�will�be�an�empty�tuple.�In�that�case,�we'll�just�set�
color to an empty string. If there is a selection, we can pass the value to get().

Getting data from the Text widget is again slightly different. Its get() method 
requires two values, one for a starting location and another for an ending location. 
These�follow�a�special�syntax�(which�we'll�discuss�in�Chapter 3, Creating Basic Forms 
with Tkinter and Ttk Widgets), but basically 1.0�means�the�Àrst�character�of�the�Àrst�
line, and tk.END is a constant that represents the end of the Text widget.

Retrieving data from our Checkbutton and Radiobutton is not 
possible�without�using�Tkinter�control�variables,�which�we'll�
talk about in the section below, Handling data with Tkinter control 
variables.


