
1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 1/22

RSA
General

Designers Ron Rivest,[1] Adi
Shamir, and
Leonard Adleman

First
published

1977

Certification PKCS#1, ANSI
X9.31

Cipher detail

Key sizes 2,048 to 4,096 bit
typical

Rounds 1

Best public cryptanalysis
General number field sieve for
classical computers;
Shor's algorithm for quantum
computers.
An 829-bit key has been broken.

RSA (cryptosystem)
RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem, one of the oldest widely used for secure
data transmission. The initialism "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard
Adleman, who publicly described the algorithm in 1977. An equivalent system was developed secretly in 1973
at Government Communications Headquarters (GCHQ), the British signals intelligence agency, by the
English mathematician Clifford Cocks. That system was declassified in 1997.[2]

In a public-key cryptosystem, the encryption key is public and distinct from the decryption key, which is kept
secret (private). An RSA user creates and publishes a public key based on two large prime numbers, along
with an auxiliary value. The prime numbers are kept secret. Messages can be encrypted by anyone, via the
public key, but can only be decoded by someone who knows the private key.[1]

The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers, the
"factoring problem". Breaking RSA encryption is known as the RSA problem. Whether it is as difficult as the
factoring problem is an open question.[3] There are no published methods to defeat the system if a large
enough key is used.

RSA is a relatively slow algorithm. Because of this, it is not commonly used to directly encrypt user data.
More often, RSA is used to transmit shared keys for symmetric-key cryptography, which are then used for
bulk encryption–decryption.

The idea of an asymmetric public-private key cryptosystem is attributed to Whitfield Diffie and Martin
Hellman, who published this concept in 1976. They also introduced digital signatures and attempted to apply
number theory. Their formulation used a shared-secret-key created from exponentiation of some number, modulo a prime number. However,
they left open the problem of realizing a one-way function, possibly because the difficulty of factoring was not well-studied at the time.[4]

History

https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/Leonard_Adleman
https://en.wikipedia.org/wiki/PKCS1
https://en.wikipedia.org/w/index.php?title=ANSI_X9.31&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=ANSI_X9.31&action=edit&redlink=1
https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/Round_(cryptography)
https://en.wikipedia.org/wiki/Cryptanalysis
https://en.wikipedia.org/wiki/General_number_field_sieve
https://en.wikipedia.org/wiki/Shor%27s_algorithm
https://en.wikipedia.org/wiki/RSA-250
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Initialism
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/Leonard_Adleman
https://en.wikipedia.org/wiki/Leonard_Adleman
https://en.wikipedia.org/wiki/Government_Communications_Headquarters
https://en.wikipedia.org/wiki/Signals_intelligence
https://en.wikipedia.org/wiki/Clifford_Cocks
https://en.wikipedia.org/wiki/Classified_information
https://en.wikipedia.org/wiki/Cryptosystem
https://en.wikipedia.org/wiki/Encryption_key
https://en.wikipedia.org/wiki/Decryption_key
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Factorization
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Factoring_problem
https://en.wikipedia.org/wiki/RSA_problem
https://en.wikipedia.org/wiki/Symmetric-key_algorithm
https://en.wikipedia.org/wiki/Whitfield_Diffie
https://en.wikipedia.org/wiki/Martin_Hellman
https://en.wikipedia.org/wiki/Martin_Hellman

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 2/22

Adi Shamir, co-inventor
of RSA (the others are
Ron Rivest and Leonard
Adleman)

Ron Rivest, Adi Shamir, and Leonard Adleman at the Massachusetts Institute of Technology made several attempts over
the course of a year to create a function that was hard to invert. Rivest and Shamir, as computer scientists, proposed
many potential functions, while Adleman, as a mathematician, was responsible for finding their weaknesses. They tried
many approaches, including "knapsack-based" and "permutation polynomials". For a time, they thought what they
wanted to achieve was impossible due to contradictory requirements.[5] In April 1977, they spent Passover at the house
of a student and drank a good deal of wine before returning to their homes at around midnight.[6] Rivest, unable to
sleep, lay on the couch with a math textbook and started thinking about their one-way function. He spent the rest of the
night formalizing his idea, and he had much of the paper ready by daybreak. The algorithm is now known as RSA – the
initials of their surnames in same order as their paper.[7]

Clifford Cocks, an English mathematician working for the British intelligence agency Government Communications
Headquarters (GCHQ), described a similar system in an internal document in 1973.[8] However, given the relatively
expensive computers needed to implement it at the time, it was considered to be mostly a curiosity and, as far as is
publicly known, was never deployed. His ideas and concepts, were not revealed until 1997 due to its top-secret
classification.

Kid-RSA (KRSA) is a simplified, insecure public-key cipher published in 1997, designed for educational purposes. Some
people feel that learning Kid-RSA gives insight into RSA and other public-key ciphers, analogous to simplified
DES.[9][10][11][12][13]

A patent describing the RSA algorithm was granted to MIT on 20 September 1983: U.S. Patent 4,405,829 (https://patents.google.com/patent/US
4405829) "Cryptographic communications system and method". From DWPI's abstract of the patent:

The system includes a communications channel coupled to at least one terminal having an encoding device and to at least one
terminal having a decoding device. A message-to-be-transferred is enciphered to ciphertext at the encoding terminal by encoding the
message as a number M in a predetermined set. That number is then raised to a first predetermined power (associated with the
intended receiver) and finally computed. The remainder or residue, C, is... computed when the exponentiated number is divided by
the product of two predetermined prime numbers (associated with the intended receiver).

A detailed description of the algorithm was published in August 1977, in Scientific American's Mathematical Games column.[7] This preceded the
patent's filing date of December 1977. Consequently, the patent had no legal standing outside the United States. Had Cocks' work been publicly
known, a patent in the United States would not have been legal either.

Patent

https://en.wikipedia.org/wiki/File:Adi_Shamir_2009_crop.jpg
https://en.wikipedia.org/wiki/File:Adi_Shamir_2009_crop.jpg
https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Leonard_Adleman
https://en.wikipedia.org/wiki/Leonard_Adleman
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/Leonard_Adleman
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/Passover
https://en.wikipedia.org/wiki/Clifford_Cocks
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/United_Kingdom
https://en.wikipedia.org/wiki/Government_Communications_Headquarters
https://en.wikipedia.org/wiki/Government_Communications_Headquarters
https://en.wikipedia.org/wiki/Data_Encryption_Standard#Simplified_DES
https://en.wikipedia.org/wiki/Data_Encryption_Standard#Simplified_DES
https://en.wikipedia.org/wiki/Patent
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://patents.google.com/patent/US4405829
https://patents.google.com/patent/US4405829
https://en.wikipedia.org/wiki/Derwent_World_Patent_Index
https://en.wikipedia.org/wiki/Scientific_American
https://en.wikipedia.org/wiki/List_of_Martin_Gardner_Mathematical_Games_columns
https://en.wikipedia.org/wiki/United_States

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 3/22

When the patent was issued, terms of patent were 17 years. The patent was about to expire on 21 September 2000, but RSA Security released the
algorithm to the public domain on 6 September 2000.[14]

The RSA algorithm involves four steps: key generation, key distribution, encryption, and decryption.

A basic principle behind RSA is the observation that it is practical to find three very large positive integers e, d, and n, such that with modular
exponentiation for all integers m (with 0 ≤ m < n):

and that knowing e and n, or even m, it can be extremely difficult to find d. Here the symbol ≡ denotes modular congruence: i.e. both (me)d and m
have the same remainder when divided by n.

In addition, for some operations it is convenient that the order of the two exponentiations can be changed: the previous relation also implies

RSA involves a public key and a private key. The public key can be known by everyone and is used for encrypting messages. The intention is that
messages encrypted with the public key can only be decrypted in a reasonable amount of time by using the private key. The public key is
represented by the integers n and e, and the private key by the integer d (although n is also used during the decryption process, so it might be
considered to be a part of the private key too). m represents the message (previously prepared with a certain technique explained below).

The keys for the RSA algorithm are generated in the following way:

1. Choose two large prime numbers p and q.

Operation

Key generation

https://en.wikipedia.org/wiki/Term_of_patent
https://en.wikipedia.org/wiki/RSA_Security
https://en.wikipedia.org/wiki/Key_(cryptography)
https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/Modular_arithmetic#Congruence
https://en.wikipedia.org/wiki/Euclidean_division
https://en.wikipedia.org/wiki/Private_key
https://en.wikipedia.org/wiki/Prime_number

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 4/22

To make factoring harder, p and q should be chosen at random, be both large and have a large difference.[1] For choosing them the
standard method is to choose random integers and use a primality test until two primes are found.
p and q should be kept secret.

2. Compute n = pq.

n is used as the modulus for both the public and private keys. Its length, usually expressed in bits, is the key length.
n is released as part of the public key.

3. Compute λ(n), where λ is Carmichael's totient function. Since n = pq, λ(n) = lcm(λ(p), λ(q)), and since p and q are prime,
λ(p) = φ(p) = p − 1, and likewise λ(q) = q − 1. Hence λ(n) = lcm(p − 1, q − 1).

The lcm may be calculated through the Euclidean algorithm, since lcm(a, b) = |ab |
gcd(a, b) .

λ(n) is kept secret.
4. Choose an integer e such that 2 < e < λ(n) and gcd(e, λ(n)) = 1; that is, e and λ(n) are coprime.

e having a short bit-length and small Hamming weight results in more efficient encryption – the most commonly chosen value for e is
216 + 1 = 65 537. The smallest (and fastest) possible value for e is 3, but such a small value for e has been shown to be less secure in
some settings.[15]

e is released as part of the public key.

5. Determine d as d ≡ e−1 (mod λ(n)); that is, d is the modular multiplicative inverse of e modulo λ(n).
This means: solve for d the equation de ≡ 1 (mod λ(n)); d can be computed efficiently by using the extended Euclidean algorithm, since,
thanks to e and λ(n) being coprime, said equation is a form of Bézout's identity, where d is one of the coefficients.
d is kept secret as the private key exponent.

The public key consists of the modulus n and the public (or encryption) exponent e. The private key consists of the private (or decryption)
exponent d, which must be kept secret. p, q, and λ(n) must also be kept secret because they can be used to calculate d. In fact, they can all be
discarded after d has been computed.[16]

In the original RSA paper,[1] the Euler totient function φ(n) = (p − 1)(q − 1) is used instead of λ(n) for calculating the private exponent d. Since
φ(n) is always divisible by λ(n), the algorithm works as well. The possibility of using Euler totient function results also from Lagrange's theorem
applied to the multiplicative group of integers modulo pq. Thus any d satisfying d⋅e ≡ 1 (mod φ(n)) also satisfies d⋅e ≡ 1 (mod λ(n)). However,
computing d modulo φ(n) will sometimes yield a result that is larger than necessary (i.e. d > λ(n)). Most of the implementations of RSA will
accept exponents generated using either method (if they use the private exponent d at all, rather than using the optimized decryption method

https://en.wikipedia.org/wiki/Primality_test
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Key_length
https://en.wikipedia.org/wiki/Carmichael%27s_totient_function
https://en.wikipedia.org/wiki/Least_common_multiple
https://en.wikipedia.org/wiki/Euler_totient_function
https://en.wikipedia.org/wiki/Euclidean_algorithm
https://en.wikipedia.org/wiki/Greatest_common_divisor
https://en.wikipedia.org/wiki/Coprime
https://en.wikipedia.org/wiki/Bit-length
https://en.wikipedia.org/wiki/Hamming_weight
https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity
https://en.wikipedia.org/wiki/Euler_totient_function
https://en.wikipedia.org/wiki/Euler_totient_function
https://en.wikipedia.org/wiki/Lagrange%27s_theorem_(group_theory)
https://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 5/22

based on the Chinese remainder theorem described below), but some standards such as FIPS 186-4 (https://nvlpubs.nist.gov/nistpubs/FIPS/NIS
T.FIPS.186-4.pdf#page=63) (Section B.3.1) may require that d < λ(n). Any "oversized" private exponents not meeting this criterion may always
be reduced modulo λ(n) to obtain a smaller equivalent exponent.

Since any common factors of (p − 1) and (q − 1) are present in the factorisation of n − 1 = pq − 1 = (p − 1)(q − 1) + (p − 1) + (q − 1),[17] it is
recommended that (p − 1) and (q − 1) have only very small common factors, if any, besides the necessary 2.[1][18][19][20]

Note: The authors of the original RSA paper carry out the key generation by choosing d and then computing e as the modular multiplicative
inverse of d modulo φ(n), whereas most current implementations of RSA, such as those following PKCS#1, do the reverse (choose e and compute
d). Since the chosen key can be small, whereas the computed key normally is not, the RSA paper's algorithm optimizes decryption compared to
encryption, while the modern algorithm optimizes encryption instead.[1][21]

Suppose that Bob wants to send information to Alice. If they decide to use RSA, Bob must know Alice's public key to encrypt the message, and
Alice must use her private key to decrypt the message.

To enable Bob to send his encrypted messages, Alice transmits her public key (n, e) to Bob via a reliable, but not necessarily secret, route. Alice's
private key (d) is never distributed.

After Bob obtains Alice's public key, he can send a message M to Alice.

To do it, he first turns M (strictly speaking, the un-padded plaintext) into an integer m (strictly speaking, the padded plaintext), such that
0 ≤ m < n by using an agreed-upon reversible protocol known as a padding scheme. He then computes the ciphertext c, using Alice's public key e,
corresponding to

Key distribution

Encryption

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf#page=63
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf#page=63
https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
https://en.wikipedia.org/wiki/PKCS1
https://en.wikipedia.org/wiki/Alice_and_Bob
https://en.wikipedia.org/wiki/Alice_and_Bob
https://en.wikipedia.org/wiki/Padding_(cryptography)

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 6/22

This can be done reasonably quickly, even for very large numbers, using modular exponentiation. Bob then transmits c to Alice. Note that at least
nine values of m will yield a ciphertext c equal to m,[a] but this is very unlikely to occur in practice.

Alice can recover m from c by using her private key exponent d by computing

Given m, she can recover the original message M by reversing the padding scheme.

Here is an example of RSA encryption and decryption. The parameters used here are artificially small, but one can also use OpenSSL to generate
and examine a real keypair.

1. Choose two distinct prime numbers, such as

 and .

2. Compute n = pq giving

3. Compute the Carmichael's totient function of the product as λ(n) = lcm(p − 1, q − 1) giving

4. Choose any number 2 < e < 780 that is coprime to 780. Choosing a prime number for e leaves us only to check that e is not a divisor of 780.

Let .

5. Compute d, the modular multiplicative inverse of e (mod λ(n)), yielding

Decryption

Example

https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikibooks.org/wiki/Cryptography/Generate_a_keypair_using_OpenSSL
https://en.wikibooks.org/wiki/Cryptography/Generate_a_keypair_using_OpenSSL
https://en.wikipedia.org/wiki/Carmichael%27s_totient_function
https://en.wikipedia.org/wiki/Least_common_multiple
https://en.wikipedia.org/wiki/Coprime
https://en.wikipedia.org/wiki/Modular_multiplicative_inverse

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 7/22

as

The public key is (n = 3233, e = 17). For a padded plaintext message m, the encryption function is

The private key is (n = 3233, d = 413). For an encrypted ciphertext c, the decryption function is

For instance, in order to encrypt m = 65, one calculates

To decrypt c = 2790, one calculates

Both of these calculations can be computed efficiently using the square-and-multiply algorithm for modular exponentiation. In real-life situations
the primes selected would be much larger; in our example it would be trivial to factor n = 3233 (obtained from the freely available public key)
back to the primes p and q. e, also from the public key, is then inverted to get d, thus acquiring the private key.

Practical implementations use the Chinese remainder theorem to speed up the calculation using modulus of factors (mod pq using mod p and
mod q).

The values dp, dq and qinv, which are part of the private key are computed as follows:

https://en.wikipedia.org/wiki/Plaintext
https://en.wikipedia.org/wiki/Ciphertext
https://en.wikipedia.org/wiki/Square-and-multiply_algorithm
https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/Chinese_remainder_theorem

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 8/22

Here is how dp, dq and qinv are used for efficient decryption (encryption is efficient by choice of a suitable d and e pair):

Suppose Alice uses Bob's public key to send him an encrypted message. In the message, she can claim to be Alice, but Bob has no way of verifying
that the message was from Alice, since anyone can use Bob's public key to send him encrypted messages. In order to verify the origin of a
message, RSA can also be used to sign a message.

Suppose Alice wishes to send a signed message to Bob. She can use her own private key to do so. She produces a hash value of the message, raises
it to the power of d (modulo n) (as she does when decrypting a message), and attaches it as a "signature" to the message. When Bob receives the
signed message, he uses the same hash algorithm in conjunction with Alice's public key. He raises the signature to the power of e (modulo n) (as
he does when encrypting a message), and compares the resulting hash value with the message's hash value. If the two agree, he knows that the
author of the message was in possession of Alice's private key and that the message has not been tampered with since being sent.

This works because of exponentiation rules:

Signing messages

https://en.wikipedia.org/wiki/Alice_and_Bob
https://en.wikipedia.org/wiki/Alice_and_Bob
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Exponentiation

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 9/22

Thus the keys may be swapped without loss of generality, that is, a private key of a key pair may be used either to:

1. Decrypt a message only intended for the recipient, which may be encrypted by anyone having the public key (asymmetric encrypted
transport).

2. Encrypt a message which may be decrypted by anyone, but which can only be encrypted by one person; this provides a digital signature.

The proof of the correctness of RSA is based on Fermat's little theorem, stating that ap − 1 ≡ 1 (mod p) for any integer a and prime p, not
dividing a.[note 1]

We want to show that

for every integer m when p and q are distinct prime numbers and e and d are positive integers satisfying ed ≡ 1 (mod λ(pq)).

Since λ(pq) = lcm(p − 1, q − 1) is, by construction, divisible by both p − 1 and q − 1, we can write

for some nonnegative integers h and k.[note 2]

To check whether two numbers, such as med and m, are congruent mod pq, it suffices (and in fact is equivalent) to check that they are congruent
mod p and mod q separately.[note 3]

To show med ≡ m (mod p), we consider two cases:

1. If m ≡ 0 (mod p), m is a multiple of p. Thus med is a multiple of p. So med ≡ 0 ≡ m (mod p).
2. If m 0 (mod p),

Proofs of correctness

Proof using Fermat's little theorem

https://en.wikipedia.org/wiki/Fermat%27s_little_theorem
https://en.wikipedia.org/wiki/Least_common_multiple

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 10/22

where we used Fermat's little theorem to replace mp−1 mod p with 1.

The verification that med ≡ m (mod q) proceeds in a completely analogous way:

1. If m ≡ 0 (mod q), med is a multiple of q. So med ≡ 0 ≡ m (mod q).
2. If m 0 (mod q),

This completes the proof that, for any integer m, and integers e, d such that ed ≡ 1 (mod λ(pq)),

1. We cannot trivially break RSA by applying the theorem (mod pq) because pq is not prime.
2. In particular, the statement above holds for any e and d that satisfy ed ≡ 1 (mod (p − 1)(q − 1)), since (p − 1)(q − 1) is divisible by λ(pq),

and thus trivially also by p − 1 and q − 1. However, in modern implementations of RSA, it is common to use a reduced private exponent d
that only satisfies the weaker, but sufficient condition ed ≡ 1 (mod λ(pq)).

3. This is part of the Chinese remainder theorem, although it is not the significant part of that theorem.

Although the original paper of Rivest, Shamir, and Adleman used Fermat's little theorem to explain why RSA works, it is common to find proofs
that rely instead on Euler's theorem.

We want to show that med ≡ m (mod n), where n = pq is a product of two different prime numbers, and e and d are positive integers satisfying
ed ≡ 1 (mod φ(n)). Since e and d are positive, we can write ed = 1 + hφ(n) for some non-negative integer h. Assuming that m is relatively prime
to n, we have

Notes

Proof using Euler's theorem

https://en.wikipedia.org/wiki/Fermat%27s_little_theorem
https://en.wikipedia.org/wiki/Chinese_remainder_theorem
https://en.wikipedia.org/wiki/Euler%27s_theorem

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 11/22

where the second-last congruence follows from Euler's theorem.

More generally, for any e and d satisfying ed ≡ 1 (mod λ(n)), the same conclusion follows from Carmichael's generalization of Euler's theorem,
which states that mλ(n) ≡ 1 (mod n) for all m relatively prime to n.

When m is not relatively prime to n, the argument just given is invalid. This is highly improbable (only a proportion of 1/p + 1/q − 1/(pq)
numbers have this property), but even in this case, the desired congruence is still true. Either m ≡ 0 (mod p) or m ≡ 0 (mod q), and these cases
can be treated using the previous proof.

There are a number of attacks against plain RSA as described below.

When encrypting with low encryption exponents (e.g., e = 3) and small values of the m (i.e., m < n1/e), the result of me is strictly less than the
modulus n. In this case, ciphertexts can be decrypted easily by taking the eth root of the ciphertext over the integers.
If the same clear-text message is sent to e or more recipients in an encrypted way, and the receivers share the same exponent e, but different
p, q, and therefore n, then it is easy to decrypt the original clear-text message via the Chinese remainder theorem. Johan Håstad noticed that
this attack is possible even if the clear texts are not equal, but the attacker knows a linear relation between them.[22] This attack was later
improved by Don Coppersmith (see Coppersmith's attack).[23]
Because RSA encryption is a deterministic encryption algorithm (i.e., has no random component) an attacker can successfully launch a
chosen plaintext attack against the cryptosystem, by encrypting likely plaintexts under the public key and test whether they are equal to the
ciphertext. A cryptosystem is called semantically secure if an attacker cannot distinguish two encryptions from each other, even if the attacker
knows (or has chosen) the corresponding plaintexts. RSA without padding is not semantically secure.[24]
RSA has the property that the product of two ciphertexts is equal to the encryption of the product of the respective plaintexts. That is,
m1

em2
e ≡ (m1m2)e (mod n). Because of this multiplicative property, a chosen-ciphertext attack is possible. E.g., an attacker who wants to

know the decryption of a ciphertext c ≡ me (mod n) may ask the holder of the private key d to decrypt an unsuspicious-looking ciphertext
c′ ≡ cre (mod n) for some value r chosen by the attacker. Because of the multiplicative property, c' is the encryption of mr (mod n). Hence, if

Padding

Attacks against plain RSA

https://en.wikipedia.org/wiki/Euler%27s_theorem
https://en.wikipedia.org/wiki/Carmichael_function#Carmichael's_theorem
https://en.wikipedia.org/wiki/Chinese_remainder_theorem
https://en.wikipedia.org/wiki/Johan_H%C3%A5stad
https://en.wikipedia.org/wiki/Don_Coppersmith
https://en.wikipedia.org/wiki/Coppersmith%27s_attack
https://en.wikipedia.org/wiki/Deterministic_algorithm
https://en.wikipedia.org/wiki/Chosen_plaintext_attack
https://en.wikipedia.org/wiki/Semantically_secure
https://en.wikipedia.org/wiki/Chosen-ciphertext_attack
https://en.wikipedia.org/wiki/Chosen-ciphertext_attack

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 12/22

the attacker is successful with the attack, they will learn mr (mod n), from which they can derive the message m by multiplying mr with the
modular inverse of r modulo n.
Given the private exponent d, one can efficiently factor the modulus n = pq. And given factorization of the modulus n = pq, one can obtain
any private key (d', n) generated against a public key (e', n).[15]

To avoid these problems, practical RSA implementations typically embed some form of structured, randomized padding into the value m before
encrypting it. This padding ensures that m does not fall into the range of insecure plaintexts, and that a given message, once padded, will encrypt
to one of a large number of different possible ciphertexts.

Standards such as PKCS#1 have been carefully designed to securely pad messages prior to RSA encryption. Because these schemes pad the
plaintext m with some number of additional bits, the size of the un-padded message M must be somewhat smaller. RSA padding schemes must be
carefully designed so as to prevent sophisticated attacks that may be facilitated by a predictable message structure. Early versions of the PKCS#1
standard (up to version 1.5) used a construction that appears to make RSA semantically secure. However, at Crypto 1998, Bleichenbacher showed
that this version is vulnerable to a practical adaptive chosen-ciphertext attack. Furthermore, at Eurocrypt 2000, Coron et al.[25] showed that for
some types of messages, this padding does not provide a high enough level of security. Later versions of the standard include Optimal
Asymmetric Encryption Padding (OAEP), which prevents these attacks. As such, OAEP should be used in any new application, and PKCS#1 v1.5
padding should be replaced wherever possible. The PKCS#1 standard also incorporates processing schemes designed to provide additional
security for RSA signatures, e.g. the Probabilistic Signature Scheme for RSA (RSA-PSS).

Secure padding schemes such as RSA-PSS are as essential for the security of message signing as they are for message encryption. Two USA
patents on PSS were granted (U.S. Patent 6,266,771 (https://patents.google.com/patent/US6266771) and U.S. Patent 7,036,014 (https://patents.
google.com/patent/US7036014)); however, these patents expired on 24 July 2009 and 25 April 2010 respectively. Use of PSS no longer seems to
be encumbered by patents. Note that using different RSA key pairs for encryption and signing is potentially more secure.[26]

For efficiency, many popular crypto libraries (such as OpenSSL, Java and .NET) use for decryption and signing the following optimization based
on the Chinese remainder theorem. The following values are precomputed and stored as part of the private key:

 and – the primes from the key generation,

Padding schemes

Security and practical considerations

Using the Chinese remainder algorithm

https://en.wikipedia.org/wiki/Padding_(cryptography)
https://en.wikipedia.org/wiki/PKCS1
https://en.wikipedia.org/wiki/International_Cryptology_Conference
https://en.wikipedia.org/wiki/Adaptive_chosen-ciphertext_attack
https://en.wikipedia.org/wiki/Eurocrypt
https://en.wikipedia.org/wiki/Optimal_Asymmetric_Encryption_Padding
https://en.wikipedia.org/wiki/Optimal_Asymmetric_Encryption_Padding
https://en.wikipedia.org/wiki/RSA-PSS
https://patents.google.com/patent/US6266771
https://patents.google.com/patent/US7036014
https://patents.google.com/patent/US7036014
https://en.wikipedia.org/wiki/OpenSSL
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/Chinese_remainder_theorem

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 13/22

These values allow the recipient to compute the exponentiation m = cd (mod pq) more efficiently as follows:
 ,
 ,
 ,[b]

 .

This is more efficient than computing exponentiation by squaring, even though two modular exponentiations have to be computed. The reason is
that these two modular exponentiations both use a smaller exponent and a smaller modulus.

The security of the RSA cryptosystem is based on two mathematical problems: the problem of factoring large numbers and the RSA problem. Full
decryption of an RSA ciphertext is thought to be infeasible on the assumption that both of these problems are hard, i.e., no efficient algorithm
exists for solving them. Providing security against partial decryption may require the addition of a secure padding scheme.[27]

The RSA problem is defined as the task of taking eth roots modulo a composite n: recovering a value m such that c ≡ me (mod n), where (n, e) is
an RSA public key, and c is an RSA ciphertext. Currently the most promising approach to solving the RSA problem is to factor the modulus n.
With the ability to recover prime factors, an attacker can compute the secret exponent d from a public key (n, e), then decrypt c using the
standard procedure. To accomplish this, an attacker factors n into p and q, and computes lcm(p − 1, q − 1) that allows the determination of d
from e. No polynomial-time method for factoring large integers on a classical computer has yet been found, but it has not been proven that none
exists; see integer factorization for a discussion of this problem.

Multiple polynomial quadratic sieve (MPQS) can be used to factor the public modulus n.

The first RSA-512 factorization in 1999 used hundreds of computers and required the equivalent of 8,400 MIPS years, over an elapsed time of
about seven months.[28] By 2009, Benjamin Moody could factor an 512-bit RSA key in 73 days using only public software (GGNFS) and his
desktop computer (a dual-core Athlon64 with a 1,900 MHz CPU). Just less than 5 gigabytes of disk storage was required and about 2.5 gigabytes
of RAM for the sieving process.

Integer factorization and the RSA problem

https://en.wikipedia.org/wiki/Exponentiation_by_squaring
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/RSA_problem
https://en.wikipedia.org/wiki/Computational_hardness_assumption
https://en.wikipedia.org/wiki/Padding_(cryptography)
https://en.wikipedia.org/wiki/RSA_problem
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Athlon64

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 14/22

Rivest, Shamir, and Adleman noted[1] that Miller has shown that – assuming the truth of the extended Riemann hypothesis – finding d from n
and e is as hard as factoring n into p and q (up to a polynomial time difference).[29] However, Rivest, Shamir, and Adleman noted, in section
IX/D of their paper, that they had not found a proof that inverting RSA is as hard as factoring.

As of 2020, the largest publicly known factored RSA number had 829 bits (250 decimal digits, RSA-250).[30] Its factorization, by a state-of-the-
art distributed implementation, took about 2,700 CPU-years. In practice, RSA keys are typically 1024 to 4096 bits long. In 2003, RSA Security
estimated that 1024-bit keys were likely to become crackable by 2010.[31] As of 2020, it is not known whether such keys can be cracked, but
minimum recommendations have moved to at least 2048 bits.[32] It is generally presumed that RSA is secure if n is sufficiently large, outside of
quantum computing.

If n is 300 bits or shorter, it can be factored in a few hours in a personal computer, using software already freely available. Keys of 512 bits have
been shown to be practically breakable in 1999, when RSA-155 was factored by using several hundred computers, and these are now factored in a
few weeks using common hardware. Exploits using 512-bit code-signing certificates that may have been factored were reported in 2011.[33] A
theoretical hardware device named TWIRL, described by Shamir and Tromer in 2003, called into question the security of 1024-bit keys.[31]

In 1994, Peter Shor showed that a quantum computer – if one could ever be practically created for the purpose – would be able to factor in
polynomial time, breaking RSA; see Shor's algorithm.

Finding the large primes p and q is usually done by testing random numbers of the correct size with probabilistic primality tests that quickly
eliminate virtually all of the nonprimes.

The numbers p and q should not be "too close", lest the Fermat factorization for n be successful. If p − q is less than 2n1/4 (n = p⋅q, which even
for "small" 1024-bit values of n is 3 × 1077), solving for p and q is trivial. Furthermore, if either p − 1 or q − 1 has only small prime factors, n can
be factored quickly by Pollard's p − 1 algorithm, and hence such values of p or q should be discarded.

It is important that the private exponent d be large enough. Michael J. Wiener showed that if p is between q and 2q (which is quite typical) and
d < n1/4/3, then d can be computed efficiently from n and e.[34]

There is no known attack against small public exponents such as e = 3, provided that the proper padding is used. Coppersmith's attack has many
applications in attacking RSA specifically if the public exponent e is small and if the encrypted message is short and not padded. 65537 is a
commonly used value for e; this value can be regarded as a compromise between avoiding potential small-exponent attacks and still allowing
efficient encryptions (or signature verification). The NIST Special Publication on Computer Security (SP 800-78 Rev. 1 of August 2007) does not
allow public exponents e smaller than 65537, but does not state a reason for this restriction.

Faulty key generation

https://en.wikipedia.org/wiki/Generalized_Riemann_hypothesis
https://en.wikipedia.org/wiki/RSA_number
https://en.wikipedia.org/wiki/RSA-250
https://en.wikipedia.org/wiki/RSA_Security
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/RSA-155
https://en.wikipedia.org/wiki/TWIRL
https://en.wikipedia.org/wiki/Peter_Shor
https://en.wikipedia.org/wiki/Quantum_computer
https://en.wikipedia.org/wiki/Polynomial_time
https://en.wikipedia.org/wiki/Shor%27s_algorithm
https://en.wikipedia.org/wiki/Primality_test
https://en.wikipedia.org/wiki/Fermat_factorization
https://en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1_algorithm
https://en.wikipedia.org/wiki/Coppersmith%27s_attack
https://en.wikipedia.org/wiki/65537

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 15/22

In October 2017, a team of researchers from Masaryk University announced the ROCA vulnerability, which affects RSA keys generated by an
algorithm embodied in a library from Infineon known as RSALib. A large number of smart cards and trusted platform modules (TPM) were
shown to be affected. Vulnerable RSA keys are easily identified using a test program the team released.[35]

A cryptographically strong random number generator, which has been properly seeded with adequate entropy, must be used to generate the
primes p and q. An analysis comparing millions of public keys gathered from the Internet was carried out in early 2012 by Arjen K. Lenstra,
James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten Kleinjung and Christophe Wachter. They were able to factor 0.2% of the keys using
only Euclid's algorithm.[36][37]

They exploited a weakness unique to cryptosystems based on integer factorization. If n = pq is one public key, and n′ = p′q′ is another, then if by
chance p = p′ (but q is not equal to q'), then a simple computation of gcd(n, n′) = p factors both n and n', totally compromising both keys.
Lenstra et al. note that this problem can be minimized by using a strong random seed of bit length twice the intended security level, or by
employing a deterministic function to choose q given p, instead of choosing p and q independently.

Nadia Heninger was part of a group that did a similar experiment. They used an idea of Daniel J. Bernstein to compute the GCD of each RSA key
n against the product of all the other keys n' they had found (a 729-million-digit number), instead of computing each gcd(n, n′) separately,
thereby achieving a very significant speedup, since after one large division, the GCD problem is of normal size.

Heninger says in her blog that the bad keys occurred almost entirely in embedded applications, including "firewalls, routers, VPN devices, remote
server administration devices, printers, projectors, and VOIP phones" from more than 30 manufacturers. Heninger explains that the one-shared-
prime problem uncovered by the two groups results from situations where the pseudorandom number generator is poorly seeded initially, and
then is reseeded between the generation of the first and second primes. Using seeds of sufficiently high entropy obtained from key stroke timings
or electronic diode noise or atmospheric noise from a radio receiver tuned between stations should solve the problem.[38]

Strong random number generation is important throughout every phase of public-key cryptography. For instance, if a weak generator is used for
the symmetric keys that are being distributed by RSA, then an eavesdropper could bypass RSA and guess the symmetric keys directly.

Kocher described a new attack on RSA in 1995: if the attacker Eve knows Alice's hardware in sufficient detail and is able to measure the
decryption times for several known ciphertexts, Eve can deduce the decryption key d quickly. This attack can also be applied against the RSA
signature scheme. In 2003, Boneh and Brumley demonstrated a more practical attack capable of recovering RSA factorizations over a network
connection (e.g., from a Secure Sockets Layer (SSL)-enabled webserver).[39] This attack takes advantage of information leaked by the Chinese
remainder theorem optimization used by many RSA implementations.

Importance of strong random number generation

Timing attacks

https://en.wikipedia.org/wiki/Masaryk_University
https://en.wikipedia.org/wiki/ROCA_vulnerability
https://en.wikipedia.org/wiki/Infineon
https://en.wikipedia.org/wiki/Smart_card
https://en.wikipedia.org/wiki/Trusted_platform_module
https://en.wikipedia.org/wiki/Random_number_generator
https://en.wikipedia.org/wiki/Arjen_Klaas_Lenstra
https://en.wikipedia.org/wiki/Nadia_Heninger
https://en.wikipedia.org/wiki/Daniel_J._Bernstein
https://en.wikipedia.org/wiki/Atmospheric_noise
https://en.wikipedia.org/wiki/Paul_Carl_Kocher
https://en.wikipedia.org/wiki/Dan_Boneh
https://en.wikipedia.org/wiki/David_Brumley
https://en.wikipedia.org/wiki/Secure_Sockets_Layer
https://en.wikipedia.org/wiki/Chinese_remainder_theorem
https://en.wikipedia.org/wiki/Chinese_remainder_theorem

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 16/22

One way to thwart these attacks is to ensure that the decryption operation takes a constant amount of time for every ciphertext. However, this
approach can significantly reduce performance. Instead, most RSA implementations use an alternate technique known as cryptographic blinding.
RSA blinding makes use of the multiplicative property of RSA. Instead of computing cd (mod n), Alice first chooses a secret random value r and
computes (rec)d (mod n). The result of this computation, after applying Euler's theorem, is rcd (mod n), and so the effect of r can be removed by
multiplying by its inverse. A new value of r is chosen for each ciphertext. With blinding applied, the decryption time is no longer correlated to the
value of the input ciphertext, and so the timing attack fails.

In 1998, Daniel Bleichenbacher described the first practical adaptive chosen-ciphertext attack against RSA-encrypted messages using the
PKCS #1 v1 padding scheme (a padding scheme randomizes and adds structure to an RSA-encrypted message, so it is possible to determine
whether a decrypted message is valid). Due to flaws with the PKCS #1 scheme, Bleichenbacher was able to mount a practical attack against RSA
implementations of the Secure Sockets Layer protocol and to recover session keys. As a result of this work, cryptographers now recommend the
use of provably secure padding schemes such as Optimal Asymmetric Encryption Padding, and RSA Laboratories has released new versions of
PKCS #1 that are not vulnerable to these attacks.

A variant of this attack, dubbed "BERserk", came back in 2014.[40][41] It impacted the Mozilla NSS Crypto Library, which was used notably by
Firefox and Chrome.

A side-channel attack using branch-prediction analysis (BPA) has been described. Many processors use a branch predictor to determine whether
a conditional branch in the instruction flow of a program is likely to be taken or not. Often these processors also implement simultaneous
multithreading (SMT). Branch-prediction analysis attacks use a spy process to discover (statistically) the private key when processed with these
processors.

Simple Branch Prediction Analysis (SBPA) claims to improve BPA in a non-statistical way. In their paper, "On the Power of Simple Branch
Prediction Analysis",[42] the authors of SBPA (Onur Aciicmez and Cetin Kaya Koc) claim to have discovered 508 out of 512 bits of an RSA key in
10 iterations.

Adaptive chosen-ciphertext attacks

Side-channel analysis attacks

https://en.wikipedia.org/wiki/Blinding_(cryptography)
https://en.wikipedia.org/wiki/Euler%27s_theorem
https://en.wikipedia.org/wiki/Daniel_Bleichenbacher
https://en.wikipedia.org/wiki/Adaptive_chosen-ciphertext_attack
https://en.wikipedia.org/wiki/Padding_(cryptography)
https://en.wikipedia.org/wiki/Secure_Sockets_Layer
https://en.wikipedia.org/wiki/Optimal_Asymmetric_Encryption_Padding
https://en.wikipedia.org/wiki/Branch_predictor
https://en.wikipedia.org/wiki/Simultaneous_multithreading
https://en.wikipedia.org/wiki/Simultaneous_multithreading

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 17/22

Mathematics portal

A power-fault attack on RSA implementations was described in 2010.[43] The author recovered the key by varying the CPU power voltage outside
limits; this caused multiple power faults on the server.

There are many details to keep in mind in order to implement RSA securely (strong PRNG, acceptable public exponent, etc.). This makes the
implementation challenging, to the point the book Practical Cryptography With Go suggests avoiding RSA if possible.[44]

Some cryptography libraries that provide support for RSA include:

Botan
Bouncy Castle
cryptlib
Crypto++
Libgcrypt
Nettle
OpenSSL
wolfCrypt
GnuTLS
mbed TLS
LibreSSL

Acoustic cryptanalysis
Computational complexity theory
Diffie–Hellman key exchange
Digital Signature Algorithm
Elliptic-curve cryptography
Key exchange
Key management

Tricky implementation

Implementations

See also

https://en.wikipedia.org/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg
https://en.wikipedia.org/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg
https://en.wikipedia.org/wiki/Portal:Mathematics
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://en.wikipedia.org/wiki/Botan_(programming_library)
https://en.wikipedia.org/wiki/Bouncy_Castle_(cryptography)
https://en.wikipedia.org/wiki/Cryptlib
https://en.wikipedia.org/wiki/Crypto%2B%2B
https://en.wikipedia.org/wiki/Libgcrypt
https://en.wikipedia.org/wiki/Nettle_(cryptographic_library)
https://en.wikipedia.org/wiki/OpenSSL
https://en.wikipedia.org/wiki/WolfSSL#wolfCrypt
https://en.wikipedia.org/wiki/GnuTLS
https://en.wikipedia.org/wiki/Mbed_TLS
https://en.wikipedia.org/wiki/LibreSSL
https://en.wikipedia.org/wiki/Acoustic_cryptanalysis
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/Key_exchange
https://en.wikipedia.org/wiki/Key_management

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 18/22

Key size
Public-key cryptography
Trapdoor function

a. Namely, the values of m which are equal to −1, 0, or 1 modulo p while also equal to −1, 0, or 1 modulo q. There will be more values of m
having c = m if p − 1 or q − 1 has other divisors in common with e − 1 besides 2 because this gives more values of m such that

 or respectively.

b. If , then some libraries compute h as .

1. Rivest, R.; Shamir, A.; Adleman, L. (February 1978). "A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems" (http
s://web.archive.org/web/20230127011251/http://people.csail.mit.ed
u/rivest/Rsapaper.pdf) (PDF). Communications of the ACM. 21 (2):
120–126. CiteSeerX 10.1.1.607.2677 (https://citeseerx.ist.psu.edu/v
iewdoc/summary?doi=10.1.1.607.2677).
doi:10.1145/359340.359342 (https://doi.org/10.1145%2F359340.35
9342). S2CID 2873616 (https://api.semanticscholar.org/CorpusID:2
873616). Archived from the original (http://people.csail.mit.edu/rives
t/Rsapaper.pdf) (PDF) on 2023-01-27.

2. Smart, Nigel (February 19, 2008). "Dr Clifford Cocks CB" (http://ww
w.bristol.ac.uk/graduation/honorary-degrees/hondeg08/cocks.html).
Bristol University. Retrieved August 14, 2011.

3. Castelvecchi, Davide (2020-10-30). "Quantum-computing pioneer
warns of complacency over Internet security" (https://www.nature.c
om/articles/d41586-020-03068-9). Nature. 587 (7833): 189.
Bibcode:2020Natur.587..189C (https://ui.adsabs.harvard.edu/abs/2
020Natur.587..189C). doi:10.1038/d41586-020-03068-9 (https://doi.
org/10.1038%2Fd41586-020-03068-9). PMID 33139910 (https://pu
bmed.ncbi.nlm.nih.gov/33139910). S2CID 226243008 (https://api.s
emanticscholar.org/CorpusID:226243008). 2020 interview of Peter
Shor.

4. Diffie, W.; Hellman, M. E. (November 1976). "New directions in
cryptography". IEEE Transactions on Information Theory. 22 (6):
644–654. CiteSeerX 10.1.1.37.9720 (https://citeseerx.ist.psu.edu/vi
ewdoc/summary?doi=10.1.1.37.9720).
doi:10.1109/TIT.1976.1055638 (https://doi.org/10.1109%2FTIT.197
6.1055638). ISSN 0018-9448 (https://www.worldcat.org/issn/0018-9
448).

5. Rivest, Ronald. "The Early Days of RSA – History and Lessons" (htt
ps://people.csail.mit.edu/rivest/pubs/ARS03.rivest-slides.pdf)
(PDF).

Notes

References

https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Trapdoor_function
https://web.archive.org/web/20230127011251/http://people.csail.mit.edu/rivest/Rsapaper.pdf
https://web.archive.org/web/20230127011251/http://people.csail.mit.edu/rivest/Rsapaper.pdf
https://web.archive.org/web/20230127011251/http://people.csail.mit.edu/rivest/Rsapaper.pdf
https://web.archive.org/web/20230127011251/http://people.csail.mit.edu/rivest/Rsapaper.pdf
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.607.2677
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.607.2677
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F359340.359342
https://doi.org/10.1145%2F359340.359342
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:2873616
https://api.semanticscholar.org/CorpusID:2873616
http://people.csail.mit.edu/rivest/Rsapaper.pdf
http://people.csail.mit.edu/rivest/Rsapaper.pdf
http://www.bristol.ac.uk/graduation/honorary-degrees/hondeg08/cocks.html
http://www.bristol.ac.uk/graduation/honorary-degrees/hondeg08/cocks.html
https://en.wikipedia.org/wiki/Bristol_University
https://www.nature.com/articles/d41586-020-03068-9
https://www.nature.com/articles/d41586-020-03068-9
https://www.nature.com/articles/d41586-020-03068-9
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/2020Natur.587..189C
https://ui.adsabs.harvard.edu/abs/2020Natur.587..189C
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1038%2Fd41586-020-03068-9
https://doi.org/10.1038%2Fd41586-020-03068-9
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/33139910
https://pubmed.ncbi.nlm.nih.gov/33139910
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:226243008
https://api.semanticscholar.org/CorpusID:226243008
https://en.wikipedia.org/wiki/Peter_Shor
https://en.wikipedia.org/wiki/Peter_Shor
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.9720
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.9720
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FTIT.1976.1055638
https://doi.org/10.1109%2FTIT.1976.1055638
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/0018-9448
https://www.worldcat.org/issn/0018-9448
https://people.csail.mit.edu/rivest/pubs/ARS03.rivest-slides.pdf
https://people.csail.mit.edu/rivest/pubs/ARS03.rivest-slides.pdf

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 19/22

6. Calderbank, Michael (2007-08-20). "The RSA Cryptosystem:
History, Algorithm, Primes" (http://www.math.uchicago.edu/~may/VI
GRE/VIGRE2007/REUPapers/FINALAPP/Calderbank.pdf) (PDF).

7. Robinson, Sara (June 2003). "Still Guarding Secrets after Years of
Attacks, RSA Earns Accolades for its Founders" (http://www.msri.or
g/people/members/sara/articles/rsa.pdf) (PDF). SIAM News. 36 (5).

8. Cocks, C. C. (20 November 1973). "A Note on Non-Secret
Encryption" (https://web.archive.org/web/20180928121748/https://w
ww.gchq.gov.uk/sites/default/files/document_files/Cliff%20Cocks%2
0paper%2019731120.pdf) (PDF). www.gchq.gov.uk. Archived from
the original (https://www.gchq.gov.uk/sites/default/files/document_fil
es/Cliff%20Cocks%20paper%2019731120.pdf) (PDF) on 28
September 2018. Retrieved 2017-05-30.

9. Jim Sauerberg. "From Private to Public Key Ciphers in Three Easy
Steps" (https://ww2.amstat.org/mam/06/Sauerberg_PKC-essay.htm
l).

10. Margaret Cozzens and Steven J. Miller. "The Mathematics of
Encryption: An Elementary Introduction" (https://books.google.com/
books?id=GbKyAAAAQBAJ). p. 180.

11. Alasdair McAndrew. "Introduction to Cryptography with Open-
Source Software" (https://books.google.com/books?id=9lTRBQAAQ
BAJ). p. 12.

12. Surender R. Chiluka. "Public key Cryptography" (https://web.archiv
e.org/web/20220319203917/https://www.cs.uri.edu/cryptography/pu
blickeykidkrypto.htm).

13. Neal Koblitz. "Cryptography As a Teaching Tool" (https://sites.math.
washington.edu/~koblitz/crlogia.html). Cryptologia, Vol. 21, No. 4
(1997).

14. "RSA Security Releases RSA Encryption Algorithm into Public
Domain" (https://web.archive.org/web/20070621021111/http://www.r
sa.com/press_release.aspx?id=261). Archived from the original (htt
p://www.rsa.com/press_release.aspx?id=261) on June 21, 2007.
Retrieved 2010-03-03.

15. Boneh, Dan (1999). "Twenty Years of attacks on the RSA
Cryptosystem" (http://crypto.stanford.edu/~dabo/abstracts/RSAatta
ck-survey.html). Notices of the American Mathematical Society. 46
(2): 203–213.

16. Applied Cryptography, John Wiley & Sons, New York, 1996. Bruce
Schneier, p. 467.

17. McKee, James; Pinch, Richard (1998). "Further Attacks on Server-
Aided RSA Cryptosystems" (https://citeseerx.ist.psu.edu/documen
t?repid=rep1&type=pdf&doi=64294c404088b69a519614510b8d12b
4809a6b10). CiteSeerX 10.1.1.33.1333 (https://citeseerx.ist.psu.ed
u/viewdoc/summary?doi=10.1.1.33.1333).

18. A Course in Number Theory and Cryptography, Graduate Texts in
Math. No. 114, Springer-Verlag, New York, 1987. Neal Koblitz,
Second edition, 1994. p. 94.

19. Dukhovni, Viktor (July 31, 2015). "common factors in (p − 1) and (q
− 1)" (https://mta.openssl.org/pipermail/openssl-dev/2015-July/0022
66.html). openssl-dev (Mailing list).

20. Dukhovni, Viktor (August 1, 2015). "common factors in (p − 1) and
(q − 1)" (https://mta.openssl.org/pipermail/openssl-dev/2015-Augus
t/002277.html). openssl-dev (Mailing list).

21. Johnson, J.; Kaliski, B. (February 2003). Public-Key Cryptography
Standards (PKCS) #1: RSA Cryptography Specifications Version
2.1 (https://datatracker.ietf.org/doc/html/rfc3447). Network Working
Group. doi:10.17487/RFC3447 (https://doi.org/10.17487%2FRFC34
47). RFC 3447 (https://datatracker.ietf.org/doc/html/rfc3447).
Retrieved 9 March 2016.

22. Håstad, Johan (1986). "On using RSA with Low Exponent in a
Public Key Network". Advances in Cryptology – CRYPTO '85
Proceedings. Lecture Notes in Computer Science. Vol. 218.
pp. 403–408. doi:10.1007/3-540-39799-X_29 (https://doi.org/10.100
7%2F3-540-39799-X_29). ISBN 978-3-540-16463-0.

http://www.math.uchicago.edu/~may/VIGRE/VIGRE2007/REUPapers/FINALAPP/Calderbank.pdf
http://www.math.uchicago.edu/~may/VIGRE/VIGRE2007/REUPapers/FINALAPP/Calderbank.pdf
http://www.math.uchicago.edu/~may/VIGRE/VIGRE2007/REUPapers/FINALAPP/Calderbank.pdf
http://www.msri.org/people/members/sara/articles/rsa.pdf
http://www.msri.org/people/members/sara/articles/rsa.pdf
http://www.msri.org/people/members/sara/articles/rsa.pdf
https://en.wikipedia.org/wiki/Clifford_Cocks
https://web.archive.org/web/20180928121748/https://www.gchq.gov.uk/sites/default/files/document_files/Cliff%20Cocks%20paper%2019731120.pdf
https://web.archive.org/web/20180928121748/https://www.gchq.gov.uk/sites/default/files/document_files/Cliff%20Cocks%20paper%2019731120.pdf
https://web.archive.org/web/20180928121748/https://www.gchq.gov.uk/sites/default/files/document_files/Cliff%20Cocks%20paper%2019731120.pdf
https://web.archive.org/web/20180928121748/https://www.gchq.gov.uk/sites/default/files/document_files/Cliff%20Cocks%20paper%2019731120.pdf
https://www.gchq.gov.uk/sites/default/files/document_files/Cliff%20Cocks%20paper%2019731120.pdf
https://www.gchq.gov.uk/sites/default/files/document_files/Cliff%20Cocks%20paper%2019731120.pdf
https://ww2.amstat.org/mam/06/Sauerberg_PKC-essay.html
https://ww2.amstat.org/mam/06/Sauerberg_PKC-essay.html
https://ww2.amstat.org/mam/06/Sauerberg_PKC-essay.html
https://books.google.com/books?id=GbKyAAAAQBAJ
https://books.google.com/books?id=GbKyAAAAQBAJ
https://books.google.com/books?id=GbKyAAAAQBAJ
https://books.google.com/books?id=9lTRBQAAQBAJ
https://books.google.com/books?id=9lTRBQAAQBAJ
https://books.google.com/books?id=9lTRBQAAQBAJ
https://web.archive.org/web/20220319203917/https://www.cs.uri.edu/cryptography/publickeykidkrypto.htm
https://web.archive.org/web/20220319203917/https://www.cs.uri.edu/cryptography/publickeykidkrypto.htm
https://web.archive.org/web/20220319203917/https://www.cs.uri.edu/cryptography/publickeykidkrypto.htm
https://sites.math.washington.edu/~koblitz/crlogia.html
https://sites.math.washington.edu/~koblitz/crlogia.html
https://web.archive.org/web/20070621021111/http://www.rsa.com/press_release.aspx?id=261
https://web.archive.org/web/20070621021111/http://www.rsa.com/press_release.aspx?id=261
https://web.archive.org/web/20070621021111/http://www.rsa.com/press_release.aspx?id=261
http://www.rsa.com/press_release.aspx?id=261
http://www.rsa.com/press_release.aspx?id=261
http://crypto.stanford.edu/~dabo/abstracts/RSAattack-survey.html
http://crypto.stanford.edu/~dabo/abstracts/RSAattack-survey.html
http://crypto.stanford.edu/~dabo/abstracts/RSAattack-survey.html
https://en.wikipedia.org/wiki/Notices_of_the_American_Mathematical_Society
https://en.wikipedia.org/wiki/Bruce_Schneier
https://en.wikipedia.org/wiki/Bruce_Schneier
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=64294c404088b69a519614510b8d12b4809a6b10
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=64294c404088b69a519614510b8d12b4809a6b10
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=64294c404088b69a519614510b8d12b4809a6b10
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=64294c404088b69a519614510b8d12b4809a6b10
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1333
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1333
https://en.wikipedia.org/wiki/Neal_Koblitz
https://mta.openssl.org/pipermail/openssl-dev/2015-July/002266.html
https://mta.openssl.org/pipermail/openssl-dev/2015-July/002266.html
https://mta.openssl.org/pipermail/openssl-dev/2015-July/002266.html
https://mta.openssl.org/pipermail/openssl-dev/2015-August/002277.html
https://mta.openssl.org/pipermail/openssl-dev/2015-August/002277.html
https://mta.openssl.org/pipermail/openssl-dev/2015-August/002277.html
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.17487%2FRFC3447
https://doi.org/10.17487%2FRFC3447
https://en.wikipedia.org/wiki/Request_for_Comments
https://datatracker.ietf.org/doc/html/rfc3447
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F3-540-39799-X_29
https://doi.org/10.1007%2F3-540-39799-X_29
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-16463-0

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 20/22

23. Coppersmith, Don (1997). "Small Solutions to Polynomial
Equations, and Low Exponent RSA Vulnerabilities" (https://www.di.e
ns.fr/~fouque/ens-rennes/coppersmith.pdf) (PDF). Journal of
Cryptology. 10 (4): 233–260. CiteSeerX 10.1.1.298.4806 (https://cit
eseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.298.4806).
doi:10.1007/s001459900030 (https://doi.org/10.1007%2Fs0014599
00030). S2CID 15726802 (https://api.semanticscholar.org/CorpusI
D:15726802).

24. Goldwasser, Shafi; Micali, Silvio (1982-05-05). "Probabilistic
encryption & how to play mental poker keeping secret all partial
information" (https://doi.org/10.1145/800070.802212). Proceedings
of the fourteenth annual ACM symposium on Theory of computing -
STOC '82. New York, NY, USA: Association for Computing
Machinery. pp. 365–377. doi:10.1145/800070.802212 (https://doi.or
g/10.1145%2F800070.802212). ISBN 978-0-89791-070-5.
S2CID 10316867 (https://api.semanticscholar.org/CorpusID:103168
67).

25. Coron, Jean-Sébastien; Joye, Marc; Naccache, David; Paillier,
Pascal (2000). "New Attacks on PKCS#1 v1.5 Encryption". In
Preneel, Bart (ed.). Advances in Cryptology — EUROCRYPT 2000.
Lecture Notes in Computer Science. Vol. 1807. Berlin, Heidelberg:
Springer. pp. 369–381. doi:10.1007/3-540-45539-6_25 (https://doi.o
rg/10.1007%2F3-540-45539-6_25). ISBN 978-3-540-45539-4.

26. "RSA Algorithm" (https://www.di-mgt.com.au/rsa_alg.html#weaknes
ses).

27. Machie, Edmond K. (29 March 2013). Network security traceback
attack and react in the United States Department of Defense
network (https://books.google.com/books?id=AK5MySZbbuMC&pg
=PA167). Trafford. p. 167. ISBN 978-1466985742.

28. Lenstra, Arjen; et al. (Group) (2000). "Factorization of a 512-bit
RSA Modulus" (https://www.iacr.org/archive/eurocrypt2000/1807/18
070001-new.pdf) (PDF). Eurocrypt.

29. Miller, Gary L. (1975). "Riemann's Hypothesis and Tests for
Primality" (https://www.cs.cmu.edu/~glmiller/Publications/Papers/Mi
75.pdf) (PDF). Proceedings of Seventh Annual ACM Symposium on
Theory of Computing. pp. 234–239.

30. Zimmermann, Paul (2020-02-28). "Factorization of RSA-250" (http
s://web.archive.org/web/20200228234716/https://lists.gforge.inria.fr/
pipermail/cado-nfs-discuss/2020-February/001166.html). Cado-nfs-
discuss. Archived from the original (https://lists.gforge.inria.fr/piperm
ail/cado-nfs-discuss/2020-February/001166.html) on 2020-02-28.
Retrieved 2020-07-12.

31. Kaliski, Burt (2003-05-06). "TWIRL and RSA Key Size" (https://web.
archive.org/web/20170417095741/https://www.emc.com/emc-plus/r
sa-labs/historical/twirl-and-rsa-key-size.htm). RSA Laboratories.
Archived from the original (http://emc.com/emc-plus/rsa-labs/histori
cal/twirl-and-rsa-key-size.htm) on 2017-04-17. Retrieved
2017-11-24.

32. Barker, Elaine; Dang, Quynh (2015-01-22). "NIST Special
Publication 800-57 Part 3 Revision 1: Recommendation for Key
Management: Application-Specific Key Management Guidance" (htt
p://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt
3r1.pdf) (PDF). National Institute of Standards and Technology.
p. 12. doi:10.6028/NIST.SP.800-57pt3r1 (https://doi.org/10.6028%2
FNIST.SP.800-57pt3r1). Retrieved 2017-11-24.

33. Sandee, Michael (November 21, 2011). "RSA-512 certificates
abused in-the-wild" (https://blog.fox-it.com/2011/11/21/rsa-512-certif
icates-abused-in-the-wild/). Fox-IT International blog.

34. Wiener, Michael J. (May 1990). "Cryptanalysis of short RSA secret
exponents" (http://www.cits.rub.de/imperia/md/content/may/krypto2
ss08/shortsecretexponents.pdf) (PDF). IEEE Transactions on
Information Theory. 36 (3): 553–558. doi:10.1109/18.54902 (https://
doi.org/10.1109%2F18.54902). S2CID 7120331 (https://api.semanti
cscholar.org/CorpusID:7120331).

35. Nemec, Matus; Sys, Marek; Svenda, Petr; Klinec, Dusan; Matyas,
Vashek (November 2017). "The Return of Coppersmith's Attack:
Practical Factorization of Widely Used RSA Moduli" (https://crocs.fi.
muni.cz/_media/public/papers/nemec_roca_ccs17_preprint.pdf)
(PDF). Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. CCS '17.
doi:10.1145/3133956.3133969 (https://doi.org/10.1145%2F313395
6.3133969).

https://www.di.ens.fr/~fouque/ens-rennes/coppersmith.pdf
https://www.di.ens.fr/~fouque/ens-rennes/coppersmith.pdf
https://www.di.ens.fr/~fouque/ens-rennes/coppersmith.pdf
https://en.wikipedia.org/wiki/Journal_of_Cryptology
https://en.wikipedia.org/wiki/Journal_of_Cryptology
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.298.4806
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.298.4806
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2Fs001459900030
https://doi.org/10.1007%2Fs001459900030
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:15726802
https://api.semanticscholar.org/CorpusID:15726802
https://en.wikipedia.org/wiki/Shafi_Goldwasser
https://en.wikipedia.org/wiki/Silvio_Micali
https://doi.org/10.1145/800070.802212
https://doi.org/10.1145/800070.802212
https://doi.org/10.1145/800070.802212
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F800070.802212
https://doi.org/10.1145%2F800070.802212
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-89791-070-5
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:10316867
https://api.semanticscholar.org/CorpusID:10316867
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F3-540-45539-6_25
https://doi.org/10.1007%2F3-540-45539-6_25
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-45539-4
https://www.di-mgt.com.au/rsa_alg.html#weaknesses
https://www.di-mgt.com.au/rsa_alg.html#weaknesses
https://books.google.com/books?id=AK5MySZbbuMC&pg=PA167
https://books.google.com/books?id=AK5MySZbbuMC&pg=PA167
https://books.google.com/books?id=AK5MySZbbuMC&pg=PA167
https://books.google.com/books?id=AK5MySZbbuMC&pg=PA167
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1466985742
https://www.iacr.org/archive/eurocrypt2000/1807/18070001-new.pdf
https://www.iacr.org/archive/eurocrypt2000/1807/18070001-new.pdf
https://www.iacr.org/archive/eurocrypt2000/1807/18070001-new.pdf
https://www.cs.cmu.edu/~glmiller/Publications/Papers/Mi75.pdf
https://www.cs.cmu.edu/~glmiller/Publications/Papers/Mi75.pdf
https://www.cs.cmu.edu/~glmiller/Publications/Papers/Mi75.pdf
https://web.archive.org/web/20200228234716/https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html
https://web.archive.org/web/20200228234716/https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html
https://web.archive.org/web/20200228234716/https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html
https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html
https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html
https://web.archive.org/web/20170417095741/https://www.emc.com/emc-plus/rsa-labs/historical/twirl-and-rsa-key-size.htm
https://web.archive.org/web/20170417095741/https://www.emc.com/emc-plus/rsa-labs/historical/twirl-and-rsa-key-size.htm
https://web.archive.org/web/20170417095741/https://www.emc.com/emc-plus/rsa-labs/historical/twirl-and-rsa-key-size.htm
https://en.wikipedia.org/wiki/RSA_Security
http://emc.com/emc-plus/rsa-labs/historical/twirl-and-rsa-key-size.htm
http://emc.com/emc-plus/rsa-labs/historical/twirl-and-rsa-key-size.htm
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.6028%2FNIST.SP.800-57pt3r1
https://doi.org/10.6028%2FNIST.SP.800-57pt3r1
https://blog.fox-it.com/2011/11/21/rsa-512-certificates-abused-in-the-wild/
https://blog.fox-it.com/2011/11/21/rsa-512-certificates-abused-in-the-wild/
https://blog.fox-it.com/2011/11/21/rsa-512-certificates-abused-in-the-wild/
http://www.cits.rub.de/imperia/md/content/may/krypto2ss08/shortsecretexponents.pdf
http://www.cits.rub.de/imperia/md/content/may/krypto2ss08/shortsecretexponents.pdf
http://www.cits.rub.de/imperia/md/content/may/krypto2ss08/shortsecretexponents.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2F18.54902
https://doi.org/10.1109%2F18.54902
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:7120331
https://api.semanticscholar.org/CorpusID:7120331
https://crocs.fi.muni.cz/_media/public/papers/nemec_roca_ccs17_preprint.pdf
https://crocs.fi.muni.cz/_media/public/papers/nemec_roca_ccs17_preprint.pdf
https://crocs.fi.muni.cz/_media/public/papers/nemec_roca_ccs17_preprint.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F3133956.3133969
https://doi.org/10.1145%2F3133956.3133969

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 21/22

36. Markoff, John (February 14, 2012). "Flaw Found in an Online
Encryption Method" (https://www.nytimes.com/2012/02/15/technolo
gy/researchers-find-flaw-in-an-online-encryption-method.html). The
New York Times.

37. Lenstra, Arjen K.; Hughes, James P.; Augier, Maxime; Bos, Joppe
W.; Kleinjung, Thorsten; Wachter, Christophe (2012). "Ron was
wrong, Whit is right" (http://eprint.iacr.org/2012/064.pdf) (PDF).

38. Heninger, Nadia (February 15, 2012). "New research: There's no
need to panic over factorable keys–just mind your Ps and Qs" (http
s://freedom-to-tinker.com/blog/nadiah/new-research-theres-no-need
-panic-over-factorable-keys-just-mind-your-ps-and-qs). Freedom to
Tinker.

39. Brumley, David; Boneh, Dan (2003). "Remote timing attacks are
practical" (http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf)
(PDF). Proceedings of the 12th Conference on USENIX Security
Symposium. SSYM'03.

40. " 'BERserk' Bug Uncovered In Mozilla NSS Crypto Library Impacts
Firefox, Chrome" (https://www.darkreading.com/attacks-breaches/-
berserk-bug-uncovered-in-mozilla-nss-crypto-library-impacts-firefox
-chrome). 25 September 2014. Retrieved 4 January 2022.

41. "RSA Signature Forgery in NSS" (https://www.mozilla.org/en-US/se
curity/advisories/mfsa2014-73/). Mozilla.

42. Acıiçmez, Onur; Koç, Çetin Kaya; Seifert, Jean-Pierre (2007). "On
the power of simple branch prediction analysis". Proceedings of the
2nd ACM Symposium on Information, Computer and
Communications Security. ASIACCS '07. pp. 312–320.
CiteSeerX 10.1.1.80.1438 (https://citeseerx.ist.psu.edu/viewdoc/su
mmary?doi=10.1.1.80.1438). doi:10.1145/1229285.1266999 (http
s://doi.org/10.1145%2F1229285.1266999).

43. Pellegrini, Andrea; Bertacco, Valeria; Austin, Todd (2010). "Fault-
Based Attack of RSA Authentication" (https://www.eecs.umich.edu/~
valeria/research/publications/DATE10RSA.pdf) (PDF).

44. Isom, Kyle. "Practical Cryptography With Go" (https://leanpub.com/
gocrypto/read#leanpub-auto-rsa). Retrieved 4 January 2022.

Menezes, Alfred; van Oorschot, Paul C.; Vanstone, Scott A. (October 1996). Handbook of Applied Cryptography (https://archive.org/details/ha
ndbookofapplie0000mene). CRC Press. ISBN 978-0-8493-8523-0.
Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001). Introduction to Algorithms (2nd ed.). MIT Press and
McGraw-Hill. pp. 881 (https://archive.org/details/introductiontoal00corm_691/page/n903)–887. ISBN 978-0-262-03293-3.

The Original RSA Patent as filed with the U.S. Patent Office by Rivest; Ronald L. (Belmont, MA), Shamir; Adi (Cambridge, MA), Adleman;
Leonard M. (Arlington, MA), December 14, 1977, U.S. Patent 4,405,829 (https://patents.google.com/patent/US4405829).
PKCS #1: RSA Cryptography Standard (http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm)
(RSA Laboratories website)

The PKCS #1 standard "provides recommendations for the implementation of public-key cryptography based on the RSA algorithm,
covering the following aspects: cryptographic primitives; encryption schemes; signature schemes with appendix; ASN.1 syntax for
representing keys and for identifying the schemes".

Further reading

External links

https://www.nytimes.com/2012/02/15/technology/researchers-find-flaw-in-an-online-encryption-method.html
https://www.nytimes.com/2012/02/15/technology/researchers-find-flaw-in-an-online-encryption-method.html
https://www.nytimes.com/2012/02/15/technology/researchers-find-flaw-in-an-online-encryption-method.html
https://en.wikipedia.org/wiki/The_New_York_Times
https://en.wikipedia.org/wiki/The_New_York_Times
http://eprint.iacr.org/2012/064.pdf
http://eprint.iacr.org/2012/064.pdf
https://freedom-to-tinker.com/blog/nadiah/new-research-theres-no-need-panic-over-factorable-keys-just-mind-your-ps-and-qs
https://freedom-to-tinker.com/blog/nadiah/new-research-theres-no-need-panic-over-factorable-keys-just-mind-your-ps-and-qs
https://freedom-to-tinker.com/blog/nadiah/new-research-theres-no-need-panic-over-factorable-keys-just-mind-your-ps-and-qs
https://freedom-to-tinker.com/blog/nadiah/new-research-theres-no-need-panic-over-factorable-keys-just-mind-your-ps-and-qs
http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf
http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf
https://www.darkreading.com/attacks-breaches/-berserk-bug-uncovered-in-mozilla-nss-crypto-library-impacts-firefox-chrome
https://www.darkreading.com/attacks-breaches/-berserk-bug-uncovered-in-mozilla-nss-crypto-library-impacts-firefox-chrome
https://www.darkreading.com/attacks-breaches/-berserk-bug-uncovered-in-mozilla-nss-crypto-library-impacts-firefox-chrome
https://www.darkreading.com/attacks-breaches/-berserk-bug-uncovered-in-mozilla-nss-crypto-library-impacts-firefox-chrome
https://www.mozilla.org/en-US/security/advisories/mfsa2014-73/
https://www.mozilla.org/en-US/security/advisories/mfsa2014-73/
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.80.1438
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.80.1438
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F1229285.1266999
https://doi.org/10.1145%2F1229285.1266999
https://www.eecs.umich.edu/~valeria/research/publications/DATE10RSA.pdf
https://www.eecs.umich.edu/~valeria/research/publications/DATE10RSA.pdf
https://www.eecs.umich.edu/~valeria/research/publications/DATE10RSA.pdf
https://leanpub.com/gocrypto/read#leanpub-auto-rsa
https://leanpub.com/gocrypto/read#leanpub-auto-rsa
https://archive.org/details/handbookofapplie0000mene
https://archive.org/details/handbookofapplie0000mene
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-8493-8523-0
https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ronald_L._Rivest
https://en.wikipedia.org/wiki/Clifford_Stein
https://en.wikipedia.org/wiki/Introduction_to_Algorithms
https://archive.org/details/introductiontoal00corm_691/page/n903
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-262-03293-3
https://patents.google.com/patent/US4405829
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm
https://en.wikipedia.org/wiki/RSA_Laboratories
https://en.wikipedia.org/wiki/PKCS
https://en.wikipedia.org/wiki/Standardization
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Primitive_type
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/ASN.1

1/4/24, 6:37 PM RSA (cryptosystem) - Wikipedia

https://en.wikipedia.org/wiki/RSA_(cryptosystem) 22/22

Explanation of RSA using colored lamps (https://www.youtube.com/watch?v=vgTtHV04xRI) on YouTube
Thorough walk through of RSA (http://www.di-mgt.com.au/rsa_alg.html)
Prime Number Hide-And-Seek: How the RSA Cipher Works (http://www.muppetlabs.com/~breadbox/txt/rsa.html)
Onur Aciicmez, Cetin Kaya Koc, Jean-Pierre Seifert: On the Power of Simple Branch Prediction Analysis (http://eprint.iacr.org/2006/351)
Example of an RSA implementation with PKCS#1 padding (GPL source code) (http://polarssl.org/source_code) Archived (https://web.archive.
org/web/20120722193444/http://polarssl.org/source_code) 2012-07-22 at the Wayback Machine
Kocher's article about timing attacks (http://www.cryptography.com/resources/whitepapers/TimingAttacks.pdf)
An animated explanation of RSA with its mathematical background by CrypTool (https://www.cryptool.org/assets/ct1/presentations/RSA/RSA-
en.pptx)
Grime, James. "RSA Encryption" (https://web.archive.org/web/20181006042830/http://www.numberphile.com/videos/RSA.html).
Numberphile. Brady Haran. Archived from the original (http://www.numberphile.com/videos/RSA.html) on 2018-10-06. Retrieved 2013-04-13.
How RSA Key used for Encryption in real world (http://www.gnudeveloper.com/groups/cyber_security/Cryptography_RSA_Key_Exchange_wo
rks_in_realtime_using_Keytool_openSSL%20.html)

Retrieved from "https://en.wikipedia.org/w/index.php?title=RSA_(cryptosystem)&oldid=1193042466"

https://www.youtube.com/watch?v=vgTtHV04xRI
https://en.wikipedia.org/wiki/YouTube_video_(identifier)
http://www.di-mgt.com.au/rsa_alg.html
http://www.muppetlabs.com/~breadbox/txt/rsa.html
http://eprint.iacr.org/2006/351
http://polarssl.org/source_code
https://web.archive.org/web/20120722193444/http://polarssl.org/source_code
https://web.archive.org/web/20120722193444/http://polarssl.org/source_code
https://en.wikipedia.org/wiki/Wayback_Machine
http://www.cryptography.com/resources/whitepapers/TimingAttacks.pdf
https://www.cryptool.org/assets/ct1/presentations/RSA/RSA-en.pptx
https://www.cryptool.org/assets/ct1/presentations/RSA/RSA-en.pptx
https://web.archive.org/web/20181006042830/http://www.numberphile.com/videos/RSA.html
https://en.wikipedia.org/wiki/Brady_Haran
http://www.numberphile.com/videos/RSA.html
http://www.gnudeveloper.com/groups/cyber_security/Cryptography_RSA_Key_Exchange_works_in_realtime_using_Keytool_openSSL%20.html
http://www.gnudeveloper.com/groups/cyber_security/Cryptography_RSA_Key_Exchange_works_in_realtime_using_Keytool_openSSL%20.html
https://en.wikipedia.org/w/index.php?title=RSA_(cryptosystem)&oldid=1193042466

