
Notes for G22.3025-001∗

(For Class Use Only)

∗Last revised on: 2009-09-07 12:07:58 -0400 (Mon, 07 Sep 2009)

2

3

1 Introduction

The course description is posted in: http://www.cs.nyu.edu/courses/

fall09/G22.3205-001/pages/00ReadMe_20090904.html. This file will be
updated as needed, with revision date as part of the name (the last eight
digits) updated.

I have written these notes to complement the textbook. Their table of
contents will serve as a preliminary syllabus. I may modify slightly any part
of the notes before presenting it in class.

I will put these notes on the class web, and I will mail to the class list the
location. I do not want to put it in a publicly searchable place as it is not in
a self-contained, finished form—it is being produced for this class specifically
to complement the textbook. Whenever possible, I will rely on the book so
to save time during presentation, although this will be more substantial later
in the course.

I will also assign reading material for the book, generally material that is
relatively simple so we do not need to cover it in class, or complementing
what I cover in class.

Note The table of contents is at the end, it will be modified as the notes are
modified. I do not expect considerable modifications, more like rephrasing
and correcting typos, etc. I may also put additional material, as it seems
useful.

1.1 Presentation of the material

It will be as informal as possible, sometimes “not quite right.” This means
more that it will not be wrong but “mathematically or otherwise not com-
plete.” But we will cover some aspects of relevant mathematics, assuming
practically nothing beyond high-school mathematics.

We will not discuss the state of art as it existed in “earlier times,” unless
it is helpful to do so in order to understand what is done now (and in the
near future; nobody can predict distant future anyway).

An important goal for us is to understand the intuition and those parts
of cryptography that are relevant now and in the near future for building
security systems. And they are actually quite simple, once you strip away
the black magic.

The most important for us are the following fundamental cryptographic
tools (though we will talk about others too):

1. Symmetric encryption (e.g., DES or AES)

http://www.cs.nyu.edu/courses/fall09/G22.3205-001/pages/00ReadMe_20090904.html
http://www.cs.nyu.edu/courses/fall09/G22.3205-001/pages/00ReadMe_20090904.html

4

2. Public/private encryption (e.g., RSA)

3. One way hash, or fingerprint (e.g., MD5)

From these, we will build (or discuss how to do it) various important
and/or amusing applications, including

1. encrypting messages to others

2. encrypting files on your disk

3. signing messages with unforgeable signatures

4. SSL

5. digital cash

6. . . .

5

2 Setting

2.1 An ideal channel

We first discuss an ideal channel (or a pretty good one!). Alice wants to send
messages to Bob. Look at Fig. 1.

Figure 1: Ideal Channel

We make some assumptions:

1. The channel is “physically” unbreakable: only Alice can put messages
in and only Bob can take them out

2. The channel is opaque: nobody can see what is in transit

3. Messages are delivered, and in the order sent

4. There is a camera videotaping with timestamps everything Bob sees
but only Bob can release parts of the videotape as he wants to (without
making any changes to the tape)

Some of the useful properties we have:

1. Privacy : Nobody can see the messages unless Alice or Bob show them.

In fact, it is not useful for Alice to show messages as she has no proof
(in our setting) that she is going to later send them or that she has sent
them. Unless of course she has an acknowledgment from Bob—this
can be arranged but let’s not talk about it now.

2. Authentication: Nobody other than Alice can put a message into the
channel, so Bob knows that a message received must have been sent
by Alice.

3. Integrity : Nobody can change the message in transit, so Bob knows
that the message has not been garbled or modified by anybody else in
transit.

4. Non repudiation (by Alice): Bob can prove that he got the message
from Alice, if he wants to. He just shows an appropriate part of the
videotape.

6

In reality, we have problems implementing such an ideal channel, as we as-
sume that messages are sent using public networks and anybody can see them.
We will work on how to do this. We will focus more on some issues more than
on others—the ones that go beyond standard networking protocols, such as
TCP http://en.wikipedia.org/wiki/Transmission_Control_Protocol.
So major mechanisms will be encryption/decryption and digital signing.

2.2 Our (main) actors

We do not have (yet) and ideal channel. So difficulties pop up.
During various discussions and derivations we will have various actors,

that is players or agents with various roles:1

1. Alice: This is an honest actor, unless we say otherwise. Sometimes she
just works without anybody else, e.g., when she wants to encrypt (we
use the term intuitively for now) some information on her hard disk.

2. Bob: This is an honest actor, unless we say otherwise. He appears
when there is some communication going on between two (or among
more than two) actors.

3. Carol: This is an honest actor, unless we say otherwise.

4. Doug: This is an honest actor, unless we say otherwise.

5. Eve: An adversary; she is an eavesdropper. Can see messages in transit.
But she cannot interfere with the traffic Her goal is to learn something
about the contents of the messages. (She can perform reasonably long
computations on them using reasonable amount of storage trying to
figure out what they mean—not something that will take the life of
the universe or huge number of bits, but maybe a few years on a very
powerful parallel computer and exabytes of storage is OK; more about
this later).

6. Mallory: An adversary; he is malicious. Can do all that Eve can do,
but can also inject messages, remove messages, garble messages, etc.
His goal is to confuse the honest actors, and/or take advantage of them
(by perhaps stealing money from them).

7. Peggy: Peggy is an honest actor, she needs to prove that she knows
some secret.

1See also http://en.wikipedia.org/wiki/Alice_and_Bob.

http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Alice_and_Bob

7

8. Trent: A trusted authority. He is like a notary public. Whatever he
does is to be believed (of course, once we know that he did it and
we assume that nobody else has stolen his notary seal or forged his
signature).

9. Victor: A verifier. He is also trusted and he verifies that what somebody
else did indeed satisfied what needs to be satisfied.

Our key goal is: protecting the communication from Alice to Bob (and
from Bob to Alice too, if we want to).

We do not focus on issues such as: cutting the channel, denial of service,
worms, span, viruses, bugs in O.S., keystroke logging (beware of reading
email in Internet cafes!), etc.

We worry about problems that can be prevented using cryptography. We
want to recreate some version of an ideal channel, with the goal that not a
single bit leaks out.

2.3 Three fundamental building blocks

We will rely on the following building blocks

1. Symmetric encryption

2. Public/private encryption

3. Fingerprinting (One-way hash)

Items 1 and 3 do not really have as solid mathematics behind them as
one may want. Item 2 is better in this sense.2 Everything can be done using
item 2, but there are reasons why all three are used—we discuss later.3

We will understand these blocks in detail later, right now we will learn
enough to know what they (roughly) mean and how they can be used.

2.4 Key ideas

1. The ideal channel

2. The building blocks (to be understood soon).

2Or perhaps worse, as we will discuss. Basically the nice solid mathematics could lead
to efficient algorithms for breaking the encryption system.

3Mainly because, if we only use item 2, there are some technically unpleasant things to
do and it would be much more inefficient.

8

2.5 Please read

Forouzan Sections 1.1–1.4.

9

3 Some concepts

3.1 Example: Caesar’s cipher

We will use this example of a 2000-year old “privacy method,” to explain
some basic concepts that we will use.

Of course, Caesar wrote in Latin as it was written when he was alive
http://en.wikipedia.org/wiki/Latin_alphabet, and therefore he used
23 letters (and in capitals only): A, B, C, D, E, F, G, H, I, K, L, M, N,
O, P, Q, R, S, T, V, X, Y, Z.4 (Note that sometimes we pretend that we
write using a “classical” Latin alphabet. Look at the sign above a door on
Greene Street between West Fourth Street and Washington Place. You will
see “VNIVERSITY” there.)

Caesar wrote messages (strings) using 23 letters (alphabet of 23 letters).
He (and others at that time) did not generally use spaces and punctuation
marks, so let’s assume that spaces are not written at all.5 (Or if you like
spaces are left unencrypted, which is an extremely bad idea, as Eve can
immediately see which pieces of the encrypted message are the individual
words.)

He used the following simple encryption method.6 Every letter was
replaced by a letter 3 positions to the right, circularly. Therefore: A→ D,
B → E, . . . , V → Z, X → A, . . .

To encrypt a string do this for each letter (independently). So VENI→
ZHQM

The corresponding decryption method was “going in reverse.” That is:
A→ X, B → Y , . . . , Z → V , . . . We do this for each letter separately.

Of course, one could you use a parameter other than 3 for rotation, in
fact any number in {0, . . . , 22}. So, if say, 4 is chosen, then, in encryption:
A→ E and in decryption A→ V , etc.

Let us now generalize. We can assume an existence of two machines for
using a Caesar type method: an encrypting machine E and a decrypting
machine D. These machines could, of course, be implemented in software.

For E we can choose a parameter e (how many positions to rotate (more
precisely later), technically called an encryption key. For D we can choose a
parameter d (how many positions to rotate (more precisely later), technically
called a decryption key.

4Something about Julius Caesar that we do not have to know: http://en.wikipedia.

org/wiki/Julius_Caesar.
5See e.g., http://en.wikipedia.org/wiki/Arch_of_Titus.
6You may read about it also at: http://en.wikipedia.org/wiki/Caesar_cipher.

http://en.wikipedia.org/wiki/Latin_alphabet
http://en.wikipedia.org/wiki/Julius_Caesar
http://en.wikipedia.org/wiki/Julius_Caesar
http://en.wikipedia.org/wiki/Arch_of_Titus
http://en.wikipedia.org/wiki/Caesar_cipher

10

Let’s consider a hardware implementation of E. Look at Fig. 2.

Figure 2: Hardware implementation of Caesar’s encryption machine with
parameter 3. So the letter “D” is rotated to be opposite to “A”.

There are two concentric rotors, each having all the 23 letters written
around. To choose parameter e = 3, just rotate the inner rotor to the left so
that the the first letter A is aligned with the fourth letter D. Then you can
read out what to encrypt into what. So the description of using the machine
is:

1. Choose e

2. Rotate inner rotor by e positions to the left (“left” is part of the
definition of the machine E and not of choice of the key e)

3. Use alignment of letters for encryption

The above looks like a trivial and unnecessary formalization but it is
useful for clarifying definitions.

What about a hardware implementation of D? We have to figure what
D and d should be. We have two obvious choices.

We could choose two variants:

1. D = E and d = 23− e.

2. D to be similar to E, but with rotation going right; then d = e.

So, after we choose one variant of D, we have two machines (one of
encrypting and one for decrypting),7 and we can schematically describe the
situation as depicted in Fig. 3 and Fig. 4. In both, m is a message and c is
a cipher, that is the encrypted version of a message.

We can think of these machines as implementing functions E(e, x) and
D(d, x), where x is a letter.

7We could have just used one machine, but it is better to talk about two machines.

11

Figure 3: Encrypting Machine

Figure 4: Decrypting Machine

The important property is that if e and d are related as to be “inverses”
of each other as implied by our choices of E and D, then for any letter x,
D(d,E(e, x)) = x.

So, if Alice and Bob want to communicate using Caesar’s cipher, they
have both E and D and they agree on an encryption key e ∈ {0, . . . , 22}.
From this they can easily compute the decryption key d.

In fact if Alice sends messages to Bob, and Bob does not send messages
to Alice, Alice needs to know only E and e and Bob needs to know only D
and d. This will be important soon, but not right now.

Alice, to encrypt some message m, computes E(e,m). For Caesar’s cipher,
if m = m1 . . .mn, then E(e,m) = E(e,m1) . . . E(e,mn). If E(e,mi) = ci,
then the encryption of the message, that is the cipher is c = c1 . . . cn.

When Bob gets the string c, he interprets it as cipher and computes
D(d, c1) . . . D(d, cn). But D(d, ci) = mi, so he gets m1 . . .mn = m, the
original message.

Let’s slightly generalize. We have

1. M : set of all messages, here all strings of letters, that is {A, . . . , Z}∗

12

2. C: set of all ciphers (universe of encrypted messages), here all strings
of letters, that is {A, . . . , Z}∗

3. E: an encrypting machine, as discussed above

4. D: a decrypting machine, as discussed above (let’s look at the first
variant—see how d is chosen next)

5. K: a key space, a set of pairs of the form (encrypting key, corresponding
decrypting key), here (0, 0), (1, 22), . . . , (22, 1).8

Then, once (e, d) is chosen from K (e explicitly, d perhaps computed
from e), we have that for every m ∈M : D(d,E(e,m)) = m.

3.2 A general setting

A general cryptosystem consists of a tuple of 5 elements: (M,C,K,E,D)
with the following properties:

1. M : set of all messages

2. C: set of all ciphers (universe of encrypted messages)

3. K: a key space, a set of pairs of the form (e, d), associating a decrypting
key with an encrypting key. In practice it generally makes sense for
this to be a one-to-one function, that is for each encrypting key there
is exactly one decrypting key and vice versa.

Let KE be the set of all the encrypting keys and let KD be the set of
all the decrypting keys; we get them from the set K above.

4. E: an encrypting algorithm/machine, E : KE×M → C. That is, given
an encrypting key e and a message m, we get the corresponding cipher:
c = E(e,m).

5. D: a decrypting algorithm/machine, D : KD × C →M . That is, given
a decrypting key d and a cipher c, we get the corresponding message:
m = D(d, c).

6. For any m ∈M and (e, d) ∈ K: D(d,E(e,m)) = m

Note We did not need to explicitly define KE and KD, defining just K
was sufficient for our purpose.

8(0, 0) is also (0, 23).

13

Remark For simplicity, we may assume for a while (while in cryptographic
domain) that M = C. This is definitely not true in general once cryptography
is used in actual protocols, but not conceptually important for now. Why
would M ∕= C? A simple reason (but there are deeper ones too) you may
want messages to have some specific structure but the encrypted versions of
them may have different structures.

Here is a real message:

Hello, world!

And here is its cipher:

-----BEGIN PGP MESSAGE-----

Version: GnuPG v1.4.9 (MingW32)

Comment: http://getfiregpg.org

hQIOA+Z/z6+DggDEEAf/Tr5A3LBrh2iZD6Gvjz+xJlaIDh5NFA/OghSb/5HSRJ5C

jr7TyrihdQTfbuAa4RmAhRN14V47ZjuYpe/JQKe0rbQMP6pgTDxyrhgjelzvUdh6

oXj6kLXFdTdBf5JCCOhwTw0WvoQT/Pb1RTiD6USZFzsMKRXugotiL8TnYMB32HaW

o7stn9krE53uBibihP5yqh0tJseJNAUL0RPjQtjBqk+DGPyGPUdnSf5C33yIamXc

0XiIIa33IM68FcrM4Y9BlFq1dIk0YADodgQOR/fd2LsQA1r3Mvmimy3iVTiWqRgD

3NZdfaKgUIAfD2vBGQ011idkMZ3JcUK3nUDBqP+K8QgAssn6Y3zjkMLsN7gzR3BV

Nuzy2F+YHqg8jcOFlaqSUIjbKrZBSEEWSLt5UrzaSI7Ml3sLHoGHsnBGhiK5lvKZ

eAVk0c1mcOil8j3s7Pg2PjyYU9DxOdwEATF06aU6Ew86UGWc7TaIASINi6hrYJ/+

ZfrF9PCCwoGd8xov960v5Kogqdw8aS5e99rp0gNgJpa/EXVNqnCLDUJL4mPgQ0of

MTv7ku8TOyOK7vylra7qfdan7obWvhECgyxZTUJhQu57Dc/AZ0siKrej9scueqd0

Wl68DJAmYKOX2nypO4JfEOUi0fCx0hZvvFDAqRjQ8l2CpemA2uK1cvGvtrdFsxqy

jtJjARV5lgnbiPL8G0meoJRnNVwoiOIDXE8LLmZg/K8GYnoVwfapRlhKD6pZVLYx

afy5t+eT5kxS2h97+93PVlP557XfadH7Oj7pz2C3HxcAjLXmSTk6jQn6hWus1ByO

sKeWkMzt

=WaIh

-----END PGP MESSAGE-----

In this specific system all ciphers have to have a well-defined structure
with a specifice header, etc. Therefore, the universe of all ciphers in this
system cannot consist of all strings.

Remark Also, we will assume that once a pair (e, d) is chosen E(e, ⋅) and
D(d, ⋅) are one-to-one functions and inverse of each other (see Fig. 5). There-
fore, for instance: E(e, (D(d, x)) = x. This is all very natural in our setting,

14

Figure 5: Example of functions E and D for some specific choice of (e, d).
M = C = {1, 2, 3, 4}.

but needs to be modified in a non-consequential way for actual protocols, as
we will do later.

There are two types of cryptosystems:

1. Symmetric systems such as DES and AES, relying on confusion and
diffusion

2. Public/private systems, such as RSA and El Gamal, relying respec-
tively on the presumed computational difficulty (resources required) of
factoring a composite integer into prime factors 9 and of computing
discrete log.10

We will explain the difference between the two types shortly.

3.3 Kerckhoffs’ main desideratum

In 1883 Kerckhoffs http://en.wikipedia.org/wiki/Auguste_Kerckhoffs,
not Kirchhoff http://en.wikipedia.org/wiki/Gustav_Kirchhoff, formu-
lated some requirements for cryptographic systems, one of them (the second
principle) we can reinterpret as follows

When Alice and Bob communicate, using a cryptographic system
(M,C,K,E,D), it should be completely public, that is M , C, K,
E, D should be known to everybody (or more weakly stated:
cannot be assumed to be secret)

9E.g., writing 50 as 2× 52.
10You are not expected to know now what discrete log is.

http://en.wikipedia.org/wiki/Auguste_Kerckhoffs
http://en.wikipedia.org/wiki/Gustav_Kirchhoff

15

For Caesar’s systems we have specified the above completely. What about
the pair (e, d) that Alice and Bob use to communicate? We will see soon.

Kerckhoffs’ motivation was that for cryptographic systems at his time
an encryption/decryption machine was a heavy machine that could fall
into enemy’s hands (just like the Enigma machine during WW II http:

//en.wikipedia.org/wiki/Enigma_machine), so we cannot rely on its be-
ing secret.11

Modern motivation: Vendors who sell us cryptographic systems should
not sell opaque hardware/software (systems should be open source) because:

1. Vendors could have buggy systems and nobody would know about this

2. Vendors could on purpose build some holes/trapdoors in the system so
that they can in future decrypt encrypted messages of the users of the
system without getting the users’ permission or even them knowing
about this

3.4 Symmetric systems and public/private systems

Let us now return to the key space K. Alice and Bob have chosen a cryp-
tosystems using which Alice will send messages to Bob: Alice encrypts and
Bob decrypts. Alice must know e and Bob must know d.

If encrypted messages could be visible to anybody while in transit—which
is the assumption we of course make—then d must be kept secret, restricted
only to people who are permitted to decrypt messages sent to Bob. (Generally
only Bob.)

If the decryption key d can be easily computed from the encryption key e
(such as in Caesar’s cipher)12 than e must be kept secret too.

A cryptosystem is called symmetric if and only if d is easily computable
from e.

But if d is not easily computable from e, then e may as well be made public
(put on a Web site as in http://www.cs.nyu.edu/kedem/0xC6540406.asc.

Then anybody can send encrypted messages (ciphers) to Bob and only he
can decrypt them, as he is the only one who knows the corresponding d.

For convenience of explanation, a message is put in a box. Originally
it is unlocked, this is depicted in Fig. 6. Then, whoever has e (everybody)
can rotate the arrow to the right, thus locking the box, this is depicted in

11One machine was used for both decryption and encryption, which we saw was possible
in the case of Caesar’s cipher.

12d = 23− e, for every e.

http://en.wikipedia.org/wiki/Enigma_machine
http://en.wikipedia.org/wiki/Enigma_machine
http://www.cs.nyu.edu/kedem/0xC6540406.asc

16

Fig. 7. Then, whoever has d (Bob only) can rotate the arrow to the left,
thus unlocking the box, this is depicted in Fig. 8.

Figure 6: The box before locking

Figure 7: The box after locking

Such a cryptosystem is called public/private.

3.5 One-time pad

See also Forouzan, Section 5.2, p. 149. Alice and Bob will want to
communicate in the future: Actually Alice will want to send a string of
≤ n bits to Bob in a secure way. They will use a one-time pad http:

//en.wikipedia.org/wiki/One-time_pad.

http://en.wikipedia.org/wiki/One-time_pad
http://en.wikipedia.org/wiki/One-time_pad

17

Figure 8: The box after unlocking

Alice and Bob agree on a encryption key, a random (not pseudorandom!)
string of n bits e = e1 . . . en. The decryption key d will be the same as e, so
e = d. Of course we have a symmetric system here and both keys must be
kept secret. Alice and Bob have to find a secure way to agree on this key.
Possibly, Alice generates it and arranges for secure delivery to Bob (through
a trusted courier, perhaps).

We will use the symbol ⊕ to stand for exclusive OR, which is also addition
modulo 2 in the set {0, 1}. (Fancy name for the latter: GF(2))

Alice wants to send a message m = m1 . . . of length ≤ n to Bob. For
simplicity, we will assume that it is of length n exactly. She encrypts bit by
bit:

E(e,m) = e1 ⊕m1 e2 ⊕m2 . . . en ⊕mn = c1c2 . . . cn = c

That is, ci = ei ⊕mi.
Bob decrypts:

D(d,m) = d1 ⊕ c1 d2 ⊕ c2 . . . dn ⊕ cn
But what does he get? Recalling that ei = di, we have:

ci ⊕ di = ci ⊕ ei = (mi ⊕ ei)⊕ ei = mi ⊕ (ei ⊕ ei) = mi ⊕ 0 = mi

Therefore he gets m back.
Following Shannon, we will prove later that this system is provably

unbreakable. In fact, it is the only system that is known to be provably

18

unbreakable. Slightly more formally, we can say that if Eve knows that the
one-time pad system was used, that is she knows:

1. E and D are one-time pad encrypting and decrypting machines, and

2. she knows all of c

she cannot learn anything about m. (This is still very imprecise statement).
Intuition behind this:

∀c ∀m ∃e [E(e,m) = c]

So any c could have come from any m under appropriate e, in fact
e = m⊕ c.

What if Alice uses the same e more than once. Potentially a problem.
We will use the notation ⊕ for strings in an obvious way, when applied to
two strings of equal length this will mean doing ⊕ bit-wise.

Let’s consider an example. One time pad abc. Two messages m1m2m3

and n1n2n3. Assume that it happens that abc ⊕ m1m2m3 = �� and
abc ⊕ n1n2n3 = ���. Then Eve knows that m2 = n2 and other bits are
different in the two messages. And this may be useful.

Let’s look at another thing that Eve can do. Eve gets c(1) = e ⊕m(1)

and c(2) = e⊕m(2). She can compute and computes f = c(1) ⊕ c(2). Now f
has 0’s in positions where c(1) is equal to c(2). But these are also positions
in which m(1) is equal to m(2). Assume that Alice sends email from NYU
and f = . . . 10 . . . 01 . . . and the length of the substring of 0’s is the length of
the string “ New York University ”. She guess this is indeed the string that
appears in the same position in both the messages (perhaps it is a header
that is used for some messages. Then she can guess some bits of e. And if
e is used again, some parts of subsequent messages can be recovered from
their ciphers.

In general pieces can leak, for instance as the letter “e” is the most
common letter in English (but look at http://en.wikipedia.org/wiki/A_
Void).13 This can be used as follows. “Many” of the places in which two
unrelated messages have the same letter are more likely to be the letter “e”

13A passage thanks to http://www-control.eng.cam.ac.uk/hu/Perec.html: Noon
rings out. A wasp, making an ominous sound, a sound akin to a klaxon or a tocsin,
flits about. Augustus, who has had a bad night, sits up blinking and purblind. Oh what
was that word (is his thought) that ran through my brain all night, that idiotic word that,
hard as I’d try to pun it down, was always just an inch or two out of my grasp - fowl or foul
or Vow or Voyal? - a word which, by association, brought into play an incongruous mass
and magma of nouns, idioms, slogans and sayings, a confusing, amorphous outpouring

http://en.wikipedia.org/wiki/A_Void
http://en.wikipedia.org/wiki/A_Void
http://www-control.eng.cam.ac.uk/hu/Perec.html

19

than another letter. This again can provide useful information about the
messages and e. Perhaps some parts can be guessed.

We looked at the ultimate secure symmetric cryptosystem. To prove it
is really secure (and actually define some properties more precisely) we will
need to know some probability (which we will learn, nothing is assumed). It
is still supposedly used for ultrasecret communications.

But this system is, of course, not practical for normal use. (How do you
distribute the keys? Keys also have to be as long as the messages.) So how
do symmetric systems work in practice?

We will cover this later in the course. But here is a rough idea. A fixed-
size key of length e, say 256 bits is chosen randomly (one hopes randomly not
pseudorandomly). An encrypting machine (chosen earlier) takes a message
m and creates a very different looking c from it guided by e. A fake example:
If the first bit of e is 1 than exchange in m the first bit with the second bit,
the third with the fourth, etc, otherwise don’t; take the second bit of e and
do XOR with every bit of m.

Ideally every bit of c depends on every bit of m; changing one bit of m
changes approximately half the bits of c in random-looking positions (not
actually random, E is deterministic. So Eve has to work very hard to guess
d. (Recall that e and d are closely related in a publicly known way, so this is
as hard as guessing e.)

3.6 Key ideas

1. Definition of a cryptosystem

2. Machines, E and D known to all

3. Knowledge of d (decryption key) always controlled; knowledge of e
(encryption key) sometimes controlled.

4. In symmetric systems, it is easy to determine d from e, therefore
knowledge of e is controlled too

which I sought in vain to control or turn off but which wound around my mind a whirlwind
of a cord, a whiplash of a cord, a cord that would split again and again, would knit again
and again, of words without communication or any possibility of combination, words
without pronunciation, signification or transcription but out of which, notwithstanding,
was brought forth a flux, a continuous, compact and lucid flow: an intuition, a vacillating
frisson of illumination as if caught in a flash of lightning or in a mist abruptly rising to
unshroud an obvious sign - but a sign, alas, that would last an instant only to vanish for
good.

20

5. In public/private systems, it is not easy to determine d from e, therefore
knowledge of e is not controlled

6. The one-time pad symmetric system

3.7 Please read

Forouzan, Section 3.1, pages 56–57.

21

4 Fundamental protocols

4.1 How do I know I am talking to Amazon?

This is a good question to motivate some important developments, as well
as being important by itself.

We are now ready to sketch the main idea behind amazon.com authenti-
cating itself to Bob. It is only a very rough description and not complete
but it covers the essence of what is going on—we will give a more com-
plete description later. Everybody uses some public/private cryptosystem
(M,C,K,E,D). For simplicity, assume that M = C. Perhaps these are all
non-negative integers or all bit strings.

amazon.com (call it Alice from now on) has a public/private key pair
(e, d). Everybody (including Bob) knows e but only Alice knows d. So if an
entity proves it knows d, then this entity must be Alice. Alice does this by
showing Bob that she can decrypt strings using Alice’s private key d; and
without knowing that key this is not possible. 14

4.1.1 Simple protocol: good idea, which has some problems

Bob want to challenge Alice to prove she is Alice. We will refer to Bob as
the challenger and to Alice as the challengee.15

So here is a candidate protocol for this (see Fig. 9):

Figure 9: Alice authenticates herself to Bob. Source of x unspecified.

1. Alice has a challenge x 16

2. Alice “decrypts”17 x getting D(d, x) = y

14We could have used Peggy (prover) for Alice and Victor (verifier) for Bob.
15“Challengee” is not really a word in English, but very useful for us.
16We discuss soon where x could come from.
17There was really nothing to decrypt, but the decryption operation was applied.

22

3. Alice sends x and y to Bob

4. Bob encrypts y getting E(e, y) = E(e,D(d, x)) = z

5. Bob checks whether z = x. If yes, he believes he is talking to Alice,
since only Alice knows how to compute D(d, x) given x as she is the
only one who knows d.

Where did x come from? Let’s consider some choices.

4.1.2 Bob picks the challenge

Figure 10: Alice authenticates herself to Bob. Bob picks x.

Bob picks x. The protocol of Section 4.1.1 is modified as follows (see
Fig. 10):

1. Bob picks a challenge x

2. Bob sends x to Alice

3. Alice “decrypts” x getting D(d, x) = y

4. Alice sends y to Bob 18

5. Bob encrypts y getting E(e, y) = E(e,D(d, x)) = z

18Bob already knows x.

23

6. Bob checks whether z = x. If yes, he believes he is talking to Alice,
since only Alice knows how to compute D(d, x) given x, as she is the
only one who knows d.

A Problem: Some time in the past, Carol wanted to send a confidential
message u to Alice. So, she encrypted it with Alice’s public key e and sent
her v = E(e, u). Mallory saw v in transit and would like to know what u
was.

Mallory tells Alice that he wants to buy a book from her, so he needs to
know that he is talking to her.

He follows the protocol that Bob follows.

1. Mallory picks a challenge v (the specific v above)

2. Mallory sends v to Alice

3. Alice decrypts v getting D(d, v) = D(d,E(e, u)) = u

4. Alice sends u to Mallory

Mallory does not modify it and has the secret message u

Another problem: Sometime in the past Bob authenticated himself to
Alice using challenge x. Mallory saw both x and y in transit and remembers
them.19

Carol want to buy a book from Alice. Carol sends Alice a challenge,
which happens to be the “old” x.

Mallory intercepts this x and send Carol the corresponding y. Carol
believes she is talking to Alice.

Moral: The challenger cannot be permitted to pick the challenge.

4.1.3 Alice picks the challenge

We have seen that the challenger cannot be allowed to pick the challenge.
What if the challengee does it?

Bob wants Alice to prove she is Alice. Here is a modification of the
protocol in Section 4.1.1, which now specifies that Alice picks x (see Fig. 11):

19Mallory has a lot of storage, more than other participants, who cannot remember all
of the past.

24

Figure 11: Alice authenticates herself to Bob. Alice picks x.

1. Alice picks a challenge x

2. Alice “decrypts” x getting D(d, x) = y

3. Alice sends x and y to Bob

4. Bob encrypts y getting E(e, y) = E(e,D(d, x)) = z

5. Bob checks whether z = x. If yes, he believes he is talking to Alice,
since only Alice knows how to compute D(d, x) given x as she is the
only one who knows d.

Mallory can see x and y while they are in transit. He can now pretend
to be Alice.

Carol wants to buy a book from Alice and asks her to prove she is Alice.
Mallory intercepts this request and replays to Carol x and y that Alice
previously sent to Bob. So Carol believes she is talking to Alice.

Moral: The challengee cannot be permitted to pick the challenge.

Trent ? So perhaps Trent, whom everybody trust, should keep track of
the complete history of the system and send an x to Alice and Bob, when
Bob wants to authenticate Alice.

This is:

1. Inefficient

2. Nonscalable

3. Requires some protocol so that Alice and Bob believe that x came from
Trent and not from Mallory.

So we need to think a little more. We will, in effect, “simulate” Trent,
using a one-way function.

25

4.2 One-way functions

See Forouzan, Section 10.1, p. 297, Section 11.1, pp. 340–343. He uses
somewhat different terminology. Also, I will need to make it “more correct,”
So I am going over this, without the figures, which are good: 11.1–11.6. See
also, http://en.wikipedia.org/wiki/Cryptographic_hash_function.

Definition 1. Let X and Y be sets. Let f : X → Y . Then f is called a
one-way-function iff:20

1. f is easy to compute.

We do not formally define “easy to compute”, intuitively clear: efficient
(fast, small space, etc.)

2. For practically every y ∈ Y it is computationally infeasible to find any
x ∈ X s.t. f(x) = y.21 Note, that in general there could be many such
x’s as it is not assumed that f is a one-to-one function. Frequently the
term Preimage Resistance is used.

We do not formally define “computationally infeasible”. This intuitively
means that no amount of reasonable time and reasonable amount of
space (storage) would allow us to find such an x. The “practically
every” is a little more trickier, we cannot say “for every”, as we will
discuss shortly.

3. For every x1 ∈ X it is computationally infeasible to find any x2 s.t.
f(x1) = f(x2). This condition is called weak collision resistance. Fre-
quently, the term Second Preimage Resistance is used.

4. It is computationally infeasible to find any pair x1, x2, x1 ∕= x2, s.t.
f(x1) = f(x2). This condition is called strong collision resistance.
Frequently, just the term Collision Resistance is used.

(This definition is not completely formal, but sufficient for our purposes.)

Let us now discuss why the following cannot be true:22

For every y ∈ Y it is computationally infeasible to find any x ∈ X
s.t. f(x) = y.

20“iff” stands for “if and only if”
21“s.t.” stands for “such that.”
22This point is not always correctly discussed.

http://en.wikipedia.org/wiki/Cryptographic_hash_function

26

Very simple reason. Compute f(0). You will get some string, say
� = 010011001100001110001101111001010001001100001100001111. Remem-
ber this result for input 0. Then, if somebody asks you in the future to find
x, such that f(x) = �, you can just look up in your notes and answer: 0.

But you can do this trick for only a “small” number of x’s, due to lack
of time to precompute “many” answers and even worse, due to the lack of
space to store “many” answers.

Forouzan gives examples of functions that are not one-way.

4.3 Fingerprint, or one-way hash

Let X be the set of all binary strings and let Y be the set of all binary
strings of certain length, let us say 128 bits (160 bits or 256 bits are also
common). Then, a one-way function as above is called a fingerprint or
a one-way hash, for the origin of the term, see http://en.wikipedia.

org/wiki/Hash_function#Origins_of_the_term. Example of such a func-
tion is MD5. Some software: http://www.softpedia.com/get/System/

System-Miscellaneous/MD5-Fingerprint.shtml. Another popular one is
SHA-1 http://en.wikipedia.org/wiki/SHA-1. Sometimes we will refer
to such a function using ℎ. For such schematic “hashing machine,” look at
Fig. 12.

Figure 12: One-way hashing machine. f refers to the resulting fingerprint. x
is of any (finite) lengths and f is of fixed length.

How could we obtain such a function ℎ? We could (what is not done in
practice—we will talk about practice later in the course) have a very “mixing
up functions” that takes x (assume relatively long), mixes up its bits in some
way, performs operations on them and finally takes 128 of them out in some
way. It may be difficult (and we assume it is computationally impossible), to
“reverse it”, that is to find any x that produces some given y (for practically
all y’s).

There are several different choices for ℎ, none of them secret and every-
body knows how to compute them. Let us assume that one is picked out for
the following discussion. We will look at some examples how this is used.

http://en.wikipedia.org/wiki/Hash_function#Origins_of_the_term
http://en.wikipedia.org/wiki/Hash_function#Origins_of_the_term
http://www.softpedia.com/get/System/System-Miscellaneous/MD5-Fingerprint.shtml
http://www.softpedia.com/get/System/System-Miscellaneous/MD5-Fingerprint.shtml
http://en.wikipedia.org/wiki/SHA-1

27

4.3.1 Message integrity

Alice sends a (relatively) very long m to Bob. She also computes ℎ(m). Bob
gets some message from Alice, say m′. He wants to verify that he got the
original m, that is that m′ = m. See how it is done in Forouzan, Section
11.3, pp. 352–353, Fig. 11.9. The “secure channel” could be a phone call.

Similarly, one can check that downloaded software has not been garbled
in transmission, see http://www.gimp.org/downloads/, they use the term
“MD5 sum” where we say “MD5 hash.”

Also, if you look at my public key and want to verify that it is really
mine, you can call me and I will tell you the fingerprint (hash) on the phone:
http://www.cs.nyu.edu/kedem/contact.html.

4.3.2 Tossing coins over the phone

Alice and Bob want to decide who wins. Alice tosses a coin, which has H
(heads) and T (tails) and Bob guesses. If Bob guesses correctly, he wins,
otherwise Alice wins. Actually, it is the same as Alice’s picking up H or T
without any tossing and Bob guessing what she has picked. Instead of H and
T, we will use bits 0 and 1.

Easy to do it “physically”, we will do it over the phone. In fact, we could
even do it by email.

We do it “half by example,” but the general protocol is clear.

1. Alice picks a random bit string. If she picks H, she appends 0 to the
string; if she picks T, she appends 1 to the string. Let the resulting
string be x. Let us say she picked T, so the last bit is 1. She computes
ℎ(x) = y

2. Alice sends y to Bob. At this point she is committed

3. Bob guesses 0 (that is H) or 1 (that is T), and tells Alice his guess.
Let us say he guesses 0, so he loses

4. Alice wants to show Bob he lost.23 She sends him x

5. Bob computes ℎ(x), sees that this is indeed y. He knows that Alice
could not compute another “pre-image” for y, so her original choice
must have been x. Therefore her original choice had 1 as the last bit
and he admits losing

23If he wins, she concedes defeat.

http://www.gimp.org/downloads/
http://www.cs.nyu.edu/kedem/contact.html

28

4.3.3 Password storing in the clear

This is not a complete solution (we will complete later). Forouzan, Section
14.2, p. 418, Fig. 14.2.24

4.4 Digital signatures

See also, Forouzan, Section 13.2, pp. 390–392 and the first part of http:
//www.youdzone.com/signature.html.

Let (M,C,K,E,D) be a public/private cryptosystem. Alice has (e, d).
Everybody knows e, but only Alice knows d. Alice will be sending messages
to Bob and signing them.

You will notice similarity to Section 4.1.
So when Alice sends m to Bob, she also sends s, her signature on m. The

signature may be detached from the message.
So she effectively sends two messages. It will be convenient for us,

sometime, to denote the two messages that Alice sends as x1 and x2.
Let us attempt to produce a signature. Our first attempt is somewhat

similar to the “Amazon authentication” scenario in Sec. 4.1. Look at Fig. 13.
Alice wants to sign some message m.

1. Alice computes s = D(d,m). Let us use the notation x1 = m, and
x2 = s.

2. Alice sends Bob x1 saying this is the message and x2 saying this is the
signature.

3. Bob computes z = E(e, x2). If z = x1 he accepts x2 as Alice’s signature
on x1

There are problems with this attempt, similar to what we discussed
previously. We will just look at an example scenario.

Here is what Mallory can do. He takes some string s and computes a
string m = E(e, s). He sets x1 = m and x2 = s. He tells Bob that x1 is a
message and x2 is Alice’s signature on it.25

As before, Bob computes y = E(e, x2). If y = x1 he accepts x2 as Alice’s
signature on x1. So let’s actually compute it: y = E(e, x2) = E(e, s) = m =
x1. And he accepts this! (We need to look carefully of what has happened,

24Of course, this implies that if you lost your password, the server cannot tell you what
it is, and generally sends you a temporary password, or gives you a one-time URL to create
a password, or some variant of these.

25x1 is a “raw,” unencrypted message.

http://www.youdzone.com/signature.html
http://www.youdzone.com/signature.html

29

Figure 13: First attempt to produce a digital signature. Note that Bob does
not run E “in reverse.” It just convenient to have the input be on the right
side.

but it is not too difficult. See Fig. 14.) In effect, Mallory started with with a
signature and then produced a message “authenticated” with the signature
he started with.

What was the source of the difficulty? The sender was permitted to
choose what to decrypt, for the purpose of proving own identity (knowing
the private decryption key).

30

Figure 14: Mallory confuses Bob. Mallory tells Bob that s is the signature
and E(e, s) is the (unencrypted) message. Note Bob does not run E “in
reverse.” It just convenient to have the input be on the right side.

Of course, we cannot have the recipient participate in the protocol in
practice, as Bob is a passive recipient of email, and additional difficulties
would occur, similar to above.

So in some sense, nobody should have complete control over what is to
be decrypted to prove Alice’s possession of her private key. So we need to
produce a protocol in which Alice, in order to produce a signature on a

31

message, will decrypt something that is:

1. Something she cannot “fully” control

2. Is “related” to the message to be signed (otherwise, the same signature
could be used for many messages, and more problems crop up).

We will now discuss how it is really done. Look at Fig. 15.

Figure 15: Digital signature production and verification. Note that Bob does
not run E “in reverse.” It is just convenient to have the input be on the
right side.

Alice wants to send x and its signature y:

1. Alice computes ℎ(x)

2. Alice produces y = D(d, ℎ(x)) and sends x as messages and y as its
signature to Bob

3. Bob computes ℎ(x) and E(e, y). Iff (if and only if) they are equal, he
believes that Alice has signed the message.

Note that Bob cannot just reverse what Alice did as he cannot compute
ℎ−1(E(e, y)).

This is the standard approach used in digital signatures.

32

4.5 How do I know I am talking to Amazon (take 2)?

We have seen in Sec. 4.4 that it is not a good idea (at least some of the
time) for anybody to sign something somebody else sends in. But this is
what Alice did in Sec. 4.1. So we would like to modify this and have her sign
something else to prove she is Alice, that is decrypt a string that was not
given to her but something else. But we also cannot let her choose what to
decrypt.

Why? otherwise, Mallory can pretend to be Alice.
So in some sense, what Alice decrypts (to prove her identity) must be

something that is not chosen by anybody but comes as a “random” string
that has not been seen before, or picked explicitly by anybody. We do
something that is functionally “essentially equivalent” to this. Here is the
protocol:

1. Bob picks x

2. Bob sends x to Alice

3. Alice computes w = ℎ(x)

4. Alice “decrypts” w getting D(d,w) = y

5. Alice sends y to Bob

6. Bob encrypts y getting E(e, y) = z

7. Bob checks if z = ℎ(x). If yes, he believes he is talking to Alice.

What have we accomplished? Neither Alice not Bob picked w, which
Alice decrypted. We could say that Bob “seeded” the process that created
it, but ℎ produced “something random” (this is informal but captures what
is actually going on).

4.6 Encrypting and signing

We now know how we could both encrypt and sign. So Alice can both encrypt
and sign a message to Bob. So Bob is the only one who can read it, be sure
it is from Alice, and Alice cannot repudiate the message.

What we describe is correct but not normally used because it is relatively
inefficient and requires some tedious “fixing” in practice. For sketch of the
protocol, see Fig. 16. In Sec. 4.7, we will describe the common approach,
which is a little more complicated, but much more efficient.

33

Figure 16: Encrypting and signing using public/private keys and hashing.
Alice sends both y (as message) and z as signature.

34

We assume that both Alice and Bob have (public,private) key pairs,
respectively: (eA, dA) and (eB, dB).

Alice will encrypt and sign a message to Bob. Bob will decrypt it and
verify the signature.

1. Alice chooses a message x. She encrypts it with Bob’s public key,
getting y = E(eB, x)

2. Alice signs y by producing z = D(dA, ℎ(y))

3. Alice sends y and z to Bob as a message and its signature

4. Bob decrypts y with his private key getting w = D(dB, y)

5. He now checks whether y was indeed sent by Alice. He encrypts z with
Alice’s public key, getting some u = E(eA, z). This should be ℎ(y),
because for any string applying D first and E second with some key
pair (e, d) should give the string back. So he computes ℎ(y) and checks
whether it is equal to u. If it is, he is satisfied that is he knows that
w = x.

4.7 Encrypting and signing (take 2)

Let us now turn to how things are actually done. Public/private key en-
cryption is about 1,000 times slower than symmetric. Therefore, symmetric
encryption is preferred for encrypting (long) messages. The problem then
appears: how should Alice and Bob agree on a symmetric key.26 Alice
cannot just send it to Bob in the clear! The solution is for Alice to choose a
symmetric key for them to communicate and to send this key to Bob using
his public key. Look at Fig. 17.

Let us look first at how to encrypt and decrypt messages.

We will use two cryptosystems, public/private (here just to be definite
and make notation easier, we will assume it is RSA) and symmetric (here
just to be definite and make notation easier, we will assume it is DES). To
not be confused what is being used, we will employ “RSA” and “DES” in
superscript, so for instance the encrypting machine for DES will be denoted
by EDES and Alice’s RSA decryption key by dRSA

A .

The idea is that a symmetric key is used by Alice to encrypt her message
to Bob, and Alice picks such a key.

26Recall that for symmetric encryption, d is easily computed from e by anybody.

35

Figure 17: Encrypting using symmetric and public/private keys. In order not
to “clutter up” the figure, the superscripts for the keys have been omitted.

The question is, how does she tell Bob what the symmetric key is, if she
has never communicated with him before. She encrypts the symmetric key

36

with Bob’s public key, and sends this to Bob, in addition to the encrypted
message of interest.

Here is the protocol for encryption/decryption

1. Alice picks a secret, symmetric key for encrypting her messages to Bob
(only). It is eDES

AB . It is to be used by Alice and Bob to communicate.
Nobody else will know it.

2. Alice encrypts this secret key with Bob’s public key. Then if she sends it,
only Bob will be able to read it. She computes f = ERSA(eRSA

B , eDES
AB).

3. She uses eDES
AB to encrypt a message x intended for Bob. She computes

y = EDES(eDES
AB , x)

4. She sends f and y to Bob.

5. Bob wants to find out what is the DES decryption key he is supposed
to use. He computes g = DRSA(dRSA

B , f). g is in fact the same as eDES
AB .

This is the encryption key, he needs the decryption key. The decryption
key is easily computable (recall Caesar’s cipher), usually in fact the
same as encryption key. Let us call this easily derivable decryption key
g′.

6. Bob uses the decryption key to decrypt the message, getting z =
DDES(g′, y). And z is the original x.

Signing is done as in Sec. 4.6. The hash of y is short, so can be “decrypted”
using the inefficient DRSA with dRSA

A .
Using what we already know, we can extend this protocol so that Alice

can also sign her message.

4.8 Digital certificates

See also Forouzan pp. 454–458. and http://en.wikipedia.org/wiki/X.

509.
There is one additional thing that we should pay attention to now. How

does Alice know that she has the correct value of eRSA
B ? If she knows Bob,

perhaps he told her, but what if she gets it from the Web? How does she
know it is correct? She could ask him for a fingerprint, but this is tedious
and requires “out of channel” interactions, such as phone calls to verifiable
phone numbers, etc. There are various methods, but we will focus now on
the most formal one: digital certificates.27

27I do not have a digital certificate, so I have to use fingerprints.

http://en.wikipedia.org/wiki/X.509
http://en.wikipedia.org/wiki/X.509

37

Recall that Trent is a trusted authority.28 So if he assures us that Bob’s
public key is eRSA

B , then of course we will believe him. And how can he
assure us: he signs a statement (a message) that Bob’s public key is eRSA

B .29

We assume that everybody knows Trent’s public key, so his signature
can be verified, which is in fact true.30

Here is a protocol for creating a digital certificate:

1. Bob generates a public key for himself: eRSA
B .31

2. Bob goes to Trent and identifies himself reliably, by perhaps showing
him a passport, and also presents to him his eRSA

B .

3. Trent creates a string x = Bob∥eRSA
B , that is concatenation of Bob’s

name with his public key

4. Trent signs x with his private key, getting y.32 We know how to do
it—Trent decrypts ℎ(x)) with dRSA

T . The two strings together form a
digital certificate that Bob has: (x, y), or perhaps their concatenation:
x∥y.

The resulting digital certificate is depicted in Fig. 18

Figure 18: Bob’s digital certificate

4.9 Putting it together

We now know enough to understand the procedure for how Alice sends secure
email to Bob. It is just reiterating what we already know. Later in the
course we will go into more details, for instance we will talk about something
similar, PGP, see Forouzan, Section 16.2, pp. 470–492, though he has too

28In reality, it is EMC www.rsa.com, Verisign http://www.verisign.com/, Thawte
http://www.thawte.com/, or similar.

29Actually decrypts the hash of such as statement.
30More precisely, “all” computers know it.
31We will see how this is done later. In fact, what he does is to generate the pair

(eRSA
B , dRSA

B).
32In a real certificate more information is stored as part of x, for example expiration

date—all of this is not a core issue.

www.rsa.com
http://www.verisign.com/
http://www.thawte.com/

38

many details for us. See also, GnuPG http://www.gnupg.org/. I will also
assign downloading and experimenting with this software.

Alice and Bob have obtained digital certificates from Trent, we know how
it is done, see Sec. 4.8. Perhaps they got it for free, using http://www.thawte.
com/secure-email/personal-email-certificates/index.html.

Alice wants to send a message securely to Bob.

1. She obtains and verifies Bob’s public key, perhaps:

(a) She gets Bob digital certificate.

(b) She confirms that it indeed is his digital certificate. How? She
“disassembles” it (just cuts it into pieces) and checks that Trent
indeed has signed the association of Bob with a public key.

2. She chooses a random symmetric key and

(a) Encrypts it with the Bob’s public key. See Sec. 4.7.

(b) Uses the symmetric key to encrypt the message to Bob. Again,
see Sec. 4.7.

3. Alice decrypts the hash of her encrypted message with her private key,
see Sec. 4.4 and Sec. 4.7.

4. Alice sends what she has produced to Bob.

5. Bob decrypts her message and verifies her signature.

4.10 Classifying security

Security can be roughly classified as follows:

1. Absolute (perfect): Impossible to break given unlimited resources

2. Not Absolute:

(a) Conditional: Given reasonable resources can break only with very
small probability if some mathematical problem is difficult to
compute/solve (but in general we only have beliefs that specific
mathematical problems are difficult to compute/solve)— we will
see some of these problems later in the course.

(b) Heuristic: Given reasonable resources can break only with very
small probability (functions used are very strange and combinato-
rially confusing—we will see some of them later in the course).

http://www.gnupg.org/
http://www.thawte.com/secure-email/personal-email-certificates/index.html
http://www.thawte.com/secure-email/personal-email-certificates/index.html

39

4.11 Key ideas

1. One way function and one way-hash; using the latter for message
integrity and various applications

2. Protocol for signing

3. Using a public/private system for transmitting a secret key (for using
a symmetric system for encryption)

4. Digital certificates

5. Classification of security

4.12 Please read

All the material in Forouzan referred to in this section other than Section
16.2 (PGP).

40

41

5 Probability, one-time pad security, and entropy

5.1 Probability

We will have a simple overview of basic probability on finite sets. Discussion
with be informal. (Some of what we do may not be correct for infinite sets.)

As good examples, we will have several objects:

1. A fair coin C0, which with probability 0.5 each gives us H (heads) or
T (tails)

2. An unfair coin C1, which with probability 0.99 gives us H and with
probability 0.01 gives us T

3. An extremely unfair coin C2, which with probability 1 gives us H and
with probability 0 gives us T 33

4. A fair die D0, which with probability 1/6 gives us each of 1, . . . , 6.

Caution: An event of probability 0 can still happen—it is just that “the
probability of this is smaller than any positive number,” but if we assume
informally that it never happens we will be OK, because we are dealing with
finite sets.34

5.1.1 Basic concepts

We will assume that we have a (finite) set X and for each x ∈ X, we have
a number px, such that 0 ≤ px ≤ 1 and

∑
x∈X px = 1. px is the probability

that if we pick “randomly” from X, we will get x. X is X together with
{px ∣ x ∈ X}. This is called a random variable. We will also write Pr[x] or
Pr[X = x] for px.

Sometimes a real-valued function, say f is defined on X. Then the
expectation of f is Ex[f] =

∑
x∈X Pr[x] ⋅ f(x).35

33How this is done is not important for us.
34But once you go to infinite sets you need to be much more careful. For example, if

you pick a real number uniformly from the interval [0, 1] then of course each time you do
it, you will get some real number. But the probability of picking any specific number must
be 0.

35Expectation essentially means “average.” It does not mean that this is value that is
expected to happen. For example the expectation of the number of children per woman in
the US is about 2.2.

42

For example, if we toss C1 and f(H) = 2 and f(T) = 3, then the expec-
tation (how much money we make on the average per toss if we get paid f)
is 0.99 ⋅ 2 + 0.01 ⋅ 3.

If we want to use pictures, then we could draw a square of area 1, and
then for each x, px will be the area of an appropriate “part” of the square.
See Fig. 19, Fig. 20, Fig. 21, Fig. 22.

Figure 19: C0.

Figure 20: C1. Imagine that the lower stripe is only 1/100th of the total
height.

43

Figure 21: C2.

Figure 22: D0.

E ⊆ X is called an event. So, for instance {H} is an event, but in this
case we may as well talk about H.

An example of a more interesting event for D0 is E = {2, 5}.
In general, we have:

Pr[x ∈ E] =
∑
x∈E

Pr[x]

So for our event: Pr[x ∈ {2, 5}] = 1/3. Compare with the areas in the

44

corresponding figure.

If we have two events A and B, then of course we can talk about events,
Ā, A∪B and A∩B.36 For an example of complementary events see Fig. 23,
for an example of disjoint events, see Fig. 24; and for an example of not
disjoint events, see Fig. 25.

Figure 23: complementary events.

Figure 24: Disjoint events.

36Ā = X ∖A (also written as X −A). Sometimes ∼ A is used to denote the complement
of A.

45

Figure 25: Not disjoint events.

Let us now toss first D0 and then C0. Look at Fig. 26. Look at Fig. 27.
It shows the probabilities explicitly as areas.

Figure 26: Tossing D0 and then C0. Only some of the probabilities are
written out. The probability is written below the result of the random
variable.

Let us consider what is the probability of getting the pair (1,H) (this
probability is frequently denoted as Pr[1,H], meaning we get both 1 and H.
Of course, Pr[1,H] = Pr[H, 1]

The result of tossing a die says nothing about the result of tossing the
coin. Informally speaking for now, these two variables/events are independent.
The probability of getting this result is just the product of probabilities of
getting each of them separately, in this case 1/6 ⋅ 1/2 = 1/12.

Similarly, if we first toss D0 and then C1, though the actual numbers are,

46

Figure 27: Probabilities of tossing D0 and C0.

of course, different.
We had a sequence of random variables. Let us look at a slightly more

interesting one. We toss C0, If we get H we toss C0; if we get T, we toss
C1. What are the probabilities of getting HH, HT, etc. We just multiply
probabilities, see Fig. 28. We get Pr[T,H] = 0.5 ⋅ 0.99, etc.

Figure 28: Tossing C0 first and then C0 or C1.

5.1.2 Conditional probability and Bayes’ theorem

Let us now talk about the very important concepts of independent variables
and conditional probabilities.

Everything we need to know can be understood by carefully examining
Fig. 25. For examples, it is good to look at the more specific figures dealing

47

with the die and the various coins.
Assume that as the result of getting a random variable (value) (e.g.,

tossing a coin, or die, or both) we are in event B. What is the probability
that we are also in event A? Looking at the figure (and of course assuming
that Pr(B) ∕= 0), this is

(1) Pr[A ∣ B] =
Pr[A,B]

Pr[B]

Note that this is really

area(A ∩B)

area(B)

Pr[A ∣ B] denotes conditional probability: what is the probability of A
given B. Recall that Pr[A,B] denotes the probability of both A and B, that
is we find ourselves in A ∩B.

Now, let’s look at some examples:

1. We toss D0. What is Pr[x > 1]? Looking at Fig. 22, we see this is 5/6
(5 rectangles out of 6).

2. We toss D0. What is Pr[x is even]? Looking at Fig. 22, we see this is
3/6

3. We toss D0. What is Pr[x > 1 and is even]? Looking at Fig. 22, we
see this is 3/6

4. We toss D0. What is Pr[x is even ∣ x > 1]? Looking at Fig. 22, we see
this is (3/6)/(5/6) = 3/5

5. We toss D0. What is Pr[x > 1 ∣ x is even]? Looking at Fig. 22, we see
this is (3/6)/(3/6) = 1

Let us now return to the case of first tossing D0 and then tossing C0, see
Fig. 26 and Fig. 27.

The results of the toss seem independent (and they indeed are). Knowing
the result of tossing the die does not tell us anything about the result of
tossing the coin. Let us compute Pr[H ∣ 1]. It is (1/12)/(2/12) = 1/2.

In this case, Pr[H ∣ 1] = Pr[H]. This is essentially (but not quite) the
definition of the two events getting H and getting 1, being independent: the
result of tossing the coin and the result of tossing the die are independent of
each other.

Let us now prove a very important result:

48

Theorem 1. (Bayes) http://en.wikipedia.org/wiki/Bayes’_theorem

(this is much more than we need to know, though the “bowls and cookies”
example is nice).

(2) Pr[A ∣ B] =
Pr[B ∣ A] ⋅ Pr[A]

Pr[B]

Of course, we assume that Pr[B] ∕= 0, as we divide by it. 37

Proof. We know that

Pr[A ∣ B] =
Pr[A,B]

Pr[B]

and therefore

(3) Pr[A ∣ B] ⋅ Pr[B] = Pr[A,B]

Note that equation holds not only when Pr[B] ∕= 0, but also when
Pr[B] = 0 since then both sides of the equation are 0.

Also, by exchanging A and B, we get

(4) Pr[B ∣ A] ⋅ Pr[A] = Pr[B,A]

But of course,

Pr[B,A] = Pr[A,B]

and therefore from Equations 3 and 4

Pr[A ∣ B] ⋅ Pr[B] = Pr[B ∣ A] ⋅ Pr[A]

Therefore:

Pr[A ∣ B] =
Pr[B ∣ A] ⋅ Pr[A]

Pr[B]

37We use the symbol as a general “end” marker, and not just as a shorthand for
“Q.E.D.” http://en.wikipedia.org/wiki/Q.E.D.

http://en.wikipedia.org/wiki/Bayes'_theorem
http://en.wikipedia.org/wiki/Q.E.D.

49

Definition 2. (Formally,) A and B are independent iff

(5) Pr[A,B] = Pr[A] ⋅ Pr[B]

Let us go immediately to the intuition.

Theorem 2. If Pr[B] ∕= 0, then A and B are independent iff

(6) Pr[A ∣ B] = Pr[A]

(This could have served as a more intuitive definition. What it tells us
that knowing that we are “in” B does not help us in “predicting” whether
we are also in A. The reason we had definition 5 was that this could be
written even for the case when Pr[B] = 0.)

Proof. 1. Assume Eq. 5 38

[Pr[A,B] = Pr[A] ⋅ Pr[B]]

We know that in general, Eq. 1[
Pr[A ∣ B] =

Pr[A,B]

Pr[B]

]
Substituting what is assumed we get:

Pr[A ∣ B] =
Pr[A] ⋅ Pr[B]

Pr[B]
= Pr[A]

and we get Eq. 6.

2. Assume Eq. 6.

[Pr[A ∣ B] = Pr[A]]

38I put in bracket an equation that we numbered before, but I find convenient repeating,
just like the next equation.

50

Substituting this into Eq. 2[
Pr[A ∣ B] =

Pr[B ∣ A] ⋅ Pr[A]

Pr[B]

]
we get

Pr[A] =
Pr[B ∣ A] ⋅ Pr[A]

Pr[B]

Using Eq. 4

[Pr[B ∣ A] ⋅ Pr[A] = Pr[B,A]]

we get

Pr[A] =
Pr[B,A]

Pr[B]

But as Pr[B,A] = Pr[A,B]

we get

Pr[A] ⋅ Pr[B] = Pr[A,B]

and we get Eq. 5

Observation 1.

(7) Pr[B] = Pr[B ∣ A] ⋅ Pr[A] + Pr[B ∣ Ā] ⋅ Pr[Ā].

Look at Fig. 29. We will discuss only the case where B overlaps both A
and Ā, as in the figure; the other cases are even simpler.

Using Eq. 1 and its complement,

Pr[A ∣ B] =
Pr[A,B]

Pr[B]
and Pr[Ā ∣ B] =

Pr[Ā, B]

Pr[B]

the claim is equivalent to

Pr[B] = Pr[B,A] + Pr[B, Ā]

which of course is true.

51

Figure 29: B and A and conditional probabilities.

Corollary 1. From

From Eq. 2 and Eq. 7, we immediately get:

(8) Pr[A ∣ B] =
Pr[B ∣ A] ⋅ Pr[A]

Pr[B ∣ A] ⋅ Pr[A] + Pr[B ∣ Ā] ⋅ Pr[Ā]

If you want, you can look at http://www.mathgoodies.com/lessons/

vol6/challenge_vol6.html.

5.2 Practicing Bayesian thinking

We now have the machinery to analyze the one-time pad cryptosystem. But
before doing this, we will look at two interesting examples to practice what
we have learned about “Bayesian thinking.”

Example 1. On the table, there are two coins, one C0 and the other C2.
Without looking, you pick one and toss it twice. You get the sequence HH.
What is the probability that you picked C2. Look at Fig. 30.

Let C be the result of choosing the coin, so either C0 or C2. So, using
Eq. 2, which is [

Pr[A ∣ B] =
Pr[B ∣ A] ⋅ Pr[A]

Pr[B]

]

http://www.mathgoodies.com/lessons/vol6/challenge_vol6.html
http://www.mathgoodies.com/lessons/vol6/challenge_vol6.html

52

Figure 30: Tossing one of two coins

we get

Pr[C = C2 ∣ HH] =
Pr[C = C2] ⋅ Pr[HH ∣ C2]

Pr[HH]

1. Pr[C = C2] = 1/2

2. Pr[HH ∣ C2] = 1

3. Pr[HH] = 1/8 + 1/2, from the figure

So, the final result is 4/5.

Example 2. (Optional: this is more than we need for the class, but is actu-
ally interesting and potentially useful in many settings.) Various businesses
advertise tests such as total CT scan for symptomless people. After all,
something could be lurking in the body that is dangerous but unknown to
the person. But there could be false positive when the test declares a healthy
person to be sick.39 Let us consider a scenario.

There exists a horrible disease and an imperfect test for it. There also
exists an imperfect drug for the disease. Let us look at some numbers.

39Or potentially sick, which may require additional, possibly life-threatening tests, like
biopsies.

53

1. The probability of having the disease is 0.001 (very small)

2. If the test is administrated to a sick person, it will correctly determine
with probability 0.98 that the person is sick, and will declare with
probability 0.02 that the person is healthy (very good test)

3. If the test is administrated to a healthy person, it will correctly deter-
mine with probability 0.99 that the person is healthy, and will declare
with probability 0.01 that the person is sick (very good test)

4. If the drug is administered to a sick person, the person will be cured
instantenously, if it is not, the person will die (very good drug)

5. If the drug is administered to a healthy person, nothing will hap-
pen with probability 0.7, but the person will die instantenously with
probability 0.3 (don’t administer the drug to healthy people)

Should I take the test (and act on it, otherwise, why take it)?

Let us define some events:

1. A: I am healthy

2. B: the test came positive

What I am interested in are false positives, because if the test came
positive, and I am healthy, and I take the drug, I have some probability of
dying. What I want to know is what is the probability that I am actually
healthy even though the test comes positive, so I want to know: Pr[A ∣ B].
Very easy, let’s substitute into Eq. 8, which is[

Pr[A ∣ B] =
Pr[B ∣ A] ⋅ Pr[A]

Pr[B ∣ A] ⋅ Pr[A] + Pr[B ∣ Ā] ⋅ Pr[Ā]

]
We need to compute the terms appearing there:

1. Pr[B ∣ A] = 0.01

2. Pr[A] = 0.999

3. Pr[B ∣ Ā] = 0.98

4. Pr[Ā] = 0.001

54

So, plugging it in:

Pr[healthy ∣ test positive] =
0.01 ⋅ 0.999

0.01 ⋅ 0.999 + 0.98 ⋅ 0.001
= 0.91

We have many false positives. Let us now see what happens when every
person who gets a positive test result is treated with the drug. It is best to
look at Fig. 31

Figure 31: The result of testing and treating. The probability at a leaf is
the product of probabilities along the path from the root, computed up to
three decimal places. The cases resulting in death are underlined.

We see that if people are tested and treated, three times more will die
than in the case when nobody is tested, as we have the probability of death
of 0.003 + 0.000, as opposed to 0.001.

(For another version of this example, see http://en.wikipedia.org/

wiki/Bayes’_theorem#Example_.232:__Drug_testing.)

5.3 Analyzing the one-time pad cryptosystem

Let us now analyze the one-time-pad cryptosystem.

http://en.wikipedia.org/wiki/Bayes'_theorem#Example_.232:__Drug_testing
http://en.wikipedia.org/wiki/Bayes'_theorem#Example_.232:__Drug_testing

55

Alice sends 1-bit messages to Bob using one-time pads. Eve listens to
the ciphers in transit.

Everybody knows that any message (not cipher) sent by Alice

m =

{
0 with probability 1/3

1 with probability 2/3

We are not saying that she picks messages randomly with the specified
probability (although maybe she does) it is just that she happens to say 1
more than she happens to say 0 (she is nice and likes saying “yes” more
than saying “no”). So her message stream could have been something biased
towards 1, such as: 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1

We will examine what can Eve learn based on how Alice choses the
one-time pad.

5.3.1 Using a biased (unfair) coin to get k

Assume that Alice has a rather unfair coin she uses to get the bits for the
one-time pad, and she chooses:

k =

{
0 with probability 9/10

1 with probability 1/10

The question is what can Eve deduce about mi given ci (which she sees),
or what is the probabilistic distribution of mi given ci. Or mathematically,
she wants to know Pr[mi = 0 ∣ ci = 0] (and other combinations, such as
Pr[mi = 0 ∣ ci = 1]). As we are talking about a single message of one bit
(other bits treated the same), let’s drop the subscript.

Let us look at Fig. 32. By examining it, we will figure out some probabil-
ities.

If Eve sees c = 0, which happens 9/30 + 2/30 = 11/30 of the time, the
probability that m = 0 was

Pr[m = 0 ∣ c = 0] =
Pr[m = 0, c = 0]

Pr[c = 0]
=

9/30

11/30
=

9

11

which is much better estimate than

1

3

which she has without knowing that c = 0.

56

Figure 32: One-time pad. Alice uses a biased coin to select the key k.

This is not really surprising, as in 9/10 of the cases c = m. Of course,
we would get the same type of result if

k =

{
0 with probability 1/10

1 with probability 9/10

because in 9/10 of the cases m = c⊕ 1.
We could have gotten the same result using Eq. 2.

Pr[m = 0 ∣ c = 0] =
Pr[m = 0] ⋅ Pr[c = 0 ∣ m = 0]

Pr[c = 0]

Pr[m = 0] = 1/3, given to us
Pr[c = 0 ∣ m = 0] = Pr[k = 0 ∣ m = 0], because given m = 0, it follows

that c = 0 iff k = 0. But also Pr[k = 0 ∣ m = 0] = Pr[k = 0], because k is
chosen independently of m.

Therefore Pr[c = 0 ∣ m = 0] = Pr[k = 0] = 9/10
c = 0 happens when (m = 0) ∧ (k = 0) or (m = 1) ∧ (k = 1). But these

are disjoint (you cannot have simultaneously k = 0 and k = 1), and therefore
Pr[c = 0] = Pr[m = 0, k = 0] + Pr[m = 1, k = 1] (we add probabilities

because the events are disjoint, see Fig. 24).
But because the choices of m and of k are independent, Pr[c = 0] =

Pr[m = 0] ⋅Pr[k = 0]+Pr[m = 1] ⋅Pr[k = 1]. (Product, because independent.)
Putting it all together,
Pr[c = 0] = (1/3)(9/10) + (2/3)(1/10) = 11/30
So,

57

Pr[m = 0 ∣ c = 0] = (1/3)(9/10)/(11/30) = 9/11.

5.3.2 Using an unbiased (fair) coin to get k

Assume now that Alice has a fair coin she uses to get the bits for the one-time
pad, and she chooses:

k =

{
0 with probability 1/2

1 with probability 1/2

The question is what can Eve deduce about mi given ci (which she sees),
or what is the probabilistic distribution of mi given ci. Or mathematically,
she wants to know Pr[mi = 0 ∣ ci = 0] (and other combinations, such as
Pr[mi = 0 ∣ ci = 1]). As we are talking about a single message of one bit
(other bits treated the same), let’s drop the subscript.

Let us look at Fig. 33.

Figure 33: One-time pad. Alice uses an unbiased (fair) coin to select the key
k.

If Eve sees c = 0, which happens 1/6 + 2/6 = 1/2 of the time, the
probability that m = 0 was

Pr[m = 0 ∣ c = 0] =
Pr[m = 0, c = 0]

Pr[c = 0]
=

1/6

1/2
=

1

3

which is not a better estimate than

1

3

58

which she has without knowing that c = 0.

If Eve sees c = 1, which happens 1/6 + 2/6 = 1/2 of the time, the
probability that m = 0 was again

1/6

1/2
=

1

3

So knowing the cipher does not help. We could have proven this also
using Eq. 2, as before.

5.3.3 General statement

Definition 3. A cryptosystem is perfect when knowing c does not help in
figuring out anything additional that was not known before about m (given
unbounded computational resources), or more formally,

(9) Pr[m = m0 ∣ c = c0] = Pr[m = m0]

where,

1. c0 = E(e,m0)

2. E known

3. e unknown (in one-time-pad, we used the notation k for e)

Theorem 3. The one-time pad cryptosystem (with a perfect, unbiased coin)
is perfect.

This is not a trivial theorem. It states that knowledge of both the proba-
bilistic distribution of m and of the cipher c, cannot be leveraged for a better
estimate of what m actually was.

Proof. Formalization in the general setting, using parameters for message
distribution instead of 1/3 and 2/3 as we have done—easy.

59

As we have seen getting true random numbers (not pseudo-
random!) is important. Some sources you may want to explore
if you ever need random numbers (I provide no guarantee!):
http://en.wikipedia.org/wiki/Random_number_generator,
http://www.random.org/, http://www.elmwoodmagic.com/full/

Magic-Tricks-Magic-Books-Magic-DVDs-Red-Casino-Dice-Pack-of-4_

_3222.htm, http://www.casinochips3000.com/dice2.php.

5.4 Entropy (information theory, not physics)

The discussion will be very simplified, focusing on the concept and the
intuition.

We randomly pick x ∈ X. How much information about this x is gained
by looking at it. (Complementarily, we could say, how much did we know
about it, before actually looking at it.)

Note, that if we toss C2, we do not gain anything by looking at the result,
because it is always H.

Let us now toss C1 100 times. There will be some positions (between 0
and 100 in number) in which the result will be H, and there will be some
positions (between 0 and 100 in number) in which the result will be T. We
want to code the sequence of results using a bit string.

Here is one way of doing it:

1. If there are zero H’s, we write 0000000

2. If there is at least one H, we will devote 7 bits to specifying each
position in which H was obtained. If we number the tosses from 1 to
100, then each such number can be specified using 7 bits.

Example 3. Assume we got H in toss number 17 and toss number 80, and
T in all other tosses. Since 17 in binary (using 7 bits) is 0010001 and 80 in
binary is 1010000, this sequence of tosses is coded as 00100011010000.

Of course, it would have been more efficient to just use the single bit 0
to denote no heads.

So what is the expected number of bits needed for an answer, it is
essentially:

7 ⋅ Pr[we got 0 heads] + 7 ⋅ Pr[we got 1 head] + 14 ⋅ Pr[we got 2 heads] + ⋅ ⋅ ⋅

http://en.wikipedia.org/wiki/Random_number_generator
http://www.random.org/
http://www.elmwoodmagic.com/full/Magic-Tricks-Magic-Books-Magic-DVDs-Red-Casino-Dice-Pack-of-4__3222.htm
http://www.elmwoodmagic.com/full/Magic-Tricks-Magic-Books-Magic-DVDs-Red-Casino-Dice-Pack-of-4__3222.htm
http://www.elmwoodmagic.com/full/Magic-Tricks-Magic-Books-Magic-DVDs-Red-Casino-Dice-Pack-of-4__3222.htm
http://www.casinochips3000.com/dice2.php

60

So, very informally speaking, we get “on the average” that we need “a
few bits” to specify the answer—let us say 9, without bothering to compute
the actual number here. The first two results happen relatively frequently
(we do not compute here how frequently) but the following ones are becoming
less and less frequent, so long sequences are unlikely. Of course, in the worst
case, the probability of which is tiny, 0.01100, we will need 700 bits.40

So a sequence of 100 tosses “reveals” about 9 bits of “new” information.
So each toss reveals about 0.09 bits, if we “average” this out.

But to actually know the result of a single toss, we need 1 bit (H or T).
So, in what sense can we talk about a single toss providing less than 1 bit of
information. Again, let’s go to the intuition.

Alice and Bob play a (one-sided) game. Alice tosses a coin. Bob guesses
the result. If he guesses correctly, Alice gives him $100. If he guesses
incorrectly, he gets nothing. Bob knows which coin is used.

Eve sees the result before Bob guesses and offers to sell him the result,
so he can guess the answer correctly. How much should Bob pay Eve to
increase the amount of money he will actually make.

If C = C0, then no matter what Bob says, he will win (on the average)
in half the times, so he will win, on the average $50 after each toss. So if he
pays Eve any amount below $50, he makes more money net. If Bob pays
Eve $49, Alice pays Bob$100 and he will win exactly $51 on each toss.

If C = C1, then if Bob always says H, he will win in 99 out of 100 tosses
(on the average). So he benefits by paying Eve only if it is less than $1.
Therefore, knowing the result of the toss is very small (relatively speaking).

To capture the value of obtained information, Shannon
http://en.wikipedia.org/wiki/Claude_Shannon introduced the
concept of entropy http://en.wikipedia.org/wiki/Information_

entropy#Entropy_as_information_content.

Under very natural conditions, the value of knowing which x ∈ X actually
happened is

(10) ℋ(X) =
∑
x∈X

Pr[x] ⋅ log2

(
1

Pr[x]

)

H is called entropy of X. Of course, log 1
y = log 1− log y = 0− log y =

− log y. Therefore, Eq. 10, is frequently written (easier to typeset and takes

40Of course, we make no claim that our coding of the result is optimal—i.e, uses the
shortest expected length.

http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/Information_entropy#Entropy_as_information_content
http://en.wikipedia.org/wiki/Information_entropy#Entropy_as_information_content

61

less space):

(11) ℋ(X) = −
∑
x∈X

Pr[x] ⋅ log2 Pr[x]

Let us consider one toss of C0. Computing, we get:

H =

heads︷ ︸︸ ︷
1

2
log2

2

1
+

tails︷ ︸︸ ︷
1

2
log2

2

1
=

1

2
+

1

2
= 1

Intuitively, knowing the toss result is knowing the difference between two
outcomes, 1 bit of information.

Let us consider one toss of C1. Computing, we get:

H =

heads︷ ︸︸ ︷
99

100
log2

100

99
+

tails︷ ︸︸ ︷
1

100
log2

100

1
≅ 0.08

Note: To compute log2, if you can only get log10 from your calculator, use:

(12) log2 z =
log10 z

log10 2

This follows from z = 2log2 z, taking log10 from both sides. There is also
a free calculator with a “log2” key http://www.bestsoftware4download.

com/software/t-free-esbcalc-freeware-calculator-download-hisqvxad.

html.

Sometimes (not as natural for us) log to a different base is used, which
just changes multiplicative constants. The latter follows from Eq. 12.

You can also read about entropy in Forouzan pp. 615–620. We have
proved that one-time pad is a perfect (Forouzan misspells as “prefect”) in
a simpler way, showing all steps. Also, note that he says in Example F.5
that 0 ⋅ log2(1/0) = 0. It is OK to say this, but more explanation is needed
because log2(1/0) is not defined as 1/0 is infinite.

Example 4. Let D1 be a die in which “1” comes up with probability 0.95,
and every other number with probability 0.01.

Alice tosses D1. Bob asks her yes/no questions to find out what the
result is.

http://www.bestsoftware4download.com/software/t-free-esbcalc-freeware-calculator-download-hisqvxad.html
http://www.bestsoftware4download.com/software/t-free-esbcalc-freeware-calculator-download-hisqvxad.html
http://www.bestsoftware4download.com/software/t-free-esbcalc-freeware-calculator-download-hisqvxad.html

62

Bob uses the algorithm described in Fig. 34. It is easy to see that the
expected number of questions to ask is 1.1 and the entropy is 0.4 (one decimal
point of accuracy).

Figure 34: The algorithm Bob uses for determining the result of tossing D1.

There is an important theorem (we state a little informally), which we
will not prove, which highlights the importance of entropy and its meaning.

Theorem 4. Let X be a random variable (that is, we get x1 with probability
p1, we get x2 with probability p2, . . . , etc.).

Then if you ask yes/no questions in “an optimal way,” the expected
number of questions lies between H(X) and H(X) + 1.

(Of course, if X contains at least two elements, you have to ask at least
one question.)

There is a popular game, called “Twenty Questions” http:

//en.wikipedia.org/wiki/Twenty_questions. Let us say the “guesser”
always guesses in exactly 20 questions. What is the entropy of this game?

http://en.wikipedia.org/wiki/Twenty_questions
http://en.wikipedia.org/wiki/Twenty_questions

63

An interesting read: http://danielwilkerson.com/entropy.html.

5.5 Key ideas

1. Probability

2. Conditional probability

3. Bayes theorem

4. Security of the one-time pad cryptosystem

5. Entropy

http://danielwilkerson.com/entropy.html

64

65

6 Properties of some integers etc.

Question. Class discussion (deferred for later, think about this): what is
an imaginary number and why?

I will follow Forouzan, as this is very standard material. I may cor-
rect, clarify, provide additional/different examples and provide more and/or
different justifications/proofs. So, all pages from Forouzan that I list are
“incorporated” in these notes, without of course copying them, as this might
violate copyright.

6.1 Operations on integers

Material covered

Forouzan, pp. 24–27.

Comment for p. 20; notation only

Forouzan uses Z to denote set(s) of integers. The more common notation is
ℤ.

Comment for p. 24

Here, and elsewhere, although Forouzan provides proofs in Appendix Q, I
would like to give you somewhat different proofs, which I believe are simpler.

Theorem 5. The Euclidean algorithm works.

Proof. Note that we have r1 > r2 > 0.

Instead a complete proof by induction, we will just do the first stage.

Let us rewrite these first two stages as:41

1. r1 = q1r2 + r3 with 0 ≤ r3 < r2

2. r2 = q2r3 + r4 with 0 ≤ r4 < r3

41There are various conventions for numbering. Following, Forouzan, I am using r1 and
r2. Some people start with r0 and write r0 = q1r1 + r2. Of course, it is of no importance
what is chosen as long as then everything is done consistently.

66

In general, we could write: ri = qiri+1 + ri+2, starting with i = 1 and
ending when ri+2 = 0. Then ri+1 will be gcd(r1, r2).

We will show that we are “zeroing on” the greatest common divisor,
because gcd(r1, r2) = gcd(r2, r3) (which we will prove). So we reduce a larger
problem to a smaller problem.

To do this, it is enough to show that (for every) d,42

r1 and r2 divisible by d

iff

r2 and r3 divisible by d

We will be using various Greek letters to indicate some expressions in
the way that is obvious from the context.

1. Let r1 = �d, r2 = �d, for some � and �.

We need to show that r2 and r3 are divisible by d. We already know
that r2 is divisible by d. r3 = r1− q1r2 = �d− q1�d = (�− q1�)d = d,
and therefore is divisible by d.

2. Let r2 = �d, r3 = �d, for some � and �.

We need to show that r1 and r2 are divisible by d. We already know
that r2 is divisible by d. r1 = q1r2 + r3 = q1�d+�d = (q1�+�)d = d,
and therefore is divisible by d.

Comment for p. 26

Theorem 6. The extended Euclidean algorithm works.

Proof. This is a little more complicated, so I will provide a complete proof
by induction. To do this, we will not “reuse” r1, r2, q1, q2, s1, s2, t1, t2, but
give new indices to new values.

So we define q1, q2, q3, . . . ; r1, r2, r3, . . . ; s1, s2, s3, . . . ; t1, t2, t3,

42Forouzan writes d ∣ x, read “d is a divisor of x” or “d divides x,” which of course
means that x is divisible by d. He uses what is a standard notation, but I will frequently
spell this out as I feel this is easier to read.

67

We have, as done in the Euclidean algorithm:

(13) ri = qiri+1 + ri+2

We define

(14) sj =

⎧⎨⎩
1 j = 1

0 j = 2

sj−2 − qj−1sj−1 j > 2

(15) tj =

⎧⎨⎩
0 j = 1

1 j = 2

tj−2 − qj−1tj−1 j > 2

and we will show that

(16) rj = sjr1 + tjr2 for all j ≥ 1 until the algorithm terminates

We proceed by induction:

1. j = 1. From the way we defined the various sequences, we see that,
indeed, r1 = s1r1 + t1r2.

2. j = 2. From the way we defined the various sequences, we see that,
indeed, r2 = s2r1 + t2r2.

3. j > 2.

Recall that: ri = qiri+1 + ri+2, for i ≥ 1. We can, of course, rewrite
this, by writing j − 2 for i, as:

rj−2 = qj−2rj−1 + rj because as j ≥ 3 we have that j − 2 ≥ 1

Therefore by rewriting and also using induction to substitute for rj−1
and rj , we have:

68

rj = rj−2 − qj−2rj−1 (rewriting)

= (sj−2r1 + tj−2r2)− qj−2(sj−1r1 + tj−1r2) (by induction)

= (sj−2 − qj−2sj−1)r1 + (tj−2 − qj−2tj−1)r2 (rewriting)

= sjr1 + tjr2 (by definition of s’s and t’s)

6.2 Modular arithmetic

Forouzan, pp. 29–40.

Comment for p. 33

Although Forouzan provides proofs in Appendix Q, I would like to give you
somewhat different proofs, which I believe are simpler.

There are three properties. We will prove the third one (the other ones
are even simpler to prove).

Theorem 7. (This is so simple that it should not really be called a theorem.)

(a× b) mod n = [(a mod n)× (b mod n)] mod n

Proof. Let

a = �n+ with 0 ≤ � and 0 ≤ < n

b = �n+ � with 0 ≤ � and 0 ≤ � < n

Let us start with the left-hand side of the equation to be proved.

a× b = ��n2 + (�� + �)n+ �

We can write:

� = �n+ � with 0 ≤ � and 0 ≤ � < n

Then,

(a× b) mod n = �

Let us compute now the right-hand side of the equation to be proved:

69

[(a mod n)× (b mod n)] = �

We have

a mod n =

and

b mod n = �

Therefore,

[(a mod n)× (b mod n)] = � = �n+ � as before

and therefore, as before;

[(a mod n)× (b mod n)] mod n = �

Elaboration on p. 36

Finding multiplicative inverses is very important for us, so let us go through
an example very carefully in all its stages. See Fig. 35.

Figure 35: Extended Euclidean algorithm for 75 and 28.

We want to find the multiplicative inverse of 28 modulo 75, if such
multiplicative inverse exists.

70

1. We run the Extended Euclidean algorithm and we see that gcd(75, 28) =
1 (for this we only needed the Euclidean algorithm, but we need the
Extended Euclidean algorithm for the rest so may as well run it now).
Therefore we know that the desired multiplicative inverse exists.

2. We look at the one before last row of the table, which is really when
the algorithm is finished. From it we deduce that:

1 = 3 ⋅ 75 + (−8) ⋅ 28

and −8 is a multiplicative inverse of 28 modulo 75.

3. We do not like negative numbers, as everything should be in the range
{1, 2, . . . , 74}. We would like to put −8 into this range, very easy we
add 75 to it.43 But of course, the equation has to remain correct. So
what we do is:

1 = 3 ⋅ 75 + (−8 + 75) ⋅ 28− 75 ⋅ 28

So, we really added to the right side: +75 ⋅ 28− 75 ⋅ 28 = 0 Rewriting,

1− 3 ⋅ 75 + 28 ⋅ 75 = 67 ⋅ 28

or,

1 + 25 ⋅ 75 = 67 ⋅ 28

or,

67 ⋅ 28 = 25 ⋅ 75 + 1

Therefore, 67 ⋅ 28 = 1 mod 75, and therefore 67 is a multiplicative inverse
of 28 modulo 75.44

Comment for p. 39

Forouzan uses the notation Zn∗ . The asterisk is in the wrong place. It should
be superscript of “the whole thing” not of n. So it should be Z∗n, or actually
ℤ∗n.

43Generally we can put any integer into the range but adding or subtracting some
multiple of 75.

44Yes, it is really true that 1
28

= 67 when computed modulo 75.

71

Addition to p. 39

It is really a good idea to produce multiplication table for ℤ∗10. It is shown
in Fig. 36

×10 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

Figure 36: Multiplication table for ℤ∗10. ×10 stands for multiplication modulo
10. Similar notation is used later too.

Note that you can easily read out of it various multiplicative inverses.
For instance, the multiplicative inverse of 7 is 3.

Addition to p. 39

Let us consider multiplication table for ℤ∗7. It is shown in Fig. 37

×7 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Figure 37: Multiplication table for ℤ∗7.

Question. I have three friends and I want to buy six cookies and divide
equally among them. Each cookie costs $2. How much money I am going to
spend on each of my friends?

Let us look at even bigger example, that of ℤ∗15 on Fig. 38.

There is something that Forouzan (at least partially) glosses over, but
which is of tremendous importance, so we will even call it a theorem.

Theorem 8. Two claims:

72

×15 1 2 4 7 8 11 13 14
1 1 2 4 7 8 11 13 14
2 2 4 8 14 1 7 11 13
4 4 8 1 13 2 14 7 11
7 7 14 13 4 11 2 1 8
8 8 1 2 11 4 13 14 7

11 11 7 14 2 13 1 8 4
13 13 11 7 1 14 8 4 2
14 14 13 11 8 7 14 2 1

Figure 38: Multiplication table for ℤ∗15.

1. If a ∈ ℤ∗n, then for some b ∈ ℤ∗n, we have a×n b = 1. This really means
that a has a multiplicative inverse, b, inside ℤ∗n.

2. If a ∈ ℤ∗n, and b ∈ ℤ∗n, then a×n b ∈ ℤ∗n

Proof.

1. If a ∈ ℤ∗n, then for some b ∈ ℤ∗n, we have a×n b = 1

Pick any such a. By definition of ℤ∗n it is relatively prime with n.45

So there is a multiplicative inverse modulo n (by Extended Euclidean
algorithm). Let it be b. We need to show that it is in ℤ∗n.

We will show that b is relatively prime with n. Assume otherwise, and
let us say that they share some factor d > 1. Then, b = �d and n = �d.
We have, by definition of “multiplicative inverse” that

ab = n+ 1 for some

and thereforewe had q instead of 1 by
mistake

a�d = �d+ 1 and (a�− �)d = 1

which is impossible as the left hand side is divisible by d and the right
hand side is not.

45relatively prime and coprime mean the same thing

73

2. If a ∈ ℤ∗n, and b ∈ ℤ∗n, then a×n b ∈ ℤ∗n
What we really need to show is that a × b mod n is relatively prime
with n (and therefore in ℤ∗n).

Let

a× b = c+ �n for some c and �

Assume that c is not relatively prime with n and they do share some
factor d > 1. Then we can write

c = �d and n = d

Therefore,

a× b = �d+ �d = (� + �)d

So either a or b (or both) is divisible by d and therefore shares a factor
with n (which is divisible by d). But this is impossible as a and b are
relatively prime with n, and therefore do not share factors with it.

6.3 Key ideas

1. Euclidean algorithm and Extended Euclidean algorithm for:

(a) Finding greatest common divisor

Finding a multiplicative inverse modulo

2. Modular arithmetic

(a) Modular addition and ℤn
(b) Modular multiplication and ℤ∗n

74

75

7 RSA public/private encryption system

7.1 Preliminaries

Again, I will follow Forouzan as closely as possible. I will “strip out” what
is not needed, may add more examples, and mathematical justifications. I
will be very specific about what is taken from Forouzan, by listing various
“locations” in the book using our [page number, line number] notation. To
save space, I will actually write F[page number, line number].

First, whenever

a = �n+ and b = �n+

that is when a and b are equal modulo n, we may say that they are
congruent modulo n and write:

a ≡ b mod n

This is standard notation, which we have not used before, see F[30,−7].46

F[251,−7]–F[253,−10]

We skip his discussion on primality testing, we need to do something else
which we (and he) will do later.

F[254,−8]–F[255,−2]

Definition 4. For any interger n ≥ 1, �(n) will denote the number of of
positive integers smaller than n that are relatively prime with n. Note that
this is the cardinality (size) of the set ℤ∗n.

Example 5. �(10) = 4, since the following are all the relevant integers: 1,
3, 7, 9.

We do not need to know all that F tells us. We only need to know that
(and prove it):

Theorem 9. Two claims:

1. If p is prime, then �(p) = p− 1

46We will not write, unless there is a special reason, “(“ and “)” as Forouzan does.

76

2. If n = pq, and p and q are primes, the �(n) = (p− 1)(q − 1)

Proof. Instead of dragging in indices/variables, etc., our proofs will be by
“general examples.”47

1. If p is prime, then �(p) = p− 1

Pick p = 7. Then the numbers relative prime with 7 are 1, 2, 3, 4, 5, 6;
i.e., all the positive integers smaller than 7, of which there are 6.

2. If n = pq, and p and q are primes, the �(n) = (p− 1)(q − 1)

Pick n = 15. Then n = 3 ⋅ 5, so p = 3 and q = 5. Let us consider all
the candidates for being included in the set of integers smaller than 15
that are relatively prime with 15. The set to look at is 1, 2, . . . , 14.

Let us look for those numbers that are not relatively prime with 15.
They are either multiples of 3 or or 5 (cannot be of both as we are
looking at numbers smaller than 15). It will be convenient to actually
look at the set 1, 2, . . . , 14, 15.

(a) Let us consider multiples of 3 (which is p).

They are 3, 6, 9, 12, 15. How many of them are: 15
3 = 5 (simply

because we have “gaps” of 3, and 3 ⋅ 5 = 15). Note that 5 = q

But 15, does not count as being of interest as it is too big. There-
fore there are only 4 = 5− 1 = q − 1 such numbers.

(b) Let us consider multiples of 5 (which is q).

They are 5, 10, 15. How many of them are: 15
5 = 3 (simply

because we have “gaps” of 5, and 5 ⋅ 3 = 15). Note that 5 = p

But 15, does not count as being of interest as it is too big. There-
fore there are only 2 = 3− 1 = p− 1 such numbers.

There were 14 candidates, but 4 + 2 did not work out. So there are 8
left. Note that 8 = (5− 1)(3− 1).

This perhaps still looks mysterious, so let us now write, using what we
know:

47I try to do it as much as possible in cases where the difference between such a proof
and and a general proof is just writing variables instead of specific examples, so we have
more intuition and don’t really lose any generality.

77

�(pq) =

14︷ ︸︸ ︷
(pq − 1)−

4︷ ︸︸ ︷
(p− 1)−

2︷ ︸︸ ︷
(q − 1) = pq − p− q + 1 = (p− 1)(q − 1)

Let us now look at ℤ∗15. As we have a table of multiplication for it,
Fig 38, we can produce powers of various elements of it, a1 mod 15 =
a, a2 mod 15, a3 mod 15, Let us do it.

We get:
1, 1, 1, 1, 1, 1, 1, 1, . . .
2, 4, 8, 1, 2, 4, 8, 1, . . .
4, 1, 4, 1, 4, 1, 4, 1, . . .
7, 4, 13, 1, 7, 4, 13, 1, . . .
8, 4, 2, 1, 8, 4, 2, 1, . . .
11, 1, 11, 1, 11, 1, 11, 1, . . .
13, 4, 7, 1, 13, 4, 7, 1, . . .
14, 1, 14, 1, 14, 1, 14, 1, . . .

Note that for any a,48

(17) a8 mod 15 = 1

Let us now look at number 3. It is relatively prime with 8. So there is
a multiplicative inverse modulo 8. And it is easily found using Extended
Euclidean algorithm: 11.49

Just to check:

3× 11 mod 8 = 33 mod 8 = (4× 8 + 1) mod 8 = 1

For us, the important things is that since 3 and 11 are multiplicative
inverses modulo 8, we can write, for some � (which happens to be 4, which
is not important) that

3× 11 = �× 8 + 1 and in this case 3× 11 = 4× 8 + 1

48The real reason for this is that 8 = �(15) so we can also write a�(15) mod 15 = 1, but
we will return to this later.

49We are cheating a little. We will discuss it soon.

78

From this it follows that

(18) a33 mod 15 = a

Indeed,

a33 mod 15 = a32+1 mod 15

= a8
4 × a1 mod 15

=
(
[(a8 mod 15)4 mod 15]× [a mod 15]

)
mod 15

= [14 mod 15]× a (by Eq. 17)

= a

From this we have a special (and incomplete for the time being) case of
RSA—but all the key ideas are here!

Example 6. Alice picks as her public key the pair (15, 3) and as her private
key the pair (15, 11). Both keys are consist of a pair of the form (modulus,
exponent).

Bob wants to send x = 8 to Alice.
Bob computes y = x3 mod 15 = 83 mod 15 = 2 and sends it to Alice.50

Alice computes z = y11 mod 15 = 211 mod 15 = 8.51

And

z = x

But this was guaranteed by Eq. 18.

Note The example was in some sense fake. Actually, as multiplicative
inverse of 3 was computed modulo 8, even though 11 is correct, we want
multiplicative inverse that is < 8. Why, it is secret and we need to worry
about its being guessed. So we want to see how big it is. And the smallest
possible multiplicative inverse will be the unique one that is < 8. And in our
example it is actually 3. So 3 is its own multiplicative inverse. In practice
this will not happen, but our example was very tiny on purpose so everything
could be computed easily, and therefore it did happen in it. So let us take

50In fact, if you compute: 83 = 2 + 34× 15.
51In fact, if you compute: 211 = 8 + 136× 15.

79

the example in Forouzan that is bigger (but therefore more tedious to check
out). Before looking at it, we just need to believe, which we will prove later
(see Theorem 11, that if n = p× q, where p and q are prime, and for any a,
s.t. 0 ≤ a < n, and any k ≥ 1, the following holds: ak×�(n)+1 ≡ a mod n

F[304]–F[305]52 There are several examples there. I will list one of the
explicitly below.

F[312]–F[314] This is a really big example. No realistic hope of checking
this out unless you have software for manipulating large integers precisely.

Example 7. F[304] We exchange the roles of Alice and Bob. (Alice always
goes first and the first person is the one that chooses the keys.)

n = 77 = 7× 11.

�(n) = (7− 1)× (11− 1) = 60.

e = 13 is relatively prime with 60 and Alice chooses (77, 13) as her public
key.

She computes a multiplicative inverse of 13 modulo 60 and gets 37. Alice
chooses (77, 37) as her private key.

Bob wants to send x = 5 to Alice.

Bob computes y = x13 mod 77 = 26 and sends it to Alice.

Alice computes z = y37 mod 77 = 5.

And

z = x

7.2 The RSA algorithm

F[303]

This is the RSA algorithm.53

A couple of comments:

1. I would say that the private key is the pair (d, n) and not just d. Of
course I am not implying anything really different than what F says.
It is just that you really need to know both d and n for decryption and
perhaps you decided you do not need to ever encrypt so you do not
remember/know what the pair (e, n) is.

52When line numbers are clear from the text, I do not list them
53We can also look now at page 83.

80

2. At this point, we do not need to know what Fast Exponentiation is. It
pertains to efficiency as opposed to correctness. We will discuss it later

3. This actually pertains to F[302]. We do not need to know this. But just
for the record, the notation for the ring as written by F uses standard
“greater than” and “less than” symbols, so it looks like < . . . >. It
really should be a different symbol and look like ⟨. . .⟩. These are, so
called, “angle brackets.”

We now need to show this works.

Theorem 10 essentially encompasses Euler’s theorem, first version as
written in F[257]. Fermat theorem, first version,54 as written in F[256] is a
special case.55 F[684] sketches a proof, which I think is a little too sketchy. I
provide a complete proof.

Theorem 10. For every n and a ∈ ℤ∗n,56 we have that

a�(n) ≡ 1 mod n

Proof. Here and in some other places we will be very explicitly about the
operation used. I will not write xy, but either x× y or x×n y, so we are not
confused about the operation and note make any mistakes.

We will write f for �(n), just to make the formulas shorter to write.

Let all the elements of ℤ∗n be: a1, a2, . . . , af . Let us assume that there
are listed in increasing order, and therefore 1 = a1 < a2 < ⋅ ⋅ ⋅ < af < n.

We first show that all of the below are different elements of ℤ∗n:
a×n a1
a×n a2
. . .
. . .
a×n af

First we note that as by Theorem 8, ℤ∗n is closed under ×n, these are
elements of ℤ∗n. We now show they are different.

Assume by contradiction that for some i < j, we have

54Frequently also called Fermat’s little theorem.
55Recall that if p is prime, then �(p) = p− 1.
56Forouzan states the theorem somewhat more generally, by allowing a to be larger than

n as long as they are relatively prime, we do not need to discuss this here—the proof will
work exactly the same with extremely minor changes.

81

a×n ai = a×n aj

Then we have:

a× ai = �+ �n and a× aj = �+ n for some � <

And therefore:

a× (aj − ai) = (− �)× n and this is > 0 as aj > ai

As the right hand side is divisible by n, the left hand side is divisible by
n also. But, as a and n are relatively prime, they do not share any factors,
therefore for a× (aj − ai) to be divisible by n, (aj − ai) must be divisible by
n. But as 0 < ai < aj < n, we have 0 < aj − ai < n, and therefore this is
not possible.

If we look at our example for n = 15, if we have a = 8, then we
have 8× (aj − ai) = (− �)× 15. Therefore (aj − ai) must be
divisible by 15, which is impossible, as it is positive but smaller
than 15.

So we have proved our claim that all the a×n ai’s are different elements
of ℤ∗n

So we can write for each i:

(19) a× ai = �i + �i × n

for some �i and �i. Here �i = a×n ai.
Furthermore:

�1

�2

. . .

. . .
�f

are all different elements of ℤ∗n.57

57We are not saying that �1 = a1, etc.; we are saying that if we look at all the �i’s, we
get all the ai’s.

82

We define three quantities:

(20) A = (a× a1)× (a× a2)× ⋅ ⋅ ⋅ × (a× af)

(21) B = a1 × a2 × ⋅ ⋅ ⋅ × af

(22) C =

f times︷ ︸︸ ︷
(a× a× ⋅ ⋅ ⋅ × a) Note that C = a�(n)

We have:

A =

f times︷ ︸︸ ︷
(a× a× ⋅ ⋅ ⋅ × a)×(a1 × a2 × ⋅ ⋅ ⋅ × af) = C ×B

But using Eq. 19, we can also write

A = (�1 + �1 × n)× (�2 + �2 × n)× ⋅ ⋅ ⋅ × (�f + �f × n)

= �1 × �2 × ⋅ ⋅ ⋅ × �f + × n for some

= a1 × a2 × ⋅ ⋅ ⋅ × af + × n because each �i is some aj

= B + × n

So we, get

(23) C ×B = B + × n

We can write, for some g ∈ ℤn and some �:

C = g + � × n

But, as C is a product of some number of a’s (actually, of course, n of
them) and a is relatively prime with n, it follows that g is relatively prime
with n, which means that g ∈ ℤ∗n.

By Eq. 23, we have

(g + � × n)×B = B + × n

and therefore

83

(g − 1)×B = (− � ×B)× n

The right hand side is divisible by n and therefore the left hand side
must be divisible by n also.

But we know that as B is a product of integers all relatively prime with
n, B cannot share any factors with n. Therefore, g− 1 has to be divisible by
n. But as g < n, this is only possible when g − 1 = 0.

We have shown that g = 1, and therefore

C = 1 + � × n

In other words:

a�(n) ≡ 1 mod n

Note We have not discussed formally what happens when we want to
encrypt a in Zn, which is not in ℤ∗n, we will show that “things work” soon,
but meanwhile let’s have a digression.

Here we look how everything was set up for RSA to work, following the
example we had from Forouzan:58

1. Alice picks two large primes randomly, say p and q. Easy, using
Miller-Rabin algorithm, which we will cover soon.

(We had p = 7 and q = 11.)

2. Let n = p× q. Alice computes �(n) = (p− 1)× (q − 1). Trivial. Note
that �(n) is large, as it is almost as big as p× q.

(We had n = 7× 11 = 77 and �(77) = (11− 1)× (7− 1) = 60.59)

3. She picks a small element e ∈ ℤ∗n, s.t. e is relatively prime with �(n).
Easy, she looks at some small integers and will soon find an integer
with the desired property as �(n) cannot have too many different prime
factors or it would be huge. Testing for relatively primality is easy
using the Euclidean algorithm.

58In real implementations things are done somewhat differently, but this is the core of
how it is done.

59Why does an hour have 60 minutes?

84

(We had e = 13.)60

4. Alice computes d, the multiplicative inverse of e modulo �(n). Easy,
using Extended Euclidean algorithm. Note that as e was small, d was
automatically large, as e× d = �×�(n) + 1 for some � ≥ 1. The value
of � is actually not important.

(We had d = 37 and e× d = 13× 37 = 481 = 8× 60 + 1.)61

5. Alice publishes n and e. Together they form eRSA
Alice. Alice keeps d secret.

n and d together form dRSA
Alice.

(We had public 77 and 37 and private 77 and 13.)

6. Bob wants to send a message m, 0 ≤ m < n to Alice. He encrypts:
c = me mod n and sends c to Alice.

(We had m = 5 and c = 26.)

7. Alice gets c and decrypts z = cd mod n. This will be the original
message m.

(We had c = 26 and z = 5.)

Let us recall that we have shown in Theorem 10, that when if a ∈ ℤ∗n,
then a�(n) ≡ 1 mod n. And from this it followed that ak×�(n)+1 ≡ a mod n
and “RSA worked” for such an a.

But what about a “outside” ℤ∗n, that is a ∈ ℤn ∖ ℤ∗n? Could we use RSA
to encrypt such a’s?

In some sense it does not matter as for large n, ℤ∗n is “practically all”
of ℤn, so we will never in practice wil encounter encryption of elements in
ℤn ∖ ℤ∗n.62.

But let us try and apply RSA to all the elements of ℤn. Let us look at
Fig. 39.

Unfortunately for some elements, we indeed have that a�(n) ∕≡ 1 mod n.
However what we really need is ak×�(n)+1 ≡ a mod n (for some specific k
actually the one for which e× d = k × �(n) + 1). And, in our example, we
indeed see that a1×�(n)+1 ≡ a mod n for every a. But what about the value

60Actually, e should be very small relatively to n, which is not the case in this example.
We could have chosen e = 7 and d = 43, but that’s not what Forouzan did.

61In our example e was not small relative to n, but nevertheless we got a large d. The
example is too small to be able to talk more carefully about the sizes of the keys.

62This will need to be made more precise, as we will do later as we encrypt “partially
random” numbers in practice.

85

a a1 a2 a3 a4 a5 a6 a7 a8 a9

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
2 2 4 8 1 2 4 8 1 2
3 3 9 12 6 3 9 12 6 3
4 4 1 4 1 4 1 4 1 4
5 5 10 5 10 5 10 5 10 5
6 6 6 6 6 6 6 6 6 6
7 7 4 13 1 7 4 13 1 7
8 8 4 2 1 8 4 2 1 8
9 9 6 9 6 9 6 9 6 9

10 10 10 10 10 10 10 10 10 10
11 11 1 11 1 11 1 11 1 11
12 12 9 3 6 12 9 3 6 12
13 13 4 7 1 13 4 7 1 13
14 14 1 14 1 14 1 14 1 14

Figure 39: Powers in ℤ15

of k for which we will need this? We can prove that the equation holds for
every k, including the one we will need.

Theorem 11 is stated in F[257] as the second version of Euler’s theorem.
He also sketches a proof. Again, I provide a complete proof.

Theorem 11. Let n = p×q for two distinct primes p and q. Let a, 0 ≤ a < n.
Then, for any k ≥ 1:

(24) ak×�(n)+1 ≡ a mod n

Proof. Assume first that a is relatively prime with n.

By Theorem 10:

ak×�(n)+1 = a× (a�(n))k

= a× (1 + �× n)k By Theorem 10 for some �

= a× (1 + � × n) for some �

= a+ × n for some

86

which proves the claim.
Assume now that a is not relatively prime with n a is either a multiple

of p or a multiple of q (but not of both, because then a would be a multiple
of n). Without loss of generality, let’s assume that it is a multiple of p

We can write (for suitable Greek letters, here and in the rest of the proof):
a = �+ � × q. And as a relatively prime with q, � is relatively prime with q.

Note that �(n) = �(p)× �(q), since

1. �(n) = (p− 1)× (q − 1)

2. �(p) = p− 1

3. �(q) = q − 1

Of course,

ak×�(n)+1 =
(
(�+ � × q)�(q)

)�(p)×k × a
But,

(�+ � × q)�(q) = ��(q) + × q

Also, by Theorem 10,

��(q) = 1 + � × q (since � is relatively prime with q)

Putting it all together, we have:

(25) ak×�(n)+1 = (1 + � × q+ × q)�(p)×k × a = (1 + �× q)× a = a+ � × q

But, by assumption, a = � × p. Therefore:

ak×�(n)+1 = a× ak×�(n)

= a× 1 + a× (ak×�(n) − 1)

= a+ � × a
= a+ � × � × p
= a+ �× p

So, from Eq. 25

a+ � × q = a+ �× p

87

and

� × q = �× p

Therefore, � divisible by p, and

� = �× p

Finally,

ak×�(n)+1 = a+ � × q
= a+ �× p× q
= a+ �× n

7.3 From the RSA algorithm to an RSA protocol

So we have the RSA algorithm. Let us now explore some additional issues
that need to be taken care of before we can use it for encryption/decryption
and signing.

The message to encrypted is m and the resulting cipher is c.

Attempt to break: factoring of n

Eve sees c in transit, and like everybody else she knows n and e. She would
like to decrypt c. The most straightforward way to do it would be to find
out what d is.63

d is a multiplicative inverse modulo �(n) of e. So she would like to find
out what �(n) is. She knows that �(n) = (p− 1)× (q − 1), where n = p× q.
So she would like to factor n into its two primes. How to prevent this: Choose
p and q to be large primes. We do not know of a feasible way of factoring a
product of two large primes to obtain these primes.

m is too big

If m ≥ n, say m = �+ � × n, where 0 ≤ � < n and � ≥ 1, then both m and
� will decrypt to the same value as:

md mod n = �d mod n

63We are now discussing only the most straightforward approach

88

So what was the message: m, �, or maybe something else. So we need
to standardize: always 0 ≤ m < n.

m is too small

Assume that me < n (not modulo anything, but actually). Then c =
me mod n = me.

From here Eve can easily find m by doing m = c1/e, actually, not modulo
anything. Therefore: m should be large (but of course smaller than n).

Same (encrypted) message is sent to some user repeatedly

Assume that Bob sends the same message to Alice repeatedly, for instance
almost every day: “I am fine today.” Then, if Alice behaves the same after
each such message, Eve can predict her behavior based on the message, even
if Eve cannot decrypt it.

Do not send the same message twice to the same individual.

Users share e and the same (encrypted) message is broadcast (sent)
to many of them

It is actually common for everybody to have the same e. Originally, e = 3
(really!) was popular. Now it is considered insecure, so e = 216 + 1 is used
frequently.64

We will go over a relevant issue by means of a very small example. The
problem occurs because of the Chinese Remainder Theorem. You can read
about it in F[274–275], but it is not necessary to do so in order to understand
what the problem is—I will give you the intuition behind it.

Example 8. This is an example of what Chinese Remainder Theorem is.
Consider two relatively prime numbers: 3 and 4. Their product is 12. We
consider all numbers 0, 1, . . . , 11, and create a table, see Fig. 40

Note that the pairs
⟨0 mod 3, 0 mod 4⟩
⟨1 mod 3, 1 mod 4⟩
. . .
⟨11 mod 3, 11 mod 4⟩
are all different.

64If written out it has only two non-zero bits, which makes some operations fast, as we
will see later.

89

z z mod 3 z mod 4
0 0 0
1 1 1
2 2 2
3 0 3
4 1 0
5 2 1
6 0 2
7 1 3
8 2 0
9 0 1

10 1 2
11 2 3

Figure 40: Residua modulo 3 and 4 of all integers smaller than 12

So given a pair ⟨x, y⟩, such that 0 ≤ x < 3 and 0 ≤ y < 4 there is a
unique z, such that 0 ≤ z < 12, and x = z mod 3 and y = z mod 4. In fact
there is a fast algorithm to compute such a z, which we do not present.

Now, as we said it is common to use the same e for everybody, or at
least many people can share the same e. (Of course, they all have to have
different n’s as otherwise they would share the same d.)

Assume, for this example that e = 3 and the same message m was sent
to 3 people, whose public keys are: ⟨n1, 3⟩, ⟨n2, 3⟩, and ⟨n3, 3⟩. Of course all
of ni’s will be relatively prime (with extremely high probability) as there
were chosen randomly.

Then what was sent was: m3 mod n1, m
3 mod n2, and m3 mod n3.

Since m < ni, for each i, it follows that m×m×m < n1 × n2 × n3.
Let M = m×m×m and N = n1 × n2 × n3.
Then we have exactly the setting for The Chinese Remainder Theorem,

but for 3 moduli, not 2 as in our example above.
Indeed, M < n1 × n2 × n3, and c1 = M mod n1, c2 = M mod n2,

c3 = M mod n3.
And Eve can recover M . From this she gets m = M1/3

Therefore, never encrypt the same message more than once.65

We will make it even stronger: We would like to make sure (or help people
to make sure) that no two messages no matter from whom and to whom sent

65In our example two times may be OK, but not three times.

90

are ever the same.

Signing “arbitrary messages”

When Alice signs, this means that she decrypts something with her private
key, as she is the only one capable of doing this.

We have discussed in Sections 4.4–4.5 various issues that need to be
addressed while digitally signing.

So she cannot just decrypt arbitrary strings presented to her

Forging a signature on a related message

Here is another issue.
Mallory can forge Alice’s ”decryption” on a related string.66 Assume

that Alice as part of a signature procedure computes DRSA(dRSA
A , x mod n)

for some x. This is then seen by Mallory. Let’s write d for dRSA
A

Note that
DRSA(dRSA

A , x mod n) = xd mod n

But, also: (x2 mod n)d mod n = (xd mod n)2 mod n
Therefore, Mallory, who sees xd mod n, can easily produce (x2)d mod n.

In other words, given Alice’s signature on x, he can easily forge Alice’s
signature on x2 (or x2 mod n).

So, of course Alice will “decrypt” the hash of the message and the above
attack will not work. But we may also want to make sure in even stronger
way that strings to be decrypted (as part of signing) are of a very specific
format so the attacks above will not work. So we could say, that we want to
decrypt not only a hash, but a hash of a very specific format.

7.4 A standard for encrypting and signing

Let us look now at a standard, that is not the newest because the new one is
quite complicated and the one we look at provides some important intuition
into how things are done in practice. For a more elaborate discussion both
of the attacks and a standard, which we will not cover, see F[305–312]. The
discussion there is confined to encryption only, but we will cover signing too.

The length of each record in Fig. 41 and Fig. 42 is the same as the length
of n, which some integer number of octets.67

66Let us not assume for now that she decrypts a hash as part of producing a signature.
67Octet is a sequence of 8 bits. Commonly the term “byte” is used, but technically byte

refers to a unit of access to the memory, which could be a different number of bits, though
currently the standard is 8 bits. It is all very pedantic, but sometimes you will see “octets”

91

Figure 41: A format for the record to be encrypted.

Figure 42: A format for the record to be decrypted to produce a signature.

Let us first discuss encryption.
The record in Fig. 41 stores some integer, say x. Let us examine the

fields of the record, going from left to right:

1. Makes sure that x < n

2. Two purposes:

(a) Indicates format/record type

(b) Makes sure that x is big

3. Makes sure that no two messages ever sent, no matter from whom
to whom, are equal; non-zero so we do not get confused where the
separator (see next) is in the record

4. Separator

5. Payload (generally a secret key for symmetric encryption, but could
be anything.

Payload is the actual message we are interested in recovering. It is clear
how to get it from the encrypted record c by decrypting it and finding the
payload field in it.

The record in Fig. 42 stores some integer, say x. Let us examine the
fields of the record, going from left to right:

not “bytes” in formal specifications.

92

1. Makes sure that x < n

2. Two purposes:

(a) Indicates format/record type

(b) Makes sure that x is big

3. Makes sure that x is of very special format, so it is infeasible to forge
signatures (as Mallory did in the example above, producing of forged
signature on x2).

4. Separator

5. Specification which function is used for the one-way-hash (there are
various choices, as we will see: SHA-1, MD5, etc.).

6. One-way hash (of something to be signed)

7.5 Fast Exponentiation

F[279–280] We incorporate these. I will give a slightly different presenta-
tion of essentially the same algorithm, though expressed differently. (Note;
F seems to be using k and nb to denote the same thing.)

The question is, how to compute ax fast. (We actually need results
modulo some n, but we will return to this later, for now, think of standard
integer arithmetic.)

If we write x in binary it is some string of bits: xkxk−1 . . . x0.
We will use the following notation: given some some string of bits

xkxk−1 . . . x0 (we will always assume that xk = 1), the integer corresponding
to it will be denoted by num(xkxk−1 . . . x0), that is:

(26) num(xkxk−1 . . . x0) =
0∑
i=k

xi × 2i

From this, we make two claims (simple, so no proof needed):

1. num(xkxk−1 . . . x00) = 2× num(xkxk−1 . . . x0)

Example: num(1010) = 2× num(101)

2. num(xkxk−1 . . . x01) = 2× num(xkxk−1 . . . x0) + 1

Example: num(1011) = 2× num(101) + 1

93

So we conclude:

1. anum(xkxk−1...x00) = a2×num(xkxk−1...x0) =
(
anum(xkxk−1...x0)

)2
2. anum(xkxk−1...x01) = a2×num(xkxk−1...x0)+1 = a×

(
anum(xkxk−1...x0)

)2
We can use this for the algorithm to produce ac iteratively. Of course,

if we want ultimately to get the result modulo some n, we should take this
modulo after each operation so numbers do not grow unnecessarily. The
algorithm is presented in Fig. 43.

1: procedure FastExponentiation(a, x) ⊳
ax mod n; x = num(xk . . . x0)

2: y ← 1
3: for i← k, k − 1, . . . , 0 do
4: y ← y × y mod n
5: if xi = 1 then
6: y ← a× y mod n
7: end if
8: end for
9: end procedure

Figure 43: Algorithm for fast exponentiation

Let us run the algorithm on an example using the same numbers that F
has in Example 9.7.

Example 9. a = 17, c = 22, and n = 21. First we note that: 22 =
num(10110), so k = 4.

We will start accumulating the answer in y. Initially y = 1. We describe
the progression of the computation in the table shown in Fig. 44, where we
show how to compute 1722 mod 21.

Forouzan presents essentially the same algorithm, but “goes from left to
right” in the exponent, where we “go from left to right.” It is somewhat
easier, in my opinion, to explain the algorithm and why it works in the form
I present it—but the difference is not essential.

94

Squaring Multiplying
i xi y y
4 1 17
3 0 172 mod 21 = 16 16
2 1 162 mod 21 = 4 17× 4 mod 21 = 5
1 1 52 mod 21 = 4 17× 4 mod 21 = 5
0 0 52 mod 21 = 4 4

Figure 44: Computing 1722 mod 21.

7.6 Primality testing

See Forouzan[261–266]. We will describe the Miller-Rabin algorithm. I will
provide a different variant than what Forouzan shows,68 because what I
describe is easier to understand at the cost of a slightly reduced efficiency.

We want to look for properties that prime numbers always have, though
these properties sometimes may be true for composite numbers too. We will
want to decide whether some n is a prime number. So we will apply many
tests to n to check if it has properties that all prime numbers have. If it
passes all these tests, we will declare that with (sufficiently) high probability
it is a prime number (because with very small probability n is composite
and still has these properties.

Theorem 12. If n is prime then for every a, such that 1 ≤ a ≤ n − 1 we
have an−1 ≡ 1 mod n.

Proof. If n is prime, then �(n) = n − 1, and therefore this follows from
Theorem 10.

Conclusion If for some a and n, such that 1 ≤ a ≤ n − 1 we have
an−1 ∕≡ 1 mod n, then n is not prime. We can use this to “disprove” pri-
mality. But note, that even for composite n, this equation could hold. For
instance: 415−1 ≡ 1 mod 15, even though 15 is not a prime.

Theorem 13. If n > 2 is a prime, then the equation x2 ≡ 1 mod n has
exactly two solutions in the range [0, . . . , n − 1] and they are 1 and n − 1.
(Note that n− 1 mod n is the same as −1 mod n, so we could have said that
there are only two solutions −1 and +1.)

68He presents the more common one

95

Another way of saying this is to say that if n is a prime then 1 has exactly
two square roots modulo n. For composite n, 1 may have more than two
square roots modulo n.

Before we proceed to the proof, let us look at an example

Example 10. As Forouzan shows:

1. n = 7, 1 has two square roots: 1, 6 modulo n.

2. If n = 8, 1 has four square roots: 1, 3, 5, 7 modulo n.

3. If n = 22, 1 has two square roots: 1, 21 modulo n. (Only two, even
though 22 is not a prime.)

Proof. Let n > 2 be a prime.

We first show that 1 and n− 1 are square roots of 1 modulo n.

1. 1 is a square root because:

12 mod n = 1 mod n = 1

2. n− 1 is a square root because:

(n − 1)2 mod n = n2 − 2 × n + 1 mod n = (n − 2) × n + 1 mod n =
�× n+ 1 mod n = 1

We now show that there are no other square roots of 1 modulo n. We
are looking for x’s such that

(27) x2 = 1 + �× n

This is of course the same as

(28) (x− 1)× (x+ 1) = �× n

Let x0 satisfy Eq. 28. Then of course

(x0 − 1)× (x0 + 1) = �× n

Therefore, (x0 − 1) and/or (x0 + 1) are divisible by n.

96

We will show that both of them cannot be divisible by n. Assume
otherwise by contradiction. Then we have

x0 − 1 = � × n
x0 + 1 = × n

Of course, > �. We can write:

(x0 + 1)− (x0 − 1) = (− �)× n
2 = (− �)× n

But as, − � ≥ 1 and n > 2, this is impossible. Therefore exactly one of
(x0 − 1) and (x0 + 1) is divisible by n.

Let x1 be a solution such that x1−1 is divisible by n. Then x1−1 = �×n
and x1 = 1 + � × n.

Let x2 be a solution such that x2+1 is divisible by n. Then x2+1 = �×n
for � ≥ 1 and x2 = −1+�×n. Then we can also write x2 = n−1+(�−1)×n,
and � − 1 ≥ 0. So we have shown that x2 = n− 1 + �× n

So we have shown that the only square roots of 1 modulo n in the range
0, 1, . . . , n− 1, are indeed +1 and n− 1.

Conclusion This can be used to test if n is prime. Indeed, if 1 ≤ a ≤ n−1
satisfies a× a mod n = 1, then n cannot be a prime.

We will use the above observations to try and find out if some n is a
prime. We present essentially the Rabin-Miller probabilistic algorithm for
primality testing:

1. If n is prime, all the tests for primality will be passed

2. If n is not prime, with very high probability (as high as we want, we
just need to run the algorithm long enough) some test for primality
will be failed.69

We will pick a random a, such that 0 < a < n and compute an−1 mod n
using Fast Exponentiation. If an−1 mod n ∕= 1, then n is not a prime. But

69Numbers that pass various tests for primality even though they are not prime, are
called pseudoprimes. See also http://en.wikipedia.org/wiki/Pseudoprime. We do not
need to worry about them in practice.

http://en.wikipedia.org/wiki/Pseudoprime

97

note that during the exponentiation we compute various squares, the values
y× y mod n for various y’s. If for one of them we have that y× y mod n = 1,
but y ∕= 1 and y ∕= (n− 1), then we also can determine that n is not prime.

We could still be unlucky and none of the above happens and n is still
not a prime (is composite).

The algorithm is given in Fig. 45.

1: procedure PrimalityTesting(a, x) ⊳ Computing an−1 mod n
2: y ← 1
3: for i← k, k − 1, . . . , 0 do
4: z ← y
5: y ← y × y mod n
6: if y = 1 ∧ z ∕= 1 ∧ z ∕= (n− 1) then
7: n is not prime ⊳ bad square root
8: end if
9: if xi = 1 then

10: y ← y × a mod n
11: end if
12: end for
13: if y ∕= 1 then
14: n is not prime ⊳ bad final value
15: else
16: n is “perhaps prime”
17: end if
18: end procedure

Figure 45: Miller-Rabin algorithm for one value of a

How many times do we need to run the procedure to be reasonably sure
that n is a prime, getting each time the answer “perhaps prime”?

There is a theorem, which takes quite a while to prove, and therefore we
will state it without a proof.

Theorem 14. Let n be an odd integer and let a set of m a’s, such that
1 < a < n, and for each of these a’s the algorithm returns “perhaps prime.”
Then, n is a prime number with probability of at least 1− 1

2m .

So if we want to be sure with probability of at least 1 − 1
2100

that n is
prime, it is enough to get “perhaps prime” for 100 random a’s.

Let us now discuss how to find a large prime, say one of 2048 bits. We will
create a string of 2048 bits, the first and the last being 1, and the “middle”

98

2046 chosen randomly. (You may as well choose each bit independently
randomly with probability of 0.5 of it being 1.) Run Miller-Rabin on it with
some number number of a’s. If all the answers are “perhaps prime,” we are
happy. Otherwise we try another random n, chosen as above.

We now need to ask how many primes there are. Another theorem we
are not going to prove.

Theorem 15. (See also http://en.wikipedia.org/wiki/Prime_number_

theorem#Statement_of_the_theorem.) The probability that a random n
is a prime is: ≈ 1

lnn .

So if n has 2048 bits (with the first bit being 1) then the probability that
it is a prime is:

≈ 1

ln 22048
=

1

2048× ln 2
≈ 1

2048× 0.7
≈ 0.0007

From this we can conclude that to find a number of 2048 bits so that we
are sure with probability of at least 1− 1

2100
that it is a prime will take on

the average about

100× 1

0.0007
≈ 71, 000

runs of the Miller-Rabin test.

It is all completely feasible using current PCs, assuming of course that
you get good random numbers.70

Figures 46 and 47 show executions of our version of the algorithm on two
examples from Forouzan.

i xi z y y
4 1 1 1 2
3 1 2 4 8
2 0 8 10 10
1 1 10 19 11
0 0 11 13 13

Figure 46: n = 27 and a = 2. Miller-Rabin says: 27 is not a prime, because
226 mod 27 ∕= 1.

70We are not accounting for the effort to find such random bits.

http://en.wikipedia.org/wiki/Prime_number_theorem#Statement_of_the_theorem
http://en.wikipedia.org/wiki/Prime_number_theorem#Statement_of_the_theorem

99

i xi z y y
5 1 1 1 2
4 1 2 4 8
3 1 8 3 6
2 1 6 36 11
1 0 11 60 60
0 0 60 1 1

Figure 47: n = 61 and a = 2. Miller-Rabin says: 61 is perhaps prime. (It
actually is a prime.)

7.7 Key ideas

1. �(n) and its values when n is prime and when n is a product of two
primes

2. ak×�(n)+1 ≡ a mod n

3. RSA algorithm

4. RSA protocol

5. Two conditions that prime n obeys

(a) For any a, such that 0 < a < n, we have an−1 ≡ 1 mod n

(b) The only square roots of 1 modulo n are: 1 and n− 1 (the latter
is really −1).

6. Miller Rabin algorithm for primality testing and its usage for finding
large primes

100

101

8 Components for symmetric encryption (using
block ciphers)

I very much like Forouzan presentation. It just has too much material for
what we can and need to cover to understand the ideas. So I will just use
the textbook, making only a small number of changes to the book.

F[124] (ignore example: we assume that the message has exactly n bits,
whatever the machine can encrypt “directly”). So for DES it is exactly 64
bits, as we will see later.

We now discuss the full/partial size keys (we are not taking this from
Forouzan).

message cipher
00 01
01 10
10 00
11 11

Figure 48: Messages and corresponding ciphers.

string label
00 a
01 b
10 c
11 d

Figure 49: Labels for 2-bit strings

message cipher
a b
b c
c a
d d

Figure 50: Labels of messages and of corresponding ciphers.

Alice and Bob want to exchange arbitrary 2-bit strings.
Let us consider encryption of 2 bit messages to get 2 bit ciphers. We

need to specify a cipher for each possible message. An example of such a
specification (by explicit writing it out) appears in Figure 48.

102

Note that two different messages have to have two different ciphers, as
otherwise there is not a unique decryption.

Let us now label (or name) explicitly each 2 bit spring, as seen in Figure 49.
Then, we can redo our example, as seen in Figure 50.

a a a a a a b b b b b b c c c c c c d d d d d d
b b c c d d a a c c d d a a b b d d a a b b c c
c d b d b c c d a d a c b d a d a b b c a d a b
d c d b c b d c d a c a d b d a b a c b d a b a

Figure 51: Permutations of 4 elements (listed in columns).

When Alice and Bob communicate using an encryption, they in effect
choose a table such as in Figure 50. Note that this is really a permutation of
⟨a, b, c, d⟩. How many such tables exist? As many as there are permutations.
They are all effectively listed in Figure 51. Each column corresponds to a
table. Our example permutation is in the 9th column.

The number of such permutations is 4! = 4× 3× 2× 1,71 since there are
4 choices of where a will go, then 3 choices of where b will go (one slot was
taken by a), etc.

So how many bits do we need to specify such a permutation? We need to
distinguish among 24 choices, so the number of bits is ⌈log2 24⌉ = 5. If Alice
and Bob are smart, they do not want in any way to “biase” the selection of
the key, so they will choose it randomly, thus making it more difficult for
Eve or Mallory to guess it.

Thus, as any one out of 24 keys is likely, we can say that Alice and Bob
need 5 bits to specify a permutation and therefore they use a key of 5 bits.72

In general if the universe of messages has k elements (labels) to permute,
then there are k! permutations.

If we want to encrypt messages of 64 bits, then there are 264 possible
messages, which correspond to the labels above. Therefore there are 264! per-
mutations. And to specify which one we are going to use will take ⌈log2(264!)⌉
bits. This will be the lengths of full-size keys, which are needed to be able
to specify every possible permutation.

Let us estimate the various numbers appearing above.73

71Of course, “!” denotes factorial.
72Note that they need a rather “long” key of 5 bits to encrypt/decrypt rather “short”

messages of 2 bits.
73In general, we will use crude estimates if they good enough to make our point, instead

of looking up better estimates in various off-line or on-line handbooks. This is better for
developing intuition.

103

264! =

232 terms︷ ︸︸ ︷
264 × (264 − 1)× ⋅ ⋅ ⋅ × (232 + 1)×232 × (232 − 1)× ⋅ ⋅ ⋅ × 1

>

232 terms︷ ︸︸ ︷
232 × 232 × ⋅ ⋅ ⋅ × 232

= (232)2
32

= 232×2
32

So the number of bits needed to specify a key is > log2 232×2
32

= 32×232,
which of course is impractically large.74

Therefore, any encryption method (machine) can only use a very small
subset of the possible permutations, essentially 2length of the key.

For our example, let us say that Alice and Bob decide to use 1-bit keys.
Here is what this means. There is a machine, completely known to everybody,
which kind of looks like Fig. 50. What they do to use it, they agree in secret
on one of the two keys, k = 0 or k = 1. Notice, that the only secret thing is
the key! So Eve and Mallory know the two candidate permutations, just do
not know which one of them is used by Alice and Bob.

k = 0 k = 1
b c
c a
a b
d d

Figure 52: Two permutations when key length is 1. One of two keys is chosen
and specified using 1 bit.

In Fig. 53, we see the ciphers that the machine produces depending on
the key fed to it.

DES uses 56-bit keys,75 and therefore can only specify 256 permutations.
Therefore, DES uses partial-size keys.

Back to the book:
F[128,−7]–F[132,15]
F[142–143] Final design of Feistel cipher: encrypting and decrypting.

74Actually, the key must be much larger than what we estimated using our very simple
computation, but we do not need to know what it is to make our point that it is not
practical.

75Not 64 bits, as we will see.

104

message cipher when k = 0 cipher when k = 1
00 01 10
01 10 00
10 00 01
11 11 11

Figure 53: Encryption of messages under the two possible encryption keys.

8.1 How does Feistel cipher work

It is in Forouzan, pages 142–143, but am presenting it here too. Look at
Fig. 54, which is really identical (with different notation) to Forouzan’s
Figure 5.17.

Figure 54: A part of Feistel’s cipher.

Alice and Bob share a secret key (and this is the only thing say share).
Alice encrypts a message, and sends the cipher (which everybody can see) to
Bob. Bob wants to decrypt it, to get the original message. We will see how
Bob “walks back” through one stage.

105

Let us see who knows what:

1. Structure of the machine, including f , is known to everybody

2. � and � are known only to Alice

3. � and � are known to all

4. is derived in a known way to all from the secret key known only to
Alice and Bob

Here is what Bob does to commpute � and �:

1. � is just �, and therefore known

2. As is known (this is obtained from the secret shared key in a com-
pletely deterministic manner—manner that is publicly known), he
computes f(�,).

3. Now, we he can compute �:

�⊕ f(�,) =
(
�⊕ f(�,)

)
⊕ f(�,)

= �⊕
(
f(�,)⊕ f(�,)

)
= �

8.2 Key ideas

1. Fundamentals of symmetric encryption

2. Partial size keys vs. full size keys

3. P-boxes

4. S-boxes

5. Feistel cipher

106

107

9 DES: Data Encryption Standard

F[159–175] Just get the flavor of the specifications and ignore formal listings
of the algorithms. I will cover the key ideas of how this works in class.

F[175–176] Properties (I will discuss briefly)

F[178] Key size

F[182,−6]–[185,Figure 6.16] I will discuss the “meet-in-the-middle”
attack in much more detail, see material below.

9.1 Meet-in-the-middle-attack on 2DES

Example 11. We consider 2DES for keys of length 2 and messages of length
3. The same key is used for encryption and decryption. For convenience, we
will refer to the keys by labels: 1, 2, 3, 4 (technically in bits they are: 00,
01, 10, 11.). For convenience, we will refer to messages by labels 1, . . . , 8
(technically in bits they are: 000, . . . , 111.).

Therefore, there are 16 choices for the pair of two keys used, ranging
from ⟨1, 1⟩ to ⟨4, 4⟩.

We are given two pairs of the form ⟨message, cipher⟩: ⟨m1, c1⟩, ⟨m2, c2⟩.
We will start our “meet in the middle” attack. We take m1 and apply

all possible keys to it getting 4 encryptions. This is depicted in Figure 55.76

Figure 55: Encrypting m1 with all possible encryption keys.

We take c1 and apply all possible keys to it getting 4 decryptions. This is
depicted in Figure 56. (We do not run anything in reverse, it is just intuitively
convenient to think of the input to the decrypting machine entering from
the right.)

Another way of describing what we have is in Figure 57.

We now sort columns 1 and 2 of this figure by column 2 and we sort
columns 3 and 4 by column 3, and we get Figure 58.

This allows efficient matching. Note that encryption of m1with 3 pro-
duces the same string as the decryption of c1 with 1 and encryption with 1

76Of course, for the example, we invent the results.

108

Figure 56: Decrypting c1 with all possible decryption keys.

encryption key encrypted message decrypted cipher decryption key
1 8 2 1
2 6 8 2
3 2 1 3
4 4 5 4

Figure 57: Encrypting m1 and decrypting c1

encryption key encrypted message decrypted cipher decryption key
3 2 1 3
4 4 2 1
2 6 5 4
1 8 8 2

Figure 58: Encrypting m1 and decrypting c1, with the table rearranged

produces the same string as decryption with 2. This implies what is shown
in Fig. 59.

Figure 59: Two key pairs consistent with the pair ⟨m1, c1⟩.

So we conclude that the only possible key pairs used for 2DES encryption
could be ⟨3, 1⟩ and ⟨1, 2⟩. We need to find which one of them is the one
Alice and Bob use. We have another pair we can use: ⟨m2, c2⟩. We could use
another “meet in the middle” attack, but we only have 2 possible key pairs,
so let us just test both of them by using them to encrypt m2 and checking
whether we get c2 or not. The results are in Fig. 60.

So we conclude that the only possible key pair was ⟨3, 1⟩, as it was the
only one consistent with both the given ⟨m1, c1⟩ and ⟨m2, c2⟩.

109

Figure 60: Applying the two remaining key pairs to m2 (the “intermediate”
values between the two encryptions are not important).

Let us now analyze the efficiency of this attack. There will be two stages
to the attack in the general case just like in the example above (with ex-
tremely high probability, we will need exactly two stages.) We want to find
the key pair used ⟨k1, k2⟩.

In the first stage we look at all the 256 × 256 = 2112 key pairs, over all
encryption keys and all decryption keys. So we ask how many pairs of the
form ⟨e, d⟩ we have such that:77

E(e,m1) = D(d, c1)

Pick a specific pair ⟨e, d⟩. This produces a specific E(e,m1) a specific
string out of 264 possible. Consider the specific D(d, c1). This is also a
specific string out 264 possible. The probability that the two strings are
equal is 1

264
. Why? Because after getting E(e,m1), a specific 1 out of 264

strings, we take some specific D(d, c1) and as it is also a specific string out
of 264 strings, the probability that it happens to be E(e,m1) is only 1

264
.

We can look at this as the expected number of “collisions” that a partic-
ular pair generates—the expected number is 1

264
.

But, we have a total of 2112 key pairs, therefore the expected number of
collisions is:78

2112 × 1

264
= 248

These are the “random” collision. But there is one pair, which is not
random, this is the actual key pair used for 2DES application to m1 to get c1

We find them by sorting as described in F and in our example and
matching on the “meet in the middle” value.

77This requires stating a little more carefully what exactly is our probabilistic model,
which we do not do here.

78This is the number of key pairs multiplied by the probability that a pair produces a
“collision.”

110

We now apply the the 248 key pairs to the the second pair of ⟨m2, c2⟩.
The expected number of collisions (if everything is random) is by the

same argument as above:

248 × 1

264
=

1

216

In other words, there are no random collisions left (with extremely high
probability). But there is one non-random one, the actual key pair ⟨k1, k2⟩.79
And this will be the only one left.80

9.2 Triple DES

F[184-185]

9.3 Key ideas

F[184, Summary]

79Recall that an encryption key and a decryption key are the same
80If there are more than two “collisions” left, we need another pair ⟨m3, c3⟩.

111

10 Advanced Encryption Standard

We will look at a “picture-like” description, taken from F[Chapter 7]. It is
actually enough (in my opinion) to study some figures and tables. Specifically,
we will look at discuss

1. Figures: 7.1, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 7.10, 7.13, 7.15, 7.16

2. Tables: 7.1, 7.2

10.1 Key ideas

1. Longer keys, more secure than DES

2. Designed to thwart some attacks (we did not discuss specifics)

112

113

11 Encryption using symmetric-key systems

This is important, but we can cover all we need to know by analyzing some
figures from the textbook and by looking at a few paragraphs. The main
question discussed here is how to encrypt messages that are not exactly one
“block,” such as 64 bits for DES. These could be long messages, or messages
that trickle in, say one byte at a time. Various issues will be discussed.

Figures and paragraphs will refer to the textbook.

11.1 ECB

Figure 8.2, Security Issues, Error Propagation, Applications

11.2 CBC

Figure 8.3, IV, Security Issues, Error Propagation, Applications

11.3 CFB

Note, this is one-time pad generated pseudorandomly (even if K and IV are
random) as they are seeding a deterministic process for generating a long
key.

Figures 8.4, 8.5, Security Issues, Error Propagation, Applications

11.4 OFB

Figures 8.6, 8.7, Security Issues, Error Propagation

11.5 CTR

Figures 8.8, 8.9, Security Issues, Error Propagation
Table: 8.1

11.6 RC4

Figure 8.10 (just glancing at it) and Algorithm 8.6

11.7 Key ideas

1. Various block and stream encrypting modes: advantages and disadvan-
tages as listed

114

115

12 PGP and secure mail

PGP is a system for sending secure mail. There is an open source free version,
which you should download, install, and experiment with. I will provide the
specific assignment in a separate document.

People know other people’s public keys, and their own private (and public)
keys. We will go over this briefly later relying on Forouzan. However, I will
provide the key ideas here separately.

Alice wants to send a (long) email message to Bob. She may want to
encrypt and/or sign the message. We know how it is generally done, from
Section 4.7.

Let us be more specific. Alice and Bob share the following:81

1. Public/private cryptosystem, say RSA

2. Symmetric cryptosystems, say AES

3. A one-way-hash, say SHA-512,82 we will denote it by ℎ

4. Some lossless compression procedure, say ZIP, we will denote it by Z

5. A procedure for converting the message to ASCII,83 producing also
lines of length 64, we will denote it by R

Alice wants to send x to Bob. e will refer to Bob’s public key and d will
refer to Alice’s private key. The procedure that PGP employs for creating
the message to be sent, denoted by y, is described in Fig. 61. The symbol ∣∣
denotes concatenation of strings.

An interesting point, how does Alice store d? It is not stored as it is, but
it is encrypted. She has a passphrase, which is a long string that is difficult
to guess but she can easily remember, such as “When I was a child I liked
eating broccoli but hated apples”. Call this phrase: f . Then her d is stored
as g = EAES(ℎ(f), d). That is the system takes f and produces ℎ(f). This
ℎ(f) is used as a symmetric key to encode her private key d.84 So if Eve
looks at her disk, where Alice stores her private key, Eve cannot determine

81Generally they may share a suite of protocols, such being able to use both 3DES and
AES for symmetric encryption. The sender chooses the ones to use as there is no previous
negotiation between the participants.

82More about it later.
83Mailers like messages of ASCII characters (in lines that are not too long). Otherwise

MIME is used, generally.
84We assume that the number of bits in ℎ(f) is the length for the symmetric key; this

can always be arranged by “cutting down,” etc. Also, note that any string of bits can

116

1: procedure AliceSendsAMessageToBob(x)
2: y ← x
3: if Signature Needed then
4: y ← y∣∣DRSA(d, ℎ(y))
5: end if
6: y ← Z(y)
7: if Confidentiality Needed then
8: Generate Random AES Key: k
9: y ← ERSA(e, k)∣∣EAES(k, y)

10: end if
11: y ← R(y)
12: end procedure

Figure 61: Alice wants to send to send x to Bob using PGP. She actually
sends y to Bob.

d because it is encrypted by an unknown (to Eve) symmetric key. This is
how PGP generally finds out what the private key is for signing by Alice
(with Alice’s private key) and decrypting by Bob (with Bob’s private key),
see Fig. 62.85

1: procedure PGPRetrievesPrivateKey(f, g)
2: t← ℎ(f)
3: d← DAES(t, g)
4: end procedure

Figure 62: PGP needs the private key d. Actually, its encrypted version g is
stored. Alice keys in her passphrase f and its hash ℎ(f) is used by PGP as
a symmetric key for decrypting g to obtain d.

12.1 Keyrings and trust model

Very briefly, each user has a public key ring of public keys of the various users
and a private keyring of various private keys. (For instance my wife and I

serve as a key, so ℎ(f) can be a key; parity as in DES can be easily fixed by cutting ℎ(f)
to 56 bits and expanding it to 64 bits by taking the correct parity bits. DES was just an
example for discussion here.

85Of course, g was originally obtained once d and f were chosen. Note that f can
be changed later by Alice, without d being changed. The system simply replaces g by
encrypting d with the new symmetric key.

117

have both have our private keys. So she can use my computer and I can use
hers. But I cannot use her private key as I do not know her passphrase.

There is no central certificate authority, so there are various ways in
which I need to figure out how I can trust that Alice’s public key is indeed
Alice’s. You can read about it in F[Chapter 16], though I do not think it is
necessary in practice (at least for me). I communicate confidentially with
only a small number of people, whom I know and can trust their public key.

12.2 Key ideas

1. How PGP works

118

119

13 Cryptographic hash functions

See, Forouzan[Chapter 12]. We want to get a one-way hash, where
strings/messages M of arbitrary length are input into a completely specified
machine H and strings of fixed length, say 160 or 512 bits are produced, see
Fig. 63. The desired properties were previously described in Section 4.2.

Figure 63: Hashing a long message, very schematic description.

In this chapter various such functions are described. Relying on Forouzan,
and looking at some of the figures in the book, particularly 12.1, 12.6, 12.8–
12.11, 12.15, and the associated tables we will get a sufficient feeling on
what they look like. We do not need to understand the details of these
constructions.

It is more important to understand how they are used, which we will do
next.

13.1 Key ideas

1. Basic ideas underlying some standard cryptographic hash functions

2. Sketches of SHA-512 and Whirlpool

120

121

14 Message integrity and message authentication

The material appears in F[Chapter 11] with some proofs in Appendix E.
I will extract and present here what we need to know, so looking at F is
optional.

14.1 Obtaining digests from one-way hash functions

The basic idea is as follows. Alice wants to send a message M to Bob. She
also wants Bob to be sure that the message has not been corrupted and/or
was really sent by her.

Alice and Bob share some one-way hash function H. Alice does the
following:

1. Alice produces H(M). In our context, we may refer to this hash as
“digest” or “fingerprint” of M

2. Alice sends the message and its digest to Bob

Bob does the following

1. He computes the hash of the message

2. He compares the hash to the digest. If they are equal, he is satisfied
that the message he received was “authentic.”

Message integrity and message authentication are quite related. Basically:

1. Message integrity means that the message is not corrupted, assuming
that the digest is not corrupted

2. Message authentication means the above and also that we can be sure
who created the message

To better explain the concepts and the ideas, we will repeat some of what
we have done before.

We want to create a fixed size (say 160 bits long) message digest. We
will use a one-way hash function to do it.

We have a “strange” function f , which takes a block of some number of
bits, say m and produces m bits. That is: f : 2m → 2m.86

122

Figure 64: f produces a digest of block B by hashing it and producing O.

This f will be a one-way hash. We can look at Fig. 64. Nothing par-
ticularly interesting in this figure, but it will be a building block for the
rest.

Similarly, to what we did when encrypting long messages, we need to
discuss how to hash/digest long messages. Our first attempt is to use chain-
ing, as shown in Fig. 65. Here, the message consists of n blocks of m bits
each, denoted by B1, B2, . . . , Bn.87. So the message is M = B1B2 . . . Bn.
The digest of the entire message, ℎ(M) is actually On.

Figure 65: Digesting a long message, the digest is On.

Note the similarity to encrypting long messages. The differences are:

1. There is no secret key (but there may be one later, as we will see)

2. We are only interested in the last block obtained and throw out the
rest

86Actually this could be f : 2m1 → 2m2 , with m1 and m2 constant, but not necessarily
equal, for instance m1 = 1024 and m2 = 512 but this is not really important.

87Padding is added to get an integral number of blocks.

123

An alternative way of looking at the same process, when we are not
interested in talking about the internal structure (or perhaps the internal
structure is in fact different) would be as depicted in Fig. 63, which we have
seen before, but we may to use the term “digest” of “fingerprint,” instead of
“hash.”

So Alice sends the hash in some secure way to Bob, and when Bob
receives both M and g = H(M), he can confirm that he got M without any
errors by computing H(M) and confirming that it is g. See also, the example
we had earlier, in Section 4.3.1: http://www.gimp.org/downloads/. The
“MD5 sum” is a cryptographic hash function, see http://en.wikipedia.

org/wiki/MD5.

Of course, we need to be sure that g is not corrupted and that Mallory
did not substitute his own M ′ and g′ = H(M ′) for the original M and
g = H(M).

We can think of two ways of preventing Mallory from doing this:

1. If Alice has a public key and it is known to Bob, Alice can just decrypt
the g and send this decryption instead of g. This is how we have signed
messages previously

2. g can be sent to Bob in a different secure way, such as perhaps telling
him what it is on the phone

But later, we will see additional ways of making sure that the digest is
not corrupted, relying on symmetric keys.

14.2 The “birthday paradox”

We will discuss here some implications of the need to have strong collision
resistance.

We need to discuss how easily can Mallory produce another message M ′

with the same hash as M , that is: H(M) = H(M ′). If he can produce such
an M ′, Mallory can convince Bob that M ′ is the original message M , as
its hash is the same as that of M . Thus convincing Bob to accept a forged
message. This is best analyzed by means of a so-called birthday paradox.88.

Forouzan has a much more extensive discussion of the various types of
the birthday paradox, which are are perhaps worth reading, see F[345–352]
and F[611–614]. But for our purpose it will be enough to build the intuition
with a simpler (but not quite right mathematically) discussion.

88It is really not a paradox at all

http://www.gimp.org/downloads/
http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/MD5

124

Consider k boys and k girls. What is the probability that there is a pair
⟨boy,girl⟩, that share a birthday?89 Sharing a birthday means that they were
born in the same month and on the same day, but not necessarily in the
same year. We will assume a year of 365 days.

We actually want to ask “how big should k be so that the probability of
at least one such pair sharing a birthday is at least 0.5.”

The answer is about
√

365, in fact the correct answer is 16.

Let’s discuss the intuition, somewhat informally. Take one boy. The ex-
pected number of birthdays he shares with one girl is 1/365.90 The expected
number of birthdays he shares with k girls is k/365. So we can say that the
expected number of birthday sharing for k boys is k × (k/365) = k2/365. So
if k =

√
365 it it seems that there is a reasonable constant probability that

at least one such “sharing” occurs.

Now think of messages as children and of their digests as birthdays. So,
if we have two sets A and B, each of 16 messages, then with probability at
least 0.5, there is at least one a ∈ A and at least one b ∈ B such that a and
b have the same digest.

In general, see F[Table 11.3, Problem 4], if the universe of digests is of
size N and k = 0.83×

√
N , then there is a collision (a message from set A

has the same digest as a message from set B) with probability at least 0.5.

Let us consider a scenario where Mallory will take advantage of such a
collision. Alice is a CEO of a company, Mallory is her secretary. Bob is an
employee. Bob and Mallory are friends and suspect that Alice is going to
demote Bob.

Let us say that the universe of the digests is all the bit strings of 64 bits,
that is, using the notation just above, N = 264. Mallory prepares two sets of
232 messages as depicted in the following paragraph:

I, Alice, promote/demote Bob, by this letter/memo so that the
organization/enterprise will function better . . .

What we have here is a string of letters with 33 pairs of the form
“string/string”, although we wrote only the first 3 pairs. Set A of messages
will start with “I, Alice, promote” and will have all possible choices of
selecting one of the other strings from each pair.

Using our example, there will be four messages in A:

89The standard birthday paradox talks about k people and asking about the probability
of any two sharing a birthday and not dividing them into boys and girls.

90The probability is 1/365 that he shares a birthday with this one girl.

125

I, Alice, promote Bob, by this letter so that the organization will
function better . . .

I, Alice, promote Bob, by this letter so that the enterprise will
function better . . .

I, Alice, promote Bob, by this memo so that the organization
will function better . . .

I, Alice, promote Bob, by this memo so that the enterprise will
function better . . .

So there will be 232 elements in this set. Set B will be constructed
similarly, but will contain message starting with “I, Alice, demote”. Mallory
finds a pair ⟨a, b⟩, where a ∈ A and b ∈ B with the same digest, that is
ℎ(a) = ℎ(b) (he can do it with probability greater than 0.5). This may
require a lot of work, but can be done well in advance.

Alice decides to demote Bob and tells Mallory to produce the appropriate
document. He gives her b. She produces ℎ(s), decrypts it with her private
key and gets signature s.

But this s is also her signature on a, as ℎ(a) = ℎ(b) . So now Mallory
has a letter a promoting Bob with Alice’s signature on it. And this is
computationally not too difficult to do.91

Therefore, if we use disgests of length m, two messages with the same
digest can be produced after trying about 2m/2 messages.

So, 64 bits is not enough, 160 is considered minimum and even this makes
people nervous.

14.3 Assuring integrity and authentication of the digest

Let’s look at some more sophisticated ways assuring message integrity and
authentication through digests.

Let’s look at Fig. 66. Here, Alice’s chooses some Initialization Vector
before computing the digest. So, Mallory cannot precompute the various
messages as before, because the digests will depend on the Initialization
Vector. For message integrity checking, not only the message and the digest
need to be known, but also the Initialization vector. This is not a problem,
it can be transmitted also, but it should not be easily predictable, so colli-
sions could not have been precomputed before, as Mallory could not have

91And this even under the assumption that the hash function is “perfect,” so nothing
other than exhaustive search works to “break” it.

126

Figure 66: Digest using an initialization vector.

precomputed collisions not knowing how the messages must start—they will
start with an unpredictable IV.

But, note that we cannot prevent replay attacks, unless we work a little
more. What is replay attack? Replay attacks are important in other contexts,
but this is a good place to introduce them. Say the message is from Alice
to Bob. Mallory gets hold of this message and makes a copy and let the
original one go. A day later he sends another copy of the message to Bob.
Bob thinks that he got another (new) message from Alice and acts upon
it (such as giving some more money to Mallory). The way to prevent this,
perhaps is to use an IV that is really a timestamp.

However, note that there is no proof that Alice is the one who pro-
duced the message. Let’s now do it, using symmetric key cryptography, by
extending the previous discussion.

Figure 67: Digest using a key.

1. Look at Fig. 67. We consider messages that Alice sends to Bob. Alice
and Bob share a symmetric key.92 Then only Alice and Bob can create
the digest (and of course Bob can confirm that the message came from

92Let’s not worry about replay attacks here.

127

Figure 68: Mallory extends the messages digested by On+1 without knowing
the key K.

Figure 69: Mallory cannot extend the message as the length, L is specified.

Figure 70: Mallory cannot extend the message as the last block of to be
digested is the secret key K, which he does not know.

Alice). Of course the key is not sent in the clear. But this (as the
previous schemes, though we did not discuss it) is vulnerable to an
extension attack.

2. Look at Fig. 68. Here Mallory can trivially extend the message and
modify the digest accordingly. There are ways to prevent this.

128

3. Look at Fig. 69. The message is prepended with L, the length of the
message. So if Mallory tries to extend the message, the digest will not
be correct.

4. Look at Fig. 70. Here is another approach. The key is appended to
the message before the digest is computed. So Mallory cannot extend
the message and get the correct digest. We have essentially described
HMAC. HMAC works with symmetric keys and any hash function.

A description of HMAC appears in F[354-356] It is
slightly different from the one in the official standard
http://csrc.nist.gov/publications/drafts/fips_198-1/

draft_FIPS-198-1_June-08-2007.pdf.

14.4 Key ideas

1. Using one-way hash functions for assuring message integrity and au-
thentication

2. The need for longer digests to prevent birthday paradoxes

3. HMAC

http://csrc.nist.gov/publications/drafts/fips_198-1/draft_FIPS-198-1_June-08-2007.pdf
http://csrc.nist.gov/publications/drafts/fips_198-1/draft_FIPS-198-1_June-08-2007.pdf

129

15 Discrete log problem and its applications

15.1 Discrete log problem

Let us look at the set {1, 2, 3, 4, 5, 6} with the operation ×7. (This is really
ℤ∗7.) Let us look at powers of elements modulo 5. We get a table as shown
in Fig. 71.

a a1 a2 a3 a4 a5 a6

1 1 1 1 1 1 1
2 2 4 1 2 4 1
3 3 2 6 4 5 1
4 4 2 1 4 2 1
5 5 4 6 2 3 1
6 6 1 6 1 6 1

Figure 71: Powers in ℤ∗7

Note that powers of 3 give all of the set but powers of 2 do not. We will
say that 3 is a primitive root of this set; this means that its powers “cycle”
through the set.

In general, we can look at ℤ∗n and ask whether it has (at least one) prim-
itive root. The general answer is that it does iff n is one of: 2, 4, pk, 2× pk,
where p is an odd prime. But we will only look at ℤ∗p, with p ≥ 3, and not
other possible n.

Returning to our example, both 3 and 5 are primitive roots. We can ask
the following questions for any y ∈ ℤ∗7.

1. What is (the unique) x < n such that y = 3x mod 7? The answer to
this is called the discrete log of y to the base 3 modulo 7.93

2. What is (the unique) x < n such that y = 5x mod 7? The answer to
this is called the discrete log of y to the base 5 modulo 7.

In general, we can ask this for any ℤ∗n and g that is its primitive root.
That is, given y ∈ ℤ∗n, what is the unique x < n, such that y = gx mod n.

For a bigger example, consider n = 19. 10 is a primitive root of ℤ∗n,
because computing powers of 10 modulo 19 we get: 10, 5, 12, 6, 3, 11, 15,
17, 18, 9, 14, 7, 13, 16, 8, 4, 2, 1. Note that this sequence does not seem to
have a readily understood pattern, so we do not know for instance given 18

93Note the analogy with “regular” logs. Just drop the modulus.

130

(unless we work hard and spend a lot of resources) what was the power to
which 10 was raised to get it.

In general, for large n computing discrete logs is considered intractable.
So it is a one-way function. Given x it is easy to compute y = gx mod n, but
given y it is not feasible to compute the corresponding x. This is used as a
basis for a set of cryptographic primitives.

15.2 ElGamal public/private system

We essentially follow F[317-319], using his notation to make reading the
textbook simple.

ElGamal is a public/private encryption/decryption system, which is an
alternative to RSA.94 It relies on intractability of computing discrete log.
It is considered more secure than RSA in the sense that keys can be made
shorter than the ones required by RSA. It can also be implemented using
elliptic curves instead of integers with even greater security, that is, even
shorter keys are sufficient.. But discussion what elliptic curves are is beyond
the scope of our class.95

We will only proved a sketch of the protocol.
Bob will generate a public/private key pair.

1. He picks a large prime: p

2. He picks a random d, 1 ≤ d ≤ p− 2

3. He picks e1 a primitive root in ℤ∗p

4. He computes e2 = ed1 mod p

His keys are;

1. Public key: e1, e2, p

2. Private key: d, p

Alice wants to send message P to Bob.96 She does the following:

1. She picks a random r, 1 ≤ r ≤ p− 2

2. She computes C1 = er1 mod p and sends it to Bob

94“ElGamal” is the name of the inventor.
95These are not ellipses.
96Of course, 0 < P < p.

131

3. She computes C2 = (P × er2) mod p and sends it to Bob

Bob wants to recover P . He does the following:

1. P = [C2 × (Cd1)−1] mod p, where of course −1 in the exponent means
multiplicative inverse modulo p.97

Why does this work? Let’s compute

[C2 × (Cd1)−1] mod p = [P × er2 mod p]× [(er1 mod p)d]−1 mod p

= [P × (ed1 mod p)r mod p]× [(er1 mod p)d]−1 mod p

= [P × (ed×r1 mod p) mod p]× (er×d1)−1 mod p

= P × ed×r1 × (er×d1)−1 mod p

= P × ed×r−r×d1 mod p

= P × e01 mod p

= P × 1 mod p

= P mod p

= P

15.3 Digital Signature Standard (DSS)

This a system used for digital signature only, without enabling encryp-
tion/decryption.

The public/private key systems can be used for signing, as we have done
before: by decrypting the hash of the message to be signed. So why have a
systems just for signing?

The government may prohibit encryption and decryption but may permit
signing, so it may be useful to have a system for signing that cannot be used
for encryption and decryption, thus making digital signing legal.98

We sketch briefly how this works. For more details, you can look at
F[405–407]

The following are public:

1. one-way hash ℎ

97As p is a prime, every z, such that 0 < z < p has such a multiplicative inverse modulo
p, which can of course be easily found using Extended Euclidean Algorithm.

98But there is something call a “subliminal channel,” using signature created following
DSS can be used to encrypt small messages—we will see this soon.

132

2. q prime

3. p = �× q + 1 prime (for some �)

4. g such that gq mod p = 1

Various computations will be done sometimes modulo p and sometimes
modulo q. We do not indicate this. There will be various multiplicative
inverses, we will not indicate modulo what. Various integers are chosen in
various ranges. You can easily find complete specifications or read the details
in Forouzan.

Alice chooses her signing (public,private) key pair, by doing the following:

1. Alice chooses random d

2. Alice computes t = gd and publishes it

Alice wants to sign a message m. She does:

1. Alice chooses random S (this is necessary for each message separately
but is not in any way dependent on the message itself):

2. Alice computes R = gS

3. Alice computes T = ℎ(m∣∣R)

4. Alice computes

X = d× T + S

5. The signature is the pair ⟨T,X⟩

Bob gets: m,T,X and verifies:

1. He computes V = gX × t−T . Note that:

V = gX × t−T

= gX × (gd)−T

= gX−d×T

= gS

= R

2. He checks that ℎ(m∣∣V) = T

133

15.3.1 Subliminal channel

Using the above scheme, it is possible for Alice to send to Bob short secret
messages. To do this she first sends him her d, which she is supposed to keep
secret, in “out of cryptography way.”99

She now wants to send him a secret. This secret will be used as S (which
is supposed to be random, but it is not, it is what she wants to send to Bob).
She picks some message m. It is not important what it is, for instance: “I
am OK.”

She goes through the usual procedure.
As before, Bob gets m,T,X.
But he knows that X = d× T + S. And as has been told what d was, he

just computes:

S = X − d× T

15.4 Key ideas

1. Primitive roots in ℤ∗p

2. Discrete Log

3. ElGamal: using discrete log for public/private encryption system

4. DSA/DSS: using discrete log for digital signatures

99Perhaps she told him this d the last time they met.

134

135

16 Entity authentication

I will mostly use Forouzan and add some material, other than for Zero-
Knowledge proofs, which I will do differently.

16.1 Introduction

F[416–417]

16.2 Passwords

F[417–421]

16.2.1 Salt

Note that it really serves like an IV to get different hashes for the same
“semantic content.”

16.2.2 Passphrases

We elaborate on what we already have briefly discussed.

There is a piece of information that must be kept on a disk in a way
that nobody can undertand what its “real” value is from the value used for
storing it. Examples could be: private key in a public/private cryptosystem
or a symmetric key for opening/closing a Truecrypt virtual disk.

Let S be this piece of information. It itself will need to be encrypted
with a symmetric key, which needs to be remembered by the user when it is
is needed. Say, we use DES.100

The user has a one-way hash function ℎ. The user remembers a passphrase,
a sentence that others would not guess, PassPhrase.

S is not encrypted yet.

The system computes ℎ(PassPhrase) and extracts from it 56 bits, adds 8
bits for parity in the right places and gets a 64 DES key, say K.

Now, S is encrypted with K, producing some T . S is erased and T is
stored.

When the user needs (or software that the user is running) needs to know
S, the user inputs PassPhrase, the system computes ℎ(PassPhrase) and from
it K. This K is used to decrypt T , producing S.

100Bad in reality, keys are to short, but easy to remember the length of the keys: 64 bits
including parity, 56 bits without parity.

136

Note, that the passphrase can be changed at any time. The old passphrase
is input, S is recovered and then encrypted using a key derived from the new
passphrase.

16.3 Challenge-Response

We will cover only some of the ones in Forouzan, specifically:

1. Fig. 14.5. Bob sends a random nonce (number once, that is a number
that is unlikely to be every used by anybody else, as it was chosen
randomly) to prevent replay attacks.

2. Fig. 14.11. We have seen this before.

16.3.1 Another protocol for mutual authentication using symmet-
ric keys

Alice and Bob share a symmetric key K. They will authenticated themselves
to each other using this symmetric key. The various R’s are random numbers.

1. Alice→ Bob

I am Alice

2. Alice← Bob

R1

3. Alice→ Bob

E(K,R1); Bob verifies

4. Alice→ Bob

R2

5. Alice← Bob

E(K,R2); Alice verifies

Let’s try to make it more efficient

1. Alice→ Bob

I am Alice, R2

2. Alice← Bob

R1, E(K,R2); Alice verifies

137

3. Alice→ Bob

E(K,R1); Bob verifies

This is vulnerable to a reflection attack. Assume that it is OK for Alice
to open two sessions with Bob.

In fact, Mallory will open two sessions with Bob and in one of them will
convince him he is Alice. We look at the trace. The session in which an
event took place is tagged with with a bold integer (1 or 2)

1. Mallory→ Bob

1: I am Alice, R2

2. Mallory← Bob

1: R1, E(K,R2)

3. Mallory→ Bob

2: I am Alice, R1

4. Mallory← Bob

2: R3, E(K,R1)

5. Mallory→ Bob

1: E(K,R1); Bob verifies

Mallory breaks session 2 and continues with session 1.

How to prevent this reflection attack while still using the optimized
protocol? Several choices

1. Use different keys known to both. Alice uses KA,B and Bob uses KB,A.

2. Alice and both use different challenges (random numbers). Initiator
uses odd numbers and responder uses even numbers.101

101We cannot assign parity “statically,” i.e. assigning odd numbers to Alice and even
to Bob because then two participants could have the same parity, if say Carol needs to
participate also, as then she will have the same parity as either Alice or Bob and there will
be a problem if Carol and one of the others need to authenticate each other.

138

16.4 Zero Knowledge

16.4.1 Motivation

We want a way in which Peggy (prover) can prove to Victor (verifier) she is
Peggy in a way he can verify it.

We want to do it in a way that neither Victor nor Eve can learn anything
else. Let’s clarify this.

When we look at the way we did it, say in Fig 14.5, Eve can learn what
is the encrypted value of RA-B. Whether it is useful to her we do not know,
but she did learn something new.

Let’s consider another example.

Peggy wants to prove to Victor that she knows the combination to a safe.
The safe is empty and open. Victor closes it and leaves the room locking
Peggy there (so nobody else can play with the safe in the room other than
Peggy). Peggy opens the safe. Victor comes into the room and sees that safe
is open. Victor does not know anything new other that the mere fact that
Peggy knows the combination.102

Cave example from F[428–429]. The important point is that if Peggy
does not have the key to the door and they play the game n times, she can
succeed in all these times only with probability 1/2n.

16.4.2 Cut-and-choose and the graph isomorphism problem.

How do we do it in cryptography?

There is a “fact” that only Peggy knows, say F . She wants to prove to
Victor that she knows this fact.

She creates two “subfacts”: F1 and F2, such that:

1. Whoever knows both F1 and F2 provably knows F

2. Knowing only F1 or only F2 does not help in any way to learn anything
about F

Peggy tells Victor: “I will tell you either F1 or F2, whichever you like,
but not both.

Victor chooses 1 or 2 at random. Say, he chooses 1. Then Peggy tells
him F1.

102We ignore lucky guesses by Peggy.

139

Now Victor believes that with probability 1/2 Peggy knew both subfacts.
Otherwise, with probability 1− 1/2 = 1/2 she did not know F1 (as he picked
this subfact at random).103

Now she produces two new subfacts of the same fact she claims to know.
If again she answers his question, he is now convinced that she is Peggy with
probability 1− 1/4.

And so on. . .

We will not discuss this in the class but If n = p × q a product of two
primes, and she knows this factorization, she can convince Victor that she
knows the factors of n without giving him any additional information. We
will look at a more intuitively understood problem.

We will consider graph isomorphism. We have a (large) graph G1. We
permute its vertices and get another graph G2. It anybody sees these two
graphs it is difficult (intractable) to find the permutation that permutes the
first graph into the second one.

Graphs are represented as the set or vertices and the set of edges, say
lexicographically.

Our running example with have the following components:

1. G1, with

(a) Vertices: 1, 2, 3, 4

(b) Edges: {1,2}, {1,3}, {1,4}, {3,4}

2. Permutation � of vertices as shown in Fig. 72:

3. This creates G2, with

(a) Vertices: 1, 2, 3, 4

(b) Edges: {1,2}, {1,3}, {2,3}, {2,4}

This is pictorially depicted in Fig. 73. But, without the picture it is
infeasible (if the graphs are large and nontrivially isomorphic) to figure this
out.

Peggy randomly chooses graph G1 of some n vertices and permutation
�.104 Computes G2 (that is the list of the edges) and publishes G1 and G2

103Technically ≥ 1− 1/2 = 1/2, but this is not important. (Perhaps she did not know
anything).
104We are not discussing how to produce a random graph. Basically, we need to choose

edges in some random fashion.

140

vertex �(vertex)
1 2
2 4
3 3
4 1

Figure 72: Permutation � of the vertices of G1

Figure 73: Graphs G1 and G2 and the permutation �.

and claims she knows �. She is going to prove this to Victor. Note, for the
future, that Peggy also knows �−1, as this is just the reverse of �.

There is a number of rounds. Each round has the following structure:

1. Peggy chooses a random permutation of {1, 2, . . . , n}, which is really a
permutation of the vertices of G1. This is easy. Let this permutation
be called �1. It produces some graph H. See Figures 74 and 75.

Note the very important point. Peggy can easily compute the permu-
tation �2 that permutes G2 to give H. Indeed, if she starts with G2,
applies the inverse of �, denoted by �−1 to it, she gets G1. Then by
applying �1 to this, she gets G2. In other words, �2 is obtained by
applying �−1 and then �1. We see the picture in Fig. 76.

The permutations �−1 and �2 are listed in Figures 77 and 78.

2. Victor randomly ask her to produce either �1 or �2

3. Peggy does this

Let us note a few things.

1. Anybody who knows G1 and G2 can trivially produce the following

(a) A permutation �1 of n vertices which given G1 produces a graph
(call it H1) that is isomorphic to G1 under �1

105

105Any permutation of the n vertices will work.

141

vertex �1(vertex)
1 2
2 4
3 1
4 3

Figure 74: Permutation �1.

Figure 75: From G1 to H.

(b) A permutation �2 of n vertices which given G2 produces a graph
(call it H2) that is isomorphic to G2 under �2

But these H1 ∕= H2 (with extremely high probability). So given either
H1 or H2, its “producer” knows how to go back, but only from H1 to
G1 and only from H2 to G2. (But does not know how to go from H1

to G2 or from H2 to G1.)

So if such an actor produces some H, it cannot be both H1 and H2.
So the actor can only answer one of the two questions:

(a) Show �1

(b) Show �2

2. Anybody who knows both �1 and �2 must also know (by easy) compu-
tation permutation �.

142

Figure 76: From �−1 and �1 to �2.

vertex �−1(vertex)
1 4
2 1
3 3
4 2

Figure 77: Permutation �−1.

vertex �2(vertex)
1 3
2 2
3 1
4 4

Figure 78: Permutation �2.

Indeed, � is obtained by first applying �1 and then �−12 , the latter is
of, course easily computed from �. This is shown in Fig. 79

Therefore, we now have a procedure by means of which Peggy can au-
thenticate herself to Victor.

They play the game some k times. Each time, she chooses a (different, of
course) random �1. If she answers correctly the random requests of Victor
for either �1 or �2, he is sure with probability 1− 1/2k that he is talking to

143

Figure 79: From �1 and �−12 to �.

Peggy.
Why, because if she can answer either question, she must know both

answers and if she knows both answers it cannot be that she is ignorant of �
as she could have easily computed it given �1 and �2, which she knows.

16.4.3 Extension to off-line, non-interactive proofs

The previous procedure was interactive. Let us say that we keep a transcript
of what happened, that is the string

G1, G2, H1, c1, �c1 , H2, c2, �c2 , . . . ,Hk, ck, �ck

The results of the ith trial are marked with the subscript i. Here, ci is
either 1 or 2, �ci the appropriate mapping of either G1 or G2 onto Hi as
needed.

Imagine now that somebody brings a transcript of this form. Can we
believe that it must have been produced by Peggy? No, anybody can make
a transcript of this form.

Let us just look at the first two “trials.” Mallory knows G1 and G2. He
does the following:

1. He picks c1 any way he likes, say it is 1.

2. He picks �1 any way he likes

144

3. He computes H1 = �1(G1)

4. He picks c2 any way he likes, say it is 2.

5. He picks �2 any way he likes

6. He computes H2 = �2(G2)

In this wasy he can produce a valid-looking transcript, because he first
chose a permutation (the response) and then produced the appropriate graph
H (the challenge).

There is a way of describing transcripts that only Alice can produce.
The transcript will have the form

G1, G2, H1, H2, . . . ,Hk, , c1, c2, . . . , ck, �c1 , �c2 , . . . , �ck

The key point here is that the challenges come before responses. What
needs to be done is to “simulate” Victor, that is to produce challenges that
Alice cannot control.

Actually easy. We compute the hash

ℎ(G1, G2, H1, H2, . . . ,Hk)

(considering the arguments as one string) and extract the last k bits.
Considering each bit bi as an integer, we define ci = bi + 1. Only then it is
known which �i’s are needed. It was unpredictable when the various Hi’s
were produced.

One can also use if for signatures, to sign m, the transcript will be of the
form:

m,G1, G2, H1, H2, . . . ,Hk, , c1, c2, . . . , ck, �c1 , �c2 , . . . , �ck

and the hash producing the challenges

ℎ(m,G1, G2, H1, H2, . . . ,Hk)

145

17 Key management

We look at some parts of F[Chapter 15]. It is easy to read, so we will not
spend much time on this topic.

17.1 Key distribution center

We just discuss the idea briefly, following Forouzan[bottom of p. 438 – top
of p. 439]

17.2 Diffie-Hellman

We partially follow Forouzan, Section 15.3
Everybody picks a prime number p and a primitive root (also called

generator, the term we have not used) g of Z∗p . To remind you, this means,
that as we look at the powers of g, we get all the elements: 1, 2, . . . , p− 1.

Alice and Bob each pick a random number, in the range 1, . . . , p− 1.106

Alice picks x and Bob picks y. They will cooperatively generate a secret
symmetric key to be used with a symmetric cryptographic system such as
DES.

The protocol they use is shown in Figure 15.9 on page 448 in Forouzan.
Note that R1 and R2 could be published, so there is no need for Alice and
Bob to exchange messages to agree on the symmetric key.107

However, as shown in Figure 15.11, this protocol is vulnerable to Mallory’s
attack.

This can be prevented by Alice and Bob having certificates, so they can
use a signing system (such as application of RSA), so they can sign their R’s.

This is shown in Figure 15.12.
It is worth briefly to discuss how Diffie-Hellman is used in the email

context, using Forouzan’s notation.
Bob has published his R2 = gy mod p. Alice, wants to send him a secret

message.
She picks a random x and computes R1 and K as before.108 She uses K

to encrypt the email and sends both the encrypted email and R1 to Bob.

1061 and p−1 are bad choices as we know, but they will not be chosen (with overwhelming
probability).
107Generally this is not a good idea, as every “conversation” should have its own en-

cryption key, in case in some way a key can be found (perhaps it was written on a sticky
note)
108Or she can use the same x with all recipients, not a good idea, better a different key

for each email.

146

147

18 Secret sharing

Alice has a secret string s. She wants to give some information to Bob and
some to Carol, so together they can reconstruct s but neither can do it alone.

Very easy. She picks random string r of the same length. She gives r to
Bob and r ⊕ s to Carol. Then can together reconstruct s by computing:

r ⊕ (r ⊕ s) = (r ⊕ r)⊕ s = s

18.1 General case

In this case, we want to have a secret split among an arbitrary number of
participants: n. Any m of them can reconstruct the secret, but no m − 1
can do that.

We do everything here using “infinite precision” real numbers. Of course,
in practice we need bounded precision arithmetic—just like we did when
working with modular arithmetic. This can be done, but we will not discuss
how (using some finite structures, fields in this case).

We chose n and m, such that 1 ≤ m ≤ n.109 For any string s, we can
find n string t1, t2, . . . , tn, such that:

1. Given any m of the strings from {t1, t2, . . . , tn}, there is a unique
reconstruction of s from them

2. Given fewer than m such strings, it is impossible to reconstruct s (there
is no unique s corresponding to them.

Here is one way of doing it. We will write s as a sequence of bits. Without
loss of generality, let us assume that the length of this sequence is divisible
by m.

Let’s split s into blocks of length m, and call these blocks: s0, s1, . . . , sm−1.
Each of these blocks, being a string of bits, naturally defines a non-negative
integer. Let us use the notation si, both for the string of bits and the
corresponding integer.

We write a polynomial:

y =
m−1∑
i=0

si × xi

This is a polynomial of degree m− 1.

109The case of m = 1 is really trivial because everybody has to know the complete secret.

148

It is well-known that given m points on the plane, there is at most one
polynomial of degree m − 1 passing through them. For example, given 2
points on the plane, there is at most one polynomial of the form

y = �+ � × x

passing through these points. In fact, there will be exactly one polynomial,
unless the two points lie on a line of the form x = .

Let us now consider the example where n = 3 and m = 2
Our string written as the sequence of bits is s = 01101000. Then, written

as strings: s0 = 0110, s1 = 1000, and written as integers, s0 = 6 and s1 = 8.
Our polynomial is just:

y = 6 + 8× x

Let us pick n, that is 3, values of x. The choice will not be important, so
we may as well pick the integers: 1, 2, 3. Let us compute y(x):

y(1) =14

y(2) =22

y(3) =30

Look at Figure 80
We now have 3 points on the line: t1 = ⟨1, 14⟩, t2 = ⟨2, 22⟩, and

t3 = ⟨3, 30⟩.
Any two of these three points specify exactly one straight line, actually

our line (polynomial of degree 1). So if we give one point to a person, any
two of them can find the intersection and therefore reconstruct the string s

For example if they together know ⟨1, 14⟩ and ⟨2, 22⟩, the will solve the
system of linear equations:

14 =s0 + s1 × 1

22 =s0 + s1 × 2

A single point is not sufficient as an infinite number of lines pass through
it.

In general, given a polynomial of degree m − 1, it is fully determined
by any m pairs of the form: ⟨xi, yi⟩, where yi = y(xi). So given these m
points/pairs we need to solve for the pieces s0, . . . , sm−1

We write m linear equations for i = 0, 1, . . . ,m− 1:

149

Figure 80: Three points on a straight line.

yi =

m−1∑
j=0

si × xji

and solve this system of m equations in m variables to get s0, s1, . . . , sm−1.
So, for the general problem we have, we write the appropriate polynomial

of degree m − 1 with the coefficients being the “pieces” of the string s,
compute its value in n points, say 1, 2, . . . , n, and this is how we get the
needed ti’s

There is another way, quite similar. Look at Figure 81.
Again, let n = 3 and m = 2. Take the point ⟨s0, s1⟩ in 2-dimensional

space.
Pick any 3 lines passing thought this point: y = �i+�i×x, for i = 1, 2, 3.
ti = ⟨�i, �i⟩
Any two lines from the three above intersect at exactly the point ⟨s0, s1⟩,

producing s. So given any two of the ti’s allows reconstruction of the point.
This can be easily generalized to any m and n
Useful application: hiding a treasure in a desert. Give one person the

longitude and the other the latitude. Here, n = m = 2.
In practice:

150

Figure 81: Three lines intersecting at one point.

Theorem 16. Given string s, it is possible to find n strings each of length
length(s)/m, where length(s) is the number of bits in s.

such that from any m of them, s can be (uniquely) reconstructed. (With-
out loss of generality, as we can always pad, the length of s is divisible by
m.)

This is optimal, as we reconstruct length(s) bits out of length(s) bits.

This is related (closely) to error-correcting codes.

151

19 Secure Socket Layer (SSL)

This is what is going on when you see a padlock.

Forouzan provides an extremely detailed description of this protocol. I
will, instead, tell you the key ideas behind what is going on.

First, just for the record, here is the handshake protocol between a client
and a server (some of the messages are optional, for instance the client may
not have a certificate):

1. Phase 1

(a) Client→ Server

client hello

(b) Client← Server

server hello

2. Phase 2

(a) Client← Server

certificate

(b) Client← Server

server key exchange

(c) Client← Server

certificate request

(d) Client← Server

server hello done

3. Phase 3

(a) Client→ Server

certificate

(b) Client→ Server

client key exchange

(c) Client→ Server

certificate verify

4. Phase 4

152

(a) Client→ Server

change cipher spec

(b) Client→ Server

finished

(c) Client← Server

change cipher spec

(d) Client← Server

finished

Let us now examine the key actions that take place, not necessarily in
the exact order in which they take place (we combined various messages into
one action, sometimes):

1. Client→ Server

(a) I want to talk

(b) here is the highest version of SSL protocol I understand

(c) here are the cryptographic methods that I can handle: pub-
lic/private, symmetric, hash 110 111

(d) here is my random number (nonce): RClient.

2. Client← Server

(a) here is the version of SSL we will use

(b) here is my certificate (containing my public key)

(c) here is my choice of cryptographic methods from the ones you
can handle;112

(d) here is my random number (nonce): RServer.

3. Client→ Server

(a) I am sending you a random secret S encrypted with your public
key: ERSA(eRSA

Server, S)

110For instance, the client can specify that it can handle the following symmetric cryp-
tosystems: 3DES and AES.
111These are also called “ciphers.”
112For instance, RSA, 3DES, Whirlpool.

153

(b) I am computing for myself our shared secret K =
f(RClient, RServer, S) where f is a standard function 113 114

(c) a (keyed) hash of the string CLNT∣∣handshakeMessages 115

4. Client← Server

(a) I am computing for myself our shared secret K =
f(RClient, RServer, S) where f is a standard function 116 117

(b) I am sending you a (keyed) hash of the string
SRVR∣∣handshakeMessages;118

Let us note:

1. If the handshake messages have been tampered with, this will be
detected by means of the keyed hash.

2. The two random numbers prevent replay attacks: an old session cannot
be reused.

3. The client authenticates the server in an oblique way: the server will
get the same shared pre-secret S only if it can decrypt the message
ERSA(eRSA

Server, S), and it can do this only if it knows the private key of
the “alleged” server.

4. The shared secret key K is used to generate the various secrets needed,
IV (Initialization Vector), symmetric encryption/decryption key, and
symmetric signing key,119 each for each of the two participants, in fact
6 total.

Now they can communicate. It is is now easy to see how they do it. They
all know all the 6 secrets.

If the client wants to talk to the server it uses its own IV, encrypting key,
and signing key. The server knows the client’s secrets so it can decrypt and
authenticate what it gets.

113All the needed “secrets,” i.e., keys are computed in a predictable way from this K
114This actually does not need to be reported, this part of the protocol.
115These are messages exchanged so far.
116The server gets S by decrypting what the client sent it previously.
117This actually does not need to be reported, this part of the protocol.
118Note that the server and the client have slightly different strings hashed, so the actual

hashes will be very different
119Recall how we used a symmetric key in the context of keyed hashed functions to

authenticate a message.

154

If the server wants to talk to the client it uses its own IV, encrypting key,
and signing key. The client knows the server’s secrets so it can decrypt and
authenticate what it gets.

155

20 Digital cash

Cash, as opposed to credit cards, wire transfers, or checks, has some good
properties (anonymity) and some bad properties (can be forged with the
forgerer not traceable, some of this holds true also for checks and other means
of payments). Digital cash has anonymity and cannot be forged. We will
learn how to make and use digital cash.

Instead of showing it all at once, we will produce a series of “implemen-
tations,” with the last one being a correct/complete one. In the middle, we
will learn a few interesting things.

Bob is a bank. He issues “bills” of $1. The bill is essentially a nonce
(number once), which is the “serial number”; and a signature by Bob. We
trust Bob, he is like Trent.

Alice comes to Bob and gives him a real $1 bill. We assume that he
knows who she is.120 He gives her some bits. Whenever Alice wants to buy
something from say Carol, she gives her the bits. The vendor gives these
bits (perhaps something else too) to Bob and gets from Bob a real $1 bill.

Bob has some public/private key system for signing, let’s assume RSA.
He has, of course, the corresponding public private keys, based on n, e, d. He
uses these only for his money issuing activities and nothing else. (He can, of
course, have another key pair for other activities.)

20.1 Digital cash, take 1

This is really a review. We have seen this before.

Bob chooses a nonce (as usual randomly) x < n.121 He gives Alice the
pair ⟨x, xd mod n⟩. The second part of the pair is the signature of Bob on
the first part. Carol can check the validity by checking that:

(xd mod n)e mod n = x

That is, encrypting the second part produces the first part.

Of course, this can be forged by Mallory. Anybody can pick y < n and
compute ye mod n. Then, of course, the pair ⟨ye mod n, y⟩ looks like a valid
bill.

120Reasonable assumption, as she very likely actually wires the money to his account in
some way.
121Alice could have picked x, but Bob has to verify that he has never used x before in

what follows.

156

20.2 Digital cash, take 2

This is really a review. We have seen the signing before.
Everybody has a well-known one-way hash function ℎ. Bob chooses a

nonce (as previously) x < n. He gives Alice the pair ⟨x, ℎd(x) mod n⟩. The
second part of the pair is the signature of Bob on the first part. Carol can
check the validity by checking that:

((ℎd(x) mod n)e mod n = ℎ(x)

That is, encrypting the second part produces the hash of the first part.
This cannot be forged in the following sense: If this bill is given back to

Bob twice, he knows that one of them is a forgery, as it is really a copy. But
he does not know which is a forgery, maybe both, so he really does not know
what to do, who, if any should be paid by him with a real $1 bill.

Also, there is no anonymity. When Carol presents the bits to Bob, he
knows that Carol got them from Alice as he knows to whom he gave the
pair.

20.3 Digital cash, take 3, “blind signing” to preserve
anonymity

Here we will learn an interesting protocol: blind signing. This corresponds
to signing a sealed envelope.

Alice picks two random numbers x, z < n. z is relatively prime with n.
She also computes the multiplicative inverse of z modulo n, let’s denote it
by z−1.

She also computes y = ℎ(x)× ze mod n and sends it to Bob. Bob will
not sign it but will do what signing does without taking the hash first. We
will see soon that this will not cause a problem So Bob gives her back the
pair ⟨y, yd mod n⟩. This is in fact:

(ℎ(x)× ze mod n)d mod n =(ℎd(x) mod n)× (zed mod n) mod n

=(ℎd(x) mod n)× (z) mod n

Alice now multiplies this by z−1 and gets

ℎd(x) mod n

So she now has Bob’s signature on x, that is the hash of x decrypted
with Bob’s private key and nobody can produce this other than Bob.

157

Alice buys something from Carol by giving her the pair:

⟨x, ℎ(x)d mod n⟩

Carol checks that this is a valid $1, by checking that the second part is
Bob’s signature on the first part, and gives it to Bob to get a real $1. Bob
will give her real money if he has never paid it before.122

We have anonymity. Bob does not know to whom he has issued the pair.
This was blind signing.

But, what if Alice cheats and she spent the money already with Dona?

20.4 Digital cash, take 4, “cut and choose” to prevent copy-
ing money

Let f and g be one-way hash-functions of two variables.123 Let k be some
integer (not very large, we will discuss later).

Alice picks some random (everywhere, numbers are smaller than n as
needed).

v1, . . . , vk

a1, . . . , ak

c1, . . . , ck

d1, . . . , dk

z1, . . . , zk where each zi is relatively prime with n

Alice∣∣vi is the concatenation of the string “Alice” with the integer vi.
Alice computes

xi = g(ai, ci) and yi = g(ai ⊕Alice∣∣vi, di) for i = 1, . . . , k

Note that this looks like secret sharing, as the string Alice∣∣vi is recover-
able from ai and ai ⊕Alice∣∣vi, but not from one of them.

Alice computes and sends to Bob:

f(xi, yi)z
e
i mod n for i = 1, . . . , k

122Some people do not consider real money anything that is not some fixed amount of
gold, so we could have replace a real $1 bill by a grain of gold.
123Of course, these could be one-way functions with the two variables coded into one

variable by concatenation with a well-known separator between them. So we really need
only one function ℎ.

158

He blindly signs these, as before, by decrypting them.
Alice gets rid of zi’s as before, getting

�i = fd(xi, yi) mod n for i = 1, . . . , k

She sends these to Carol. Carol randomly partitions {1, . . . k} into two
equal sized sets,124 and ask different question for i’s in the two sets.125

1. If i is in set 1, she asks Alice to produce: ai, ci, yi. She computes
g(ai, ci). Note that this is xi. She then checks that

f(xi, yi) = �ei mod n

2. If i is in set 2, she asks Alice to produce: ai ⊕ Alice∣∣vi, di, xi. She
computes g(ai ⊕ Alice∣∣vi, di). Note that this is yi. She then checks
that

f(xi, yi) = �ei mod n

If everything is verified, then Alice sent Bob’s signature on the right
strings. Carol shows everything to Bob, and he pays unless he has a proof
that he has already paid. He does not, so he pays.

Of course, if Carol resubmits the same strings, he has a proof that he
already got those strings—same if Carol gave these strings to Donna. But
what if Alice now spends the same $1 with Frank?

Frank ask her to do exactly the same thing that Carol did. But he picks
his own partition of {1, . . . k}.

If k is large enough (does not have to be very large) then it is highly
likely that for some i Carol had it in set 1 and Frank in set 2 (or vice versa).
So Bob received together from Carol and Frank for that i

ai, ci, yi, ai ⊕Alice∣∣vi, di, xi
He computes

ai ⊕ (ai ⊕Alice∣∣vi) = Alice∣∣vi
and recovers “Alice.” So he knows she is a forgerer and also has a proof

that he has already paid.

124Of course we can assume that k is even, or we can have the two sets varying by 1 in
size.
125Note this is similar to what we did in Zero Knowledge proofs.

159

However, what if Alice, when submitting her strings to Bob at the begin-
ning, replaced her name with George, Henry, Irene,. . . . After, he did not see
the strings he signed as she blinded them first.

Things fall apart.

20.5 Digital cash, take 5, “cut and choose” to prevent im-
personation

We need to make sure that Bob knows that Alice put her name correctly in
the strings before hashing.

Alice prepares the strings as before, but with the parameter 2k instead
of k. Bob gets 2k strings of the form

f(xi, yi)z
e
i mod n for i = 1, . . . , 2k

He randomly picks a set consisting of half of them (k out of 2k). For
each i that was picked, he asks Alice to show him everything:

vi, ai, ci, di, zi

From these he can verify that he got the right

f(xi, yi)z
e
i mod n for i in the chosen set

If everything is OK, he throws these out and blindly signs the other ones
and gives the signatures to Alice.

Alice can still smuggle in some small number perhaps of bad inputs, but
the intersection of the two sets that Carol and Donna picked is quite large
and there are many strings there with Alice’s name.

160

161

21 Identity-based encryption

We will cover this very informally.
The following is true, though we cannot discuss the details. Given some

string, say s, it is possible to find knowing only this string a public private
key pair (e, d) in a deterministic way (no random numbers) using a known
algorithm. Therefore anybody who knows this algorithm can do it. We will
make this clearer in a sequence of “implementations.”

21.1 Identity-based encryption: take 1

There exists a particular algorithm, or using our terminology, a particular
machine ℳ. This machine, for any name, such as Alice,126 produces two
strings:

1. eIDAlice

2. dIDAlice

such that the two strings can serve as (public,private) key pair in some
(public,private) key system. The superscript will remind us that this is
“identity-based encryption.”

Now, anybody who knows the algorithm can figure out eIDAlice and dIDAlice

therefore can send Alice an encrypted message. The problem is, of course,
that anybody who knows the algorithm can also figure out dIDAlice and therefore
anybody (including Eve) can decrypt messages sent to Alice.

21.2 Identity-based encryption: take 2

The algorithm is broken into two subalgorithms: ℳE and ℳD. The first one
is published, the second one is only known to Trent. Trent computes dIDAlice

and gives it to Alice. So only Alice and Trent can decrypt messages sent to
Alice.

There are two problems, which we will discuss in turn:

1. We do not like secret machines, we like public machines controlled (if
appropriate) by keys (Kerckhoff’s law)

2. We do not want a single Trent in the whole universe to be able to read
everybody’s email. Note, that the way we managed certificates in RSA,
Trent did not know private keys, but certified people’s public keys.

126This has to be a unique identifier for the person, probably best is an email address,
because this is known to whoever wants to send email to Alice

162

21.3 Identity-based encryption: take 3

The machines for generating public/private keys are publicly known, but
they are controlled by master keys. So Trent has some kind of master key
pair (eMaster

Trent , d
Master
Trent). There are two machines, both publicly known: ℳE

and ℳD.
Given a string, say Alice, and the appropriate master keys, the machines

produce the following keys unique to Alice:

1. eIDAlice = ℳE(eMaster
Trent ,Alice)

2. dIDAlice = ℳD(dMaster
Trent ,Alice)

eMaster
Trent is public, so anybody can compute eIDAlice. d

Master
Trent is private, so

only Trent can compute dIDAlice and give it to Alice.

21.4 Identity-based encryption: take 4

Every organization has its own Trent, with its own master keys.
So, anybody can send encrypted email to anybody by computing the

public key of the recipient (as long as the sender knows the master key
for producing public keys of the recipient’s organization’s Trent. But only
Trent of that organization can generate the corresponding private key of the
recipient and only those to whom this private key was given can decrypt the
emails.

Note, that the organization can read all encrypted email sent to its
employees.127

Note, that if the set of organization’s employees is static, its Trent can
throw out its dMaster

Trent once every employee was given his or her private key.

127In fact, for legal reasons, organizations may be required to be able to produce all
emails, so in future this might be the preferred way for organizations to manage encryption.

163

22 Corrections and additions

Notation [x,y] means: page x line y. y could be positive (count forward
from the top of the page, starting with +1) or negative (start counting
backwards from the bottom of the page, starting with −1).

164

165

List of Figures

1 Ideal Channel . 5

2 Hardware implementation of Caesar’s encryption machine
with parameter 3. So the letter “D” is rotated to be opposite
to “A”. 10

3 Encrypting Machine . 11

4 Decrypting Machine . 11

5 Example of functions E and D for some specific choice of
(e, d). M = C = {1, 2, 3, 4}. 14

6 The box before locking . 16

7 The box after locking . 16

8 The box after unlocking . 17

9 Alice authenticates herself to Bob. Source of x unspecified. . 21

10 Alice authenticates herself to Bob. Bob picks x. 22

11 Alice authenticates herself to Bob. Alice picks x. 24

12 One-way hashing machine. f refers to the resulting fingerprint.
x is of any (finite) lengths and f is of fixed length. 26

13 First attempt to produce a digital signature. Note that Bob
does not run E “in reverse.” It just convenient to have the
input be on the right side. 29

14 Mallory confuses Bob. Mallory tells Bob that s is the signa-
ture and E(e, s) is the (unencrypted) message. Note Bob does
not run E “in reverse.” It just convenient to have the input
be on the right side. 30

15 Digital signature production and verification. Note that Bob
does not run E “in reverse.” It is just convenient to have the
input be on the right side. 31

16 Encrypting and signing using public/private keys and hashing.
Alice sends both y (as message) and z as signature. 33

17 Encrypting using symmetric and public/private keys. In order
not to “clutter up” the figure, the superscripts for the keys
have been omitted. 35

18 Bob’s digital certificate . 37

19 C0. 42

20 C1. Imagine that the lower stripe is only 1/100th of the total
height. 42

21 C2. 43

22 D0. 43

23 complementary events. 44

166

24 Disjoint events. 44
25 Not disjoint events. 45
26 Tossing D0 and then C0. Only some of the probabilities are

written out. The probability is written below the result of the
random variable. 45

27 Probabilities of tossing D0 and C0. 46
28 Tossing C0 first and then C0 or C1. 46
29 B and A and conditional probabilities. 51
30 Tossing one of two coins . 52
31 The result of testing and treating. The probability at a leaf

is the product of probabilities along the path from the root,
computed up to three decimal places. The cases resulting in
death are underlined. 54

32 One-time pad. Alice uses a biased coin to select the key k. . . 56
33 One-time pad. Alice uses an unbiased (fair) coin to select the

key k. 57
34 The algorithm Bob uses for determining the result of tossing

D1. 62
35 Extended Euclidean algorithm for 75 and 28. 69
36 Multiplication table for ℤ∗10. ×10 stands for multiplication

modulo 10. Similar notation is used later too. 71
37 Multiplication table for ℤ∗7. 71
38 Multiplication table for ℤ∗15. 72
39 Powers in ℤ15 . 85
40 Residua modulo 3 and 4 of all integers smaller than 12 89
41 A format for the record to be encrypted. 91
42 A format for the record to be decrypted to produce a signature. 91
43 Algorithm for fast exponentiation 93
44 Computing 1722 mod 21. 94
45 Miller-Rabin algorithm for one value of a 97
46 n = 27 and a = 2. Miller-Rabin says: 27 is not a prime,

because 226 mod 27 ∕= 1. 98
47 n = 61 and a = 2. Miller-Rabin says: 61 is perhaps prime. (It

actually is a prime.) . 99
48 Messages and corresponding ciphers. 101
49 Labels for 2-bit strings . 101
50 Labels of messages and of corresponding ciphers. 101
51 Permutations of 4 elements (listed in columns). 102
52 Two permutations when key length is 1. One of two keys is

chosen and specified using 1 bit. 103

167

53 Encryption of messages under the two possible encryption keys.104
54 A part of Feistel’s cipher. 104
55 Encrypting m1 with all possible encryption keys. 107
56 Decrypting c1 with all possible decryption keys. 108
57 Encrypting m1 and decrypting c1 108
58 Encrypting m1 and decrypting c1, with the table rearranged . 108
59 Two key pairs consistent with the pair ⟨m1, c1⟩. 108
60 Applying the two remaining key pairs tom2 (the “intermediate”

values between the two encryptions are not important). . . . 109
61 Alice wants to send to send x to Bob using PGP. She actually

sends y to Bob. 116
62 PGP needs the private key d. Actually, its encrypted version

g is stored. Alice keys in her passphrase f and its hash ℎ(f)
is used by PGP as a symmetric key for decrypting g to obtain d.116

63 Hashing a long message, very schematic description. 119
64 f produces a digest of block B by hashing it and producing O.122
65 Digesting a long message, the digest is On. 122
66 Digest using an initialization vector. 126
67 Digest using a key. 126
68 Mallory extends the messages digested by On+1 without know-

ing the key K. 127
69 Mallory cannot extend the message as the length, L is specified.127
70 Mallory cannot extend the message as the last block of to be

digested is the secret key K, which he does not know. 127
71 Powers in ℤ∗7 . 129
72 Permutation � of the vertices of G1 140
73 Graphs G1 and G2 and the permutation �. 140
74 Permutation �1. 141
75 From G1 to H. 141
76 From �−1 and �1 to �2. 142
77 Permutation �−1. 142
78 Permutation �2. 142
79 From �1 and �−12 to �. 143
80 Three points on a straight line. 149
81 Three lines intersecting at one point. 150

168

169

Contents

1 Introduction 3

1.1 Presentation of the material 3

2 Setting 5

2.1 An ideal channel . 5

2.2 Our (main) actors . 6

2.3 Three fundamental building blocks 7

2.4 Key ideas . 7

2.5 Please read . 8

3 Some concepts 9

3.1 Example: Caesar’s cipher . 9

3.2 A general setting . 12

3.3 Kerckhoffs’ main desideratum 14

3.4 Symmetric systems and public/private systems 15

3.5 One-time pad . 16

3.6 Key ideas . 19

3.7 Please read . 20

4 Fundamental protocols 21

4.1 How do I know I am talking to Amazon? 21

4.1.1 Simple protocol: good idea, which has some problems 21

4.1.2 Bob picks the challenge 22

4.1.3 Alice picks the challenge 23

4.2 One-way functions . 25

4.3 Fingerprint, or one-way hash 26

4.3.1 Message integrity . 27

4.3.2 Tossing coins over the phone 27

4.3.3 Password storing in the clear 28

4.4 Digital signatures . 28

4.5 How do I know I am talking to Amazon (take 2)? 32

4.6 Encrypting and signing . 32

4.7 Encrypting and signing (take 2) 34

4.8 Digital certificates . 36

4.9 Putting it together . 37

4.10 Classifying security . 38

4.11 Key ideas . 39

4.12 Please read . 39

170

5 Probability, one-time pad security, and entropy 41

5.1 Probability . 41

5.1.1 Basic concepts . 41

5.1.2 Conditional probability and Bayes’ theorem 46

5.2 Practicing Bayesian thinking 51

5.3 Analyzing the one-time pad cryptosystem 54

5.3.1 Using a biased (unfair) coin to get k 55

5.3.2 Using an unbiased (fair) coin to get k 57

5.3.3 General statement . 58

5.4 Entropy (information theory, not physics) 59

5.5 Key ideas . 63

6 Properties of some integers etc. 65

6.1 Operations on integers . 65

6.2 Modular arithmetic . 68

6.3 Key ideas . 73

7 RSA public/private encryption system 75

7.1 Preliminaries . 75

7.2 The RSA algorithm . 79

7.3 From the RSA algorithm to an RSA protocol 87

7.4 A standard for encrypting and signing 90

7.5 Fast Exponentiation . 92

7.6 Primality testing . 94

7.7 Key ideas . 99

8 Components for symmetric encryption (using block ciphers)101

8.1 How does Feistel cipher work 104

8.2 Key ideas . 105

9 DES: Data Encryption Standard 107

9.1 Meet-in-the-middle-attack on 2DES 107

9.2 Triple DES . 110

9.3 Key ideas . 110

10 Advanced Encryption Standard 111

10.1 Key ideas . 111

171

11 Encryption using symmetric-key systems 113

11.1 ECB . 113

11.2 CBC . 113

11.3 CFB . 113

11.4 OFB . 113

11.5 CTR . 113

11.6 RC4 . 113

11.7 Key ideas . 113

12 PGP and secure mail 115

12.1 Keyrings and trust model . 116

12.2 Key ideas . 117

13 Cryptographic hash functions 119

13.1 Key ideas . 119

14 Message integrity and message authentication 121

14.1 Obtaining digests from one-way hash functions 121

14.2 The “birthday paradox” . 123

14.3 Assuring integrity and authentication of the digest 125

14.4 Key ideas . 128

15 Discrete log problem and its applications 129

15.1 Discrete log problem . 129

15.2 ElGamal public/private system 130

15.3 Digital Signature Standard (DSS) 131

15.3.1 Subliminal channel . 133

15.4 Key ideas . 133

16 Entity authentication 135

16.1 Introduction . 135

16.2 Passwords . 135

16.2.1 Salt . 135

16.2.2 Passphrases . 135

16.3 Challenge-Response . 136

16.3.1 Another protocol for mutual authentication using sym-
metric keys . 136

16.4 Zero Knowledge . 138

16.4.1 Motivation . 138

16.4.2 Cut-and-choose and the graph isomorphism problem. . 138

172

16.4.3 Extension to off-line, non-interactive proofs 143

17 Key management 145
17.1 Key distribution center . 145
17.2 Diffie-Hellman . 145

18 Secret sharing 147
18.1 General case . 147

19 Secure Socket Layer (SSL) 151

20 Digital cash 155
20.1 Digital cash, take 1 . 155
20.2 Digital cash, take 2 . 156
20.3 Digital cash, take 3, “blind signing” to preserve anonymity . 156
20.4 Digital cash, take 4, “cut and choose” to prevent copying money157
20.5 Digital cash, take 5, “cut and choose” to prevent impersonation159

21 Identity-based encryption 161
21.1 Identity-based encryption: take 1 161
21.2 Identity-based encryption: take 2 161
21.3 Identity-based encryption: take 3 162
21.4 Identity-based encryption: take 4 162

22 Corrections and additions 163

List of Figures 165

Contents 169

	1 Introduction
	1.1 Presentation of the material

	2 Setting
	2.1 An ideal channel
	2.2 Our (main) actors
	2.3 Three fundamental building blocks
	2.4 Key ideas
	2.5 Please read

	3 Some concepts
	3.1 Example: Caesar's cipher
	3.2 A general setting
	3.3 Kerckhoffs' main desideratum
	3.4 Symmetric systems and public/private systems
	3.5 One-time pad
	3.6 Key ideas
	3.7 Please read

	4 Fundamental protocols
	4.1 How do I know I am talking to Amazon?
	4.1.1 Simple protocol: good idea, which has some problems
	4.1.2 Bob picks the challenge
	4.1.3 Alice picks the challenge

	4.2 One-way functions
	4.3 Fingerprint, or one-way hash
	4.3.1 Message integrity
	4.3.2 Tossing coins over the phone
	4.3.3 Password storing in the clear

	4.4 Digital signatures
	4.5 How do I know I am talking to Amazon (take 2)?
	4.6 Encrypting and signing
	4.7 Encrypting and signing (take 2)
	4.8 Digital certificates
	4.9 Putting it together
	4.10 Classifying security
	4.11 Key ideas
	4.12 Please read

	5 Probability, one-time pad security, and entropy
	5.1 Probability
	5.1.1 Basic concepts
	5.1.2 Conditional probability and Bayes' theorem

	5.2 Practicing Bayesian thinking
	5.3 Analyzing the one-time pad cryptosystem
	5.3.1 Using a biased (unfair) coin to get k
	5.3.2 Using an unbiased (fair) coin to get k
	5.3.3 General statement

	5.4 Entropy (information theory, not physics)
	5.5 Key ideas

	6 Properties of some integers etc.
	6.1 Operations on integers
	6.2 Modular arithmetic
	6.3 Key ideas

	7 RSA public/private encryption system
	7.1 Preliminaries
	7.2 The RSA algorithm
	7.3 From the RSA algorithm to an RSA protocol
	7.4 A standard for encrypting and signing
	7.5 Fast Exponentiation
	7.6 Primality testing
	7.7 Key ideas

	8 Components for symmetric encryption (using block ciphers)
	8.1 How does Feistel cipher work
	8.2 Key ideas

	9 DES: Data Encryption Standard
	9.1 Meet-in-the-middle-attack on 2DES
	9.2 Triple DES
	9.3 Key ideas

	10 Advanced Encryption Standard
	10.1 Key ideas

	11 Encryption using symmetric-key systems
	11.1 ECB
	11.2 CBC
	11.3 CFB
	11.4 OFB
	11.5 CTR
	11.6 RC4
	11.7 Key ideas

	12 PGP and secure mail
	12.1 Keyrings and trust model
	12.2 Key ideas

	13 Cryptographic hash functions
	13.1 Key ideas

	14 Message integrity and message authentication
	14.1 Obtaining digests from one-way hash functions
	14.2 The ``birthday paradox''
	14.3 Assuring integrity and authentication of the digest
	14.4 Key ideas

	15 Discrete log problem and its applications
	15.1 Discrete log problem
	15.2 ElGamal public/private system
	15.3 Digital Signature Standard (DSS)
	15.3.1 Subliminal channel

	15.4 Key ideas

	16 Entity authentication
	16.1 Introduction
	16.2 Passwords
	16.2.1 Salt
	16.2.2 Passphrases

	16.3 Challenge-Response
	16.3.1 Another protocol for mutual authentication using symmetric keys

	16.4 Zero Knowledge
	16.4.1 Motivation
	16.4.2 Cut-and-choose and the graph isomorphism problem.
	16.4.3 Extension to off-line, non-interactive proofs

	17 Key management
	17.1 Key distribution center
	17.2 Diffie-Hellman

	18 Secret sharing
	18.1 General case

	19 Secure Socket Layer (SSL)
	20 Digital cash
	20.1 Digital cash, take 1
	20.2 Digital cash, take 2
	20.3 Digital cash, take 3, ``blind signing'' to preserve anonymity
	20.4 Digital cash, take 4, ``cut and choose'' to prevent copying money
	20.5 Digital cash, take 5, ``cut and choose'' to prevent impersonation

	21 Identity-based encryption
	21.1 Identity-based encryption: take 1
	21.2 Identity-based encryption: take 2
	21.3 Identity-based encryption: take 3
	21.4 Identity-based encryption: take 4

	22 Corrections and additions
	List of Figures
	Contents

