

O B J E C T - O R I E N T E D P R O G R A M M I N G

GENERAL INTRODUCTION

Though Python is an object-oriented language
without fuss or quibble, we have so far intentionally
avoided the treatment of object-oriented
programming (OOP) in the previous chapters of our
Python tutorial. We skipped OOP, because we are
convinced that it is easier and more fun to start
learning Python without having to know about all
the details of object-oriented programming.

But even though we have avoided OOP, it has
nevertheless always been present in the exercises
and examples of our course. We used objects and
methods from classes without properly explaining
their OOP background. In this chapter, we will

catch up on what has been missing so far. We will provide an introduction into the principles of object oriented
programming in general and into the specifics of the OOP approach of Python. OOP is one of the most
powerful tools of Python, but nevertheless you don't have to use it, i.e. you can write powerful and efficient
programs without it as well.

Though many computer scientists and programmers consider OOP to be a modern programming paradigm, the
roots go back to 1960s. The first programming language to use objects was Simula 67. As the name implies,
Simula 67 was introduced in the year 1967. A major breakthrough for object-oriented programming came with
the programming language Smalltalk in the 1970s.

You will learn to know the four major principles of object-orientation and the way Python deals with them in
the next section of this tutorial on object-oriented programming:

Encapsulation
Data Abstraction
Polymorphism
Inheritance

Before we start with the section on the way OOP is used
in Python, we want to give you a general idea about
object-oriented programming. For this purpose, we
would like to draw your attention to a public library.
Let's think about a huge one, like the "British Library" in
London or the "New York Public Library" in New York.
If it helps, you can imagine the libraries in Paris, Berlin,
Ottawa or Toronto1 as well. Each of these contain an
organized collection of books, periodicals, newspapers,
audiobooks, films and so on.

Generally, there are two opposed ways of keeping the
stock in a library. You can use a "closed access" method
that is the stock is not displayed on open shelves. In this
system, trained staff brings the books and other
publications to the users on demand. Another way of
running a library is open-access shelving, also known as
"open shelves". "Open" means open to all the users of
the library not only specially trained staff. In this case the books are openly displayed. Imperative languages
like C could be seen as open-access shelving libraries. The user can do everything. It's up to the user to find the

books and to put them back at the right shelf. Even though this is great for the user, it might lead to serious
problems in the long run. For example some books will be misplaced, so it's hard to find them again. As you
may have guessed already, "closed access" can be compared to object oriented programming. The analogy can
be seen like this: The books and other publications, which a library offers, are like the data in an object-oriented
program. Access to the books is restricted like access to the data is restricted in OOP. Getting or returning a
book is only possible via the staff. The staff functions like the methods in OOP, which control the access to the
data. So, the data, - often called attributes, - in such a program can be seen as being hidden and protected by a
shell, and it can only be accessed by special functions, usually called methods in the OOP context. Putting the
data behind a "shell" is called Encapsulation.
So a library can be regarded as a class and a book is an instance or an object of this class. Generally speaking,
an object is defined by a class. A class is a formal description of how an object is designed, i.e. which attributes
and methods it has. These objects are called instances as well. The expressions are in most cases used
synonymously. A class should not be confused with an object.

O O P I N P Y T H O N

FIRST-CLASS EVERYTHING

Even though we haven't talked about classes and object orientation in previous chapters, we have worked with
classes all the time. In fact, everything is a class in Python. Guido van Rossum has designed the language
according to the principle "first-class everything". He wrote: "One of my goals for Python was to make it so
that all objects were "first class." By this, I meant that I wanted all objects that could be named in the language
(e.g., integers, strings, functions, classes, modules, methods, and so on) to have equal status. That is, they can
be assigned to variables, placed in lists, stored in dictionaries, passed as arguments, and so forth." (Blog, The
History of Python, February 27, 2009) This means that "everything" is treated the same way, everything is a
class: functions and methods are values just like lists, integers or floats. Each of these are instances of their
corresponding classes.

>>> x = 42
>>> type(x)
<class 'int'>
>>> y = 4.34
>>> type(x)
<class 'int'>
>>> def f(x):
... return x + 1
...
>>> type(f)
<class 'function'>
>>> import math
>>> type(math)
<class 'module'>
>>>

One of the many integrated classes in Python is the list class, which we have quite often used in our exercises
and examples. The list class provides a wealth of methods to build lists, to access and change elements, or to
remove elements:

>>> x = [3,6,9]
>>> y = [45, "abc"]
>>> print(x[1])
6
>>> x[1] = 99
>>> x.append(42)
>>> last = y.pop()
>>> print(last)
abc
>>>

The variables x and y of the previous example denote two instances of the list class. In simplified terms, we
have said so far that "x and y are lists". We will use the terms "object" and "instance" synonymously in the
following chapters, as it is often done.2

pop and append of the previous example are methods of the list class. pop returns the most upper (or you might
think of it as the "rightest") element of the list and removes this element from the list. We will not explain how
Python has implemented lists internally. We don't need this information, because the list class provides us with
all the necessary methods to access the data indirectly. This means that the encapsulation details are
encapsulated. We will learn about encapsulation later.

A MINIMAL CLASS IN PYTHON

We will design and use a robot class in Python as an example to demonstrate the most important terms and

ideas of object orientation. We will
start with the simplest class in
Python.

class Robot:
 pass

We can realize the fundamental
syntactical structure of a class in
Python: A class consists of two
parts: the header and the body. The
header usually consists of just one
line of code. It begins with the
keyword "class" followed by a
blank and an arbitrary name for the
class. The class name is "Robot" in
our case. The class name is
followed by a listing of other class
names, which are classes from
which the defined class inherits
from. These classes are called superclasses, base classes or sometimes parent classes. If you look at our
example, you will see that this listing of superclasses is not obligatory. You don't have to bother about
inheritance and superclasses for the time being. We will introduce them later.

The body of a class consists of an indented block of statements. In our case a single statement, the "pass"
statement.

A class object is created, when the definition is left normally, i.e. via the end. This is basically a wrapper around
the contents of the namespace created by the class definition.

It's hard to believe, especially for C++ or Java programmers, but we have already defined a complete class with
just three words and two lines of code. We are capable of using this class as well:

class Robot:
 pass

if __name__ == "__main__":
 x = Robot()
 y = Robot()
 y2 = y
 print(y == y2)
 print(y == x)

We have created two different robots x and y in our example. Besides this, we have created a reference y2 to y,
i.e. y2 is an alias name for y. The output of this example program looks like this:

True
False

ATTRIBUTES

Those who have learned already another object-oriented language, will have realized that the terms attributes
and properties are usually used synonymously. It may even be used in the definition of an attribute, like
Wikipedia does: "In computing, an attribute is a specification that defines a property of an object, element, or

file. It may also refer to or set the specific value for a given instance of such."

Even in normal English usage the words "attribute" and "property" can be used in some cases as synonyms.
Both can have the meaning "An attribute, feature, quality, or characteristic of something or someone". Usually
an "attribute" is used to denote a specific ability or characteristic which something or someone has, like black
hair, no hair, or a quick perception, or "her quickness to grasp new tasks". So, think a while about your
outstanding attributes. What about your "outstanding properties"? Great, if one of your strong points is your
ability to quickly understand and adapt to new situations! Otherwise, you would not learn Python!

Let's get back to Python: We will learn later that properties and attributes are essentially different things in
Python. This subsection of our tutorial is about attributes in Python. So far our robots have no attributes. Not
even a name, like it is customary for ordinary robots, isn't it? So, let's implement a name attribute. "type
designation", "build year" and so on are easily conceivable as further attributes as well. 3

Attributes are created inside of a class definition, as we will soon learn. We can dynamically create arbitrary
new attributes for existing instances of a class. We do this by joining an arbitrary name to the instance name,
separated by a dot ".". In the following example, we demonstrate this by created an attribute for the name and
the build year:

>>> class Robot:
... pass
...
>>> x = Robot()
>>> y = Robot()
>>>
>>> x.name = "Marvin"
>>> x.build_year = "1979"
>>>
>>> y.name = "Caliban"
>>> y.build_year = "1993"
>>>
>>> print(x.name)
Marvin
>>> print(y.build_year)
1993
>>>

As we have said before: This is not the way to properly create instance attributes. We introduced this example,
because we think that it may help to make the following explanations easier to understand.

If you want to know, what's happening internally: The instances possess dictionaries __dict__, which they use
to store their attributes and their corresponding values:

>>> x.__dict__
{'name': 'Marvin', 'build_year': '1979'}
>>> y.__dict__
{'name': 'Caliban', 'build_year': '1993'}

Attributes can be bound to class names as well. In this case, each instance will possess this name as well. Watch
out, what happens, if you assign the same name to an instance:

>>> class Robot(object):
... pass
...
>>> x = Robot()
>>> Robot.brand = "Kuka"

>>> x.brand
'Kuka'
>>> x.brand = "Thales"
>>> Robot.brand
'Kuka'
>>> y = Robot()
>>> y.brand
'Kuka'
>>> Robot.brand = "Thales"
>>> y.brand
'Thales'
>>> x.brand
'Thales'

If you look at the __dict__ dictionaries, you can see what's happening.

>>> x.__dict__
{'brand': 'Thales'}
>>> y.__dict__
{}
>>>
>>> Robot.__dict__
mappingproxy({'__module__': '__main__', '__weakref__': , '__doc__':
None, '__dict__': , 'brand': 'Thales'})

If you try to access y.brand, Python checks first, if "brand" is a key of the y.__dict__ dictionary. If it is not,
Python checks, if "brand" is a key of the Robot.__dict__. If so, the value can be retrieved.

If an attribute name is not in included in either of the dictionary, the attribute name is not defined. If you try to
access a non-existing attribute, you will raise an AttributeError:

>>> x.energy
Traceback (most recent call last):
 File "<stdin>", line 1, in
AttributeError: 'Robot' object has no attribute 'energy'
>>>

By using the function getattr, you can prevent this exception, if you provide a default value as the third
argument:

>>> getattr(x, 'energy', 100)
100
>>>

Binding attributes to objects is a general concept in Python. Even function names can be attributed. You can
bind an attribute to a function name in the same way, we have done so far:

>>> def f(x):
... return 42
...
>>> f.x = 42
>>> print(f.x)
42
>>>

This can be used as a replacement for the static function variables of C and C++, which are not possible in
Python. We use a counter attribute in the following example:

def f(x):
 f.counter = getattr(f, "counter", 0) + 1
 return "Monty Python"

for i in range(10):
 f(i)

print(f.counter)

If you call this little script, it will output 10.

As we have already mentioned, we do not create instance attributes like this. To properly create instances we
need methods. You will learn in the following subsection of our tutorial, how you can define methods.

METHODS

We want to demonstrate now, how we can define methods in classes.

Methods in Python are essentially functions in accordance with Guido's
saying "first-class everything".

Let's define a function "hi", which takes an object "obj" as an argument
and assumes that this object has an attribute "name". We will also define
again our basic Robot class:

def hi(obj):
 print("Hi, I am " + obj.name + "!")

class Robot:
 pass

x = Robot()
x.name = "Marvin"
hi(x)

If we call this code, we get the result

Hi, I am Marvin!

We will now bind the function „hi“ to a class attribute „say_hi“!

def hi(obj):
 print("Hi, I am " + obj.name)

class Robot:
 say_hi = hi

x = Robot()
x.name = "Marvin"
Robot.say_hi(x)

"say_hi" is called a method. Usually, it will be called like this:

x.say_hi()

It is possible to define methods like this, but you shouldn't do it.

The proper way to do it:

Instead of defining a function outside of a class definition and binding it to a class attribute, we define a
method directly inside (indented) of a class definition.
A method is "just" a function which is defined inside of a class.
The first parameter is used a reference to the calling instance.
This parameter is usually called self.
Self corresponds to the Robot object x.

We have seen that a method differs from a function only in two aspects:

It belongs to a class, and it is defined within a class
The first parameter in the definition of a method has to be a reference to the instance, which called the
method. This parameter is usually called "self".

As a matter of fact, "self" is not a Python keyword. It's just a naming convention! So C++ or Java programmers
are free to call it "this", but this way they are risking that others might have greater difficulties in understanding
their code!

Most other object-oriented programming languages pass the reference to the object (self) as a hidden parameter
to the methods.

You saw before that the calls Robot.say_hi(x)". and "x.say_hi()" are equivalent. "x.say_hi()" can be seen as an
"abbreviated" form, i.e. Python automatically binds it to the instance name. Besides this "x.say_hi()" is the
usual way to call methods in Python and in other object oriented languages.

For a Class C, an instance x of C and a method m of C the following three method calls are equivalent:

type(x).m(x, ...)
C.m(x, ...)
x.m(...)

Before you proceed with the following text, you may mull over the previous example for awhile. Can you
figure out, what is wrong in the design?

There is more than one thing about this code, which may disturb you, but the essential problem at the moment
is the fact that we create a robot and that after the creation, we shouldn't forget about naming it! If we forget it,
say_hi will raise an error.

We need a mechanism to initialize an instance right after its creation. This is the __init__-method, which we
cover in the next section.

THE __INIT__ METHOD

We want to define the attributes of an instance right after its creation. __init__ is a method which is
immediately and automatically called after an instance has been created. This name is fixed and it is not
possible to chose another name. __init__ is one of the so-called magic methods, of which we will get to know
some more details later. The __init__ method is used to initialize an instance. There is no explicit constructor or
destructor method in Python, as they are known in C++ and Java. The __init__ method can be anywhere in a
class definition, but it is usually the first method of a class, i.e. it follows right after the class header.

>>> class A:
... def __init__(self):
... print("__init__ has been executed!")
...
>>> x = A()
__init__ has been executed!
>>>

We add an __init__-method to our robot class:

class Robot:

 def __init__(self, name=None):
 self.name = name

 def say_hi(self):
 if self.name:
 print("Hi, I am " + self.name)
 else:
 print("Hi, I am a robot without a name")

x = Robot()
x.say_hi()
y = Robot("Marvin")
y.say_hi()

This little program returns the following:

Hi, I am a robot without a name
Hi, I am Marvin

DATA ABSTRACTION, DATA ENCAPSULATION, AND INFORMATION HIDING

DEFINITIONS OF TERMS

Data Abstraction, Data Encapsulation and
Information Hiding are often synonymously used in
books and tutorials on OOP. But there is a
difference. Encapsulation is seen as the bundling of
data with the methods that operate on that data.
Information hiding on the other hand is the
principle that some internal information or data is
"hidden", so that it can't be accidentally changed.
Data encapsulation via methods doesn't necessarily
mean that the data is hidden. You might be capable
of accessing and seeing the data anyway, but using
the methods is recommended. Finally, data

abstraction is present, if both data hiding and data encapsulation is used. This means data abstraction is the
broader term:

Data Abstraction = Data Encapsulation + Data Hiding

Encapsulation is often accomplished by providing two kinds of methods for attributes: The methods for
retrieving or accessing the values of attributes are called getter methods. Getter methods do not change the
values of attributes, they just return the values. The methods used for changing the values of attributes are
called setter methods.

We will define now a Robot class with a Getter and a Setter for the name attribute. We will call them get_name
and set_name accordingly.

class Robot:

 def __init__(self, name=None):
 self.name = name

 def say_hi(self):
 if self.name:
 print("Hi, I am " + self.name)
 else:
 print("Hi, I am a robot without a name")

 def set_name(self, name):
 self.name = name

 def get_name(self):
 return self.name

x = Robot()
x.set_name("Henry")
x.say_hi()
y = Robot()
y.set_name(x.get_name())
print(x.get_name())

Hopefully, it will be easy for you to see, that this program prints the following:

Hi, I am Henry
Henry

Before you go on, you can do a little exercise. You can add an additional attribute "build_year" with Getters and
Setters to the Robot class.

class Robot:

 def __init__(self, name=None):
 self.name = name

 def say_hi(self):
 if self.name:
 print("Hi, I am " + self.name)
 else:
 print("Hi, I am a robot without a name")

 def set_name(self, name):
 self.name = name

 def get_name(self):
 return self.name

 def set_build_year(self, by):
 self.build_year = by

 def get_build_year(self):
 return self.build_year

x = Robot("Henry", 2008)
y = Robot()
y.set_name(x.get_name())
print(x.get_name(), x.get_build_year())

There is still something wrong with our Robot class. The Zen of Python says: "There should be one-- and
preferably only one --obvious way to do it." Our Robot class provides us with two ways to access or to change
the "name" or the "build_year" attribute. This can be prevented by using private attributes, which we will
explain later.

__STR__- AND __REPR__-METHODS

We will have a short break in our treatise on data abstraction for a quick side-trip. We want to introduce two
important magic methods "__str__" and "__repr__", which we will need in future examples. In the course of
this tutorial, we have already encountered the __str__ method. We had seen that we can depict various data as
string by using the str function, which uses "magically" the internal __str__ method of the corresponding data
type. __repr__is similar. It also produces a string representation.

>>> l = ["Python", "Java", "C++", "Perl"]
>>> print(l)
['Python', 'Java', 'C++', 'Perl']
>>> str(l)
"['Python', 'Java', 'C++', 'Perl']"
>>> repr(l)
"['Python', 'Java', 'C++', 'Perl']"
>>> d = {"a":3497, "b":8011, "c":8300}
>>> print(d)
{'a': 3497, 'c': 8300, 'b': 8011}
>>> str(d)
"{'a': 3497, 'c': 8300, 'b': 8011}"
>>> repr(d)
"{'a': 3497, 'c': 8300, 'b': 8011}"
>>> x = 587.78
>>> str(x)
'587.78'
>>> repr(x)
'587.78'
>>>

If you apply str or repr to an object, Python is looking for a corresponding method __str__ or __repr__ in the
class definition of the object. If the method does exist, it will be called.
In the following example, we define a class A, having neither a __str__ nor a __repr__ method. We want to see,
what happens, if we use print directly on an instance of this class, or if we apply str or repr to this instance:

>>> class A:
... pass
...
>>> a = A()
>>> print(a)
<__main__.A object at 0xb720a64c>
>>> print(repr(a))
<__main__.A object at 0xb720a64c>
>>> print(str(a))
<__main__.A object at 0xb720a64c>
>>> a
<__main__.A object at 0xb720a64c>
>>>

As both methods are not available, Python uses the default output for our object "a".

If a class has a __str__ method, the method will be used for an instance x of that class, if either the function str
is applied to it or if it is used in a print function. __str__ will not be used, if repr is called, or if we try to output
the value directly in an interactive Python shell:

>>> class A:
... def __str__(self):
... return "42"
...
>>> a = A()

>>> print(repr(a))
<__main__.A object at 0xb720a4cc>
>>> print(str(a))
42
>>> a
<__main__.A object at 0xb720a4cc>

Otherwise, if a class has only the __repr__ method and no __str__ method, __repr__ will be applied in the
situations, where __str__would be applied, if it were available:

>>> class A:
... def __repr__(self):
... return "42"
...
>>> a = A()
>>> print(repr(a))
42
>>> print(str(a))
42
>>> a
42

A frequently asked question is when to use __repr__ annd when __str__. __str__ is always the right choice, if
the output should be for the end user or in other words, if it should be nicely printed. __repr__ on the other
hand is used for the internal representation of an object. The output of __repr__ should be - if feasible - a string
which can be parsed by the python interpreter. The result of this parsing is in an equal object.
This means that the following should be true for an object "o":

o == eval(repr(o))

This is shown in the following interactive Python session:

>>> l = [3,8,9]
>>> s = repr(l)
>>> s
'[3, 8, 9]'
>>> l == eval(s)
True
>>> l == eval(str(l))
True
>>>

We show in the following example with the datetime module that eval can only be applied on the strings
created by repr:

>>> import datetime
>>> today = datetime.datetime.now()
>>> str_s = str(today)
>>> eval(str_s)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<string>", line 1
 2014-01-26 17:35:39.215144
 ^
SyntaxError: invalid token
>>> repr_s = repr(today)
>>> t = eval(repr_s)
>>> type(t)
<class 'datetime.datetime'>
>>>

We can see that eval(repr_s) returns again a datetime.datetime object. The String created by str can't be turned
into a datetime.datetime object by parsing it.

We will extend our robot class with a repr method. We dropped the other methods to keep this example simple:

class Robot:

 def __init__(self, name, build_year):
 self.name = name
 self.build_year = build_year

 def __repr__(self):
 return "Robot('" + self.name + "', " + str(self.build_year) +
")"

if __name__ == "__main__":
 x = Robot("Marvin", 1979)

 x_str = str(x)
 print(x_str)
 print("Type of x_str: ", type(x_str))
 new = eval(x_str)
 print(new)
 print("Type of new:", type(new))

x_str has the value Robot('Marvin', 1979). eval(x_str) converts it again into a Robot instance.

The script returns the following output:

$ python3 robot_class5.py
Robot("Marvin",1979)
Type of x_str: <class 'str'>
Robot("Marvin",1979)
Type of new: <class '__main__.Robot'>

Now it's time to extend our class with a user friendly __str__ method:

class Robot:

 def __init__(self, name, build_year):
 self.name = name
 self.build_year = build_year

 def __repr__(self):
 return "Robot('" + self.name + "', " + str(self.build_year) +
")"

 def __str__(self):
 return "Name: " + self.name + ", Build Year: " +
str(self.build_year)

if __name__ == "__main__":
 x = Robot("Marvin", 1979)

 x_str = str(x)
 print(x_str)
 print("Type of x_str: ", type(x_str))
 new = eval(x_str)
 print(new)
 print("Type of new:", type(new))

When we start this program, we can see that it is not possible to convert our string x_str, created via str(x), into
a Robot object anymore.

$ python3 robot_class6.py
Name: Marvin, Build Year: 1979
Type of x_str: <class 'str'>
Traceback (most recent call last):
 File "robot_class6.py", line 19, in <module>
 new = eval(x_str)
 File "<string>", line 1
 Name: Marvin, Build Year: 1979
 ^
SyntaxError: invalid syntax

We show in the following program that x_repr can still be turned into a Robot object:

class Robot:

 def __init__(self, name, build_year):
 self.name = name
 self.build_year = build_year

 def __repr__(self):
 return "Robot(\"" + self.name + "\"," + str(self.build_year) +
")"

 def __str__(self):
 return "Name: " + self.name + ", Build Year: " +
str(self.build_year)

if __name__ == "__main__":
 x = Robot("Marvin", 1979)

 x_repr = repr(x)
 print(x_repr, type(x_repr))
 new = eval(x_repr)
 print(new)
 print("Type of new:", type(new))

The output looks like this:

$ python3 robot_class6b.py
Robot("Marvin",1979) <class 'str'>
Name: Marvin, Build Year: 1979
Type of new: <class '__main__.Robot'>

PUBLIC- PROTECTED- AND PRIVATE ATTRIBUTES

Who doesn't know those trigger-happy farmers from films. Shooting as soon
as somebody enters their property. This "somebody" has of course neglected
the "no trespassing" sign, indicating that the land is private property. Maybe he
hasn't seen the sign, maybe the sign is hard to be seen? Imagine a jogger,
running the same course five times a week for more than a year, but than he
receives a $50 fine for trespassing in the Winchester Fells. Trespassing is a
criminal offence in Massachusetts. He was innocent anyway, because the
signage was inadequate in the area.4

Even though no trespassing signs and strict laws do protect the private
property, some surround their property with fences to keep off unwanted "visitors". Should the fence keep the
dog in the yard or the burglar in the street? Choose your fence: Wood panel fencing, post-and-rail fencing,
chain-link fencing with or without barbed wire and so on.

We have a similar situation in the design of object-oriented programming languages. The first decision to take
is how to protect the data which should be private. The second decision is what to do if trespassing, i.e.
accessing or changing private data, occurs. Of course, the private data may be protected in a way that it can't be
accessed under no circumstances. This is hardly possible in practice, as we know from the old saying "Where
there's a will, there's a way"!

Some owners allow a restricted access to their property. Joggers or hikers may
find signs like "Enter at your own risk". A third kind of property might be
public property like streets or parks, where it is perfectly legal to be.

We have the same classification again in object-oriented programming:

Private attributes should only be used by the owner, i.e. inside of the
class definition itself.
Protected (restricted) Attributes may be used, but at your own risk.
Essentially, this means that they should only be used under certain
conditions.
Public Attributes can and should be freely used.

Python uses a special naming scheme for attributes to control the accessibility of the attributes. So far, we have
used attribute names, which can be freely used inside or outside of a class definition, as we have seen. This
corresponds to public attributes of course.
There are two ways to restrict the access to class attributes:

First, we can prefix an attribute name with a leading underscore "_". This marks the attribute as
protected. It tells users of the class not to use this attribute unless, somebody writes a subclass. We will
learn about inheritance and subclassing in the next chapter of our tutorial.
Second, we can prefix an attribute name with two leading underscores "__". The attribute is now
inaccessible and invisible from outside. It's neither possible to read nor write to those attributes except
inside of the class definition itself.5

To summarize the attribute types:

Naming Type Meaning
name Public These attributes can be freely used inside or outside of a class definition.
_name Protected Protected attributes should not be used outside of the class definition, unless inside of a

subclass definition.
__name Private This kind of attribute is inaccessible and invisible. It's neither possible to read nor write to

those attributes, except inside of the class definition itself.

We want to demonstrate the behaviour of these attribute types with an example class:

class A():

 def __init__(self):
 self.__priv = "I am private"
 self._prot = "I am protected"
 self.pub = "I am public"

We store this class (attribute_tests.py) and test its behaviour in the following interactive Python shell:

>>> from attribute_tests import A
>>> x = A()
>>> x.pub
'I am public'
>>> x.pub = x.pub + " and my value can be changed"
>>> x.pub
'I am public and my value can be changed'

>>> x._prot
'I am protected'
>>> x.__priv
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'A' object has no attribute '__priv'
>>>

The error message is very interesting. One might have expected a message like "__priv is private". We get the
message "AttributeError: 'A' object has no attribute '__priv'" instead, which looks like a "lie". There is such an
attribute, but we are told that there isn't. This is perfect information hiding. Telling a user that an attribute name
is private, means that we make some information visible, i.e. the existence or non-existence of a private
variable.

Our next task consists in rewriting our Robot class. Though we have Getter and Setter methods for the name
and the build_year, we can access the attributes directly as well, because we have defined them as public
attributes. Data Encapsulation means, that we should only be able to access private attributes via getters and
setters.

We have to replace each occurrence of self.name and self.build_year by self.__name and self.__build_year.

The listing of our revised class:

class Robot:

 def __init__(self, name=None, build_year=2000):
 self.__name = name
 self.__build_year = build_year

 def say_hi(self):
 if self.__name:
 print("Hi, I am " + self.__name)
 else:
 print("Hi, I am a robot without a name")

 def set_name(self, name):
 self.__name = name

 def get_name(self):
 return self.__name

 def set_build_year(self, by):
 self.__build_year = by

 def get_build_year(self):
 return self.__build_year

 def __repr__(self):
 return "Robot('" + self.__name + "', " +
str(self.__build_year) + ")"

 def __str__(self):
 return "Name: " + self.__name + ", Build Year: " +
str(self.__build_year)

if __name__ == "__main__":
 x = Robot("Marvin", 1979)
 y = Robot("Caliban", 1943)
 for rob in [x, y]:

 rob.say_hi()
 if rob.get_name() == "Caliban":
 rob.set_build_year(1993)
 print("I was built in the year " + str(rob.get_build_year()) +
"!")

We get the following out, if we call this program:

Hi, I am Marvin
I was built in the year 1979!
Hi, I am Caliban
I was built in the year 1993!

Every private attribute of our class has a getter and a setter. There are IDEs for object-oriented programming
languages, who automatically provide getters and setters for every private attribute as soon as an attribute is
created.

This may look like the following class:

class A():

 def __init__(self, x, y):
 self.__x = x
 self.__y = y

 def GetX(self):
 return self.__x

 def GetY(self):
 return self.__y

 def SetX(self, x):
 self.__x = x

 def SetY(self, y):
 self.__y = y

There are at least two good reasons against such an approach. First of all not every private attribute needs to be
accessed from outside. Second, we will create non-pythonic Code this way, as you will learn soon.

DESTRUCTOR

What we said about constructors holds true for destructors as well. There is no "real" destructor, but something
similar, i.e. the method __del__. It is called when the instance is about to be destroyed and if there is no other
reference to this instance. If a base class has a __del__() method, the derived class's __del__() method, if any,
must explicitly call it to ensure proper deletion of the base class part of the instance.

The following script is an example with __init__ and __del__:

class Robot():

 def __init__(self, name):

 print(name + " has been created!")

 def __del__(self):
 print ("Robot has been destroyed")

if __name__ == "__main__":
 x = Robot("Tik-Tok")
 y = Robot("Jenkins")
 z = x
 print("Deleting x")
 del x
 print("Deleting z")
 del z
 del y

The output of the previous program:

$ python3 del_example.py
Tik-Tok has been created!
Jenkins has been created!
Deleting x
Deleting z
Robot has been destroyed
Robot has been destroyed

The usage of the __del__method is very problematic. If we change the previous code to personalize the deletion
of a robot, we create an error:

class Robot():

 def __init__(self, name):
 print(name + " has been created!")

 def __del__(self):
 print (self.name + " says bye-bye!")

if __name__ == "__main__":
 x = Robot("Tik-Tok")
 y = Robot("Jenkins")
 z = x
 print("Deleting x")
 del x
 print("Deleting z")
 del z
 del y

We get the following output with error messages:

$ python3 del_example.py
Tik-Tok has been created!
Jenkins has been created!
Deleting x
Deleting z
Exception AttributeError: "'Robot' object has no attribute 'name'" in

<bound method Robot.__del__ of <__main__.Robot object at 0xb71da3cc>>
ignored
Exception AttributeError: "'Robot' object has no attribute 'name'" in
<bound method Robot.__del__ of <__main__.Robot object at 0xb71da36c>>
ignored

We are accessing an attribute which doesn't exist anymore. We will learn later, why this is the case.

FOOTNOTES:

1
The picture on the right side is taken in the Library of the Court of Appeal for Ontario, located downtown
Toronto in historic Osgoode Hall 2
"Objects are Python's abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann's model of a "stored program computer",
code is also represented by objects.) Every object has an identity, a type and a value." (excerpt from the official
Python Language Reference)

3
"attribute" stems from the Latin verb "attribuere" which means "to associate with"

4
http://www.wickedlocal.com/x937072506/tJogger-ticketed-for-trespassing-in-the-Winchester-Fells-kicks-back

5 There is a way to access a private attribute directly. In our example, we can do it like this:
x._Robot__build_year
You shouldn't do this under any circumstances!

© 2011 - 2016, Bernd Klein, Bodenseo; Design by Denise Mitchinson adapted for python-course.eu by Bernd Klein

