RSA program Report / Started running on: Thu Nov 26 21:58:55 2009

khkkhkhkkhkkhhkhkhkkhhkhhkhkkhkhkhhkhkhkhkhhkhkhkkhhkhkhkkhhkhhkhkdhkkhhkhkhkkhhkkhkkhkkkhkkikkkkk*x*%

khkkhkkkhkkhhkhkhkkhhkhhkhkkhkhkhhkhkhkkhhkhkhkkhhkhkhkkhhkhhkhkhkkhhkhkhkkhhkkhkkhkkkkkhkkkkk*x*%
khkkhkhkhkhkkhhkhkhkkhhkhhkkhkhkhhkhkhkkhhkhkhkkhhkhkhkdhhkhhkkhkkhhkkhkkhhkkhkkhkkkhkkikkkkk*x*%
khkkhkkkhkkhhkhkhkkhhkhhkhkhkhhkhkhhkhhkhkhkkhhkhkhkdhhkhhkkhkkhhkkhkkhhkhkhkkhkkkkkhkkkkk*x*%

TRACE OF GENERATING SAMPLE INTEGER

random number : 0 is: 25024

In binary it is: 110000111000000

The least significant bit of that number is obviously ==> 0
So therefore bit number 1 from left is: 0
random number : 1 is: 28864

In binary it is: 111000011000000

The least significant bit of that number is obviously ==> 0
So therefore bit number 2 from left is: 0
random number : 2 is: 25294

In binary it is: 110001011001110

The least significant bit of that number is obviously ==> 0
So therefore bit number 3 from left is: 0
random number : 3 is: 1535

In binary it is: 10111111111

The least significant bit of that number is obviously ==> 1
So therefore bit number 4 from left is: 1
random number : 4 is: 4316

In binary it is: 1000011011100

The least significant bit of that number is obviously ==> 0
So therefore bit number 5 from left is: 0

32-bit Padded random integer: 00000000000000000000000001000101



THIS IS A SAMPLE FOR AN UNSUCCESSFUL PRIMALITY CHECK

Checking the integer: 115 , Using a= 58
i X[i] Z y y
6 1 1 1 58
5 1 58 29 72
4 1 72 9 62
3 0 62 49 49
2 0 49 101 101
1 1 101 81 98
0 0 98 59 59

The integer: 115 is not a prime!

THIS IS A SAMPLE FOR A SUCCESSFUL PRIMALITY CHECK (PERHAPS PRIME)

Checking the integer: 101 , Using a= 79
i X[i] Z y y
6 1 1 1 79
5 1 79 80 58
4 0 58 31 31
3 0 31 52 52
2 1 52 78 1
1 0 1 1 1
0 0 1 1 1

The integer: 101 is perhaps a prime!

Our n=8989 Our Phi(8989)=8800



Checking if e=5 can be a public key [Extended Euclidean Algorithm]

1760 8800 5 0 1 0 1 0 1 -1760
Unfortunately e=5 Does not have a multiplicative inverse in Z(8800), so we go
ahead and try the next e

Checking if e=6 can be a public key [Extended Euclidean Algorithm]

q rl r2 r sl s2 ] tl t2 t
1466 8800 6 4 1 0 1 0 1 -1466

1 6 4 2 0 1 -1 1 -1466 1467

2 4 2 0 1 -1 3 -1466 1467 -4400

Unfortunately e=6 Does not have a multiplicative inverse in Z(8800), so we go
ahead and try the next e

Checking if e=7 can be a public key [Extended Euclidean Algorithm]

q rl r2 r sl s2 ] tl t2 t
1257 8800 7 1 1 0 1 0 1 -1257
7 7 1 0 0 1 -7 1 -1257 8800
FOUND IT ! e will be:7 1Its multiplicative inverse in Z(8800) is:7543

So, ==> d=7543

HERE IS Alice'S CRYPTO SYSTEM

As Integers:



= 101
= 89

= 8989
=7

= 7543

Q.0 B.Q'T
I

As BIT strings:

= 1100101

= 1011001

= 10001100011101
= 111

= 1110101110111

Q.0 BQ o
I

Here are: r, h(r) and s as bits

=0010000001000001011011000110100101100011011001010000000000000000001000110001110
100000000000000000000000000000111
h(r)=00000000000000000000000001011011
s =00000000000000000000010000000100

Here are: h(r) and s as integers

NOT REQUIRED PORTION
HHAHHHHHHAHHHHHHHHHHHAHHHHHHHHHHAHAH A HHHHHAH AR AR HHH AR AR AR A A A
=======> Trent's keys: Public => (11, 14351) Private => (1283, 14351)
HHAHHHHHHAHHHHHHHHHHHHHHHHHHHHHAHHH A HHHHHAHHH AR HHH AR AR AR A A AR
END OF NOT REQUIRED PORTION

So here is Alice's certificate

Alice cert.name= Alice

Alice cert.e =7

Alice cert.r =

00100000010000010110110001101001011000110110010100000000000000000010001100011101
00000000000000000000000000000111

Alice cert.s = 1028



Alice's 'n' in 32 bits is:00000000000000000010001100011101

K ===> Bob found first 'l' from left of 'n' in position ===> K= 13

So the u composed by Bob (according to the specs):

u[b]1=00000000000000000001011110011111
This u as integer 1§ ==========================> u =6047

So Bob sends to Alice u= 6047

And then Alice [after hashing and decrypting with her private key] returns
Bob v= 603

Showing Bob's encryption of V E(V, e)

Squaring Multiplying

i X[1] Y Y
3 1 172 (mod 8989)= 1 603x 1(mod 8989)=
2 1 60372 (mod 8989)= 4049 603x 4049 (mod 8989)=
1 1 552872 (mod 8989)= 5173 603x 5173 (mod 8989)=

Bob encrypts v with Alice's public key and gets Z= 136
Bob also does hash of: 6047 which in binary is:
00000000000000000001011110011111 and he gets h(u)= 136

AND IF THEY MATCH [Z == h(u)], BOB KNOWS HE IS TALKING TO
SOMEONE WHO'S GOT ALICE'S PRIVATE KEY (HOPEFULLY ALICE)

TO SUMMARIZE

In Integers:

to



In Binary:

u

h(u)
V=D(d,h(u))
E(e,V)

u
h(u)
V=D(d,h(u))
E(e,V)

= 6047

136
603
136

= 00000000000000000001011110011111

00000000000000000000000010001000
00000000000000000000001001011011
00000000000000000000000010001000



