
Rhino Developer Docs

RhinoPython / Intermediate

Using Python Dictionary as a
database
by Scott Davidson

This guide discusses using Python's Dictionary object to access nested data.

Overview
There are many modern data structures that use a structured key:value pairs to
describe objects and the data that is stored within them. A few popular ones are
XML, JSON and Amazon S3(Dynamo).

The Dictionary object is used to hold a set of data values in the form of (key, value)
pairs. The values can be any standard datatype including lists. This article may serve
help understand how Python can be used to create and access nested information.

Creating a Key:Value datastore
Using Dictionaries, list and a key:values can be used together to create this
datastore. Here is an example of a nested dictionary that stores many different items.
In this case, we have a series of polylines representing various rooms for a medical
office. Look closely at the bracket and parens that are used. The curly braces {}
denote the a dictionary. The square brackets [] represent a list as a value in the
medical key. The list in ‘medicalʼ actually contains a series of dictionaries for each

individual office.

NEW: Welcome to the Rhino 6 version of this page! Looking for the older Rhino 5 version?

https://developer.rhino3d.com/
https://developer.rhino3d.com/guides/rhinopython
https://discourse.mcneel.com/users/scottd/activity
https://developer.rhino3d.com/5/guides/rhinopython/python-dictionary-database/

datastore = { "office": {
 "medical": [
 { "room-number": 100,
 "use": "reception",
 "sq-ft": 50,
 "price": 75
 },
 { "room-number": 101,
 "use": "waiting",
 "sq-ft": 250,
 "price": 75
 },
 { "room-number": 102,
 "use": "examination",
 "sq-ft": 125,
 "price": 150
 },
 { "room-number": 103,
 "use": "examination",
 "sq-ft": 125,
 "price": 150
 },
 { "room-number": 104,
 "use": "office",
 "sq-ft": 150,
 "price": 100
 }
],
 "parking": {
 "location": "premium",
 "style": "covered",
 "price": 750
 }
 }
}

Accessing the Datastore
There are many ways to access the data in this datastore:

print datastore["office"]["parking"]

This returns the parking dictionary object { "location": "premium", "style":
"covered", "price": 750 }

Knowing that the value for medical is a list. Use and index number to access any
single book:

 print datastore["office"]["medical"][1]

© 1997 - 2018 Robert McNeel & Associates

This returns the dictionary object for room 100, reception.

The objects and values in the datastore can also be accessed with the .get
method. The direct method shown above will return an error if a key does not exist.
The .get method is a little safer. It will return a value or None . This is much safer if
you are not sure the key is always present. The isbn key is a good example of this.

print datastore["office"]["law"] # this produces an error.
print datastore["office"].get("law") #This will produce the value of None.

A convenient way to efficiently address a portion of the datastore is to assign the
portion to a variable. In this case we can assign the list of books to a spaces
variable:

spaces = datastore['office']['medical']

The variable is a reference to the object. Any changes made with spaces will also
be reflected in the original datastore. Also, because spaces contains only the list of
spaces in the datastore, it is quite easy to step through the spaces with a for
statement. In the example below, the for loop is looking for a specific space then
updates the price:

Here is a method to find and change a value in the database.
for item in spaces:
 if item.get('use') == "examination" :
 item['price'] = 175

for item in datastore['office']['medical']: # This loop shows the change is
not only in books, but is also in database
 if item.get('use') == "examination" :
 print 'The {} rooms now cost {}'.format(item.get("use"),
item.get("price"))

Author: Scott Davidson

 Edit page on GitHub
 Admin

https://discourse.mcneel.com/users/scottd/activity
https://github.com/mcneel/developer-rhino3d-com/blob/6/_guide_topics/rhinopython/python-dictionary-database.md
https://developer.rhino3d.com/admin

