
Introduction to Threads

Copyright (C) 2008, http://www.dabeaz.com

Background

• Python is often used in applications where
you want to the interpreter to be working
on more than one task at once

• Example: An internet server handling
hundreds of client connections

2

Copyright (C) 2008, http://www.dabeaz.com

Background

• There is also interest in making Python run
faster with multiple CPUs

3

"Can I make Python run 4 times faster on
my quad-core desktop?"

• A delicate issue surrounded by tremendous peril

"Can I make Python run 100 times faster on our
mondo enterprise server?"

Copyright (C) 2008, http://www.dabeaz.com

Overview

• In this section, we'll briefly introduce Python
thread programming

• Mainly just to see what it looks like

• The devil is in the details (left as an "exercise")

4

Copyright (C) 2008, http://www.dabeaz.com

Concept: Threads

• An independent task running inside a process

• Shares resources with the process (memory,
files, network connections, etc.)

• Has own flow of execution (stack, PC)

5

Copyright (C) 2008, http://www.dabeaz.com

Thread Basics

6

% python program.py

Program launch. Python
loads a program and starts

executing statements

statement

statement

...

"main thread"

Copyright (C) 2008, http://www.dabeaz.com

Thread Basics

7

% python program.py

Creation of a thread.
Launches a function.

statement

statement

...

create thread(foo) def foo():

Copyright (C) 2008, http://www.dabeaz.com

Thread Basics

8

% python program.py

Parallel execution
of statements

statement

statement

...

create thread(foo) def foo():

statement

statement

...

statement

statement

...

Copyright (C) 2008, http://www.dabeaz.com

Thread Basics

9

% python program.py

thread terminates
on return or exit

statement

statement

...

create thread(foo) def foo():

statement

statement

...

statement

statement

...

return or exitstatement

statement

...

Copyright (C) 2008, http://www.dabeaz.com

Thread Basics

10

% python program.py

statement

statement

...

create thread(foo) def foo():

statement

statement

...

statement

statement

...

return or exitstatement

statement

...

Key idea: Thread is like a little
subprocess that runs inside

your program

thread

Copyright (C) 2008, http://www.dabeaz.com

threading module

• Threads are defined by a class
import time

import threading

class CountdownThread(threading.Thread):

 def __init__(self,count):

 threading.Thread.__init__(self)

 self.count = count

 def run(self):

 while self.count > 0:

 print "Counting down", self.count

 self.count -= 1

 time.sleep(5)

 return

• Inherit from Thread and redefine run()

11

Copyright (C) 2008, http://www.dabeaz.com

threading module

• To launch, create objects and use start()

t1 = CountdownThread(10) # Create the thread object

t1.start() # Launch the thread

t2 = CountdownThread(20) # Create another thread

t2.start() # Launch

• Threads execute until the run() method stops

12

Copyright (C) 2008, http://www.dabeaz.com

Joining a Thread

• Use t.join() to wait for a thread
t.start() # Launch a thread

...

Do other work

...

Wait for thread to finish

t.join() # Waits for thread t to exit

• Only works from other threads

• A thread can't join itself

13

Copyright (C) 2008, http://www.dabeaz.com

Daemonic Threads

• Creating a daemon thread (detached thread)

t.setDaemon(True)

• Daemon threads run forever

• Can't be joined and is destroyed
automatically when the interpreter exits

• Typically used to set up background tasks

14

Copyright (C) 2008, http://www.dabeaz.com

Thread Synchronization

• Different threads may share common data

• Extreme care is required

• One thread must not modify data while
another thread is reading it

• Otherwise, will get a "race condition"

15

Copyright (C) 2008, http://www.dabeaz.com

Race Condition
• Consider a shared object

x = 0

• And two threads

Thread-1

...

x = x + 1

...

Thread-2

...

x = x - 1

...

• Possible that the value will be corrupted

• If one thread modifies the value just after the
other has read it.

16

Copyright (C) 2008, http://www.dabeaz.com

Race Condition
• The two threads

Thread-1

...

x = x + 1

...

Thread-2

...

x = x - 1

...

• Low level interpreter execution
Thread-1

LOAD_GLOBAL 1 (x)

LOAD_CONST 2 (1)

BINARY_ADD

STORE_GLOBAL 1 (x)

Thread-2

LOAD_GLOBAL 1 (x)

LOAD_CONST 2 (1)

BINARY_SUB

STORE_GLOBAL 1 (x)

thread
switch

17

thread
switch

Copyright (C) 2008, http://www.dabeaz.com

Race Condition
• Low level interpreter code

Thread-1

LOAD_GLOBAL 1 (x)

LOAD_CONST 2 (1)

BINARY_ADD

STORE_GLOBAL 1 (x)

Thread-2

LOAD_GLOBAL 1 (x)

LOAD_CONST 2 (1)

BINARY_SUB

STORE_GLOBAL 1 (x)

thread
switch

18

thread
switch

These operations get performed with a "stale"
value of x. The computation in Thread-2 is lost.

Copyright (C) 2008, http://www.dabeaz.com

Mutex Locks

• Mutual exclusion locks

m = threading.Lock() # Create a lock

m.acquire() # Acquire the lock

m.release() # Release the lock

• If another thread tries to acquire the lock, it
blocks until the lock is released

• Use a lock to make sure only one thread
updates shared data at once

• Only one thread may hold the lock

19

Copyright (C) 2008, http://www.dabeaz.com

Use of Mutex Locks
• Commonly used to enclose critical sections

x = 0

x_lock = threading.Lock()

20

Thread-1

...

x_lock.acquire()

x = x + 1

x_lock.release()

...

Thread-2

...

x_lock.acquire()

x = x - 1

x_lock.release()

...

Critical
Section

• Only one thread can execute in critical section
at a time (lock gives exclusive access)

Copyright (C) 2008, http://www.dabeaz.com

Other Locking Primitives

• Reentrant Mutex Lock
m = threading.RLock() # Create a lock

m.acquire() # Acquire the lock

m.release() # Release the lock

• Semaphores
m = threading.Semaphore(n) # Create a semaphore

m.acquire() # Acquire the lock

m.release() # Release the lock

• Lock based on a counter

• Can be acquired multiple times by same thread

• Won't cover in detail here

21

Copyright (C) 2008, http://www.dabeaz.com

Thread Programming

• Programming with threads is hell

• Complex algorithm design

• Must identify all shared data structures

• Add locks to critical sections

• Cross fingers and pray that it works

• Typically you would spend several weeks of
a graduate operating systems course
covering all of the gory details

22

Copyright (C) 2008, http://www.dabeaz.com

The Bad News

• Even if you can get your multithreaded
program to work, it won't run any faster

• In fact, it will probably run slower!

• The C Python interpreter itself is single-
threaded and protected by a global
interpreter lock (GIL)

• Python only utilizes one CPU--even on multi-
CPU systems!

23

Copyright (C) 2008, http://www.dabeaz.com

Is There a Fix?

• No fix for the GIL is planned

• A big part of the problem concerns reference
counting--which is an especially poor memory
management strategy for multithreading

• May get true concurrency using Jython or
IronPython which are built on JVM/.Net

• C/C++ extensions can also release the GIL

24

Copyright (C) 2008, http://www.dabeaz.com

Final Words

• Even though threads are crippled, Python
programmers still use them---just not for
algorithms involving parallel processing

• Most Python programmers probably
encounter threads when working on network
server programs (where they can be used to
manage multiple client connections)

• More details in an Advanced Python class

25

Copyright (C) 2008, http://www.dabeaz.com

A Thread Alternative

• Use message passing

• Multiple independent Python processes (possibly
running on different machines) that perform their
own processing, but which communicate by
sending/receiving messages

• This approach is widely used in supercomputing
for massive parallelization (1000s of processors)

• It can also work well for multiple CPU cores if
you know what you're doing

26

