
Scapy documentation (!)

Philippe BIONDI

phil(at)secdev.org

2

Contents

1 Introduction 5

1.1 About this document . 5
1.2 What is Scapy . 5
1.3 Scapy’s concepts . 5

1.3.1 Fast packet design . 5
1.3.2 Probe once, interpret many 6
1.3.3 Scapy decodes, it does not interpret 6

I Examples 9

2 Quick start 11

3 Packet manipulation 13

4 Network discovery 15

5 Attacks 17

II Reference 19

6 Packet manipulation 21

6.0.4 User’s methods . 21
6.0.5 Developer’s methods . 23

7 Packet list manipulation 25

7.1 User’s methods . 25

8 Commands 29

8.1 Tools . 29
8.2 Communication commands . 34

8.2.1 Sniff family . 34
8.2.2 Send family . 35
8.2.3 Send and receive family 35

8.3 high-level commands . 37
8.4 Answering machines . 38

3

4 CONTENTS

III Extending Scapy 39

9 Adding a new protocol 41

9.1 Definition of a layer . 41
9.2 Fields . 42
9.3 Layers’ methods . 43
9.4 Binding layers . 43
9.5 Layers’ design patterns . 43

9.5.1 For a string whose length is given by another field 43

10 Adding a new field 45

10.1 The Field API . 45

11 Adding an answering machine 49

12 Making your own tools 51

13 Scripting Scapy 53

14 Adding a new high-level function 55

IV Internals 57

15 Networking code 59

15.1 Supersockets . 59
15.2 Routing packets . 60

16 Object model 63

1
Introduction

1.1 About this document

1.2 What is Scapy

Scapy is a Python program that enables you to forge, dissect, emit or sniff
network packets, probe, scan or attack networks.

1.3 Scapy’s concepts

1.3.1 Fast packet design

Many tools stick to the program-that-you-run-from-a-shell paradigm. The result
is an awful syntax to describe a packet. The solution adopted was to use a
higher but less powerful description, in the form of scenarii imagined by the
tool’s author. For instance you only need to give and IP to a port scanner to
trigger the port scanning scenario. Even if you can tweak the scenario a bit,
you still are stuck to a port scan.

5

6 CHAPTER 1. INTRODUCTION

Scapy paradigm is to propose a DSL1 that enables a powerful and fast descrip-
tion of any kind of packet. The trick to use the Python syntax and a Python
interpreter as the DSL syntax and the DSL interpreter has many advantages:
there is no need to write the interpreter, users don’t need to learn another
language again and they benefit from a complete, concise and very powerful
language.

Scapy enables you to describe a packet or a set of packets as layers that you
stack one upon the other. Fields of each layer have useful default values that
you can overload.

Scapy does not oblige you to use predetermined scenarii or templates. This
means that each time you want to send packets, you have to write a new tool.
In C, it would take an average of 60 lines only to describe the packet. With
scapy, you only need one line to describle the packets you want to send, and one
line to print the result. 90% of the network probing tools can be rewritten in 2
lines of Scapy.

1.3.2 Probe once, interpret many

Network discovery is blackbox testing. When probing a network, you will send
many stimuli, and some of them will be answered. If you choose the right stimuli,
you can obtain the information you need from the responses or from the lack of
responces. Unlike many tools, Scapy will give you all the information, i.e. all
the stimuli you sent and all the responses you got. You will have to look into
them to get the information you are looking for. When the dataset is small,
you can just dig for it. In other cases, you will have to choose a point of view
on this data. Most tools choose the point of view for you and loose all the data
not related to the given point of view. Because Scapy give you the whole raw
data, you can use them many times and have your point of view evolve during
your analysis. For example, you can probe for a TCP port scan, visualize the
data like the result of a port scan, then decide you would like to also visualize
the TTL of response packet. You do not need to do a new probe each time you
want to visualize other data.

1.3.3 Scapy decodes, it does not interpret

A common problem in network probing tools is that they try to interpret the
answers they got instead of only decoding and giving facts. Saying something
like I received a TCP Reset on port 80 is not subject to interpretation errors.
Saying The port 80 is closed is an interpretation that can be right most of the

1Domain Specific Language.

1.3. SCAPY’S CONCEPTS 7

time but wrong in some specific contexts the tool’s author did not thought of.
For instance, some scanners tend to report a filtered TCP port when they receive
an ICMP destination unreachable packet. This may be right, but in some cases
it means the packet was not fitered by the firewall but there was no host to
forward the packet to.

Interpretating results can help people that don’t know what a port scan is. But
it can also make more harm than good, as it bias the results. In fact, what
happen to people that know exactly what they are doing and that know very
well thier tools is that they try to reverse the tool’s interpretation to get the facts
that triggered the interpretation, in order to do the interpretation themeselves.
Too bad so much information has been lost in the operation.

8 CHAPTER 1. INTRODUCTION

Part I

Examples

9

2
Quick start

11

12 CHAPTER 2. QUICK START

3
Packet manipulation

13

14 CHAPTER 3. PACKET MANIPULATION

4
Network discovery

15

16 CHAPTER 4. NETWORK DISCOVERY

5
Attacks

17

18 CHAPTER 5. ATTACKS

Part II

Reference

19

6
Packet manipulation

6.0.4 User’s methods

constructor

stacking

testing

reaching

haslayer

haslayer(self, cls)
True if self has a layer that is an instance of cls. Superseded by cls in

self syntax.

getlayer

getlayer(self, cls, nb=1)
Returns the nbth layer that is an instance of cls.

psdump

psdump(self, filename=None) Creates an EPS file describing a packet. If
filename is not provided a temporary file is created and gs is called.

pdfdump

pdfdump(self, filename=None)
Creates a PDF file describing a packet. If filename is not provided a
temporary file is created and xpdf is called.

21

22 CHAPTER 6. PACKET MANIPULATION

hide defaults

hide defaults(self)
Remove fields’ values that are the same as default values.

show

show(self, indent=3, lvl=”, label lvl=”)
Print a hierarchical view of the packet.

indent: gives the size of indentation for each layer.

show2

show2(self)
Prints a hierarchical view of an assembled version of the packet, so that
automatic fields are calculated (checksums, etc.)

sprintf

sprintf(self, fmt, relax=1)
where format is a string that can include directives. A directive begins and
ends by % and has the following format %[fmt[r],][cls[:nb].]field%.

fmt is a classic printf directive, ”r” can be appended for raw substitution
(ex: IP.flags=0x18 instead of SA), nb is the number of the layer we want
(ex: for IP/IP packets, IP:2.src is the src of the upper IP layer). Special
case : %.time% is the creation time.

p.sprintf("%.time% %-15s,IP.src% -> %-15s,IP.dst% %IP.chksum% "

"%03xr,IP.proto% %r,TCP.flags%")

Moreover, the format string can include conditionnal statements. A con-
ditionnal statement looks like : {layer:string} where layer is a layer
name, and string is the string to insert in place of the condition if it is
true, i.e. if layer is present. If layer is preceded by a ”!”, the result si
inverted. Conditions can be imbricated. A valid statement can be :

p.sprintf("This is a{TCP: TCP}{UDP: UDP}{ICMP:n ICMP} packet")

p.sprintf("{IP:%IP.dst% {ICMP:%ICMP.type%}{TCP:%TCP.dport%}}")

A side effect is that, to obtain { and } characters, you must use %(and
%).

decode payload as

decode payload as(self, cls)
Reassembles the payload and decode it using another packet class.

command

command(self)
Returns a string representing the command you have to type to obtain
the same packet.

23

copy

copy(self)
Returns a deep copy of the instance.

lastlayer

lastlayer(self, layer=None)
Returns the uppest layer of the packet.

6.0.5 Developer’s methods

hashret

hashret(self)
Must returns a string that has the same value for a request and its answer.
The result of this function is used as a hash value to speed up the look for
a the request matching a given response.

guess payload class

guess payload class(self, payload)
Guesses the next payload class from layer bonds. Can be overloaded to
use a different mechanism.

default payload class

default payload class(self, payload)
Returns the default payload class if nothing has been found by the guess payload class()
method.

my summary

mysummary(self)
Can be overloaded to return a string that summarizes the layer. Only one
mysummary() is used in a whole packet summary: the one of the upper
layer, except if a mysummary() also returns (as a couple) a list of layers
whose mysummary() must be called if they are present.

dissection done

dissection done(self, pkt)
will be called after a dissection is completed

post dissection

post dissection(self, pkt)
is called right after the dissection of the current layer

post build

post build(self, pkt)
called right after the current layer is build

extract padding

get field(self, fld)
returns the field instance from the name of the field

24 CHAPTER 6. PACKET MANIPULATION

answers

answers(self, other)
True if self is an answer from other

haslayer str

haslayer str(self, cls)
True if self has a layer that whose class name is cls.

7
Packet list manipulation

7.1 User’s methods

show

show(self)
Best way to display the packet list. Defaults to nsummary() method

nzpadding

nzpadding(self, lfilter=None)
same as padding() but only non null padding

make tex table

make tex table(self)
same as make table(), but print a table with LATEXsyntax

plot

plot(self, f, lfilter=None)
Apply a function to each packet to get a value that will be plotted with
GnuPlot. A gnuplot object is returned.

lfilter: a truth function that decides whether a packet must be ploted

hexdump

hexdump(self)
Print an hexadecimal dump of each packet in the list

25

26 CHAPTER 7. PACKET LIST MANIPULATION

hexraw

hexraw(self, lfilter=None)
Same as nsummary(), except that if a packet has a Raw layer, it will be
hexdumped

lfilter: a truth function that decides whether a packet must be ploted

pdfdump

pdfdump(self, filename=None)
create a PDF file with a pdfdump() of every packet.

filename: name of the file to write to. If empty, a temporary file is used
and conf.prog.pdfreader is called.

nsummary

nsummary(self, prn=None, lfilter=None)
print a summary of each packet with the packet’s number

prn: function to apply to each packet instead of lambda x:x.summary()

lfilter: truth function to apply to each packet to decide whether it will be
displayed

conversations

conversations(self, getsrcdst=None, prog=None, type=’svg’, target=’| dis-
play’)
Graph a conversations between sources and destinations and display it
(using graphviz and imagemagick)

getsrcdst: a function that takes an element of the list and return the
source and dest by defaults, return source and destination IP

type: output type (svg, ps, gif, jpg, etc.), passed to dot’s -T option

target: filename or redirect. Defaults pipe to Imagemagick’s display pro-
gram

make lined table

make lined table(self)
Same as make table(), but print a table with lines.

padding

padding(self, lfilter=None)
Same as hexraw(), for Padding layer.

psdump

psdump(self, filename=None)
Creates a multipage poscript file with a psdump() of every packet

filename: name of the file to write to. If empty, a temporary file is used
and conf.prog.psreader is called.

7.1. USER’S METHODS 27

sr

sr(self, multi=0)
Match packets in the list and return ((matchedcouples), (unmatchedpackets))

summary

summary(self, prn=None, lfilter=None)
print a summary of each packet

prn: function to apply to each packet instead of lambda x:x.summary()

lfilter: truth function to apply to each packet to decide whether it will be
displayed

filter

filter(self, func)
Return a packet list filtered by a truth function

make table

make table(self)
Print a table using a function that returs for each packet its head column
value, head row value and displayed value.

p.make_table(lambda x:(x[IP].dst, x[TCP].dport, x[TCP].sprintf("%flags%"))

display

display(self)
deprecated. is show()

timeskew graph

timeskew graph(self, ip)
Try to graph the timeskew between the timestamps and real time for a
given IP.

28 CHAPTER 7. PACKET LIST MANIPULATION

8
Commands

8.1 Tools

ls

ls(obj=None)
Lists available layers, or infos on a given layer

>>> ls()

ARP : ARP

BOOTP : BOOTP

CookedLinux : cooked linux

DNS : DNS

GRE : GRE

[...]

>>> ls(Ether)

dst : DestMACField = (None)

src : SourceMACField = (None)

type : XShortEnumField = (0)

>>> a=Ether()/Dot1Q(type=0x1234)

>>> ls(a)

dst : DestMACField = ’ff:ff:ff:ff:ff:ff’ (None)

src : SourceMACField = None (None)

type : XShortEnumField = 33024 (0)

--

prio : BitField = 0 (0)

id : BitField = 0 (0)

vlan : BitField = 1 (1)

type : XShortEnumField = 4660 (0)

29

30 CHAPTER 8. COMMANDS

lsc

lsc(cmd=None)
Lists documented commands

>>> lsc()

sr : Send and receive packets at layer 3

sr1 : Send packets at layer 3 and return only the first answer

[...]

hexdump

hexdump(x)
Prints an hexadecimal dump of a string or a packet

>>> hexdump(Ether(type=0x1234,dst="ba:be:fe:ed:be:ef")/IP())

0000 BA BE FE ED BE EF 00 00 00 00 00 00 12 34 45 004E.

0010 00 14 00 01 00 00 40 00 7C E7 7F 00 00 01 7F 00@.|.......

0020 00 01 ..

linehexdump

linehexdump(x, onlyasc=0)
Prints a one line hexadecimal view of a string or packet. If onlyasc is
not null, it can be used as a filter for safe printing strings from untrusted
source (SSID, etc).

>>> linehexdump("\x01\x23\x45\x67")

01 23 45 67 .#Eg

>>> linehexdump("\x01\x23\x45\x67",onlyasc=1)

.

save session

save session(fname, session=None, pickleProto=-1)
Saves in a file all the variables in the user scope (everything seen with the
dir() command). This command is very handy but there are some an-
noying caveats that come from the Python cpickle module. For example,
lambda functions can’t be saved and loaded modules won’t be reloaded.
Another problem can arise from automatic fields like source IP that can
change from one machine to another, so the session will seem altered.

>>> save session("/tmp/session.scapy")

load session

load session(fname)
Loads a previously saved session, smashing everything in the current ses-
sion.

>>> load session("/tmp/session.scapy")

update session

update session(fname)
Tries to merge the current session with a previously saved session.

>>> update session("/tmp/session.scapy")

8.1. TOOLS 31

import hexcap

import hexcap()
Expects lines on standard input copy/pasted from a tcpdump -xX output,
parse them, and output a string you can dissect with the protocol of your
choice.

>>> IP(import hexcap())

0x0000: 4500 0054 0000 4000 4001 242a c0a8 080e E..T..@.@.$*....

0x0010: 4266 0b63 0800 81e0 112a 0000 442e 9ca2 Bf.c.....*..D...

0x0020: 0007 991a 0809 0a0b 0c0d 0e0f 1011 1213

0x0030: 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223!"#

0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&’()*+,-./0123

0x0050: 3435 3637 4567

^D

<IP version=4L ihl=5L tos=0x0 len=84 id=0 flags=DF frag=0L ttl=64

proto=ICMP chksum=0x242a src=192.168.8.14 dst=66.102.11.99 options=’’

|<ICMP type=echo-request code=0 chksum=0x81e0 id=0x112a seq=0x0 |<Raw

load=’D.\x9c\xa2\x00\x07\x99\x1a\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15

\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\’()*+,-./01234567’ |>>>

export object

export object(obj)
Prints a bas64-encoded bzipped pickled version of the object that can be
copy/pasted and imported to another Scapy session. If the two sessions
run on different machines, automatic fields like source IP may not be the
same.

>>> export object(IP(ttl=3))

eNpdVWtbE1cQluwmgShV6q2ttVaruAgJEvACeIOQwDoSloSxsRXpQhZma5LNZDcUqNtqC62l2ruX

3r/7U/qt/6izEDX1yZPn7HPOeed9Z85c7oYW5ubKpl2Zm4vpRoxbuu5xyGdFw8iibZWKLqs+h1Hx

vBJHQHExZpZs0/VWq5bL0VlupRYTY/VK0aqVzFWrxm1ZbNtCBlc45vNOTXtJMWp7meAwxrscbvf5

NQ2jRWvRrJc83g07MOSu8R4IobJY9rgDQ0cn+HVUK2bZ4r2oLtbMJd6HqmuvWbwf2uvz1N5kPF2u

UowPOHzQ5zfERKnIbzYd5516bcHSjYaAtxw+5PPbGu3O0h5QqQOVowMuH6a9qLi1BX5HlLneFvUR

VOST363Pu/N0sNmdVc9KV+rlhsmjDh/z+T1N7LWIkaTNx30+oaGayxsZ7gQdVd1YPssnoQuV9LjB

GrRiW7AVzwSudUEPhtP6eM7gU1DAUCbF3bAhW9nUiME9MB9Yum5wHBICGzNy8dTkjMEJ6BTDqUmD

e4VX1fN6nk/DHVQMfZL7YAkVXbiS0IbKhFzqh30N0i3MAAyhMpMy+AxEMFrI5uNimc/CAVSv50TJ

OahiND0zkc7pBp8HE0OyDspbqfqYHA9BHKNT4l/AMQw3ZHtcrF4IHjEnhi7CIVQKovISHEc1DwK+

DIOojMnZFTiBUT0/FZ8xBngEDqMynkvzKPSiei0pkBS42Kob+XQqPjLBY9CPsS3dWSe74nEahjE8

Ukgkz3AGZgUrAsZBadzJOXXP4gnoRgWFSoeOwOnAVDpv8FVIBm8hYgBuYSg/w9cgjBHdSE2J+Eko

NSI0VfVczsIFUZ4SQVOwLlEJYm7AtMQXDZ6GXYHG+PYb5UCtSwKFqzXHczhPktMUpPEoz6BiJ11G

n69rsjkILdQLIboACo1L9uVgg7ohQmeglTRooyTsomnoIB32UT8coLOwTlNwiC7CYRqBMF2D43QJ

TtAV6KQEdNFJ6KYJ6KEuiNMQJCgOvTQKSboK/TQGg3QZhmgAhikNFygLOnXCNBlQoFNwg4ZhljJw

iwBMOg/z1ANL1AclmoQqnQOXUnCHTtel2I41pX4hyP1G3r/vcMHnG9qWu5L7DZc/CErJc1z+ULAF

jaQyb/o8S81F+aIcbzk85/NHYgPb+pLnEqfl18dmc2nO017arsGbzULy5NSed5UFh4s+W42iDtF2

C1kUIZEFuu3Wy7wkWorNXaEJTQ7bPn/8Cvp24EbJqnBJoPb/tDtVz3YqbgNedrjisxO4sKMJXxV8

tHGTGSM1K8BzDXaIvYpG0gldn70gemoTLMij6LJVcwXHy7RfMmue3Cb6TMlcek79icMrPq8GnSeE

4bK0U5vX7geZuBjc4k9fZOIE38Fw0NVc9mf5M22WP8fQZIbvmrN8D0NjGf5Cvr5E1Vq2S7xuWsKs

CPPKltANn796JTxfB+GxqcT3Gxo3XmmQDYnfOLzp87eBm1eakuSBPGpEUJsaSfgf+vxdcKOlieB7

IQjZRf5Bbj2so+rZ0pJ/HB/5d+ez9WeJB7jTrtieLWNpzSryT9IBOxwJW8kxi1ZxrjHEfvb5F4xW

zdVgmx+9FJh1jO3NGD+W0ffE56caycj7lWS4/UaPTWrLkkyx32mL8cjdp5v/kJCQWPyDHtETfK0x

v55T/enzX6JUlr81apeoH8zSMVkK8r9JJhWzZGepIiniynuvyO5GljYlJg+hRYos8R8yYmBq

import object

import object(obj=None)
Reads a base64-encoded bzipped pickled object on standard input.

32 CHAPTER 8. COMMANDS

>>> import object()

eNpdVWtbE1cQluwmgShV6q2ttVaruAgJEvACeIOQwDoSloSxsRXpQhZma5LNZDcUqNtqC62l2ruX

3r/7U/qt/6izEDX1yZPn7HPOeed9Z85c7oYW5ubKpl2Zm4vpRoxbuu5xyGdFw8iibZWKLqs+h1Hx

vBJHQHExZpZs0/VWq5bL0VlupRYTY/VK0aqVzFWrxm1ZbNtCBlc45vNOTXtJMWp7meAwxrscbvf5

NQ2jRWvRrJc83g07MOSu8R4IobJY9rgDQ0cn+HVUK2bZ4r2oLtbMJd6HqmuvWbwf2uvz1N5kPF2u

UowPOHzQ5zfERKnIbzYd5516bcHSjYaAtxw+5PPbGu3O0h5QqQOVowMuH6a9qLi1BX5HlLneFvUR

VOST363Pu/N0sNmdVc9KV+rlhsmjDh/z+T1N7LWIkaTNx30+oaGayxsZ7gQdVd1YPssnoQuV9LjB

GrRiW7AVzwSudUEPhtP6eM7gU1DAUCbF3bAhW9nUiME9MB9Yum5wHBICGzNy8dTkjMEJ6BTDqUmD

e4VX1fN6nk/DHVQMfZL7YAkVXbiS0IbKhFzqh30N0i3MAAyhMpMy+AxEMFrI5uNimc/CAVSv50TJ

OahiND0zkc7pBp8HE0OyDspbqfqYHA9BHKNT4l/AMQw3ZHtcrF4IHjEnhi7CIVQKovISHEc1DwK+

DIOojMnZFTiBUT0/FZ8xBngEDqMynkvzKPSiei0pkBS42Kob+XQqPjLBY9CPsS3dWSe74nEahjE8

Ukgkz3AGZgUrAsZBadzJOXXP4gnoRgWFSoeOwOnAVDpv8FVIBm8hYgBuYSg/w9cgjBHdSE2J+Eko

NSI0VfVczsIFUZ4SQVOwLlEJYm7AtMQXDZ6GXYHG+PYb5UCtSwKFqzXHczhPktMUpPEoz6BiJ11G

n69rsjkILdQLIboACo1L9uVgg7ohQmeglTRooyTsomnoIB32UT8coLOwTlNwiC7CYRqBMF2D43QJ

TtAV6KQEdNFJ6KYJ6KEuiNMQJCgOvTQKSboK/TQGg3QZhmgAhikNFygLOnXCNBlQoFNwg4ZhljJw

iwBMOg/z1ANL1AclmoQqnQOXUnCHTtel2I41pX4hyP1G3r/vcMHnG9qWu5L7DZc/CErJc1z+ULAF

jaQyb/o8S81F+aIcbzk85/NHYgPb+pLnEqfl18dmc2nO017arsGbzULy5NSed5UFh4s+W42iDtF2

C1kUIZEFuu3Wy7wkWorNXaEJTQ7bPn/8Cvp24EbJqnBJoPb/tDtVz3YqbgNedrjisxO4sKMJXxV8

tHGTGSM1K8BzDXaIvYpG0gldn70gemoTLMij6LJVcwXHy7RfMmue3Cb6TMlcek79icMrPq8GnSeE

4bK0U5vX7geZuBjc4k9fZOIE38Fw0NVc9mf5M22WP8fQZIbvmrN8D0NjGf5Cvr5E1Vq2S7xuWsKs

CPPKltANn796JTxfB+GxqcT3Gxo3XmmQDYnfOLzp87eBm1eakuSBPGpEUJsaSfgf+vxdcKOlieB7

IQjZRf5Bbj2so+rZ0pJ/HB/5d+ez9WeJB7jTrtieLWNpzSryT9IBOxwJW8kxi1ZxrjHEfvb5F4xW

zdVgmx+9FJh1jO3NGD+W0ffE56caycj7lWS4/UaPTWrLkkyx32mL8cjdp5v/kJCQWPyDHtETfK0x

v55T/enzX6JUlr81apeoH8zSMVkK8r9JJhWzZGepIiniynuvyO5GljYlJg+hRYos8R8yYmBq

^D

<IP ttl=3 |>

rdpcap

rdpcap(filename, count=-1)
reads a pcap file and returns the list of read packets. If count is positive,
only the first count packets are read.

>>> rdpcap("ike.cap")

<ike.cap: UDP:45 TCP:0 ICMP:0 Other:0>

>>> rdpcap("ike.cap", count=10)

<ike.cap: UDP:10 TCP:0 ICMP:0 Other:0>

wrpcap

wrpcap(filename, pkt, linktype=None)
Write a packet or list of packets to a pcap file. linktype can be used to
force the link type value written into the file.

>>> wrpcap("my.cap", packet list)

fragment

fragment(pkt, fragsize=1480)
Fragments an IP packet with a large payload into many IP packets with a
smaller payload and with the fragofs and flags fields correctly set up.

>>> fragment(IP(dst="1.2.3.4")/ICMP()/("X"*50), fragsize=10)

[<IP flags=MF frag=0 proto=ICMP dst=1.2.3.4 |<Raw load=’\x08\x00W \x00\x00\x00\x00XXXXXXXX’

|>>, <IP flags=MF frag=2 proto=ICMP dst=1.2.3.4 |<Raw load=’XXXXXXXXXXXXXXXX’

|>>, <IP flags=MF frag=4 proto=ICMP dst=1.2.3.4 |<Raw load=’XXXXXXXXXXXXXXXX’

|>>, <IP flags= frag=6 proto=ICMP dst=1.2.3.4 |<Raw load=’XXXXXXXXXX’ |>>]

8.1. TOOLS 33

fuzz

fuzz(p) Transform a packet into a fuzzed packet. Whas is done is replacing
each field whose default value is not automatically calculated by a random
value compatible with the field. Values that have to be automatically cal-
culated (like checksums or lengths) are identified by the fact their default
value is None. This characterization is a good approximation but keep
in mind it could be wrong. Because the random value is considered as a
default value on fuzzed packets, values set by the user or the upper layer
overload the random value.

>>> ls(UDP())

sport : ShortEnumField = 53 (53)

dport : ShortEnumField = 53 (53)

len : ShortField = None (None)

chksum : XShortField = None (None)

>>> ls(fuzz(UDP()))

sport : ShortEnumField = <RandShort> (53)

dport : ShortEnumField = <RandShort> (53)

len : ShortField = None (None)

chksum : XShortField = None (None)

>>> a=IP(version=4)/UDP()

>>> hexdump(a)

0000 45 00 00 1C 00 01 00 00 40 11 7C CE 7F 00 00 01 E.......@.|.....

0010 7F 00 00 01 00 35 00 35 00 08 01 725.5...r

>>> hexdump(a)

0000 45 00 00 1C 00 01 00 00 40 11 7C CE 7F 00 00 01 E.......@.|.....

0010 7F 00 00 01 00 35 00 35 00 08 01 725.5...r

>>> b=fuzz(a)

>>> hexdump(b)

0000 47 DE 00 24 D3 E9 40 00 DE 11 42 FF C0 A8 08 0E G..$..@...B.....

0010 63 7E DF 17 0E ED 74 01 F4 C6 00 00 97 14 24 5E c~....t.......$^

0020 00 08 39 1F ..9.

>>> hexdump(b)

0000 4B 0D 00 34 64 CE 60 00 95 11 FD CE C0 A8 08 0E K..4d.‘.........

0010 80 5E B7 6B 57 B9 BA 1D 58 C4 91 BD E6 E4 DB 39 .^.kW...X......9

0020 61 58 0E E6 FF 3E CF 98 5F 00 00 00 2B F3 B5 C5 aX...>.. ...+...

0030 00 08 1D A5

interact

interact(mydict=None, argv=None, mybanner=None, loglevel=1)
Runs an interactive session with completion and history. Use it in your
own tools.

bind top down

bind top down(lower, upper, fval)
Informs upper layer that, when stacked on lower, it must overload lower’s
fields whose names are the keys of the fval dictionnary with their associated
values.

34 CHAPTER 8. COMMANDS

>>> a=IP()/UDP()

>>> a.ttl

64

>>> bind top down(IP, UDP, {’ttl’:12})

>>> a=IP()/UDP()

>>> a.ttl

12

bind bottom up

bind bottom up(lower, upper, fval)
Informs lower layer that, when dissected, if all of its fields match the fval
dictionnary, the payload is upper

>>> UDP("ABCDEFGHIJKL")

<UDP sport=16706 dport=17220 len=17734 chksum=0x4748 |<Raw load=’IJKL’ |>>

>>> bind bottom up(UDP, Dot1Q, {"dport":17220})

>>> UDP("ABCDEFGHIJKL")

<UDP sport=16706 dport=17220 len=17734 chksum=0x4748 |<Dot1Q prio=2L id=0L

vlan=2378L type=0x4b4c |>>

bind layers

bind layers(lower, upper, fval)
Does a bind bottom up and a bind top down.

8.2 Communication commands

8.2.1 Sniff family

sniff

sniff(prn=None, lfilter=None, count=0, store=1, offline=None, L2socket=None,
timeout=None) Sniffs packets from the network and return them in a
packet list. This function can have many parameters:

count: number of packets to capture. 0 means infinity.

store: wether to store sniffed packets or discard them. When you only
want to monitor your network forever, set store to 0.

prn: function to apply to each packet. If something is returned, it is dis-
played. For instance you can use prn = lambda x: x.summary().

lfilter: python function applied to each packet to determine. if further
action may be done. For instance, you can use lfilter = lambda

x: x.haslayer(Padding)

offline: pcap file to read packets from, instead of sniffing them. In this
case, BPF filter won’t work.

timeout: stop sniffing after a given time (default: None).

L2socket: you can provide a supersocket for sniffing instead of the one
from conf.L2listen.

8.2. COMMUNICATION COMMANDS 35

8.2.2 Send family

send

send(pkts, inter=0, loop=0, verbose=None)
Send packets at layer 3, using the conf.L3socket supersocket. pkts can
be a packet, an implicit packet or a list of them.

loop: send the packets endlessly if not 0.

inter: time in seconds to wait between 2 packets

verbose: override the level of verbosity. Make the function totally silent
when 0

sendp

sendp(pkts, inter=0, loop=0, iface=None, iface hint=None, verbose=None)
Send packets at layer 2 using the conf.L2socket supersocket. pkts can
be a packet, an implicit packet or a list of them.

loop: send the packets endlessly if not 0.

inter: time in seconds to wait between 2 packets

verbose: override the level of verbosity. Make the function totally silent
when 0

8.2.3 Send and receive family

The send and receive functions family is central to interact with the network
with Scapy.

sr

sr(pkts, filter=None, iface=None, timeout=2, inter=0, verbose=None, chainCC=0,
retry=0, multi=0) Send and receive packets at layer 3 using the conf.L3socket
supersocket.

nofilter: put 1 to avoid use of bpf filters on systems that don’t support it

retry: if positive, how many times to resend unanswered packets if neg-
ative, how many consecutive unanswered probes before giving up.
Only the negative value is really useful.

timeout: how much time to wait after the last packet has been sent. By
default, sr will wait forever and the user will have to interrupt (Ctrl-
C) it when he expects no more answers.

verbose: set verbosity level.

multi: whether to accept multiple answers for the same stimulus.

filter: provide a BPF filter.

36 CHAPTER 8. COMMANDS

iface: listen answers only on the provided interface.

inter: time in seconds to wait between each packet sent.

chainCC: when Ctrl-C is pressed, raise the KeyboardInterrupt exception
again so that callers can know it and behave accordingly.

sr1

sr1(pkts, filter=None, iface=None, timeout=2, inter=0, verbose=None, chainCC=0,
retry=0, multi=0) Same as sr except only the first answer is returned. This
command is very useful for one packet probes like pinging an IP.

>>> sr1(IP(dst="192.168.0.1")/ICMP())

<IP version=4L ihl=5L tos=0x0 len=28 id=34897 flags= frag=0L ttl=64 proto=ICMP

chksum=0x713d src=192.168.0.1 dst=192.168.0.1 options=’’ |<ICMP type=echo-reply

code=0 chksum=0xffff id=0x0 seq=0x0 |>>

srp

srp(pkts, filter=None, iface=None, timeout=2, inter=0, verbose=None, chainCC=0,
retry=0, multi=0, iface hint=None)
Same as srp but for working at layer 2 with conf.L2socket supersocket.
There is also an additional parameter, iface hint, which give an hint that
can help choosing the right output interface. By default, if not speci-
fied by iface, conf.iface is chosen. The hint takes the form of an IP to
which the layer 2 packet might be destinated. The Scapy routing table
(conf.route) is used to determine which interface to use to reach this IP.

srp1

srp(pkts, filter=None, iface=None, timeout=2, inter=0, verbose=None, chainCC=0,
retry=0, multi=0, iface hint=None)
Same as srp, except only the first answer is returned. This command is
very useful for one packet probes like ARP pinging an IP.

srbt

srbt(peer, pkts, inter=0.1)
Same as sr but for the conf.BTsocket supersocket. It is a Bluetooth
supersocket that needs the peer’s address, provided by the peer parameter.

srloop

srloop(pkts, prn=lambda x:x[1].summary(),, prnfail=lambda x:x.summary(),
inter=1, timeout=None, count=None, verbose=0)

Send in loop a packet or a set of packets with conf.L3socket supersocket
and print the results at each round.

prn: a function to be applied to each couple (packet sent, packet received)
whose result will be displayed.

prnfail: a function to be applied to each unanswered packet sent whose
result will be displayed.

inter: time interval in seconds between two rounds

8.3. HIGH-LEVEL COMMANDS 37

timeout: time to wait for answers after the last packet has been sent. By
default, the timeout will be min(2 × inter, 5)

count: number of rounds. By default, runs forever.

verbose: control verbosity.

>>> srloop(IP(dst="192.168.0.1")/TCP(dport=[21,22,25,80]),count=3)

RECV 2: IP / TCP 192.168.0.1:ssh > 192.168.0.1:ftp-data SA

IP / TCP 192.168.0.1:www > 192.168.0.1:ftp-data RA

fail 2: IP / TCP 192.168.0.1:ftp-data > 192.168.0.1:smtp S

IP / TCP 192.168.0.1:ftp-data > 192.168.0.1:ftp S

RECV 2: IP / TCP 192.168.0.1:ssh > 192.168.0.1:ftp-data SA

IP / TCP 192.168.0.1:www > 192.168.0.1:ftp-data RA

fail 2: IP / TCP 192.168.0.1:ftp-data > 192.168.0.1:smtp S

IP / TCP 192.168.0.1:ftp-data > 192.168.0.1:ftp S

RECV 2: IP / TCP 192.168.0.1:ssh > 192.168.0.1:ftp-data SA

IP / TCP 192.168.0.1:www > 192.168.0.1:ftp-data RA

fail 2: IP / TCP 192.168.0.1:ftp-data > 192.168.0.1:smtp S

IP / TCP 192.168.0.1:ftp-data > 192.168.0.1:ftp S

Sent 12 packets, received 6 packets. 50.0% hits.

srploop

srploop(pkts)
Same as srloop but for layer 2.

8.3 high-level commands

ikescan

ikescan(ip)

traceroute

traceroute(target, dport=80, minttl=1, maxttl=30, sport=¡RandShort¿, l4=None,
filter=None, timeout=2)

arping

arping(net, timeout=2)
Send ARP who-has requests to determine which hosts are up arping(net,
iface=conf.iface) -¿ None

is promisc

is promisc(ip, fake bcast=’ff:ff:00:00:00:00’)
Try to guess if target is in Promisc mode. The target is provided by its
ip.

dhcp request

dhcp request(iface=None)

38 CHAPTER 8. COMMANDS

fragleak

fragleak(target, sport=123, dport=123, timeout=0.2, onlyasc=0)

fragleak2

fragleak2(target, timeout=0.4, onlyasc=0)

report ports

report ports(target, ports)
portscan a target and output a LATEXtable

arpcachepoison

arpcachepoison(target, victim, interval=60)
Poison target’s cache with (your MAC,victim’s IP) couple

8.4 Answering machines

dhcpd

dns spoof

airpwn

bootpd

farpd

Part III

Extending Scapy

39

9
Adding a new protocol

Adding new layer in Scapy is very easy. All the magic is in the fields. If the
fields you need are already there and the protocol is not too brain-damaged,
this should be a matter of minutes.

9.1 Definition of a layer

A layer is a subclass of the Packet class. All the logic behind layer manipulation
is hold by the Packet class and will be inherited.

A simple layer is compounded by a list of fields that will be either concatenated
when assembling the layer or dissected one by one when desassembling a string.
The list of fiels is hold in an attribute named fields desc. Each field is an instance
of a field class.

1 c l a s s Disney (Packet) :
2 name = "Disney Packet"

3 f i e l d s d e s c = [ShortF ie ld ("mickey" , 5) ,
4 XByteField ("minnie" , 3) ,
5 IntEnumField ("donald" , 1 , {1 :"happy" , 2 : "cool" , 3 : "angry"})]

In this example, our layer has three fields. The first one is an 2 byte integer
field named mickey and whose default value is 5. The second one is a 1 byte

41

42 CHAPTER 9. ADDING A NEW PROTOCOL

integer field named minnie and whose default value is 3. The difference between
a vanilla ByteField and a XByteField is only the fact that the prefered human
representation of the field’s value is in hexadecimal. The last field is a 4 byte
integer field named s donald. It is different from a vanilla IntField by the fact
that some of the possible values of the field have litterate representations. For
example, if it is worth 3, the value will be displayed as angry. Moreover, if the
"cool" value is assigned to this field, it will understand that it has to take the
value 2.

If your protocol is as simple as this, it is ready to use.

>>> d=Disney(mickey=1)

>>> ls(d)

mickey : ShortField = 1 (5)

minnie : XByteField = 3 (3)

donald : IntEnumField = 1 (1)

>>> d.show()

###[Disney Packet]###

mickey= 1

minnie= 0x3

donald= happy

>>> d.donald="cool"

>>> str(d)

’\x00\x01\x03\x00\x00\x00\x02’

>>> Disney()

<Disney mickey=1 minnie=0x3 donald=cool |>

9.2 Fields

Many fields already exist. Some are very generic, as ByteField, and some very
specific and used only in one layer, as TCPOptionsField.

FieldLenField The FieldLenField is a field whose value gives the length of another
field. If the other field is a FieldListField or a PacketListField, the value is
the number of elements of the list. Else, it correspond to the number of
bytes belonging to the other field. The third parameter is the name of the
other field. The default value should be None to indicate that it should
be calculated automatically. A shift value can be given that need to be
added to the value of the field to obtain the field value. This is needed
when a field holds the length of a set of fields and must be adjusted to get
only the variable field’s length.

9.3. LAYERS’ METHODS 43

9.3 Layers’ methods

9.4 Binding layers

9.5 Layers’ design patterns

9.5.1 For a string whose length is given by another field

To do this, we will use the FieldLenField and the StrLenField. The FieldLenField
is a field whose value gives the length of another field. Here, the other field
is "the_string". The string field is also special because it needs to know
its length from the lengh field when the packet is dissected. So, it references
"the_length" as its third argument.

To make it short, when dissecting, "the_string" knows its lenght from freshly
dissected "the_length" field and when assembling, "the_length" can be au-
tomatically computed from the length of "the_string".

1 c l a s s VarStr (Packet) :
2 name = "Variable String"

3 f i e l d s d e s c = [Fie ldLenFie ld ("the_length" ,None , "the_string" ,"I") ,
4 StrLenField ("the_string" ,"The default value" , "the_length")]

>>> p=VarStr()

>>> p.show2()

###[Variable String]###

the length= 17L

the string= ’The default value’

>>> p.the string="The new value"

>>> p.show2()

###[Variable String]###

the length= 13L

the string= ’The new value’

>>> hexdump(p)

0000 00 00 00 0D 54 68 65 20 6E 65 77 20 76 61 6C 75The new valu

0010 65 e

44 CHAPTER 9. ADDING A NEW PROTOCOL

10
Adding a new field

A field is a class whose instance holds all the meta-informations relating to a
given field in an layer class and is used as translating box.

The class field is responsible for both extracting the field value from the raw
packet string being dissected and for adding the field in a raw packet string
being assembled.

The value held into a field can have many forms. We have the assembled form,
the internal form, the human readable form and a rich representation. For
example, the TCP flags for a SYN-ACK packet will have the "SA" string as
rich representation. In the packet, we will find the character "\x12". But the
internal useful value will be the integer 18. Each field will provide functions to
translate values between all those representations, even if, in most of the cases,
some of the representations will be identical. A special function is also here to
try guess its input form to enable the user to fill a field with human readable or
rich representation.

10.1 The Field API

addfield

addfield(self, pkt, s, val)
Adds the value val to the raw string packet s. The field belongs to the

45

46 CHAPTER 10. ADDING A NEW FIELD

Packet instance pkt.

getfield

getfield(self, pkt, s)
Extracts and returns the value of the field from the raw string packet s.
The field belongs to the Packet instance pkt.

randval

randval(self)
Returns a VolatileValue subclass’ instance whose values will be randomly
chosen in the domain of the field.

copy

copy(self)
Returns a deep copy of the instance.

i2h

i2h(self, pkt, x)
Translates the internal value representation into the human readable rep-
resentation.

h2i

h2i(self, pkt, x)
Translates the human readable representation into the internal represen-
tation.

m2i

m2i(self, pkt, x)
Translates the machine representation into the internal representation.
The machine representation is the raw bytes found into the raw string
packet.

any2i

any2i(self, pkt, x)
Try to guess the input representation and returns the internal representa-
tion.

i2m

i2m(self, pkt, x)
Translates the internal representation into the machine representation.
The machine representation is the raw bytes found into the raw string
packet.

i2repr

i2repr(self, pkt, x)
Translates the internal value to the rich representation.

i2len

i2en(self, pkt, x)

10.1. THE FIELD API 47

Computes the length of the field for it to be used in another field (usually,
a length field). Depending on the field and the layer, the value can be for
example a byte count or a number of elements in a list, and can even be
shifted to fit the needs of the the length field.

48 CHAPTER 10. ADDING A NEW FIELD

11
Adding an answering machine

49

50 CHAPTER 11. ADDING AN ANSWERING MACHINE

12
Making your own tools

1 #! /usr/bin/env python

2
3 from scapy import ∗
4
5 c l a s s Test (Packet) :
6 name = "Test packet"

7 f i e l d s d e s c = [ShortF ie ld ("test1" , 1) ,
8 ShortF ie ld ("test2" , 2)]
9

10 def make test (x , y) :
11 return Ether ()/ IP ()/ Test (test1=x , test2=y)
12
13 i f name == "main" :
14 i n t e r a c t (mydict=g loba l s () , mybanner="Test add-on v3.14")

51

52 CHAPTER 12. MAKING YOUR OWN TOOLS

13
Scripting Scapy

1 #! /usr/bin/env python

2
3 import sys

4 i f len (sys . argv) != 2 :
5 p r i n t "Usage: arping <net>\n eg: arping 192.168.1.0/24"

6 sys . ex i t (1)
7
8 from scapy import srp , Ether ,ARP, conf

9 conf . verb=0
10 ans , unans=srp (Ether (dst="ff:ff:ff:ff:ff:ff")
11 /ARP(pdst=sys . argv [1]) ,
12 timeout=2)
13
14 f o r s , r in ans :
15 p r i n t r . s p r i n t f ("%Ether.src% %ARP.psrc%")

53

54 CHAPTER 13. SCRIPTING SCAPY

14
Adding a new high-level function

55

56 CHAPTER 14. ADDING A NEW HIGH-LEVEL FUNCTION

Part IV

Internals

57

15
Networking code

15.1 Supersockets

There are many different ways to access the network even on the same OS. The
abstraction for all of these in Scapy is supersockets.

A supersocket can be initialized with a BPF filter. It can be read with the
recv() method and written with the send() method. In both cases, packets
are provided, and the recv() method has to determine which layer is suitable
for the considered link type. A supersocket also has a fileno() method for it
to be selected for reading. In the case there is one file descriptor for reading
and one for writing, the first one must be returned.

If a supersocket is supposed to work at a given layer, it has to handle all the
missing layers. For instance a layer 3 supersocket working with layer 2 sockets
must handle the layer 2.

Functions that use supersockets (sr, sendp, sniff, etc.) choose the supersocket
layer type they need in the conf variable. If they need a layer 3 supersocket,
they will use conf.L3socket.

Here are some of the available supersockets:

L3RawSocket: a supersocket working for IP packets and using a PF INET/SOCK RAW

59

60 CHAPTER 15. NETWORKING CODE

socket for sending and a PF PACKET for receiving. Hence many limitations
apply to sending. For example, if IP checksum is 0, it will be calculated,
packets can be blocked by the local firewall, etc. But it has the advantage
to work on the loopback interface.

L3PacketSocket: a supersocket working at layer 3 and using PF PACKET/SOCK RAW

sockets for sending and receiving. It handles layer 2. This supersocket is
the default choice on Linux.

L2Socket: a supersocket working at layer 2 and using PF PACKET/SOCK RAW

sockets for sending and receiving. This supersocket is the default choice
on Linux.

L2ListenSocket: This socket uses PF PACKET/SOCK RAW for sniffing use only.

L3dnetSocket: This supersocket uses libpcap for receiving and libdnet for send-
ing. It works at layer 3 and handles layer 2.

L2dnetSocket: This supersocket uses libpcap for receiving and libdnet for send-
ing. It works at layer 2.

L2pcapListenSocket: This supersocket use libpcap for sniffing uses only.

StreamSocket: This socket uses a kernel stream socket (TCP connexion, etc.)
as a link layer. The layer class to use as the link layer protocol must be
provided.

BluetoothL2CAPSocket: This socket is used to handle Bluetooth sockets at
the L2CAP level.

BluetoothHCISocket: This socket is used to handle Bluetooth sockets at the
HCI level. This level is not supported yet by Python socket module.

15.2 Routing packets

When Scapy is launched, its routing tables are synchronized with host’s routing
table. For a packet sent at layer 3, the destination IP determine the output
interface, source address and gateway to be used. For a layer 2 packet, the
output interface can be precised, or an hint can be given in the form of an IP
to determine the output interface. If no output interface nor hint are given,
conf.iface is used.

15.2. ROUTING PACKETS 61

>>> conf.route

Network Netmask Gateway Iface Output IP

127.0.0.0 255.0.0.0 0.0.0.0 lo 127.0.0.1

172.16.15.0 255.255.255.0 0.0.0.0 eth0 172.16.15.42

0.0.0.0 0.0.0.0 172.16.15.1 eth0 172.16.15.42

>>> conf.route.add(net="192.168.1.0/24",gw="172.16.15.23")

>>> conf.route.add(host="192.168.4.5",gw="172.16.15.24")

>>> conf.route

Network Netmask Gateway Iface Output IP

127.0.0.0 255.0.0.0 0.0.0.0 lo 127.0.0.1

172.16.15.0 255.255.255.0 0.0.0.0 eth0 172.16.15.42

192.168.1.0 255.255.255.0 172.16.15.23 eth0 172.16.15.42

192.168.4.5 255.255.255.255 172.16.15.24 eth0 172.16.15.42

0.0.0.0 0.0.0.0 172.16.15.1 eth0 172.16.15.42

>>> conf.route.delt(net="192.168.1.0/24",gw="172.16.15.23")

>>> conf.route.resync()

>>> conf.route

Network Netmask Gateway Iface Output IP

127.0.0.0 255.0.0.0 0.0.0.0 lo 127.0.0.1

172.16.15.0 255.255.255.0 0.0.0.0 eth0 172.16.15.42

0.0.0.0 0.0.0.0 172.16.15.1 eth0 172.16.15.42

62 CHAPTER 15. NETWORKING CODE

16
Object model

63

	Introduction
	About this document
	What is Scapy
	Scapy's concepts
	Fast packet design
	Probe once, interpret many
	Scapy decodes, it does not interpret

	I Examples
	Quick start
	Packet manipulation
	Network discovery
	Attacks

	II Reference
	Packet manipulation
	User's methods
	Developer's methods

	Packet list manipulation
	User's methods

	Commands
	Tools
	Communication commands
	Sniff family
	Send family
	Send and receive family

	high-level commands
	Answering machines

	III Extending Scapy
	Adding a new protocol
	Definition of a layer
	Fields
	Layers' methods
	Binding layers
	Layers' design patterns
	For a string whose length is given by another field

	Adding a new field
	The Field API

	Adding an answering machine
	Making your own tools
	Scripting Scapy
	Adding a new high-level function

	IV Internals
	Networking code
	Supersockets
	Routing packets

	Object model

