GUI PROGRAMMING
USING TKINTER

Cuauhtémoc Carbajal
ITESM CEM
April 17, 2013

%
\-15

Agenda

- Introduction
- Tkinter and Python Programming
- Tkinter Examples

INTRODUCTION

Introduction

- In this lecture, we will give you a brief introduction to the
subject of graphical user interface (GUI) programming.

- We cannot show you everything about GUI application
development in just one lecture, but we will give you a very
solid introduction to it.

- The primary GUI toolkit we will be using is Tk, Python’s default
GUI. We’'ll access Tk from its Python interface called Tkinter
(short for “Tk interface”).

- Tk is not the latest and greatest, nor does it have the most
robust set of GUI building blocks, but it is fairly simple to use,
and with it, you can build GUIs that run on most platforms.

- Once you have completed this lecture, you will have the skills
to build more complex applications and/or move to a more
advanced toolkit. Python has bindings or adapters to most of
the current major toolkits, including commercial systems.

What Are Tcl, Tk, and Tkinter?

- Tkinter is Python’s default GUI library. It is based on the Tk toolkit,
originally designed for the Tool Command Language (Tcl). Due to Tk'’s
popularity, it has been ported to a variety of other scripting languages,
Including Perl (Perl/Tk), Ruby (Ruby/Tk), and Python (Tkinter).

- The combination of Tk's GUI development portability and flexibility
along with the simplicity of a scripting language integrated with the
power of systems language gives you the tools to rapidly design and
Implement a wide variety of commercial-quality GUI applications.

- Python, along with Tkinter, provides a fast and exciting way to build
useful applications that would have taken much longer if you had to
program directly in C/C++ with the native windowing system’s
libraries.

- Once you have designed the application and the look and feel that
goes along with your program, you will use basic building blocks
known as widgets to piece together the desired.

- Once you get Tkinter up on your system, it will take less than 15
minutes to get your first GUI application running.

I
Getting Tkinter Installed and Working

- Tkinter is not necessarily turned on by default on your system.
You can determine whether Tkinter is available for your Python
Interpreter by attempting to import the Tkinter module (in
Python 1 and 2; renamed to tkinter in Python 3). If Tkinter is
available, then no errors occur, as demonstrated in the
following:

>>> pmport tkinter
>>>

- If your Python interpreter was not compiled with Tkinter
enabled, the module import fails. You might need to recompile
your Python interpreter to gain access to Tkinter. This usually
Involves editing the Modules/Setup file and then enabling all
the correct settings to compile your Python interpreter with
hooks to Tkinter, or choosing to have Tk installed on your
system.

Getting Tkinter Installed and Working on
the RPI

- Type the following line into a terminal window:
- sudo apt-get install python-tk

- Open a Python Shell:
- idle3

- Import the Tkinter module:
>>> mport tkinter

I T
The Tkinter Module: Adding Tk to your
Applications

- Do you need to do to have Tkinter as part of your application?

- First, it Is not necessary to have an application already. You can
create a pure GUI if you want, but it probably isn’t too useful
without some underlying software that does something
Interesting.

- There are basically five main steps that are required to get your
GUI up and running:
1. Import the Tkinter module (or from Tkinter import *).

2. Create a top-level windowing object that contains your entire GUI
application.

3. Build all your GUI components (and functionality) on top (or within)
of your top-level windowing object.

4. Connect these GUI components to the underlying application code.
Enter the main event loop.

Introduction to GUI Programming

- Before going to the examples, we will give you a brief
Introduction to GUI application development. This will provide
you with some of the general background you need to move
forward.

- Setting up a GUI application is similar to how an artist produces
a painting. Conventionally, there is a single canvas onto which
the artist must put all the work. Here’s how it works: you start
with a clean slate, a “top-level” windowing object on which you
build the rest of your components.

- Think of it as a foundation to a house or the easel for an artist. ,%
In other words, you have to pour the concrete or set up your
easel before putting together the actual structure or canvas on
top of it. In Tkinter, this foundation is known as the top-level
window object.

Windows and Widgets

- In GUI programming, a top-level root windowing object
contains all of the little windowing objects that will be part of
your complete GUI application. These can be text labels,
buttons, list boxes, etc. These individual little GUI components
are known as widgets.

- S0 when we say create a top-level window, we just mean that
you need a place where you put all your widgets. In Python,
this would typically look like this line:

- top = Tkinter.Tk() #orjust Tk() with "from Tkinter import *"

- The object returned by Tkinter . Tk() is usually referred to
as the root window; hence, the reason why some applications
use root rather than top to indicate as such. Top-level windows
are those that show up stand-alone as part of your application.
You can have more than one top-level window for your GUI, but
only one of them should be your root window.

Windows and Widgets (2)

- You can choose to completely design all your widgets
first, and then add the real functionality, or do a little of this
and a little of that along the way.

- Widgets can be stand-alone or be containers. If a widget
contains other widgets, it is considered the parent of
those widgets. Accordingly, if a widget is contained In
another widget, it’s considered a child of the parent, the
parent being the next immediate enclosing container
widget.

- Usually, widgets have some associated behaviors, such
as when a button is pressed, or text is filled into a text
fleld. These types of user behaviors are called events,
and the GUI's response to such events are known as
callbacks.

Event-Driven Processing

- Events can include the actual button press (and release),
mouse movement, hitting the Return or Enter key, etc. The
entire system of events that occurs from the beginning until the
end of a GUI application is what drives it. This is known as
event-driven processing.

- One example of an event with a callback is a simple mouse
move. Suppose that the mouse pointer is sitting somewhere on
top of your GUI application. If you move the mouse to another
part of your application, something has to cause the movement
of the mouse to be replicated by the cursor on your screen so
that it looks as if it is moving according to the motion of your
hand. These are mouse move events that the system must
process portray your cursor moving across the window. When
you release the mouse, there are no more events to process,
so everything just remains idle on the screen again.

Event-Driven Processing (2)

- The event-driven processing nature of GUIs fits right in
with client/server architecture.

- When you start a GUI application, it must perform some setup
procedures to prepare for the core execution, just as how a network
server must allocate a socket and bind it to a local address.

- The GUI application must establish all the GUI components, then
draw (a.k.a. render or paint) them to the screen. This is the
responsibility of the geometry manager (more about this in a
moment). When the geometry manager has completed arranging
all of the widgets, including the top-level window, GUI applications
enter their server-like infinite loop.

- This loop runs forever waiting for GUI events, processing them, and
then going to wait for more events to process.

Geometry Managers

Geometry managers allow us to organize widgets inside of a container

Place geometry manager
http://effbot.org/tkinterbook/place.htm
Pack geometry manager
http://effbot.org/tkinterbook/pack.htm
Grid geometry manager
http://effbot.org/tkinterbook/grid.htm

Geometry Managers

- Tk has three geometry managers that help with
positioning your widgetset:

- Placer: You provide the size of the widgets and locations to place
them; the manager then places them for you. The problem is that
you have to do this with all the widgets, burdening the developer
with coding that should otherwise take place automatically.

- Packer: it packs widgets into the correct places (namely the
containing parent widgets, based on your instruction), and for every
succeeding widget, it looks for any remaining “real estate” into
which to pack the next one. The process is similar to how you
would pack elements into a suitcase when traveling.

- Grid: It is used to specify GUI widget placement, based on grid
coordinates. The Grid will render each object in the GUI in their grid
position.

- We will stick with the Packer.

Packer

- Once the Packer has determined the sizes and alignments of
all your widgets, it will then place them on the screen for you.

- When all the widgets are in place, we instruct the application to
enter the aforementioned infinite main loop. In Tkinter, the code
that does this is:

- Tkinter._.mainloop()

- This is normally the last piece of sequential code your program
runs.

- When the main loop is entered, the GUI takes over execution
from there.

- All other actions are handled via callbacks, even exiting your
application. When you select the File menu and then click the
Exit menu option or close the window directly, a callback must
be invoked to end your GUI application.

Top-Level Window: Tkinter.Tk()

- We mentioned earlier that all main widgets are built on the
top-level window object. This object is created by the Tk

class in Tkinter and is instantiated as follows:
>>> pmport Tkinter

>>> top = Tkinter.Tk()

- Within this window, you place individual widgets or
multiple-component pieces together to form your GUI.

Hello World Sptens
from Tkinter import Label / # get a widget

widget = Label(None, text="Hello World') # make a Label

widget.pack() \ # arrange it in its parent

widget.mainloop() _ # start the event loop
parent widget

1. Load a widget class from Tkinter

2. Make an instance of it

(repeat 1 and 2 as needed)

Arrange the widget in its parent widget
4. Enter the event loop

=

4 |
= pythons
|_telotora tkinter Label
python

Tkinter Label

Tkinter Events and Binding

<Button-1> - left mouse button

<Button-2> - middle mouse button (on 3 button mouse)

<Button-3> - rightmost mouse button

<B1-Motion> - mouse moved with left button depressed | Mouse
<ButtonRelease-1> - left button released events
<Double-Button-1>- double click on button 1

<Enter> - mouse pointer entered widget

<Leave> - mouse pointer left the widget]

<Focusin> - Keyboard focus moved to a widget N

<FocusOut> - Keyboard focus moved to another widget Keyboard
<Return> - Enter key depressed ~ events
<Key> - A key was depressed

<Shift-Up> - Up arrow while holding Shift key —
<Configure> - widget changed size or location

Event Handling

- Event sources (widgets) can specify their handlers
- command handlers
- callbacks

Command Handlers

use the '‘command=' keyword followed by the command you want executed

ex:

from Tkinter import *

root = Tk()

Button (root, text='Press Me', command=root.quit).pack(side=LEFT)
root.mainloop()

74 th -Eh
CEm—

Callbacks

e A callback is the name of the function that is to be run in response of
an event

e Callbacks can be defined as a free standing function in our program or
as a class member.

tk

Press me to quit |

ex.
from Tkinter import *

def quit():
print 'Hello, getting out of here'
import sys; sys.exit()

widget = Button(None, text='Press me to quit' , command=quit)
widget.pack()
widget.mainloop()

Bound Method Callbacks

Let’s make a Hello Class and use it:
tk

from Tkinter import *

class HelloClass:

create the window in the class constructor

def __init__(self):
widget = Button(None, text='Press Me to quit', command=self.quit)
widget.pack()

def quit(self):
print 'leaving now'
import sys ; sys.exit()

HelloClass() # create a HelloClass object
mainloop()

Binding Events

Tkinter &

tk

hello(event):

print 'Double click to exit'

quit(event):
print ‘caught a double click, leaving'
sys ; sys.exit()

widget = Button(None, text="Hello Event World')
widget.pack()

widget.bind('<Button-1>', hello)
widget.bind('<Double-1>', quit)
widget.mainloop()

TKINTER WIDGETS

Tk Widgets

Widget
¢ Similar to a Label but provides additional functionality for mouse-overs, presses, and releases,

as well as keyboard activity/events

Provides ability to draw shapes (lines, ovals, polygons, rectangles); can contain images or
bitmaps

Set of boxes, of which any number can be “checked”

Single-line text field with which to collect keyboard input

Pure container for other widgets
I$ Used to contain text or images

“:el el Combo of a label and a frame but with extra label attributes

Listbox Presents the user with a list of choices from which to choose

Actual list of choices “hanging” from a Menubutton from which the user can choose
Provides infrastructure to contain menus (pulldown, cascading, etc.)

Similar to a Label, but displays multiline text

A container widget with which you can control other widgets placed within it

Set of buttons, of which only one can be “pressed”

Linear “slider” widget providing an exact value at current setting; with defined starting and
ending values

Provides scrolling functionality to supporting widgets, for example, Text, Canvas, Listbox, and
Entry

Combination of an entry with a button letting you adjust its value

Multiline text field with which to collect (or display) text from user

Toplevel Similar to a Frame, but provides a separate window container

Standard attributes

NW N

- Dimensions

NE

° COlOI’S W CENTER E
- Anchors = ° ¢

- used to define where text is positioned
relative to a reference point.

- Relief styles

- refers to certain simulated 3-D effects
around the outside of the widget.

- Bitmaps
- used to display a bitmap type: "error*,

"gray 75", "gray50“. "gray25“, "grayl2*,

"hourglass®, "info", "questhead”, "question®,

"warning"

circle

- Cursors

|

Button

Button(master=None, **options) (class) [#] A command button.
master Parent widget. **options Widget options. See the description of
the config method for a list of available options.

- Buttons can contain text or images, and you can
associate a Python function or method with each button.
When the button is pressed, Tkinter automatically calls
that function or method.

- The button can only display text in a single font, but the
text may span more than one line. In addition, one of the
characters can be underlined, for example to mark a
keyboard shortcut. By default, the Tab key can be used to
move to a button widget.

Button Widget Demo

import Tkinter

top = Tkinter.Tk()
quit = Tkinter.Button(top, text="Hello World!",
command=top.quit)

quit.pack()
Hello World! |

Tkinter.mainloop()

import Tkinter as tk
button_flag = True
def click():

respond to the button click
global button_flag
toggle button colors as a test
T button_flag:
buttonl.config(bg="white")
button_flag = False
else:
buttonl.config(bg="green")
button_flag = True
root = tk.Tk()
create a frame and pack it
framel = tk.Frame(root)
framel.pack(side=tk.TOP, fill=tk.X)
pick a (small) image file you have in the working directory ...
photol = tk.Photolmage(file="rpi.gif")
create the image button, image is above (top) the optional text
buttonl = tk.Button(framel, compound=tk. TOP, width=148, height=240, image=photol,
text="optional text", bg='green’', command=click)

buttonl.pack(side=tk.LEFT, padx=2, pady=2) < tﬁ:?;‘ﬂ':‘:]‘j r?gtr):': 8: ;Xér\?vizgﬁfv\t,ﬂ"e
save the button's image from garbage collection (needed?) "pady" adds extra space top and
buttonl.image = photol bottom.

start the event loop

oot maiiocp0 ‘button-image.py

Label

Label(master=None, **options) (class) [#] Display a single line of text, or an

image.
master Parent widget. **options Widget options. See the description of the

config method for a list of available options.

- Label is used to display a text or image on the screen. The
label can only display text in a single font, but the text may

span more than one line.

- Can be used as a label for another widget (like an Entry
Widget) or as an output only widget on the screen.

— associate a text variable with the label and whenever the text variable
changes value the label field will change. Use the set() method to
update the Text variable (or get() to retrieve is current value).

— text may be anchored N, NE, E, SE, S, SW, W, NW, or CENTER.
Default is CENTER

Label Widget Demo

import Tkinter

top = Tkinter.Tk(Q
label = Tkinter.Label(top, text="Hello World!")
label .pack()

Tkinter.mainloop() |-

Widget Configuration

- Configuration can be specified at creation time or changed as the
program is running by using the config method

- eX.

import Tkinter -m
top = Tkinter.Tk(Q)

w = Tkinter.Label (top, text="Hello, world!™)
w.pack(

w.config(text="Hello JimI')
Tkinter._.mainloop()

Updating the text variable

from Tkinter import *

root = TkQ) New Text!

To create a Tkinter variable, call the corresponding constructor
v = StringVar()

label = Label(root, textvariable = v).pack()
v.set("'New Text!'")

print v.get()

root.mainloop()

35

Label and Button Widget Demo

import Tkinter
top = Tkinter.Tk(Q)

hello = Tkinter.Label (top, text="Hello World!")
hello.pack()

quit = Tkinter.Button(top, text="QUIT", command=top.quit,
bg="red", fg="white")
quit.pack(fill=Tkinter.X, expand=1)

Tkinter.mainloop() R\\\

You can use the fill=X and expand options
to make a widget as wide as the parent
widget, even if the user resizes the window.

Hello World!

Pack Geometry Manager

. . Thei.. 0 [m] 4
from Tkinter import * -E

root = Tk()

w = Label(root, text="Red", bg="red", fg="white")
w.pack()

w = Label(root, text="Green", bg="green", fg="black")
w.pack()

w = Label(root, text="Blue", bg="blue", fg="white")
w.pack()

mainloop()

from Tkinter import * =10 x|

root = Tk()

w = Label(root, text="Red", bg="red", fg="white").pack(side=LEFT)

w = Label(root, text="Green", bg="green", fg="black").pack(side=LEFT)
w = Label(root, text="Blue", bg="blue", fg="white").pack(side=LEFT)
mainloop()

Grid Geometry Manager

Button(win, font=('courier’,10), text='CE',width=4,height=2, command=lambda: click('CE')).grid(row=0,column=4)
Button(win, font=('courier’,10), text='C',width=4,height=2, command=lambda: click('C')).grid(row=0,column=5)
Button(win, font=('courier’,10), text='7',width=4,height=2, command=lambda: click('7')).grid(row=1,column=1)
Button(win, font=('courier’,10), text='8',width=4,height=2, command=lambda: click('8')).grid(row=1,column=2)
Button(win, font=('courier’,10), text='9',width=4,height=2, command=lambda: click('9')).grid(row=1,column=3)
Button(win, font=('courier’,10), text='4',width=4,height=2, command=lambda: click('4')).grid(row=2,column=1)
Button(win, font=('courier’,10), text='5',width=4,height=2, command=lambda: click('5')).grid(row=2,column=2)
Button(win, font=('courier’,10), text='6',width=4,height=2, command=lambda: click('6')).grid(row=2,column=3)
Button(win, font=('courier’,10), text='1',width=4,height=2, command=lambda: click('1’)).grid(row=3,column=1)
Button(win, font=('courier’,10), text="2',width=4,height=2, command=lambda: click('2')).grid(row=3,column=2)
Button(win, font=('courier’,10), text='3',width=4,height=2, command=lambda: click('3')).grid(row=3,column=3)
Button(win, font=('courier’,10), text='0',width=4,height=2, command=lambda: click('0’)).grid(row=4,column=1)
Button(win, font=('courier',10), text="+/-',width=4,height=2, command=lambda: click('+/-')).grid(row=4,column=2)
Button(win, font=('courier’,10), text=".",width=4,height=2, command=lambda: click('.')).grid(row=4,column=3)

a1 1

Place Geometry Manager

e Simplest of the three geometry managers, do not use for ordinary
windows as it is too much work. Instead use it for making more complex
containers. M[i=1[e3
* Place is available for all widgets

Hella

from Tkinter import *
import tkMessageBox
import Tkinter

top = Tkinter.Tk()

def helloCallBack():
tkMessageBox.showinfo("Hello Python", "Hello World")

B = Tkinter.Button(top, text ="Hello", command = helloCallBack)
B.pack()

B.place(bordermode=0OUTSIDE, height=100, width=100)
top.mainloop()

MORE WIDGETS

ENTRY , CHECKBUTTONS, RADIO BUTTONS, SCALE

Message

The Message widget is used to display text. This is a widget not a text
window. Use for on screen instructions or to make a custom message window

from Tkinter import *
master =Tk()
msg = Message(master, text=' The best way to predict the future is to invent it. -Alan

Kay')

msg.config(font=('times’,14))

msg.pack()
mainloop()

The best way to
predict the future is
to invent it. -Alan
Kay

options:

anchor

aspect
background/bg
borderwidth/bd
cursor

font
foreground/fg
highlightbackground
highlightcolor
highlightthickness
justify

padx

pady

relief
takefocus
text
textvariable
width

Entry

- used to enter or display a single line of text m
012345672901 23456729

- To enter multiple lines of text, use the Text widget.

from Tkinter import *
master = Tk()

e = Entry(master) ‘123455?390123455?39[1\

e.pack()
mainioop() methods:
options: get()

anchor set()
aspect delete(first,last/END)
background/bg relief insert(index)
borderwidth/bd takefocus insert(index,string)
cursor text icursor(index)
font textvariable index(index)
foreground/fg width
highlightbackground validate
highlightcolor validatecommand
highlightthickness justify

Entry

from Tkinter import *

master = Tk()
Entry

e = Entry(master) get
e.pack()

def callback():
print e.get()

b = Button(master, text="get", width=10, command=callback)
b.pack()
mainloop()

Frame Widget

- Frames are used as containers for other widgets. Widgets placed in a
frame can use any of the geometry managers (but only one per
frame)

- You can have multiple frames per window
- Options:

bg background color

border width (default=2 pixels)

cursor cursor to use when hovering over the frame

height vertical dimension of the frame

highlightbackground | color when frame doesn’t have focus

color when frame has focus

highlightthickness thickness of the focus highlight

relief FLAT, Raised, Sunken, GROOVE, RIDGE;
default = FLAT

width width of the frame

a4

Frame Example

from Tkinter import * t]3]
root = Tk()
E'?Féﬁi'é';'if;éih"g("rgaf)' ..
frame.pack()
bottomframe = Ft"a‘nié(r‘o‘o‘t) ‘‘‘
_bottomframe.pack(side =BOTTOM) ..
: redbutton = Button(frame, text="Red", fg="red") :
: redbutton.pack(side = LEFT)
greenbutton = Button(frame, text="Brown", fg="brown")
: greenbutton.pack(side = LEFT)
bluebutton = Button(frame, text="Blue", fg="blue")
: bluebutton.pack(side = LEFT)
“blackbutton = Button(bottomframe, text="Black", fg="black")
blackbutton.pack(side = BOTTOM)

root.mainloop()

Checkbuttons and Radiobuttons

- Checkbuttons are used for multiple choice situations, i.e.
choosing m of n possible options. This is done by
assigning each checkbox a variable of its own.

- Radiobuttions are used for choosing one of n possible
choices; i.e. a mutually exclusive single choice by giving
each button a unigue value of the same Tkinter variable.

Checkbutton

from Tkinter import *

def cb():
print "variable is", var.get() m
I Enable Tab
win = Tk()
var = IntVar() "
c = Checkbutton(

win, text="Enable Tab",

variable=var,

command= (lambda: cb()))
c.pack()

mablce cnectutonsy

Checkbutton (2)

from Tkinter import * c2 = Checkbutton(
f, text="Wine",
def cb(): variable=var2,
print "beer is", varl.get() command= (lambda: cb()))
print "Wine is", var2.get() c2.pack(side=TOP)

print "Water is", var3.get()
c3 = Checkbutton(

win = Tk() f, text="Water",
f = Frame(relief=RAISED , borderwidth=5) variable=var3,
varl = IntVar() command= (lambda: cb()))
var2 = IntVar() c3.pack(side=TOP)
var3 = IntVar() f.pack() _
c1 = Checkbutton(mainloop()
f, text="Beer",

variable=varl, t [2]BX]
command= (lambda: cb()))
cl.pack(side=TOP)

Radiobuttons

from Tkinter import *

def change():
print 'Station ="', var.get()

i =B

root = Tk()

stations = 'WAAL' , 'WSKG' , 'WSQX' , 'WNBF'

f = Frame(relief=RAISED , borderwidth=5)
var = StringVar()

M e

for station in stations:
radio = Radiobutton(f, text=station, variable=var ,value=station)
radio.pack(side=TOP)

= WAAL
f.pack(pady=10) T WSKG
Button(root,text="New' , command=(lambda: change())).pack(pady=10) © WsQX
var.set('WAAL') #initalize the set of radio buttons C WNBF

mainloop() New

Radiobutton (2)

from Tkinter import *

def sel(): “ 'Dpt?un 1
selection = "You selected the option " + str(var.get()) * Option 2
" Option 3

label.config(text = selection) e e P e
ou 5e e opLen

root = Tk()
var = IntVar()

R1 = Radiobutton(root, text="Option 1", variable=var, value=1, command=sel)
Rl.pack(anchor =W)

R2 = Radiobutton(root, text="Option 2", variable=var, value=2, command=sel)
R2.pack(anchor =W)

R3 = Radiobutton(root, text="Option 3", variable=var, value=3, command=sel)
R3.pack(anchor = W)

label = Label(root)
label.pack()
root.mainloop()

Sliders

- A slider Is a Tkinter object with which a user can set a
value by moving an indicator. Sliders can be vertically or
horizontally arranged. A slider is created with the Scale
method().

- Using the Scale widget creates a graphical object, which
allows the user to select a numerical value by moving a
knob along a scale of a range of values. The minimum
and maximum values can be set as parameters, as well
as the resolution. We can also determine if we want the
slider vertically or horizontally positioned. A Scale widget
IS a good alternative to an Entry widget, if the user is
supposed to put in a number from a finite range, I.e. a
bounded numerical value.

Slider: A Simple Example

from Tkinter import *

master = Tk()

w = Scale(master, from_=0, to=42)

w.pack()

w = Scale(master, from_=0, to=200, orient=HORIZONTAL)

w.pack()
l:k
L —

mainloop()

Scale/Sliders

from Tkinter import *

-
_

E] Miles o o/— Miles

20 20
class SliderDemo(Frame): 40 40
def __init__ (self,parent=None): " 60

Frame. init__ (self,parent)
self.pack() a0 80
self.var = IntVar()
Scale(self,label="Miles’,
command=self.onMove, o Read
variable = self.var, Ml J
from_=0, to=100 ,length=200,
tickinterval=20).pack()
Button(self , text="Read', command=self.readScale).pack(pady=10)

100 100

def onMove(self, value):
print 'onMove ="', value

kiles
22

def readScale(self): L
print ‘'readscale ="', self.var.get() T

Read|

if __name__=='__main__":
SliderDemo().mainloop()

Label, Button, and Scale Demonstration

from Tkinter import *
det resize(ev=None):
label .config(font="Helvetica -%d bold" % scale.get())

top = TkQ)

top.geometry("250x150")

label = Label(top, text="Hello World!", \
font="Helvetica -12 bold")

label .pack(fill=Y, expand=1)

scale = Scale(top, from =10, to=40, orient=HORIZONTAL, \
command=resize)

scale.set(12)

scale.pack(fill=X, expand=1)

quit = Button(top, text="QUIT", command=top.quit, \
activeforeground="white®", activebackground="red")

quit.pack()

mainloop() Hello Wore

12

|
S

Listbox

- The Listbox widget is used to display a list of alternatives. The
listbox can only contain text items, and all items must have the
same font and color. Depending on the widget configuration,
the user can choose one or more alternatives from the list.

- When to use the Listbox Widget

- Listboxes are used to select from a group of textual items. Depending
on how the listbox is configured, the user can select one or many
items from that list.

- Patterns

- When you first create the listbox, it is empty. The first thing to do is
usually to insert one or more lines of text. The insert method takes an
index and a string to insert. The index is usually an item number (O for
the first item in the list), but you can also use some special indexes,
including ACTIVE, which refers to the “active” item (set when you click
on an item, or by the arrow keys), and END, which is used to append
items to the list.

Listbox example

from Tkinter import *

master = TkQ)

listbox = Listbox(master)

1 1stbox.pack()

listbox.insert(END, "a list entry')

for 1tem in ["one", "two", "three'", "four']:
listbox.insert(END, 1tem)

mainloop()

Scrollbar

- This widget is used to implement scrolled listboxes,
canvases, and text fields.

- Patterns

- The Scrollbar widget is almost always used in conjunction with a
Listbox, Canvas, or Text widget. Horizontal scrollbars can also be
used with the Entry widget.

- To connect a vertical scrollbar to such a widget, you have to do two
things:

- Set the widget’s yscrollcommand callbacks to the set method of the
scrollbar.
- Set the scrollbar’'s command to the yview method of the widget.

57

Scrollbar Example

from Tkinter import *
master = Tk()

scrollbar = Scrollbar(master)
scrollbar.pack(side=RIGHT, fill=Y)

listbox = Listbox(master, yscrollcommand=scrollbar.set)

foriin range(1000):
listbox.insert(END, str(i))

listbox.pack(side=LEFT, fill=BOTH)

scrollbar.config(command=listbox.yview)

mainloop()

HQEIHJI\LH-BUJNI—'E‘

Get selected value from Listbox

import Tkinter

F1 = Tkinter.Frame()

s = Tkinter.Scrollbar(F1)
L = Tkinter.Listbox(F1)

s.pack(side=Tkinter.RIGHT, fill=Tkinter.Y)
L.pack(side=Tkinter.LEFT, fill=Tkinter.Y)

s['command'] = L.yview
L['yscrollcommand'] = s.set

for i in range(30):
L.insert(Tkinter.END, str(i))

Fl.pack(side=Tkinter.TOP)

F2 = Tkinter.Frame()
lab = Tkinter.Label(F2)

def poll():
lab.after(200, poll)
sel = L.curselection()
lab.config(text=str(sel))

lab.pack()
F2.pack(side=Tkinter.TOP)

poll()
Tkinter.mainloop()

0
1
2
3
Fl
5
5]
7
8
9

—
"

Listboxes and Scrollbars

from Tkinter import *

class ScrolledList(Frame):
def __init_ (self,options,parent=None):
Frame.__init__ (self,parent)
self.pack(expand=YES, fill=BOTH)
self.makeWidgets(options)

def handleList(self,event):
index = self.list.curselection()
label = self.list.get(index)
self.runCommand(label)

def makeWidgets(self , options):

sbar = Scrollbar(self)
list = Listbox(self,relief=SUNKEN)
sbar.config(commands=list.yview)
list.config(yscrollcommand=sbar.set)
sbar.pack(side=RIGHT , fill=Y)
list.pack(side=LEFT , expand=YES, fill=BOTH)
pos =0
for label in options:

list.insert(pos,label)

pos +=1
#list.config(selectmode=SINGLE , setgrid = 1)
list.bind('<Double-1>", self.handleList)

self.list = list $ python listbox.py
You selected My Choice - 12
You selected My Choice - 15
You selected My Choice - 8
if _name__=='_main__': You selected My Choice - 10
options = map((lambda x : "My Choice - ' + str(x)) , range(20))
ScrolledList(options).mainloop()

-0
1
-2
-3
-4
-5
-6
-7
y:
-9

def runCommand(self,selection):
print 'You selected ', selection

Canvas

- The Canvas Is a rectangular area intended for drawing
pictures or other complex layouts. You can place
graphics, text, widgets, or frames on a Canvas.

- Syntax:
o w = Canvas (master, option=value, ...)

- Parameters:

- master: This represents the parent window.

- options: Here is the list of most commonly used options for this

widget. These options can be used as key-value pairs separated by
commas.

Canvas (2)

The Canvas widget can support the following standard items:

- arc . Creates an arc item.
- coord = 10, 50, 240, 210
- arc = canvas.create arc(coord, start=0, extent=150,
fill="blue™)
- image . Creates an image item, which can be an instance of either the
Bitmaplmage or the Photolmage classes.
- Filename = Photolmage(file = "sunshine.gif")
- Image = canvas.create_ image(50, 50, anchor=NE,
image=fi1lename)
- line . Creates a line item.
- line = canvas.create_ line(x0, y0O, x1, y1, ..., Xn, yn,
options)
- oval . Creates a circle or an ellipse at the given coordinates.
- oval = canvas.create oval(x0, yO, x1, yl, options)
- polygon . Creates a polygon item that must have at least three

vertices.

- oval = canvas.create_ polygon(x0, y0, x1, yl,...xn, yn,
options)

Canvas (3)

Tkinter
tkMessageBox
top = Tkinter. Tk()
C = Tkinter.Canvas(top, bg="blue", height=250, width=300)
coord = 10, 50, 240, 210
arc = C.create_arc(coord, start=0, extent=150, fill="red")
C.pack()
top.mainloop()

