

The Art of Assembly Language

The Art of Assembly Language
(Brief Contents)

 The Art of Assembly Language ... 1

 Volume One: .. 1

 Data Representation ... 1

Chapter One Foreward .. 3

Chapter Two Hello, World of Assembly Language 11

Chapter Three Data Representation .. 43

Chapter Four More Data Representation .. 77

Chapter Five ... 109

Chapter Five Questions, Projects, and Lab Exercises 109

 Volume Two: ... 129

 Machine Architecture ... 129

Chapter One System Organization .. 131

Chapter Two Memory Access and Organization .. 151

Chapter Three Introduction to Digital Design .. 195

Chapter Four CPU Architecture .. 225

Chapter Five Instruction Set Architecture .. 261

Chapter Six Memory Architecture .. 293

Chapter Seven The I/O Subsystem ... 315

Chapter Eight Questions, Projects, and Labs .. 341

 Volume Three: ... 375

 Basic Assembly Language ... 375

Chapter One Constants, Variables, and Data Types 377

Chapter Two Introduction to Character Strings .. 401

Chapter Three Characters and Character Sets .. 421

Chapter Four Arrays ... 445

Chapter Five Records, Unions, and Name Spaces 465

Chapter Six Dates and Times .. 481

Chapter Seven Files .. 497

Chapter Eight Introduction to Procedures ... 521

Chapter Nine Managing Large Programs ... 549

Chapter Ten Integer Arithmetic .. 567

Chapter Eleven Real Arithmetic ... 591

Chapter Twelve Calculation Via Table Lookups .. 625

Chapter Thirteen Questions, Projects, and Labs ... 641

 Volume Four: ... 703
Page 1

 Intermediate Assembly Language .. 703

Chapter One Advanced High Level Control Structures 705

Chapter Two Low-Level Control Structures .. 729

Chapter Three Intermediate Procedures .. 781

Chapter Four Advanced Arithmetic .. 827

Chapter Five Bit Manipulation ... 881

Chapter Six The String Instructions ... 907

Chapter Seven The HLA Compile-Time Language 921

Chapter Eight Macros ... 941

Chapter Nine Domain Specific Embedded Languages 975

Chapter Ten Classes and Objects .. 1029

Chapter Eleven The MMX Instruction Set ... 1083

Chapter Twelve Mixed Language Programming .. 1119

Chapter Thirteen Questions, Projects, and Labs ... 1163

Section Five ... 1245

Section Five Advanced Assembly Language Programming 1245

Chapter One Thunks ... 1247

Chapter Two Iterators ... 1271

Chapter Three Coroutines and Generators .. 1293

Chapter Four Low-level Parameter Implementation 1305

Chapter Five Lexical Nesting ... 1337

Chapter Six Questions, Projects, and Labs ... 1359

Appendix A Answers to Selected Exercises ... 1365

Appendix B Console Graphic Characters ... 1367

Appendix D The 80x86 Instruction Set .. 1409

Appendix E The HLA Language Reference ... 1437

Appendix F The HLA Standard Library Reference 1439

Appendix G HLA Exceptions ... 1441

Appendix H HLA Compile-Time Functions .. 1447

Appendix I Installing HLA on Your System .. 1477

Appendix J Debugging HLA Programs .. 1501

Appendix K Comparing HLA and MASM ... 1505

Appendix L HLA Code Generation for HLL Statements 1507

 Index .. 1
Page 2

Hello, World of Assembly Language

The Art of Assembly Language

(Full Contents)

• Foreward to the HLA Version of “The Art of Assembly...” 3

• Intended Audience ... 6

• Teaching From This Text .. 6

• Copyright Notice ... 7

• How to Get a Hard Copy of This Text .. 8

• Obtaining Program Source Listings and Other Materials in This Text 8

• Where to Get Help ... 8

• Other Materials You Will Need .. 9

2.0 Chapter Overview .. 11

2.1 The Anatomy of an HLA Program .. 11

2.2 Some Basic HLA Data Declarations ... 12

2.3 Boolean Values .. 14

2.4 Character Values .. 15

2.5 An Introduction to the Intel 80x86 CPU Family 15

2.6 Some Basic Machine Instructions ... 18

2.7 Some Basic HLA Control Structures ... 21
2.7.1 Boolean Expressions in HLA Statements 21
2.7.2 The HLA IF..THEN..ELSEIF..ELSE..ENDIF Statement 23
2.7.3 The WHILE..ENDWHILE Statement ... 24
2.7.4 The FOR..ENDFOR Statement .. 25
2.7.5 The REPEAT..UNTIL Statement .. 26
2.7.6 The BREAK and BREAKIF Statements 27
2.7.7 The FOREVER..ENDFOR Statement ... 27
2.7.8 The TRY..EXCEPTION..ENDTRY Statement 28

2.8 Introduction to the HLA Standard Library .. 29
2.8.1 Predefined Constants in the STDIO Module 30
2.8.2 Standard In and Standard Out .. 31
2.8.3 The stdout.newln Routine .. 31
2.8.4 The stdout.putiX Routines ... 31
2.8.5 The stdout.putiXSize Routines .. 32
2.8.6 The stdout.put Routine ... 33
2.8.7 The stdin.getc Routine. .. 34
2.8.8 The stdin.getiX Routines .. 35
2.8.9 The stdin.readLn and stdin.flushInput Routines 36
2.8.10 The stdin.get Macro ... 37

2.9 Putting It All Together ... 38

2.10 Sample Programs ... 38
2.10.1 Powers of Two Table Generation .. 38
2.10.2 Checkerboard Program .. 39
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1

AoATOC.fm

2.10.3 Fibonocci Number Generation ... 41

3.1 Chapter Overview .. 43

3.2 Numbering Systems ... 43
3.2.1 A Review of the Decimal System .. 43
3.2.2 The Binary Numbering System ... 44
3.2.3 Binary Formats ... 45

3.3 Data Organization .. 46
3.3.1 Bits ... 46
3.3.2 Nibbles ... 46
3.3.3 Bytes ... 47
3.3.4 Words ... 48
3.3.5 Double Words .. 49

3.4 The Hexadecimal Numbering System ... 50

3.5 Arithmetic Operations on Binary and Hexadecimal Numbers 52

3.6 A Note About Numbers vs. Representation .. 53

3.7 Logical Operations on Bits .. 55

3.8 Logical Operations on Binary Numbers and Bit Strings 57

3.9 Signed and Unsigned Numbers ... 59

3.10 Sign Extension, Zero Extension, Contraction, and Saturation 63

3.11 Shifts and Rotates .. 66

3.12 Bit Fields and Packed Data .. 71

3.13 Putting It All Together ... 74

4.1 Chapter Overview .. 77

4.2 An Introduction to Floating Point Arithmetic ... 77
4.2.1 IEEE Floating Point Formats ... 80
4.2.2 HLA Support for Floating Point Values .. 83

4.3 Binary Coded Decimal (BCD) Representation .. 85

4.4 Characters .. 86
4.4.1 The ASCII Character Encoding ... 87
4.4.2 HLA Support for ASCII Characters ... 90
4.4.3 The ASCII Character Set ... 93

4.5 The UNICODE Character Set ... 98

4.6 Other Data Representations ... 98
4.6.1 Representing Colors on a Video Display 98
4.6.2 Representing Audio Information .. 100
4.6.3 Representing Musical Information ... 104
4.6.4 Representing Video Information .. 105
4.6.5 Where to Get More Information About Data Types 105

4.7 Putting It All Together ... 106

5.1 Questions ... 109

5.2 Programming Projects for Chapter Two .. 114

5.5 Laboratory Exercises for Chapter Two .. 117
5.5.1 A Short Note on Laboratory Exercises and Lab Reports 117
5.5.2 Installing the HLA Distribution Package 117
Page 2 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

5.5.3 What’s Included in the HLA Distribution Package 119
5.5.4 Using the HLA Compiler ... 121
5.5.5 Compiling Your First Program .. 121
5.5.6 Compiling Other Programs Appearing in this Chapter 123
5.5.7 Creating and Modifying HLA Programs 123
5.5.8 Writing a New Program ... 124
5.5.9 Correcting Errors in an HLA Program ... 125
5.5.10 Write Your Own Sample Program ... 125

5.6 Laboratory Exercises for Chapter Three and Chapter Four 126
5.6.1 Data Conversion Exercises .. 126
5.6.2 Logical Operations Exercises ... 127
5.6.3 Sign and Zero Extension Exercises .. 127
5.6.4 Packed Data Exercises ... 128
5.6.5 Running this Chapter’s Sample Programs 128
5.6.6 Write Your Own Sample Program ... 128

1.1 Chapter Overview .. 131

1.2 The Basic System Components ... 131
1.2.1 The System Bus ... 132

1.2.1.1 The Data Bus ... 132
1.2.1.2 The Address Bus .. 133
1.2.1.3 The Control Bus .. 134

1.2.2 The Memory Subsystem .. 135
1.2.3 The I/O Subsystem ... 141

1.3 HLA Support for Data Alignment ... 141

1.4 System Timing ... 144
1.4.1 The System Clock .. 144
1.4.2 Memory Access and the System Clock .. 145
1.4.3 Wait States ... 146
1.4.4 Cache Memory ... 147

1.5 Putting It All Together ... 150

2.1 Chapter Overview .. 151

2.2 The 80x86 Addressing Modes ... 151
2.2.1 80x86 Register Addressing Modes .. 151
2.2.2 80x86 32-bit Memory Addressing Modes 152

2.2.2.1 The Displacement Only Addressing Mode 152
2.2.2.2 The Register Indirect Addressing Modes 153
2.2.2.3 Indexed Addressing Modes ... 154
2.2.2.4 Variations on the Indexed Addressing Mode 155
2.2.2.5 Scaled Indexed Addressing Modes 157
2.2.2.6 Addressing Mode Wrap-up ... 158

2.3 Run-Time Memory Organization .. 158
2.3.1 The Code Section ... 159
2.3.2 The Read-Only Data Section ... 160
2.3.3 The Storage Section ... 161
2.3.4 The Static Sections ... 161
2.3.5 The NOSTORAGE Attribute ... 162
2.3.6 The Var Section ... 162
2.3.7 Organization of Declaration Sections Within Your Programs 163
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 3

AoATOC.fm

2.4 Address Expressions .. 164

2.5 Type Coercion ... 166

2.6 Register Type Coercion ... 168

2.7 The Stack Segment and the Push and Pop Instructions 169
2.7.1 The Basic PUSH Instruction .. 169
2.7.2 The Basic POP Instruction ... 170
2.7.3 Preserving Registers With the PUSH and POP Instructions 172
2.7.4 The Stack is a LIFO Data Structure ... 172
2.7.5 Other PUSH and POP Instructions .. 175
2.7.6 Removing Data From the Stack Without Popping It 176
2.7.7 Accessing Data You’ve Pushed on the Stack Without Popping It . 178

2.8 Dynamic Memory Allocation and the Heap Segment 180

2.9 The INC and DEC Instructions .. 183

2.10 Obtaining the Address of a Memory Object .. 183

2.11 Bonus Section: The HLA Standard Library CONSOLE Module 184
2.11.1 Clearing the Screen .. 184
2.11.2 Positioning the Cursor .. 185
2.11.3 Locating the Cursor .. 186
2.11.4 Text Attributes ... 188
2.11.5 Filling a Rectangular Section of the Screen 190
2.11.6 Console Direct String Output ... 191
2.11.7 Other Console Module Routines .. 193

2.12 Putting It All Together ... 193

3.1 Chapter Overview .. 195

3.2 Boolean Algebra .. 195

3.3 Boolean Functions and Truth Tables ... 197

3.4 Algebraic Manipulation of Boolean Expressions 200

3.5 Canonical Forms .. 201

3.6 Simplification of Boolean Functions ... 206

3.7 What Does This Have To Do With Computers, Anyway? 213
3.7.1 Correspondence Between Electronic Circuits and Boolean Functions 213
3.7.2 Combinatorial Circuits ... 215
3.7.3 Sequential and Clocked Logic ... 220

3.8 Okay, What Does It Have To Do With Programming, Then? 223

3.9 Putting It All Together ... 224

4.1 Chapter Overview .. 225

4.2 The History of the 80x86 CPU Family .. 225

4.3 A History of Software Development for the x86 231

4.4 Basic CPU Design ... 235

4.5 Decoding and Executing Instructions: Random Logic Versus Microcode 237

4.6 RISC vs. CISC vs. VLIW .. 238

4.7 Instruction Execution, Step-By-Step ... 240

4.8 Parallelism – the Key to Faster Processors .. 242
Page 4 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

4.8.1 The Prefetch Queue – Using Unused Bus Cycles 245
4.8.2 Pipelining – Overlapping the Execution of Multiple Instructions . 249

4.8.2.1 A Typical Pipeline ... 249
4.8.2.2 Stalls in a Pipeline ... 251

4.8.3 Instruction Caches – Providing Multiple Paths to Memory 252
4.8.4 Hazards ... 254
4.8.5 Superscalar Operation– Executing Instructions in Parallel 255
4.8.6 Out of Order Execution .. 257
4.8.7 Register Renaming ... 257
4.8.8 Very Long Instruction Word Architecture (VLIW) 258
4.8.9 Parallel Processing ... 258
4.8.10 Multiprocessing .. 259

4.9 Putting It All Together ... 260

5.1 Chapter Overview .. 261

5.2 The Importance of the Design of the Instruction Set 261

5.3 Basic Instruction Design Goals ... 262

5.4 The Y86 Hypothetical Processor ... 267
5.4.1 Addressing Modes on the Y86 ... 269
5.4.2 Encoding Y86 Instructions ... 270
5.4.3 Hand Encoding Instructions ... 272
5.4.4 Using an Assembler to Encode Instructions 275
5.4.5 Extending the Y86 Instruction Set ... 276

5.5 Encoding 80x86 Instructions ... 277
5.5.1 Encoding Instruction Operands .. 279
5.5.2 Encoding the ADD Instruction: Some Examples 284
5.5.3 Encoding Immediate Operands .. 289
5.5.4 Encoding Eight, Sixteen, and Thirty-Two Bit Operands 290
5.5.5 Alternate Encodings for Instructions ... 290

5.6 Putting It All Together ... 290

6.1 Chapter Overview .. 293

6.2 The Memory Hierarchy ... 293

6.3 How the Memory Hierarchy Operates ... 295

6.4 Relative Performance of Memory Subsystems 296

6.5 Cache Architecture .. 297

6.6 Virtual Memory, Protection, and Paging ... 302

6.7 Thrashing ... 304

6.8 NUMA and Peripheral Devices ... 305

6.9 Segmentation ... 305

6.10 Segments and HLA .. 306

6.11 User Defined Segments in HLA .. 309

6.12 Controlling the Placement and Attributes of Segments in Memory 310

6.13 Putting it All Together ... 314

7.1 Chapter Overview .. 315

7.2 Connecting a CPU to the Outside World ... 315
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 5

AoATOC.fm

7.3 Read-Only, Write-Only, Read/Write, and Dual I/O Ports 316

7.4 I/O (Input/Output) Mechanisms .. 318
7.4.1 Memory Mapped Input/Output .. 318
7.4.2 I/O Mapped Input/Output ... 319
7.4.3 Direct Memory Access ... 320

7.5 I/O Speed Hierarchy .. 320

7.6 System Busses and Data Transfer Rates .. 321

7.7 The AGP Bus ... 323

7.8 Buffering .. 323

7.9 Handshaking .. 324

7.10 Time-outs on an I/O Port ... 326

7.11 Interrupts and Polled I/O .. 327

7.12 Using a Circular Queue to Buffer Input Data from an ISR 329

7.13 Using a Circular Queue to Buffer Output Data for an ISR 334

7.14 I/O and the Cache .. 336

7.15 Windows and Protected Mode Operation .. 337

7.16 Device Drivers ... 338

7.17 Putting It All Together ... 338

8.1 Questions ... 341

8.2 Programming Projects ... 347

8.3 Chapters One and Two Laboratory Exercises ... 349
8.3.1 Memory Organization Exercises .. 349
8.3.2 Data Alignment Exercises .. 350
8.3.3 Readonly Segment Exercises ... 353
8.3.4 Type Coercion Exercises .. 353
8.3.5 Dynamic Memory Allocation Exercises 354

8.4 Chapter Three Laboratory Exercises ... 355
8.4.1 Truth Tables and Logic Equations Exercises 356
8.4.2 Canonical Logic Equations Exercises .. 357
8.4.3 Optimization Exercises .. 358
8.4.4 Logic Evaluation Exercises .. 358

8.5 Laboratory Exercises for Chapters Four, Five, Six, and Seven 363
8.5.1 The SIMY86 Program – Some Simple Y86 Programs 363
8.5.2 Simple I/O-Mapped Input/Output Operations 366
8.5.3 Memory Mapped I/O .. 367
8.5.4 DMA Exercises .. 368
8.5.5 Interrupt Driven I/O Exercises ... 369
8.5.6 Machine Language Programming & Instruction Encoding Exercises 369
8.5.7 Self Modifying Code Exercises ... 371
8.5.8 Virtual Memory Exercise ... 373

1.1 Chapter Overview .. 377

1.2 Some Additional Instructions: INTMUL, BOUND, INTO 377

1.3 The QWORD and TBYTE Data Types ... 381

1.4 HLA Constant and Value Declarations ... 381
Page 6 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

1.4.1 Constant Types ... 384
1.4.2 String and Character Literal Constants .. 385
1.4.3 String and Text Constants in the CONST Section 386
1.4.4 Constant Expressions ... 387
1.4.5 Multiple CONST Sections and Their Order in an HLA Program .. 389
1.4.6 The HLA VAL Section .. 389
1.4.7 Modifying VAL Objects at Arbitrary Points in Your Programs 390

1.5 The HLA TYPE Section .. 391

1.6 ENUM and HLA Enumerated Data Types .. 392

1.7 Pointer Data Types .. 393
1.7.1 Using Pointers in Assembly Language .. 394
1.7.2 Declaring Pointers in HLA .. 395
1.7.3 Pointer Constants and Pointer Constant Expressions 395
1.7.4 Pointer Variables and Dynamic Memory Allocation 396
1.7.5 Common Pointer Problems .. 397

1.8 Putting It All Together ... 400

2.1 Chapter Overview .. 401

2.2 Composite Data Types ... 401

2.3 Character Strings ... 401

2.4 HLA Strings ... 403

2.5 Accessing the Characters Within a String ... 407

2.6 The HLA String Module and Other String-Related Routines 409

2.7 In-Memory Conversions .. 419

2.8 Putting It All Together ... 420

3.1 Chapter Overview .. 421

3.2 The HLA Standard Library CHARS.HHF Module 421

3.3 Character Sets .. 423

3.4 Character Set Implementation in HLA .. 424

3.5 HLA Character Set Constants and Character Set Expressions 425

3.6 The IN Operator in HLA HLL Boolean Expressions 426

3.7 Character Set Support in the HLA Standard Library 427

3.8 Using Character Sets in Your HLA Programs ... 429

3.9 Low-level Implementation of Set Operations ... 431
3.9.1 Character Set Functions That Build Sets 431
3.9.2 Traditional Set Operations ... 437
3.9.3 Testing Character Sets ... 440

3.10 Putting It All Together ... 443

4.1 Chapter Overview .. 445

4.2 Arrays .. 445

4.3 Declaring Arrays in Your HLA Programs ... 446

4.4 HLA Array Constants .. 446

4.5 Accessing Elements of a Single Dimension Array 447
4.5.1 Sorting an Array of Values .. 449
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 7

AoATOC.fm

4.6 Multidimensional Arrays ... 450
4.6.1 Row Major Ordering .. 451
4.6.2 Column Major Ordering ... 454

4.7 Allocating Storage for Multidimensional Arrays 455

4.8 Accessing Multidimensional Array Elements in Assembly Language ... 457

4.9 Large Arrays and MASM .. 458

4.10 Dynamic Arrays in Assembly Language ... 458

4.11 HLA Standard Library Array Support ... 460

4.12 Putting It All Together ... 462

5.1 Chapter Overview .. 465

5.2 Records ... 465

5.3 Record Constants ... 467

5.4 Arrays of Records .. 468

5.5 Arrays/Records as Record Fields ... 468

5.6 Controlling Field Offsets Within a Record .. 471

5.7 Aligning Fields Within a Record ... 472

5.8 Pointers to Records .. 473

5.9 Unions .. 474

5.10 Anonymous Unions ... 476

5.11 Variant Types ... 477

5.12 Namespaces ... 477

5.13 Putting It All Together ... 480

6.1 Chapter Overview .. 481

6.2 Dates .. 481

6.3 A Brief History of the Calendar ... 482

6.4 HLA Date Functions .. 485
6.4.1 date.IsValid and date.validate .. 485
6.4.2 Checking for Leap Years ... 486
6.4.3 Obtaining the System Date ... 489
6.4.4 Date to String Conversions and Date Output 489
6.4.5 date.unpack and data.pack .. 491
6.4.6 date.Julian, date.fromJulian .. 492
6.4.7 date.datePlusDays, date.datePlusMonths, and date.daysBetween . 492
6.4.8 date.dayNumber, date.daysLeft, and date.dayOfWeek 493

6.5 Times ... 493
6.5.1 time.curTime .. 494
6.5.2 time.hmsToSecs and time.secstoHMS ... 494
6.5.3 Time Input/Output .. 495

6.6 Putting It All Together ... 496

7.1 Chapter Overview .. 497

7.2 File Organization ... 497
7.2.1 Files as Lists of Records .. 497
7.2.2 Binary vs. Text Files .. 498
Page 8 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

7.3 Sequential Files .. 500

7.4 Random Access Files ... 506

7.5 ISAM (Indexed Sequential Access Method) Files 510

7.6 Truncating a File .. 512

7.7 File Utility Routines .. 514
7.7.1 Copying, Moving, and Renaming Files .. 514
7.7.2 Computing the File Size ... 516
7.7.3 Deleting Files ... 517

7.8 Directory Operations ... 518

7.9 Putting It All Together ... 518

8.1 Chapter Overview .. 521

8.2 Procedures ... 521

8.3 Saving the State of the Machine .. 523

8.4 Prematurely Returning from a Procedure .. 526

8.5 Local Variables .. 527

8.6 Other Local and Global Symbol Types ... 531

8.7 Parameters ... 532
8.7.1 Pass by Value ... 532
8.7.2 Pass by Reference .. 535

8.8 Functions and Function Results ... 537
8.8.1 Returning Function Results .. 537
8.8.2 Instruction Composition in HLA ... 538
8.8.3 The HLA RETURNS Option in Procedures 540

8.9 Side Effects .. 542

8.10 Recursion ... 543

8.11 Forward Procedures ... 546

8.12 Putting It All Together ... 547

9.1 Chapter Overview .. 549

9.2 Managing Large Programs .. 549

9.3 The #INCLUDE Directive ... 549

9.4 Ignoring Duplicate Include Operations ... 551

9.5 UNITs and the EXTERNAL Directive ... 551
9.5.1 Behavior of the EXTERNAL Directive ... 555
9.5.2 Header Files in HLA .. 556

9.6 Make Files ... 557

9.7 Code Reuse .. 560

9.8 Creating and Managing Libraries .. 561

9.9 Name Space Pollution ... 563

9.10 Putting It All Together ... 564

10.1 Chapter Overview .. 567

10.2 80x86 Integer Arithmetic Instructions ... 567
10.2.1 The MUL and IMUL Instructions .. 567
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 9

AoATOC.fm

10.2.2 The DIV and IDIV Instructions ... 569
10.2.3 The CMP Instruction .. 572
10.2.4 The SETcc Instructions .. 573
10.2.5 The TEST Instruction ... 576

10.3 Arithmetic Expressions .. 577
10.3.1 Simple Assignments ... 577
10.3.2 Simple Expressions .. 578
10.3.3 Complex Expressions ... 579
10.3.4 Commutative Operators ... 583

10.4 Logical (Boolean) Expressions .. 584

10.5 Machine and Arithmetic Idioms .. 586
10.5.1 Multiplying without MUL, IMUL, or INTMUL 586
10.5.2 Division Without DIV or IDIV .. 587
10.5.3 Implementing Modulo-N Counters with AND 587
10.5.4 Careless Use of Machine Idioms .. 588

10.6 The HLA (Pseudo) Random Number Unit .. 588

10.7 Putting It All Together ... 590

11.1 Chapter Overview .. 591

11.2 Floating Point Arithmetic .. 591
11.2.1 FPU Registers ... 591

11.2.1.1 FPU Data Registers ... 592
11.2.1.2 The FPU Control Register ... 592
11.2.1.3 The FPU Status Register .. 595

11.2.2 FPU Data Types ... 598
11.2.3 The FPU Instruction Set ... 599
11.2.4 FPU Data Movement Instructions .. 599

11.2.4.1 The FLD Instruction .. 599
11.2.4.2 The FST and FSTP Instructions .. 600
11.2.4.3 The FXCH Instruction ... 601

11.2.5 Conversions .. 601
11.2.5.1 The FILD Instruction ... 601
11.2.5.2 The FIST and FISTP Instructions .. 602
11.2.5.3 The FBLD and FBSTP Instructions 602

11.2.6 Arithmetic Instructions ... 603
11.2.6.1 The FADD and FADDP Instructions 603
11.2.6.2 The FSUB, FSUBP, FSUBR, and FSUBRP Instructions 603
11.2.6.3 The FMUL and FMULP Instructions 604
11.2.6.4 The FDIV, FDIVP, FDIVR, and FDIVRP Instructions 605
11.2.6.5 The FSQRT Instruction ... 605
11.2.6.6 The FPREM and FPREM1 Instructions 606
11.2.6.7 The FRNDINT Instruction .. 606
11.2.6.8 The FABS Instruction .. 607
11.2.6.9 The FCHS Instruction ... 607

11.2.7 Comparison Instructions .. 607
11.2.7.1 The FCOM, FCOMP, and FCOMPP Instructions 608
11.2.7.2 The FTST Instruction .. 609

11.2.8 Constant Instructions .. 609
11.2.9 Transcendental Instructions ... 609

11.2.9.1 The F2XM1 Instruction ... 609
Page 10 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

11.2.9.2 The FSIN, FCOS, and FSINCOS Instructions 610
11.2.9.3 The FPTAN Instruction ... 610
11.2.9.4 The FPATAN Instruction .. 610
11.2.9.5 The FYL2X Instruction ... 610
11.2.9.6 The FYL2XP1 Instruction ... 610

11.2.10 Miscellaneous instructions ... 611
11.2.10.1 The FINIT and FNINIT Instructions 611
11.2.10.2 The FLDCW and FSTCW Instructions 611
11.2.10.3 The FCLEX and FNCLEX Instructions 611
11.2.10.4 The FSTSW and FNSTSW Instructions 612

11.2.11 Integer Operations .. 612

11.3 Converting Floating Point Expressions to Assembly Language 612
11.3.1 Converting Arithmetic Expressions to Postfix Notation 613
11.3.2 Converting Postfix Notation to Assembly Language 615
11.3.3 Mixed Integer and Floating Point Arithmetic 616

11.4 HLA Standard Library Support for Floating Point Arithmetic 617
11.4.1 The stdin.getf and fileio.getf Functions 617
11.4.2 Trigonometric Functions in the HLA Math Library 617
11.4.3 Exponential and Logarithmic Functions in the HLA Math Library 618

11.5 Sample Program .. 619

11.6 Putting It All Together ... 624

12.1 Chapter Overview .. 625

12.2 Tables ... 625
12.2.1 Function Computation via Table Look-up 625
12.2.2 Domain Conditioning ... 628
12.2.3 Generating Tables .. 629

12.3 High Performance Implementation of cs.rangeChar 632

13.1 Questions ... 641

13.2 Programming Projects ... 648

13.3 Laboratory Exercises ... 655
13.3.1 Using the BOUND Instruction to Check Array Indices 655
13.3.2 Using TEXT Constants in Your Programs 658
13.3.3 Constant Expressions Lab Exercise ... 660
13.3.4 Pointers and Pointer Constants Exercises 662
13.3.5 String Exercises .. 663
13.3.6 String and Character Set Exercises .. 665
13.3.7 Console Array Exercise ... 669
13.3.8 Multidimensional Array Exercises ... 671
13.3.9 Console Attributes Laboratory Exercise 674
13.3.10 Records, Arrays, and Pointers Laboratory Exercise 676
13.3.11 Separate Compilation Exercises ... 682
13.3.12 The HLA (Pseudo) Random Number Unit 688
13.3.13 File I/O in HLA .. 689
13.3.14 Timing Various Arithmetic Instructions 690
13.3.15 Using the RDTSC Instruction to Time a Code Sequence 693
13.3.16 Timing Floating Point Instructions .. 697
13.3.17 Table Lookup Exercise .. 700

1.1 Chapter Overview .. 705
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 11

AoATOC.fm

1.2 Conjunction, Disjunction, and Negation in Boolean Expressions 705

1.3 TRY..ENDTRY ... 707
1.3.1 Nesting TRY..ENDTRY Statements .. 708
1.3.2 The UNPROTECTED Clause in a TRY..ENDTRY Statement 710
1.3.3 The ANYEXCEPTION Clause in a TRY..ENDTRY Statement ... 713
1.3.4 Raising User-Defined Exceptions .. 713
1.3.5 Reraising Exceptions in a TRY..ENDTRY Statement 715
1.3.6 A List of the Predefined HLA Exceptions 715
1.3.7 How to Handle Exceptions in Your Programs 715
1.3.8 Registers and the TRY..ENDTRY Statement 717

1.4 BEGIN..EXIT..EXITIF..END ... 718

1.5 CONTINUE..CONTINUEIF ... 723

1.6 SWITCH..CASE..DEFAULT..ENDSWITCH .. 725

1.7 Putting It All Together ... 727

2.1 Chapter Overview .. 729

2.2 Low Level Control Structures ... 729

2.3 Statement Labels .. 729

2.4 Unconditional Transfer of Control (JMP) ... 731

2.5 The Conditional Jump Instructions .. 733

2.6 “Medium-Level” Control Structures: JT and JF 736

2.7 Implementing Common Control Structures in Assembly Language 736

2.8 Introduction to Decisions ... 736
2.8.1 IF..THEN..ELSE Sequences .. 738
2.8.2 Translating HLA IF Statements into Pure Assembly Language 741
2.8.3 Implementing Complex IF Statements Using Complete Boolean Evaluation 745
2.8.4 Short Circuit Boolean Evaluation .. 746
2.8.5 Short Circuit vs. Complete Boolean Evaluation 747
2.8.6 Efficient Implementation of IF Statements in Assembly Language 749
2.8.7 SWITCH/CASE Statements .. 752

2.9 State Machines and Indirect Jumps .. 761

2.10 Spaghetti Code ... 763

2.11 Loops ... 763
2.11.1 While Loops ... 764
2.11.2 Repeat..Until Loops ... 765
2.11.3 FOREVER..ENDFOR Loops ... 766
2.11.4 FOR Loops ... 766
2.11.5 The BREAK and CONTINUE Statements 767
2.11.6 Register Usage and Loops .. 771

2.12 Performance Improvements ... 772
2.12.1 Moving the Termination Condition to the End of a Loop 772
2.12.2 Executing the Loop Backwards ... 774
2.12.3 Loop Invariant Computations .. 775
2.12.4 Unraveling Loops ... 776
2.12.5 Induction Variables ... 777

2.13 Hybrid Control Structures in HLA .. 778
Page 12 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

2.14 Putting It All Together ... 780

3.1 Chapter Overview .. 781

3.2 Procedures and the CALL Instruction ... 781

3.3 Procedures and the Stack ... 783

3.4 Activation Records .. 786

3.5 The Standard Entry Sequence .. 789

3.6 The Standard Exit Sequence .. 790

3.7 HLA Local Variables ... 791

3.8 Parameters ... 792
3.8.1 Pass by Value ... 793
3.8.2 Pass by Reference .. 793
3.8.3 Passing Parameters in Registers ... 794
3.8.4 Passing Parameters in the Code Stream .. 796
3.8.5 Passing Parameters on the Stack ... 798

3.8.5.1 Accessing Value Parameters on the Stack 800
3.8.5.2 Passing Value Parameters on the Stack 801
3.8.5.3 Accessing Reference Parameters on the Stack 806
3.8.5.4 Passing Reference Parameters on the Stack 808
3.8.5.5 Passing Formal Parameters as Actual Parameters 811
3.8.5.6 HLA Hybrid Parameter Passing Facilities 812
3.8.5.7 Mixing Register and Stack Based Parameters 814

3.9 Procedure Pointers ... 814

3.10 Procedural Parameters ... 816

3.11 Untyped Reference Parameters ... 817

3.12 Iterators and the FOREACH Loop .. 818

3.13 Sample Programs ... 820
3.13.1 Generating the Fibonacci Sequence Using an Iterator 820
3.13.2 Outer Product Computation with Procedural Parameters 822

3.14 Putting It All Together ... 825

4.1 Chapter Overview .. 827

4.2 Multiprecision Operations ... 827
4.2.1 Multiprecision Addition Operations ... 827
4.2.2 Multiprecision Subtraction Operations .. 830
4.2.3 Extended Precision Comparisons ... 831
4.2.4 Extended Precision Multiplication ... 834
4.2.5 Extended Precision Division .. 838
4.2.6 Extended Precision NEG Operations ... 846
4.2.7 Extended Precision AND Operations .. 847
4.2.8 Extended Precision OR Operations .. 848
4.2.9 Extended Precision XOR Operations ... 848
4.2.10 Extended Precision NOT Operations ... 848
4.2.11 Extended Precision Shift Operations ... 848
4.2.12 Extended Precision Rotate Operations ... 852
4.2.13 Extended Precision I/O .. 852

4.2.13.1 Extended Precision Hexadecimal Output 853
4.2.13.2 Extended Precision Unsigned Decimal Output 853
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 13

AoATOC.fm

4.2.13.3 Extended Precision Signed Decimal Output 856
4.2.13.4 Extended Precision Formatted I/O 857
4.2.13.5 Extended Precision Input Routines 858
4.2.13.6 Extended Precision Hexadecimal Input 861
4.2.13.7 Extended Precision Unsigned Decimal Input 865
4.2.13.8 Extended Precision Signed Decimal Input 869

4.3 Operating on Different Sized Operands .. 869

4.4 Decimal Arithmetic ... 870
4.4.1 Literal BCD Constants ... 872
4.4.2 The 80x86 DAA and DAS Instructions ... 872
4.4.3 The 80x86 AAA, AAS, AAM, and AAD Instructions 873
4.4.4 Packed Decimal Arithmetic Using the FPU 874

4.5 Sample Program ... 876

4.6 Putting It All Together ... 880

5.1 Chapter Overview .. 881

5.2 What is Bit Data, Anyway? ... 881

5.3 Instructions That Manipulate Bits ... 882

5.4 The Carry Flag as a Bit Accumulator .. 888

5.5 Packing and Unpacking Bit Strings ... 889

5.6 Coalescing Bit Sets and Distributing Bit Strings 892

5.7 Packed Arrays of Bit Strings ... 893

5.8 Searching for a Bit ... 895

5.9 Counting Bits ... 897

5.10 Reversing a Bit String .. 899

5.11 Merging Bit Strings ... 901

5.12 Extracting Bit Strings .. 901

5.13 Searching for a Bit Pattern ... 903

5.14 The HLA Standard Library Bits Module ... 904

5.15 Putting It All Together ... 905

6.1 Chapter Overview .. 907

6.2 The 80x86 String Instructions .. 907
6.2.1 How the String Instructions Operate .. 908
6.2.2 The REP/REPE/REPZ and REPNZ/REPNE Prefixes 908
6.2.3 The Direction Flag ... 909
6.2.4 The MOVS Instruction ... 910
6.2.5 The CMPS Instruction .. 915
6.2.6 The SCAS Instruction .. 918
6.2.7 The STOS Instruction .. 918
6.2.8 The LODS Instruction .. 919
6.2.9 Building Complex String Functions from LODS and STOS 919

6.3 Putting It All Together ... 920

6.1 Chapter Overview .. 921

6.2 Introduction to the Compile-Time Language (CTL) 921

6.3 The #PRINT and #ERROR Statements ... 922
Page 14 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

6.4 Compile-Time Constants and Variables .. 924

6.5 Compile-Time Expressions and Operators .. 924

6.6 Compile-Time Functions ... 927
6.6.1 Type Conversion Compile-time Functions 928
6.6.2 Numeric Compile-Time Functions .. 928
6.6.3 Character Classification Compile-Time Functions 929
6.6.4 Compile-Time String Functions ... 929
6.6.5 Compile-Time Pattern Matching Functions 929
6.6.6 Compile-Time Symbol Information ... 930
6.6.7 Compile-Time Expression Classification Functions 931
6.6.8 Miscellaneous Compile-Time Functions 932
6.6.9 Predefined Compile-Time Variables ... 932
6.6.10 Compile-Time Type Conversions of TEXT Objects 933

6.7 Conditional Compilation (Compile-Time Decisions) 934

6.8 Repetitive Compilation (Compile-Time Loops) 937

6.9 Putting It All Together ... 939

7.1 Chapter Overview .. 941

7.2 Macros (Compile-Time Procedures) ... 941
7.2.1 Standard Macros .. 941
7.2.2 Macro Parameters .. 943

7.2.2.1 Standard Macro Parameter Expansion 943
7.2.2.2 Macros with a Variable Number of Parameters 946
7.2.2.3 Required Versus Optional Macro Parameters 947
7.2.2.4 The "#(" and ")#" Macro Parameter Brackets 948
7.2.2.5 Eager vs. Deferred Macro Parameter Evaluation 949

7.2.3 Local Symbols in a Macro ... 952
7.2.4 Macros as Compile-Time Procedures .. 957
7.2.5 Multi-part (Context-Free) Macros ... 957
7.2.6 Simulating Function Overloading with Macros 962

7.3 Writing Compile-Time "Programs" ... 967
7.3.1 Constructing Data Tables at Compile Time 968
7.3.2 Unrolling Loops ... 971

7.4 Using Macros in Different Source Files .. 973

7.5 Putting It All Together ... 973

9.1 Chapter Overview .. 975

9.2 Introduction to DSELs in HLA ... 975
9.2.1 Implementing the Standard HLA Control Structures 975

9.2.1.1 The FOREVER Loop .. 976
9.2.1.2 The WHILE Loop .. 979
9.2.1.3 The IF Statement ... 981

9.2.2 The HLA SWITCH/CASE Statement .. 987
9.2.3 A Modified WHILE Loop .. 998
9.2.4 A Modified IF..ELSE..ENDIF Statement 1002

9.3 Sample Program: A Simple Expression Compiler 1007

9.4 Putting It All Together ... 1028

10.1 Chapter Overview .. 1029
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 15

AoATOC.fm

10.2 General Principles .. 1029

10.3 Classes in HLA .. 1031

10.4 Objects ... 1033

10.5 Inheritance ... 1034

10.6 Overriding .. 1035

10.7 Virtual Methods vs. Static Procedures ... 1036

10.8 Writing Class Methods, Iterators, and Procedures 1037

10.9 Object Implementation .. 1040
10.9.1 Virtual Method Tables ... 1043
10.9.2 Object Representation with Inheritance 1045

10.10 Constructors and Object Initialization ... 1048
10.10.1 Dynamic Object Allocation Within the Constructor 1049
10.10.2 Constructors and Inheritance .. 1051
10.10.3 Constructor Parameters and Procedure Overloading 1054

10.11 Destructors ... 1055

10.12 HLA’s “_initialize_” and “_finalize_” Strings 1055

10.13 Abstract Methods ... 1060

10.14 Run-time Type Information (RTTI) .. 1062

10.15 Calling Base Class Methods .. 1064

10.16 Sample Program ... 1064

10.17 Putting It All Together ... 1081

11.1 Chapter Overview .. 1083

11.2 Determining if a CPU Supports the MMX Instruction Set 1083

11.3 The MMX Programming Environment ... 1084
11.3.1 The MMX Registers ... 1084
11.3.2 The MMX Data Types ... 1086

11.4 The Purpose of the MMX Instruction Set .. 1087

11.5 Saturation Arithmetic and Wraparound Mode 1087

11.6 MMX Instruction Operands ... 1088

11.7 MMX Technology Instructions ... 1092
11.7.1 MMX Data Transfer Instructions ... 1093
11.7.2 MMX Conversion Instructions .. 1093
11.7.3 MMX Packed Arithmetic Instructions ... 1100
11.7.4 MMX Logic Instructions .. 1102
11.7.5 MMX Comparison Instructions ... 1103
11.7.6 MMX Shift Instructions ... 1107

11.8 The EMMS Instruction .. 1108

11.9 The MMX Programming Paradigm ... 1109

11.10 Putting It All Together ... 1117

12.1 Chapter Overview .. 1119

12.2 Mixing HLA and MASM Code in the Same Program 1119
12.2.1 In-Line (MASM) Assembly Code in Your HLA Programs 1119
12.2.2 Linking MASM-Assembled Modules with HLA Modules 1122
Page 16 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

12.3 Programming in Delphi and HLA ... 1125
12.3.1 Linking HLA Modules With Delphi Programs 1126
12.3.2 Register Preservation ... 1128
12.3.3 Function Results ... 1129
12.3.4 Calling Conventions ... 1135
12.3.5 Pass by Value, Reference, CONST, and OUT in Delphi 1139
12.3.6 Scalar Data Type Correspondence Between Delphi and HLA 1140
12.3.7 Passing String Data Between Delphi and HLA Code 1142
12.3.8 Passing Record Data Between HLA and Delphi 1144
12.3.9 Passing Set Data Between Delphi and HLA 1148
12.3.10 Passing Array Data Between HLA and Delphi 1148
12.3.11 Delphi Limitations When Linking with (Non-TASM) Assembly Code 1148
12.3.12 Referencing Delphi Objects from HLA Code 1149

12.4 Programming in C/C++ and HLA ... 1151
12.4.1 Linking HLA Modules With C/C++ Programs 1152
12.4.2 Register Preservation ... 1155
12.4.3 Function Results ... 1155
12.4.4 Calling Conventions ... 1155
12.4.5 Pass by Value and Reference in C/C++ 1158
12.4.6 Scalar Data Type Correspondence Between Delphi and HLA 1158
12.4.7 Passing String Data Between C/C++ and HLA Code 1160
12.4.8 Passing Record/Structure Data Between HLA and C/C++ 1160
12.4.9 Passing Array Data Between HLA and C/C++ 1161

12.5 Putting It All Together ... 1162

13.1 Questions ... 1163

13.2 Programming Problems ... 1171

13.3 Laboratory Exercises ... 1180
13.3.1 Dynamically Nested TRY..ENDTRY Statements 1181
13.3.2 The TRY..ENDTRY Unprotected Section 1182
13.3.3 Performance of SWITCH Statement .. 1183
13.3.4 Complete Versus Short Circuit Boolean Evaluation 1187
13.3.5 Conversion of High Level Language Statements to Pure Assembly 1190
13.3.6 Activation Record Exercises .. 1190

13.3.6.1 Automatic Activation Record Generation and Access 1190
13.3.6.2 The _vars_ and _parms_ Constants 1192
13.3.6.3 Manually Constructing an Activation Record 1194

13.3.7 Reference Parameter Exercise ... 1196
13.3.8 Procedural Parameter Exercise .. 1199
13.3.9 Iterator Exercises .. 1202
13.3.10 Performance of Multiprecision Multiplication and Division Operations 1205
13.3.11 Performance of the Extended Precision NEG Operation 1205
13.3.12 Testing the Extended Precision Input Routines 1206
13.3.13 Illegal Decimal Operations .. 1206
13.3.14 MOVS Performance Exercise #1 ... 1206
13.3.15 MOVS Performance Exercise #2 ... 1208
13.3.16 Memory Performance Exercise .. 1210
13.3.17 The Performance of Length-Prefixed vs. Zero-Terminated Strings 1211
13.3.18 Introduction to Compile-Time Programs 1217
13.3.19 Conditional Compilation and Debug Code 1218
13.3.20 The Assert Macro ... 1220
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 17

AoATOC.fm

13.3.21 Demonstration of Compile-Time Loops (#while) 1222
13.3.22 Writing a Trace Macro ... 1224
13.3.23 Overloading .. 1226
13.3.24 Multi-part Macros and RatASM (Rational Assembly) 1229
13.3.25 Virtual Methods vs. Static Procedures in a Class 1232
13.3.26 Using the _initialize_ and _finalize_ Strings in a Program 1235
13.3.27 Using RTTI in a Program ... 1237

1.1 Chapter Overview .. 1247

1.2 First Class Objects ... 1247

1.3 Thunks ... 1249

1.4 Initializing Thunks ... 1250

1.5 Manipulating Thunks ... 1251
1.5.1 Assigning Thunks ... 1251
1.5.2 Comparing Thunks ... 1252
1.5.3 Passing Thunks as Parameters ... 1252
1.5.4 Returning Thunks as Function Results .. 1254

1.6 Activation Record Lifetimes and Thunks .. 1256

1.7 Comparing Thunks and Objects .. 1257

1.8 An Example of a Thunk Using the Fibonacci Function 1257

1.9 Thunks and Artificial Intelligence Code ... 1262

1.10 Thunks as Triggers .. 1263

1.11 Jumping Out of a Thunk .. 1267

1.12 Handling Exceptions with Thunks ... 1269

1.13 Using Thunks in an Appropriate Manner .. 1270

1.14 Putting It All Together ... 1270

2.1 Chapter Overview .. 1271

2.2 Iterators .. 1271
2.2.1 Implementing Iterators Using In-Line Expansion 1273
2.2.2 Implementing Iterators with Resume Frames 1274

2.3 Other Possible Iterator Implementations ... 1279

2.4 Breaking Out of a FOREACH Loop ... 1282

2.5 An Iterator Implementation of the Fibonacci Number Generator 1282

2.6 Iterators and Recursion .. 1289

2.7 Calling Other Procedures Within an Iterator ... 1292

2.8 Iterators Within Classes ... 1292

2.9 Putting It Altogether .. 1292

3.1 Chapter Overview .. 1293

3.2 Coroutines .. 1293

3.3 Parameters and Register Values in Coroutine Calls 1298

3.4 Recursion, Reentrancy, and Variables ... 1299

3.5 Generators .. 1301

3.6 Exceptions and Coroutines .. 1304
Page 18 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

3.7 Putting It All Together ... 1304

4.1 Chapter Overview .. 1305

4.2 Parameters ... 1305

4.3 Where You Can Pass Parameters .. 1305
4.3.1 Passing Parameters in (Integer) Registers 1306
4.3.2 Passing Parameters in FPU and MMX Registers 1309
4.3.3 Passing Parameters in Global Variables .. 1310
4.3.4 Passing Parameters on the Stack .. 1310
4.3.5 Passing Parameters in the Code Stream ... 1315
4.3.6 Passing Parameters via a Parameter Block 1317

4.4 How You Can Pass Parameters ... 1318
4.4.1 Pass by Value-Result ... 1318
4.4.2 Pass by Result .. 1323
4.4.3 Pass by Name ... 1324
4.4.4 Pass by Lazy-Evaluation .. 1326

4.5 Passing Parameters as Parameters to Another Procedure 1327
4.5.1 Passing Reference Parameters to Other Procedures 1327
4.5.2 Passing Value-Result and Result Parameters as Parameters 1328
4.5.3 Passing Name Parameters to Other Procedures 1329
4.5.4 Passing Lazy Evaluation Parameters as Parameters 1330
4.5.5 Parameter Passing Summary .. 1330

4.6 Variable Parameter Lists ... 1331

4.7 Function Results .. 1333
4.7.1 Returning Function Results in a Register 1333
4.7.2 Returning Function Results on the Stack 1334
4.7.3 Returning Function Results in Memory Locations 1334
4.7.4 Returning Large Function Results ... 1335

4.8 Putting It All Together ... 1335

5.1 Chapter Overview .. 1337

5.2 Lexical Nesting, Static Links, and Displays .. 1337
5.2.1 Scope .. 1337
5.2.2 Unit Activation, Address Binding, and Variable Lifetime 1338
5.2.3 Static Links .. 1339
5.2.4 Accessing Non-Local Variables Using Static Links 1343
5.2.5 Nesting Procedures in HLA ... 1345
5.2.6 The Display .. 1349
5.2.7 The 80x86 ENTER and LEAVE Instructions 1352

5.3 Passing Variables at Different Lex Levels as Parameters. 1355
5.3.1 Passing Parameters by Value ... 1355
5.3.2 Passing Parameters by Reference, Result, and Value-Result ... 1356
5.3.3 Passing Parameters by Name and Lazy-Evaluation in a Block Structured Language

1357

5.4 Passing Procedures as Parameters ... 1357

5.5 Faking Intermediate Variable Access .. 1357

5.6 Putting It All Together ... 1358

6.1 Questions ... 1359
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 19

AoATOC.fm

6.2 Programming Problems ... 1362

6.3 Laboratory Exercises ... 1363

1.1 Introduction .. 1371
1.1.1 Intended Audience ... 1371
1.1.2 Readability Metrics .. 1371
1.1.3 How to Achieve Readability .. 1372
1.1.4 How This Document is Organized ... 1373
1.1.5 Guidelines, Rules, Enforced Rules, and Exceptions 1373
1.1.6 Source Language Concerns .. 1374

1.2 Program Organization .. 1374
1.2.1 Library Functions ... 1374
1.2.2 Common Object Modules .. 1375
1.2.3 Local Modules .. 1375
1.2.4 Program Make Files ... 1376

1.3 Module Organization ... 1377
1.3.1 Module Attributes .. 1377

1.3.1.1 Module Cohesion ... 1377
1.3.1.2 Module Coupling ... 1378
1.3.1.3 Physical Organization of Modules .. 1378
1.3.1.4 Module Interface .. 1379

1.4 Program Unit Organization .. 1380
1.4.1 Routine Cohesion ... 1380
1.4.2 Routine Coupling ... 1381
1.4.3 Routine Size ... 1381

1.5 Statement Organization ... 1382
1.5.1 Writing “Pure” Assembly Code ... 1382
1.5.2 Using HLA’s High Level Control Statements 1384

1.6 Comments .. 1389
1.6.1 What is a Bad Comment? ... 1390
1.6.2 What is a Good Comment? .. 1391
1.6.3 Endline vs. Standalone Comments ... 1392
1.6.4 Unfinished Code ... 1393
1.6.5 Cross References in Code to Other Documents 1394

1.7 Names, Instructions, Operators, and Operands 1395
1.7.1 Names ... 1395

1.7.1.1 Naming Conventions ... 1397
1.7.1.2 Alphabetic Case Considerations .. 1397
1.7.1.3 Abbreviations ... 1398
1.7.1.4 The Position of Components Within an Identifier 1399
1.7.1.5 Names to Avoid ... 1400
1.7.1.6 Special Identifers ... 1401

1.7.2 Instructions, Directives, and Pseudo-Opcodes 1402
1.7.2.1 Choosing the Best Instruction Sequence 1402
1.7.2.2 Control Structures .. 1403
1.7.2.3 Instruction Synonyms .. 1405

1.8 Data Types ... 1407
1.8.1 Declaring Structures in Assembly Language 1407
Page 20 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

H.1 Conversion Functions ... 1447

H.2 Numeric Functions .. 1449

H.3 Date/Time Functions .. 1450

H.4 Classification Functions .. 1451

H.5 String and Character Set Functions .. 1452

H.6 Pattern Matching Functions .. 1455
H.6.1 String/Cset Pattern Matching Functions 1456
H.6.2 String/Character Pattern Matching Functions 1460
H.6.3 String/Case Insenstive Character Pattern Matching Functions 1464
H.6.4 String/String Pattern Matching Functions 1465
H.6.5 String/Misc Pattern Matching Functions 1466

H.7 HLA Information and Symbol Table Functions 1469

H.8 Compile-Time Variables .. 1474

H.9 Miscellaneous Compile-Time Functions .. 1475

I.1 What’s Included in the HLA Distribution Package 1479

I.2 Using the HLA Compiler ... 1480

I.3 Compiling Your First Program .. 1480

I.4 Win 2000 Installation Notes Taken from comp.lang.asm.x86 1481
I.4.1 To Install HLA .. 1481
I.4.2 SETTING UP UEDIT32 ... 1482
I.4.3 Wordfile.txt Contents (for UEDIT) .. 1484

1.1 The @TRACE Pseudo-Variable .. 1501

1.2 The Assert Macro .. 1504

1.3 RATASM ... 1504

1.4 The HLA Standard Library DEBUG Module ... 1504

L.1 The HLA Standard Library ... 1507

L.2 Compiling to MASM Code -- The Final Word 1508

L.3 The HLA if..then..endif Statement, Part I ... 1513

L.4 Boolean Expressions in HLA Control Structures 1514

L.5 The JT/JF Pseudo-Instructions .. 1520

L.6 The HLA if..then..elseif..else..endif Statement, Part II 1520

L.7 The While Statement ... 1524

L.8 repeat..until .. 1526

L.9 for..endfor .. 1526

L.10 forever..endfor ... 1526

L.11 break, breakif ... 1526

L.12 continue, continueif ... 1526

L.13 begin..end, exit, exitif .. 1526

L.14 foreach..endfor .. 1526

L.15 try..unprotect..exception..anyexception..endtry, raise 1526
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 21

AoATOC.fm
Page 22 © 2001, By Randall Hyde Beta Draft - Do not distribute

V
o
lu

m
e
 O

n
e
:

DD
aa

tt aa
 RR

ee
pp

rr ee
ss
ee
nn

tt aa
tt ii

oo
nn
Volume One: Data Representation

Chapter One: Foreword

An introduction to this text and the purpose behind this
text.

Chapter Two: Hello, World of Assembly Language

A brief introduction to assembly language programming
using the HLA language.

Chapter Three: Data Representation

A discussion of numeric representation on the computer.

Chapter Four: More Data Representation

Advanced numeric and non-numeric computer data rep-
resentation.

Chapter Five: Questions, Projects, and Laboratory Exercises

Test what you’ve learned in the previous chapters!

These five chapters are appropriate for all courses teach-
ing maching organization and assembly language pro-
gramming.

Volume 1
Page 2 © 2001, By Randall Hyde Beta Draft - Do not distribute

Foreward Chapter One

Nearly every text has a throw-away chapter as Chapter One. Here’s my version. Seriously, though,
some important copyright, instructional, and support information appears in this chapter. So you’ll
probably want to read this stuff. Instructors will definitely want to review this material.

• Foreward to the HLA Version of “The Art of Assembly...”

In 1987 I began work on a text I entitled “How to Program the IBM PC, Using 8088 Assembly
Language.” First, the 8088 faded into history, shortly thereafter the phrase “IBM PC” and even
“IBM PC Compatible” became far less dominate in the industry, so I retitled the text “The Art of
Assembly Language Programming.” I used this text in my courses at Cal Poly Pomona and UC
Riverside for many years, getting good reviews on the text (not to mention lots of suggestions and
corrections). Sometime around 1994-1995, I converted the text to HTML and posted an electronic
version on the Internet. The rest, as they say is history. A week doesn’t go by that I don’t get several
emails praising me for releasing such a fine text on the Internet. Indeed, I only hear three really big
complaints about the text: (1) It’s a University textbook and some people don’t like to read text-
books, (2) It’s 16-bit DOS-based, and (3) there isn’t a print version of the text. Well, I make no
apologies for complaint #1. The whole reason I wrote the text was to support my courses at Cal
Poly and UC Riverside. Complaint #2 is quite valid, that’s why I wrote this version of the text. As
for complaint #3, it was really never cost effective to create a print version; publishers simply can-
not justify printing a text 1,500 pages long with a limited market. Furthermore, having a print ver-
sion would prevent me from updating the text at will for my courses.

The astute reader will note that I haven’t updated the electronic version of “The Art of Assem-
bly Language Programming” (or “AoA”) since about 1996. If the whole reason for keeping the
book in electronic form has been to make updating the text easy, why haven’t there been any
updates? Well, the story is very similar to Knuth’s “The Art of Computer Programming” series: I
was sidetracked by other projects1.

The static nature of AoA over the past several years was never really intended. During the
1995-1996 time frame, I decided it was time to make a major revision to AoA. The first version of
AoA was MS-DOS based and by 1995 it was clear that MS-DOS was finally becoming obsolete;
almost everyone except a few die-hards had switched over to Windows. So I knew that AoA needed
an update for Windows, if nothing else.

I also took some time to evaluate my curriculum to see if I couldn’t improve the pedagogical
(teaching) material to make it possible for my students to learn even more about 80x86 assembly
language in a relatively short 10-week quarter.

One thing I’ve learned after teaching an assembly language course for over a decade is that
support software makes all the difference in the world to students writing their first assembly lan-
guage programs. When I first began teaching assembly language, my students had to write all their
own I/O routines (including numeric to string conversions for numeric I/O). While one could argue
that there is some value to having students write this code for themselves, I quickly discovered that
they spent a large percentage of their project time over the quarter writing I/O routines. Each
moment they spent writing these relatively low-level routines was one less moment available to
them for learning more advanced assembly language programming techniques. While, I repeat,
there is some value to learning how to write this type of code, it’s not all that related to assembly
language programming (after all, the same type of problem has to be solved for any language that
allows numeric I/O). I wanted to free the students from this drudgery so they could learn more
about assembly language programming. The result of this observation was “The UCR Standard
Library for 80x86 Assembly Language Programmers.” This is a library containing several hundred
I/O and utility functions that students could use in their assembly language programs. More than

1. Actually, another problem is the effort needed to maintain the HTML version since it was a manual conversion from Adobe
Framemaker. But that’s another story...
Page 3

Chapter One Volume 1

nearly anything else, the UCR Standard Library improved the progress students made in my
courses.

It should come as no surprise, then, that one of my first projects when rewriting AoA was to
create a new, more powerful, version of the UCR Standard Library. This effort (the UCR Stdlib
v2.0) ultimately failed (although you can still download the code written for v2.0 from http://web-
ster.cs.ucr.edu). The problem was that I was trying to get MASM to do a little bit more than it was
capable of and so the project was ultimately doomed.

To condense a really long story, I decided that I needed a new assembler. One that was power-
ful enough to let me write the new Standard Library the way I felt it should be written. However,
this new assembler should also make it much easier to learn assembly language; that is, it should
relieve the students of some of the drudgery of assembly language programming just as the UCR
Standard Library had. After three years of part-time effort, the end result was the “High Level
Assembler,” or HLA.

HLA is a radical step forward in teaching assembly language. It combines the syntax of a high
level language with the low-level programming capabilities of assembly language. Together with
the HLA Standard Library, it makes learning and programming assembly language almost as easy
as learning and programming a High Level Language like Pascal or C++. Although HLA isn’t the
first attempt to create a hybrid high level/low level language, nor is it even the first attempt to create
an assembly language with high level language syntax, it’s certainly the first complete system (with
library and operating system support) that is suitable for teaching assembly language programming.
Recent experiences in my own assembly language courses show that HLA is a major improvement
over MASM and other traditional assemblers when teaching machine organization and assembly
language programming.

The introduction of HLA is bound to raise lots of questions about its suitability to the task of
teaching assembly language programming (as well it should). Today, the primary purpose of teach-
ing assembly language programming at the University level isn’t to produce a legion of assembly
language programmers; it’s to teach machine organization and introduce students to machine archi-
tecture. Few instructors realistically expect more than about 5% of their students to wind up work-
ing in assembly language as their primary programming language2. Doesn’t turning assembly
language into a high level language defeat the whole purpose of the course? Well, if HLA let you
write C/C++ or Pascal programs and attempted to call these programs “assembly language” then
the answer would be “Yes, this defeats the purpose of the course.” However, despite the name and
the high level (and very high level) features present in HLA, HLA is still assembly language. An
HLA programmer still uses 80x86 machine instructions to accomplish most of the work. And those
high level language statements that HLA provides are purely optional; the “purist” can use nothing
but 80x86 assembly language, ignoring the high level statements that HLA provides. Those who
argue that HLA is not true assembly language should note that Microsoft’s MASM and Inprise’s
TASM both provide many of the high level control structures found in HLA3.

Perhaps the largest deviation from traditional assemblers that HLA makes is in the declaration
of variables and data in a program. HLA uses a very Pascal-like syntax for variable, constant, type,
and procedure declarations. However, this does not diminish the fact that HLA is an assembly lan-
guage. After all, at the machine language (vs. assembly language) level, there is no such thing as a
data declaration. Therefore, any syntax for data declaration is an abstraction of data representation
in memory. I personally chose to use a syntax that would prove more familiar to my students than
the traditional data declarations used by assemblers.

Indeed, perhaps the principle driving force in HLA’s design has been to leverage the student’s
existing knowledge when teaching them assembly language. Keep in mind, when a student first
learns assembly language programming, there is so much more for them to learn than a handful of
80x86 machine instructions and the machine language programming paradigm. They’ve got to
learn assembler directives, how to declare variables, how to write and call procedures, how to com-
ment their code, what constitutes good programming style in an assembly language program, etc.

2. My experience suggests that only about 10-20% of my students will ever write any assembly language again once they
graduate; less than 5% ever become regular assembly language users.
3. Indeed, in some respects the MASM and TASM HLL control structures are actually higher level than HLA’s. I specifically
restricted the statements in HLA because I did not want students writing “C/C++ programs with MOV instructions.”
Page 4 © 2001, By Randall Hyde Beta Draft - Do not distribute

Foreward

Unfortunately, with most assemblers, these concepts are completely different in assembly language
than they are in a language like Pascal or C/C++. For example, the indentation techniques students
master in order to write readable code in Pascal just don’t apply to (traditional) assembly language
programs. That’s where HLA deviates from traditional assemblers. By using a high level syntax,
HLA lets students leverage their high level language knowledge to write good readable programs.
HLA will not let them avoid learning machine instructions, but it doesn’t force them to learn a
whole new set of programming style guidelines, new ways to comment your code, new ways to cre-
ate identifiers, etc. HLA lets them use the knowledge they already possess in those areas that really
have little to do with assembly language programming so they can concentrate on learning the
important issues in assembly language.

So let there be no question about it: HLA is an assembly language. It is not a high level lan-
guage masquerading as an assembler4. However, it is a system that makes learning and using
assembly language easier than ever before possible.

Some long-time assembly language programmers, and even many instructors, would argue that
making a subject easier to learn diminishes the educational content. Students don’t get as much out
of a course if they don’t have to work very hard at it. Certainly, students who don’t apply them-
selves as well aren’t going to learn as much from a course. I would certainly agree that if HLA’s
only purpose was to make it easier to learn a fixed amount of material in a course, then HLA would
have the negative side-effect of reducing what the students learn in their course. However, the real
purpose of HLA is to make the educational process more efficient; not so the students spend less
time learning a fixed amount of material (although HLA could certainly achieve this), but to allow
the students to learn the same amount of material in less time so they can use the additional time
available to them to advance their study of assembly language. Remember what I said earlier about
the UCR Standard Library- it’s introduction into my course allowed me to teach even more
advanced topics in my course. The same is true, even more so, for HLA. Keep in mind, I’ve got ten
weeks in a quarter. If using HLA lets me teach the same material in seven weeks that took ten
weeks with MASM, I’m not going to dismiss the course after seven weeks. Instead, I’ll use this
additional time to cover more advanced topics in assembly language programming. That’s the real
benefit to using pedagogical tools like HLA.

Of course, once I’ve addressed the concerns of assembly language instructors and long-time
assembly language programmers, the need arises to address questions a student might have about
HLA. Without question, the number one concern my students have had is “If I spend all this time
learning HLA, will I be able to use this knowledge once I get out of school?” A more blunt way of
putting this is “Am I wasting my time learning HLA?” Let me address these questions three ways.

First, as pointed out above, most people (instructors and experienced programmers) view
learning assembly language as an educational process. Most students will probably never program
full-time in assembly language, indeed, few programmers write more than a tiny fraction (less than
1%) of their code in assembly language. One of the main reasons most Universities require their
students to take an assembly language course is so they will be familiar with the low-level operation
of their machine and so they can appreciate what the compiler is doing for them (and help them to
write better HLL code once they realize how the compiler processes HLL statements). HLA is an
assembly language and learning HLA will certainly teach you the concepts of machine organiza-
tion, the real purpose behind most assembly language courses.

The second point to ponder is that learning assembly language consists of two main activities;
learning the assembler’s syntax and learning the assembly language programming paradigm (that
is, learning to think in assembly language). Of these two, the second activity is, by far, the more dif-
ficult. HLA, since it uses a high level language-like syntax, simplifies learning the assembly lan-
guage syntax. HLA also simplifies the initial process of learning to program in assembly language
by providing a crutch, the HLA high level statements, that allows students to use high level lan-
guage semantics when writing their first programs. However, HLA does allow students to write
“pure” assembly language programs, so a good instructor will ensure that they master the full
assembly language programming paradigm before they complete the course. Once a student mas-
ters the semantics (i.e., the programming paradigm) of assembly language, learning a new syntax is

4. The C-- language is a good example of a low-level non-assembly language, if you need a comparison.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 5

Chapter One Volume 1

relatively easy. Therefore, a typical student should be able to pick up MASM in about a week after
mastering HLA5.

As for the third and final point: to those that would argue that this is still extra effort that isn’t
worthwhile, I would simply point out that none of the existing assemblers have more than a cursory
level of compatibility. Yes, TASM can assemble most MASM programs, but the reverse is not true.
And it’s certainly not the case that NASM, A86, GAS, MASM, and TASM let you write inter-
changeable code. If you master the syntax of one of these assemblers and someone expects you to
write code in a different assembler, you’re still faced with the prospect of having to learn the syntax
of the new assembler. And that’s going to take you about a week (assuming the presence of well-
written documentation). In this respect, HLA is no different than any of the other assemblers.

Having addressed these concerns you might have, it’s now time to move on and start teaching
assembly language programming using HLA.

• Intended Audience

No single textbook can be all things to all people. This text is no exception. I’ve geared this text
and the accompanying software to University level students who’ve never previously learned
assembly language programming. This is not to say that others cannot benefit from this work; it
simply means that as I’ve had to make choices about the presentation, I’ve made choices that should
prove most comfortable for this audience I’ve chosen.

A secondary audience who could benefit from this presentation is any motivated person that
really wants to learn assembly language. Although I assume a certain level of mathematical matu-
rity from the reader (i.e., high school algebra), most of the “tough math” in this textbook is inciden-
tal to learning assembly language programming and you can easily skip over it without fear that
you’ll miss too much. High school students and those who haven’t seen a school in 40 years have
effectively used this text (and its DOS counterpart) to learn assembly language programming.

The organzation of this text reflects the diverse audience for which it is intended. For example,
in a standard textbook each chapter typically has its own set of questions, programming exercises,
and laboratory exercises. Since the primary audience for this text is Univeristy students, such peda-
gogical material does appear within this text. However, recognizing that not everyone who reads
this text wants to bother with this material (e.g., downloading it), this text moves such pedagogical
material to the end of each volume in the text and places this material in a separate chapter. This is
somewhat of an unusual organization, but I feel that University instructors can easily adapt to this
organization and it saves burdening those who aren’t interested in this material.

One audience to whom this book is specifically not directed are those persons who are already
comfortable programming in 80x86 assembly language. Undoubtedly, there is a lot of material such
programmers will find of use in this textbook. However, my experience suggests that those who’ve
already learned x86 assembly language with an assembler like MASM, TASM, or NASM rebel at
the thought of having to relearn basic assembly language syntax (as they would to have to learn
HLA). If you fall into this category, I humbly apologize for not writing a text more to your liking.
However, my goal has always been to teach those who don’t already know assembly language, not
extend the education of those who do. If you happen to fall into this category and you don’t partic-
ularly like this text’s presentation, there is some good news: there are dozens of texts on assembly
language programming that use MASM and TASM out there. So you don’t really need this one.

• Teaching From This Text

The first thing any instructor will notice when reviewing this text is that it’s far too large for
any reasonable course. That’s because assembly language courses generally come in two flavors: a
machine organization course (more hardware oriented) and an assembly language programming
course (more software oriented). No text that is “just the right size” is suitable for both types of

5. This is very similar to mastering C after learning C++.
Page 6 © 2001, By Randall Hyde Beta Draft - Do not distribute

Foreward

classes. Combining the information for both courses, plus advanced information students may need
after they finish the course, produces a large text, like this one.

If you’re an instructor with a limited schedule for teaching this subject, you’ll have to carefully
select the material you choose to present over the time span of your course. To help, I’ve included
some brief notes at the beginning of each Volume in this text that suggests whether a chapter in that
Volume is appropriate for a machine organization course, an assembly language programming
course, or an advanced assembly programming course. These brief course notes can help you
choose which chapters you want to cover in your course.

If you would like to offer hard copies of this text in the bookstore for your students, I will
attempt to arrange with some “Custom Textbook Publishing” houses to make this material available
on an “as-requested” basis. As I work out arrangements with such outfits, I’ll post ordering infor-
mation on Webster (http://webster.cs.ucr.edu). If your school has a printing and reprographics
department, or you have a local business that handles custom publishing, you can certainly request
copyright clearance to print the text locally.

If you’re not taking a formal course, just keep in mind that you don’t have to read this text
straight through, chapter by chapter. If you want to learn assembly language programming and
some of the machine organization chapters seem a little too hardware oriented for your tastes, feel
free to skip those chapters and come back to them later on, when you understand the need to learn
this information.

• Copyright Notice

The full contents of this text is copyrighted material. Here are the rights I hereby grant con-
cerning this material. You have the right to

• Read this text on-line from the http://webster.cs.ucr.edu web site or any other
approved web site.

• Download an electronic version of this text for your own personal use and view
this text on your own personal computer.

• Make a single printed copy for your own personal use.

I usually grant instructors permission to use this text in conjunction with their courses at recog-
nized academic institutions. There are two types of reproduction I allow in this instance: electronic
and printed. I grant electronic reproduction rights for one school term; after which the institution
must remove the electronic copy of the text and obtain new permission to repost the electronic form
(I require a new copy for each term so that corrections, changes, and additions propagate across the
net). If your institution has reproduction facilities, I will grant hard copy reproduction rights for one
academic year (for the same reasons as above). You may obtain copyright clearance by emailing me
at

rhyde@cs.ucr.edu

I will respond with clearance via email. My returned email plus this page should provide suffi-
cient acknowledgement of copyright clearance. If, for some reason, your reproduction department
needs to have me physically sign a copyright clearance, I will have to charge $75.00 U.S. to cover
my time and effort needed to deal with this. To obtain such clearance, please email me at the
address above. Presumably, your printing and reproduction department can handle producing a
master copy from PDF files. If not, I can print a master copy on a laser printer (800x400dpi), please
email me for the current cost of this service.

All other rights to this text are expressly reserved by the author. In particular, it is a copyright
violation to

• Post this text (or some portion thereof) on some web site without prior approval.
• Reproduce this text in printed or electronic form for non-personal (e.g., commer-

cial) use.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 7

Chapter One Volume 1

The software accompanying this text is all public domain material unless an explicit copyright
notice appears in the software. Feel free to use the accompanying software in any way you feel fit.

• How to Get a Hard Copy of This Text

This text is distributed in electronic form only. It is not available in hard copy form nor do I
personally intend to have it published. If you want a hard copy of this text, the copyright allows you
to print one for yourself. The PDF distribution format makes this possible (though the length of the
text will make it somewhat expensive).

If you’re wondering why I don’t get this text published, there’s a very simple reason: it’s too
long. Publishing houses generally don’t want to get involved with texts for specialized subjects as it
is; the cost of producing this text is prohibitive given its limited market. Rather than cut it down to
the 500 or so 6” x 9” pages that most publishers would accept, my decision was to stick with the
full text and release the text in electronic form on the Internet. The upside is that you can get a free
copy of this text; the downside is that you can’t readily get a hard copy.

Note that the copyright notice forbids you from copying this text for anything other than per-
sonal use (without permission, of course). If you run a “Print to Order/Custom Textbook” publish-
ing house and would like to make copies for people, feel free to contact me and maybe we can work
out a deal for those who just have to have a hard copy of this text.

• Obtaining Program Source Listings and Other Materials in This Text

All of the software appearing in this text is available from the Webster web site. The URL is

http://webster.cs.ucr.edu

The data might also be available via ftp from the following Internet address:

ftp.cs.ucr.edu

Log onto ftp.cs.ucr.edu using the anonymous account name and any password. Switch to the “/pub/
pc/ibmpcdir” subdirectory (this is UNIX so make sure you use lowercase letters). You will find the
appropriate files by searching through this directory.

The exact filename(s) of this material may change with time, and different services use differ-
ent names for these files. Check on Webster for any important changes in addresses. If for some rea-
son, Webster disappears in the future, you should use a web-based search engine like “AltaVista”
and search for “Art of Assembly” to locate the current home site of this material.

• Where to Get Help

If you’re reading this text and you’ve got questions about how to do something, please post a
message to one of the following Internet newsgroups:

comp.lang.asm.x86
alt.lang.asm

Hundreds of knowledgeable individuals frequent these newsgroups and as long as you’re not
simply asking them to do your homework assignment for you, they’ll probably be more than happy
to help you with any problems that you have with assembly language programming.

I certainly welcome corrections and bug reports concerning this text at my email address.
However, I regret that I do not have the time to answer general assembly language programming
questions via email. I do provide support in public forums (e.g., the newsgroups above and on Web-
ster at http://webster.cs.ucr.edu) so please use those avenues rather than emailing questions directly
Page 8 © 2001, By Randall Hyde Beta Draft - Do not distribute

Foreward

to me. Due to the volume of email I receive daily, I regret that I cannot reply to all emails that I
receive; so if you’re looking for a response to a question, the newsgroup is your best bet (not to
mention, others might benefit from the answer as well).

• Other Materials You Will Need

In addition to this text and the software I provide, you will need a machine running a 32-bit
version of Windows (Windows 9x, NT, 2000, ME, etc.), a copy of Microsoft’s MASM and a 32-bit
linker, some sort of text editor, and other rudimentary general-purpose software tools you normally
use. MASM and MS-Link are freely available on the internet. Alas, the procedure you must follow
to download these files from Microsoft seems to change on a monthly basis. However, a quick post
to comp.lang.asm.x86 should turn up the current site from which you may obtain this software.
Almost all the software you need to use this text is part of Windows (e.g., a simple text editor like
Notepad.exe) or is freely available on the net (MASM, LINK, and HLA). You shouldn’t have to
purchase anything.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 9

Chapter One Volume 1
Page 10 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

Hello, World of Assembly Language Chapter Two

2.0 Chapter Overview

This chapter is a “quick-start” chapter that lets you start writing basic assembly language programs right
away. This chapter presents the basic syntax of an HLA (High Level Assembly) program, introduces you to
the Intel CPU architecture, provides a handful of data declarations and machine instructions, describes some
utility routines you can call in the HLA Standard Library, and then shows you how to write some simple
assembly language programs. By the conclusion of this chapter, you should understand the basic syntax of
an HLA program and be prepared to start learning new language features in subsequent chapters.

Note: this chapter assumes that you have successfully installed HLA on your system. Please see
Appendix I for details concerning the installation of HLA (alternately, you can read the HLA documentation
or check out the laboratory exercises associated with this volume).

2.1 The Anatomy of an HLA Program

An HLA program typically takes the following form:

Figure 2.1 Basic HLA Program Layout

The pgmID in the template above is a user-defined program identifier. You must pick an appropriate,
descriptive, name for your program. In particular, pgmID would be a horrible choice for any real program. If
you are writing programs as part of a course assignment, your instructor will probably give you the name to
use for your main program. If you are writing your own HLA program, you will have to choose this name.

Identifiers in HLA are very similar to identifiers in most high level languages. HLA identifiers may
begin with an underscore or an alphabetic character, and may be followed by zero or more alphanumeric or
underscore characters. HLA’s identifiers are case neutral. This means that the identifiers are case sensitive
insofar as you must always spell an identifier exactly the same way (even with respect to upper and lower
case) in your program. However, unlike other case sensitive languages, like C/C++, you may not declare two
identifiers in the program whose name differs only by the case of alphabetic characters appearing in an iden-
tifier. Case neutrality enforces the good programming style of always spelling your names exactly the same
way (with respect to case) and never declaring two identifiers whose only difference is the case of certain
alphabetic characters.

program pgmID ;

Declarations

begin pgmID ;

Statements

end pgmID ;

These identifiers
specify the name
of the program.
They must all be
the same identifier.

The declarations section
is where you declare constants,
types, variables, procedures, and
other objects in an HLA program.

The Statements section is where
you place the executable statements
for your main program.

PROGRAM, BEGIN, and END are HLA reserved words that delineate the program. Note the
placement of the semicolons in this program.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 11

Chapter Two Volume 1

A traditional first program people write, popularized by K&R’s “The C Programming Language” is the
“Hello World” program. This program makes an excellent concrete example for someone who is learning a
new language. Here’s what the “Hello World” program looks like in HLA:

program helloWorld;
#include(“stdlib.hhf”);

begin helloWorld;

stdout.put(“Hello, World of Assembly Language”, nl);

end helloWorld;

Program 2.1 The Hello World Program

The #include statement in this program tells the HLA compiler to include a set of declarations from the
stdlib.hhf (standard library, HLA Header File). Among other things, this file contains the declaration of the
stdout.put code that this program uses.

The stdout.put statement is the typical “print” statement for the HLA language. You use it to write data
to the standard output device (generally the console). To anyone familiar with I/O statements in a high level
language, it should be obvious that this statement prints the phrase “Hello, World of Assembly Language”.
The nl appearing at the end of this statement is a constant, also defined in “stdlib.hhf”, that corresponds to
the newline sequence.

Note that semicolons follow the program, BEGIN, stdout.put, and END statements1. Technically speak-
ing, a semicolon is generally allowable after the #INCLUDE statement. It is possible to create include files
that generate an error if a semicolon follows the #INCLUDE statement, so you may want to get in the habit
of not putting a semicolon here (note, however, that the HLA standard library include files always allow a
semicolon after the corresponding #INCLUDE statement).

The #INCLUDE is your first introduction to HLA declarations. The #INCLUDE itself isn’t actually a
declaration, but it does tell the HLA compiler to substitute the file “stdlib.hhf” in place of the #INCLUDE
directive, thus inserting several declarations at this point in your program. Most HLA programs you will
write will need to include at least some of the HLA Standard Library header files (“stdlib.hhf” actually
includes all the standard library definitions into your program; for more efficient compiles, you might want
to be more selective about which files you include. You will see how to do this in a later chapter).

Compiling this program produces a console application. Under Win322, running this program in a com-
mand window prints the specified string and then control returns back to the Windows command line inter-
preter.

2.2 Some Basic HLA Data Declarations

HLA provides a wide variety of constant, type, and data declaration statements. Later chapters will
cover the declaration section in more detail but it’s important to know how to declare a few simple variables
in an HLA program.

1. Technically, from a language design point of view, these are not all statements. However, this chapter will not make that
distinction.
2. This text will use the phrase Win32 to denote any version of 32-bit version of Windows including Windows NT, Windows
95, Windows 98, Windows 2000, and later versions of Windows that run on processors supporting the Intel 32-bit 80x86
instruction set.
Page 12 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

HLA predefines three different signed integer types: int8, int16, and int32, corresponding to eight-bit
(one byte) signed integers, 16-bit (two byte) signed integers, and 32-bit (four byte) signed integers respec-
tively3. Typical variable declarations occur in the HLA static variable section. A typical set of variable dec-
larations takes the following form

Figure 2.2 Static Variable Declarations

Those who are familiar with the Pascal language should be comfortable with this declaration syntax.
This example demonstrates how to declare three separate integers, i8, i16, and i32. Of course, in a real pro-
gram you should use variable names that are a little more description. While names like “i8” and “i32”
describe the type of the object, they do not describe it’s purpose. Variable names should describe the purpose
of the object.

In the STATIC declaration section, you can also give a variable an initial value that the operating system
will assign to the variable when it loads the program into memory. The following figure demonstrates the
syntax for this:

Figure 2.3 Static Variable Initialization

It is important to realize that the expression following the assignment operator (“:=”) must be a constant
expression. You cannot assign the values of other variables within a STATIC variable declaration.

Those familiar with other high level languages (especially Pascal) should note that you may only
declare one variable per statement. That is, HLA does not allow a comma delimited list of variable names
followed by a colon and a type identifier. Each variable declaration consists of a single identifier, a colon, a
type ID, and a semicolon.

Here is a simple HLA program that demonstrates the use of variables within an HLA program:

Program DemoVars;
#include(“stdlib.hhf”);

static
 InitDemo: int32 := 5;

3. A discussion of bits and bytes will appear in the next chapter if you are unfamiliar with these terms.

static
i8: int8;
i16: int16;
i32: int32;

"static" is the keyword that begins
the variable declaration section.

int8, int16, and int32 are the names
of the data types for each declaration

i8, i16, and i32
are the names of
the variables to
declare here.

static
i8: int8 := 8;
i16: int16 := 1600;
i32: int32 := -320000;

The operand after the constant
assignment operator must be
a constant whose type is
compatible with the variable
you are initializing

The constant assignment
operator, ":=" tells HLA
that you wish to initialize
the specified variable with
an initial value.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 13

Chapter Two Volume 1

 NotInitialized: int32;

begin DemoVars;

 // Display the value of the pre-initialized variable:

 stdout.put(“InitDemo’s value is “, InitDemo, nl);

 // Input an integer value from the user and display that value:

 stdout.put(“Enter an integer value: “);
 stdin.get(NotInitialized);
 stdout.put(“You entered: “, NotInitialized, nl);

end DemoVars;

Program 2.2 Variable Declaration and Use

In addition to STATIC variable declarations, this example introduces three new concepts. First, the std-
out.put statement allows multiple parameters. If you specify an integer value, stdout.put will convert that
value to the string representation of that integer’s value on output. The second new feature this sample pro-
gram introduces is the stdin.get statement. This statement reads a value from the standard input device (usu-
ally the keyboard), converts the value to an integer, and stores the integer value into the NotInitialized
variable. Finally, this program also introduces the syntax for (one form of) HLA comments. The HLA com-
piler ignores all text from the “//” sequence to the end of the current line. Those familiar with C++ and Del-
phi should recognize these comments.

2.3 Boolean Values

HLA and the HLA Standard Library provides limited support for boolean objects. You can declare
boolean variables, use boolean literal constants, use boolean variables in boolean expressions (e.g., in an IF
statement), and you can print the values of boolean variables.

Boolean literal constants consist of the two predefined identifiers true and false . Internally, HLA repre-
sents the value true using the numeric value one; HLA represents false using the value zero. Most programs
treat zero as false and anything else as true, so HLA’s representations for true and false should prove suffi-
cient.

To declare a boolean variable, you use the boolean data type. HLA uses a single byte (the least amount
of memory it can allocate) to represent boolean values. The following example demonstrates some typical
declarations:

static
BoolVar: boolean;
HasClass: boolean := false;
IsClear: boolean := true;

As you can see in this example, you may declare initialized as well as uninitialized variables.

Since boolean variables are byte objects, you can manipulate them using eight-bit registers and any
instructions that operate directly on eight-bit values. Furthermore, as long as you ensure that your boolean
variables only contain zero and one (for false and true, respectively), you can use the 80x86 AND, OR,
XOR, and NOT instructions to manipulate these boolean values (we’ll describe these instructions a little
later).

You can print boolean values by making a call to the stdout.put routine, e.g.,

stdout.put(BoolVar)
Page 14 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

This routine prints the text “true” or “false” depending upon the value of the boolean parameter (zero is
false, anything else is true). Note that the HLA Standard Library does not allow you to read boolean values
via stdin.get.

2.4 Character Values

HLA lets you declare one-byte ASCII character objects using the char data type. You may initialize
character variables with a literal character value by surrounding the character with a pair of apostrophes.
The following example demonstrates how to declare and initialize character variables in HLA:

static
c: char;
LetterA: char := ‘A’;

You can print character variables use the stdout.put routine.

2.5 An Introduction to the Intel 80x86 CPU Family

Thus far, you’ve seen a couple of HLA programs that will actually compile and run. However, all the
statements utilized to this point have been either data declarations or calls to HLA Standard Library routines.
There hasn’t been any real assembly language up to this point. Before we can progress any farther and learn
some real assembly language, a detour is necessary. For unless you understand the basic structure of the Intel
80x86 CPU family, the machine instructions will seem mysterious indeed.

The Intel CPU family is generally classified as a Von Neumann Architecture Machine. Von Neumann
computer systems contain three main building blocks: the central processing unit (CPU), memory, and
input/output devices (I/O). These three components are connected together using the system bus. The follow-
ing block diagram shows this relationship:

Figure 2.4 Von Neumann Computer System Block Diagram

Memory and I/O devices will be the subjects of later chapters; for now, let’s take a look inside the CPU
portion of the computer system, at least at the components that are visible to the assembly language pro-
grammer.

CPU

Memory

I/O Devices
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 15

Chapter Two Volume 1

The most prominent items within the CPU are the registers. The Intel CPU registers can be broken down
into four categories: general purpose registers, special purpose application accessible registers, segment reg-
isters, and special purpose kernel mode registers. This text will not consider the last two sets of registers. The
segment registers are not used much in modern 32-bit operating systems (e.g., Windows, BeOS, and Linux);
since this text is geared around programs written for Windows, there is little need to discuss the segment reg-
isters. The special purpose kernel mode registers are intended for use by people who write operating sys-
tems, debuggers, and other system level tools. Such software construction is well beyond the scope of this
text, so once again there is little need to discuss the special purpose kernel mode registers.

The 80x86 (Intel family) CPUs provide several general purpose registers for application use. These
include eight 32-bit registers that have the following names:

EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP

The “E” prefix on each name stands for extended. This prefix differentiates the 32-bit registers from the eight
16-bit registers that have the following names:

AX, BX, CX, DX, SI, DI, BP, and SP

Finally, the 80x86 CPUs provide eight 8-bit registers that have the following names:

AL, AH, BL, BH, CL, CH, DL, and DH

Unfortunately, these are not all separate registers. That is, the 80x86 does not provide 24 independent
registers. Instead, the 80x86 overlays the 32-bit registers with the 16-bit registers and it overlays the 16-bit
registers with the 8-bit registers. The following diagram shows this relationship:

Figure 2.5 80x86 (Intel CPU) General Purpose Registers

The most important thing to note about the general purpose registers is that they are not independent.
Modifying one register will modify at least one other register and may modify as many as three other regis-
ters. For example, modification of the EAX register may very well modify the AL, AH, and AX registers as
well. This fact cannot be overemphasized here. A very common mistake in programs written by beginning

CX

CH CL

ECX

DX

DH DL

EDX

AX

AL

EAX ESI

EDI

EBP

ESP

SI

BX

BH BL

EBX

DI

BP

SP

AH
Page 16 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

assembly language programmers is register value corruption because the programmer did not fully under-
stand the ramifications of the above diagram.

The EFLAGS register is a 32-bit register that encapsulates several single-bit boolean (true/false) values.
Most of the bits in the EFLAGs register are either reserved for kernel mode (operating system) functions, or
are of little interest to the application programmer. Eight of these bits (or flags) are of interest to application
programmers writing assembly language programs. These are the overflow, direction, interrupt disable4,
sign, zero, auxiliary carry, parity, and carry flags. The following diagram shows their layout within the lower
16-bits of the EFLAGS register.

Figure 2.6 Layout of the FLAGS Register (Lower 16 bits of EFLAGS)

Of the eight flags that are usable by application programmers, four flags in particular are extremely
valuable: the overflow, carry, sign, and zero flags. Collectively, we will call these four flags the condition
codes5. The state of these flags (boolean variables) will let you test the results of previous computations and
allow you to make decisions in your programs. For example, after comparing two values, the state of the
condition code flags will tell you if one value is less than, equal to, or greater than a second value. The 80x86
CPUs provide special machine instructions that let you test the flags, alone or in various combinations.

The last register of interest is the EIP (instruction pointer) register. This 32-bit register contains the
memory address of the next machine instruction to execute. Although you will manipulate this register
directly in your programs, the instructions that modify its value treat this register as an implicit operand.
Therefore, you will not need to remember much about this register since the 80x86 instruction set effectively
hides it from you.

One important fact that comes as a surprise to those just learning assembly language is that almost all
calculations on the 80x86 CPU must involve a register. For example, to add two (memory) variables
together, storing the sum into a third location, you must load one of the memory operands into a register, add
the second operand to the value in the register, and then store the register away in the destination memory
location. Registers are a middleman in nearly every calculation. Therefore, registers are very important in
80x86 assembly language programs.

Another thing you should be aware of is that although the general purpose registers have the name “gen-
eral purpose” you should not infer that you can use any register for any purpose. The SP/ESP register for
example, has a very special purpose (it’s the stack pointer) that effectively prevents you from using it for any
other purpose. Likewise, the BP/EBP register has a special purpose that limits its usefulness as a general

4. Applications programs cannot modify the interrupt flag, but we’ll look at this flag in the next volume of this series, hence
the discussion of this flag here.
5. Technically the parity flag is also a condition code, but we will not use that flag in this text.

Overflow
Direction
nterrupt

Sign
Zero

Auxiliary Carry

Parity

Carry

Not very
interesting to
application
programmers

15 0
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 17

Chapter Two Volume 1

purpose register. All the 80x86 registers have their own special purposes that limit their use in certain con-
texts. For the time being, you should simply avoid the use of the ESP and EBP registers for generic calcula-
tions and keep in mind that the remaining registers are not completely interchangeable in your programs.

2.6 Some Basic Machine Instructions

The 80x86 CPUs provide just over a hundred to many thousands of different machine instructions,
depending on how you define a machine instruction. Even at the low end of the count (greater than 100), it
appears as though there are far too many machine instructions to learn in a short period of time. Fortunately,
you don’t need to know all the machine instructions. In fact, most assembly language programs probably use
around 30 different machine instructions6. Indeed, you can certainly write several meaningful programs with
only a small handful of machine instructions. The purpose of this section is to provide a small handful of
machine instructions so you can start writing simple HLA assembly language programs right away.

Without question, the MOV instruction is the most often-used assembly language statement. In a typical
program, anywhere from 25-40% of the instructions are typically MOV instructions. As its name suggests,
this instruction moves data from one location to another7. The HLA syntax for this instruction is

mov(source_operand, destination_operand);

The source_operand can be a register, a memory variable, or a constant. The destination_operand may
be a register or a memory variable. Technically the 80x86 instruction set does not allow both operands to be
memory variables; HLA, however, will automatically translate a MOV instruction with two 16- or 32-bit
memory operands into a pair of instructions that will copy the data from one location to another. In a high
level language like Pascal or C/C++, the MOV instruction is roughly equivalent to the following assignment
statement:

destination_operand = source_operand ;

Perhaps the major restriction on the MOV instruction’s operands is that they must both be the same size.
That is, you can move data between two eight-bit objects, between two 16-bit objects, or between two 32-bit
objects; you may not, however, mix the sizes of the operands. The following table lists all the legal combina-
tions:

6. Different programs may use a different set of 30 instructions, but few programs use more than 30 distinct instructions.
7. Technically, MOV actually copies data from one location to another. It does not destroy the original data in the source
operand. Perhaps a better name for this instruction should have been COPY. Alas, it’s too late to change it now.

Table 1: Legal 80x86 MOV Instruction Operands

Source Destination

Reg8
a Reg8

Reg8 Mem8

Mem8 Reg8

constantb Reg8

constant Mem8

Reg16 Reg16

Reg16 Mem16
Page 18 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
You should study this table carefully. Most of the general purpose 80x86 instructions use this same syn-
tax. Note that in addition to the forms above, the HLA MOV instruction lets you specify two memory oper-
ands as the source and destination. However, this special translation that HLA provides only applies to the
MOV instruction; it does not generalize to the other instructions.

The 80x86 ADD and SUB instructions let you add and subtract two operands. Their syntax is nearly
identical to the MOV instruction:

add(source_operand, destination_operand);

sub(source_operand, destination_operand);

The ADD and SUB operands must take the same form as the MOV instruction, listed in the table above8.
The ADD instruction does the following:

destination_operand = destination_operand + source_operand ;

destination_operand += source_operand; // For those who prefer C syntax

Similarly, the SUB instruction does the calculation:

destination_operand = destination_operand - source_operand ;

destination_operand -= source_operand ; // For C fans.

With nothing more than these three instructions, plus the HLA control structures that the next section dis-
cusses, you can actually write some sophisticated programs. Here’s a sample HLA program that demon-
strates these three instructions:

program DemoMOVaddSUB;

#include(“stdlib.hhf”);

static
i8: int8:= -8;
i16:int16:= -16;

Mem16 Reg16

constant Reg16

constant Mem16

Reg32 Reg32

Reg32 Mem32

Mem32 Reg32

constant Reg32

constant Mem32

a. The suffix denotes the size of the register or memory location.
b. The constant must be small enough to fit in the specified destination
operand

8. Remember, though, that ADD and SUB do not support memory-to-memory operations.

Table 1: Legal 80x86 MOV Instruction Operands
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 19

Chapter Two Volume 1
i32:int32:= -32;

begin DemoMOVaddSUB;

// First, print the initial values
// of our variables.

stdout.put
(

nl,
“Initialized values: i8=”, i8,
“, i16=”, i16,
“, i32=”, i32,
nl

);

// Compute the absolute value of the
// three different variables and
// print the result.
// Note, since all the numbers are
// negative, we have to negate them.
// Using only the MOV, ADD, and SUB
// instruction, we can negate a value
// by subtracting it from zero.

mov(0, al);// Compute i8 := -i8;
sub(i8, al);
mov(al, i8);

mov(0, ax);// Compute i16 := -i16;
sub(i16, ax);
mov(ax, i16);

mov(0, eax);// Compute i32 := -i32;
sub(i32, eax);
mov(eax, i32);

// Display the absolute values:

stdout.put
(

nl,
“After negation: i8=”, i8,
“, i16=”, i16,
“, i32=”, i32,
nl

);

// Demonstrate ADD and constant-to-memory
// operations:

add(32323200, i32);
stdout.put(nl, “After ADD: i32=”, i32, nl);

end DemoMOVaddSUB;

Program 2.3 Demonstration of MOV, ADD, and SUB Instructions
Page 20 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
2.7 Some Basic HLA Control Structures

The MOV, ADD, and SUB instructions, while valuable, aren’t sufficient to let you write meaningful pro-
grams. You will need to complement these instructions with the ability to make decisions and create loops in
your HLA programs before you can write anything other than a trivial program. HLA provides several high
level control structures that are very similar to control structures found in high level languages. These
include IF..THEN..ELSEIF..ELSE..ENDIF, WHILE..ENDWHILE, REPEAT..UNTIL, and so on. By learn-
ing these statements you will be armed and ready to write some real programs.

Before discussing these high level control structures, it’s important to point out that these are not real
80x86 assembly language statements. HLA compiles these statements into a sequence of one or more real
assembly language statements for you. Later in this text, you’ll learn how HLA compiles the statements and
you’ll learn how to write pure assembly language code that doesn’t use them. However, you’ll need to learn
many new concepts before you get to that point, so we’ll stick with these high level language statements for
now since you’re probably already familiar with statements like these from your exposure to high level lan-
guages.

Another important fact to mention is that HLA’s high level control structures are not as high level as
they first appear. The purpose behind HLA’s high level control structures is to let you start writing assembly
language programs as quickly as possible, not to let you avoid the use of real assembly language altogether.
You will soon discover that these statements have some severe restrictions associated with them and you will
quickly outgrow their capabilities (at least the restricted forms appearing in this section). This is intentional.
Once you reach a certain level of comfort with HLA’s high level control structures and decide you need more
power than they have to offer, it’s time to move on and learn the real 80x86 instructions behind these state-
ments.

2.7.1 Boolean Expressions in HLA Statements

Several HLA statements require a boolean (true or false) expression to control their execution. Exam-
ples include the IF, WHILE, and REPEAT..UNTIL statements. The syntax for these boolean expressions
represents the greatest limitation to the HLA high level control structures. This is one area where your famil-
iarity with a high level language will work against you – you’ll want to use the same boolean expressions
you use in a high level language and HLA only supports some basic forms.

HLA boolean expressions always take the following forms9:

flag_specification

!flag_specification

register

!register

Boolean_variable

!Boolean_variable

mem_reg relop mem_reg_const

register in LowConst..HiConst

register not in LowConst..HiConst

A flag specification is one of the following symbols:

• @c carry: True if the carry is set (1), false if the carry is clear (0).
• @nc no carry: True if the carry is clear (0), false if the carry is set (1).
• @z zero: True if the zero flag is set, false if it is clear.

9. Technically, there are a few more, advanced, forms, but you’ll have to wait a few chapters before seeing these additional
formats.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 21

Chapter Two Volume 1
• @nz not zero: True if the zero flag is clear, false if it is set.
• @o overflow: True if the overflow flag is set, false if it is clear.
• @no no overflow: True if the overflow flag is clear, false if it is set.
• @s sign: True if the sign flag is set, false if it is clear.
• @ns no sign: True if the sign flag is clear, false if it is set.

The use of the flag values in a boolean expression is somewhat advanced. You will begin to see how to use
these boolean expression operands in the next chapter.

A register operand can be any of the 8-bit, 16-bit, or 32-bit general purpose registers. The expression
evaluates false if the register contains a zero; it evaluates true if the register contains a non-zero value.

If you specify a boolean variable as the expression, the program tests it for zero (false) or non-zero
(true). Since HLA uses the values zero and one to represent false and true, respectively, the test works in an
intuitive fashion. Note that HLA requires that stand-alone variables be of type boolean. HLA rejects other
data types. If you want to test some other type against zero/not zero, then use the general boolean expression
discussed next.

The most general form of an HLA boolean expression has two operands and a relational operator. The
following table lists the legal combinations:

Note that both operands cannot be memory operands. In fact, if you think of the Right Operand as the
source operand and the Left Operand as the destination operand, then the two operands must be the same as
those allowed for the ADD and SUB instructions.

Also like the ADD and SUB instructions, the two operands must be the same size. That is, they must
both be eight-bit operands, they must both be 16-bit operands, or they must both be 32-bit operands. If the
Right Operand is a constant, it’s value must be in the range that is compatible with the Left Operand.

There is one other issue of which you need to be aware. If the Left Operand is a register and the Right
Operand is a positive constant or another register, HLA uses an unsigned comparison. The next chapter will
discuss the ramifications of this; for the time being, do not compare negative values in a register against a
constant or another register. You may not get an intuitive result.

The IN and NOT IN operators let you test a register to see if it is within a specified range. For example,
the expression “EAX in 2000..2099” evaluates true if the value in the EAX register is between 2000 and
2099 (inclusive). The NOT IN (two words) operator lets you check to see if the value in a register is outside
the specified range. For example, “AL not in ‘a’..’z’” evaluates true if the character in the AL register is not
a lower case alphabetic character.

Here are some examples of legal boolean expressions in HLA:

Table 2: Legal Boolean Expressions

Left
Operand

Relational
Operator

Right Operand

Memory Variable

or

Register

= or ==
Memory Variable,

Register,

or

Constant

<> or !=

<

<=

>

>=
Page 22 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
@c

Bool_var

al

ESI

EAX < EBX

EBX > 5

i32 < -2

i8 > 128

al < i8

eax in 1..100

ch not in ‘a’..’z’

2.7.2 The HLA IF..THEN..ELSEIF..ELSE..ENDIF Statement

The HLA IF statement uses the following syntax:

Figure 2.7 HLA IF Statement Syntax

The expressions appearing in this statement must take one of the forms from the previous section. If the
associated expression is true, the code after the THEN executes, otherwise control transfers to the next
ELSEIF or ELSE clause in the statement.

Since the ELSEIF and ELSE clauses are optional, an IF statement could take the form of a single
IF..THEN clause, followed by a sequence of statements, and a closing ENDIF clause. The following is an
example of just such a statement:

if(expression) then

sequence
of one or
more statements

elseif(expression) then

sequence
of one or
more statements

else

sequence
of one or
more statements

endif;

The elseif clause is optional. Zero or more elseif
clauses may appear in an if statement. If more
than one elseif clause appears, all the elseif
clauses must appear before the else clause
(or before the endif if there is no else clause).

The else clause is optional. At most one
else clause may appear within an if statement
and it must be the last clause before the
endif.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 23

Chapter Two Volume 1
if(eax = 0) then

stdout.put(“error: NULL value”, nl);

endif;

If, during program execution, the expression evaluates true, then the code between the THEN and the
ENDIF executes. If the expression evaluates false, then the program skips over the code between the THEN
and the ENDIF.

Another common form of the IF statement has a single ELSE clause. The following is an example of an
IF statement with an optional ELSE:

if(eax = 0) then

stdout.put(“error: NULL pointer encountered”, nl);

else

stdout.put(“Pointer is valid”, nl);

endif;

If the expression evaluates true, the code between the THEN and the ELSE executes; otherwise the code
between the ELSE and the ENDIF clauses executes.

You can create sophisticated decision-making logic by incorporating the ELSEIF clause into an IF state-
ment. For example, if the CH register contains a character value, you can select from a menu of items using
code like the following:

if(ch = ‘a’) then

stdout.put(“You selected the ‘a’ menu item”, nl);

elseif(ch = ‘b’) then

stdout.put(“You selected the ‘b’ menu item”, nl);

elseif(ch = ‘c’) then

stdout.put(“You selected the ‘c’ menu item”, nl);

else

stdout.put(“Error: illegal menu item selection”, nl);

endif;

Although this simple example doesn’t demonstrate it, HLA does not require an ELSE clause at the end
of a sequence of ELSEIF clauses. However, when making multi-way decisions, it’s always a good idea to
provide an ELSE clause just in case an error arises. Even if you think it’s impossible for the ELSE clause to
execute, just keep in mind that future modifications to the code could possibly void this assertion, so it’s a
good idea to have error reporting statements built into your code.

2.7.3 The WHILE..ENDWHILE Statement

The WHILE statement uses the following basic syntax:
Page 24 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
Figure 2.8 HLA While Statement Syntax

This statement evaluates the boolean expression. If it is false, control immediately transfers to the first
statement following the ENDWHILE clause. If the value of the expression is true, then control falls through
to the body of the loop. After the loop body executes, control transfers back to the top of the loop where the
WHILE statement retests the loop control expression. This process repeats until the expression evaluates
false.

Note that the WHILE loop, like its high level language siblings, tests for loop termination at the top of
the loop. Therefore, it is quite possible that the statements in the body of the loop will not execute (if the
expression is false when the code first executes the WHILE statement). Also note that the body of the
WHILE loop must, at some point, modify the value of the boolean expression or an infinite loop will result.

mov(0, i);
while(i < 10) do

stdout.put(“i=”, i, nl);
add(1, i);

endwhile;

2.7.4 The FOR..ENDFOR Statement

The HLA FOR loop takes the following general form:

for(Initial_Stmt; Termination_Expression; Post_Body_Statement) do

<< Loop Body >>

endfor;

This is equivalent to the following WHILE statement:

Initial_Stmt;
while(Termination_expression) do

<< loop_body >>

Post_Body_Statement;

endwhile;

Initial_Stmt can be any single HLA/80x86 instruction. Generally this statement initializes a register or
memory location (the loop counter) with zero or some other initial value. Termination_expression is an

while(expression) do

sequence
of one or
more statements

endwhile;

The expression in the WHILE
statement has the same
restrictions as the IF statement.

Loop Body
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 25

Chapter Two Volume 1
HLA boolean expression (same format that WHILE allows). This expression determines whether the loop
body will execute. The Post_Body_Statement executes at the bottom of the loop (as shown in the WHILE
example above). This is a single HLA statement. Usually it is an instruction like ADD that modifies the
value of the loop control variable.

The following gives a complete example:

for(mov(0, i); i < 10; add(1, i)) do

stdout.put(“i=”, i, nl);

endfor;

// The above, rewritten as a while loop, becomes:

mov(0, i);
while(i < 10) do

stdout.put(“i=”, i, nl);

add(1, i);

endwhile;

2.7.5 The REPEAT..UNTIL Statement

The HLA repeat..until statement uses the following syntax:

Figure 2.9 HLA Repeat..Until Statement Syntax

The HLA REPEAT..UNTIL statement tests for loop termination at the bottom of the loop. Therefore,
the statements in the loop body always execute at least once. Upon encountering the UNTIL clause, the pro-
gram will evaluate the expression and repeat the loop if the expression is false (that is, it repeats while false).
If the expression evaluates true, the control transfers to the first statement following the UNTIL clause.

The following simple example demonstrates one use for the REPEAT..UNTIL statement:

mov(10, ecx);
repeat

stdout.put(“ecx = “, ecx, nl);
sub(1, ecx);

until(ecx = 0);

repeat

sequence
of one or
more statements

until(expression);

The expression in the UNTIL
clause has the same
restrictions as the IF statement.

Loop Body
Page 26 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
If the loop body will always execute at least once, then it is more efficient to use a REPEAT..UNTIL
loop rather than a WHILE loop.

2.7.6 The BREAK and BREAKIF Statements

The BREAK and BREAKIF statements provide the ability to prematurely exit from a loop. They use the
following syntax:

Figure 2.10 HLA Break and Breakif Syntax

The BREAK statement exits the loop that immediately contains the break; The BREAKIF statement
evaluates the boolean expression and terminates the containing loop if the expression evaluates true.

2.7.7 The FOREVER..ENDFOR Statement

The FOREVER statement uses the following syntax:

Figure 2.11 HLA Forever Loop Syntax

This statement creates an infinite loop. You may also use the BREAK and BREAKIF statements along
with FOREVER..ENDFOR to create a loop that tests for loop termination in the middle of the loop. Indeed,
this is probably the most common use of this loop as the following example demonstrates:

forever

stdout.put(“Enter an integer less than 10: “);
stdin.get(i);
breakif(i < 10);
stdout.put(“The value needs to be less than 10!”, nl);

endfor;

break;

The expression in the BREAKIF
statement has the same
restrictions as the IF statement.

breakif(expression);

forever

sequence
of one or
more statements

endfor;

Loop Body
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 27

Chapter Two Volume 1
2.7.8 The TRY..EXCEPTION..ENDTRY Statement

The HLA TRY..EXCEPTION..ENDTRY statement provides very powerful exception handling capabil-
ities. The syntax for this statement is the following:

Figure 2.12 HLA Try..Except..Endtry Statement Syntax

The TRY..ENDTRY statement protects a block of statements during execution. If these statements,
between the TRY clause and the first EXCEPTION clause, execute without incident, control transfers to the
first statement after the ENDTRY immediately after executing the last statement in the protected block. If an
error (exception) occurs, then the program interrupts control at the point of the exception (that is, the pro-
gram raises an exception). Each exception has an unsigned integer constant associated with it, known as the
exception ID. The “excepts.hhf” header file in the HLA Standard Library predefines several exception IDs,
although you may create new ones for your own purposes. When an exception occurs, the system compares
the exception ID against the values appearing in each of the one or more EXCEPTION clauses following the
protected code. If the current exception ID matches one of the EXCEPTION values, control continues with
the block of statements immediately following that EXCEPTION. After the exception handling code com-
pletes execution, control transfers to the first statement following the ENDTRY.

If an exception occurs and there is no active TRY..ENDTRY statement, or the active TRY..ENDTRY
statements do not handle the specific exception, the program will abort with an error message.

The following sample program demonstrates how to use the TRY..ENDTRY statement to protect the
program from bad user input:

try

sequence
of one or
more statements

exception(exceptionID)

sequence
of one or
more statements

exception(exceptionID)

sequence
of one or
more statements

endtry;

Statements to test

At least one
exception handling
block.

Zero or more (optional)
exception handling
blocks.
Page 28 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
repeat

mov(false, GoodInteger); // Note: GoodInteger must be a boolean var.
try

stdout.put(“Enter an integer: “);
stdin.get(i);
mov(true, GoodInteger);

exception(ex.ConversionError);

stdout.put(“Illegal numeric value, please re-enter”, nl);

exception(ex.ValueOutOfRange);

stdout.put(“Value is out of range, please re-enter”, nl);

endtry;

until(GoodInteger);

The REPEAT..UNTIL loop repeats this code as long as there is an error during input. Should an excep-
tion occur, control transfers to the EXCEPTION clauses to see if a conversion error (e.g., illegal characters
in the number) or a numeric overflow occurs. If either of these exceptions occur, then they print the appropri-
ate message and control falls out of the TRY..ENDTRY statement and the REPEAT..UNTIL loop repeats
since GoodInteger was never set to true. If a different exception occurs (one that is not handled in this code),
then the program aborts with the specified error message.

Please see the “excepts.hhf” header file that accompanies the HLA release for a complete list of all the
exception ID codes. The HLA documentation will describe the purpose of each of these exception codes.

2.8 Introduction to the HLA Standard Library

There are two reasons HLA is much easier to learn and use than standard assembly language. The first
reason is HLA’s high level syntax for declarations and control structures. This HLA feature leverages your
high level language knowledge, reducing the need to learn arcane syntax, thus allowing you to learn assem-
bly language more efficiently. The other half of the equation is the HLA Standard Library. The HLA Stan-
dard Library provides lot of commonly needed, easy to use, assembly language routines that you can call
without having to write this code yourself (or even learn how to write yourself). This eliminates one of the
larger stumbling blocks many people have when learning assembly language: the need for sophisticated I/O
and support code in order to write basic statements. Prior to the advent of a standardized assembly language
library, it often took weeks of study before a new assembly language programmer could do as much as print
a string to the display. With the HLA Standard Library, this roadblock is removed and you can concentrate
on learning assembly language concepts rather than learning low-level I/O details that are specific to a given
operating system.

A wide variety of library routines is only part of HLA’s support. After all, assembly language libraries
have been around for quite some time10. HLA’s Standard Library continues the HLA tradition by providing
a high level language interface to these routines. Indeed, the HLA language itself was originally designed
specifically to allow the creation of a high-level accessible set of library routines11. This high level interface,
combined with the high level nature of many of the routines in the library, packs a surprising amount of
power in an easy to use package.

The HLA Standard Library consists of several modules organized by category. The following table lists
many of the modules that are available12:

10. E.g., the UCR Standard Library for 80x86 Assembly Language Programmers.
11. HLA was created because MASM was insufficient to support the creation of the UCR StdLib v2.0.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 29

Chapter Two Volume 1
Later sections of this text will explain many of these modules in greater detail. This section will concen-
trate on the most important routines (at least to beginning HLA programmers), the stdio library.

2.8.1 Predefined Constants in the STDIO Module

Perhaps the first place to start is with a description of some common constants that the STDIO module
defines for you. One constant you’ve seen already in code examples appearing in this chapter. Consider the
following (typical) example:

stdout.put(“Hello World”, nl);

12. Since the HLA Standard Library is expanding, this list is probably out of date. Please see the HLA documentation for a
current list of Standard Library modules.

Table 3: HLA Standard Library Modules

Name Description

args Command line parameter parsing support routines.

conv Various conversions between strings and other values.

cset Character set functions.

DateTime Calendar, date, and time functions.

excepts Exception handling routines.

fileio File input and output routines

hla Special HLA constants and other values.

math Transcendental and other mathematical functions.

memory Memory allocation, deallocation, and support code.

misctypes Miscellaneous data types.

patterns The HLA pattern matching library.

rand Pseudo-random number generators and support code.

stdin User input routines

stdout Provides user output and several other support routines.

stdlib A special include file that links in all HLA standard library modules.

strings HLA’s powerful string library.

tables Table (associative array) support routines.

win32 Constants used in Windows calls (HLA Win32 version, only)

x86 Constants and other items specific to the 80x86 CPU.
Page 30 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
The nl appearing at the end of this statement stands for newline. The nl identifier is not a special HLA
reserved word, nor is it specific to the stdout.put statement. Instead, it’s simply a predefined constant that
corresponds to the string containing two characters, a carriage return followed by a line feed (the standard
Windows end of line sequence).

In addition to the nl constant, the HLA standard I/O library module defines several other useful charac-
ter constants. They are

• stdio.bell The ASCII bell character. Beeps the speaker when printed.
• stdio.bs The ASCII backspace character.
• stdio.tab The ASCII tab character.
• stdio.eoln A linefeed character.
• stdio.lf The ASCII linefeed character.
• stdio.cr The ASCII carriage return character.

Except for nl, these characters appear in the stdio namespace (and, therefore, require the “stdio.” prefix).
The placement of these ASCII constants within the stdio namespace is to help avoid naming conflicts with
your own variables. The nl name does not appear within a namespace because you will use it very often and
typing stdio.nl would get tiresome very quickly.

2.8.2 Standard In and Standard Out

Many of the HLA I/O routines have a stdin or stdout prefix. Technically, this means that the standard
library defines these names in a namespace13. In practice, this prefix suggests where the input is coming
from (the Windows’ standard input device) or going to (the Windows’ standard output device). By default,
the standard input device is the system keyboard. Likewise, the default standard output device is the com-
mand window display. So, in general, statements that have stdin or stdout prefixes will read and write data
on the console device.

When you run a program from the command line window, you have the option of redirecting the stan-
dard input and/or standard output devices. A command line parameter of the form “>outfile” redirects the
standard output device to the specified file (outfile). A command line parameter of the form “<infile” redi-
rects the standard input so that its data comes from the specified input file (infile). The following examples
demonstrate how to use these parameters when running a program named “testpgm” in the command win-
dow:

testpgm <input.data
testpgm >output.txt

testpgm <in.txt >output.txt

2.8.3 The stdout.newln Routine

The stdout.newln procedure prints a newline sequence to the standard output device. This is functionally
equivalent to saying “stdout.put(nl);” Of course, the call to stdout.newln is sometimes a little more conve-
nient. Example of call:

stdout.newln();

2.8.4 The stdout.putiX Routines

The stdout.puti8, stdout.puti16, and stdout.puti32 library routines print a single parameter (one byte,
two bytes, or four bytes, respectively) as a signed integer value. The parameter may be a constant, a register,

13. Namespaces will be the subject of a later chapter.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 31

Chapter Two Volume 1
or a memory variable, as long as the size of the actual parameter is the same as the size of the formal param-
eter.

These routines print the value of their specified parameter to the standard output device. These routines
will print the value using the minimum number of print positions possible. If the number is negative, these
routines will print a leading minus sign. Here are some examples of calls to these routines:

stdout.puti8(123);
stdout.puti16(DX);

stdout.puti32(i32Var);

2.8.5 The stdout.putiXSize Routines

The stdout.puti8Size, stdout.puti16Size, and stdout.puti32Size routines output signed integer values to
the standard output, just like the stdout.putiX routines. These routines, however, provide more control over
the output; they let you specify the (minimum) number of print positions the value will require on output.
These routines also let you specify a padding character should the print field be larger than the minimum
needed to display the value. These routines require the following parameters:

stdout.puti8Size(Value8, width, padchar);
stdout.puti16Size(Value16,width, padchar);
stdout.puti32Size(Value32, width, padchar);

The ValueX parameter can be a constant, a register, or a memory location of the specified size. The width
parameter can be any signed integer constant that is between -256 and +256; this parameter may be a con-
stant, register (32-bit), or memory location (32-bit). The padchar parameter should be a single character
value (in HLA, a character constant is a single character surrounding by apostrophes).

Like the stdout.putiX routines, these routines print the specified value as a signed integer constant to the
standard output device. These routines, however, let you specified the field width for the value. The field
width is the minimum number of print positions these routines will use when printing the value. The width
parameter specifies the minimum field width. If the number would require more print positions (e.g., if you
attempt to print “1234” with a field width of two), then these routines will print however many characters are
necessary to properly display the value. On the other hand, if the width parameter is greater than the number
of character positions required to display the value, then these routines will print some extra padding charac-
ters to ensure that the output has at least width character positions. If the width value is negative, the number
is left justified in the print field; if the width value is positive, the number is right justified in the print field.

If the absolute value of the width parameter is greater than the minimum number of print positions, then
these stdout.putiXSize routines will print a padding character before or after the number. The padchar
parameter specifies which character these routines will print. Most of the time you would specify a space as
the pad character; for special cases, you might specify some other character. Remember, the padchar param-
eter is a character value; in HLA character constants are surrounded by apostrophes, not quotation marks.
You may also specify an eight-bit register as this parameter.

Here is a short HLA program that demonstrates the use of the puti32Size routine to display a list of val-
ues in tabular form:

program NumsInColumns;

#include(“stdlib.hhf”);

var
i32: int32;
ColCnt:int8;

begin NumsInColumns;
Page 32 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
mov(96, i32);
mov(0, ColCnt);
while(i32 > 0) do

if(ColCnt = 8) then

stdout.newln();
mov(0, ColCnt);

endif;
stdout.puti32Size(i32, 5, ‘ ‘);
sub(1, i32);
add(1, ColCnt);

endwhile;
stdout.newln();

end NumsInColumns;

Program 2.4 Columnar Output Demonstration Using stdio.Puti32Size

2.8.6 The stdout.put Routine

The stdout.put routine14 is the one of the most flexible output routines in the standard output library
module. It combines most of the other output routines into a single, easy to use, procedure.

The generic form for the stdout.put routine is the following:

stdout.put(list_of_values_to_output);

The stdout.put parameter list consists of one or more constants, registers, or memory variables, each
separated by a comma. This routine displays the value associated with each parameter appearing in the list.
Since we’ve already been using this routine throughout this chapter, you’ve already seen lots of examples of
this routine’s basic form. It is worth pointing out that this routine has several additional features not apparent
in the examples appearing in this chapter. In particular, each parameter can take one of the following two
forms:

value

value:width

The value may be any legal constant, register, or memory variable object. In this chapter, you’ve seen
string constants and memory variables appearing in the stdout.put parameter list. These parameters corre-
spond to the first form above. The second parameter form above lets you specify a minimum field width,
similar to the stdout.putiXSize routines15. The following sample program produces the same output as the
previous program; however, it uses stdout.put rather than stdout.puti32Size:

program NumsInColumns2;

#include(“stdlib.hhf”);

14. Stdout.put is actually a macro, not a procedure. The distinction between the two is beyond the scope of this chapter. How-
ever, this text will describe their differences a little later.
15. Note that you cannot specify a padding character when using the stdout.put routine; the padding character defaults to the
space character. If you need to use a different padding character, call the stdout.putiXSize routines.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 33

Chapter Two Volume 1
var
 i32: int32;
 ColCnt: int8;

begin NumsInColumns2;

 mov(96, i32);
 mov(0, ColCnt);
 while(i32 > 0) do

 if(ColCnt = 8) then

 stdout.newln();
 mov(0, ColCnt);

 endif;
 stdout.put(i32:5);
 sub(1, i32);
 add(1, ColCnt);

 endwhile;
 stdout.put(nl);

end NumsInColumns2;

Program 2.5 Demonstration of stdout.put Field Width Specification

The stdout.put routine is capable of much more than the few attributes this section describes. This text
will introduce those additional capabilities as appropriate.

2.8.7 The stdin.getc Routine.

The stdin.getc routine reads the next available character from the standard input device’s input buffer16.
It returns this character in the CPU’s AL register. The following example program demonstrates a simple use
of this routine:

program charInput;

#include(“stdlib.hhf”);

var
 counter: int32;

begin charInput;

// The following repeats as long as the user
// confirms the repetition.

repeat

// Print out 14 values.

mov(14, counter);

16. “Buffer” is just a fancy term for an array.
Page 34 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
while(counter > 0) do

stdout.put(counter:3);
sub(1, counter);

endwhile;

// Wait until the user enters ‘y’ or ‘n’.

stdout.put(nl, nl, “Do you wish to see it again? (Y/N):”);
forever

stdin.readLn();
stdin.getc();
breakif(al = ‘n’);
breakif(al = ‘y’);
stdout.put(“Error, please enter only ‘y’ or ‘n’: “);

endfor;
stdout.newln();

until(al = ‘n’);

end charInput;

Program 2.6 Demonstration of the stdin.getc() Routine

This program uses the stdin.ReadLn routine to force a new line of input from the user. A description of
stdin.ReadLn appears just a little later in this chapter.

2.8.8 The stdin.getiX Routines

The stdin.geti8, stdin.geti16, and stdin.geti32 routines read eight, 16, and 32-bit signed integer values
from the standard input device. These routines return their values in the AL, AX, or EAX register, respec-
tively. They provide the standard mechanism for reading signed integer values from the user in HLA.

Like the stdin.getc routine, these routines read a sequence of characters from the standard input buffer.
They begin by skipping over any white space characters (spaces, tabs, etc.) and then convert the following
stream of decimal digits (with an optional, leading, minus sign) into the corresponding integer. These rou-
tines raise an exception (that you can trap with the TRY..ENDTRY statement) if the input sequence is not a
valid integer string or if the user input is too large to fit in the specified integer size. Note that values read by
stdin.geti8 must be in the range -128..+127; values read by stdin.geti16 must be in the range
-32,768..+32,767; and values read by stdin.geti32 must be in the range -2,147,483,648..+2,147,483,647.

The following sample program demonstrates the use of these routines:

program intInput;

#include(“stdlib.hhf”);

var
 i8:int8;

i16:int16;
i32:int32;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 35

Chapter Two Volume 1
begin intInput;

// Read integers of varying sizes from the user:

stdout.put(“Enter a small integer between -128 and +127: “);
stdin.geti8();
mov(al, i8);

stdout.put(“Enter a small integer between -32768 and +32767: “);
stdin.geti16();
mov(ax, i16);

stdout.put(“Enter an integer between +/- 2 billion: “);
stdin.geti32();
mov(eax, i32);

// Display the input values.

stdout.put
(

nl,
“Here are the numbers you entered:”, nl, nl,
“Eight-bit integer: “, i8:12, nl,
“16-bit integer: “, i16:12, nl,
“32-bit integer: “, i32:12, nl

);

end intInput;

Program 2.7 stdin.getiX Example Code

You should compile and run this program and test what happens when you enter a value that is out of
range or enter an illegal string of characters.

2.8.9 The stdin.readLn and stdin.flushInput Routines

Whenever you call an input routine like stdin.getc or stdin.geti32, the program does not necessarily read
the value from the user at that particular call. Instead, the HLA Standard Library buffers the input by reading
a whole line of text from the user. Calls to input routines will fetch data from this input buffer until the
buffer is empty. While this buffering scheme is efficient and convenient, sometimes it can be confusing. Con-
sider the following code sequence:

stdout.put("Enter a small integer between -128 and +127: ");
stdin.geti8();
mov(al, i8);

stdout.put("Enter a small integer between -32768 and +32767: ");
stdin.geti16();
mov(ax, i16);

Intuitively, you would expect the program to print the first prompt message, wait for user input, print the
second prompt message, and wait for the second user input. However, this isn’t exactly what happens. For
example if you run this code (from the sample program in the previous section) and enter the text “123 456”
in response to the first prompt, the program will not stop for additional user input at the second prompt.
Page 36 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
Instead, it will read the second integer (456) from the input buffer read during the execution of the
stdin.geti8 call.

In general, the stdin routines only read text from the user when the input buffer is empty. As long as the
input buffer contains additional characters, the input routines will attempt to read their data from the buffer.
You may take advantage of this behavior by writing code sequences such as the following:

stdout.put(“Enter two integer values: “);
stdin.geti32();
mov(eax, intval);
stdin.geti32();
mov(eax, AnotherIntVal);

This sequence allows the user to enter both values on the same line (separated by one or more white space
characters) thus preserving space on the screen. So the input buffer behavior is desirable every now and then.

Unfortunately, the buffered behavior of the input routines is definitely counter-intuitive at other times.
Fortunately, the HLA Standard Library provides two routines, stdin.readLn and stdin.flushInput, that let you
control the standard input buffer. The stdin.readLn routine discards everything that is in the input buffer and
immediately requires the user to enter a new line of text. The stdin.flushInput routine simply discards every-
thing that is in the buffer. The next time an input routine executes, the system will require a new line of input
from the user. You would typically call stdin.readLn immediately before some standard input routine; you
would normally call stdin.flushInput immediately after a call to a standard input routine.

Note: If you are calling stdin.readLn and you find that you are having to input your data twice, this is a
good indication that you should be calling stdin.flushInput rather than stdin.readLn. In general, you should
always be able to call stdin.flushInput to flush the input buffer and read a new line of data on the next input
call. The stdin.readLn routine is rarely necessary, so you should use stdin.flushInput unless you really need
to immediately force the input of a new line of text.

2.8.10 The stdin.get Macro

The stdin.get macro combines many of the standard input routines into a single call, in much the same
way that stdout.put combines all of the output routines into a single call. Actually, stdin.get is much easier to
use than stdout.put since the only parameters to this routine are a list of variable names.

Let’s rewrite the example given in the previous section:

stdout.put(“Enter two integer values: “);
stdin.geti32();
mov(eax, intval);
stdin.geti32();
mov(eax, AnotherIntVal);

Using the stdin.get macro, we could rewrite this code as:

stdout.put(“Enter two integer values: “);
stdin.get(intval, AnotherIntVal);

As you can see, the stdin.get routine is a little more convenient to use.

Note that stdin.get stores the input values directly into the memory variables you specify in the parame-
ter list; it does not return the values in a register unless you actually specify a register as a parameter. The
stdin.get parameters must all be variables or registers17.

17. Note that register input is always in hexadecimal or base 16. The next chapter will discuss hexadecimal numbers.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 37

Chapter Two Volume 1
2.9 Putting It All Together

This chapter has covered a lot of ground! While you’ve still got a lot to learn about assembly language
programming, this chapter, combined with your knowledge of high level languages, provides just enough
information to let you start writing real assembly language programs.

In this chapter, you’ve seen the basic format for an HLA program. You’ve seen how to declare integer,
character, and boolean variables. You have taken a look at the internal organization of the Intel 80x86 CPU
family and learned about the MOV, ADD, and SUB instructions. You’ve looked at the basic HLA high level
language control structures (IF, WHILE, REPEAT, FOR, BREAK, BREAKIF, FOREVER, and TRY) as
well as what constitutes a legal boolean expression in these statements. Finally, this chapter has introduced
several commonly-used routines in the HLA Standard Library.

You might think that knowing only three machine instructions is hardly sufficient to write meaningful
programs. However, those three instructions (mov, add, and sub), combined with the HLA high level control
structures and the HLA Standard Library routines are actually equivalent to knowing several dozen machine
instructions. Certainly enough to write simple programs. Indeed, with only a few more arithmetic instruc-
tions plus the ability to write your own procedures, you’ll be able to write almost any program. Of course,
your journey into the world of assembly language has only just begun; you’ll learn some more instructions,
and how to use them, starting in the next chapter.

2.10 Sample Programs

This section contains several little HLA programs that demonstrate some of HLA’s features appearing in
this chapter. These short examples also demonstrate that it is possible to write meaningful (if simple) pro-
grams in HLA using nothing more than the information appearing in this chapter. You may find all of the
sample programs appearing in this section in the VOLUME1\CH02 subdirectory of the software that accom-
panies this text.

2.10.1 Powers of Two Table Generation

The following sample program generates a table listing all the powers of two between 2**0 and 2**30.

// PowersOfTwo-
//
// This program generates a nicely-formatted
// “Powers of Two” table. It computes the
// various powers of two by successively
// doubling the value in the pwrOf2 variable.

program PowersOfTwo;
#include(“stdlib.hhf”);

static

pwrOf2:int32;
LoopCntr:int32;

begin PowersOfTwo;

// Print a start up banner.

stdout.put(“Powers of two: “, nl, nl);
Page 38 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
// Initialize “pwrOf2” with 2**0 (two raised to the zero power).

mov(1, pwrOf2);

// Because of the limitations of 32-bit signed integers,
// we can only display 2**0..2**30.

mov(0, LoopCntr);
while(LoopCntr < 31) do

stdout.put(“2**(“, LoopCntr:2, “) = “, pwrOf2:10, nl);

// Double the value in pwrOf2 to compute the
// next power of two.

mov(pwrOf2, eax);
add(eax, eax);
mov(eax, pwrOf2);

// Move on to the next loop iteration.

inc(LoopCntr);

endwhile;
stdout.newln();

end PowersOfTwo;

Program 2.8 Powers of Two Table Generator Program

2.10.2 Checkerboard Program

This short little program demonstrates how to generate a checkerboard pattern with HLA.

// CheckerBoard-
//
// This program demonstrates how to draw a
// checkerboard using a set of nested while
// loops.

program CheckerBoard;
#include(“stdlib.hhf”);

static

xCoord:int8;// Counts off eight squares in each row.
yCoord:int8;// Counts off four pairs of squares in each column.
ColCntr:int8;// Counts off four rows in each square.

begin CheckerBoard;

mov(0, yCoord);
while(yCoord < 4) do

// Display a row that begins with black.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 39

Chapter Two Volume 1
mov(4, ColCntr);
repeat

// Each square is a 4x4 group of
// spaces (white) or asterisks (black).
// Print out one row of asterisks/spaces
// for the current row of squares:

mov(0, xCoord);
while(xCoord < 4) do

stdout.put(“**** “);
add(1, xCoord);

endwhile;
stdout.newln();
sub(1, ColCntr);

until(ColCntr = 0);

// Display a row that begins with white.

mov(4, ColCntr);
repeat

// Print out a single row of
// spaces/asterisks for this
// row of squares:

mov(0, xCoord);
while(xCoord < 4) do

stdout.put(“ ****”);
add(1, xCoord);

endwhile;
stdout.newln();
sub(1, ColCntr);

until(ColCntr = 0);

add(1, yCoord);

endwhile;

end CheckerBoard;

Program 2.9 Checkerboard Generation Program
Page 40 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
2.10.3 Fibonocci Number Generation

The Fibonocci sequence is very important to certain algorithms in Computer Science and other fields.
The following sample program generates a sequence of Fibonocci numbers for n=1..40.

// This program generates the fibonocci
// sequence for n=1..40.
//
// The fibonocci sequence is defined recursively
// for positive integers as follows:
//
// fib(1) = 1;
// fib(2) = 1;
// fib(n) = fib(n-1) + fib(n-2).
//
// This program provides an iterative solution.

program fib;
#include(“stdlib.hhf”);

static

FibCntr:int32;
CurFib:int32;
LastFib:int32;
TwoFibsAgo:int32;

begin fib;

// Some simple initialization:

mov(1, LastFib);
mov(1, TwoFibsAgo);

// Print fib(1) and fib(2) as a special case:

stdout.put
(

“fib(1) = 1”, nl
“fib(2) = 1”, nl

);

// Use a loop to compute the remaining fib values:

mov(3, FibCntr);
while(FibCntr <= 40) do

// Get the last two computed fibonocci values
// and add them together:

mov(LastFib, ebx);
mov(TwoFibsAgo, eax);
add(ebx, eax);

// Save the result and print it:

mov(eax, CurFib);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 41

Chapter Two Volume 1
stdout.put(“fib(“,FibCntr:2, “) =”, CurFib:10, nl);

// Recycle current LastFib (in ebx) as TwoFibsAgo,
// and recycle CurFib as LastFib.

mov(eax, LastFib);
mov(ebx, TwoFibsAgo);

// Bump up our loop counter:

add(1, FibCntr);

endwhile;

end fib;

Program 2.10 Fibonocci Sequence Generator
Page 42 © 2001, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Data Representation Chapter Three

A major stumbling block many beginners encounter when attempting to learn assembly language is the
common use of the binary and hexadecimal numbering systems. Many programmers think that hexadecimal
(or hex1) numbers represent absolute proof that God never intended anyone to work in assembly language.
While it is true that hexadecimal numbers are a little different from what you may be used to, their advan-
tages outweigh their disadvantages by a large margin. Nevertheless, understanding these numbering systems
is important because their use simplifies other complex topics including boolean algebra and logic design,
signed numeric representation, character codes, and packed data.

3.1 Chapter Overview

This chapter discusses several important concepts including the binary and hexadecimal numbering sys-
tems, binary data organization (bits, nibbles, bytes, words, and double words), signed and unsigned number-
ing systems, arithmetic, logical, shift, and rotate operations on binary values, bit fields and packed data. This
is basic material and the remainder of this text depends upon your understanding of these concepts. If you
are already familiar with these terms from other courses or study, you should at least skim this material
before proceeding to the next chapter. If you are unfamiliar with this material, or only vaguely familiar with
it, you should study it carefully before proceeding. All of the material in this chapter is important! Do not
skip over any material. In addition to the basic material, this chapter also introduces some new HLA state-
ments and HLA Standard Library routines.

3.2 Numbering Systems

Most modern computer systems do not represent numeric values using the decimal system. Instead, they
typically use a binary or two’s complement numbering system. To understand the limitations of computer
arithmetic, you must understand how computers represent numbers.

3.2.1 A Review of the Decimal System

You’ve been using the decimal (base 10) numbering system for so long that you probably take it for
granted. When you see a number like “123”, you don’t think about the value 123; rather, you generate a
mental image of how many items this value represents. In reality, however, the number 123 represents:

1*102 + 2 * 101 + 3*100

or

100+20+3

In the positional numbering system, each digit appearing to the left of the decimal point represents a
value between zero and nine times an increasing power of ten. Digits appearing to the right of the decimal
point represent a value between zero and nine times an increasing negative power of ten. For example, the
value 123.456 means:

1*102 + 2*101 + 3*100 + 4*10-1 + 5*10-2 + 6*10-3

or

100 + 20 + 3 + 0.4 + 0.05 + 0.006

1. Hexadecimal is often abbreviated as hex even though, technically speaking, hex means base six, not base sixteen.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 43

Chapter Three Volume 1
3.2.2 The Binary Numbering System

Most modern computer systems (including PCs) operate using binary logic. The computer represents
values using two voltage levels (usually 0v and +2.4..5v). With two such levels we can represent exactly two
different values. These could be any two different values, but they typically represent the values zero and
one. These two values, coincidentally, correspond to the two digits used by the binary numbering system.
Since there is a correspondence between the logic levels used by the 80x86 and the two digits used in the
binary numbering system, it should come as no surprise that the PC employs the binary numbering system.

The binary numbering system works just like the decimal numbering system, with two exceptions:
binary only allows the digits 0 and 1 (rather than 0-9), and binary uses powers of two rather than powers of
ten. Therefore, it is very easy to convert a binary number to decimal. For each “1” in the binary string, add in
2n where “n” is the zero-based position of the binary digit. For example, the binary value 110010102 repre-
sents:

1*27 + 1*26 + 0*25 + 0*24 + 1*23 + 0*22 + 1*21 + 0*20

=
 128 + 64 + 8 + 2

=
20210

To convert decimal to binary is slightly more difficult. You must find those powers of two which, when
added together, produce the decimal result. One method is to work from a large power of two down to 20.
Consider the decimal value 1359:

• 210 =1024, 211=2048. So 1024 is the largest power of two less than 1359. Subtract 1024 from
1359 and begin the binary value on the left with a “1” digit. Binary = ”1”, Decimal result is
1359 - 1024 = 335.

• The next lower power of two (29 = 512) is greater than the result from above, so add a “0” to
the end of the binary string. Binary = “10”, Decimal result is still 335.

• The next lower power of two is 256 (28). Subtract this from 335 and add a “1” digit to the end
of the binary number. Binary = “101”, Decimal result is 79.

• 128 (27) is greater than 79, so tack a “0” to the end of the binary string. Binary = “1010”, Dec-
imal result remains 79.

• The next lower power of two (26 = 64) is less than79, so subtract 64 and append a “1” to the
end of the binary string. Binary = “10101”, Decimal result is 15.

• 15 is less than the next power of two (25 = 32) so simply add a “0” to the end of the binary
string. Binary = “101010”, Decimal result is still 15.

• 16 (24) is greater than the remainder so far, so append a “0” to the end of the binary string.
Binary = “1010100”, Decimal result is 15.

• 23 (eight) is less than 15, so stick another “1” digit on the end of the binary string. Binary =
“10101001”, Decimal result is 7.

• 22 is less than seven, so subtract four from seven and append another one to the binary string.
Binary = “101010011”, decimal result is 3.

• 21 is less than three, so append a one to the end of the binary string and subtract two from the
decimal value. Binary = “1010100111”, Decimal result is now 1.

• Finally, the decimal result is one, which is 20, so add a final “1” to the end of the binary string.
The final binary result is “10101001111”

If you actually have to convert a decimal number to binary by hand, the algorithm above probably isn’t
the easiest to master. A simpler solution is the “even/odd – divide by two” algorithm. This algorithm uses
the following steps:

• If the number is even, emit a zero. If the number is odd, emit a one.
• Divide the number by two and throw away any fractional component or remainder.
Page 44 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
• If the quotient is zero, the algorithm is complete.
• If the quotient is not zero and is odd, prefix the current string you’ve got with a one; if the

number is even prefix your binary string with zero (“prefix” means add the new digit to the left
of the string you’ve produced thus far).

• Go back to step two above and repeat.

Fortunately, you’ll rarely need to convert decimal numbers directly to binary strings, so neither of these
algorithms is particularly important in real life.

Binary numbers, although they have little importance in high level languages, appear everywhere in
assembly language programs (even if you don’t convert between decimal and binary). So you should be
somewhat comfortable with them.

3.2.3 Binary Formats

In the purest sense, every binary number contains an infinite number of digits (or bits which is short for
binary digits). For example, we can represent the number five by:

101 00000101 0000000000101 ... 000000000000101

Any number of leading zero bits may precede the binary number without changing its value.

We will adopt the convention of ignoring any leading zeros if present in a value. For example, 1012 rep-
resents the number five but since the 80x86 works with groups of eight bits, we’ll find it much easier to zero
extend all binary numbers to some multiple of four or eight bits. Therefore, following this convention, we’d
represent the number five as 01012 or 000001012.

In the United States, most people separate every three digits with a comma to make larger numbers eas-
ier to read. For example, 1,023,435,208 is much easier to read and comprehend than 1023435208. We’ll
adopt a similar convention in this text for binary numbers. We will separate each group of four binary bits
with an underscore. For example, we will write the binary value 1010111110110010 as
1010_1111_1011_0010.

We often pack several values together into the same binary number. One form of the 80x86 MOV
instruction uses the binary encoding 1011 0rrr dddd dddd to pack three items into 16 bits: a five-bit operation
code (1_0110), a three-bit register field (rrr), and an eight-bit immediate value (dddd_dddd). For conve-
nience, we’ll assign a numeric value to each bit position. We’ll number each bit as follows:

1) The rightmost bit in a binary number is bit position zero.

2) Each bit to the left is given the next successive bit number.

An eight-bit binary value uses bits zero through seven:

X7 X6 X5 X4 X3 X2 X1 X0

A 16-bit binary value uses bit positions zero through fifteen:

X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0

A 32-bit binary value uses bit positions zero through 31, etc.

Bit zero is usually referred to as the low order (L.O.) bit (some refer to this as the least significant bit).
The left-most bit is typically called the high order (H.O.) bit (or the most significant bit). We’ll refer to the
intermediate bits by their respective bit numbers.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 45

Chapter Three Volume 1
3.3 Data Organization

In pure mathematics a value may take an arbitrary number of bits. Computers, on the other hand, gener-
ally work with some specific number of bits. Common collections are single bits, groups of four bits (called
nibbles), groups of eight bits (bytes), groups of 16 bits (words), groups of 32 bits (double words or dwords),
groups of 64-bits (quad words or qwords), and more. The sizes are not arbitrary. There is a good reason for
these particular values. This section will describe the bit groups commonly used on the Intel 80x86 chips.

3.3.1 Bits

The smallest “unit” of data on a binary computer is a single bit. Since a single bit is capable of repre-
senting only two different values (typically zero or one) you may get the impression that there are a very
small number of items you can represent with a single bit. Not true! There are an infinite number of items
you can represent with a single bit.

With a single bit, you can represent any two distinct items. Examples include zero or one, true or false,
on or off, male or female, and right or wrong. However, you are not limited to representing binary data types
(that is, those objects which have only two distinct values). You could use a single bit to represent the num-
bers 723 and 1,245. Or perhaps 6,254 and 5. You could also use a single bit to represent the colors red and
blue. You could even represent two unrelated objects with a single bit. For example, you could represent the
color red and the number 3,256 with a single bit. You can represent any two different values with a single bit.
However, you can represent only two different values with a single bit.

To confuse things even more, different bits can represent different things. For example, one bit might be
used to represent the values zero and one, while an adjacent bit might be used to represent the values true
and false. How can you tell by looking at the bits? The answer, of course, is that you can’t. But this illus-
trates the whole idea behind computer data structures: data is what you define it to be. If you use a bit to rep-
resent a boolean (true/false) value then that bit (by your definition) represents true or false. For the bit to
have any real meaning, you must be consistent. That is, if you’re using a bit to represent true or false at one
point in your program, you shouldn’t use the true/false value stored in that bit to represent red or blue later.

Since most items you’ll be trying to model require more than two different values, single bit values
aren’t the most popular data type you’ll use. However, since everything else consists of groups of bits, bits
will play an important role in your programs. Of course, there are several data types that require two distinct
values, so it would seem that bits are important by themselves. However, you will soon see that individual
bits are difficult to manipulate, so we’ll often use other data types to represent boolean values.

3.3.2 Nibbles

A nibble is a collection of four bits. It wouldn’t be a particularly interesting data structure except for two
items: BCD (binary coded decimal) numbers2 and hexadecimal numbers. It takes four bits to represent a sin-
gle BCD or hexadecimal digit. With a nibble, we can represent up to 16 distinct values since there are 16
unique combinations of a string of four bits:

0000
0001
0010
0011
0100
0101
0110
0111
1000

2. Binary coded decimal is a numeric scheme used to represent decimal numbers using four bits for each decimal digit.
Page 46 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
1001
1010
1011
1100
1101
1110
1111

In the case of hexadecimal numbers, the values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F are repre-
sented with four bits (see “The Hexadecimal Numbering System” on page 50). BCD uses ten different digits
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) and requires four bits. In fact, any sixteen distinct values can be represented with a
nibble, but hexadecimal and BCD digits are the primary items we can represent with a single nibble.

3.3.3 Bytes

Without question, the most important data structure used by the 80x86 microprocessor is the byte. A
byte consists of eight bits and is the smallest addressable datum (data item) on the 80x86 microprocessor.
Main memory and I/O addresses on the 80x86 are all byte addresses. This means that the smallest item that
can be individually accessed by an 80x86 program is an eight-bit value. To access anything smaller requires
that you read the byte containing the data and mask out the unwanted bits. The bits in a byte are normally
numbered from zero to seven as shown in Figure 3.1.

Figure 3.1 Bit Numbering

Bit 0 is the low order bit or least significant bit, bit 7 is the high order bit or most significant bit of the
byte. We’ll refer to all other bits by their number.

Note that a byte also contains exactly two nibbles (see Figure 3.2).

Figure 3.2 The Two Nibbles in a Byte

Bits 0..3 comprise the low order nibble, bits 4..7 form the high order nibble. Since a byte contains
exactly two nibbles, byte values require two hexadecimal digits.

Since a byte contains eight bits, it can represent 28, or 256, different values. Generally, we’ll use a byte
to represent numeric values in the range 0..255, signed numbers in the range -128..+127 (see “Signed and
Unsigned Numbers” on page 59), ASCII/IBM character codes, and other special data types requiring no
more than 256 different values. Many data types have fewer than 256 items so eight bits is usually sufficient.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

H.O. Nibble L.O. Nibble
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 47

Chapter Three Volume 1
Since the 80x86 is a byte addressable machine (see the next volume), it turns out to be more efficient to
manipulate a whole byte than an individual bit or nibble. For this reason, most programmers use a whole
byte to represent data types that require no more than 256 items, even if fewer than eight bits would suffice.
For example, we’ll often represent the boolean values true and false by 000000012 and 000000002 (respec-
tively).

Probably the most important use for a byte is holding a character code. Characters typed at the key-
board, displayed on the screen, and printed on the printer all have numeric values. To allow it to communi-
cate with the rest of the world, the IBM PC uses a variant of the ASCII character set (see “The ASCII
Character Encoding” on page 87). There are 128 defined codes in the ASCII character set. IBM uses the
remaining 128 possible values for extended character codes including European characters, graphic sym-
bols, Greek letters, and math symbols.

Because bytes are the smallest unit of storage in the 80x86 memory space, bytes also happen to be the
smallest variable you can create in an HLA program. As you saw in the last chapter, you can declare an
eight-bit signed integer variable using the int8 data type. Since int8 objects are signed, you can represent
values in the range -128..+127 using an int8 variable (see “Signed and Unsigned Numbers” on page 59 for a
discussion of signed number formats). You should only store signed values into int8 variables; if you want
to create an arbitrary byte variable, you should use the byte data type, as follows:

static
byteVar: byte;

The byte data type is a partially untyped data type. The only type information associated with byte objects is
their size (one byte). You may store any one-byte object (small signed integers, small unsigned integers,
characters, etc.) into a byte variable. It is up to you to keep track of the type of object you’ve put into a byte
variable.

3.3.4 Words

A word is a group of 16 bits. We’ll number the bits in a word starting from zero on up to fifteen. The bit
numbering appears in Figure 3.3.

Figure 3.3 Bit Numbers in a Word

Like the byte, bit 0 is the low order bit. For words, bit 15 is the high order bit. When referencing the
other bits in a word use their bit position number.

Notice that a word contains exactly two bytes. Bits 0 through 7 form the low order byte, bits 8 through
15 form the high order byte (see Figure 3.4).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Page 48 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Figure 3.4 The Two Bytes in a Word

Naturally, a word may be further broken down into four nibbles as shown in Figure 3.5.

Figure 3.5 Nibbles in a Word

 Nibble zero is the low order nibble in the word and nibble three is the high order nibble of the word.
We’ll simply refer to the other two nibbles as “nibble one” or “nibble two. “

With 16 bits, you can represent 216 (65,536) different values. These could be the values in the range
0..65,535 or, as is usually the case, -32,768..+32,767, or any other data type with no more than 65,536 val-
ues. The three major uses for words are signed integer values, unsigned integer values, and UNICODE char-
acters.

Words can represent integer values in the range 0..65,535 or -32,768..32,767. Unsigned numeric values
are represented by the binary value corresponding to the bits in the word. Signed numeric values use the
two’s complement form for numeric values (see “Signed and Unsigned Numbers” on page 59). As UNI-
CODE characters, words can represent up to 65,536 different characters, allowing the use of non-Roman
character sets in a computer program. UNICODE is an international standard, like ASCII, that allows com-
mputers to process non-Roman characters like Asian, Greek, and Russian characters.

Like bytes, you can also create word variables in an HLA program. Of course, in the last chapter you
saw how to create sixteen-bit signed integer variables using the int16 data type. To create an arbitrary word
variable, just use the word data type, as follows:

static
w: word;

3.3.5 Double Words

A double word is exactly what its name implies, a pair of words. Therefore, a double word quantity is 32
bits long as shown in Figure 3.6.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

H. O. Byte L. O. Byte

H. O. Nibble L. O. Nibble

Nibble #3 Nibble #2 Nibble #1 Nibble #0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 49

Chapter Three Volume 1
Figure 3.6 Bit Numbers in a Double Word

Naturally, this double word can be divided into a high order word and a low order word, four different
bytes, or eight different nibbles (see Figure 3.7).

Figure 3.7 Nibbles, Bytes, and Words in a Double Word

Double words can represent all kinds of different things. A common item you will represent with a dou-
ble word is a 32-bit integer value (which allows unsigned numbers in the range 0..4,294,967,295 or signed
numbers in the range -2,147,483,648..2,147,483,647). 32-bit floating point values also fit into a double
word. Another common use for dword objects is to store pointer variables.

In the previous chapter, you saw how to create 32-bit (dword) signed integer variables using the int32
data type. You can also create an arbitrary double word variable using the dword data type as the following
example suggests:

static
d: dword;

3.4 The Hexadecimal Numbering System

A big problem with the binary system is verbosity. To represent the value 20210 requires eight binary
digits. The decimal version requires only three decimal digits and, thus, represents numbers much more
compactly than does the binary numbering system. This fact was not lost on the engineers who designed
binary computer systems. When dealing with large values, binary numbers quickly become too unwieldy.
Unfortunately, the computer thinks in binary, so most of the time it is convenient to use the binary number-
ing system. Although we can convert between decimal and binary, the conversion is not a trivial task. The

31 23 15 7 0

31 23 15 7 0

H.O. Word L.O. Word

H.O. Byte Byte # 2 Byte # 1 L.O. Byte

31 23 15 7 0

Nibble #7 #6 #5 #4 #3 #2 #1 #0
 H. O. L. O.

31 23 15 7 0
Page 50 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
hexadecimal (base 16) numbering system solves these problems. Hexadecimal numbers offer the two fea-
tures we’re looking for: they’re very compact, and it’s simple to convert them to binary and vice versa.
Because of this, most computer systems engineers use the hexadecimal numbering system. Since the radix
(base) of a hexadecimal number is 16, each hexadecimal digit to the left of the hexadecimal point represents
some value times a successive power of 16. For example, the number 123416 is equal to:

1 * 163 + 2 * 162 + 3 * 161 + 4 * 160

or

4096 + 512 + 48 + 4 = 466010.

Each hexadecimal digit can represent one of sixteen values between 0 and 1510. Since there are only ten
decimal digits, we need to invent six additional digits to represent the values in the range 1010 through 1510.
Rather than create new symbols for these digits, we’ll use the letters A through F. The following are all
examples of valid hexadecimal numbers:

123416 DEAD16 BEEF16 0AFB16 FEED16 DEAF16

Since we’ll often need to enter hexadecimal numbers into the computer system, we’ll need a different
mechanism for representing hexadecimal numbers. After all, on most computer systems you cannot enter a
subscript to denote the radix of the associated value. We’ll adopt the following conventions:

• All hexadecimal values begin with a “$” character, e.g., $123A4.
• All binary values begin with a percent sign (“%”).
• Decimal numbers do not have a prefix character.
• If the radix is clear from the context, this text may drop the leading “$” or “%” character.

Examples of valid hexadecimal numbers:

$1234 $DEAD $BEEF $AFB $FEED $DEAF

 As you can see, hexadecimal numbers are compact and easy to read. In addition, you can easily convert
between hexadecimal and binary. Consider the following table:

Table 4: Binary/Hex Conversion

Binary Hexadecimal

%0000 $0

%0001 $1

%0010 $2

%0011 $3

%0100 $4

%0101 $5

%0110 $6

%0111 $7

%1000 $8

%1001 $9

%1010 $A

%1011 $B
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 51

Chapter Three Volume 1
This table provides all the information you’ll ever need to convert any hexadecimal number into a binary
number or vice versa.

To convert a hexadecimal number into a binary number, simply substitute the corresponding four bits
for each hexadecimal digit in the number. For example, to convert $ABCD into a binary value, simply con-
vert each hexadecimal digit according to the table above:

 0 A B C D Hexadecimal

 0000 1010 1011 1100 1101 Binary

To convert a binary number into hexadecimal format is almost as easy. The first step is to pad the binary
number with zeros to make sure that there is a multiple of four bits in the number. For example, given the
binary number 1011001010, the first step would be to add two bits to the left of the number so that it con-
tains 12 bits. The converted binary value is 001011001010. The next step is to separate the binary value into
groups of four bits, e.g., 0010_1100_1010. Finally, look up these binary values in the table above and substi-
tute the appropriate hexadecimal digits, i.e., $2CA. Contrast this with the difficulty of conversion between
decimal and binary or decimal and hexadecimal!

Since converting between hexadecimal and binary is an operation you will need to perform over and
over again, you should take a few minutes and memorize the table above. Even if you have a calculator that
will do the conversion for you, you’ll find manual conversion to be a lot faster and more convenient when
converting between binary and hex.

3.5 Arithmetic Operations on Binary and Hexadecimal Numbers

There are several operations we can perform on binary and hexadecimal numbers. For example, we can
add, subtract, multiply, divide, and perform other arithmetic operations. Although you needn’t become an
expert at it, you should be able to, in a pinch, perform these operations manually using a piece of paper and
a pencil. Having just said that you should be able to perform these operations manually, the correct way to
perform such arithmetic operations is to have a calculator that does them for you. There are several such cal-
culators on the market; the following table lists some of the manufacturers who produce such devices:

Manufacturers of Hexadecimal Calculators:

• Casio
• Hewlett-Packard
• Sharp
• Texas Instruments

 This list is by no means exhaustive. Other calculator manufacturers probably produce these devices as
well. The Hewlett-Packard devices are arguably the best of the bunch . However, they are more expensive
than the others. Sharp and Casio produce units which sell for well under $50. If you plan on doing any
assembly language programming at all, owning one of these calculators is essential.

To understand why you should spend the money on a calculator, consider the following arithmetic prob-
lem:

%1100 $C

%1101 $D

%1110 $E

%1111 $F

Table 4: Binary/Hex Conversion

Binary Hexadecimal
Page 52 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
 $9
+ $1

You’re probably tempted to write in the answer “$10” as the solution to this problem. But that is not correct!
The correct answer is ten, which is “$A”, not sixteen which is “$10”. A similar problem exists with the arith-
metic problem:

 $10
- $1

You’re probably tempted to answer “$9” even though the true answer is “$F”. Remember, this problem is
asking “what is the difference between sixteen and one?” The answer, of course, is fifteen which is “$F”.

Even if the two problems above don’t bother you, in a stressful situation your brain will switch back into
decimal mode while you’re thinking about something else and you’ll produce the incorrect result. Moral of
the story – if you must do an arithmetic computation using hexadecimal numbers by hand, take your time
and be careful about it. Either that, or convert the numbers to decimal, perform the operation in decimal, and
convert them back to hexadecimal.

3.6 A Note About Numbers vs. Representation

Many people confuse numbers and their representation. A common question beginning assembly lan-
guage students have is “I’ve got a binary number in the EAX register, how do I convert that to a hexadecimal
number in the EAX register?” The answer is “you don’t.” Although a strong argument could be made that
numbers in memory or in registers are represented in binary, it’s best to view values in memory or in a regis-
ter as abstract numeric quantities. Strings of symbols like 128, $80, or %1000_0000 are not different num-
bers; they are simply different representations for the same abstract quantity that we often refer to as “one
hundred twenty-eight.” Inside the computer, a number is a number regardless of representation; the only
time representation matters is when you input or output the value in a human readable form.

Human readable forms of numeric quantities are always strings of characters. To print the value 128 in
human readable form, you must convert the numeric value 128 to the three-character sequence ‘1’ followed
by ‘2’ followed by ‘8’. This would provide the decimal representation of the numeric quantity. If you pre-
fer, you could convert the numeric value 128 to the three character sequence “$80”. It’s the same number,
but we’ve converted it to a different sequence of characters because (presumably) we wanted to view the
number in hexadecimal rather than decimal. Likewise, if we want to see the number in binary, then we must
convert this numeric value to a string containing a one followed by seven zeros.

By default, HLA displays all byte, word, and dword variables using the hexadecimal numbering system
when you use the stdout.put routine. Likewise, HLA’s stdout.put routine will display all register values in
hex. Consider the following program that converts values input as decimal numbers to their hexadecimal
equivalents:

program ConvertToHex;
#include(“stdlib.hhf”);
static

value: int32;
begin ConvertToHex;

stdout.put(“Input a decimal value:”);
stdin.get(value);
mov(value, eax);
stdout.put(“The value “, value, “ converted to hex is $”, eax, nl);

end ConvertToHex;
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 53

Chapter Three Volume 1
Program 3.1 Decimal to Hexadecimal Conversion Program

In a similar fashion, the default input base is also hexadecimal for registers and byte, word, or dword
variables. The following program is the converse of the one above- it inputs a hexadecimal value and out-
puts it as decimal:

program ConvertToDecimal;
#include(“stdlib.hhf”);
static

value: int32;
begin ConvertToDecimal;

stdout.put(“Input a hexadecimal value: “);
stdin.get(ebx);
mov(ebx, value);
stdout.put(“The value $”, ebx, “ converted to decimal is “, value, nl);

end ConvertToDecimal;

Program 3.2 Hexadecimal to Decimal Conversion Program

Just because the HLA stdout.put routine chooses decimal as the default output base for int8, int16, and
int32 variables doesn’t mean that these variables hold “decimal” numbers. Remember, memory and regis-
ters hold numeric values, not hexadecimal or decimal values. The stdout.put routine converts these numeric
values to strings and prints the resulting strings. The choice of hexadecimal vs. decimal output was a design
choice in the HLA language, nothing more. You could very easily modify HLA so that it outputs registers
and byte, word, or dword variables as decimal values rather than as hexadecimal. If you need to print the
value of a register or byte, word, or dword variable as a decimal value, simply call one of the putiX routines
to do this. The stdout.puti8 routine will output its parameter as an eight-bit signed integer. Any eight-bit
parameter will work. So you could pass an eight-bit register, an int8 variable, or a byte variable as the
parameter to stdout.puti8 and the result will always be decimal. The stdout.puti16 and stdout.puti32 provide
the same capabilities for 16-bit and 32-bit objects. The following program demonstrates the decimal conver-
sion program (Program 3.2 above) using only the EAX register (i.e., it does not use the variable iValue):

program ConvertToDecimal2;
#include(“stdlib.hhf”);
begin ConvertToDecimal2;

stdout.put(“Input a hexadecimal value: “);
stdin.get(ebx);
stdout.put(“The value $”, ebx, “ converted to decimal is “);
stdout.puti32(ebx);
stdout.newln();

end ConvertToDecimal2;

Program 3.3 Variable-less Hexadecimal to Decimal Converter
Page 54 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Note that HLA’s stdin.get routine uses the same default base for input as stdout.put uses for output.
That is, if you attempt to read an int8, int16, or int32 variable, the default input base is decimal. If you
attempt to read a register or byte, word, or dword variable, the default input base is hexadecimal. If you want
to change the default input base to decimal when reading a register or a byte, word, or dword variable, then
you can use stdin.geti8, stdin.geti16, or stdin.geti32.

If you want to go in the opposite direction, that is you want to input or output an int8, int16, or int32
variable as a hexadecimal value, you can call the stdout.putb, stdout.putw, stdout.putd, stdin.getb, stdin.getw,
or stdin.getd routines. The stdout.putb, stdout.putw, and stdout.putd routines write eight-bit, 16-bit, or 32-bit
objects as hexadecimal values. The stdin.getb, stdin.getw, and stdin.getd routines read eight-bit, 16-bit, and
32-bit values respectively; they return their results in the AL, AX, or EAX registers. The following program
demonstrates the use of a few of these routines:

program HexIO;

#include(“stdlib.hhf”);

static
i32: int32;

begin HexIO;

stdout.put(“Enter a hexadecimal value: “);
stdin.getdw();
mov(eax, i32);
stdout.put(“The value you entered was $”);
stdout.putdw(i32);
stdout.newln();

end HexIO;

Program 3.4 Demonstration of stdin.getd and stdout.putd

3.7 Logical Operations on Bits

There are four main logical operations we’ll need to perform on hexadecimal and binary numbers:
AND, OR, XOR (exclusive-or), and NOT. Unlike the arithmetic operations, a hexadecimal calculator isn’t
necessary to perform these operations. It is often easier to do them by hand than to use an electronic device
to compute them. The logical AND operation is a dyadic3 operation (meaning it accepts exactly two oper-
ands). These operands are single binary (base 2) bits. The AND operation is:

0 and 0 = 0

0 and 1 = 0

1 and 0 = 0

1 and 1 = 1

A compact way to represent the logical AND operation is with a truth table. A truth table takes the fol-
lowing form:

3. Many texts call this a binary operation. The term dyadic means the same thing and avoids the confusion with the binary
numbering system.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 55

Chapter Three Volume 1
This is just like the multiplication tables you encountered in elementary school. The values in the left
column correspond to the leftmost operand of the AND operation. The values in the top row correspond to
the rightmost operand of the AND operation. The value located at the intersection of the row and column
(for a particular pair of input values) is the result of logically ANDing those two values together. In English,
the logical AND operation is, “If the first operand is one and the second operand is one, the result is one; oth-
erwise the result is zero.”

One important fact to note about the logical AND operation is that you can use it to force a zero result.
If one of the operands is zero, the result is always zero regardless of the other operand. In the truth table
above, for example, the row labelled with a zero input contains only zeros and the column labelled with a
zero only contains zero results. Conversely, if one operand contains a one, the result is exactly the value of
the second operand. These features of the AND operation are very important, particularly when we want to
force individual bits in a bit string to zero. We will investigate these uses of the logical AND operation in the
next section.

The logical OR operation is also a dyadic operation. Its definition is:

0 or 0 = 0

0 or 1 = 1

1 or 0 = 1

1 or 1 = 1

The truth table for the OR operation takes the following form:

Colloquially, the logical OR operation is, “If the first operand or the second operand (or both) is one, the
result is one; otherwise the result is zero.” This is also known as the inclusive-OR operation.

If one of the operands to the logical-OR operation is a one, the result is always one regardless of the sec-
ond operand’s value. If one operand is zero, the result is always the value of the second operand. Like the
logical AND operation, this is an important side-effect of the logical-OR operation that will prove quite use-
ful when working with bit strings since it lets you force individual bits to one.

Note that there is a difference between this form of the inclusive logical OR operation and the standard
English meaning. Consider the phrase “I am going to the store or I am going to the park.” Such a statement
implies that the speaker is going to the store or to the park but not to both places. Therefore, the English ver-
sion of logical OR is slightly different than the inclusive-OR operation; indeed, it is closer to the exclu-
sive-OR operation.

The logical XOR (exclusive-or) operation is also a dyadic operation. It is defined as follows:

Table 5: AND Truth Table

AND 0 1

0 0 0

1 0 1

Table 6: OR Truth Table

OR 0 1

0 0 1

1 1 1
Page 56 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
0 xor 0 = 0

0 xor 1 = 1

1 xor 0 = 1

1 xor 1 = 0

The truth table for the XOR operation takes the following form:

In English, the logical XOR operation is, “If the first operand or the second operand, but not both, is
one, the result is one; otherwise the result is zero.” Note that the exclusive-or operation is closer to the
English meaning of the word “or” than is the logical OR operation.

If one of the operands to the logical exclusive-OR operation is a one, the result is always the inverse of
the other operand; that is, if one operand is one, the result is zero if the other operand is one and the result is
one if the other operand is zero. If the first operand contains a zero, then the result is exactly the value of the
second operand. This feature lets you selectively invert bits in a bit string.

 The logical NOT operation is a monadic operation (meaning it accepts only one operand). It is:

NOT 0 = 1

NOT 1 = 0

The truth table for the NOT operation takes the following form:

3.8 Logical Operations on Binary Numbers and Bit Strings

As described in the previous section, the logical functions work only with single bit operands. Since the
80x86 uses groups of eight, sixteen, or thirty-two bits, we need to extend the definition of these functions to
deal with more than two bits. Logical functions on the 80x86 operate on a bit-by-bit (or bitwise) basis. Given
two values, these functions operate on bit zero producing bit zero of the result. They operate on bit one of the
input values producing bit one of the result, etc. For example, if you want to compute the logical AND of the
following two eight-bit numbers, you would perform the logical AND operation on each column indepen-
dently of the others:

%1011_0101
%1110_1110

%1010_0100

Table 7: XOR Truth Table

XOR 0 1

0 0 1

1 1 0

Table 8: NOT Truth Table

NOT 0 1

1 0
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 57

Chapter Three Volume 1
This bit-by-bit form of execution can be easily applied to the other logical operations as well.

Since we’ve defined logical operations in terms of binary values, you’ll find it much easier to perform
logical operations on binary values than on values in other bases. Therefore, if you want to perform a logical
operation on two hexadecimal numbers, you should convert them to binary first. This applies to most of the
basic logical operations on binary numbers (e.g., AND, OR, XOR, etc.).

The ability to force bits to zero or one using the logical AND/OR operations and the ability to invert
bits using the logical XOR operation is very important when working with strings of bits (e.g., binary num-
bers). These operations let you selectively manipulate certain bits within some value while leaving other bits
unaffected. For example, if you have an eight-bit binary value X and you want to guarantee that bits four
through seven contain zeros, you could logically AND the value X with the binary value %0000_1111. This
bitwise logical AND operation would force the H.O. four bits to zero and pass the L.O. four bits of X through
unchanged. Likewise, you could force the L.O. bit of X to one and invert bit number two of X by logically
ORing X with %0000_0001 and logically exclusive-ORing X with %0000_0100, respectively. Using the log-
ical AND, OR, and XOR operations to manipulate bit strings in this fashion is known as masking bit strings.
We use the term masking because we can use certain values (one for AND, zero for OR/XOR) to ‘mask out’
or ‘mask in’ certain bits from the operation when forcing bits to zero, one, or their inverse.

The 80x86 CPUs support four instructions that apply these bitwise logical operations to their operands.
The instructions are AND, OR, XOR, and NOT. The AND, OR, and XOR instructions use the same syntax
as the ADD and SUB instructions, that is,

and(source, dest);
 or(source, dest);
xor(source, dest);

These operands have the same limitations as the ADD operands. Specifically, the source operand has to be a
constant, memory, or register operand and the dest operand must be a memory or register operand. Also, the
operands must be the same size and they cannot both be memory operands. These instructions compute the
obvious bitwise logical operation via the equation:

dest = dest operator source

The 80x86 logical NOT instruction, since it has only a single operand, uses a slightly different syntax.
This instruction takes the following form:

not(dest);

Note that this instruction has a single operand. It computes the following result:

dest = NOT(dest)

The dest operand (for not) must be a register or memory operand. This instruction inverts all the bits in the
specified destination operand.

The following program inputs two hexadecimal values from the user and calculates their logical AND,
OR, XOR, and NOT:

program LogicalOp;
#include(“stdlib.hhf”);
begin LogicalOp;

stdout.put(“Input left operand: “);
stdin.get(eax);
stdout.put(“Input right operand: “);
stdin.get(ebx);

mov(eax, ecx);
and(ebx, ecx);
stdout.put(“$”, eax, “ AND $”, ebx, “ = $”, ecx, nl);
Page 58 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation

mov(eax, ecx);
or(ebx, ecx);
stdout.put(“$”, eax, “ OR $”, ebx, “ = $”, ecx, nl);

mov(eax, ecx);
xor(ebx, ecx);
stdout.put(“$”, eax, “ XOR $”, ebx, “ = $”, ecx, nl);

mov(eax, ecx);
not(ecx);
stdout.put(“NOT $”, eax, “ = $”, ecx, nl);

mov(ebx, ecx);
not(ecx);
stdout.put(“NOT $”, ebx, “ = $”, ecx, nl);

end LogicalOp;

Program 3.5 AND, OR, XOR, and NOT Example

3.9 Signed and Unsigned Numbers

So far, we’ve treated binary numbers as unsigned values. The binary number ...00000 represents zero,
...00001 represents one, ...00010 represents two, and so on toward infinity. What about negative numbers?
Signed values have been tossed around in previous sections and we’ve mentioned the two’s complement
numbering system, but we haven’t discussed how to represent negative numbers using the binary numbering
system. That is what this section is all about!

To represent signed numbers using the binary numbering system we have to place a restriction on our
numbers: they must have a finite and fixed number of bits. For our purposes, we’re going to severely limit
the number of bits to eight, 16, 32, or some other small number of bits.

With a fixed number of bits we can only represent a certain number of objects. For example, with eight
bits we can only represent 256 different values. Negative values are objects in their own right, just like posi-
tive numbers; therefore, we’ll have to use some of the 256 different eight-bit values to represent negative
numbers. In other words, we’ve got to use up some of the (unsigned) positive numbers to represent negative
numbers. To make things fair, we’ll assign half of the possible combinations to the negative values and half
to the positive values and zero. So we can represent the negative values -128..-1 and the non-negative values
0..127 with a single eight bit byte. With a 16-bit word we can represent values in the range -32,768..+32,767.
With a 32-bit double word we can represent values in the range -2,147,483,648..+2,147,483,647. In general,
with n bits we can represent the signed values in the range -2n-1 to +2n-1-1.

Okay, so we can represent negative values. Exactly how do we do it? Well, there are many ways, but the
80x86 microprocessor uses the two’s complement notation. In the two’s complement system, the H.O. bit of
a number is a sign bit. If the H.O. bit is zero, the number is positive; if the H.O. bit is one, the number is neg-
ative. Examples:

For 16-bit numbers:

$8000 is negative because the H.O. bit is one.

 $100 is positive because the H.O. bit is zero.

 $7FFF is positive.

 $FFFF is negative.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 59

Chapter Three Volume 1
 $FFF is positive.

If the H.O. bit is zero, then the number is positive and is stored as a standard binary value. If the H.O. bit
is one, then the number is negative and is stored in the two’s complement form. To convert a positive number
to its negative, two’s complement form, you use the following algorithm:

1) Invert all the bits in the number, i.e., apply the logical NOT function.

2) Add one to the inverted result.

For example, to compute the eight-bit equivalent of -5:

%0000_0101 Five (in binary).
%1111_1010 Invert all the bits.
%1111_1011 Add one to obtain result.

 If we take minus five and perform the two’s complement operation on it, we get our original value,
%0000_0101, back again, just as we expect:

%1111_1011 Two’s complement for -5.
%0000_0100 Invert all the bits.
%0000_0101 Add one to obtain result (+5).

 The following examples provide some positive and negative 16-bit signed values:

$7FFF: +32767, the largest 16-bit positive number.

$8000: -32768, the smallest 16-bit negative number.

$4000: +16,384.

To convert the numbers above to their negative counterpart (i.e., to negate them), do the following:

$7FFF: %0111_1111_1111_1111 +32,767
%1000_0000_0000_0000 Invert all the bits (8000h)
%1000_0000_0000_0001 Add one (8001h or -32,767)

4000h: %0100_0000_0000_0000 16,384
%1011_1111_1111_1111 Invert all the bits ($BFFF)
%1100_0000_0000_0000 Add one ($C000 or -16,384)

$8000: %1000_0000_0000_0000 -32,768
%0111_1111_1111_1111 Invert all the bits ($7FFF)
%1000_0000_0000_0000 Add one (8000h or -32768)

$8000 inverted becomes $7FFF. After adding one we obtain $8000! Wait, what’s going on here?
-(-32,768) is -32,768? Of course not. But the value +32,768 cannot be represented with a 16-bit signed num-
ber, so we cannot negate the smallest negative value.

Why bother with such a miserable numbering system? Why not use the H.O. bit as a sign flag, storing
the positive equivalent of the number in the remaining bits? The answer lies in the hardware. As it turns out,
negating values is the only tedious job. With the two’s complement system, most other operations are as easy
as the binary system. For example, suppose you were to perform the addition 5+(-5). The result is zero. Con-
sider what happens when we add these two values in the two’s complement system:

 % 0000_0101
 % 1111_1011

%1_0000_0000
Page 60 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
We end up with a carry into the ninth bit and all other bits are zero. As it turns out, if we ignore the carry out
of the H.O. bit, adding two signed values always produces the correct result when using the two’s comple-
ment numbering system. This means we can use the same hardware for signed and unsigned addition and
subtraction. This wouldn’t be the case with some other numbering systems.

Except for the questions at the end of this chapter, you will not need to perform the two’s complement
operation by hand. The 80x86 microprocessor provides an instruction, NEG (negate), which performs this
operation for you. Furthermore, all the hexadecimal calculators will perform this operation by pressing the
change sign key (+/- or CHS). Nevertheless, performing a two’s complement by hand is easy, and you
should know how to do it.

Once again, you should note that the data represented by a set of binary bits depends entirely on the con-
text. The eight bit binary value %1100_0000 could represent an IBM/ASCII character, it could represent the
unsigned decimal value 192, or it could represent the signed decimal value -64, etc. As the programmer, it is
your responsibility to use this data consistently.

The 80x86 negate instruction, NEG, uses the same syntax as the NOT instruction; that is, it takes a sin-
gle destination operand:

neg(dest);

This instruction computes “dest = -dest;” and the operand has the usual limitation (it must be a memory
location or a register). NEG operates on byte, word, and dword-sized objects. Of course, since this is a
signed integer operation, it only makes sense to operate on signed integer values. The following program
demonstrates the two’s complement operation by using the NEG instruction:

program twosComplement;
#include(“stdlib.hhf”);

static
PosValue:int8;
NegValue:int8;

begin twosComplement;

stdout.put(“Enter an integer between 0 and 127: “);
stdin.get(PosValue);

stdout.put(nl, “Value in hexadecimal: $”);
stdout.putb(PosValue);

mov(PosValue, al);
not(al);
stdout.put(nl, “Invert all the bits: $”, al, nl);
add(1, al);
stdout.put(“Add one: $”, al, nl);
mov(al, NegValue);
stdout.put(“Result in decimal: “, NegValue, nl);

stdout.put
(

nl,
“Now do the same thing with the NEG instruction: “,
nl

);
mov(PosValue, al);
neg(al);
mov(al, NegValue);
stdout.put(“Hex result = $”, al, nl);
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 61

Chapter Three Volume 1
stdout.put(“Decimal result = “, NegValue, nl);

end twosComplement;

Program 3.6 The Two’s Complement Operation

As you saw in the previous chapters, you use the int8, int16, and int32 data types to reserve storage for
signed integer variables. Those chapters also introduced routines like stdout.puti8 and stdin.geti32 that read
and write signed integer values. Since this section has made it abundantly clear that you must differentiate
signed and unsigned calculations in your programs, you should probably be asking yourself about now
“how do I declare and use unsigned integer variables?”

The first part of the question, “how do you declare unsigned integer variables,” is the easiest to answer.
You simply use the uns8, uns16, and uns32 data types when declaring the variables, for example:

static
u8: uns8;
u16: uns16;
u32: uns32;

As for using these unsigned variables, the HLA Standard Library provides a complementary set of
input/output routines for reading and displaying unsigned variables. As you can probably guess, these rou-
tines include stdout.putu8, stdout.putu16, stdout.putu32, stdout.putu8Size, stdout.putu16Size, std-
out.putu32Size, stdin.getu8, stdin.getu16, and stdin.getu32. You use these routines just as you would use
their signed integer counterparts except, of course, you get to use the full range of the unsigned values with
these routines. The following source code demonstrates unsigned I/O as well as demonstrating what can
happen if you mix signed and unsigned operations in the same calculation:

program UnsExample;
#include(“stdlib.hhf”);

static
UnsValue:uns16;

begin UnsExample;

stdout.put(“Enter an integer between 32,768 and 65,535: “);
stdin.getu16();
mov(ax, UnsValue);

stdout.put
(

“You entered “,
UnsValue,
“. If you treat this as a signed integer, it is “

);
stdout.puti16(UnsValue);
stdout.newln();

end UnsExample;

Program 3.7 Unsigned I/O
Page 62 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
3.10 Sign Extension, Zero Extension, Contraction, and Saturation

Since two’s complement format integers have a fixed length, a small problem develops. What happens if
you need to convert an eight bit two’s complement value to 16 bits? This problem, and its converse (convert-
ing a 16 bit value to eight bits) can be accomplished via sign extension and contraction operations. Likewise,
the 80x86 works with fixed length values, even when processing unsigned binary numbers. Zero extension
lets you convert small unsigned values to larger unsigned values.

Consider the value “-64”. The eight bit two’s complement value for this number is $C0. The 16-bit
equivalent of this number is $FFC0. Now consider the value “+64”. The eight and 16 bit versions of this
value are $40 and $0040, respectively. The difference between the eight and 16 bit numbers can be described
by the rule: “If the number is negative, the H.O. byte of the 16 bit number contains $FF; if the number is pos-
itive, the H.O. byte of the 16 bit quantity is zero.”

To sign extend a value from some number of bits to a greater number of bits is easy, just copy the sign
bit into all the additional bits in the new format. For example, to sign extend an eight bit number to a 16 bit
number, simply copy bit seven of the eight bit number into bits 8..15 of the 16 bit number. To sign extend a
16 bit number to a double word, simply copy bit 15 into bits 16..31 of the double word.

Sign extension is required when manipulating signed values of varying lengths. Often you’ll need to add
a byte quantity to a word quantity. You must sign extend the byte quantity to a word before the operation
takes place. Other operations (multiplication and division, in particular) may require a sign extension to
32-bits. You must not sign extend unsigned values.

Sign Extension:
Eight Bits Sixteen Bits Thirty-two Bits

 $80 $FF80 $FFFF_FF80
 $28 $0028 $0000_0028
 $9A $FF9A $FFFF_FF9A
 $7F $007F $0000_007F
 ––– $1020 $0000_1020
 ––– $8086 $FFFF_8086

To extend an unsigned byte you must zero extend the value. Zero extension is very easy – just store a
zero into the H.O. byte(s) of the larger operand. For example, to zero extend the value $82 to 16-bits you
simply add a zero to the H.O. byte yielding $0082.

Zero Extension:
Eight Bits Sixteen Bits Thirty-two Bits

 $80 $0080 $0000_0080
 $28 $0028 $0000_0028
 $9A $009A $0000_009A
 $7F $007F $0000_007F
 ––– $1020 $0000_1020
 ––– $8086 $0000_8086

Sign contraction, converting a value with some number of bits to the identical value with a fewer num-
ber of bits, is a little more troublesome. Sign extension never fails. Given an m-bit signed value you can
always convert it to an n-bit number (where n > m) using sign extension. Unfortunately, given an n-bit num-
ber, you cannot always convert it to an m-bit number if m < n. For example, consider the value -448. As a
16-bit hexadecimal number, its representation is $FE40. Unfortunately, the magnitude of this number is too
great to fit into an eight bit value, so you cannot sign contract it to eight bits. This is an example of an over-
flow condition that occurs upon conversion.

To properly sign contract one value to another, you must look at the H.O. byte(s) that you want to dis-
card. The H.O. bytes you wish to remove must all contain either zero or $FF. If you encounter any other val-
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 63

Chapter Three Volume 1
ues, you cannot contract it without overflow. Finally, the H.O. bit of your resulting value must match every
bit you’ve removed from the number. Examples (16 bits to eight bits):

$FF80 can be sign contracted to $80.
$0040 can be sign contracted to $40.
$FE40 cannot be sign contracted to 8 bits.
$0100 cannot be sign contracted to 8 bits.

The 80x86 provides several instructions that will let you sign or zero extend a smaller number to a larger
number. The first group of instructions we will look at will sign extend the AL, AX, or EAX register. These
instructions are

• cbw(); // Converts the byte in AL to a word in AX via sign extension.
• cwd(); // Converts the word in AX to a double word in DX:AX
• cdq(); // Converts the double word in EAX to the quad word in EDX:EAX
• cwde(); // Converts the word in AX to a doubleword in EAX.

Note that the CWD (convert word to doubleword) instruction does not sign extend the word in AX to the
doubleword in EAX. Instead, it stores the H.O. doubleword of the sign extension into the DX register (the
notation “DX:AX” tells you that you have a double word value with DX containing the upper 16 bits and AX
containing the lower 16 bits of the value). If you want the sign extension of AX to go into EAX, you should
use the CWDE (convert word to doubleword, extended) instruction.

The four instructions above are unusual in the sense that these are the first instructions you’ve seen that
do not have any operands. These instructions’ operands are implied by the instructions themselves.

Within a few chapters you will discover just how important these instructions are, and why the CWD
and CDQ instructions involve the DX and EDX registers. However, for simple sign extension operations,
these instructions have a few major drawbacks - you do not get to specify the source and destination oper-
ands and the operands must be registers.

For general sign extension operations, the 80x86 provides an extension of the MOV instruction,
MOVSX (move with sign extension), that copies data and sign extends the data while copying it. The
MOVSX instruction’s syntax is very similar to the MOV instruction:

movsx(source, dest);

The big difference in syntax between this instruction and the MOV instruction is the fact that the destination
operand must be larger than the source operand. That is, if the source operand is a byte, the destination oper-
and must be a word or a double word. Likewise, if the source operand is a word, the destination operand
must be a double word. Another difference is that the destination operand has to be a register; the source
operand, however, can be a memory location4.

To zero extend a value, you can use the MOVZX instruction. It has the same syntax and restrictions as
the MOVSX instruction. Zero extending certain eight-bit registers (AL, BL, CL, and DL) into their corre-
sponding 16-bit registers is easily accomplished without using MOVZX by loading the complementary H.O.
register (AH, BH, CH, or DH) with zero. Obviously, to zero extend AX into DX:AX or EAX into
EDX:EAX, all you need to do is load DX or EDX with zero5.

The following sample program demonstrates the use of the sign extension instructions:

program signExtension;
#include(“stdlib.hhf”);

4. This doesn’t turn out to be much of a limitation because sign extension almost always precedes an arithmetic operation
which must take place in a register.
5. Zero extending into DX:AX or EDX:EAX is just as necessary as the CWD and CDQ instructions, as you will eventually
see.
Page 64 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
static
 i8: int8;
 i16: int16;
 i32: int32;

begin signExtension;

 stdout.put(“Enter a small negative number: “);
 stdin.get(i8);

 stdout.put(nl, “Sign extension using CBW and CWDE:”, nl, nl);

 mov(i8, al);
 stdout.put(“You entered “, i8, “ ($”, al, “)”, nl);

 cbw();
 mov(ax, i16);
 stdout.put(“16-bit sign extension: “, i16, “ ($”, ax, “)”, nl);

 cwde();
 mov(eax, i32);
 stdout.put(“32-bit sign extension: “, i32, “ ($”, eax, “)”, nl);

 stdout.put(nl, “Sign extension using MOVSX:”, nl, nl);

 movsx(i8, ax);
 mov(ax, i16);
 stdout.put(“16-bit sign extension: “, i16, “ ($”, ax, “)”, nl);

 movsx(i8, eax);
 mov(eax, i32);
 stdout.put(“32-bit sign extension: “, i32, “ ($”, eax, “)”, nl);

end signExtension;

Program 3.8 Sign Extension Instructions

Another way to reduce the size of an integer is through saturation. Saturation is useful in situations
where you must convert a larger object to a smaller object and you’re willing to live with possible loss of
precision. To convert a value via saturation you simply copy the larger value to the smaller value if it is not
outside the range of the smaller object. If the larger value is outside the range of the smaller value, then you
clip the value by setting it to the largest (or smallest) value within the range of the smaller object.

For example, when converting a 16-bit signed integer to an eight-bit signed integer, if the 16-bit value is
in the range -128..+127 you simply copy the L.O. byte of the 16-bit object to the eight-bit object. If the
16-bit signed value is greater than +127, then you clip the value to +127 and store +127 into the eight-bit
object. Likewise, if the value is less than -128, you clip the final eight bit object to -128. Saturation works
the same way when clipping 32-bit values to smaller values. If the larger value is outside the range of the
smaller value, then you simply set the smaller value to the value closest to the out of range value that you can
represent with the smaller value.

Obviously, if the larger value is outside the range of the smaller value, then there will be a loss of preci-
sion during the conversion. While clipping the value to the limits the smaller object imposes is never desir-
able, sometimes this is acceptable as the alternative is to raise an exception or otherwise reject the
calculation. For many applications, such as audio or video processing, the clipped result is still recogniz-
able, so this is a reasonable conversion to use.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 65

Chapter Three Volume 1
3.11 Shifts and Rotates

Another set of logical operations which apply to bit strings are the shift and rotate operations. These two
categories can be further broken down into left shifts, left rotates, right shifts, and right rotates. These opera-
tions turn out to be extremely useful to assembly language programmers.

The left shift operation moves each bit in a bit string one position to the left (see Figure 3.8).

Figure 3.8 Shift Left Operation

Bit zero moves into bit position one, the previous value in bit position one moves into bit position two,
etc. There are, of course, two questions that naturally arise: “What goes into bit zero?” and “Where does bit
seven wind up?” We’ll shift a zero into bit zero and the previous value of bit seven will be the carry out of
this operation.

The 80x86 provides a shift left instruction, SHL, that performs this useful operation. The syntax for the
SHL instruction is the following:

shl(count, dest);

The count operand is either “CL” or a constant in the range 0..n, where n is one less than the number of bits
in the destination operand (i.e., n=7 for eight-bit operands, n=15 for 16-bit operands, and n=31 for 32-bit
operands). The dest operand is a typical dest operand, it can be either a memory location or a register.

When the count operand is the constant one, the SHL instruction does the following:

Figure 3.9 Operation of the SHL(1, Dest) Instruction

In Figure 3.9, the “C” represents the carry flag. That is, the bit shifted out of the H.O. bit of the operand
is moved into the carry flag. Therefore, you can test for overflow after a SHL(1, dest) instruction by testing
the carry flag immediately after executing the instruction (e.g., by using “if(@c) then...” or
“if(@nc) then...”).

Intel’s literature suggests that the state of the carry flag is undefined if the shift count is a value other
than one. Usually, the carry flag contains the last bit shifted out of the destination operand, but Intel doesn’t
seem to guarantee this. If you need to shift more than one bit out of an operand and you need to capture all
the bits you shift out, you should take a look at the SHLD and SHRD instructions in the appendicies.

Note that shifting a value to the left is the same thing as multiplying it by its radix. For example, shifting
a decimal number one position to the left (adding a zero to the right of the number) effectively multiplies it
by ten (the radix):

1234 shl 1 = 12340 (shl 1 means shift one position to the left)

7 6 5 4 3 2 1 0

H.O. Bit 4 3 2 1 0
0...C
Page 66 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Since the radix of a binary number is two, shifting it left multiplies it by two. If you shift a binary value to
the left twice, you multiply it by two twice (i.e., you multiply it by four). If you shift a binary value to the left
three times, you multiply it by eight (2*2*2). In general, if you shift a value to the left n times, you multiply
that value by 2n.

A right shift operation works the same way, except we’re moving the data in the opposite direction. Bit
seven moves into bit six, bit six moves into bit five, bit five moves into bit four, etc. During a right shift, we’ll
move a zero into bit seven, and bit zero will be the carry out of the operation (see Figure 3.10).

Figure 3.10 Shift Right Operation

As you would probably expect by now, the 80x86 provides a SHR instruction that will shift the bits to
the right in a destination operand. The syntax is the same as the SHL instruction except, of course, you spec-
ify SHR rather than SHL:

SHR(count, dest);

This instruction shifts a zero into the H.O. bit of the destination operand, it shifts all the other bits one place
to the right (that is, from a higher bit number to a lower bit number). Finally, bit zero is shifted into the carry
flag. If you specify a count of one, the SHR instruction does the following:

Figure 3.11 SHR(1, Dest) Operation

Once again, Intel’s documents suggest that shifts of more than one bit leave the carry in an undefined
state.

Since a left shift is equivalent to a multiplication by two, it should come as no surprise that a right shift
is roughly comparable to a division by two (or, in general, a division by the radix of the number). If you per-
form n right shifts, you will divide that number by 2n.

There is one problem with shift rights with respect to division: as described above a shift right is only
equivalent to an unsigned division by two. For example, if you shift the unsigned representation of 254
(0FEh) one place to the right, you get 127 (07Fh), exactly what you would expect. However, if you shift the
binary representation of -2 (0FEh) to the right one position, you get 127 (07Fh), which is not correct. This
problem occurs because we’re shifting a zero into bit seven. If bit seven previously contained a one, we’re
changing it from a negative to a positive number. Not a good thing when dividing by two.

To use the shift right as a division operator, we must define a third shift operation: arithmetic shift
right6. An arithmetic shift right works just like the normal shift right operation (a logical shift right) with one

7 6 5 4 3 2 1 0

0 C

...
H.O. Bit 5 4 3 2 1 0

C0
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 67

Chapter Three Volume 1
exception: instead of shifting a zero into bit seven, an arithmetic shift right operation leaves bit seven alone,
that is, during the shift operation it does not modify the value of bit seven as Figure 3.12 shows.

Figure 3.12 Arithmetic Shift Right Operation

This generally produces the result you expect. For example, if you perform the arithmetic shift right opera-
tion on -2 (0FEh) you get -1 (0FFh). Keep one thing in mind about arithmetic shift right, however. This oper-
ation always rounds the numbers to the closest integer which is less than or equal to the actual result. Based
on experiences with high level programming languages and the standard rules of integer truncation, most
people assume this means that a division always truncates towards zero. But this simply isn’t the case. For
example, if you apply the arithmetic shift right operation on -1 (0FFh), the result is -1, not zero. -1 is less
than zero so the arithmetic shift right operation rounds towards minus one. This is not a “bug” in the arith-
metic shift right operation, it’s just uses a diffferent (though valid) definition of division.

The 80x86 provides an arithmetic shift right instruction, SAR (shift arithmetic right). This instruction’s
syntax is nearly identical to SHL and SHR. The syntax is

SAR(count, dest);

The usual limitations on the count and destination operands apply. This instruction does the following if the
count is one:

Figure 3.13 SAR(1, dest) Operation

Another pair of useful operations are rotate left and rotate right. These operations behave like the shift
left and shift right operations with one major difference: the bit shifted out from one end is shifted back in at
the other end.

6. There is no need for an arithmetic shift left. The standard shift left operation works for both signed and unsigned numbers,
assuming no overflow occurs.

7 6 5 4 3 2 1 0

...
H. O . B i t 5 4 3 2 1 0

C

Page 68 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Figure 3.14 Rotate Left Operation

Figure 3.15 Rotate Right Operation

The 80x86 provides ROL (rotate left) and ROR (rotate right) instructions that do these basic operations
on their operands. The syntax for these two instructions is similar to the shift instructions:

rol(count, dest);
ror(count, dest);

Once again, this instructions provide a special behavior if the shift count is one. Under this condition
these two instructions also copy the bit shifted out of the destination operand into the carry flag as the fol-
lowing two figures show:

Figure 3.16 ROL(1, Dest) Operation

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

H.O. Bit 5 4 3 2 1 0

C

...
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 69

Chapter Three Volume 1
Figure 3.17 ROR(1, Dest) Operation

It will turn out that it is often more convenient for the rotate operation to shift the output bit through the
carry and shift the previous carry value back into the input bit of the shift operation. The 80x86 RCL (rotate
through carry left) and RCR (rotate through carry right) instructions achieve this for you. These instructions
use the following syntax:

RCL(count, dest);
RCR(count, dest);

As for the other shift and rotate instructions, the count operand is either a constant or the CL register and
the destination operand is a memory location or register. The count operand must be a value that is less than
the number of bits in the destination operand. For a count value of one, these two instructions do the follow-
ing:

Figure 3.18 RCL(1, Dest) Operation

Figure 3.19 RCR(1, Dest) Operation

H.O. Bit 5 4 3 2 1 0

C

...

H.O. Bit 5 4 3 2 1 0

C

...

H.O. Bit 5 4 3 2 1 0

C

...
Page 70 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
3.12 Bit Fields and Packed Data

Although the 80x86 operates most efficiently on byte, word, and double word data types, occasionally
you’ll need to work with a data type that uses some number of bits other than eight, 16, or 32. For example,
consider a date of the form “04/02/01”. It takes three numeric values to represent this date: a month, day, and
year value. Months, of course, take on the values 1..12. It will require at least four bits (maximum of sixteen
different values) to represent the month. Days range between 1..31. So it will take five bits (maximum of 32
different values) to represent the day entry. The year value, assuming that we’re working with values in the
range 0..99, requires seven bits (which can be used to represent up to 128 different values). Four plus five
plus seven is 16 bits, or two bytes. In other words, we can pack our date data into two bytes rather than the
three that would be required if we used a separate byte for each of the month, day, and year values. This
saves one byte of memory for each date stored, which could be a substantial saving if you need to store a lot
of dates. The bits could be arranged as shown in the following figure:

Figure 3.20 Short Packed Date Format (Two Bytes)

MMMM represents the four bits making up the month value, DDDDD represents the five bits making
up the day, and YYYYYYY is the seven bits comprising the year. Each collection of bits representing a data
item is a bit field. April 2nd, 2001 would be represented as $4101:

0100 00010 0000001 = %0100_0001_0000_0001 or $4101
 4 2 01

Although packed values are space efficient (that is, very efficient in terms of memory usage), they are
computationally inefficient (slow!). The reason? It takes extra instructions to unpack the data packed into the
various bit fields. These extra instructions take additional time to execute (and additional bytes to hold the
instructions); hence, you must carefully consider whether packed data fields will save you anything. The
following sample program demonstrates the effort that must go into packing and unpacking this 16-bit date
format:

program dateDemo;

#include(“stdlib.hhf”);

static
day: uns8;
month: uns8;
year: uns8;

packedDate:word;

begin dateDemo;

 stdout.put(“Enter the current month, day, and year: “);
stdin.get(month, day, year);

// Pack the data into the following bits:
//

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M M M M D D D D D Y Y Y Y Y Y Y
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 71

Chapter Three Volume 1
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
// m m m m d d d d d y y y y y y y

mov(0, ax);
mov(ax, packedDate);//Just in case there is an error.
if(month > 12) then

stdout.put(“Month value is too large”, nl);

elseif(month = 0) then

stdout.put(“Month value must be in the range 1..12”, nl);

elseif(day > 31) then

stdout.put(“Day value is too large”, nl);

elseif(day = 0) then

stdout.put(“Day value must be in the range 1..31”, nl);

elseif(year > 99) then

stdout.put(“Year value must be in the range 0..99”, nl);

else

mov(month, al);
shl(5, ax);
or(day, al);
shl(7, ax);
or(year, al);
mov(ax, packedDate);

endif;

// Okay, display the packed value:

stdout.put(“Packed data = $”, packedDate, nl);

// Unpack the date:

mov(packedDate, ax);
and($7f, al);// Retrieve the year value.
mov(al, year);

mov(packedDate, ax);// Retrieve the day value.
shr(7, ax);
and(%1_1111, al);
mov(al, day);

mov(packedDate, ax);// Retrive the month value.
rol(4, ax);
and(%1111, al);
mov(al, month);

stdout.put(“The date is “, month, “/”, day, “/”, year, nl);
Page 72 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation

end dateDemo;

Program 3.9 Packing and Unpacking Date Data

Of course, having gone through the problems with Y2K, using a date format that limits you to 100 years
(or even 127 years) would be quite foolish at this time. If you’re concerned about your software running 100
years from now, perhaps it would be wise to use a three-byte date format rather than a two-byte format. As
you will see in the chapter on arrays, however, you should always try to create data objects whose length is
an even power of two (one byte, two bytes, four bytes, eight bytes, etc.) or you will pay a performance pen-
alty. Hence, it is probably wise to go ahead an use four bytes and pack this data into a dword variable. Fig-
ure 3.21 shows a possible data organization for a four-byte date.

Figure 3.21 Long Packed Date Format (Four Bytes)

In this long packed data format several changes were made beyond simply extending the number of bits
associated with the year. First, since there are lots of extra bits in a 32-bit dword variable, this format allots
extra bits to the month and day fields. Since these two fields consist of eight bits each, they can be easily
extracted as a byte object from the dword. This leaves fewer bits for the year, but 65,536 years is probably
sufficient; you can probably assume without too much concern that your software will not still be in use 63
thousand years from now when this date format will wrap around.

Of course, you could argue that this is no longer a packed date format. After all, we needed three
numeric values, two of which fit just nicely into one byte each and one that should probably have at least two
bytes. Since this “packed” date format consumes the same four bytes as the unpacked version, what is so
special about this format? Well, another difference you will note between this long packed date format and
the short date format appearing in Figure 3.20 is the fact that this long date format rearranges the bits so the
Year is in the H.O. bit positions, the Month field is in the middle bit positions, and the Day field is in the L.O.
bit positions. This is important because it allows you to very easily compare two dates to see if one date is
less than, equal to, or greater than another date. Consider the following code:

mov(Date1, eax); // Assume Date1 and Date2 are dword variables
if(eax > Date2) then // using the Long Packed Date format.

<< do something if Date1 > Date2 >>

endif;

Had you kept the different date fields in separate variables, or organized the fields differently, you would not
have been able to compare Date1 and Date2 in such a straight-forward fashion. Therefore, this example
demonstrates another reason for packing data even if you don’t realize any space savings- it can make certain
computations more convenient or even more efficient (contrary to what normally happens when you pack
data).

Examples of practical packed data types abound. You could pack eight boolean values into a single byte,
you could pack two BCD digits into a byte, etc. Of course, a classic example of packed data is the FLAGs
register (see Figure 3.22). This register packs nine important boolean objects (along with seven important
system flags) into a single 16-bit register. You will commonly need to access many of these flags. For this
reason, the 80x86 instruction set provides many ways to manipulate the individual bits in the FLAGs regis-

151631 8 7 0

Month (1-12)Year (0-65535) Day (1-31)
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 73

Chapter Three Volume 1
ter. Of course, you can test many of the condition code flags using the HLA @c, @nc, @z, @nz, etc.,
pseudo-boolean variables in an IF statement or other statement using a boolean expression.

In addition to the condition codes, the 80x86 provides instructions that directly affect certain flags.
These instructions include the following:

• cld(); Clears (sets to zero) the direction flag.
• std(); Sets (to one) the direction flag.
• cli(); Clears the interrupt disable flag.
• sti(); Sets the interrupt disable flag.
• clc(); Clears the carry flag.
• stc(); Sets the carry flag.
• cmc(); Complements (inverts) the carry flag.
• sahf(); Stores the AH register into the L.O. eight bits of the FLAGs register.
• lahf(); Loads AH from the L.O. eight bits of the FLAGs register.

There are other instructions that affect the FLAGs register as well; these, however, demonstrate how to
access several of the packed boolean values in the FLAGs register. The LAHF and SAHF instructions, in
particular, provide a convenient way to access the L.O. eight bits of the FLAGs register as an eight-bit byte
(rather than as eight separate one-bit values).

Figure 3.22 The FLAGs Register as a Packed Data Type

The LAHF (load AH with the L.O. eight bits of the FLAGs register) and the SAHF (store AH into the
L.O. byte of the FLAGs register) use the following syntax:

lahf();
sahf();

3.13 Putting It All Together

In this chapter you’ve seen how we represent numeric values inside the computer. You’ve seen how to
represent values using the decimal, binary, and hexadecimal numbering systems as well as the difference
between signed and unsigned numeric representation. Since we represent nearly everything else inside a
computer using numeric values, the material in this chapter is very important. Along with the base represen-
tation of numeric values, this chapter discusses the finite bit-string organization of data on typical computer
systems, specfically bytes, words, and doublewords. Next, this chapter discusses arithmetic and logical
operations on the numbers and presents some new 80x86 instructions to apply these operations to values

Overflow
Direction
Interrupt
Trace
Sign
Zero

Auxiliary Carry

Parity

Carry

Reserved
for System
Purposes
Page 74 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
inside the CPU. Finally, this chapter concludes by showing how you can pack several different numeric val-
ues into a fixed-length object (like a byte, word, or doubleword).

Absent from this chapter is any discussion of non-integer data. For example, how do we represent real
numbers as well as integers? How do we represent characters, strings, and other non-numeric data? Well,
that’s the subject of the next chapter, so keep in reading...
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 75

Chapter Three Volume 1
Page 76 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
More Data Representation Chapter Four

4.1 Chapter Overview

Although the basic machine data objects (bytes, words, and double words) appear to represent nothing
more than signed or unsigned numeric values, we can employ these data types to represent many other types
of objects. This chapter discusses some of the other objects and their internal computer representation.

This chapter begins by discussing floating point (real) numeric format. After integer representation,
floating point representation is the second most popular numeric format in use on modern computer sys-
tems1. Although the floating point format is somewhat complex, the necessity to handle non-integer calcu-
lations in modern programs requires that you understand this numeric format and its limitations.

Binary Coded Decimal (BCD) is another numeric data representation that is useful in certain contexts.
Although BCD is not suitable for general purpose arithmetic, it is useful in some embedded applications.
The principle benefit of the BCD format is the ease with which you can convert between string and BCD for-
mat. When we look at the BCD format a little later in this chapter, you’ll see why this is the case.

Computers can represent all kinds of different objects, not just numeric values. Characters are, unques-
tionably, one of the more popular data types a computer manipulates. In this chapter you will take a look at
a couple of different ways we can represent individual characters on a computer system. This chapter dis-
cusses two of the more common character sets in use today: the ASCII character set and the Unicode charac-
ter set.

This chapter concludes by discussing some common non-numeric data types like pixel colors on a video
display, audio data, video data, and so on. Of course, there are lots of different representations for any kind
of standard data you could envision; there is no way two chapters in a textbook can cover them all. (And
that’s not even considering specialized data types you could create). Nevertheless, this chapter (and the last)
should give you the basic idea behind representing data on a computer system.

4.2 An Introduction to Floating Point Arithmetic

Integer arithmetic does not let you represent fractional numeric values. Therefore, modern CPUs sup-
port an approximation of real arithmetic: floating point arithmetic. A big problem with floating point arith-
metic is that it does not follow the standard rules of algebra. Nevertheless, many programmers apply normal
algebraic rules when using floating point arithmetic. This is a source of defects in many programs. One of
the primary goals of this section is to describe the limitations of floating point arithmetic so you will under-
stand how to use it properly.

Normal algebraic rules apply only to infinite precision arithmetic. Consider the simple statement
“x:=x+1,” x is an integer. On any modern computer this statement follows the normal rules of algebra as
long as overflow does not occur. That is, this statement is valid only for certain values of x
(minint <= x < maxint). Most programmers do not have a problem with this because they are well aware of
the fact that integers in a program do not follow the standard algebraic rules (e.g., 5/2 ≠ 2.5).

Integers do not follow the standard rules of algebra because the computer represents them with a finite
number of bits. You cannot represent any of the (integer) values above the maximum integer or below the
minimum integer. Floating point values suffer from this same problem, only worse. After all, the integers are
a subset of the real numbers. Therefore, the floating point values must represent the same infinite set of inte-
gers. However, there are an infinite number of values between any two real values, so this problem is infi-
nitely worse. Therefore, as well as having to limit your values between a maximum and minimum range, you
cannot represent all the values between those two ranges, either.

1. There are other numeric formats, such as fixed point formats and binary coded decimal format.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 77

Chapter Four Volume One
To represent real numbers, most floating point formats employ scientific notation and use some number
of bits to represent a mantissa and a smaller number of bits to represent an exponent. The end result is that
floating point numbers can only represent numbers with a specific number of significant digits. This has a
big impact on how floating point arithmetic operates. To easily see the impact of limited precision arith-
metic, we will adopt a simplified decimal floating point format for our examples. Our floating point format
will provide a mantissa with three significant digits and a decimal exponent with two digits. The mantissa
and exponents are both signed values as shown in Figure 4.1

Figure 4.1 Simple Floating Point Format

When adding and subtracting two numbers in scientific notation, you must adjust the two values so that
their exponents are the same. For example, when adding 1.23e1 and 4.56e0, you must adjust the values so
they have the same exponent. One way to do this is to convert 4.56e0 to 0.456e1 and then add. This produces
1.686e1. Unfortunately, the result does not fit into three significant digits, so we must either round or trun-
cate the result to three significant digits. Rounding generally produces the most accurate result, so let’s
round the result to obtain 1.69e1. As you can see, the lack of precision (the number of digits or bits we main-
tain in a computation) affects the accuracy (the correctness of the computation).

In the previous example, we were able to round the result because we maintained four significant digits
during the calculation. If our floating point calculation is limited to three significant digits during computa-
tion, we would have had to truncate the last digit of the smaller number, obtaining 1.68e1 which is even less
correct. To improve the accuracy of floating point calculations, it is necessary to add extra digits for use dur-
ing the calculation. Extra digits available during a computation are known as guard digits (or guard bits in
the case of a binary format). They greatly enhance accuracy during a long chain of computations.

The accuracy loss during a single computation usually isn’t enough to worry about unless you are
greatly concerned about the accuracy of your computations. However, if you compute a value which is the
result of a sequence of floating point operations, the error can accumulate and greatly affect the computa-
tion itself. For example, suppose we were to add 1.23e3 with 1.00e0. Adjusting the numbers so their expo-
nents are the same before the addition produces 1.23e3 + 0.001e3. The sum of these two values, even after
rounding, is 1.23e3. This might seem perfectly reasonable to you; after all, we can only maintain three sig-
nificant digits, adding in a small value shouldn’t affect the result at all. However, suppose we were to add
1.00e0 to 1.23e3 ten times. The first time we add 1.00e0 to 1.23e3 we get 1.23e3. Likewise, we get this same
result the second, third, fourth, ..., and tenth time we add 1.00e0 to 1.23e3. On the other hand, had we added
1.00e0 to itself ten times, then added the result (1.00e1) to 1.23e3, we would have gotten a different result,
1.24e3. This is an important thing to know about limited precision arithmetic:

❏ The order of evaluation can effect the accuracy of the result.

You will get more accurate results if the relative magnitudes (that is, the exponents) are close to one
another. If you are performing a chain calculation involving addition and subtraction, you should attempt to
group the values appropriately.

Another problem with addition and subtraction is that you can wind up with false precision. Consider
the computation 1.23e0 - 1.22 e0. This produces 0.01e0. Although this is mathematically equivalent to
1.00e-2, this latter form suggests that the last two digits are exactly zero. Unfortunately, we’ve only got a
single significant digit at this time. Indeed, some FPUs or floating point software packages might actually
insert random digits (or bits) into the L.O. positions. This brings up a second important rule concerning lim-
ited precision arithmetic:

❏ Whenever subtracting two numbers with the same signs or adding two numbers with
different signs, the accuracy of the result may be less than the precision available in
the floating point format.

e±±
Page 78 © 2001, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Multiplication and division do not suffer from the same problems as addition and subtraction since you
do not have to adjust the exponents before the operation; all you need to do is add the exponents and multi-
ply the mantissas (or subtract the exponents and divide the mantissas). By themselves, multiplication and
division do not produce particularly poor results. However, they tend to multiply any error that already exists
in a value. For example, if you multiply 1.23e0 by two, when you should be multiplying 1.24e0 by two, the
result is even less accurate. This brings up a third important rule when working with limited precision arith-
metic:

❏ When performing a chain of calculations involving addition, subtraction, multiplica-
tion, and division, try to perform the multiplication and division operations first.

Often, by applying normal algebraic transformations, you can arrange a calculation so the multiply and
divide operations occur first. For example, suppose you want to compute x*(y+z). Normally you would add
y and z together and multiply their sum by x. However, you will get a little more accuracy if you transform
x*(y+z) to get x*y+x*z and compute the result by performing the multiplications first.

Multiplication and division are not without their own problems. When multiplying two very large or
very small numbers, it is quite possible for overflow or underflow to occur. The same situation occurs when
dividing a small number by a large number or dividing a large number by a small number. This brings up a
fourth rule you should attempt to follow when multiplying or dividing values:

❏ When multiplying and dividing sets of numbers, try to arrange the multiplications so
that they multiply large and small numbers together; likewise, try to divide numbers
that have the same relative magnitudes.

Comparing floating point numbers is very dangerous. Given the inaccuracies present in any computa-
tion (including converting an input string to a floating point value), you should never compare two floating
point values to see if they are equal. In a binary floating point format, different computations which produce
the same (mathematical) result may differ in their least significant bits. For example, adding 1.31e0+1.69e0
should produce 3.00e0. Likewise, adding 1.50e0+1.50e0 should produce 3.00e0. However, were you to
compare (1.31e0+1.69e0) against (1.50e0+1.50e0) you might find out that these sums are not equal to one
another. The test for equality succeeds if and only if all bits (or digits) in the two operands are exactly the
same. Since this is not necessarily true after two different floating point computations which should produce
the same result, a straight test for equality may not work.

The standard way to test for equality between floating point numbers is to determine how much error (or
tolerance) you will allow in a comparison and check to see if one value is within this error range of the other.
The straight-forward way to do this is to use a test like the following:

if Value1 >= (Value2-error) and Value1 <= (Value2+error) then …

Another common way to handle this same comparison is to use a statement of the form:

if abs(Value1-Value2) <= error then …

Most texts, when discussing floating point comparisons, stop immediately after discussing the problem
with floating point equality, assuming that other forms of comparison are perfectly okay with floating point
numbers. This isn’t true! If we are assuming that x=y if x is within y±error, then a simple bitwise comparison
of x and y will claim that x<y if y is greater than x but less than y+error. However, in such a case x should
really be treated as equal to y, not less than y. Therefore, we must always compare two floating point num-
bers using ranges, regardless of the actual comparison we want to perform. Trying to compare two floating
point numbers directly can lead to an error. To compare two floating point numbers, x and y, against one
another, you should use one of the following forms:

= if abs(x-y) <= error then …
≠ if abs(x-y) > error then …
< if (x-y) < error then …
≤ if (x-y) <= error then …
> if (x-y) > error then …
≥ if (x-y) >= error then …
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 79

Chapter Four Volume One
You must exercise care when choosing the value for error. This should be a value slightly greater than
the largest amount of error which will creep into your computations. The exact value will depend upon the
particular floating point format you use, but more on that a little later. The final rule we will state in this sec-
tion is

❏ When comparing two floating point numbers, always compare one value to see if it is
in the range given by the second value plus or minus some small error value.

There are many other little problems that can occur when using floating point values. This text can only
point out some of the major problems and make you aware of the fact that you cannot treat floating point
arithmetic like real arithmetic – the inaccuracies present in limited precision arithmetic can get you into trou-
ble if you are not careful. A good text on numerical analysis or even scientific computing can help fill in the
details that are beyond the scope of this text. If you are going to be working with floating point arithmetic, in
any language, you should take the time to study the effects of limited precision arithmetic on your computa-
tions.

HLA’s IF statement does not support boolean expressions involving floating point operands. Therefore,
you cannot use statements like “IF(x < 3.141) THEN...” in your programs. In a later chapter that discussing
floating point operations on the 80x86 you’ll learn how to do floating point comparisons.

4.2.1 IEEE Floating Point Formats

When Intel planned to introduce a floating point coprocessor for their new 8086 microprocessor, they
were smart enough to realize that the electrical engineers and solid-state physicists who design chips were,
perhaps, not the best people to do the necessary numerical analysis to pick the best possible binary represen-
tation for a floating point format. So Intel went out and hired the best numerical analyst they could find to
design a floating point format for their 8087 FPU. That person then hired two other experts in the field and
the three of them (Kahn, Coonan, and Stone) designed Intel’s floating point format. They did such a good job
designing the KCS Floating Point Standard that the IEEE organization adopted this format for the IEEE
floating point format2.

To handle a wide range of performance and accuracy requirements, Intel actually introduced three float-
ing point formats: single precision, double precision, and extended precision. The single and double preci-
sion formats corresponded to C’s float and double types or FORTRAN’s real and double precision types.
Intel intended to use extended precision for long chains of computations. Extended precision contains 16
extra bits that the calculations could use as guard bits before rounding down to a double precision value
when storing the result.

The single precision format uses a one’s complement 24 bit mantissa and an eight bit excess-127 expo-
nent. The mantissa usually represents a value between 1.0 to just under 2.0. The H.O. bit of the mantissa is
always assumed to be one and represents a value just to the left of the binary point3. The remaining 23 man-
tissa bits appear to the right of the binary point. Therefore, the mantissa represents the value:

1.mmmmmmm mmmmmmmm mmmmmmmm

The “mmmm…” characters represent the 23 bits of the mantissa. Keep in mind that we are working with
binary numbers here. Therefore, each position to the right of the binary point represents a value (zero or one)
times a successive negative power of two. The implied one bit is always multiplied by 20, which is one. This
is why the mantissa is always greater than or equal to one. Even if the other mantissa bits are all zero, the
implied one bit always gives us the value one4. Of course, even if we had an almost infinite number of one
bits after the binary point, they still would not add up to two. This is why the mantissa can represent values
in the range one to just under two.

2. There were some minor changes to the way certain degenerate operations were handled, but the bit representation remained
essentially unchanged.
3. The binary point is the same thing as the decimal point except it appears in binary numbers rather than decimal numbers.
4. Actually, this isn’t necessarily true. The IEEE floating point format supports denormalized values where the H.O. bit is not
zero. However, we will ignore denormalized values in our discussion.
Page 80 © 2001, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Although there are an infinite number of values between one and two, we can only represent eight mil-
lion of them because we use a 23 bit mantissa (the 24th bit is always one). This is the reason for inaccuracy
in floating point arithmetic – we are limited to 23 bits of precision in computations involving single precision
floating point values.

The mantissa uses a one’s complement format rather than two’s complement. This means that the 24 bit
value of the mantissa is simply an unsigned binary number and the sign bit determines whether that value is
positive or negative. One’s complement numbers have the unusual property that there are two representa-
tions for zero (with the sign bit set or clear). Generally, this is important only to the person designing the
floating point software or hardware system. We will assume that the value zero always has the sign bit clear.

To represent values outside the range 1.0 to just under 2.0, the exponent portion of the floating point for-
mat comes into play. The floating point format raise two to the power specified by the exponent and then
multiplies the mantissa by this value. The exponent is eight bits and is stored in an excess-127 format. In
excess-127 format, the exponent 20 is represented by the value 127 ($7f). Therefore, to convert an exponent
to excess-127 format simply add 127 to the exponent value. The use of excess-127 format makes it easier to
compare floating point values. The single precision floating point format takes the form shown in Figure 4.2.

Figure 4.2 Single Precision (32-bit) Floating Point Format

With a 24 bit mantissa, you will get approximately 6-1/2 digits of precision (one half digit of precision
means that the first six digits can all be in the range 0..9 but the seventh digit can only be in the range 0..x
where x<9 and is generally close to five). With an eight bit excess-127 exponent, the dynamic range of single
precision floating point numbers is approximately 2±128 or about 10±38.

Although single precision floating point numbers are perfectly suitable for many applications, the
dynamic range is somewhat limited for many scientific applications and the very limited precision is unsuit-
able for many financial, scientific, and other applications. Furthermore, in long chains of computations, the
limited precision of the single precision format may introduce serious error.

The double precision format helps overcome the problems of single precision floating point. Using
twice the space, the double precision format has an 11-bit excess-1023 exponent and a 53 bit mantissa (with
an implied H.O. bit of one) plus a sign bit. This provides a dynamic range of about 10±308and 14-1/2 digits of
precision, sufficient for most applications. Double precision floating point values take the form shown in
Figure 4.3.

Figure 4.3 64-Bit Double Precision Floating Point Format

31 23 15 7 0

Mantissa BitsExponent Bi tsSign
Bi t

1

The 24th mantissa bit is
implied and is always one.

 63 52 7 0

Mantissa BitsExponent BitsSign
Bit

1

The 53rd mantissa bit is
implied and is always one.

……
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 81

Chapter Four Volume One
In order to help ensure accuracy during long chains of computations involving double precision floating
point numbers, Intel designed the extended precision format. The extended precision format uses 80 bits.
Twelve of the additional 16 bits are appended to the mantissa, four of the additional bits are appended to the
end of the exponent. Unlike the single and double precision values, the extended precision format’s mantissa
does not have an implied H.O. bit which is always one. Therefore, the extended precision format provides a
64 bit mantissa, a 15 bit excess-16383 exponent, and a one bit sign. The format for the extended precision
floating point value is shown in Figure 4.4:

Figure 4.4 80-bit Extended Precision Floating Point Format

On the FPUs all computations are done using the extended precision form. Whenever you load a single
or double precision value, the FPU automatically converts it to an extended precision value. Likewise, when
you store a single or double precision value to memory, the FPU automatically rounds the value down to the
appropriate size before storing it. By always working with the extended precision format, Intel guarantees a
large number of guard bits are present to ensure the accuracy of your computations. Some texts erroneously
claim that you should never use the extended precision format in your own programs, because Intel only
guarantees accurate computations when using the single or double precision formats. This is foolish. By per-
forming all computations using 80 bits, Intel helps ensure (but not guarantee) that you will get full 32 or 64
bit accuracy in your computations. Since the FPUs do not provide a large number of guard bits in 80 bit
computations, some error will inevitably creep into the L.O. bits of an extended precision computation.
However, if your computation is correct to 64 bits, the 80 bit computation will always provide at least 64
accurate bits. Most of the time you will get even more. While you cannot assume that you get an accurate 80
bit computation, you can usually do better than 64 when using the extended precision format.

To maintain maximum precision during computation, most computations use normalized values. A nor-
malized floating point value is one that has a H.O. mantissa bit equal to one. Almost any non-normalized
value can be normalized by shifting the mantissa bits to the left and decrementing the exponent by one until
a one appears in the H.O. bit of the mantissa. Remember, the exponent is a binary exponent. Each time you
increment the exponent, you multiply the floating point value by two. Likewise, whenever you decrement
the exponent, you divide the floating point value by two. By the same token, shifting the mantissa to the left
one bit position multiplies the floating point value by two; likewise, shifting the mantissa to the right divides
the floating point value by two. Therefore, shifting the mantissa to the left one position and decrementing
the exponent does not change the value of the floating point number at all.

Keeping floating point numbers normalized is beneficial because it maintains the maximum number of
bits of precision for a computation. If the H.O. bits of the mantissa are all zero, the mantissa has that many
fewer bits of precision available for computation. Therefore, a floating point computation will be more accu-
rate if it involves only normalized values.

There are two important cases where a floating point number cannot be normalized. The value 0.0 is a
special case. Obviously it cannot be normalized because the floating point representation for zero has no one
bits in the mantissa. This, however, is not a problem since we can exactly represent the value zero with only
a single bit.

The second case is when we have some H.O. bits in the mantissa which are zero but the biased exponent
is also zero (and we cannot decrement it to normalize the mantissa). Rather than disallow certain small val-
ues, whose H.O. mantissa bits and biased exponent are zero (the most negative exponent possible), the IEEE
standard allows special denormalized values to represent these smaller values5. Although the use of denor-

5. The alternative would be to underflow the values to zero.

79 64 7 0

Mantissa BitsExponent Bi tsSign
Bi t

……
Page 82 © 2001, By Randall Hyde Beta Draft - Do not distribute

Data Representation
malized values allows IEEE floating point computations to produce better results than if underflow occurred,
keep in mind that denormalized values offer less bits of precision.

Since the FPU always converts single and double precision values to extended precision, extended pre-
cision arithmetic is actually faster than single or double precision. Therefore, the expected performance ben-
efit of using the smaller formats is not present on these chips. However, when designing the Pentium/586
CPU, Intel redesigned the built-in floating point unit to better compete with RISC chips. Most RISC chips
support a native 64 bit double precision format which is faster than Intel’s extended precision format. There-
fore, Intel provided native 64 bit operations on the Pentium to better compete against the RISC chips. There-
fore, the double precision format is the fastest on the Pentium and later chips.

4.2.2 HLA Support for Floating Point Values

HLA provides several data types and library routines to support the use of floating point data in your
assembly language programs. These include built-in types to declare floating point variables as well as rou-
tines that provide floating point input, output, and conversion.

Perhaps the best place to start when discussing HLA’s floating point facilities is with a description of
floating point literal constants. HLA floating point constants allow the following syntax:

• An optional “+” or “-” symbol, denoting the sign of the mantissa (if this is not present, HLA
assumes that the mantissa is positive),

• Followed by one or more decimal digits,
• Optionally followed by a decimal point and one or more decimal digits,
• Optionally followed by an “e” or “E”, optionally followed by a sign (“+” or “-”) and one or

more decimal digits.

Note: the decimal point or the “e”/”E” must be present in order to differentiate this value from an integer or
unsigned literal constant. Here are some examples of legal literal floating point constants:

1.234 3.75e2 -1.0 1.1e-1 1e+4 0.1 -123.456e+789 +25e0

Notice that a floating point literal constant cannot begin with a decimal point; it must begin with a decimal
digit so you must use “0.1” to represent “.1” in your programs.

HLA also allows you to place an underscore character (“_”) between any two consecutive decimal digits
in a floating point literal constant. You may use the underscore character in place of a comma (or other lan-
guage-specific separator character) to help make your large floating point numbers easier to read. Here are
some examples:

1_234_837.25 1_000.00 789_934.99 9_999.99

To declare a floating point variable you use the real32, real64, or real80 data types. Like their integer
and unsigned brethren, the number at the end of these data type declarations specifies the number of bits
used for each type’s binary representation. Therefore, you use real32 to declare single precision real values,
real64 to declare double precision floating point values, and real80 to declare extended precision floating
point values. Other than the fact that you use these types to declare floating point variables rather than inte-
gers, their use is nearly identical to that for int8, int16, int32, etc. The following examples demonstrate these
declarations and their syntax:

static

fltVar1: real32;
fltVar1a: real32 := 2.7;
pi: real32 := 3.14159;
DblVar: real64;
DblVar2: real64 := 1.23456789e+10;
XPVar: real80;
XPVar2: real80 := -1.0e-104;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 83

Chapter Four Volume One
To output a floating point variable in ASCII form, you would use one of the stdout.putr32, std-
out.putr64, or stdout.putr80 routines. These procedures display a number in decimal notation, that is, a
string of digits, an optional decimal point and a closing string of digits. Other than their names, these three
routines use exactly the same calling sequence. Here are the calls and parameters for each of these routines:

stdout.putr80(r:real80; width:uns32; decpts:uns32);
stdout.putr64(r:real64; width:uns32; decpts:uns32);
stdout.putr32(r:real32; width:uns32; decpts:uns32);

The first parameter to these procedures is the floating point value you wish to print. The size of this
parameter must match the procedure’s name (e.g., the r parameter must be an 80-bit extended precision
floating point variable when calling the stdout.putr80 routine). The second parameter specifies the field
width for the output text; this is the number of print positions the number will require when the procedure
displays it. Note that this width must include print positions for the sign of the number and the decimal
point. The third parameter specifies the number of print positions after the decimal point. For example,

stdout.putr32(pi, 10, 4);

displays the value

_ _ _ _ 3.1416

(the underscores represent leading spaces in this example).

Of course, if the number is very large or very small, you will want to use scientific notation rather than
decimal notation for your floating point numeric output. The HLA Standard Library stdout.pute32, std-
out.pute64, and stdout.pute80 routines provide this facility. These routines use the following procedure pro-
totypes:

stdout.pute80(r:real80; width:uns32);
stdout.pute64(r:real64; width:uns32);
stdout.pute32(r:real32; width:uns32);

Unlike the decimal output routines, these scientific notation output routines do not require a third
parameter specifying the number of digits after the decimal point to display. The width parameter, indi-
rectly, specifies this value since all but one of the mantissa digits always appears to the right of the decimal
point. These routines output their values in decimal notation, similar to the following:

1.23456789e+10 -1.0e-104 1e+2

You can also output floating point values using the HLA Standard Library stdout.put routine. If you
specify the name of a floating point variable in the stdout.put parameter list, the stdout.put code will output
the value using scientific notation. The actual field width varies depending on the size of the floating point
variable (the stdout.put routine attempts to output as many significant digits as possible, in this case). Exam-
ple:

stdout.put(“XPVar2 = “, XPVar2);

If you specify a field width specification, by using a colon followed by a signed integer value, then the
stdout.put routine will use the appropriate stdout.puteXX routine to display the value. That is, the number
will still appear in scientific notation, but you get to control the field width of the output value. Like the field
width for integer and unsigned values, a positive field width right justifies the number in the specified field, a
negative number left justifies the value. Here is an example that prints the XPVar2 variable using ten print
positions:

stdout.put(“XPVar2 = “, XPVar2:10);

If you wish to use stdout.put to print a floating point value in decimal notation, you need to use the fol-
lowing syntax:
Page 84 © 2001, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Variable_Name : Width : DecPts

Note that the DecPts field must be a non-negative integer value.

When stdout.put contains a parameter of this form, it calls the corresponding stdout.putrXX routine to
display the specified floating point value. As an example, consider the following call:

stdout.put(“Pi = “, pi:5:3);

The corresponding output is

3.142

The HLA Standard Library provides several other useful routines you can use when outputting floating
point values. Consult the HLA Standard Library reference manual for more information on these routines.

The HLA Standard Library provides several routines to let you display floating point values in a wide
variety of formats. In contrast, the HLA Standard Library only provides two routines to support floating
point input: stdin.getf() and stdin.get(). The stdin.getf() routine requires the use of the 80x86 FPU stack, a
hardware component that this chapter is not going to cover. Therefore, this chapter will defer the discussion
of the stdin.getf() routine until the chapter on arithmetic, later in this text. Since the stdin.get() routine pro-
vides all the capabilities of the stdin.getf() routine, this deference will not prove to be a problem.

You’ve already seen the syntax for the stdin.get() routine; its parameter list simply contains a list of
variable names. Stdin.get() reads appropriate values for the user for each of the variables appearing in the
parameter list. If you specify the name of a floating point variable, the stdin.get() routine automatically
reads a floating point value from the user and stores the result into the specified variable. The following
example demonstrates the use of this routine:

stdout.put(“Input a double precision floating point value: “);
stdin.get(DblVar);

Warning: This section has discussed how you would declare floating point variables and
how you would input and output them. It did not discuss arithmetic. Floating point arith-
metic is different than integer arithmetic; you cannot use the 80x86 ADD and SUB
instructions to operating on floating point values. Floating point arithmetic will be the
subject of a later chapter in this text.

4.3 Binary Coded Decimal (BCD) Representation

Although the integer and floating point formats cover most of the numeric needs of an average program,
there are some special cases where other numeric representations are convenient. In this section we’ll dis-
cuss the Binary Coded Decimal (BCD) format since the 80x86 CPU provides a small amount of hardware
support for this data representation.

BCD values are a sequence of nibbles with each nibble representing a value in the range zero through
nine. Of course you can represent values in the range 0..15 using a nibble; the BCD format, however, uses
only 10 of the possible 16 different values for each nibble.

Each nibble in a BCD value represents a single decimal digit. Therefore, with a single byte (i.e., two
digits) we can represent values containing two decimal digits, or values in the range 0..99. With a word, we
can represent values having four decimal digits, or values in the range 0..9999. Likewise, with a double
word we can represent values with up to eight decimal digits (since there are eight nibbles in a double word
value).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 85

Chapter Four Volume One
Figure 4.5 BCD Data Representation in Memory

As you can see, BCD storage isn’t particularly memory efficient. For example, an eight-bit BCD vari-
able can represent values in the range 0..99 while that same eight bits, when holding a binary value, can rep-
resent values in the range 0..255. Likewise, a 16-bit binary value can represent values in the range 0..65535
while a 16-bit BCD value can only represent about 1/6 of those values (0..9999). Inefficient storage isn’t the
only problem. BCD calculations tend to be slower than binary calculations.

At this point, you’re probably wondering why anyone would ever use the BCD format. The BCD for-
mat does have two saving graces: it’s very easy to convert BCD values between the internal numeric repre-
sentation and their string representation; also, its very easy to encode multi-digit decimal values in hardware
(e.g., using a “thumb wheel” or dial) using BCD than it is using binary. For these two reasons, you’re likely
to see people using BCD in embedded systems (e.g., toaster ovens and alarm clocks) but rarely in general
purpose computer software.

A few decades ago people mistakenly thought that calculations involving BCD (or just ‘decimal’) arith-
metic was more accurate than binary calculations. Therefore, they would often perform ‘important’ calcula-
tions, like those involving dollars and cents (or other monetary units) using decimal-based arithmetic. While
it is true that certain calculations can produce more accurate results in BCD, this statement is not true in gen-
eral. Indeed, for most calculations (even those involving fixed point decimal arithmetic), the binary repre-
sentation is more accurate. For this reason, most modern computer programs represent all values in a binary
form. For example, the Intel x86 floating point unit (FPU) supports a pair of instructions for loading and
storing BCD values. Internally, however, the FPU converts these BCD values to binary and performs all cal-
culations in binary. It only uses BCD as an external data format (external to the FPU, that is). This generally
produces more accurate results and requires far less silicon than having a separate coprocessor that supports
decimal arithmetic.

This text will take up the subject of BCD arithmetic in a later chapter (See “Decimal Arithmetic” on
page 870.) Until then, you can safely ignore BCD unless you find yourself converting a COBOL program
to assembly language (which is quite unlikely).

4.4 Characters

Perhaps the most important data type on a personal computer is the character data type. The term “char-
acter” refers to a human or machine readable symbol that is typically a non-numeric entity. In general, the
term “character” refers to any symbol that you can normally type on a keyboard (including some symbols
that may require multiple key presses to produce) or display on a video display. Many beginners often con-
fuse the terms “character” and “alphabetic character.” These terms are not the same. Punctuation symbols,
numeric digits, spaces, tabs, carriage returns (enter), other control characters, and other special symbols are
also characters. When this text uses the term “character” it refers to any of these characters, not just the
alphabetic characters. When this text refers to alphabetic characters, it will use phrases like “alphabetic
characters,” “upper case characters,” or “lower case characters.”6.

6. Upper and lower case characters are always alphabetic characters within this text.

7 6 5 4 3 2 1 0

H.O. Nibble L.O. Nibble
(H.O. Digit) (L.O. Digit)

 0..9 0..9
Page 86 © 2001, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Another common problem beginners have when they first encounter the character data type is differenti-
ating between numeric characters and numbers. The character ‘1’ is distinct and different from the value
one. The computer (generally) uses two different internal, binary, representations for numeric characters
(‘0’, ‘1’, ..., ‘9’) versus the numeric values zero through nine. You must take care not to confuse the two.

Most computer systems use a one or two byte sequence to encode the various characters in binary form.
Windows certainly falls into this category, using either the ASCII or Unicode encodings for characters. This
section will discuss the ASCII character set and the character declaration facilities that HLA provides.

4.4.1 The ASCII Character Encoding

The ASCII (American Standard Code for Information Interchange) Character set maps 128 textual char-
acters to the unsigned integer values 0..127 ($0..$7F). Internally, of course, the computer represents every-
thing using binary numbers; so it should come as no surprise that the computer also uses binary values to
represent non-numeric entities such as characters. Although the exact mapping of characters to numeric val-
ues is arbitrary and unimportant, it is important to use a standardized code for this mapping since you will
need to communicate with other programs and peripheral devices and you need to talk the same “language”
as these other programs and devices. This is where the ASCII code comes into play; it is a standardized
code that nearly everyone has agreed upon. Therefore, if you use the ASCII code 65 to represent the charac-
ter “A” then you know that some peripheral device (such as a printer) will correctly interpret this value as the
character “A” whenever you transmit data to that device.

You should not get the impression that ASCII is the only character set in use on computer systems. IBM
uses the EBCDIC character set family on many of its mainframe computer systems. Another common char-
acter set in use is the Unicode character set. Unicode is an extension to the ASCII character set that uses 16
bits rather than seven to represent characters. This allows the use of 65,536 different characters in the char-
acter set, allowing the inclusion of most symbols in the world’s different languages into a single unified
character set.

Since the ASCII character set provides only 128 different characters and a byte can represent 256 differ-
ent values, an interesting question arises: “what do we do with the values 128..255 that one could store into
a byte value when working with character data?” One answer is to ignore those extra values. That will be
the primary approach of this text. Another possibility is to extend the ASCII character set and add an addi-
tional 128 characters to the character set. Of course, this would tend to defeat the whole purpose of having a
standardized character set unless you could get everyone to agree upon the extensions. That is a difficult
task.

When IBM first created their IBM-PC, they defined these extra 128 character codes to contain various
non-English alphabetic characters, some line drawing graphics characters, some mathematical symbols, and
several other special characters. Since IBM’s PC was the foundation for what we typically call a PC today,
that character set has become a pseudo-standard on all IBM-PC compatible machines. Even on modern
Windows machines, which are not IBM-PC compatible and cannot run early PC software, the IBM extended
character set still survives. Note, however, that this PC character set (an extension of the ASCII character
set) is not universal. Most printers will not print the extended characters when using native fonts and many
programs (particularly in non-English countries) do not use those characters for the upper 128 codes in an
eight-bit value. For these reasons, this text will generally stick to the standard 128 character ASCII character
set. However, a few examples and programs in this text will use the IBM PC extended character set, partic-
ularly the line drawing graphic characters (see Appendix B).

Should you need to exchange data with other machines which are not PC-compatible, you have only
two alternatives: stick to standard ASCII or ensure that the target machine supports the extended IBM-PC
character set. Some machines, like the Apple Macintosh, do not provide native support for the extended
IBM-PC character set; however you may obtain a PC font which lets you display the extended character set.
Other machines have similar capabilities. However, the 128 characters in the standard ASCII character set
are the only ones you should count on transferring from system to system.

Despite the fact that it is a “standard”, simply encoding your data using standard ASCII characters does
not guarantee compatibility across systems. While it’s true that an “A” on one machine is most likely an “A”
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 87

Chapter Four Volume One
on another machine, there is very little standardization across machines with respect to the use of the control
characters. Indeed, of the 32 control codes plus delete, there are only four control codes commonly sup-
ported – backspace (BS), tab, carriage return (CR), and line feed (LF). Worse still, different machines often
use these control codes in different ways. End of line is a particularly troublesome example. Windows,
MS-DOS, CP/M, and other systems mark end of line by the two-character sequence CR/LF. Apple Macin-
tosh, and many other systems mark the end of line by a single CR character. Linux, BeOS, and other UNIX
systems mark the end of a line with a single LF character. Needless to say, attempting to exchange simple
text files between such systems can be an experience in frustration. Even if you use standard ASCII charac-
ters in all your files on these systems, you will still need to convert the data when exchanging files between
them. Fortunately, such conversions are rather simple.

Despite some major shortcomings, ASCII data is the standard for data interchange across computer sys-
tems and programs. Most programs can accept ASCII data; likewise most programs can produce ASCII data.
Since you will be dealing with ASCII characters in assembly language, it would be wise to study the layout
of the character set and memorize a few key ASCII codes (e.g., “0”, “A”, “a”, etc.).

The ASCII character set (excluding the extended characters defined by IBM) is divided into four groups
of 32 characters. The first 32 characters, ASCII codes 0 through $1F (31), form a special set of non-printing
characters called the control characters. We call them control characters because they perform various
printer/display control operations rather than displaying symbols. Examples include carriage return, which
positions the cursor to the left side of the current line of characters7, line feed (which moves the cursor down
one line on the output device), and back space (which moves the cursor back one position to the left). Unfor-
tunately, different control characters perform different operations on different output devices. There is very
little standardization among output devices. To find out exactly how a control character affects a particular
device, you will need to consult its manual.

The second group of 32 ASCII character codes comprise various punctuation symbols, special charac-
ters, and the numeric digits. The most notable characters in this group include the space character (ASCII
code $20) and the numeric digits (ASCII codes $30..$39). Note that the numeric digits differ from their
numeric values only in the H.O. nibble. By subtracting $30 from the ASCII code for any particular digit you
can obtain the numeric equivalent of that digit.

The third group of 32 ASCII characters is reserved for the upper case alphabetic characters. The ASCII
codes for the characters “A”..”Z” lie in the range $41..$5A (65..90). Since there are only 26 different alpha-
betic characters, the remaining six codes hold various special symbols.

The fourth, and final, group of 32 ASCII character codes are reserved for the lower case alphabetic sym-
bols, five additional special symbols, and another control character (delete). Note that the lower case charac-
ter symbols use the ASCII codes $61..$7A. If you convert the codes for the upper and lower case characters
to binary, you will notice that the upper case symbols differ from their lower case equivalents in exactly one
bit position. For example, consider the character code for “E” and “e” in the following figure:

7. Historically, carriage return refers to the paper carriage used on typewriters. A carriage return consisted of physically mov-
ing the carriage all the way to the right so that the next character typed would appear at the left hand side of the paper.
Page 88 © 2001, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Figure 4.6 ASCII Codes for “E” and “e”

The only place these two codes differ is in bit five. Upper case characters always contain a zero in bit
five; lower case alphabetic characters always contain a one in bit five. You can use this fact to quickly convert
between upper and lower case. If you have an upper case character you can force it to lower case by setting
bit five to one. If you have a lower case character and you wish to force it to upper case, you can do so by set-
ting bit five to zero. You can toggle an alphabetic character between upper and lower case by simply invert-
ing bit five.

Indeed, bits five and six determine which of the four groups in the ASCII character set you’re in:

So you could, for instance, convert any upper or lower case (or corresponding special) character to its equiv-
alent control character by setting bits five and six to zero.

Consider, for a moment, the ASCII codes of the numeric digit characters:

Table 9: ASCII Groups

Bit 6 Bit 5 Group

0 0 Control Characters

0 1 Digits & Punctuation

1 0 Upper Case & Special

1 1 Lower Case & Special

Table 10: ASCII Codes for Numeric Digits

Character Decimal Hexadecimal

“0” 48 $30

“1” 49 $31

“2” 50 $32

“3” 51 $33

“4” 52 $34

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 1

0 1 1 0 0 1 0 1

E

e

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 89

Chapter Four Volume One
The decimal representations of these ASCII codes are not very enlightening. However, the hexadecimal
representation of these ASCII codes reveals something very important – the L.O. nibble of the ASCII code is
the binary equivalent of the represented number. By stripping away (i.e., setting to zero) the H.O. nibble of a
numeric character, you can convert that character code to the corresponding binary representation. Con-
versely, you can convert a binary value in the range 0..9 to its ASCII character representation by simply set-
ting the H.O. nibble to three. Note that you can use the logical-AND operation to force the H.O. bits to zero;
likewise, you can use the logical-OR operation to force the H.O. bits to %0011 (three).

Note that you cannot convert a string of numeric characters to their equivalent binary representation by
simply stripping the H.O. nibble from each digit in the string. Converting 123 ($31 $32 $33) in this fashion
yields three bytes: $010203, not the correct value which is $7B. Converting a string of digits to an integer
requires more sophistication than this; the conversion above works only for single digits.

4.4.2 HLA Support for ASCII Characters

Although you could easily store character values in byte variables and use the corresponding numeric
equivalent ASCII code when using a character literal in your program, such agony is unnecessary - HLA
provides good support for character variables and literals in your assembly language programs.

Character literal constants in HLA take one of two forms: a single character surrounded by apostrophes
or a pound symbol (“#”) followed by a numeric constant in the range 0..127 specifying the ASCII code of
the character. Here are some examples:

‘A’ #65 #$41 #%0100_0001

Note that these examples all represent the same character (‘A’) since the ASCII code of ‘A’ is 65.

With a single exception, only a single character may appear between the apostrophes in a literal charac-
ter constant. That single exception is the apostrophe character itself. If you wish to create an apostrophe lit-
eral constant, place four apostrophes in a row (i.e., double up the apostrophe inside the surrounding
apostrophes), i.e.,

’’’’

The pound sign operator (“#”) must precede a legal HLA numeric constant (either decimal, hexadecimal
or binary as the examples above indicate). In particular, the pound sign is not a generic character conversion
function; it cannot precede registers or variable names, only constants. As a general rule, you should always
use the apostrophe form of the character literal constant for graphic characters (that is, those that are print-
able or displayable). Use the pound sign form of character literal constants for control characters (that are
invisible, or do funny things when you print them) or for extended ASCII characters that may not display or
print properly within your source code.

Notice the difference between a character literal constant and a string literal constant in your programs.
Strings are sequences of zero or more characters surrounded by quotation marks, characters are surrounded
by apostrophes. It is especially important to realize that

‘A’ ≠ “A”

“5” 53 $35

“6” 54 $36

“7” 55 $37

“8” 56 $38

“9” 57 $39

Table 10: ASCII Codes for Numeric Digits

Character Decimal Hexadecimal
Page 90 © 2001, By Randall Hyde Beta Draft - Do not distribute

Data Representation
The character constant ‘A’ and the string containing the single character “A” have two completely differ-
ent internal representations. If you attempt to use a string containing a single character where HLA expects
a character constant, HLA will report an error. Strings and string constants will be the subject of a later
chapter.

To declare a character variable in an HLA program, you use the char data type. The following declara-
tion, for example, demonstrates how to declare a variable named UserInput:

static
UserInput: char;

This declaration reserves one byte of storage that you could use to store any character value (including
eight-bit extended ASCII characters). You can also initialize character variables as the following example
demonstrates:

static

TheCharA: char := ‘A’;
ExtendedChar char := #128;

Since character variables are eight-bit objects, you can manipulate them using eight-bit registers. You
can move character variables into eight-bit registers and you can store the value of an eight-bit register into a
character variable.

The HLA Standard Library provides a handful of routines that you can use for character I/O and manip-
ulation; these include stdout.putc, stdout.putcSize, stdout.put, stdin.getc, and stdin.get.

The stdout.putc routine uses the following calling sequence:

stdout.putc(chvar);

This procedure outputs the single character parameter passed to it as a character to the standard output
device. The parameter may be any char constant or variable, or a byte variable or register8.

The stdout.putcSize routine provides output width control when displaying character variables. The
calling sequence for this procedure is

stdout.putcSize(charvar, widthInt32, fillchar);

This routine prints the specified character (parameter c) using at least width print positions9. If the absolute
value of width is greater than one, then stdout.putcSize prints the fill character as padding. If the value of
width is positive, then stdout.putcSize prints the character right justified in the print field; if width is nega-
tive, then stdout.putcSize prints the character left justified in the print field. Since character output is usually
left justified in a field, the width value will normally be negative for this call. The space character is the most
common value used for the fill character.

You can also print character values using the generic stdout.put routine. If a character variable appears
in the stdout.put parameter list, then stdout.put will automatically print it as a character value, e.g.,

stdout.put(“Character c = ‘”, c, “‘”, nl);

You can read characters from the standard input using the stdin.getc and stdin.get routines. The
stdin.getc routine does not have any parameters. It reads a single character from the standard input buffer
and returns this character in the AL register. You may then store the character value away or otherwise
manipulate the character in the AL register. The following program reads a single character from the user,
converts it to upper case if it is a lower case character, and then displays the character:

8. If you specify a byte variable or a byte-sized register as the parameter, the stdout.putc routine will output the character
whose ASCII code appears in the variable or register.
9. The only time stdout.putcSize uses more print positions than you specify is when you specify zero as the width; then this
routine uses exactly one print position.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 91

Chapter Four Volume One
program charInputDemo;
#include(“stdlib.hhf”);
static

c:char;

begin charInputDemo;

stdout.put(“Enter a character: “);
stdin.getc();
if(al >= ‘a’) then

if(al <= ‘z’) then

and($5f, al);

endif;

endif;
stdout.put
(

“The character you entered, possibly “, nl,
“converted to upper case, was ‘”

);
stdout.putc(al);
stdout.put(“‘”, nl);

end charInputDemo;

Program 4.1 Character Input Sample

You can also use the generic stdin.get routine to read character variables from the user. If a stdin.get
parameter is a character variable, then the stdin.get routine will read a character from the user and store the
character value into the specified variable. Here is the program above rewritten to use the stdin.get routine:

program charInputDemo2;
#include(“stdlib.hhf”);
static

c:char;

begin charInputDemo2;

stdout.put(“Enter a character: “);
stdin.get(c);
if(c >= ‘a’) then

if(c <= ‘z’) then

and($5f, c);

endif;

endif;
stdout.put
(

“The character you entered, possibly “, nl,
“converted to upper case, was ‘”,
c,
Page 92 © 2001, By Randall Hyde Beta Draft - Do not distribute

Data Representation
“‘”, nl
);

end charInputDemo2;

Program 4.2 Stdin.get Character Input Sample

As you may recall from the last chapter, the HLA Standard Library buffers its input. Whenever you
read a character from the standard input using stdin.getc or stdin.get, the library routines read the next avail-
able character from the buffer; if the buffer is empty, then the program reads a new line of text from the user
and returns the first character from that line. If you want to guarantee that the program reads a new line of
text from the user when you read a character variable, you should call the stdin.flushInput routine before
attempting to read the character. This will flush the current input buffer and force the input of a new line of
text on the next input (which should be your stdin.getc or stdin.get call).

The end of line is problematic. Different operating systems handle the end of line differently on output
versus input. From the console device, pressing the ENTER key signals the end of a line; however, when
reading data from a file you get an end of line sequence which is typically a line feed or a carriage return/line
feed pair. To help solve this problem, HLA’s Standard Library provides an “end of line” function. This pro-
cedure returns true (one) in the AL register if all the current input characters have been exhausted, it returns
false (zero) otherwise. The following sample program is a rewrite of the above code using the stdin.eoln
function.

program eolnDemo2;
#include(“stdlib.hhf”);
begin eolnDemo2;

stdout.put(“Enter a short line of text: “);
stdin.flushInput();
repeat

stdin.getc();
stdout.putc(al);
stdout.put(“=$”, al, nl);

until(stdin.eoln());

end eolnDemo2;

Program 4.3 Testing for End of Line Using Stdin.eoln

The HLA language and the HLA Standard Library provide many other procedures and additional sup-
port for character objects. Later chapters in this textbook, as well as the HLA reference documentation,
describe how to use these features.

4.4.3 The ASCII Character Set

The following table lists the binary, hexadecimal, and decimal representations for each of the 128 ASCII
character codes.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 93

Chapter Four Volume One
Table 11: ASCII Character Set

Binary Hex Decimal Character

0000_0000 00 0 NULL

0000_0001 01 1 ctrl A

0000_0010 02 2 ctrl B

0000_0011 03 3 ctrl C

0000_0100 04 4 ctrl D

0000_0101 05 5 ctrl E

0000_0110 06 6 ctrl F

0000_0111 07 7 bell

0000_1000 08 8 backspace

0000_1001 09 9 tab

0000_1010 0A 10 line feed

0000_1011 0B 11 ctrl K

0000_1100 0C 12 form feed

0000_1101 0D 13 return

0000_1110 0E 14 ctrl N

0000_1111 0F 15 ctrl O

0001_0000 10 16 ctrl P

0001_0001 11 17 ctrl Q

0001_0010 12 18 ctrl R

0001_0011 13 19 ctrl S

0001_0100 14 20 ctrl T

0001_0101 15 21 ctrl U

0001_0110 16 22 ctrl V

0001_0111 17 23 ctrl W

0001_1000 18 24 ctrl X

0001_1001 19 25 ctrl Y

0001_1010 1A 26 ctrl Z

0001_1011 1B 27 ctrl [

0001_1100 1C 28 ctrl \

0001_1101 1D 29 Esc
Page 94 © 2001, By Randall Hyde Beta Draft - Do not distribute

Data Representation
0001_1110 1E 30 ctrl ^

0001_1111 1F 31 ctrl _

0010_0000 20 32 space

0010_0001 21 33 !

0010_0010 22 34 "

0010_0011 23 35 #

0010_0100 24 36 $

0010_0101 25 37 %

0010_0110 26 38 &

0010_0111 27 39 '

0010_1000 28 40 (

0010_1001 29 41)

0010_1010 2A 42 *

0010_1011 2B 43 +

0010_1100 2C 44 ,

0010_1101 2D 45 -

0010_1110 2E 46 .

0010_1111 2F 47 /

0011_0000 30 48 0

0011_0001 31 49 1

0011_0010 32 50 2

0011_0011 33 51 3

0011_0100 34 52 4

0011_0101 35 53 5

0011_0110 36 54 6

0011_0111 37 55 7

0011_1000 38 56 8

0011_1001 39 57 9

0011_1010 3A 58 :

0011_1011 3B 59 ;

0011_1100 3C 60 <

Table 11: ASCII Character Set

Binary Hex Decimal Character
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 95

Chapter Four Volume One
0011_1101 3D 61 =

0011_1110 3E 62 >

0011_1111 3F 63 ?

0100_0000 40 64 @

0100_0001 41 65 A

0100_0010 42 66 B

0100_0011 43 67 C

0100_0100 44 68 D

0100_0101 45 69 E

0100_0110 46 70 F

0100_0111 47 71 G

0100_1000 48 72 H

0100_1001 49 73 I

0100_1010 4A 74 J

0100_1011 4B 75 K

0100_1100 4C 76 L

0100_1101 4D 77 M

0100_1110 4E 78 N

0100_1111 4F 79 O

0101_0000 50 80 P

0101_0001 51 81 Q

0101_0010 52 82 R

0101_0011 53 83 S

0101_0100 54 84 T

0101_0101 55 85 U

0101_0110 56 86 V

0101_0111 57 87 W

0101_1000 58 88 X

0101_1001 59 89 Y

0101_1010 5A 90 Z

0101_1011 5B 91 [

Table 11: ASCII Character Set

Binary Hex Decimal Character
Page 96 © 2001, By Randall Hyde Beta Draft - Do not distribute

Data Representation
0101_1100 5C 92 \

0101_1101 5D 93]

0101_1110 5E 94 ^

0101_1111 5F 95 _

0110_0000 60 96 `

0110_0001 61 97 a

0110_0010 62 98 b

0110_0011 63 99 c

0110_0100 64 100 d

0110_0101 65 101 e

0110_0110 66 102 f

0110_0111 67 103 g

0110_1000 68 104 h

0110_1001 69 105 i

0110_1010 6A 106 j

0110_1011 6B 107 k

0110_1100 6C 108 l

0110_1101 6D 109 m

0110_1110 6E 110 n

0110_1111 6F 111 o

0111_0000 70 112 p

0111_0001 71 113 q

0111_0010 72 114 r

0111_0011 73 115 s

0111_0100 74 116 t

0111_0101 75 117 u

0111_0110 76 118 v

0111_0111 77 119 w

0111_1000 78 120 x

0111_1001 79 121 y

0111_1010 7A 122 z

Table 11: ASCII Character Set

Binary Hex Decimal Character
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 97

Chapter Four Volume One
4.5 The UNICODE Character Set

Although the ASCII character set is, unquestionably, the most popular character representation on com-
puters, it is certainly not the only format around. For example, IBM uses the EBCDIC code on many of its
mainframe and minicomputer lines. Since EBCDIC appears mainly on IBM’s big iron and you’ll rarely
encounter it on personal computer systems, we will not consider that character set in this text. Another char-
acter representation that is becoming popular on small computer systems (and large ones, for that matter) is
the Unicode character set. Unicode overcomes two of ASCII’s greatest limitations: the limited character
space (i.e., a maximum of 128/256 characters in an eight-bit byte) and the lack of international (beyond the
USA) characters.

Unicode uses a 16-bit word to represent a single character. Therefore, Unicode supports up to 65,536
different character codes. This is obviously a huge advance over the 256 possible codes we can represent
with an eight-bit byte. Unicode is upwards compatible from ASCII. Specifically, if the H.O. 17 bits of a
Unicode character contain zero, then the L.O. seven bits represent the same character as the ASCII character
with the same character code. If the H.O. 17 bits contain some non-zero value, then the character represents
some other value. If you’re wondering why so many different character codes are necessary, simply note
that certain Asian character sets contain 4096 characters (at least, their Unicode subset).

This text will stick to the ASCII character set except for a few brief mentions of Unicode here and there.
Eventually, this text may have to eliminate the discussion of ASCII in favor of Unicode since all new ver-
sions of Windows use Unicode internally (and convert to ASCII as necessary). Unfortunately, many string
algorithms are not as conveniently written for Unicode as for ASCII (especially character set functions) so
we’ll stick with ASCII in this text as long as possible.

4.6 Other Data Representations

Of course, we can represent many different objects other than numbers and characters in a computer
system. The following subsections provide a brief description of the different real-world data types you
might encounter.

4.6.1 Representing Colors on a Video Display

As you’re probably aware, color images on a computer display are made up of a series of dots known as
pixels (which is short for “picture elements.”). Different display modes (depending on the capability of the
display adapter) use different data representations for each of these pixels. The one thing in common
between these data types is that they control the mixture of the three additive primary colors (red, green, and
blue) to form a specific color on the display. The question, of course, is how much of each of these colors do
they mix together?

0111_1011 7B 123 {

0111_1100 7C 124 |

0111_1101 7D 125 }

0111_1110 7E 126 ~

0111_1111 7F 127

Table 11: ASCII Character Set

Binary Hex Decimal Character
Page 98 © 2001, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Color depth is the term video card manufacturers use to describe how much red, green, and blue they
mix together for each pixel. Modern video cards generally provides three color depths of eight, sixteen, or
twenty-four bits, allowing 256, 65536, or over 16 million colors per pixel on the display. This produces
images that are somewhat coarse and grainy (eight-bit images) to “Polaroid quality” (16-bit images), on up
to “photographic quality” (24-bit images)10.

One problem with these color depths is that two of the three formats do not contain a number of bits that
is evenly divisible by three. Therefore, in each of these formats at least one of the three primary colors will
have fewer bits than the others. For example, with an eight-bit color depth, two of the colors can have three
bits (or eight different shades) associated with them while one of the colors must have only two bits (or four
shades). Therefore, when distributing the bits there are three formats possible: 2-3-3 (two bits red, three bits
green, and three bits blue), 3-2-3, or 3-3-2. Likewise, with a 16 bit color depth, two of the three colors can
have five bits while the third color can have six bits. This lets us generate three different palettes using the
bit values 5-5-6, 5-6-5, or 6-5-5. For 24-bit displays, each primary color can have eight bits, so there is an
even distribution of the colors for each pixel.

A 24-bit display produces amazingly good results. A 16-bit display produces okay images. Eight-bit
displays, to put it bluntly, produce horrible photographic images (they do produce good synthetic images
like those you would manipulate with a draw program). To produce better images when using an eight-bit
display, most cards provide a hardware palette. A palette is nothing more than an array of 24-bit values con-
taining 256 elements11. The system uses the eight-bit pixel value as an index into this array of 256 values
and displays the color associated with the 24-bit entry in the palette table. Although the display can still dis-
play only 256 different colors at one time, the palette mechanism lets users select exactly which colors they
want to display. For example, they could display 250 shades of blue and six shades of purple if such a mix-
ture produces a better image for them.

10. Some graphic artists would argue that 24 bit images are not of a sufficient quality. There are some display/printer./scanner
devices capable of working with 33-bit, 36-bit, and even 48-bit images; if, of course, you’re willing to pay for them.
11. Actually, the color depth of each palette entry is not necessarily fixed at 24 bits. Some display devices, for example, use
18-bit entries in their palette.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 99

Chapter Four Volume One
Figure 4.7 Extending the Number of Colors Using a Palette

Unfortunately, the palette scheme only works for displays with minimal color depths. For example,
attempting to use a palette with 16-bit images would require a lookup table with 65,536 different three-byte
entries – a bit much for today’s operating systems (since they may have to reload the palette every time you
select a window on the display). Fortunately, the higher bit depths don’t require the palette concept as much
as the eight-bit color depth.

Obviously, we could dream up other schemes for representing pixel color on the display. Some display
systems, for example, use the subtractive primary colors (Cyan, Yellow, and Magenta, plus Black, the
so-called CYMK color space). Other display system use fewer or more bits to represent the values. Some
distribute the bits between various shades. Monochrome displays typically use one, four, or eight bit pixels
to display various gray scales (e.g., two, sixteen, or 256 shades of gray). However, the bit organizations of
this section are among the more popular in use by display adapters.

4.6.2 Representing Audio Information

Another real-world quantity you’ll often find in digital form on a computer is audio information. WAV
files, MP3 files, and other audio formats are quite popular on personal computers. An interesting question is
“how do we represent audio information inside the computer?” While many sound formats are far too com-

7 6 5 4 3 2 1 0

Eight-bit pixel value provide
an index into a table of 256
24-bit values. The value of
the selected element specifies
the 24-bit color to display.

Pixel Color
to Display
Page 100 © 2001, By Randall Hyde Beta Draft - Do not distribute

Data Representation
plex to discuss here (e.g., the MP3 format), it is relatively easy to represent sound using a simple sound data
format (something similar to the WAV file format). In this section we’ll explore a couple of possible ways to
represent audio information; but before we take a look at the digital format, perhaps it’s a wise idea to study
the analog format first.

Figure 4.8 Operation of a Speaker

Sounds you hear are the result of vibrating air molecules. When air molecules quickly vibrate back and
forth between 20 and 20,000 times per second, we interpret this as some sort of sound. A speaker (see Figure
4.8) is a device which vibrates air in response to an electrical signal. That is, it converts an electric signal
which alternates between 20 and 20,000 times per second (Hz) to an audible tone. Alternating a signal is
very easy on a computer, all you have to do is apply a logic one to an output port for some period of time and
then write a logic zero to the output port for a short period. Then repeat this over and over again. A plot of
this activity over time appears in Figure 4.9.

Figure 4.9 An Audible Sound Wave

Although many humans are capable of hearing tones in the range 20-20Khz, the PC’s speaker is not
capable of faithfully reproducing the tones in this range. It works pretty good for sounds in the range
100-10Khz, but the volume drops off dramatically outside this range. Fortunately, most modern PCs contain
a sound card that is quite capable (with appropriate external speakers) of faithfully representing “CD-Qual-
ity” sound. Of course, a good question might be “what is CD-Quality sound, anyway?” Well, to answer

Input an alternating electrical signal
to the speaker.

The speaker
responds by
pushing the
air in an out
according to
the electrical
signal.

Voltage applied
to speaker

Time

Logic 1

Logic 0

One Clock
Period

Note: Frequency is equal to the recipricol of the clock period. Audible sounds are
between 20 and 20,000 Hz.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 101

Chapter Four Volume One
that question, we’ve got to decide how we’re going to represent sound information in a binary format (see
“What is “Digital Audio” Anyway?” on page 102).

Take another look at Figure 4.9. This is a graph of amplitude (volume level) over time. If logic one
corresponds to a fully extended speaker cone and logic zero corresponds to a fully retracted speaker cone,
then the graph in Figure 4.9 suggests that we are constantly pushing the speaker cone in an out as time
progresses. This analog data, by the way, produces what is known as a “square wave” which tends to be a
very bright sound at high frequencies and a very buzzy sound at low frequencies. One advantage of a square
wave tone is that we only need to alternate a single bit of data over time in order to produce a tone. This is
very easy to do and very inexpensive. These two reasons are why the PC’s built-in speaker (not the sound
card) uses exactly this technique for produces beeps and squawks.

To produce different tones with a square wave sound system is very easy. All you’ve got to do is write a
one and a zero to some bit connected to the speaker somewhere between 20 and 20,000 times per second.
You can even produce “warbling” sounds by varying the frequency at which you write those zeros and ones
to the speaker.

One easy data format we can develop to represent digitized (or, should we say, “binarized”) audio data
is to create a stream of bits that we feed to the speaker every 1/40,000 seconds. By alternating ones and zeros
in this bit stream, we get a 20 KHz tone (remember, it takes a high and a low section to give us one clock
period, hence it will take two bits to produce a single cycle on the output). To get a 20 Hz tone, you would
create a bit stream that alternates between 1,000 zeros and 1,000 ones. With 1,000 zeros, the speaker will
remain in the retracted position for 1/40 seconds, following that with 1,000 ones leaves the speaker in the
fully extended position for 1/40 seconds. The end result is that the speaker moves in and out 20 times a sec-
ond (giving us our 20 Hz frequency). Of course, you don’t have to emit a regular pattern of zeros and ones.
By varying the positions of the ones and zeros in your data stream you can dramatically affect the type of
sound the system will produce.

The length of your data stream will determine how long the sound plays. With 40,000 bits, the sound
will play for one second (assuming each bit’s duration is 1/40,000 seconds). As you can see, this sound format
will consume 5,000 bytes per second. This may seem like a lot, but it’s relatively modest by digital audio
standards.

Unfortunately, square waves are very limited with respect to the sounds you can produce with them and
they are not very high fidelity (certainly not “CD-Quality”). Real analog audio signals are much more com-
plex and you cannot represent them with two different voltage levels on a speaker. Figure 4.10 provides a

What is “Digital Audio” Anyway?

“Digital Audio” or “digitized audio” is the conventional term the consumer electronics industry uses
to describe audio information encoded for use on a computer. What exactly does the term “digital” mean
in this case. Historically, the term “digit” refers to a finger. A digital numbering system is one based on
counting one’s fingers. Traditionally, then, a “digital number” was a base ten number (since the number-
ing system we most commonly use is based on the ten digits with which God endowed us). In the early
days of computer systems the terms “digital computer” and “binary computer” were quite prevalent, with
digital computers describing decimal computer systems (i.e., BCD-based systems). Binary computers, of
course, were those based on the binary numbering system. Although BCD computers are mainly an arti-
fact in the historical dust bin, the name “digital computer” lives on and is the common term to describe all
computer systems, binary or otherwise. Therefore, when people talk about the logic gates computer
designers use to create computer systems, they call them “digital logic.” Likewise, when they refer to
computerized data (like audio data), they refer to it as “digital.” Technically, the term “digital” should
mean base ten, not base two. Therefore, we should really refer to “digital audio” as “binary audio” to be
technically correct. However, it’s a little late in the game to change this term, so “digital XXXXX” lives
on. Just keep in mind that the two terms “digital audio” and “binary audio” really do mean the same thing,
even though they shouldn’t.
Page 102 © 2001, By Randall Hyde Beta Draft - Do not distribute

Data Representation
typical example of an audio waveform. Notice that the frequency and the amplitude (the height of the sig-
nal) varies considerably over time. To capture the height of the waveform at any given point in time we will
need more than two values; hence, we’ll need more than a single bit.

Figure 4.10 A Typical Audio Waveform

An obvious first approximation is to use a byte, rather than a single bit, to represent each point in time
on our waveform. We can convert this byte data to an analog signal using a device that is called a “digital to
analog converter” (how obvious) or DAC. This accepts some binary number as input and produces an ana-
log voltage on its output. This allows us to represent an impressive 256 different voltage levels in the wave-
form. By using eight bits, we can produce a far wider range of sounds than are possible with a single bit.
Of course, our data stream now consumes 40,000 bytes per second; quite a big step up from the 5,000
bytes/second in the previous example, but still relatively modest in terms of digital audio data rates.

You might think that 256 levels would be sufficient to produce some impressive audio. Unfortunately,
our hearing is logarithmic in nature and it takes an order of magnitude difference in signal for a sound to
appear just a little bit louder. Therefore, our 256 different analog levels aren’t as impressive to our ears.
Although you can produce some decent sounds with an eight-bit data stream, it’s still not high fidelity and
certainly not “CD-Quality” audio.

The next obvious step up the ladder is a 16-bit value for each point of our digital audio stream. With
65,536 different analog levels we finally reach the realm of “CD-Quality” audio. Of course, we’re now con-
suming 80,000 bytes per second to achieve this! For technical reasons, the Compact Disc format actually
requires 44,100 16-bit samples per second. For a stereo (rather than monaural) data stream, you need two
16-bit values each 1/44,100 seconds. This produces a whopping data rate of over 160,000 bytes per second.
Now you understand the claim a littler earlier that 5,000 bytes per second is a relatively modest data rate.

Some very high quality digital audio systems use 20 or 24 bits of information and record the data at a
higher frequency than 44.1 KHz (48 KHz is popular, for example). Such data formats record a better signal
at the expense of a higher data rate. Some sound systems don’t require anywhere near the fidelity levels of
even a CD-Quality recording. Telephone conversations, for example, require only about 5,000 eight-bit
samples per second (this, by the way, is why phone modems are limited to approximately 56,000 bits per
second, which is about 5,000 bytes per second plus some overhead). Some common “digitizing” rates for
audio include the following:

• Eight-bit samples at 11 KHz
• Eight-bit samples at 22 KHz
• Eight-bit samples at 44.1 KHz
• 16-bit samples at 32 KHz
• 16-bit samples at 44.1 KHz
• 16-bit samples at 48 KHz
• 24-bit samples at 44.1 KHz (generally in professional recording systems)
• 24-bit samples at 48 KHz (generally in professional recording systems)

The fidelity increases as you move down this list.

Voltage applied
to speaker

Time

High Voltage

Low Voltage
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 103

Chapter Four Volume One
The exact format for various audio file formats is way beyond the scope of this text since many of the
formats incorporate data compression. Some simple audio file formats like WAV and AIFF consist of little
more than the digitized byte stream, but other formats are nearly indecipherable in their complexity. The
exact nature of a sound data type is highly dependent upon the sound hardware in your system, so we won’t
delve any farther into this subject. There are several books available on computer audio and sound file for-
mats if you’re interested in pursuing this subject farther.

4.6.3 Representing Musical Information

Although it is possible to compress an audio data stream somewhat, high-quality audio will consume a
large amount of data. CD-Quality audio consumes just over 160 Kilobytes per second, so a CD at 650
Megabytes holds enough data for just over an hour of audio (in stereo). Earlier, you saw that we could use a
palette to allow higher quality color images on an eight-bit display. An interesting question is “can we create
a sound palette to let us encode higher quality audio?” Unfortunately, the general answer is no because
audio information is much less redundant than video information and you cannot produce good results with
rough approximation (which using a sound palette would require). However, if you’re trying to produce a
specific sound, rather than trying to faithfully reproduce some recording, there are some possibilities open to
you.

The advantage to the digitized audio format is that it records everything. In a music track, for example,
the digital information records all the instruments, the vocalists, the background noise, and, well, everything.
Sometimes you might not need to retain all this information. For example, if all you want to record is a key-
board player’s synthesizer, the ability to record all the other audio information simultaneously is not neces-
sary. In fact, with an appropriate interface to the computer, recording the audio signal from the keyboard is
completely unnecessary. A far more cost-effective approach (from a memory usage point of view) is to sim-
ply record the notes the keyboardist plays (along with the duration of each note and the velocity at which the
keyboardist plays the note) and then simply feed this keyboard information back to the synthesizer to play
the music at a later time. Since it only takes a few bytes to record each note the keyboardist plays, and the
keyboardist generally plays fewer than 100 notes per second, the amount of data needed to record a complex
piece of music is tiny compared to a digitized audio recording of the same performance.

One very popular format for recording musical information in this fashion is the MIDI format (MIDI
stands for Musical Instrument Digital Interface and it specifies how to connect musical instructions, comput-
ers, and other equipment together). The MIDI protocol uses multi-byte values to record information about a
series of instruments (a simple MIDI file can actually control up to 16 or more instruments simultaneously).

Although the internal data format of the MIDI protocol is beyond the scope of this chapter, it is interest-
ing to note that a MIDI command is effectively equivalent to a “palette look-up” for an audio signal. When
a musical instrument receives a MIDI command telling it to play back some note, that instrument generally
plays back some waveform stored in the synthesizer.

Note that you don’t actually need an external keyboard/synthesizer to play back MIDI files. Most sound
cards contain software that will interpret MIDI commands and play the accompany notes. These cards defi-
nitely use the MIDI command as an index into a “wave table” (short for waveform lookup table) to play the
accompanying sound. Although the quality of the sound these cards reproduce is often inferior to that a pro-
fessional synthesizer produces, they do let you play MIDI files without purchasing an expensive synthesizer
module12.

If you’re interested in the actual data format that MIDI uses, there are dozens of texts available on the
MIDI format. Any local music store should carry several of these. You should also be able to find lots of
information on MIDI on the Internet (try Roland’s web site as a good starting point).

12. For those who would like a better MIDI experience using a sound card, some synthesizer manufacturers produce sound
cards with an integrated synthesizer on-board.
Page 104 © 2001, By Randall Hyde Beta Draft - Do not distribute

Data Representation
4.6.4 Representing Video Information

Recent increases in disk space, computer speed, and network access have allowed an explosion in the
popularity of multimedia on personal computers. Although the term “multimedia” suggests that the data for-
mat deals with many different types of media, most people use this term to describe digital video recording
and playback on a computer system. In fact, most multimedia formats support at least two mediums: video
and audio. The more popular formats like Apple’s Quicktime support other concurrent media streams as
well (e.g., a separate subtitle track, time codes, and device control). To simplify matters, we limit the discus-
sion in this section to digital video streams.

Fundamentally, a video image is nothing more than a succession of still pictures that the system displays
at some rate like 30 images per second. Therefore, if we want to create a digitized video image format, all
we really need to do is store 30 or so pictures for each second of video we wish to view. This may not seem
like a big deal, but consider that a typical “full screen” video display has 640x480 pixels or a total of
307,200 pixels. If we use a 24-bit RGB color space, then each pixel will require three bytes, raising the total
to 921,600 bytes per image. Displaying 30 of these images per second means our video format will con-
sume 27,648,000 bytes per second. Digital audio, at 160 Kilobytes per second is virtually nothing compared
to the data requirements for digital video.

Although computer systems and hard disk systems have advanced tremendously over the past decade,
maintaining a 30 MByte/second data rate from disk to display is a little too much to expect from all but the
most expensive workstations currently available (at least, in the year 2000 as this was written). Therefore,
most multimedia systems use various techniques (or combinations of these techniques) to get the data rate
down to something more reasonable. In stock computer systems, a common technique is to display a
320x240 quarter screen image rather than a full-screen 640x480 image. This reduces the data rate to about
seven megabytes per second.

Another technique digital video formats use is to compress the video data. Video data tends to contain
lots of redundant information that the system can eliminate through the use of compression. The popular
DV format for digital video camcorders, for example, compresses the data stream by almost 90%, requiring
only a 3.3 MByte/second data rate for full-screen video. This type of compression is not without cost. There
is a detectable, though slight, loss in image quality when employing DV compression on a video image.
Nevertheless, this compression makes it possible to deal with digital video data streams on a contemporary
computer system. Compressed data formats are a little beyond the scope of this chapter; however, by the
time you finish this text you should be well-prepared to deal with compressed data formats. Programmers
writing video data compression algorithms often use assembly language because compression and decom-
pression algorithms need to be very fast to process a video stream in real time. Therefore, keep reading this
text if you’re interested in working on these types of algorithms.

4.6.5 Where to Get More Information About Data Types

Since there are many ways to represent a particular real-world object inside the computer, and nearly an
infinite variety of real-world objects, this text cannot even begin to cover all the possibilities. In fact, one of
the most important steps in writing a piece of computer software is to carefully consider what objects the
software needs to represent and then choose an appropriate internal representation for that object. For some
objects or processes, an internal representation is fairly obvious; for other objects or processes, developing
an appropriate data type representation is a difficult task. Although we will continue to look at different data
representations throughout this text, if you’re really interested in learning more about data representation of
real world objects, activities, and processes, you should consult a good “Data Structures and Algorithms”
textbook. This text does not have the space to treat these subjects properly (since it still has to teach assem-
bly language). Most texts on data structures present their material in a high level language. Adopting this
material to assembly language is not difficult, especially once you’ve digested a large percentage of this text.
For something a little closer to home, you might consider reading Knuth’s “The Art of Computer Program-
ming” that describes data structures and algorithms using a synthetic assembly language called MIX.
Although MIX isn’t the same as HLA or even x86 assembly language, you will probably find it easier to
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 105

Chapter Four Volume One
convert algorithms in this text to x86 than it would be to convert algorithms written in Pascal, Java, or C++ to
assembly language.

4.7 Putting It All Together

Perhaps the most important fact this chapter and the last chapter present is that computer programs all
use strings of binary bits to represent data internally. It is up to an application program to distinguish
between the possible representations. For example, the bit string %0100_0001 could represent the numeric
value 65, an ASCII character (‘A’), or the mantissa portion of a floating point value ($41). The CPU cannot
and does not distinguish between these different representations, it simply processes this eight-bit value as a
bit string and leaves the interpretation of the data to the application.

Beginning assembly language programmers often have trouble comprehending that they are responsible
for interpreting the type of data found in memory; after all, one of the most important abstractions that high
level languages provide is to associate a data type with a bit string in memory. This allows the compiler to
do the interpretation of data representation rather than the programmer. Therefore, an important point this
chapter makes is that assembly language programmers must handle this interpretation themselves. The HLA
language provides built-in data types that seem to provide these abstractions, but keep in mind that once
you’ve loaded a value into a register, HLA can no longer interpret that data for you, it is your responsibility
to use the appropriate machine instructions that operate on the specified data.

One small amount of checking that HLA and the CPU does enforce is size checking - HLA will not
allow you to mix sizes of operands within most instructions13. That is, you cannot specify a byte operand
and a word operand in the same instruction that expects its two operands to be the same size. However, as
the following program indicates, you can easily write a program that treats the same value as completely dif-
ferent types.

program dataInterpretation;
#include(“stdlib.hhf”);
static

r: real32 := -1.0;

begin dataInterpretation;

stdout.put(“‘r’ interpreted as a real32 value: “, r:5:2, nl);

stdout.put(“‘r’ interpreted as an uns32 value: “);
mov(r, eax);
stdout.putu32(eax);
stdout.newln();

stdout.put(“‘r’ interpreted as an int32 value: “);
mov(r, eax);
stdout.puti32(eax);
stdout.newln();

stdout.put(“‘r’ interpreted as a dword value: $”);
mov(r, eax);
stdout.putdw(eax);
stdout.newln();

end dataInterpretation;

13. The sign and zero extension instructions are an obvious exception, though HLA still checks the operand sizes to ensure
they are appropriate.
Page 106 © 2001, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Program 4.4 Interpreting a Single Value as Several Different Data Types

As this sample program demonstrates, you can get completely different results by interpreting your data
differently during your program’s execution. So always remember, it is your responsibility to interpret the
data in your program. HLA helps a little by allowing you to declare data types that are slightly more abstract
than bytes, words, or double words; HLA also provides certain support routines, like stdout.put, that will
automatically interpret these abstract data types for you; however, it is generally your responsibility to use
the appropriate machine instructions to consistently manipulate memory objects according to their data type.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 107

Chapter Four Volume One
Page 108 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
Chapter Five

Questions, Projects, and Lab Exercises

5.1 Questions

1) List the legal forms of a boolean expression in an HLA IF statement.

2) What data type do you use to declare a

a) 32-bit signed integer?

b) 16-bit signed integer?

c) 8-bit signed integer?

3) List all of the 80x86:

a) 8-bit general purpose registers.

b) 16-bit general purpose registers.

c) 32-bit general purpose registers.

4) Which registers overlap with

a) ax?

b) bx?

c) cx?

d) dx?

e) si?

f) di?

g) bp?

h) sp?

5) In what register does the condition codes appear?

6) What is the generic syntax of the HLA MOV instruction?

7) What are the legal operand formats for the MOV instruction?

8) What do the following symbols denote in an HLA boolean expression?

a) @c

b) @nc

c) @z

d) @nz

e) @o

f) @no

g) @s

h) @ns

9) Collectively, what do we call the carry, overflow, zero, and sign flags?

10) What high level language control structures does HLA provide?
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 109

Chapter Five Volume One
11) What does the nl symbol represent?

12) What routine would you call, that doesn’t require any parameters, to print a new line on the screen?

13) If you wanted to print a nicely-formatted column of 32-bit integer values, what standard library routines
could you call to achieve this?

14) The stdin.getc() routine does not allow a parameter. Where does it return the character it reads from the user?

15) When reading an integer value from the user via the stdin.getiX routines, the program will stop with an
exception if the user enters a value that is out of range or enters a value that contains illegal characters. How
can you trap this error

16) What is the difference between the stdin.ReadLn() and stdin.FlushInput() procedures?

17) Convert the following decimal values to binary:

a) 128 b) 4096 c) 256 d) 65536 e) 254

f) 9 g) 1024 h) 15 i) 344 j) 998

k) 255 l) 512 m) 1023 n) 2048 o) 4095

p) 8192 q) 16,384 r) 32,768 s) 6,334 t) 12,334

u) 23,465v) 5,643 w) 464 x) 67 y) 888

18) Convert the following binary values to decimal:

a) 1001 1001b) 1001 1101 c) 1100 0011 d) 0000 1001 e)1111 1111

f) 0000 1111 g) 0111 1111h) 1010 0101 i) 0100 0101 j) 0101 1010

k) 1111 0000l) 1011 1101 m) 1100 0010 n) 0111 1110 o) 1110 1111

p) 0001 1000q) 1001 111 1r) 0100 0010 s) 1101 1100 t) 1111 0001

u) 0110 1001v) 0101 1011 w) 1011 1001 x) 1110 0110 y) 1001 0111

19) Convert the binary values in problem 2 to hexadecimal.

20) Convert the following hexadecimal values to binary:

a) 0ABCD b) 1024 c) 0DEAD d) 0ADD e) 0BEEF

f) 8 g) 05AAF h) 0FFFF i) 0ACDB j) 0CDBA

k) 0FEBA l) 35 m) 0BA n) 0ABA o) 0BAD

p) 0DAB q) 4321 r) 334 s) 45 t) 0E65

u) 0BEAD v) 0ABE w) 0DEAF x) 0DAD y) 9876

Perform the following hex computations (leave the result in hex):

21) 1234 +9876

22) 0FFF - 0F34

23) 100 - 1

24) 0FFE - 1

25) What is the importance of a nibble?

26) How many hexadecimal digits in:

a) a byte b) a word c) a double word

27) How many bits in a:

a) nibbleb) byte c) word d) double word

28) Which bit (number) is the H.O. bit in a:
Page 110 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
a) nibbleb) byte c) word d) double word

29) What character do we use as a suffix for hexadecimal numbers? Binary numbers? Decimal numbers?

30) Assuming a 16-bit two’s complement format, determine which of the values in question 4 are positive and
which are negative.

31) Sign extend all of the values in question two to sixteen bits. Provide your answer in hex.

32) Perform the bitwise AND operation on the following pairs of hexadecimal values. Present your answer in
hex. (Hint: convert hex values to binary, do the operation, then convert back to hex).

a) 0FF00, 0FF0b) 0F00F, 1234c) 4321, 1234d) 2341, 3241 e) 0FFFF, 0EDCB

f) 1111, 5789g) 0FABA, 4322h) 5523, 0F572i) 2355, 7466 j) 4765, 6543

k) 0ABCD, 0EFDCl) 0DDDD, 1234m) 0CCCC, 0ABCDn) 0BBBB, 1234o) 0AAAA, 1234

p) 0EEEE, 1248q) 8888, 1248r) 8086, 124F s) 8086, 0CFA7 t) 8765, 3456

u) 7089, 0FEDCv) 2435, 0BCDEw) 6355, 0EFDCx) 0CBA, 6884y) 0AC7, 365

33) Perform the logical OR operation on the above pairs of numbers.

34) Perform the logical XOR operation on the above pairs of numbers.

35) Perform the logical NOT operation on all the values in question four. Assume all values are 16 bits.

36) Perform the two’s complement operation on all the values in question four. Assume 16 bit values.

37) Sign extend the following hexadecimal values from eight to sixteen bits. Present your answer in hex.

a) FF b) 82 c) 12 d) 56 e) 98

f) BF g) 0F h) 78 i) 7F j) F7

k) 0E l) AE m) 45 n) 93 o) C0

p) 8F q) DA r) 1D s) 0D t) DE

u) 54 v) 45 w) F0 x) AD y) DD

38) Sign contract the following values from sixteen bits to eight bits. If you cannot perform the operation,
explain why.

a) FF00 b) FF12 c) FFF0 d) 12 e) 80

f) FFFF g) FF88 h) FF7F i) 7F j) 2

k) 8080 l) 80FF m) FF80 n) FF o) 8

p) F q) 1 r) 834 s) 34 t) 23

u) 67 v) 89 w) 98 x) FF98 y) F98

39) Sign extend the 16-bit values in question 22 to 32 bits.

40) Assuming the values in question 22 are 16-bit values, perform the left shift operation on them.

41) Assuming the values in question 22 are 16-bit values, perform the logical right shift operation on them.

42) Assuming the values in question 22 are 16-bit values, perform the arithmetic right shift operation on them.

43) Assuming the values in question 22 are 16-bit values, perform the rotate left operation on them.

44) Assuming the values in question 22 are 16-bit values, perform the rotate right operation on them.

45) Convert the following dates to the short packed format described in this chapter (see “Bit Fields and Packed
Data” on page 71). Present your values as a 16-bit hex number.

a) 1/1/92b) 2/4/56 c) 6/19/60 d) 6/16/86 e) 1/1/99

46) Convert the above dates to the long packed data format described in this chapter.

47) Describe how to use the shift and logical operations to extract the day field from the packed date record in
question 29. That is, wind up with a 16-bit integer value in the range 0..31.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 111

Chapter Five Volume One
48) Assume you’ve loaded a long packed date (See “Bit Fields and Packed Data” on page 71.) into the EAX reg-
ister. Explain how you can easily access the day and month fields directly, without any shifting or rotating of
the EAX register.

49) Suppose you have a value in the range 0..9. Explain how you could convert it to an ASCII character using the
basic logical operations.

50) The following C++ function locates the first set bit in the BitMap parameter starting at bit position start and
working up to the H.O. bit . If no such bit exists, it returns -1. Explain, in detail, how this function works.

int FindFirstSet(unsigned BitMap, unsigned start)
{

unsigned Mask = (1 << start);

while (Mask)
{

if (BitMap & Mask) return start;
++start;
Mask <<= 1;

}
return -1;

}

51) The C++ programming language does not specify how many bits there are in an unsigned integer. Explain
why the code above will work regardless of the number of bits in an unsigned integer.

52) The following C++ function is the complement to the function in the questions above. It locates the first zero
bit in the BitMap parameter. Explain, in detail, how it accomplishes this.

int FindFirstClr(unsigned BitMap, unsigned start)
{

return FindFirstSet(~BitMap, start);
}

53) The following two functions set or clear (respectively) a particular bit and return the new result. Explain, in
detail, how these functions operate.

unsigned SetBit(unsigned BitMap, unsigned position)
{

return BitMap | (1 << position);
}

unsigned ClrBit(unsigned BitMap, unsigned position)
{

return BitMap & ~(1 << position);
}

54) In code appearing in the questions above, explain what happens if the start and position parameters contain a
value greater than or equal to the number of bits in an unsigned integer.

55) Provide an example of HLA variable declarations for the following data types:

a) Eight-bit byte

b) 16-bit word

c) 32-bit dword

d) Boolean

e) 32-bit floating point

f) 64-bit floating point

g) 80-bit floating point
Page 112 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
h) Character

56) The long packed date format offers two advantages over the short date format. What are these advantages?

57) Convert the following real values to 32-bit single precision floating point format. Provide your answers in
hexadecimal, explain your answers.

a) 1.0 b) 2.0 c) 1.5 d) 10.0

e) 0.5 f) 0.25 g) 0.1 h) -1.0

i) 1.75 j) 128 k) 1e-2 l) 1.024e+3

58) Which of the values in question 41 do not have exact representations?

59) Show how to declare a character variable that is initialized with the character “*”.

60) Show how to declare a character variable that is initialized with the control-A character (See “The ASCII
Character Set” on page 93 for the ASCII code for control-A).

61) How many characters are present in the standard ASCII character set?

62) What is the basic structure of an HLA program?

63) Which HLA looping control structure(s) test(s) for loop termination at the beginning of the loop?

64) Which HLA looping control structure(s) test(s) for loop termination at the end of the loop?

65) Which HLA looping construct lets you create an infinite loop?

66) What set of flags are known as the “condition codes?”

67) What HLA statement would you use to trap exceptions?

68) Explain how the IN operator works in a boolean expression.

69) What is the stdio.bs constant?

70) How do you redirect the standard output of your programs so that the data is written to a text file?
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 113

Chapter Five Volume One
5.2 Programming Projects for Chapter Two

1) Write a program to produce an “addition table.” This table should input two small int8 values from the user.
It should verify that the input is correct (i.e., handle the ex.ConversionError and ex.ValueOutOfRange excep-
tions) and is positive. The second value must be greater than the first input value. The program will display a
row of values between the lower and upper input values. It will also print a column of values between the
two values specified. Finally, it will print a matrix of sums. The following is the expected output for the user
inputs 15 & 18

add 15 16 17 18
15 30 31 32 33
16 31 32 33 34
17 32 33 34 35
18 33 34 35 36

2) Modify program (1), above, to draw lines between the columns and rows. Use the hyphen (‘-’), vertical bar
(‘|’), and plus sign (‘+’) characters to draw the lines. E.g.,

add | 15 | 16 | 17 | 18 |
-----+----+----+----+----+
15 | 30 | 31 | 32 | 33 |
-----+----+----+----+----+
16 | 31 | 32 | 33 | 34 |
-----+----+----+----+----+
17 | 32 | 33 | 34 | 35 |
-----+----+----+----+----+
18 | 33 | 34 | 35 | 36 |
-----+----+----+----+----+

For extra credit, use the line drawing character graphics symbols listed in Appendix B to draw the lines.
Note: to print a character constant as an ASCII code, use “#nnn” where “nnn” represents the ASCII code of
the character you wish to print. For example, “stdout.put(#179);” prints the line drawing vertical bar char-
acter.

3) Write a program that generates a “Powers of Four” table. Note that you can create the powers of four by
loading a register with one and then successively add that register to itself twice for each power of two.

4) Write a program that reads a list of positive numbers from a user until that user enters a negative or zero
value. Display the sum of those positive integers.

5) Write a program that computes (n)(n-1)/2. It should read the value “n” from the user. Hint: you can com-
pute this formula by adding up all the numbers between one and n.
Page 114 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
5.3 Programming Projects for Chapter Three

Write each of the following programs in HLA. Be sure to fully comment your source code. See Appen-
dix C for style guidelines and rules when writing HLA programs (and follow these rules to the letter!).
Include sample output and a short descriptive write up with your program submission(s).

1) Write a program that reads a line of characters from the user and displays that entire line after converting any
upper case characters to lower case. All non-alphabetic and existing lower case characters should pass
through unchanged; you should convert all upper case characters to lower case before printing them.

2) Write a program that reads a line of characters from the user and displays that entire line after swapping
upper case characters with lower case; that is, convert the incoming lower case characters to upper case and
convert the incoming upper case characters to lower case. All non-alphabetic characters should pass through
unchanged.

3) Write a program that reads three values from the user: a month, a day, and a year. Pack the date into the long
date format appearing in this chapter and display the result in hexadecimal. If the date is between 2000 and
2099, also pack the date into the short packed date format and display that 16-bit value in hexadecimal form.
If the date is not in the range 2000..2099, then display a short message suggesting that the translation is not
possible.

4) Write a date validation program that reads a month, day, and year from the user, verifies that the date is cor-
rect (ignore leap years for the time being), and then packs the date into the long date format appearing in this
chapter.

5) Write a “CntBits” program that counts the number of one bits in a 16-bit integer value input from the user.
Do not use any built-in functions in HLA’s library to count these bits for you. Use the shift or rotate instruc-
tions to extract each bit in the value.

6) Write a “TestBit” program. This program requires two integer inputs. The first value is a 32-bit integer to
test; the second value is an unsigned integer in the range 0..31 describing which bit to test. The program
should display true if the corresponding bit (in the test value) contains a one, the program should display
false if that bit position contains a zero. The program should always display false if the second value holds a
value outside the range 0..31.

7) Write a program that reads an eight-bit signed integer and a 32-bit signed integer from the user that com-
putes and displays the sum and difference of these two numbers.

8) Write a program that reads an eight-bit unsigned integer and a 16-bit unsigned integer from the user that
computes and displays the sum and the absolute value of the difference of these two numbers.

9) Write a program that reads a 32-bit unsigned integer from the user and displays this value in binary. Use the
SHL instruction to perform the integer to binary conversion.

10) Write a program that uses stdin.getc to read a sequence of binary digits from the user (that is, a sequence of
‘1’ and ‘0’ characters). Convert this string to an integer using the AND, SHL, and OR instructions. Display
the integer result in hexadecimal and decimal.

11) Using the LAFH instruction, write a program that will display the current values of the carry, sign, and zero
flags as boolean values. Read two integer values from the user, add them together, and them immediately
capture the flags’ values using the LAHF instruction and display the result of these three flags as boolean
values. Hint: use the SHL or SHR instructions to extract the specific flag bits.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 115

Chapter Five Volume One
5.4 Programming Projects for Chapter Four

1) Write an HLA program that reads a single precision floating point number from the user and prints the inter-
nal representation of that value using hexadecimal notation.

2) Write a program that reads a single precision floating point value from the user, takes the absolute value of
that number, and then displays the result. Hint: this program does not use any arithmetic instructions or
comparisons. Take a look at the binary representation for floating point numbers in order to solve this prob-
lem.

3) Write a program that generates an ASCII character set chart using the following output format:

 | 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
--+--
20| ! “ # ...
30| 0 1 2 3 ...
40| @ A B C ...
50| P Q R S ...
60| ‘ a b c ...
70| p q r s ...

Note that the columns in the table represent the L.O. four bits of the ASCII code, the rows in the table repre-
sent the H.O. four bits of the ASCII code. Note: for extra consideration, use the line-drawing graphic char-
acters (see Appendix B) to draw the lines in the table.

4) Using only five FOR loops, four calls to stdout.putcSize, and two calls to stdout.newln, write a program that
draws a checkerboard pattern. Your checkerboard should look like the following:

******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
Page 116 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
5.5 Laboratory Exercises for Chapter Two

Before you can write, compile, and run a single HLA program, you will need to install the HLA lan-
guage system on your computer. If you are using HLA at school or some other institution, the system admin-
istrator has probably set up HLA for you. If you are working at home or on some computer on which HLA is
not installed, you will need to obtain the HLA distribution package and set it up on your computer. The first
section of this set of laboratory exercises deals with obtaining and installing HLA.

Once HLA is installed, the next step is to take stock of what is present in the HLA system. The second
part of this laboratory deals with the files that are present in the HLA distribution.

Finally, and probably most important, this set of laboratory exercises discusses how to write, compile,
and run some simple HLA programs.

5.5.1 A Short Note on Laboratory Exercises and Lab Reports

Whenever you work on laboratory exercises in this textbook you should always prepare a lab report
associated with each exercise. Your instructor may have some specific guidelines concerning the content of
the lab report (if your instructor requires that you submit the report). Be sure to check with your instructor
concerning the lab report requirements.

At a bare minimum, a lab report should contain the following:

• A title page with the lab title (chapter #), your name and other identification, the current date,
and the due date. If you have a course-related computer account, you should also include your
login name.

• If you modify or create a program in a lab exercise, the source code for that program should
appear in the laboratory report (do not simply reprint source code appearing in this text in order
to pad your lab report).

• Output from all programs should also appear in the lab report.
• For each exercise, you should provide a write-up describing the purpose of the exercise, what

you learned from the exercise, and any comments about improvements or other work you’ve
done with the exercise.

• If you make any mistakes that require correction, you should include the source code for the
incorrect program with your lab report. Hand write on the listing where the error occurs and
describe (in handwriting, on the listing) what you did to correct the problem. Note: no one is
perfect. If you turn in a lab report that has no listings with errors in it, this is a clear indication
that you didn’t bother to perform this part of the exercise.

• Appropriate diagrams.

The lab report should be prepared with a word processing program. Hand-written reports are unaccept-
able (although hand-drawn diagrams are acceptable if a suitable drawing package isn’t available). The report
should be proofread and of finished quality before submission. Only the listings with errors (and hand writ-
ten annotations) should be in a less than finished quality. See the “HLA Programming Style Guidelines”
appendix for important information concerning programming style. Adhere to these guidelines in the HLA
programs you submit.

5.5.2 Installing the HLA Distribution Package

The latest version of HLA is available from the Webster web server at

http://webster.cs.ucr.edu

Go to this web site and following the HLA links to the “HLA Download” page. From here you should
select the latest version of HLA for download to your computer. The HLA distribution is provided in a “Zip
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 117

Chapter Five Volume One
File” compressed format. You will need a decompressor program like PKUNZIP or WinZip in order to
extract the HLA files from this zipped archive file. The use of these decompression products is beyond the
scope of this manual, please consult the software vendor’s documentation or their web page for information
concerning the use of these products.

This text assumes that you have unzipped the HLA distribution into the root directory of your C: drive.
You can certainly install HLA anywhere you want, but you will have to adjust the following descriptions if
you install HLA somewhere else.

HLA is a command window/console application. In order to run the HLA compiler you must run the
command window program (this is “command.com” on Windows 95 and 98, or “cmd.exe” on Windows NT
and Windows 2000). Most Windows distributions let you run the command prompt windows from the Start
menu or from a submenu hanging off the start menu. Otherwise, you can find the executable in the “C:\Win-
dows” directory or in the “C:\WinNT\System32” directory1. This text assumes that you are familiar with the
Windows command window and you know how to use some basic command window commands (e.g., dir,
del, rename, etc.). If you have never before used the Windows command line interpreter, you should consult
an appropriate text to learn a few basic commands.

Before you can actually run the HLA compiler, you must set the system execution path and set up vari-
ous environment variables. Some versions of Windows (e.g., NT) let you permanently set up these values.
However, an easy and universal way to set up the path and environment variables is to use a batch file. A
batch file is a sequence of command window commands that you store into a file (with a “.BAT” extension)
to quickly execute by typing the filename (sans extension). This is the method we will use to initialize the
system.

The following text provides a suitable “ihla.bat” (initialize HLA) file that sets up the important vari-
ables, assuming you’ve installed HLA on your “C:” drive in the “C:\HLA” subdirectory:

path=c:\hla;%path%
set lib=c:\hla\hlalib;%lib%
set include=c:\hla\include;%include%
set hlainc=c:\hla\include
set hlalib=c:\hla\hlalib\hlalib.lib

Enter these lines of text into a suitable text editor (not a word processor) and save them as “ihla.bat” in the
“c:\hla” subdirectory. For your convenience, this batch file also appears in the “AoA_Software” directory of
the HLA distribution.

The first line in this batch file tells the system to execute the HLA.EXE and HLAPARSE.EXE files
directly from the HLA subdirectory without your having to specify the full pathname. That is, you can type
“hla” rather than “c:\hla\hla” in order to run the HLA compiler. Obviously, this saves a lot of typing and is
quite worthwhile2. The second and third lines of this batch file insert the HLA include directory and HLA
Standard Library directory into the search list used by compilers on the system. HLA doesn’t actually use
these variables, but other tools might, hence their inclusion in the batch file. The last two entries in the batch
file set up the HLA-specific environment variables that provide the paths to the HLA include file directory
and the HLA standard library file (hlalib.lib). The HLA compiler expects to find these variables in the sys-
tem environment. Compilation will probably fail if you haven’t set up these environment variables.

In addition to the HLA distribution files, you will also need some additional Microsoft tools in order to
use the HLA system. Specifically, you will need a copy of Microsoft’s Macro Assembler (MASM) and a
copy of the Microsoft Linker in order to use HLA. Fortunately, you may download these programs for free
from the internet. Instructions on how to do so are available on the net. The Webster web site (see the “Ran-
dall Hyde’s Assembly Page” link) maintains a link to a site that explains how to download MASM and LINK
from Microsoft’s web page. You will need to obtain the ml.exe, ml.err, link.exe, and the MspdbX0.dll (x=5,
6, or some other integer) files. Place these files in the HLA directory along with the HLA.EXE and HLA-
PARSE.EXE files3. In addition to these files, you will need a copy of Microsoft’s “kernel32.lib” and

1. Assuming you’ve installed Windows on your “C:” drive. Adjust the drive letter appropriately if you’ve installed Windows
on a different drive.
2. Alternately, you can move the HLA.EXE and HLAPARSE.EXE files to a subdirectory already in the execution path.
Page 118 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
“user32.lib” library packages. These come with Visual C++ and other Microsoft tools and compilers. If this
file is not in the current path specified by the “lib” environment variable, put a copy in the “c:\hla\hlalib”
subdirectory.

Getting HLA up and running is a complex process because there are so many different files that have to
all be located in the right spot. If you are having trouble getting HLA running on your system, be sure that:

• HLA.EXE and HLAPARSE.EXE are in the “c:\hla” subdirectory.
• ml.exe, ml.err, and link.exe are in the “c:\hla” subdirectory.
• mspdbX0.dll (x=5, 6, or greater) is in the “c:\hla” subdirectory (win95 and win98 users).
• msvcrt.dll is in the c:\hla” subdirectory (Win NT and Win 2000 users).
• kernel32.lib and user32.lib are in the path specified by the “set lib=...” statement (e.g., the

“c:\hla\hlalib” subdirectory).

To verify the proper operation of HLA, open up a command window (i.e., from the START button in Win-
dows), type “c:\hla\ihla” to run the “ihla.bat” file to initialize the path and important environment variables.
Then type “hla -?” at the command line. HLA should display the current version number along with a list of
legal command line parameters. If you get this display, the system can find the HLA compiler, so go on to
the next step. If you do not get this message, then type “SET” at the command line prompt and verify that
the path is correct and that the lib, include, hlalib, and hlainc environment variables are set correctly. If not,
rerun the ihla.bat file and try again4. If you are still having problems, check out the complete installation
instructions in the appendices.

Once you’ve verified the proper operation of the HLA compiler, the next step is to verify the proper
operation of the MASM assembler. You can do this by typing “ML -?” at the Windows command line
prompt. MASM should display its current version number and all the command line parameters it supports.
You will not directly run MASM, so you can ignore all this information. The important issue is whether the
information appears. If it does not, an HLA compile will fail. If the ML command does not bring up this
information, verify that ml.exe and ml.err are in an execution path (e.g., in the “c:\hla” subdirectory).

The next step is to verify that the Microsoft linker is operational. You can do this by typing “link -?” at
the Windows command line prompt. The program should display a message like “Microsoft (R) Incremen-
tal Linker Version 6.00.xxxx”. If you do not get a linker message at all, verify that the link.exe program is
installed in a subdirectory in the execution path (e.g., “c:\hla”). Also make sure that the mspdbX0.dll (X=5
or greater) and msvcrt.dll files appear in this same directory. Warning: depending on where you got your
copy of MASM, it may have come with a 16-bit linker. 16-bit linkers are not compatible with HLA. You
must use the newer 32-bit linkers that come with Visual C++ and other Microsoft languages.

At this point, you should have successfully installed the HLA system and it should be ready to use. After
a description of the HLA distribution in the next section, you’ll get an opportunity to test out your installa-
tion.

5.5.3 What’s Included in the HLA Distribution Package

Although HLA is relatively flexible about where you put it on your system, this text assumes you’ve
installed HLA on your C: drive under a Win32 operating system (e.g., Windows 95, 98, NT, 2000, and later
versions that are 32-bit compatible). This text also assumes the standard directory placement for the HLA
files, which has the following layout

• HLA directory
• Doc directory
• Examples directory
• hlalib directory
• include directory

3. Actually, you may install these files in any directory that is in the execution path. So if you’ve purchased a commercial ver-
sion of MASM, or have installed the linker via Visual C++, there is no need to move or copy these files to the HLA directory.
4. Be sure the ihla.bat file contains appropriate drive letters in front of the pathnames if you are having problems.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 119

Chapter Five Volume One
• Tests directory

The “Art of Assembly” software distribution has the following directory tree structure:

• AoA_Software directory
• Volume1
• Ch01 directory
• Ch02 directory
• etc.
• Volume2
• Ch01 directory
• Ch02 directory
• etc.
• etc.

The main HLA directory contains the executable code for the compiler. This consists of two files,
HLA.EXE and HLAPARSE.EXE. These two programs must be in the current execution path in order to run
the compiler (the “path” command in the ihla.bat file sets the execution path). It wouldn’t hurt to put the
ml.exe, ml.err, link.exe, mspdbX0.dll (x=5, 6, or greater), and msvcrt.dll files in this directory as well.

The Doc directory contains reference material for HLA in PDF and HTML formats. If you have a copy
of Adobe Acrobat Reader, you will probably want to read the PDF versions since they are much nicer than
the HTML versions. These documents contain the most up-to-date information about the HLA language;
you should consult them if you have a question about the HLA language or the HLA Standard Library. Gen-
erally, material in this documentation supersedes information appearing in this text since the HLA document
is electronic and is probably more up to date.

The Examples directory contains a large set of HLA programs that demonstrate various features in the
HLA language. If you have a question about an HLA feature, you can probably find an example program
that demonstrates that feature in the Examples directory. Such examples provide invaluable insight that is
often superior to a written description of the feature.

The hlalib directory contains the source and object code for the HLA Standard Library. As you become
more competent with HLA, you may want to take a look at how HLA implements various library functions.
In the meantime, this directory contains the hlalib.lib file which you must link with your own programs that
make calls to the standard library. Linking instructions appear a little later in this chapter.

The include directory contains the HLA Standard Library include files. These special files (that end with
a “.hhf” suffix, for HLA Header File) are needed during assembly to provide prototype and other informa-
tion to your program. The example programs in this chapter all include the HLA header file “stdlib.hhf” that,
in turn, includes all the other HLA header files in the standard library.

The Tests directory contains various test files that test the correct operation of the HLA system. HLA
includes these files as part of the distribution package because they provide additional examples of HLA
coding.

The AoA_Software directory contains the code specific to this textbook. This directory contains all the
source code to (complete) programs appearing in this text. It also contains the programs appearing in the
Laboratory Exercises section of each chapter. Therefore, this directory is very important to you. Within this
subdirectory, the information is further divided up by volume and chapter. The material for Chapter One
appears in the AoA_Software\Volume1\Ch01 subdirectory, the material for Chapter Two appears in the
AoA_Software\Volume1\Ch02 subdirectory, etc..
Page 120 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
5.5.4 Using the HLA Compiler

If you’ve made it through the previous two sections, it’s now time to test out your installation and verify
that it is correct. In this section you’ll also learn how to run the compiler and the executables it produces.

To begin with, open a command prompt window. This is usually accomplished by selecting the “com-
mand prompt” program from the Windows Start menu (or one of its submenus). You can also use the “run”
command (from the Start button) and type “command” for Windows 95 & 98 or “cmd” for Windows NT &
2000. Once you are faced with the command prompt window, type the following (boldfaced) commands to
initialize the HLA system:5

c:> cd c:\hla
c:\hla> ihla

If your command prompt opens up a drive other than C:, you may need to switch to the “C:” drive (or what-
ever drive contains the HLA subdirectory) before issuing these commands. You can switch the default drive
by simply typing the drive letter followed by a colon. For example, to switch to the C: drive, you would use
the following command:

x:> c:

After running the “ihla” batch file to initialize the system, you can test for the presence of the HLA com-
piler by entering the following command:

c:\hla> hla -?

This should display some internal information about HLA along with a description of the syntax for the
HLA command. If you get an error message complaining about a missing command, you’ve probably not
installed HLA properly or the path hasn’t been properly set. If you believe you’ve installed HLA properly,
try running the ihla.bat file again, and check to be sure that the batch file contains the correct data.

Warning: every time you start a new command prompt window, you will need to re-run the ihla.bat file.
Generally, you should only have to open a command prompt window once per programming session. How-
ever, if you close the window for some reason, keep in mind that you must rerun ihla.bat before you can run
HLA6.

5.5.5 Compiling Your First Program

Once HLA is operational, the next step is to compile an actual working program. The HLA distribution
contains lots of example HLA programs, including the HLA programs appearing in this text. Since these
examples are already written, tested, and ready to compile and run, it makes sense to work with one of these
example files when compiling your first program.

A good first program is the “Hello World” program appearing earlier in this volume (repeated below):

program helloWorld;
#include(“stdlib.hhf”);

begin helloWorld;

stdout.put(“Hello, World of Assembly Language”, nl);

5. This text typically displays the entire command line text when showing the execution of a command window command.
The non-boldfaced text is printed by the command line processor, the boldfaced text is user input. Note that this text assumes
that you are working on the “C:” disk drive. If you’re working on a different drive (e.g., a network drive containing your per-
sonal account), you will see a slightly different prompt and you will need to adjust the drive letters in the commands pre-
sented in this text.
6. This is assuming that you haven’t permanently set the path and other environment variables in Windows.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 121

Chapter Five Volume One
end helloWorld;

The source code for this program appears in the “AoA_Software\Volume1\Ch02\HelloWorld.hla” file.
Create a new subdirectory in your root directory and name this new directory “lab1”. From the command
window prompt, you can create the new subdirectory using the following two commands:

c:> cd \
c:> mkdir lab1

The first command above switches you to the root directory (assuming you’re not there already). The second
command (mkdir = “make directory”) creates the lab1 directory7.

Copy the “Hello World” program (HelloWorld.hla) to this lab1 directory using the following command
window statement8:

c:> copy c:\AoA_Software\Volume1\CH02\HelloWorld.hla c:\lab1

From the command prompt window, switch to this new directory using the command:

c:> cd \lab1

To compile this program, type the following at the command prompt:

c:\lab1> hla HelloWorld

After a few moments, the Windows command prompt (“C:>”) should reappear. At this point, your pro-
gram has been successfully compiled. To run the executable (HelloWorld.exe) that HLA has produced, you
would use the following command:

c:\lab1> HelloWorld

The program should run, display “Hello World”, and then terminate. At that time the command window
should be waiting for another command.

If you have not successfully completed the previous steps, return to the previous section and repeat the
steps to verify that HLA is operational on your system. Remember, each time you start a new command
window, you must execute the “ihla.bat” file (or otherwise set up the environment) in order to make HLA
accessible in that command window.

In your lab report, describe the output of the HLA compiler. For additional compilation information, use
the following command to compile this program:

c:> hla -v HelloWorld

The “-v” option stands for verbose compile. This presents more information during the compilation pro-
cess. Describe the output of this verbose compilation in your lab report. If possible, capture the output and
include the captured output with your lab report. To capture the output to a file, use a command like the fol-
lowing:

c:> hla -test -v HelloWorld >capture.txt

7. Some school’s labs may not allow you to place information on the C: drive. If you want or need to place your personal
working directory on a different drive, just substitute the appropriate drive letter for “C:” in these examples.
8. You may need to modify this statement if the AoA_Software directory does not appear in the root directory of the C: drive.
Page 122 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
This command sends most of the output normally destined to the screen to the ”capture.txt” output file.
You can then load this text file into an editor for further processing. Of course, you may choose a different
filename than “capture.txt” if you so desire.

5.5.6 Compiling Other Programs Appearing in this Chapter

The “AoA_Software\Volume1\Ch02” subdirectory contains all the sample programs appearing in this
chapter. They are

• HelloWorld.hla
• CharInput.hla
• CheckerBoard.hla
• DemoMOVaddSUB.hla
• DemoVars.hla
• fib.hla
• intInput.hla
• NumsInColums.hla
• NumsInColums2.hla
• PowersOfTwo.hla

Copy each of these files to your lab1 subdirectory. Compile and run each of these programs. Describe
the output of each in your lab report.

5.5.7 Creating and Modifying HLA Programs

In order to create or modify HLA programs you will need to use a text editor to manipulate HLA source
code. Windows provides two low-end text editors: notepad.exe and edit.exe. Notepad.exe is a win-
dows-based application while edit.exe is a console (command prompt) application. Neither editor is particu-
larly good for editing program source code; if you have an option to use a different text editor (e.g., the
Microsoft Visual Studio system that comes with VC++ and other Microsoft languages), you should certainly
do so. This text will assume the use of notepad or edit since these two programs come with every copy of
windows and will be present on all systems.

Warning: do not use Microsoft Word, wordpad, or any other word processing programs to create or
modify HLA programs. Word processing programs insert extra characters into the document that are incom-
patible with HLA. If you accidentally save a source file from one of these word processors, you will not be
able to compile the program9.

Edit.exe is probably a better choice for program development than is notepad.exe. One reason edit.exe is
better is because it displays line numbers while notepad.exe does not. When HLA reports an error in your
program, it provides the line number of the offending statement; if you are using notepad.exe, it will be very
difficult to locate the source of your error since notepad does not report the line numbers. Another problem
with notepad is that it insists on tacking a “.txt” extension onto the end of your filenames, even if they
already have an “.hla” extension. This is rather annoying10. One advantage to using notepad is that you can
run it by simply double-clicking on a (notepad-registered) “.hla” icon.

To run the edit.exe program to edit an HLA program, you would specify a command line like the fol-
lowing:

c:> edit HelloWorld.hla

9. Note that many word processing programs provide a “save as text” option. If you accidentally destroy a source file by sav-
ing it from a word processor, simply reenter the word processor and save the file as text.
10. You can eliminate this problem by registering “.HLA” as a notepad document format by selecting “view>options>File
Types” from the view menu in any open directory window.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 123

Chapter Five Volume One
This example brings up the “Hello World” program into the editor, ready to be modified. This text
assumes that you are already familiar with text editing principles. Edit.exe is a very simple editor; if you’ve
used any text editor in the past, you should be comfortable using edit.exe (other than the fact that it is quite
limited).

For the time being, modify the statement:

stdout.put(“Hello, World of Assembly Language”, nl);

Change the text ‘World of Assembly Language’ to your name, e.g.,

stdout.put(“Hello Randall Hyde”, nl);

After you’ve done this, save the file to disk and recompile and run the program. Assuming you haven’t
introduced any typographical errors into the program, it should compile and run without incident. After mak-
ing the modifications to the program, capture the output and include the captured output in your lab report.
You can capture the output from this program by using the I/O redirection operator as follows:

c:> HelloWorld >out.txt

This sends the output (“Hello Randall Hyde”) to the “out.txt” text file rather than to the display. Include
the sample output and the modified program in your lab report. Note: don’t forget to include any erroneous
source code in your lab report to demonstrate the changes you’ve made during development of the code.

5.5.8 Writing a New Program

To create a brand-new program is relatively easy. Simply specify the name of the new file as a parameter
to the edit command line:

c:> edit newfile.hla

This will bring up the editor with an empty file. Enter the following program into the editor (note: this
program is not available in the AoA_Software directory, you must enter this file yourself):

program onePlusOne;
#include(“stdlib.hhf”);

static
One: int32;

begin onePlusOne;

mov(1, One);
mov(One, eax);
add(One, eax);
mov(eax, One);
stdout.put(“One + One = “, One, nl);

end onePlusOne;

Program 5.1 OnePlusOne Program

Remember, HLA is very particular about the way you spell names. So be sure that the alphabetic case is cor-
rect on all identifiers in this program. Before attempting to compile your program, proof read it to check for
any typographical errors.
Page 124 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
After entering and saving the program above, exit the editor and compile this program from the com-
mand prompt. If there are any errors in the program, reenter the editor, correct the errors, and then compile
the program again. Repeat until the program compiles correctly.

Note: If you encounter any errors during compilation, make a printout of the program (with errors) and
hand write on the printout where the errors occur and what was necessary to correct the error(s). Include this
printout with your lab report.

After the program compiles successfully, run it and verify that it runs correctly. Include a printout of the
program and the captured output in your lab report.

5.5.9 Correcting Errors in an HLA Program

The following program (HasAnError.hla in the appropriate AoA_Examples directory) contains a minor
syntax error (a missing semicolon). Compile this program:

// This program has a syntactical error to
// demonstrate compilation errors in an HLA
// program.

program hasAnError;
#include("stdlib.hhf");
begin hasAnError;

 stdout.puts("This program doesn't compile!") // missing ";"

end hasAnError;

Program 5.2 Sample Program With a Syntax Error

When you compile this program, you will notice that it doesn’t report the error on line nine (the line
actually containing the error). Instead, it reports the error on line 11 (the “end” statement) since this is the
first point at which the compiler can determine that an error has occurred.

Capture the error output of this program into a text file using the following command:

c:> hla -test HasAnError >err1.txt

Include this output in your laboratory report.

Correct the syntax error in this program and compile and run the program. Include the source code of
the corrected program as well as its output in your lab report.

5.5.10 Write Your Own Sample Program

Conclude this laboratory exercise by writing a simple little program of your own. Include the source
code and sample output in your lab report. If you have any syntax errors in your code, be sure to include a
printout of the incorrect code with hand-written annotations describing how you fixed the problem(s) in your
program.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 125

Chapter Five Volume One
5.6 Laboratory Exercises for Chapter Three and Chapter Four

Accompanying this text is a significant amount of software. The software can be found in the
AoA_Software\Volume1 directory. Inside this directory is a set of directories with names like Ch03 and
Ch04, with the names obviously corresponding to chapters in this textbook. All the source code to the exam-
ple programs in this chapter can be found in the Ch04 subdirectory. The Ch04 subdirectory also contains
some executable programs for this chapter’s laboratory exercises as well as the (Inprise Delphi) source code
for the lab exercises. Please see this directory for more details.

5.6.1 Data Conversion Exercises

In this exercise you will be using the “convert.exe” program found in the Ch04 subdirectory. This pro-
gram displays and converts 16-bit integers using signed decimal, unsigned decimal, hexadecimal, and binary
notation.

When you run this program it opens a window with four edit boxes. (one for each data type). Changing
a value in one of the edit boxes immediately updates the values in the other boxes so they all display their
corresponding representations for the new value. If you make a mistake on data entry, the program beeps and
turns the edit box red until you correct the mistake. Note that you can use the mouse, cursor control keys,
and the editing keys (e.g., DEL and Backspace) to change individual values in the edit boxes.

For this exercise and your laboratory report, you should explore the relationship between various binary,
hexadecimal, unsigned decimal, and signed decimal values. For example, you should enter the unsigned dec-
imal values 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, and 32768 and comment on
the values that appear in the other text boxes.

The primary purpose of this exercise is to familiarize yourself with the decimal equivalents of some
common binary and hexadecimal values. In your lab report, for example, you should explain what is special
about the binary (and hexadecimal) equivalents of the decimal numbers above.

Another set of experiments to try is to choose various binary numbers that have exactly two bits set, e.g.,
11, 110, 1100, 1 1000, 11 0000, etc. Be sure to comment on the decimal and hexadecimal results these inputs
produce.

Try entering several binary numbers where the L.O. eight bits are all zero. Comment on the results in
your lab report. Try the same experiment with hexadecimal numbers using zeros for the L.O. digit or the two
L.O. digits.

You should also experiment with negative numbers in the signed decimal text entry box; try using val-
ues like -1, -2, -3, -256, -1024, etc. Explain the results you obtain using your knowledge of the two’s com-
plement numbering system.

Try entering even and odd numbers in unsigned decimal. Discover and describe the difference between
even and odd numbers in their binary representation. Try entering multiples of other values (e.g., for three: 3,
6, 9, 12, 15, 18, 21, ...) and see if you can detect a pattern in the binary results.

Verify the hexadecimal <-> binary conversion this chapter describes. In particular, enter the same hexa-
decimal digit in each of the four positions of a 16-bit value and comment on the position of the correspond-
ing bits in the binary representation. Try entering several binary values like 1111, 11110, 111100, 1111000,
and 11110000. Explain the results you get and describe why you should always extend binary values so their
length is an even multiple of four before converting them.

In your lab report, list the experiments above plus several you devise yourself. Explain the results you
expect and include the actual results that the convert.exe program produces. Explain any insights you have
while using the convert.exe program.
Page 126 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
5.6.2 Logical Operations Exercises

The “logical.exe” program is a simple calculator that computes various logical functions. It allows you
to enter binary or hexadecimal values and then it computes the result of some logical operation on the inputs.
The calculator supports the dyadic logical AND, OR, and XOR. It also supports the monadic NOT, NEG
(two’s complement), SHL (shift left), SHR (shift right), ROL (rotate left), and ROR (rotate right).

When you run the logical.exe program it displays a set of buttons on the left hand side of the window.
These buttons let you select the calculation. For example, pressing the AND button instructs the calculator to
compute the logical AND operation between the two input values. If you select a monadic (unary) operation
like NOT, SHL, etc., then you may only enter a single value; for the dyadic operations, both sets of text entry
boxes will be active.

The logical.exe program lets you enter values in binary or hexadecimal. Note that this program automat-
ically converts any changes in the binary text entry window to hexadecimal and updates the value in the hex
entry edit box. Likewise, any changes in the hexadecimal text entry box are immediately reflected in the
binary text box. If you enter an illegal value in a text entry box, the logical.exe program will turn the box red
until you correct the problem.

For this laboratory exercise, you should explore each of the bitwise logical operations. Create several
experiments by carefully choosing some values, manually compute the result you expect, and then run the
experiment using the logical.exe program to verify your results. You should especially experiment with the
masking capabilities of the logical AND, OR, and XOR operations. Try logically ANDing, ORing, and
XORing different values with values like 000F, 00FF, 00F0, 0FFF, FF00, etc. Report the results and com-
ment on them in your laboratory report.

Some experiments you might want to try, in addition to those you devise yourself, include the following:

• Devise a mask to convert ASCII values ‘0’..’9’ to their binary integer counterparts using the
logical AND operation. Try entering the ASCII codes of each of these digits when using this
mask. Describe your results. What happens if you enter non-digit ASCII codes?

• Devise a mask to convert integer values in the range 0..9 to their corresponding ASCII codes
using the logical OR operation. Enter each of the binary values in the range 0..9 and describe
your results. What happens if you enter values outside the range 0..9? In particular, what hap-
pens if you enter values outside the range 0h..0fh?

• Devise a mask to determine whether a 16-bit integer value is positive or negative using the log-
ical AND operation. The result should be zero if the number is positive (or zero) and it should
be non-zero if the number is negative. Enter several positive and negative values to test your
mask. Explain how you could use the AND operation to test any single bit to determine if it is
zero or one.

• Devise a mask to use with the logical XOR operation that will produce the same result on the
second operand as applying the logical NOT operator to that second operand.

• Verify that the SHL and SHR operators correspond to an integer multiplication by two and an
integer division by two, respectively. What happens if you shift data out of the H.O. or L.O.
bits? What does this correspond to in terms of integer multiplication and division?

• Apply the ROL operation to a set of positive and negative numbers. Based on your observa-
tions in Section 5.6.2, what can you say about the result when you rotate left a negative number
or a positive number?

• Apply the NEG and NOT operators to a value. Discuss the similarity and the difference in their
results. Describe this difference based on your knowledge of the two’s complement numbering
system.

5.6.3 Sign and Zero Extension Exercises

The “signext.exe” program accepts eight-bit binary or hexadecimal values then sign and zero extends
them to 16 bits. Like the logical.exe program, this program lets you enter a value in either binary or hexadec-
imal and immediate zero and sign extends that value.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 127

Chapter Five Volume One
For your laboratory report, provide several eight-bit input values and describe the results you expect.
Run these values through the signext.exe program and verify the results. For each experiment you run, be
sure to list all the results in your lab report. Be sure to try values like $0, $7f, $80, and $ff.

While running these experiments, discover which hexadecimal digits appearing in the H.O. nibble pro-
duce negative 16-bit numbers and which produce positive 16-bit values. Document this set in your lab
report.

Enter sets of values like (1,10), (2,20), (3,30), ..., (7,70), (8,80), (9,90), (A,A0), ..., (F,F0). Explain the
results you get in your lab report. Why does “F” sign extend with zeros while “F0” sign extends with ones?

Explain in your lab report how one would sign or zero extend 16 bit values to 32 bit values. Explain why
zero extension or sign extension is useful.

5.6.4 Packed Data Exercises

The packdata.exe program uses the 16-bit Date data type appearing in Chapter Three (see “Bit Fields
and Packed Data” on page 71). It lets you input a date value in binary or decimal and it packs that date into a
single 16-bit value.

When you run this program, it will give you a window with six data entry boxes: three to enter the date
in decimal form (month, day, year) and three text entry boxes that let you enter the date in binary form. The
month value should be in the range 1..12, the day value should be in the range 1..31, and the year value
should be in the range 0..99. If you enter a value outside this range (or some other illegal value), then the
packdata.exe program will turn the data entry box red until you correct the problem.

Choose several dates for your experiments and convert these dates to the 16-bit packed binary form by
hand (if you have trouble with the decimal to binary conversion, use the conversion program from the first
set of exercises in this laboratory). Then run these dates through the packdata.exe program to verify your
answer. Be sure to include all program output in your lab report.

At a bare minimum, you should include the following dates in your experiments:

2/4/68, 1/1/80, 8/16/64, 7/20/60, 11/2/72, 12/25/99, Today’s Date, a birthday (not necessarily yours), the
due date on your lab report.

5.6.5 Running this Chapter’s Sample Programs

The Ch03 and Ch04 subdirectories also contain the source code to each of the sample programs appear-
ing in Chapters Three and Four. Compile and run each of these programs. Capture the output and include a
printout of the source code and the output of each program in your laboratory report. Comment on the
results produced by each program in your laboratory report.

5.6.6 Write Your Own Sample Program

To conclude your laboratory exercise, design and write a program on your own that demonstrates the
use of each of the data types presented in this chapter. Your sample program should also show how you can
interpret data values differently, depending on the instructions or HLA Standard Library routines you use to
operate on that data. Your sample program should also demonstrate conversions, logical operations, sign and
zero extension, and packing or unpacking a packed data type (in other words, your program should demon-
strate your understanding of the other components of this laboratory exercise). Include the source code,
sample output, and a description of your sample program in your lab report.
Page 128 © 2001, By Randall Hyde Beta Draft - Do not distribute

V
o
lu

m
e
 T

w
o
:

MM
aa

cc
hh

ii nn
ee
 AA

rr cc
hh

ii tt
ee
cc
tt uu

rr ee
Volume Two: An Introduction to Machine Architecture

Chapter One: System Organization

A gentle introduction to the components that make up a
typical PC.

Chapter Two: Memory Access and Organization

A discussion of the 80x86 memory addressing modes
and how HLA organizes your data in memory.

Chapter Three: Introduction to Digital Design

A low-level description of how computer designers
build CPUs and other system components.

Chapter Four: CPU Architecture

A look at the internal operation of the CPU.

Chapter Five: Instruction Set Architecture

This chapter describes how Intel’s engineers designed
the 80x86 instruction set. It also explains many of their
design decisions, good and bad.

Chapter Six: Memory Architecture

How memory is organized for high performance com-
puting systems.

Chapter Seven: The I/O Subsystem

Input and output are two of the most important functions
on a PC. This chapter describes how input and output
occurs on a typical 80x86 system.

Chapter Eight: Questions, Projects, and Laboratory Exercises

See what you’ve learned in this topic!

This topic, as its title suggests, is primarily targeted
towards a machine organization course. Those who wish
to study assembly language programming should at least
read Chapter Two and possibly Chapter One. Chapter
Three is a low-level discussion of digital logic. This infor-
mation is important to those who are interested in design-

Volume 2
ing CPUs and other system components. Those individuals who are main interested in
programming can safely skip this chapter. Chapters Four, Five, and Six provide a more
in-depth look at computer systems’ architecture. Those wanting to know how things work
"under the hood" will want to read these chapters. However, programmers who just want to
learn assembly language programming can safely skip these chapters. Chapter Seven dis-
cusses I/O on the 80x86. Under Win32 you will not be able to utilize much of this informa-
tion unless you are writing device drivers. However, those interested in learning how
low-level I/O takes place in assembly language will want to read this chapter.
Page 130 © 2000, By Randall Hyde Beta Draft - Do not distribute

System Organization
System Organization Chapter One

To write even a modest 80x86 assembly language program requires considerable familiarity with the
80x86 family. To write good assembly language programs requires a strong knowledge of the underlying
hardware. Unfortunately, the underlying hardware is not consistent. Techniques that are crucial for 8088 pro-
grams may not be useful on Pentium systems. Likewise, programming techniques that provide big perfor-
mance boosts on the Pentium chip may not help at all on an 80486. Fortunately, some programming
techniques work well no matter which microprocessor you’re using. This chapter discusses the effect hard-
ware has on the performance of computer software.

1.1 Chapter Overview

This chapter describes the basic components that make up a computer system: the CPU, memory, I/O,
and the bus that connects them. Although you can write software that is ignorant of these concepts, high per-
formance software requires a complete understanding of this material. This chapter also discusses the 80x86
memory addressing modes and how you access memory data from your programs.

This chapter begins by discussing bus organization and memory organization. These two hardware com-
ponents will probably have a bigger performance impact on your software than the CPU’s speed. Under-
standing the organization of the system bus will allow you to design data structures and algorithms that
operate at maximum speed. Similarly, knowing about memory performance characteristics, data locality, and
cache operation can help you design software that runs as fast as possible. Of course, if you’re not interested
in writing code that runs as fast as possible, you can skip this discussion; however, most people do care
about speed at one point or another, so learning this information is useful.

With the generic hardware issues out of the way, this chapter then discusses the program-visible compo-
nents of the memory architecture - specifically the 80x86 addressing modes and how a program can access
memory. In addition to the addressing modes, this chapter introduces several new 80x86 instructions that
are quite useful for manipulating memory. This chapter also presents several new HLA Standard Library
calls you can use to allocate and deallocate memory.

Some might argue that this chapter gets too involved with computer architecture. They feel such mate-
rial should appear in an architectural book, not an assembly language programming book. This couldn’t be
farther from the truth! Writing good assembly language programs requires a strong knowledge of the archi-
tecture. Hence the emphasis on computer architecture in this chapter.

1.2 The Basic System Components

The basic operational design of a computer system is called its architecture. John Von Neumann, a pio-
neer in computer design, is given credit for the architecture of most computers in use today. For example, the
80x86 family uses the Von Neumann architecture (VNA). A typical Von Neumann system has three major
components: the central processing unit (or CPU), memory, and input/output (or I/O). The way a system
designer combines these components impacts system performance (See Figure 1.1).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 131

Chapter One Volume Two
Figure 1.1 Typical Von Neumann Machine

In VNA machines, like the 80x86 family, the CPU is where all the action takes place. All computations
occur inside the CPU. Data and machine instructions reside in memory until required by the CPU. To the
CPU, most I/O devices look like memory because the CPU can store data to an output device and read data
from an input device. The major difference between memory and I/O locations is the fact that I/O locations
are generally associated with external devices in the outside world.

1.2.1 The System Bus

The system bus connects the various components of a VNA machine. The 80x86 family has three major
busses: the address bus, the data bus, and the control bus. A bus is a collection of wires on which electrical
signals pass between components in the system. These busses vary from processor to processor. However,
each bus carries comparable information on all processors; e.g., the data bus may have a different implemen-
tation on the 80386 than on the 8088, but both carry data between the processor, I/O, and memory.

A typical 80x86 system component uses standard TTL logic levels1. This means each wire on a bus
uses a standard voltage level to represent zero and one2. We will always specify zero and one rather than the
electrical levels because these levels vary on different processors (especially laptops).

1.2.1.1 The Data Bus

The 80x86 processors use the data bus to shuffle data between the various components in a computer
system. The size of this bus varies widely in the 80x86 family. Indeed, this bus defines the “size” of the pro-
cessor.

On typical 80x86 systems, the data bus contains eight, 16, 32, or 64 lines. The 8088 and 80188 micro-
processors have an eight bit data bus (eight data lines). The 8086, 80186, 80286, and 80386SX processors
have a 16 bit data bus. The 80386DX, 80486, and Pentium Overdrive™ processors have a 32 bit data bus.

1. Actually, newer members of the family tend to use lower voltage signals, but these remain compatible with TTL signals.
2. TTL logic represents the value zero with a voltage in the range 0.0-0.8v. It represents a one with a voltage in the range
2.4-5v. If the signal on a bus line is between 0.8v and 2.4v, it’s value is indeterminate. Such a condition should only exist
when a bus line is changing from one state to the other.

CPU

Memory

I/O Devices
Page 132 © 2001, By Randall Hyde Beta Draft - Do not distribute

System Organization
The Pentium™, Pentium Pro, Pentium II, Pentium III, and Pentium IV processors have a 64 bit data bus.
Future versions of the chip (e.g., the AMD 86-64) may have a larger bus.

Having an eight bit data bus does not limit the processor to eight bit data types. It simply means that the
processor can only access one byte of data per memory cycle (see “The Memory Subsystem” on page 135
for a description of memory cycles). Therefore, the eight bit bus on an 8088 can only transmit half the infor-
mation per unit time (memory cycle) as the 16 bit bus on the 8086. Therefore, processors with a 16 bit bus
are naturally faster than processors with an eight bit bus. Likewise, processors with a 32 bit bus are faster
than those with a 16 or eight bit data bus. The size of the data bus affects the performance of the system more
than the size of any other bus.

You’ll often hear a processor called an eight, 16, 32, or 64 bit processor. While there is a mild contro-
versy concerning the size of a processor, most people now agree that the minimum of either the number of
data lines on the processor or the size of the largest general purpose integer register determines the processor
size. Since the 80x86 family busses are eight, 16, 32, or 64 bits wide, most data accesses are also eight, 16,
32, or 64 bits. Therefore, the Pentium CPUs are still 32-bit CPUs even though they have a 64-bit data bus.

Although it is possible to process 12 bit data with an 80x86, most programmers process 16 bits since the
processor will fetch and manipulate 16 bits anyway. This is because the processor always fetches data in
groups of eight bits. To fetch 12 bits requires two eight bit memory operations. Since the processor fetches
16 bits rather than 12, most programmers use all 16 bits. In general, manipulating data which is eight, 16, 32,
or 64 bits in length is the most efficient.

Although the 80x86 family members with 16, 32, and 64 bit data busses can process data up to the
width of the bus, they can also access smaller memory units of eight, 16, or 32 bits. Therefore, anything you
can do with a small data bus can be done with a larger data bus as well; the larger data bus, however, may
access memory faster and can access larger chunks of data in one memory operation. You’ll read about the
exact nature of these memory accesses a little later (see “The Memory Subsystem” on page 135).

1.2.1.2 The Address Bus

The data bus on an 80x86 family processor transfers information between a particular memory location
or I/O device and the CPU. The only question is, “Which memory location or I/O device? ” The address bus
answers that question. To differentiate memory locations and I/O devices, the system designer assigns a
unique memory address to each memory element and I/O device. When the software wants to access some
particular memory location or I/O device, it places the corresponding address on the address bus. Circuitry
associated with the memory or I/O device recognizes this address and instructs the memory or I/O device to

Table 12: 80x86 Processor Data Bus Sizes

Processor Data Bus Size

 8088 8

 80188 8

 8086 16

 80186 16

 80286 16

 80386sx 16

 80386dx 32

 80486 32

 80586 class / Pentium family 64
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 133

Chapter One Volume Two
read the data from or place data on to the data bus. In either case, all other memory locations ignore the
request. Only the device whose address matches the value on the address bus responds.

With a single address line, a processor could create exactly two unique addresses: zero and one. With n
address lines, the processor can provide 2n unique addresses (since there are 2n unique values in an n-bit
binary number). Therefore, the number of bits on the address bus will determine the maximum number of
addressable memory and I/O locations. The 8088 and 8086, for example, have 20 bit address busses. There-
fore, they can access up to 1,048,576 (or 220) memory locations. Larger address busses can access more
memory. The 8088 and 8086 suffer from an anemic address space3 – their address bus is too small. Intel cor-
rected this in later processors.

Future 80x86 processors will probably support 40, 48, and 64-bit address busses. The time is coming
when most programmers will consider four gigabytes of storage to be too small, much like they consider one
megabyte insufficient today. (There was a time when one megabyte was considered far more than anyone
would ever need!).

1.2.1.3 The Control Bus

The control bus is an eclectic collection of signals that control how the processor communicates with
the rest of the system. Consider for a moment the data bus. The CPU sends data to memory and receives data
from memory on the data bus. This prompts the question, “Is it sending or receiving?” There are two lines on
the control bus, read and write, which specify the direction of data flow. Other signals include system clocks,
interrupt lines, status lines, and so on. The exact make up of the control bus varies among processors in the
80x86 family. However, some control lines are common to all processors and are worth a brief mention.

The read and write control lines control the direction of data on the data bus. When both contain a logic
one, the CPU and memory-I/O are not communicating with one another. If the read line is low (logic zero),
the CPU is reading data from memory (that is, the system is transferring data from memory to the CPU). If
the write line is low, the system transfers data from the CPU to memory.

3. The address space is the set of all addressable memory locations.

Table 13: 80x86 Family Address Bus Sizes

Processor
Address Bus

Size
Max Addressable

Memory
In English!

8088 20 1,048,576 One Megabyte

8086 20 1,048,576 One Megabyte

80188 20 1,048,576 One Megabyte

80186 20 1,048,576 One Megabyte

80286 24 16,777,216 Sixteen Megabytes

80386sx 24 16,777,216 Sixteen Megabytes

80386dx 32 4,294,976,296 Four Gigabytes

80486 32 4,294,976,296 Four Gigabytes

80586 / Pentium 32 4,294,976,296 Four Gigabytes

Pentium Pro 36 68,719,476,736 64 Gigabytes

Pentium II 36 68,719,476,736 64 Gigabytes

Pentium III 36 68,719,476,736 64 Gigabytes
Page 134 © 2001, By Randall Hyde Beta Draft - Do not distribute

System Organization
The byte enable lines are another set of important control lines. These control lines allow 16, 32, and 64
bit processors to deal with smaller chunks of data. Additional details appear in the next section.

The 80x86 family, unlike many other processors, provides two distinct address spaces: one for memory
and one for I/O. While the memory address busses on various 80x86 processors vary in size, the I/O address
bus on all 80x86 CPUs is 16 bits wide. This allows the processor to address up to 65,536 different I/O loca-
tions. As it turns out, most devices (like the keyboard, printer, disk drives, etc.) require more than one I/O
location. Nonetheless, 65,536 I/O locations are more than sufficient for most applications. The original IBM
PC design only allowed the use of 1,024 of these.

Although the 80x86 family supports two address spaces, it does not have two address busses (for I/O
and memory). Instead, the system shares the address bus for both I/O and memory addresses. Additional
control lines decide whether the address is intended for memory or I/O. When such signals are active, the I/O
devices use the address on the L.O. 16 bits of the address bus. When inactive, the I/O devices ignore the sig-
nals on the address bus (the memory subsystem takes over at that point).

1.2.2 The Memory Subsystem

A typical 80x86 processor addresses a maximum of 2n different memory locations, where n is the num-
ber of bits on the address bus4. As you’ve seen already, 80x86 processors have 20, 24, 32, and 36 bit address
busses (with 64 bits on the way).

Of course, the first question you should ask is, “What exactly is a memory location?” The 80x86 sup-
ports byte addressable memory. Therefore, the basic memory unit is a byte. So with 20, 24, 32, and 36
address lines, the 80x86 processors can address one megabyte, 16 megabytes, four gigabytes, and 64
gigabytes of memory, respectively.

Think of memory as a linear array of bytes. The address of the first byte is zero and the address of the
last byte is 2n-1. For an 8088 with a 20 bit address bus, the following pseudo-Pascal array declaration is a
good approximation of memory:

Memory: array [0..1048575] of byte;

To execute the equivalent of the Pascal statement “Memory [125] := 0;” the CPU places the value zero
on the data bus, the address 125 on the address bus, and asserts the write line (since the CPU is writing data
to memory), see Figure 1.2.

Figure 1.2 Memory Write Operation

4. This is the maximum. Most computer systems built around 80x86 family do not include the maximum addressable amount
of memory.

CPU

MemoryAddress = 125

Data = 0

Write = 0

Location
 125
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 135

Chapter One Volume Two
To execute the equivalent of “CPU := Memory [125];” the CPU places the address 125 on the address
bus, asserts the read line (since the CPU is reading data from memory), and then reads the resulting data
from the data bus (see Figure 1.3).

Figure 1.3 Memory Read Operation

The above discussion applies only when accessing a single byte in memory. So what happens when the
processor accesses a word or a double word? Since memory consists of an array of bytes, how can we possi-
bly deal with values larger than eight bits?

Different computer systems have different solutions to this problem. The 80x86 family deals with this
problem by storing the L.O. byte of a word at the address specified and the H.O. byte at the next location.
Therefore, a word consumes two consecutive memory addresses (as you would expect, since a word consists
of two bytes). Similarly, a double word consumes four consecutive memory locations. The address for the
double word is the address of its L.O. byte. The remaining three bytes follow this L.O. byte, with the H.O.
byte appearing at the address of the double word plus three (see Figure 1.4). Bytes, words, and double
words may begin at any valid address in memory. We will soon see, however, that starting larger objects at
an arbitrary address is not a good idea.

CPU

MemoryAddress = 125

Data = Memory[125]

Read = 0

Location
 125
Page 136 © 2001, By Randall Hyde Beta Draft - Do not distribute

System Organization
Figure 1.4 Byte, Word, and DWord Storage in Memory

Note that it is quite possible for byte, word, and double word values to overlap in memory. For example,
in Figure 1.4 you could have a word variable beginning at address 193, a byte variable at address 194, and a
double word value beginning at address 192. These variables would all overlap.

The 8088 and 80188 microprocessors have an eight bit data bus. This means that the CPU can transfer
eight bits of data at a time. Since each memory address corresponds to an eight bit byte, this turns out to be
the most convenient arrangement (from the hardware perspective), see Figure 1.5.

Figure 1.5 Eight-Bit CPU <-> Memory Interface

195

194

193

192

191

190

189

188

187

186

Double Word
at address
192

Word at
address 188

Byte at
address 186

Address

CPU

Address

Data

Data comes from memory
eight bits at a time.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 137

Chapter One Volume Two
The term “byte addressable memory array” means that the CPU can address memory in chunks as small
as a single byte. It also means that this is the smallest unit of memory you can access at once with the proces-
sor. That is, if the processor wants to access a four bit value, it must read eight bits and then ignore the extra
four bits. Also realize that byte addressability does not imply that the CPU can access eight bits on any arbi-
trary bit boundary. When you specify address 125 in memory, you get the entire eight bits at that address,
nothing less, nothing more. Addresses are integers; you cannot, for example, specify address 125.5 to fetch
fewer than eight bits.

The 8088 and 80188 can manipulate word and double word values, even with their eight bit data bus.
However, this requires multiple memory operations because these processors can only move eight bits of
data at once. To load a word requires two memory operations; to load a double word requires four memory
operations.

The 8086, 80186, 80286, and 80386sx processors have a 16 bit data bus. This allows these processors to
access twice as much memory in the same amount of time as their eight bit brethren. These processors orga-
nize memory into two banks: an “even” bank and an “odd” bank (see Figure 1.6). Figure 1.7 illustrates the
connection to the CPU (D0-D7 denotes the L.O. byte of the data bus, D8-D15 denotes the H.O. byte of the
data bus):

Figure 1.6 Byte Addressing in Word Memory

Figure 1.7 Sixteen-Bit Processor (8086, 80186, 80286, 80386sx) Memory Organization

Even Odd

0 1

2 3

4 5

6 7Word 3

Word 2

Word 1

Word 0

Numbers in cells
represent the
byte addresses

CPU

Address

Data

D0-D7

D8-D15

Even Odd
Page 138 © 2001, By Randall Hyde Beta Draft - Do not distribute

System Organization
The 16 bit members of the 80x86 family can load a word from any arbitrary address. As mentioned ear-
lier, the processor fetches the L.O. byte of the value from the address specified and the H.O. byte from the
next consecutive address. This creates a subtle problem if you look closely at the diagram above. What hap-
pens when you access a word on an odd address? Suppose you want to read a word from location 125. Okay,
the L.O. byte of the word comes from location 125 and the H.O. word comes from location 126. What’s the
big deal? It turns out that there are two problems with this approach.

First, look again at Figure 1.7. Data bus lines eight through 15 (the H.O. byte) connect to the odd bank,
and data bus lines zero through seven (the L.O. byte) connect to the even bank. Accessing memory location
125 will transfer data to the CPU on the H.O. byte of the data bus; yet we want this data in the L.O. byte!
Fortunately, the 80x86 CPUs recognize this situation and automatically transfer the data on D8-D15 to the
L.O. byte.

The second problem is even more obscure. When accessing words, we’re really accessing two separate
bytes, each of which has its own byte address. So the question arises, “What address appears on the address
bus?” The 16 bit 80x86 CPUs always place even addresses on the bus. Even bytes always appear on data
lines D0-D7 and the odd bytes always appear on data lines D8-D15. If you access a word at an even address,
the CPU can bring in the entire 16 bit chunk in one memory operation. Likewise, if you access a single byte,
the CPU activates the appropriate bank (using a “byte enable” control line). If the byte appeared at an odd
address, the CPU will automatically move it from the H.O. byte on the bus to the L.O. byte.

So what happens when the CPU accesses a word at an odd address, like the example given earlier? Well,
the CPU cannot place the address 125 onto the address bus and read the 16 bits from memory. There are no
odd addresses coming out of a 16 bit 80x86 CPU. The addresses are always even. So if you try to put 125 on
the address bus, this will put 124 on to the address bus. Were you to read the 16 bits at this address, you
would get the word at addresses 124 (L.O. byte) and 125 (H.O. byte) – not what you’d expect. Accessing a
word at an odd address requires two memory operations. First the CPU must read the byte at address 125,
then it needs to read the byte at address 126. Finally, it needs to swap the positions of these bytes internally
since both entered the CPU on the wrong half of the data bus.

Fortunately, the 16 bit 80x86 CPUs hide these details from you. Your programs can access words at any
address and the CPU will properly access and swap (if necessary) the data in memory. However, to access a
word at an odd address requires two memory operations (just like the 8088/80188). Therefore, accessing
words at odd addresses on a 16 bit processor is slower than accessing words at even addresses. By carefully
arranging how you use memory, you can improve the speed of your program.

Accessing 32 bit quantities always takes at least two memory operations on the 16 bit processors. If you
access a 32 bit quantity at an odd address, the processor will require three memory operations to access the
data.

The 32 bit 80x86 processors (the 80386, 80486, and Pentium Overdrive) use four banks of memory con-
nected to the 32 bit data bus (see Figure 1.8).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 139

Chapter One Volume Two
Figure 1.8 32-Bit Processor (80386, 80486, Pentium Overdrive) Memory Organization

The address placed on the address bus is always some multiple of four. Using various “byte enable”
lines, the CPU can select which of the four bytes at that address the software wants to access. As with the 16
bit processor, the CPU will automatically rearrange bytes as necessary.

With a 32 bit memory interface, the 80x86 CPU can access any byte with one memory operation. If
(address MOD 4) does not equal three, then a 32 bit CPU can access a word at that address using a single
memory operation. However, if the remainder is three, then it will take two memory operations to access that
word (see Figure 1.9). This is the same problem encountered with the 16 bit processor, except it occurs half
as often.

Figure 1.9 Accessing a Word at (Address mod 4) = 3.

A 32 bit CPU can access a double word in a single memory operation if the address of that value is
evenly divisible by four. If not, the CPU will require two memory operations.

Once again, the CPU handles all of this automatically. In terms of loading correct data the CPU handles
everything for you. However, there is a performance benefit to proper data alignment. As a general rule you
should always place word values at even addresses and double word values at addresses which are evenly
divisible by four. This will speed up your program.

CPU

Address

Data

D0-D7

D8-D15

D16-D23

D24-D31

Byte 0 1 2 3

H.O. Byte (2nd access)

L.O. Byte (1st access)
Page 140 © 2001, By Randall Hyde Beta Draft - Do not distribute

System Organization
1.2.3 The I/O Subsystem

Besides the 20, 24, or 32 address lines which access memory, the 80x86 family provides a 16 bit I/O
address bus. This gives the 80x86 CPUs two separate address spaces: one for memory and one for I/O oper-
ations. Lines on the control bus differentiate between memory and I/O addresses. Other than separate control
lines and a smaller bus, I/O addressing behaves exactly like memory addressing. Memory and I/O devices
both share the same data bus and the L.O. 16 lines on the address bus.

There are three limitations to the I/O subsystem on the PC: first, the 80x86 CPUs require special instruc-
tions to access I/O devices; second, the designers of the PC used the “best” I/O locations for their own pur-
poses, forcing third party developers to use less accessible locations; third, 80x86 systems can address no
more than 65,536 (216) I/O addresses. When you consider that a typical video display card requires over
eight megabytes of addressable locations, you can see a problem with the size of I/O bus.

Fortunately, hardware designers can map their I/O devices into the memory address space as easily as
they can the I/O address space. So by using the appropriate circuitry, they can make their I/O devices look
just like memory. This is how, for example, display adapters on the PC work.

1.3 HLA Support for Data Alignment

In order to write the fastest running programs, you need to ensure that your data objects are properly
aligned in memory. Data becomes misaligned whenever you allocate storage for different sized objects in
adjacent memory locations. Since it is nearly impossible to write a (large) program that uses objects that are
all the same size, some other facility is necessary in order to realign data that would normally be unaligned
in memory.

Consider the following HLA variable declarations:

static
dw: dword;
b: byte;
w: word;
dw2: dword;
w2: word;
b2: byte;
dw3: dword;

The first static declaration in a program (running under Win32 and most 32-bit operating systems)
places its variables at an address that is an even multiple of 4096 bytes. Since 4096 is a power of two, what-
ever variable first appears in the static declaration is guaranteed to be aligned on a reasonable address. Each
successive variable is allocated at an address that is the sum of the sizes of all the preceding variables plus
the starting address. Therefore, assuming the above variables are allocated at a starting address of 4096,
then each variable will be allocated at the following addresses:

// Start Adrs Length
dw: dword; // 4096 4
b: byte; // 4100 1
w: word; // 4101 2
dw2: dword; // 4103 4
w2: word; // 4107 2
b2: byte; // 4109 1
dw3: dword; // 4110 4

With the exception of the first variable (which is aligned on a 4K boundary) and the byte variables
(whose alignment doesn’t matter), all of these variables are misaligned in memory. The w, w2, and dw2 vari-
ables are aligned on odd addresses and the dw3 variable is aligned on an even address that is not an even
multiple of four.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 141

Chapter One Volume Two
An easy way to guarantee that your variables are aligned on an appropriate address is to put all the
dword variables first, the word variables second, and the byte variables last in the declaration:

static
dw: dword;
dw2: dword;
dw3: dword;
w: word;
w2: word;
b: byte;
b2: byte;

This organization produces the following addresses in memory (again, assuming the first variable is allo-
cated at address 4096):

// Start Adrs Length
dw: dword; // 4096 4
dw2: dword; // 4100 4
dw3: dword; // 4104 4
w: word; // 4108 2
w2: word; // 4110 2
b: byte; // 4112 1
b2: byte; // 4113 1

As you can see, these variables are all aligned at reasonable addresses.

Unfortunately, it is rarely possible for you to arrange your variables in this manner. While there are lots
of technical reasons that make this alignment impossible, a good practical reason for not doing this is
because it doesn’t let you organize your variable declarations by logical function (that is, you probably want
to keep related variables next to one another regardless of their size).

To resolve this problem, HLA provides two solutions. The first is an alignment option whenever you
encounter a static section. If you follow the static keyword by an integer constant inside parentheses, HLA
will align the very next variable declaration at an address that is an even multiple of the specified constant,
e.g..,

static(4)
dw: dword;
b: byte;
w: word;
dw2: dword;
w2: word;
b2: byte;
dw3: dword;

Of course, if you have only a single static section in your entire program, this declaration doesn’t buy you
much because the first declaration in the section is already aligned on a 4096 byte boundary. However, HLA
does allow you to put multiple static sections into your program, so you can specify an alignment constant
for each static section:

static(4)
dw: dword;
b: byte;

static(2)
w: word;

static(4)
dw2: dword;
w2: word;
b2: byte;
Page 142 © 2001, By Randall Hyde Beta Draft - Do not distribute

System Organization
static(4)
dw3: dword;

This particular sequence guarantees that all double word variables are aligned on addresses that are multi-
ples of four and all word variables are aligned on even addresses (note that a special section was not created
for w2 since its address is going to be an even multiple of four).

While the alignment parameter to the static directive is useful on occasion, there are two problems with
it: The first problem is that inserting so many static directives into the middle of your variable declarations
tends to disrupt the readability of your variable declarations. Part of this problem can be overcome by sim-
ply placing a static directive before every variable declaration:

static(4) dw: dword;
static(1) b: byte;
static(2) w: word;
static(4) dw2: dword;
static(2) w2: word;
static(1) b2: byte;
static(4) dw3: dword;

While this approach can, arguably, make a program easier to read, it certainly involves more typing and it
doesn’t address the second problem: variables appearing in separate static sections are not guaranteed to be
allocated in adjacent memory locations. Once in a while it is very important to ensure that two variables are
allocated in adjacent memory cells and most programmers assume that variables declared next to one
another in the source code are allocated in adjacent memory cells. The mechanism above does not guarantee
this.

The second facility HLA provides to help align adjacent memory locations is the align directive. The
align directive uses the following syntax:

align(integer_constant);

The integer constant must be one of the following small unsigned integer values: 1, 2, 4, 8, or 16. If HLA
encounters the align directive in a static section, it will align the very next variable on an address that is an
even multiple of the specified alignment constant. The previous example could be rewritten, using the align
directive, as follows:

static(4)
dw: dword;
b: byte;
align(2);
w: word;
align(4);
dw2: dword;
w2: word;
b2: byte;
align(4);
dw3: dword;

If you’re wondering how the align directive works, it’s really quite simple. If HLA determines that the
current address is not an even multiple of the specified value, HLA will quietly emit extra bytes of padding
after the previous variable declaration until the current address in the static section is an even multiple of the
specified value. This has the effect of making your program slightly larger (by a few bytes) in exchange for
faster access to your data; Given that your program will only grow by a small number of bytes when you use
this feature, this is a good trade off.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 143

Chapter One Volume Two
1.4 System Timing

Although modern computers are quite fast and getting faster all the time, they still require a finite
amount of time to accomplish even the smallest tasks. On Von Neumann machines like the 80x86, most
operations are serialized. This means that the computer executes commands in a prescribed order. It
wouldn’t do, for example, to execute the statement I:=I*5+2; before I:=J; in the following sequence:

I := J;
I := I * 5 + 2;

Clearly we need some way to control which statement executes first and which executes second.

Of course, on real computer systems, operations do not occur instantaneously. Moving a copy of J into I
takes a certain amount of time. Likewise, multiplying I by five and then adding two and storing the result
back into I takes time. As you might expect, the second Pascal statement above takes quite a bit longer to
execute than the first. For those interested in writing fast software, a natural question to ask is, “How does
the processor execute statements, and how do we measure how long they take to execute?”

The CPU is a very complex piece of circuitry. Without going into too many details, let us just say that
operations inside the CPU must be very carefully coordinated or the CPU will produce erroneous results. To
ensure that all operations occur at just the right moment, the 80x86 CPUs use an alternating signal called the
system clock.

1.4.1 The System Clock

At the most basic level, the system clock handles all synchronization within a computer system. The sys-
tem clock is an electrical signal on the control bus which alternates between zero and one at a periodic rate
(see Figure 1.10). All activity within the CPU is synchronized with the edges (rising or falling) of this clock
signal.

Figure 1.10 The System Clock

The frequency with which the system clock alternates between zero and one is the system clock fre-
quency. The time it takes for the system clock to switch from zero to one and back to zero is the clock period.
One full period is also called a clock cycle. On most modern systems, the system clock switches between
zero and one at rates exceeding several hundred million times per second to several billion times per second.
The clock frequency is simply the number of clock cycles which occur each second. A typical Pentium III
chip, circa 2000, runs at speeds of 1 billion cycles per second or faster. “Hertz” (Hz) is the technical term
meaning one cycle per second. Therefore, the aforementioned Pentium chip runs at 1000 million hertz, or
1000 megahertz (MHz), also known as one gigahertz. Typical frequencies for 80x86 parts range from 5 MHz
up to several Gigahertz (GHz, or billions of cycles per second) and beyond. Note that one clock period (the
amount of time for one complete clock cycle) is the reciprocal of the clock frequency. For example, a 1 MHz
clock would have a clock period of one microsecond (1/1,000,000th of a second). Likewise, a 10 MHz clock
would have a clock period of 100 nanoseconds (100 billionths of a second). A CPU running at 1 GHz would

1

0
Time

One Clock
 “Period”
Page 144 © 2001, By Randall Hyde Beta Draft - Do not distribute

System Organization
have a clock period of one nanosecond. Note that we usually express clock periods in millionths or billionths
of a second.

To ensure synchronization, most CPUs start an operation on either the falling edge (when the clock goes
from one to zero) or the rising edge (when the clock goes from zero to one). The system clock spends most
of its time at either zero or one and very little time switching between the two. Therefore clock edge is the
perfect synchronization point.

Since all CPU operations are synchronized around the clock, the CPU cannot perform tasks any faster
than the clock. However, just because a CPU is running at some clock frequency doesn’t mean that it is exe-
cuting that many operations each second. Many operations take multiple clock cycles to complete so the
CPU often performs operations at a significantly lower rate.

1.4.2 Memory Access and the System Clock

Memory access is one of the most common CPU activities. Memory access is definitely an operation
synchronized around the system clock. That is, reading a value from memory or writing a value to memory
occurs no more often than once every clock cycle. Indeed, on many 80x86 processors, it takes several clock
cycles to access a memory location. The memory access time is the number of clock cycles the system
requires to access a memory location; this is an important value since longer memory access times result in
lower performance.

Different 80x86 processors have different memory access times ranging from one to four clock cycles.
For example, the 8088 and 8086 CPUs require four clock cycles to access memory; the 80486 and later
CPUs require only one. Therefore, the 80486 will execute programs that access memory faster than an 8086,
even when running at the same clock frequency.

Memory access time is the amount of time between a memory operation request (read or write) and the
time the memory operation completes. On a 5 MHz 8088/8086 CPU the memory access time is roughly 800
ns (nanoseconds). On a 50 MHz 80486, the memory access time is slightly less than 20 ns. Note that the
memory access time for the 80486 is 40 times faster than the 8088/8086. This is because the 80486’s clock
frequency is ten times faster and it uses one-fourth the clock cycles to access memory.

When reading from memory, the memory access time is the amount of time from the point that the CPU
places an address on the address bus and the CPU takes the data off the data bus. On an 80486 CPU with a
one cycle memory access time, a read looks something like shown in Figure 1.11.Writing data to memory is
similar (see Figure 1.12).

Figure 1.11 The 80x86 Memory Read Cycle

The CPU places
the address on
the address bus
during this time
period The memory system must

decode the address and
place the data on the data
bus during this time period

The CPU reads the
data from the data
bus during this time
period
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 145

Chapter One Volume Two
Figure 1.12 The 80x86 Memory Write Cycle

Note that the CPU doesn’t wait for memory. The access time is specified by the clock frequency. If the
memory subsystem doesn’t work fast enough, the CPU will read garbage data on a memory read operation
and will not properly store the data on a memory write operation. This will surely cause the system to fail.

Memory devices have various ratings, but the two major ones are capacity and speed (access time). Typ-
ical dynamic RAM (random access memory) devices have capacities of 512 (or more) megabytes and speeds
of 5-100 ns. You can buy bigger or faster devices, but they are much more expensive. A typical 500 MHz
Pentium system uses 10 ns memory devices.

Wait just a second here! At 500 MHz the clock period is roughly 2 ns. How can a system designer get
away with using 10 ns memory? The answer is wait states.

1.4.3 Wait States

A wait state is nothing more than an extra clock cycle to give some device time to complete an opera-
tion. For example, a 100 MHz 80486 system has a 10 ns clock period. This implies that you need 10 ns
memory. In fact, the situation is worse than this. In most computer systems there is additional circuitry
between the CPU and memory: decoding and buffering logic. This additional circuitry introduces additional
delays into the system (see Figure 1.13). In this diagram, the system loses 10ns to buffering and decoding.
So if the CPU needs the data back in 10 ns, the memory must respond in less than 0 ns (which is impossible).

Figure 1.13 Decoding and Buffer Delays

The CPU places
the address and
data onto the bus
at this time

Sometime before the end
of the clock period the
memory subsystem must
grab and store the specified
value

CPU

D
e
c
o
d
e
r

B
u
f
f
e
r

address

data

5 ns delay
through
decoder

5 ns delay
through
buffer
Page 146 © 2001, By Randall Hyde Beta Draft - Do not distribute

System Organization
If cost-effective memory won’t work with a fast processor, how do companies manage to sell fast PCs?
One part of the answer is the wait state. For example, if you have a 20 MHz processor with a memory cycle
time of 50 ns and you lose 10 ns to buffering and decoding, you’ll need 40 ns memory. What if you can only
afford 80 ns memory in a 20 MHz system? Adding a wait state to extend the memory cycle to 100 ns (two
clock cycles) will solve this problem. Subtracting 10ns for the decoding and buffering leaves 90 ns. There-
fore, 80 ns memory will respond well before the CPU requires the data.

Almost every general purpose CPU in existence provides a signal on the control bus to allow the inser-
tion of wait states. Generally, the decoding circuitry asserts this line to delay one additional clock period, if
necessary. This gives the memory sufficient access time, and the system works properly (see Figure 1.14).

Figure 1.14 Inserting a Wait State into a Memory Read Operation

Sometimes a single wait state is not sufficient. Consider an 80486 running at 50 MHz. The normal
memory cycle time is less than 20 ns. Therefore, less than 10 ns are available after subtracting decoding and
buffering time. If you are using 60 ns memory in the system, adding a single wait state will not do the trick.
Each wait state gives you 20 ns, so with a single wait state you would need 30 ns memory. To work with
60 ns memory you would need to add three wait states (zero wait states = 10 ns, one wait state = 30 ns, two
wait states = 50 ns, and three wait states = 70 ns).

Needless to say, from the system performance point of view, wait states are not a good thing. While the
CPU is waiting for data from memory it cannot operate on that data. Adding a single wait state to a memory
cycle on an 80486 CPU doubles the amount of time required to access the data. This, in turn, halves the
speed of the memory access. Running with a wait state on every memory access is almost like cutting the
processor clock frequency in half. You’re going to get a lot less work done in the same amount of time.

However, we’re not doomed to slow execution because of added wait states. There are several tricks
hardware designers can play to achieve zero wait states most of the time. The most common of these is the
use of cache (pronounced “cash”) memory.

1.4.4 Cache Memory

If you look at a typical program (as many researchers have), you’ll discover that it tends to access the
same memory locations repeatedly. Furthermore, you also discover that a program often accesses adjacent
memory locations. The technical names given to this phenomenon are temporal locality of reference and
spatial locality of reference. When exhibiting spatial locality, a program accesses neighboring memory loca-

The CPU places
the address on
the address bus
during this time
period

The memory system must
decode the address and
place the data on the data
bus during this time period,
since one clock cycle is insufficient,
the systems adds a second clock cycle,
a wait state

The CPU reads the
data from the data
bus during this time
period
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 147

Chapter One Volume Two
tions. When displaying temporal locality of reference a program repeatedly accesses the same memory loca-
tion during a short time period. Both forms of locality occur in the following Pascal code segment:

for i := 0 to 10 do
A [i] := 0;

There are two occurrences each of spatial and temporal locality of reference within this loop. Let’s consider
the obvious ones first.

In the Pascal code above, the program references the variable i several times. The for loop compares i
against 10 to see if the loop is complete. It also increments i by one at the bottom of the loop. The assign-
ment statement also uses i as an array index. This shows temporal locality of reference in action since the
CPU accesses i at three points in a short time period.

This program also exhibits spatial locality of reference. The loop itself zeros out the elements of array A
by writing a zero to the first location in A, then to the second location in A, and so on. Assuming that Pascal
stores the elements of A into consecutive memory locations, each loop iteration accesses adjacent memory
locations.

There is an additional example of temporal and spatial locality of reference in the Pascal example
above, although it is not so obvious. Computer instructions which tell the system to do the specified task also
appear in memory. These instructions appear sequentially in memory – the spatial locality part. The com-
puter also executes these instructions repeatedly, once for each loop iteration – the temporal locality part.

If you look at the execution profile of a typical program, you’d discover that the program typically exe-
cutes less than half the statements. Generally, a typical program might only use 10-20% of the memory allot-
ted to it. At any one given time, a one megabyte program might only access four to eight kilobytes of data
and code. So if you paid an outrageous sum of money for expensive zero wait state RAM, you wouldn’t be
using most of it at any one given time! Wouldn’t it be nice if you could buy a small amount of fast RAM and
dynamically reassign its address(es) as the program executes?

This is exactly what cache memory does for you. Cache memory sits between the CPU and main mem-
ory. It is a small amount of very fast (zero wait state) memory. Unlike normal memory, the bytes appearing
within a cache do not have fixed addresses. Instead, cache memory can reassign the address of a data object.
This allows the system to keep recently accessed values in the cache. Addresses that the CPU has never
accessed or hasn’t accessed in some time remain in main (slow) memory. Since most memory accesses are
to recently accessed variables (or to locations near a recently accessed location), the data generally appears
in cache memory.

Cache memory is not perfect. Although a program may spend considerable time executing code in one
place, eventually it will call a procedure or wander off to some section of code outside cache memory. In
such an event the CPU has to go to main memory to fetch the data. Since main memory is slow, this will
require the insertion of wait states.

A cache hit occurs whenever the CPU accesses memory and finds the data in the cache. In such a case
the CPU can usually access data with zero wait states. A cache miss occurs if the CPU accesses memory and
the data is not present in cache. Then the CPU has to read the data from main memory, incurring a perfor-
mance loss. To take advantage of locality of reference, the CPU copies data into the cache whenever it
accesses an address not present in the cache. Since it is likely the system will access that same location
shortly, the system will save wait states by having that data in the cache.

As described above, cache memory handles the temporal aspects of memory access, but not the spatial
aspects. Caching memory locations when you access them won’t speed up the program if you constantly
access consecutive locations (spatial locality of reference). To solve this problem, most caching systems read
several consecutive bytes from memory when a cache miss occurs5. The 80486, for example, reads 16 bytes
at a shot upon a cache miss. If you read 16 bytes, why read them in blocks rather than as you need them? As
it turns out, most memory chips available today have special modes which let you quickly access several
consecutive memory locations on the chip. The cache exploits this capability to reduce the average number
of wait states needed to access memory.

5. Engineers call this block of data a cache line.
Page 148 © 2001, By Randall Hyde Beta Draft - Do not distribute

System Organization
If you write a program that randomly accesses memory, using a cache might actually slow you down.
Reading 16 bytes on each cache miss is expensive if you only access a few bytes in the corresponding cache
line. Nonetheless, cache memory systems work quite well in the average case.

It should come as no surprise that the ratio of cache hits to misses increases with the size (in bytes) of
the cache memory subsystem. The 80486 chip, for example, has 8,192 bytes of on-chip cache. Intel claims to
get an 80-95% hit rate with this cache (meaning 80-95% of the time the CPU finds the data in the cache).
This sounds very impressive. However, if you play around with the numbers a little bit, you’ll discover it’s
not all that impressive. Suppose we pick the 80% figure. Then one out of every five memory accesses, on the
average, will not be in the cache. If you have a 50 MHz processor and a 90 ns memory access time, four out
of five memory accesses require only one clock cycle (since they are in the cache) and the fifth will require
about 10 wait states6. Altogether, the system will require 15 clock cycles to access five memory locations,
or three clock cycles per access, on the average. That’s equivalent to two wait states added to every memory
access. Now do you believe that your machine runs at zero wait states?

There are a couple of ways to improve the situation. First, you can add more cache memory. This
improves the cache hit ratio, reducing the number of wait states. For example, increasing the hit ratio from
80% to 90% lets you access 10 memory locations in 20 cycles. This reduces the average number of wait
states per memory access to one wait state – a substantial improvement. Alas, you can’t pull an 80486 chip
apart and solder more cache onto the chip. However, the 80586/Pentium CPUs have a significantly larger
cache than the 80486 and operates with fewer average wait states.

Another way to improve performance is to build a two-level caching system. Many 80486 systems work
in this fashion. The first level is the on-chip 8,192 byte cache. The next level, between the on-chip cache and
main memory, is a secondary cache built on the computer system circuit board (see Figure 1.15). Pentiums
and later chips typically move the secondary cache onto the same chip carrier as the CPU (that is, Intel’s
designers have included the secondary cache as part of the CPU module).

Figure 1.15 A Two Level Caching System

A typical secondary cache contains anywhere from 32,768 bytes to one megabyte of memory. Common
sizes on PC subsystems are 256K, 512K, and 1024 Kbytes (1 MB) of cache.

You might ask, “Why bother with a two-level cache? Why not use a 262,144 byte cache to begin with?”
Well, the secondary cache generally does not operate at zero wait states. The circuitry to support 262,144
bytes of 10 ns memory (20 ns total access time) would be very expensive. So most system designers use

6. Ten wait states were computed as follows: five clock cycles to read the first four bytes (10+20+20+20+20=90). However,
the cache always reads 16 consecutive bytes. Most memory subsystems let you read consecutive addresses in about 40 ns
after accessing the first location. Therefore, the 80486 will require an additional six clock cycles to read the remaining three
double words. The total is 11 clock cycles or 10 wait states.

CPU

On-chip (primary)
cache Secondary Cache

Main
Memory
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 149

Chapter One Volume Two
slower memory which requires one or two wait states. This is still much faster than main memory. Combined
with the on-chip cache, you can get better performance from the system.

Consider the previous example with an 80% hit ratio. If the secondary cache requires two cycles for
each memory access and three cycles for the first access, then a cache miss on the on-chip cache will require
a total of six clock cycles. All told, the average system performance will be two clocks per memory access.
Quite a bit faster than the three required by the system without the secondary cache. Furthermore, the sec-
ondary cache can update its values in parallel with the CPU. So the number of cache misses (which affect
CPU performance) goes way down.

You’re probably thinking, “So far this all sounds interesting, but what does it have to do with program-
ming?” Quite a bit, actually. By writing your program carefully to take advantage of the way the cache mem-
ory system works, you can improve your program’s performance. By co-locating variables you commonly
use together in the same cache line, you can force the cache system to load these variables as a group, saving
extra wait states on each access.

If you organize your program so that it tends to execute the same sequence of instructions repeatedly, it
will have a high degree of temporal locality of reference and will, therefore, execute faster.

1.5 Putting It All Together

This chapter has provided a quick overview of the components that make up a typical computer system.
The remaining chapters in Topic Two will expand upon these comments to give you a complete overview of
computer system organization.
Page 150 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
Memory Access and Organization Chapter Two

2.1 Chapter Overview

In earlier chapters you saw how to declare and access simple variables in an assembly language pro-
gram. In this chapter you will learn how the 80x86 CPUs actually access memory (e.g., variables). You will
also learn how to efficiently organize your variable declarations so the CPU can access them faster. In this
chapter you will also learn about the 80x86 stack and how to manipulate data on the stack with some 80x86
instructions this chapter introduces. Finally, you will learn about dynamic memory allocation and the chap-
ter concludes by discussing the HLA Standard Library Console module.

2.2 The 80x86 Addressing Modes

The 80x86 processors let you access memory in many different ways. Until now, you’ve only seen a
single way to access a variable, the so-called displacement-only addressing mode that you use to access sca-
lar variables. Now it’s time to look at the many different ways that you can access memory on the 80x86.

 The 80x86 memory addressing modes provide flexible access to memory, allowing you to easily access
variables, arrays, records, pointers, and other complex data types. Mastery of the 80x86 addressing modes is
the first step towards mastering 80x86 assembly language.

When Intel designed the original 8086 processor, they provided it with a flexible, though limited, set of
memory addressing modes. Intel added several new addressing modes when it introduced the 80386 micro-
processor. Note that the 80386 retained all the modes of the previous processors. However, in 32-bit envi-
ronments like Win32, BeOS, and Linux, these earlier addressing modes are not very useful; indeed, HLA
doesn’t even support the use of these older, 16-bit only, addressing modes. Fortunately, anything you can do
with the older addressing modes can be done with the new addressing modes as well (even better, as a matter
of fact). Therefore, you won’t need to bother learning the old 16-bit addressing modes on today’s high-per-
formance processors. Do keep in mind, however, that if you intend to work under MS-DOS or some other
16-bit operating system, you will need to study up on those old addressing modes.

2.2.1 80x86 Register Addressing Modes

Most 80x86 instructions can operate on the 80x86’s general purpose register set. By specifying the
name of the register as an operand to the instruction, you may access the contents of that register. Consider
the 80x86 MOV (move) instruction:

mov(source, destination);

This instruction copies the data from the source operand to the destination operand. The eight-bit,
16-bit, and 32-bit registers are certainly valid operands for this instruction. The only restriction is that both
operands must be the same size. Now let’s look at some actual 80x86 MOV instructions:

mov(bx, ax); // Copies the value from BX into AX
mov(al, dl); // Copies the value from AL into DL
mov(edx, esi); // Copies the value from EDX into ESI
mov(bp, sp); // Copies the value from BP into SP
mov(cl, dh); // Copies the value from CL into DH
mov(ax, ax); // Yes, this is legal!

Remember, the registers are the best place to keep often used variables. As you’ll see a little later, instruc-
tions using the registers are shorter and faster than those that access memory. Throughout this chapter you’ll
see the abbreviated operands reg and r/m (register/memory) used wherever you may use one of the 80x86’s
general purpose registers.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 151

Chapter Two Volume Two
2.2.2 80x86 32-bit Memory Addressing Modes

The 80x86 provides hundreds of different ways to access memory. This may seem like quite a bit at first,
but fortunately most of the addressing modes are simple variants of one another so they’re very easy to learn.
And learn them you should! The key to good assembly language programming is the proper use of memory
addressing modes.

The addressing modes provided by the 80x86 family include displacement-only, base, displacement
plus base, base plus indexed, and displacement plus base plus indexed. Variations on these five forms pro-
vide the many different addressing modes on the 80x86. See, from 256 down to five. It’s not so bad after all!

2.2.2.1 The Displacement Only Addressing Mode

The most common addressing mode, and the one that’s easiest to understand, is the displacement-only
(or direct) addressing mode. The displacement-only addressing mode consists of a 32 bit constant that spec-
ifies the address of the target location. Assuming that variable J is an int8 variable allocated at address
$8088, the instruction “mov(J, al);” loads the AL register with a copy of the byte at memory location
$8088. Likewise, if int8 variable K is at address $1234 in memory, then the instruction “mov(dl, K);” stores
the value in the DL register to memory location $1234 (see Figure 2.1).

Figure 2.1 Displacement Only (Direct) Addressing Mode

The displacement-only addressing mode is perfect for accessing simple scalar variables.

Intel named this the displacement-only addressing mode because a 32-bit constant (displacement) fol-
lows the MOV opcode in memory. On the 80x86 processors, this displacement is an offset from the begin-
ning of memory (that is, address zero). The examples in this chapter will typically access bytes in memory.
Don’t forget, however, that you can also access words and double words on the 80x86 processors (see Figure
2.2).

$8088 (Address of J)

mov(J, al);

AL

DL

mov(dl, K);

$1234 (Address of K)
Page 152 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
Figure 2.2 Accessing a Word or DWord Using the Displacement Only Addressing Mode

2.2.2.2 The Register Indirect Addressing Modes

The 80x86 CPUs let you access memory indirectly through a register using the register indirect address-
ing modes. The term indirect means that the operand is not the actual address, but rather, the operand’s value
specifies the memory address to use. In the case of the register indirect addressing modes, the register’s
value is the memory location to access. For example, the instruction “mov(eax, [ebx]);” tells the CPU to
store EAX’s value at the location whose address is in EBX (the square brackets around EBX tell HLA to use
the register indirect addressing mode).

There are eight forms of this addressing mode on the 80x86, best demonstrated by the following instruc-
tions:

mov([eax], al);
mov([ebx], al);
mov([ecx], al);
mov([edx], al);
mov([edi], al);
mov([esi], al);
mov([ebp], al);
mov([esp], al);

These eight addressing modes reference the memory location at the offset found in the register enclosed by
brackets (EAX, EBX, ECX, EDX, EDI, ESI, EBP, or ESP, respectively).

Note that the register indirect addressing modes require a 32-bit register. You cannot specify a 16-bit or
eight-bit register when using an indirect addressing mode1. Technically, you could load a 32-bit register
with an arbitrary numeric value and access that location indirectly using the register indirect addressing
mode:

mov($1234_5678, ebx);
mov([ebx], al); // Attempts to access location $1234_5678.

Unfortunately (or fortunately, depending on how you look at it), this will probably cause Windows to gener-
ate a protection fault since it’s not always legal to access arbitrary memory locations.

1. Actually, the 80x86 does support addressing modes involving certain 16-bit registers, as mentioned earlier. However, HLA
does not support these modes and they are not particularly useful under Win32.

$1235

mov(K, ax);

AX $1234 (address of K)

$1000 (address of M)

$1003
$1002
$1002

mov(edx, M);

EDX
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 153

Chapter Two Volume Two
The register indirect addressing mode has lots of uses. You can use it to access data referenced by a
pointer, you can use it to step through array data, and, in general, you can use it whenever you need to mod-
ify the address of a variable while your program is running.

The register indirect addressing mode provides an example of a anonymous variable. When using the
register indirect addressing mode you refer to the value of a variable by its numeric memory address (e.g.,
the value you load into a register) rather than by the name of the variable. Hence the phrase anonymous vari-
able.

HLA provides a simple operator that you can use to take the address of a STATIC variable and put this
address into a 32-bit register. This is the “&” (address of) operator (note that this is the same symbol that
C/C++ uses for the address-of operator). The following example loads the address of variable J into EBX
and then stores the value in EAX into J using the register indirect addressing mode:

mov(&J, ebx); // Load address of J into EBX.
mov(eax, [ebx]); // Store EAX into J.

Of course, it would have been simpler to store the value in EAX directly into J rather than using two instruc-
tions to do this indirectly. However, you can easily imagine a code sequence where the program loads one of
several different addresses into EBX prior to the execution of the “mov(eax, [ebx]);” statement, thus storing
EAX into one of several different locations depending on the execution path of the program.

Warning: the “&” (address-of) operator is not a general address-of operator like the “&” operator in C/C++.
You may only apply this operator to static variables2. It cannot be applied to generic address expressions or
other types of variables. For more information on taking the address of such objects, see “Obtaining the
Address of a Memory Object” on page 183.

2.2.2.3 Indexed Addressing Modes

The indexed addressing modes use the following syntax:

mov(VarName[eax], al);
mov(VarName[ebx], al);
mov(VarName[ecx], al);
mov(VarName[edx], al);
mov(VarName[edi], al);
mov(VarName[esi], al);
mov(VarName[ebp], al);
mov(VarName[esp], al);

VarName is the name of some variable in your program.

The indexed addressing mode computes an effective address3 by adding the address of the specified
variable to the value of the 32-bit register appearing inside the square brackets. This sum is the actual
address in memory that the instruction will access. So if VarName is at address $1100 in memory and EBX
contains eight, then “mov(VarName[ebx], al);” loads the byte at address $1108 into the AL register (see
Figure 2.3).

2. Note: the term “static” here indicates a STATIC, READONLY, STORAGE, or DATA object.
3. The effective address is the ultimate address in memory that an instruction will access, once all the address calculations are
complete.
Page 154 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
Figure 2.3 Indexed Addressing Mode

The indexed addressing mode is really handy for accessing elements of arrays. You will see how to use
this addressing mode for that purpose a little later in this text. A little later in this chapter you will see how
to use the indexed addressing mode to step through data values in a table.

2.2.2.4 Variations on the Indexed Addressing Mode

There are two important syntactical variations of the indexed addressing mode. Both forms generate the
same basic machine instructions, but their syntax suggests other uses for these variants.

The first variant uses the following syntax:

mov([ebx + constant], al);
mov([ebx - constant], al);

These examples use only the EBX register. However, you can use any of the other 32-bit general purpose
registers in place of EBX. This addressing mode computes its effective address by adding the value in EBX
to the specified constant, or subtracting the specified constant from EBX (See Figure 2.4 and Figure 2.5).

Figure 2.4 Indexed Addressing Mode Using a Register Plus a Constant

mov(VarName[ebx], al);

EBX

AL

+

VarName
This is the
address of
VarName

$1100

$1108

$08

mov([ebx + constant], al);

EBX

AL

+constant
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 155

Chapter Two Volume Two
Figure 2.5 Indexed Addressing Mode Using a Register Minus a Constant

This particular variant of the addressing mode is useful if a 32-bit register contains the base address of a
multi-byte object and you wish to access a memory location some number of bytes before or after that loca-
tion. One important use of this addressing mode is accessing fields of a record (or structure) when you have
a pointer to the record data. You’ll see a little later in this text that this addressing mode is also invaluable for
accessing automatic (local) variables in procedures.

The second variant of the indexed addressing mode is actually a combination of the previous two forms.
The syntax for this version is the following:

mov(VarName[ebx + constant], al);
mov(VarName[ebx - constant], al);

Once again, this example uses only the EBX register. You may, however, substitute any of the 32-bit general
purpose registers in place of EBX in these two examples. This particular form is quite useful when access-
ing elements of an array of records (structures) in an assembly language program (more on that in a few
chapters).

These instructions compute their effective address by adding or subtracting the constant value from Var-
Name and then adding the value in EBX to this result. Note that HLA, not the CPU, computes the sum or
difference of VarName and constant. The actual machine instructions above contain a single constant value
that the instructions add to the value in EBX at run-time. Since HLA substitutes a constant for VarName, it
can reduce an instruction of the form

mov(VarName[ebx + constant], al);

to an instruction of the form:

mov(constant1[ebx + constant2], al);

Because of the way these addressing modes work, this is semantically equivalent to

mov([ebx + (constant1 + constant2)], al);

HLA will add the two constants together at compile time, effectively producing the following instruction:

mov([ebx + constant_sum], al);

So, HLA converts the first addressing mode of this sequence to the last in this sequence.

Of course, there is nothing special about subtraction. You can easily convert the addressing mode
involving subtraction to addition by simply taking the two’s complement of the 32-bit constant and then add-
ing this complemented value (rather than subtracting the uncomplemented value). Other transformations
are equally possible and legal. The end result is that these three variations on the indexed addressing mode
are indeed equivalent.

mov([ebx - constant], al);

EBX

AL

-constant
Page 156 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
2.2.2.5 Scaled Indexed Addressing Modes

The scaled indexed addressing modes are similar to the indexed addressing modes with two differences:
(1) the scaled indexed addressing modes allow you to combine two registers plus a displacement, and (2) the
scaled indexed addressing modes let you multiply the index register by a (scaling) factor of one, two, four, or
eight. The allowable forms for these addressing modes are

VarName[IndexReg32*scale]

VarName[IndexReg32*scale + displacement]

VarName[IndexReg32*scale - displacement]

[BaseReg32 + IndexReg32*scale]

[BaseReg32 + IndexReg32*scale + displacement]

[BaseReg32 + IndexReg32*scale - displacement]

VarName[BaseReg32 + IndexReg32*scale]

VarName[BaseReg32 + IndexReg32*scale + displacement]

VarName[BaseReg32 + IndexReg32*scale - displacement]

In these examples, BaseReg32 represents any general purpose 32-bit register, IndexReg32 represents any gen-
eral purpose 32-bit register except ESP, and scale must be one of the constants: 1, 2, 4, or 8.

The primary difference between the scaled indexed addressing mode and the indexed addressing mode
is the inclusion of the IndexReg32*scale component. The effective address computation is extended by add-
ing in the value of this new register after it has been multiplied by the specified scaling factor (see Figure 2.6
for an example involving EBX as the base register and ESI as the index register).

Figure 2.6 The Scaled Indexed Addressing Mode

In Figure 2.6, suppose that EBX contains $100, ESI contains $20, and VarName is at base address
$2000 in memory, then the following instruction:

mov(VarName[ebx + esi*4 + 4], al);

will move the byte at address $2184 ($1000 + $100 + $20*4 + 4) into the AL register.

The scaled indexed addressing mode is typically used to access elements of arrays whose elements are
two, four, or eight bytes each. This addressing mode is also useful for access elements of an array when you
have a pointer to the beginning of the array.

Warning: although this addressing mode contains to variable components (the base and index regis-
ters), don’t get the impression that you use this addressing mode to access elements of a two-dimensional
array by loading the two array indices into the two registers. Two-dimensional array access is quite a bit

EBX

mov(VarName[ebx + esi*scale], al);

VarName

AL

+

ESI * scale +
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 157

Chapter Two Volume Two
more complicated than this. A later chapter in this text will consider multi-dimensional array access and dis-
cuss how to do this.

2.2.2.6 Addressing Mode Wrap-up

Well, believe it or not, you’ve just learned several hundred addressing modes! That wasn’t hard now,
was it? If you’re wondering where all these modes came from, just consider the fact that the register indirect
addressing mode isn’t a single addressing mode, but eight different addressing modes (involving the eight
different registers). Combinations of registers, constant sizes, and other factors multiply the number of pos-
sible addressing modes on the system. In fact, you only need to memorize less than two dozen forms and
you’ve got it made. In practice, you’ll use less than half the available addressing modes in any given pro-
gram (and many addressing modes you may never use at all). So learning all these addressing modes is actu-
ally much easier than it sounds.

2.3 Run-Time Memory Organization

An operating system like Windows tends to put different types of data into different sections (or seg-
ments) of main memory. Although it is possible to reconfigure memory to your choice by running the
Linker and specify various parameters, by default an HLA program loads into memory using the following
basic organization:

Figure 2.7 Win32 Typical Run-Time Memory Organization

The lowest memory addresses are reserved by the operating system. Generally, your application is not
allowed to access data (or execute instructions) at the lowest addresses in memory. One reason the O/S
reserves this space is to help trap NULL pointer references. If you attempt to access memory location zero,
the operating system will generate a “general protection fault” meaning you’ve accessed a memory location
that doesn’t contain valid data. Since programmers often initialize pointers to NULL (zero) to indicate that
the pointer is not pointing anywhere, an access of location zero typically means that the programmer has
made a mistake and has not properly initialized a pointer to a legal (non-NULL) value. Also note that if you
attempt to use one of the 80x86 sixteen-bit addressing modes (HLA doesn’t allow this, but were you to

High Addresses

Adrs = $0

Stack (Default Size = 16 MBytes)

Heap (Default Size = 16 MBytes)

Code (program instructions)

Read-only data

Static variables

Storage (uninitialized) variables

Reserved by O/S (Typically 128 KBytes)

Constants (not user accessible)
Page 158 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
encode the instruction yourself and execute it...) the address will always be in the range 0..$1FFFE4. This
will also access a location in the reserved area, generating a fault.

The remaining six areas in the memory map hold different types of data associated with your program.
These sections of memory include the stack section, the heap section, the code section, the READONLY
section, the STATIC section, and the STORAGE section. Each of these memory sections correspond to
some type of data you can create in your HLA programs. The following sections discuss each of these sec-
tions in detail.

2.3.1 The Code Section

The code section contains the machine instructions that appear in an HLA program. HLA translates
each machine instruction you write into a sequence of one or more byte values. The CPU interprets these
byte values as machine instructions during program execution.

By default, when HLA links your program it tells the system that your program can execute instructions
out of the code segment and you can read data from the code segment. Note, specifically, that you cannot
write data to the code segment. The Windows operating system will generate a general protection fault if
you attempt to store any data into the code segment.

Remember, machine instructions are nothing more than data bytes. In theory, you could write a pro-
gram that stores data values into memory and then transfers control to the data it just wrote, thereby produc-
ing a program that writes itself as it executes. This possibility produces romantic visions of Artificially
Intelligent programs that modify themselves to produce some desired result. In real life, the effect is some-
what less glamorous.

Prior to the popularity of protected mode operating systems, like Windows, a program could overwrite
the machine instructions during execution. Most of the time this was caused by defects in a program, not by
some super-smart artificial intelligence program. A program would begin writing data to some array and fail
to stop once it reached the end of the array, eventually overwriting the executing instructions that make up
the program. Far from improving the quality of the code, such a defect usually causes the program to fail
spectacularly.

Of course, if a feature is available, someone is bound to take advantage of it. Some programmers have
discovered that in some special cases, using self-modifying code, that is, a program that modifies its machine
instructions during execution, can produce slightly faster or slightly smaller programs. Unfortunately,
self-modifying code is very difficult to test and debug. Given the speed of modern processors combined
with their instruction set and wide variety of addressing modes, there is almost no reason to use self-modify-
ing code in a modern program. Indeed, protected mode operating systems like Windows make it difficult for
you to write self modifying code.

HLA automatically stores the data associated with your machine code into the code section. In addition
to machine instructions, you can also store data into the code section by using the following
pseudo-opcodes:

• byte
• word
• dword
• uns8
• uns16
• uns32
• int8
• int16
• in32
• boolean
• char

4. It’s $1FFFE, not $FFFF because you could use the indexed addressing mode with a displacement of $FFFF along with the
value $FFFF in a 16-bit register.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 159

Chapter Two Volume Two
The syntax for each of these pseudo-opcodes5 is exemplified by the following BYTE statement:

byte comma_separated_list_of_byte_constants ;

Here are some examples:

boolean true;
char ‘A’;
byte 0,1,2;
byte “Hello”, 0
word 0,2;
int8 -5;
uns32 356789, 0;

If more than one value appears in the list of values after the pseudo-opcode, HLA emits each successive
value to the code stream. So the first byte statement above emits three bytes to the code stream, the values
zero, one, and two. If a string appears within a byte statement, HLA emits one byte of data for each charac-
ter in the string. Therefore, the second byte statement above emits six bytes: the characters ‘H’, ‘e’, ‘l’, ‘l’,
and ‘o’, followed by a zero byte.

Keep in mind that the CPU will attempt to treat data you emit to the code stream as machine instructions
unless you take special care not to allow the execution of the data. For example, if you write something like
the following:

mov(0, ax);
byte 0,1,2,3;
add(bx, cx);

Your program will attempt to execute the 0, 1, 2, and 3 byte values as a machine instruction after executing
the MOV. Unless you know the machine code for a particular instruction sequence, sticking such data values
into the middle of your code will almost always produce unexpected results. More often than not, this will
crash your program. Therefore, you should never insert arbitrary data bytes into the middle of an instruction
stream unless you know exactly what executing those data values will do in your program6.

In the chapter on intermediate procedures, we will take another look at embedding data into the code
stream. This is a convenient way to pass certain types of parameters to various procedures. In the chapter on
advanced control structures, you will see other reasons for embedding data into the code stream. For now,
just keep in mind that it is possible to do this but that you should avoid embedding data into the code stream.

2.3.2 The Read-Only Data Section

The READONLY data section holds constants, tables, and other data that your program must not
change during program execution. You can place read only objects in your program by declaring them in the
READONLY declaration section. The READONLY data declaration section is very similar to the STATIC
section with three primary differences:

• The READONLY section begins with the reserved word READONLY rather than STATIC,
• All declarations in the READONLY section must have an initializer, and
• You are not allowed to store data into a READONLY object while the program is running.

Example:

readonly
pi: real32 := 3.14159;

5. A pseudo-opcode is a data declaration statement that emits data to the code section, but isn’t a true machine instruction
(e.g., BYTE is a pseudo-opcode, MOV is a machine instruction).
6. The main reason for encoding machine code using a data directive like byte is to implement machine instructions that HLA
does not support (for example, to implement machine instructions added after HLA was written but before HLA could be
updated for the new instruction(s).
Page 160 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
e: real32 := 2.71;
MaxU16: uns16 := 65_535;
MaxI16: int16 := 32_767;

All READONLY object declarations must have an initializer because you cannot initialize the value under
program control (since you are not allowed to write data into a READONLY object). The operating system
will generate an exception and abort your program if you attempt to write a value to a READONLY object.
For all intents and purposes, READONLY objects can be thought of as constants. However, these constants
to consume memory and other than the fact that you cannot write data to READONLY objects, they behave
like, and can be used like, STATIC variables.

The READONLY reserved word allows an alignment parameter, just like the STATIC keyword. You
may also place the ALIGN directive in the READONLY section in order to align individual objects on a spe-
cific boundary. The following example demonstrates both of these features in the READONLY section:

readonly(8)
pi: real64 := 3.14159265359;
aChar: char := ‘a’;
align(4);
d: dword := 4;

2.3.3 The Storage Section

The READONLY section requires that you initialize all objects you declare. The STATIC section lets
you optionally initialize objects (or leave them uninitialized, in which case they have the default initial value
of zero). The STORAGE section completes the initialization coverage: you use it to declare variables that
are always uninitialized when the program begins running. The STORAGE section begins with the “stor-
age” reserved word and then contains variable declarations that are identical to those appearing in the
STATIC section except that you are not allowed to initialize the object. Here is an example:

storage
UninitUns32: uns32;
i: int32;
character: char;
b: byte;

Variables you declare in the STORAGE section may consume less disk space in the executable file for
the program. This is because HLA writes out initial values for READONLY and STATIC objects to the exe-
cutable file, but uses a compact representation for uninitialized variables you declare in the STORAGE sec-
tion.

Like the STATIC and READONLY sections, you can supply an alignment parameter after the STOR-
AGE keyword and the ALIGN directive may appear within the STORAGE section. Of course, aligning your
data can produce faster access to that data at the expense of a slightly larger STORAGE section. The follow-
ing example demonstrates the use of these two features in the STORAGE section:

storage(4)
d: dword;
b: byte;
align(2);
w: word;

2.3.4 The Static Sections

In addition to declaring static variables, you can also embed lists of data into the STATIC memory seg-
ment. You use the same technique to embed data into your STATIC section that you use to embed data into
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 161

Chapter Two Volume Two
the code section: you use the byte, word, dword, uns32, etc., pseudo-opcodes. Consider the following exam-
ple:

static
b: byte := 0;

byte 1,2,3;

u: uns32 := 1;
uns32 5,2,10;

c: char;
char ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’;

bn: boolean;
boolean true;

Data that HLA writes to the STATIC memory segment using these pseudo-opcodes is written to the
segment after the preceding variables. For example, the byte values one, two, and three are emitted to the
STATIC section after b’s zero byte in the example above. Since there aren’t any labels associated with these
values, you do not have direct access to these values in your program. The section on address expressions,
later in this chapter, will discuss how to access these extra values.

In the examples above, note that the c and bn variables do not have an (explicit) initial value. However,
HLA always initializes variables in the STATIC section to all zero bits, so HLA assigns the NULL character
(ASCII code zero) to c as its initial value. Likewise, HLA assigns false as the initial value for bn. In partic-
ular, you should note that your variable declarations in the STATIC section always consume memory, even if
you haven’t assigned them an initial value. Any data you declare in a pseudo-opcode like BYTE will always
follow the actual data associated with the variable declaration.

2.3.5 The NOSTORAGE Attribute

The NOSTORAGE attribute lets you declare variables in the static data declaration sections (i.e.,
STATIC, READONLY, and STORAGE) without actually allocating memory for the variable. The NOS-
TORAGE option tells HLA to assign the current address in a data declaration section to a variable but not
allocate any storage for the object. Therefore, that variable will share the same memory address as the next
object appearing in the variable declaration section. Here is the syntax for the NOSTORAGE option:

variableName: varType; NOSTORAGE;

Note that you follow the type name with “nostorage;” rather than some initial value or just a semicolon. The
following code sequence provides an example of using the NOSTORAGE option in the READONLY sec-
tion:

readonly
abcd: dword; nostorage;

byte ‘a’, ‘b’, ‘c’, ‘d’;

In this example, abcd is a double word whose L.O. byte contains 97 (‘a’), byte #1 contains 98 (‘b’), byte #2
contains 99 (‘c’), and the H.O. byte contains 100 (‘d’). HLA does not reserve storage for the abcd variable,
so HLA associates the following four bytes in memory (allocated by the BYTE directive) with abcd.

Note that the NOSTORAGE attribute is only legal in the STATIC, STORAGE, and READONLY sec-
tions. HLA does not allow its use in the VAR section.

2.3.6 The Var Section

HLA provides another variable declaration section, the VAR section, that you can use to create auto-
matic variables. Your program will allocate storage for automatic variables whenever a program unit (i.e.,
Page 162 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
main program or procedure) begins execution, and it will deallocate storage for automatic variables when
that program unit returns to its caller. Of course, any automatic variables you declare in your main program
have the same lifetime7 as all the STATIC, READONLY, and STORAGE objects, so the automatic allocation
feature of the VAR section is wasted on the main program. In general, you should only use automatic
objects in procedures (see the chapter on procedures for details). HLA allows them in your main program’s
declaration section as a generalization.

Since variables you declare in the VAR section are created at run-time, HLA does not allow initializers
on variables you declare in this section. So the syntax for the VAR section is nearly identical to that for the
STORAGE section; the only real difference in the syntax between the two is the use of the VAR reserved
word rather than the STORAGE reserved word. The following example illustrates this:

var
vInt: int32;
vChar: char;

HLA allocates variables you declare in the VAR section in the stack segment. HLA does not allocate
VAR objects at fixed locations within the stack segment; instead, it allocates these variables in an activation
record associated with the current program unit. The chapter on intermediate procedures will discuss activa-
tion records in greater detail, for now it is important only to realize that HLA programs use the EBP register
as a pointer to the current activation record. Therefore, anytime you access a var object, HLA automatically
replaces the variable name with “[EBP+displacement]”. Displacement is the offset of the object in the acti-
vation record. This means that you cannot use the full scaled indexed addressing mode (a base register plus
a scaled index register) with VAR objects because VAR objects already use the EBP register as their base
register. Although you will not directly use the two register addressing modes often, the fact that the VAR
section has this limitation is a good reason to avoid using the VAR section in your main program.

The VAR section supports the align parameter and the ALIGN directive, like the other declaration sec-
tions, however, these align directives only guarantee that the alignment within the activation record is on the
boundary you specify. If the activation record is not aligned on a reasonable boundary (unlikely, but possi-
ble) then the actual variable alignment won’t be correct.

2.3.7 Organization of Declaration Sections Within Your Programs

The STATIC, READONLY, STORAGE, and VAR sections may appear zero or more times between the
PROGRAM header and the associated BEGIN for the main program. Between these two points in your
program, the declaration sections may appear in any order as the following example demonstrates:

program demoDeclarations;

static
i_static: int32;

var
i_auto: int32;

storage
i_uninit: int32;

readonly
i_readonly: int32 := 5;

static
j: uns32;

7. The lifetime of a variable is the point from which memory is first allocated to the point the memory is deallocated for that
variable.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 163

Chapter Two Volume Two
var
k:char;

readonly
i2:uns8 := 9;

storage
c:char;

storage
d:dword;

begin demoDeclarations;

<< code goes here >>

end demoDeclarations;

In addition to demonstrating that the sections may appear in an arbitrary order, this section also demon-
strates that a given declaration section may appear more than once in your program. When multiple declara-
tion sections of the same type (e.g., the three STORAGE sections above) appear in a declaration section of
your program, HLA combines them into a single section8.

2.4 Address Expressions

In the section on addressing modes (see “The 80x86 Addressing Modes” on page 151) this chapter
pointed out that addressing modes take a couple generic forms, including:

VarName[Reg32]

VarName[Reg32 + offset]

VarName[RegNotESP32*Scale]

VarName[Reg32 + RegNotESP32*Scale]

VarName[RegNotESP32*Scale + offset]

and
VarName[Reg32 + RegNotESP32*Scale + offset]

Another legal form, which isn’t actually a new addressing mode but simply an extension of the displace-
ment-only addressing mode is

VarName[offset]

This latter example computes its effective address by adding the (constant) offset within the brackets to
the specified variable address. For example, the instruction “MOV(Address[3], AL);” loads the AL register
with the byte in memory that is three bytes beyond the Address object.

8. Remember, though, that HLA combines static and data declarations into the same memory segment.
Page 164 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
Figure 2.8 Using an Address Expression to Access Data Beyond a Variable

It is extremely important to remember that the offset value in these examples must be a constant. If
Index is an int32 variable, then “Variable[Index]” is not a legal specification. If you wish to specify an index
that varies an run-time, then you must use one of the indexed or scaled indexed addressing modes; that is,
any index that changes at run-time must be held in a general purpose 32-bit register.

Another important thing to remember is that the offset in “Address[offset]” is a byte offset. Despite the
fact that this syntax is reminiscent of array indexing in a high level language like C/C++ or Pascal, this does
not properly index into an array of objects unless Address is an array of bytes.

This text will consider an address expression to be any legal 80x86 addressing mode that includes a dis-
placement (i.e., variable name) or an offset. In addition to the above forms, the following are also address
expressions:

[Reg32 + offset]

[Reg32 + RegNotESP32*Scale + offset]

This text will not consider the following to be address expressions since they do not involve a displacement
or offset component:

[Reg32]

[Reg32 + RegNotESP32*Scale]

Address expressions are special because those instructions containing an address expression always
encode a displacement constant as part of the machine instruction. That is, the machine instruction contains
some number of bits (usually eight or thirty-two) that hold a numeric constant. That constant is the sum of
the displacement (i.e., the address or offset of the variable) plus the offset supplied in the addressing mode.
Note that HLA automatically adds these two values together for you (or subtracts the offset if you use the “-”
rather than “+” operator in the addressing mode).

Until this point, the offset in all the addressing mode examples has always been a single numeric con-
stant. However, HLA also allows a constant expression anywhere an offset is legal. A constant expression
consists of one or more constant terms manipulated by operators such as addition, subtraction, multiplica-
tion, division, modulo, and a wide variety of other operators. Most address expressions, however, will only
involve addition, subtraction, multiplication, and sometimes, division. Consider the following example:

mov(X[2*4+1], al);

This instruction will move the byte at address X+9 into the AL register.

The value of an address expression is always computed at compile-time, never while the program is run-
ning. When HLA encounters the instruction above, it calculates 2*4+1 on the spot and adds this result to

AL

$1000 (address of I)

$1003 (i+3)
$1002
$1001

mov(i[3], AL);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 165

Chapter Two Volume Two
the base address of X in memory. HLA encodes this single sum (base address of X plus nine) as part of the
instruction; HLA does not emit extra instructions to compute this sum for you at run-time (which is good,
doing so would be less efficient). Since HLA computes the value of address expressions at compile-time, all
components of the expression must be constants since HLA cannot know what the value of a variable will be
at run-time while it is compiling the program.

Address expressions are very useful for accessing addition bytes in memory beyond a variable, particu-
larly when you’ve used the byte, word, dword, etc., statements in a STATIC, or READONLY section to tack
on additional bytes after a data declaration. For example, consider the following program:

program adrsExpressions;
#include(“stdlib.hhf”);
static

i: int8; nostorage;
byte 0, 1, 2, 3;

begin adrsExpressions;

stdout.put
(

“i[0]=”, i[0], nl,
“i[1]=”, i[1], nl,
“i[2]=”, i[2], nl,
“i[3]=”, i[3], nl

);

end adrsExpressions;

Program 3.1 Demonstration of Address Expressions

Throughout this chapter and those that follow you will see several additional uses of address expressions.

2.5 Type Coercion

Although HLA is fairly loose when it comes to type checking, HLA does ensure that you specify appro-
priate operand sizes to an instruction. For example, consider the following (incorrect) program:

program hasErrors;
static

i8: int8;
i16: int16;
i32: int32;

begin hasErrors;

mov(i8, eax);
mov(i16, al);
mov(i32, ax);

end hasErrors;

HLA will generate errors for the three MOV instructions appearing in this program. This is because the
operand sizes do not agree. The first instruction attempts to move a byte into EAX, the second instruction
attempts to move a word into AL and the third instruction attempts to move a dword into AX. The MOV
instruction, of course, requires that its two operands both be the same size.
Page 166 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
While this is a good feature in HLA9, there are times when it gets in the way of the task at hand. For
example, consider the following data declaration:

static
byte_values: byte; nostorage;

byte 0, 1;

...

mov(byte_values, ax);

In this example let’s assume that the programmer really wants to load the word starting at address
byte_values in memory into the AX register because they want to load AL with zero and AH with one using
a single instruction. HLA will refuse, claiming there is a type mismatch error (since byte_values is a byte
object and AX is a word object). The programmer could break this into two instructions, one to load AL
with the byte at address byte_values and the other to load AH with the byte at address byte_values[1].
Unfortunately, this decomposition makes the program slightly less efficient (which was probably the reason
for using the single MOV instruction in the first place). Somehow, it would be nice if we could tell HLA that
we know what we’re doing and we want to treat the byte_values variable as a word object. HLA’s type coer-
cion facilities provide this capability.

Type coercion10 is the process of telling HLA that you want to treat an object as an explicitly specified
type, regardless of its declared type. To coerce the type of a variable, you use the following syntax:

(type newTypeName addressingMode)

The newTypeName component is the new type you wish HLA to apply to the memory location specified
by addressingMode. You may use this coercion operator anywhere a memory address is legal. To correct
the previous example, so HLA doesn’t complain about type mismatches, you would use the following state-
ment:

 mov((type word byte_values), ax);

This instruction tells HLA to load the AX register with the word starting at address byte_values in memory.
Assuming byte_values still contains its initial values, this instruction will load zero into AL and one into AH.

Type coercion is necessary when you specify an anonymous variable as the operand to an instruction
that modifies memory directly (e.g., NEG, SHL, NOT, etc.). Consider the following statement:

not([ebx]);

HLA will generate an error on this instruction because it cannot determine the size of the memory operand.
That is, the instruction does not supply sufficient information to determine whether the program should
invert the bits in the byte pointed at by EBX, the word pointed at by EBX, or the double word pointed at by
EBX. You must use type coercion to explicitly tell HLA the size of the memory operand when using anony-
mous variables with these types of instructions:

not((type byte [ebx]));
not((type word [ebx]));
not((type dword [ebx]));

Warning: do not use the type coercion operator unless you know exactly what you are doing and the
effect that it has on your program. Beginning assembly language programmers often use type coercion as a
tool to quiet the compiler when it complains about type mismatches without solving the underlying problem.
For example, consider the following statement:

mov(eax, (type dword byteVar));

9. After all, if the two operand sizes are different this usually indicates an error in the program.
10. Also called type casting in some languages.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 167

Chapter Two Volume Two
Without the type coercion operator, HLA probably complains about this instruction because it attempts to
store a 32-bit register into an eight-bit memory location (assuming byteVar is a byte variable). A beginning
programmer, wanting their program to compile, may take a short cut and use the type coercion operator as
shown in this instruction; this certainly quiets the compiler - it will no longer complain about a type mis-
match. So the beginning programmer is happy. But the program is still incorrect, the only difference is that
HLA no longer warns you about your error. The type coercion operator does not fix the problem of attempt-
ing to store a 32-bit value into an eight-bit memory location - it simply allows the instruction to store a 32-bit
value starting at the address specified by the eight-bit variable. The program still stores away four bytes,
overwriting the three bytes following byteVar in memory. This often produces unexpected results including
the phantom modification of variables in your program11. Another, rarer, possibility is for the program to
abort with a general protection fault. This can occur if the three bytes following byteVar are not allocated
actual memory or if those bytes just happen to fall in a read-only segment in memory. The important thing to
remember about the type coercion operator is this: “If you can’t exactly state the affect this operator has,
don’t use it.”

Also keep in mind that the type coercion operator does not perform any translation of the data in mem-
ory. It simply tells the compiler to treat the bits in memory as a different type. It will not automatically sign
extend an eight-bit value to 32 bits nor will it convert an integer to a floating point value. It simply tells the
compiler to treat the bit pattern that exists in memory as a different type.

2.6 Register Type Coercion

You can also cast a register as a specific type using the type coercion operator. By default, the eight-bit
registers are of type byte, the 16-bit registers are of type word, and the 32-bit registers are of type dword.
With type coercion, you can cast a register as a different type as long as the size of the new type agrees with
the size of the register. This is an important restriction that does not apply when applying type coercion to a
memory variable.

Most of the time you do not need to coerce a register to a different type. After all, as byte, word, and
dword objects, they are already compatible with all one, two, and four byte objects. However, there are a
few instances where register type coercion is handy, if not downright necessary. Two examples include
boolean expressions in HLA high level language statements (e.g., IF and WHILE) and register I/O in the std-
out.put and stdin.get (and related) statements.

In boolean expressions, byte, word, and dword objects are always treated as unsigned values. Therefore,
without type coercion register objects are always treated as unsigned values so the boolean expression in the
following IF statement is always false (since there is no unsigned value less than zero):

if(eax < 0) then

stdout.put(“EAX is negative!”, nl);

endif;

You can overcome this limitation by casting EAX as an int32 value:

if((type int32 eax) < 0) then

stdout.put(“EAX is negative!”, nl);

endif;

In a similar vein, the HLA Standard Library stdout.put routine always outputs byte, word, and dword
values as hexadecimal numbers. Therefore, if you attempt to print a register, the stdout.put routine will print
it as a hex value. If you would like to print the value as some other type, you can use register type coercion
to achieve this:

11. If you have a variable immediately following byteVar in this example, the MOV instruction will surely overwrite the value
of that variable, whether or not you intend this to happen.
Page 168 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
stdout.put(“AL printed as a char = ‘”, (type char al), “‘”, nl);

The same is true for the stdin.get routine. It will always read a hexadecimal value for a register unless you
coerce its type to something other than byte, word, or dword.

You will see some additional uses for register type coercion in the next chapter.

2.7 The Stack Segment and the Push and Pop Instructions

This chapter mentioned that all variables you declare in the VAR section wind up in the stack memory
segment (see “The Var Section” on page 162). However, VAR objects are not the only things that wind up in
the stack segment in memory; your programs manipulate data in the stack segment in many different ways.
This section introduces a set of instructions, the PUSH and POP instructions, that also manipulate data in the
stack segment.

The stack segment in memory is where the 80x86 maintains the stack. The stack is a dynamic data
structure that grows and shrinks according to certain memory needs of the program. The stack also stores
important information about program including local variables, subroutine information, and temporary data.

The 80x86 stack is controlled by the ESP (stack pointer) register. When your program begins execution,
the operating system initializes ESP with the address of the last memory location in the stack memory seg-
ment. Data is written to the stack segment by “pushing” data onto the stack and “popping” or “pulling” data
off of the stack. Whenever you push data onto the stack, the 80x86 decrements the stack pointer by the size
of the data you are pushing and then it copies the data to memory where ESP is then pointing. As a concrete
example, consider the 80x86 PUSH instruction:

push(reg16);

push(reg32);

push(memory16);

push(memory32);
pushw(constant);
pushd(constant);

These six forms allow you to push word or dword registers, memory locations, and constants. You should
specifically note that you cannot push byte typed objects onto the stack.

2.7.1 The Basic PUSH Instruction

The PUSH instruction does the following:

ESP := ESP - Size_of_Register_or_Memory_Operand (2 or 4)
[ESP] := Operand’s_Value

The PUSHW and PUSHD operand sizes are always two or four bytes, respectively.

Assuming that ESP contains $00FF_FFE8, then the instruction “PUSH(EAX);” will set ESP to
$00FF_FFE4 and store the current value of EAX into memory location $00FF_FFE4 as shown in Figure 2.9
and Figure 2.10:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 169

Chapter Two Volume Two
Figure 2.9 Stack Segment Before “PUSH(EAX);” Operation

Figure 2.10 Stack Segment After “PUSH(EAX);” Operation

Note that the “PUSH(EAX);” instruction does not affect the value in the EAX register.

Although the 80x86 supports 16-bit push operations, these are intended primarily for use in 16-bit envi-
ronments such as DOS. For maximum performance, the stack pointer should always be an even multiple of
four; indeed, your program may malfunction under Win32 if ESP contains a value that is not a multiple of
four and you make an HLA Standard Library or Win32 API call. The only reason for pushing less than four
bytes at a time on the stack is because you’re building up a double word via two successive word pushes.

2.7.2 The Basic POP Instruction

To retrieve data you’ve pushed onto the stack, you use the POP instruction. The basic POP instruction
allows the following different forms:

pop(reg16);

pop(reg32);

pop(memory16);

EAX

ESP

$00FF_FFFF
$00FF_FFFE
$00FF_FFFD
$00FF_FFFC
$00FF_FFFB
$00FF_FFFA

Before

 push(eax);

Instruction

$00FF_FFE9
$00FF_FFE8
$00FF_FFE7
$00FF_FFE6
$00FF_FFE5
$00FF_FFE4
$00FF_FFE3
$00FF_FFE2

EAX

ESP

$00FF_FFFF
$00FF_FFFE
$00FF_FFFD
$00FF_FFFC
$00FF_FFFB
$00FF_FFFA

After

 push(eax);

Instruction

$00FF_FFE9
$00FF_FFE8
$00FF_FFE7
$00FF_FFE6
$00FF_FFE5
$00FF_FFE4
$00FF_FFE3
$00FF_FFE2

Current
EAX
Value
Page 170 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
pop(memory32);

Like the PUSH instruction, the POP instruction only supports 16-bit and 32-bit operands; you cannot
pop an eight-bit value from the stack. Also like the PUSH instruction, you should avoid popping 16-bit val-
ues (unless you do two 16-bit pops in a row) because 16-bit pops may leave the ESP register containing a
value that is not an even multiple of four. One major difference between PUSH and POP is that you cannot
POP a constant value (which makes sense, because the operand for PUSH is a source operand while the
operand for POP is a destination operand).

Formally, here’s what the POP instruction does:

Operand := [ESP]
ESP := ESP + Size_of_Operand (2 or 4)

As you can see, the POP operation is the converse of the PUSH operation. Note that the POP instruction
copies the data from memory location [ESP] before adjusting the value in ESP. See Figure 2.11 and Figure
2.12 for details on this operation:

Figure 2.11 Memory Before a “POP(EAX);” Operation

Figure 2.12 Memory After the “POP(EAX);” Instruction

EAX
Value
on Stk

EAX

ESP

$00FF_FFFF
$00FF_FFFE
$00FF_FFFD
$00FF_FFFC
$00FF_FFFB
$00FF_FFFA

Before

 pop(eax);

Instruction

$00FF_FFE9
$00FF_FFE8
$00FF_FFE7
$00FF_FFE6
$00FF_FFE5
$00FF_FFE4
$00FF_FFE3
$00FF_FFE2

EAX
Value
on Stk

EAX Value From Stack

ESP

$00FF_FFFF
$00FF_FFFE
$00FF_FFFD
$00FF_FFFC
$00FF_FFFB
$00FF_FFFA

After

 pop(eax);

Instruction

$00FF_FFE9
$00FF_FFE8
$00FF_FFE7
$00FF_FFE6
$00FF_FFE5
$00FF_FFE4
$00FF_FFE3
$00FF_FFE2
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 171

Chapter Two Volume Two
Note that the value popped from the stack is still present in memory. Popping a value does not erase the
value in memory, it just adjusts the stack pointer so that it points at the next value above the popped value.
However, you should never attempt to access a value you’ve popped off the stack. The next time something
is pushed onto the stack, the popped value will be obliterated. Since your code isn’t the only thing that uses
the stack (i.e., the operating system uses the stack as do other subroutines), you cannot rely on data remain-
ing in stack memory once you’ve popped it off the stack.

2.7.3 Preserving Registers With the PUSH and POP Instructions

Perhaps the most common use of the PUSH and POP instructions is to save register values during inter-
mediate calculations. A problem with the 80x86 architecture is that it provides very few general purpose
registers. Since registers are the best place to hold temporary values, and registers are also needed for the
various addressing modes, it is very easy to run out of registers when writing code that performs complex
calculations. The PUSH and POP instructions can come to your rescue when this happens.

Consider the following program outline:

<< Some sequence of instructions that use the EAX register >>

<< Some sequence of instructions that need to use EAX, for a
different purpose than the above instructions >>

<< Some sequence of instructions that need the original value in EAX >>

The PUSH and POP instructions are perfect for this situation. By inserting a PUSH instruction before
the middle sequence and a POP instruction after the middle sequence above, you can preserve the value in
EAX across those calculations:

<< Some sequence of instructions that use the EAX register >>
push(eax);
<< Some sequence of instructions that need to use EAX, for a

different purpose than the above instructions >>
pop(eax);
<< Some sequence of instructions that need the original value in EAX >>

The PUSH instruction above copies the data computed in the first sequence of instructions onto the
stack. Now the middle sequence of instructions can use EAX for any purpose it chooses. After the middle
sequence of instructions finishes, the POP instruction restores the value in EAX so the last sequence of
instructions can use the original value in EAX.

2.7.4 The Stack is a LIFO Data Structure

Of course, you can push more than one value onto the stack without first popping previous values off the
stack. However, the stack is a last-in, first-out (LIFO) data structure, so you must be careful how you push
and pop multiple values. For example, suppose you want to preserve EAX and EBX across some block of
instructions, the following code demonstrates the obvious way to handle this:

push(eax);
push(ebx);
<< Code that uses EAX and EBX goes here >>
pop(eax);
pop(ebx);

Unfortunately, this code will not work properly! Figures 2.13, 2.14, 2.15, and 2.16 show the problem. Since
this code pushes EAX first and EBX second, the stack pointer is left pointing at the value in EBX pushed
Page 172 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
onto the stack. When the POP(EAX) instruction comes along, it removes the value that was originally in
EBX from the stack and places it in EAX! Likewise, the POP(EBX) instruction pops the value that was
originally in EAX into the EBX register. The end result is that this code has managed to swap the values in
the registers by popping them in the same order that it pushed them.

Figure 2.13 Stack After Pushing EAX

Figure 2.14 Stack After Pushing EBX

ESP

$00FF_FFFF
$00FF_FFFE
$00FF_FFFD
$00FF_FFFC
$00FF_FFFB
$00FF_FFFA

After

 push(ebx);

Instruction

$00FF_FFE9
$00FF_FFE8
$00FF_FFE7
$00FF_FFE6
$00FF_FFE5
$00FF_FFE4
$00FF_FFE3
$00FF_FFE2

EAX
Value
on Stk

EBX
Value
on Stk

ESP

$00FF_FFFF
$00FF_FFFE
$00FF_FFFD
$00FF_FFFC
$00FF_FFFB
$00FF_FFFA

After

 push(eax);

Instruction

$00FF_FFE9
$00FF_FFE8
$00FF_FFE7
$00FF_FFE6
$00FF_FFE5
$00FF_FFE4
$00FF_FFE3
$00FF_FFE2

EAX
Value
on Stk
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 173

Chapter Two Volume Two
Figure 2.15 Stack After Popping EAX

Figure 2.16 Stack After Popping EBX

To rectify this problem, you need to note that the stack is a last-in, first-out data structure, so the first
thing you must pop is the last thing you’ve pushed onto the stack. To do this, you must always observe the
following maxim:

❏ Always pop values in the reverse order that you push them.

The correction to the previous code is

push(eax);
push(ebx);
<< Code that uses EAX and EBX goes here >>
pop(ebx);
pop(eax);

Another important maxim to remember is

❏ Always pop exactly the same number of bytes that you push.

ESP

$00FF_FFFF
$00FF_FFFE
$00FF_FFFD
$00FF_FFFC
$00FF_FFFB
$00FF_FFFA

After

 push(ebx);

Instruction

$00FF_FFE9
$00FF_FFE8
$00FF_FFE7
$00FF_FFE6
$00FF_FFE5
$00FF_FFE4
$00FF_FFE3
$00FF_FFE2

EAX
Value
on Stk

EBX
Value
on Stk

ESP

$00FF_FFFF
$00FF_FFFE
$00FF_FFFD
$00FF_FFFC
$00FF_FFFB
$00FF_FFFA

After

 pop(ebx);

Instruction

$00FF_FFE9
$00FF_FFE8
$00FF_FFE7
$00FF_FFE6
$00FF_FFE5
$00FF_FFE4
$00FF_FFE3
$00FF_FFE2

EAX
Value
on Stk

EBX
Value
on Stk

EBX
Page 174 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
This generally means that the number of pushes and pops must exactly agree. If you have too few pops, you
will leave data on the stack which may confuse the running program12; If you have too many pops, you will
accidentally remove previously pushed data, often with disastrous results.

A corollary to the maxim above is “Be careful when pushing and popping data within a loop.” Often it
is quite easy to put the pushes in a loop and leave the pops outside the loop (or vice versa), creating an incon-
sistent stack. Remember, it is the execution of the PUSH and POP instructions that matters, not the number
of PUSH and POP instructions that appear in your program. At run-time, the number (and order) of the
PUSH instructions the program executes must match the number (and reverse order) of the POP instructions.

2.7.5 Other PUSH and POP Instructions

The 80x86 provides several additional PUSH and POP instructions in addition to the basic instructions
described in the previous sections. These instructions include the following:

• PUSHA
• PUSHAD
• PUSHF
• PUSHFD
• POPA
• POPAD
• POPF
• POPFD

The PUSHA instruction pushes all the general-purpose 16-bit registers onto the stack. This instruction
is primarily intended for older 16-bit operating systems like DOS. In general, you will have very little need
for this instruction. The PUSHA instruction pushes the registers onto the stack in the following order:

ax
cx
dx
bx
sp
bp
si
di

The PUSHAD instruction pushes all the 32-bit (dword) registers onto the stack. It pushes the registers
onto the stack in the following order:

eax
ecx
edx
ebx
esp
ebp
esi
edi

Since the SP/ESP register is inherently modified by the PUSHA and PUSHAD instructions, you may
wonder why Intel bothered to push it at all. It was probably easier in the hardware to go ahead and push
SP/ESP rather than make a special case out of it. In any case, these instructions do push SP or ESP so don’t
worry about it too much - there is nothing you can do about it.

12. You’ll see why when we cover procedures.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 175

Chapter Two Volume Two
The POPA and POPAD instructions provide the corresponding “pop all” operation to the PUSHA and
PUSHAD instructions. This will pop the registers pushed by PUSHA or PUSHAD in the appropriate order
(that is, POPA and POPAD will properly restore the register values by popping them in the reverse order that
PUSHA or PUSHAD pushed them).

Although the PUSHA/POPA and PUSHAD/POPAD sequences are short and convenient, they are actu-
ally slower than the corresponding sequence of PUSH/POP instructions, this is especially true when you
consider that you rarely need to push a majority, much less all the registers13. So if you’re looking for the
maximum amount of speed, you should carefully consider whether to use the PUSHA(D)/POPA(D) instruc-
tions. This text generally opts for convenience and readability; so it will use the PUSHAD and POPAD
instructions without worrying about lost efficiency.

The PUSHF, PUSHFD, POPF, and POPFD instructions push and pop the (E)FLAGs register. These
instructions allow you to preserve condition code and other flag settings across the execution of some
sequence of instructions. Unfortunately, unless you go to a lot of trouble, it is difficult to preserve individual
flags. When using the PUSHF(D) and POPF(D) instructions it’s an all or nothing proposition - you preserve
all the flags when you push them, you restore all the flags when you pop them.

Like the PUSHA and POPA instructions, you should really use the PUSHFD and POPFD instructions to
push the full 32-bit version of the EFLAGs register. Although the extra 16-bits you push and pop are essen-
tially ignored when writing applications, you still want to keep the stack aligned by pushing and popping
only double words.

2.7.6 Removing Data From the Stack Without Popping It

Once in a while you may discover that you’ve pushed data onto the stack that you no longer need.
Although you could pop the data into an unused register or memory location, there is an easier way to
remove unwanted data from the stack - simply adjust the value in the ESP register to skip over the unwanted
data on the stack.

Consider the following dilemma:

push(eax);
push(ebx);

<< Some code that winds up computing some values we want to keep
into EAX and EBX >>

if(Calculation_was_performed) then

// Whoops, we don’t want to pop EAX and EBX!
// What to do here?

else

// No calculation, so restore EAX, EBX.

pop(ebx);
pop(eax);

endif;

Within the THEN section of the IF statement, this code wants to remove the old values of EAX and EBX
without otherwise affecting any registers or memory locations. How to do this?

Since the ESP register simply contains the memory address of the item on the top of the stack, we can
remove the item from the top of stack by adding the size of that item to the ESP register. In the example

13. For example, it is extremely rare for you to need to push and pop the ESP register with the PUSHAD/POPAD instruction
sequence.
Page 176 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
above, we want to remove two double word items from the top of stack, so we can easily accomplish this by
adding eight to the stack pointer:

push(eax);
push(ebx);

<< Some code that winds up computing some values we want to keep
into EAX and EBX >>

if(Calculation_was_performed) then

add(8, ESP); // Remove unneeded EAX and EBX values from the stack.

else

// No calculation, so restore EAX, EBX.

pop(ebx);
pop(eax);

endif;

Figure 2.17 Removing Data from the Stack, Before ADD(8, ESP)

ESP + 8
ESP + 7
ESP + 6
ESP + 5
ESP + 4
ESP + 3
ESP + 2
ESP + 1
ESP + 0ESP

EAX

EBX
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 177

Chapter Two Volume Two
Figure 2.18 Removing Data from the Stack, After ADD(8, ESP);

Effectively, this code pops the data off the stack without moving it anywhere. Also note that this code is
more efficient than two dummy POP instructions because it can remove any number of bytes from the stack
with a single ADD instruction.

Warning: remember to keep the stack aligned on a double word boundary. Therefore, you should
always add a constant that is an even multiple of four to ESP when removing data from the stack.

2.7.7 Accessing Data You’ve Pushed on the Stack Without Popping It

Once in a while you will push data onto the stack and you will want to get a copy of that data’s value, or
perhaps you will want to change that data’s value, without actually popping the data off the stack (that is,
you wish to pop the data off the stack at a later time). The 80x86 “[reg32 + offset]” addressing mode pro-
vides the mechanism for this.

Consider the stack after the execution of the following two instructions (see Figure 2.19):

push(eax);
push(ebx);

ESP + 0
ESP

EAX

EBX
Page 178 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
Figure 2.19 Stack After Pushing EAX and EBX

If you wanted to access the original EBX value without removing it from the stack, you could cheat and pop
the value and then immediately push it again. Suppose, however, that you wish to access EAX’s old value;
or some other value even farther up on the stack. Popping all the intermediate values and then pushing them
back onto the stack is problematic at best, impossible at worst. However, as you will notice from Figure
2.19, each of the values pushed on the stack is at some offset from the ESP register in memory. Therefore,
we can use the “[ESP + offset]” addressing mode to gain direct access to the value we are interested it. In
the example above, you can reload EAX with its original value by using the single instruction:

mov([esp+4], eax);

This code copies the four bytes starting at memory address ESP+4 into the EAX register. This value just
happens to be the value of EAX that was earlier pushed onto the stack. This same technique can be used to
access other data values you’ve pushed onto the stack.

Warning: Don’t forget that the offsets of values from ESP into the stack change every
time you push or pop data. Abusing this feature can create code that is hard to modify; if
you use this feature throughout your code, it will make it difficult to push and pop other
data items between the point you first push data onto the stack and the point you decide to
access that data again using the “[ESP + offset]” memory addressing mode.

The previous section pointed out how to remove data from the stack by adding a constant to the ESP
register. That code example could probably be written more safely as:

push(eax);
push(ebx);

<< Some code that winds up computing some values we want to keep
into EAX and EBX >>

if(Calculation_was_performed) then

// Overwrite saved values on stack with new EAX/EBX values.
// (so the pops that follow won’t change the values in EAX/EBX.)
mov(eax, [esp+4]);
mov(ebx, [esp]);

endif;
pop(ebx);
pop(eax);

ESP + 8
ESP + 7
ESP + 6
ESP + 5
ESP + 4
ESP + 3
ESP + 2
ESP + 1
ESP + 0ESP

EAX

EBX
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 179

Chapter Two Volume Two
In this code sequence, the calculated result was stored over the top of the values saved on the stack. Later
on, when the values are popped off the stack, the program loads these calculated values into EAX and EBX.

2.8 Dynamic Memory Allocation and the Heap Segment

Although static and automatic variables are all a simple program may need, more sophisticated pro-
grams need the ability to allocate and deallocate storage dynamically (at run-time) under program control.
In the C language, you would use the malloc and free functions for this purpose. C++ provides the new and
delete operators. Pascal uses new and dispose. Other languages provide comparable routines. These mem-
ory allocation routines share a couple of things in common: they let the programmer request how many bytes
of storage to allocate, they return a pointer to the newly allocated storage, and they provide a facility for
returning the storage to the system so the system can reuse it in a future allocation call. As you’ve probably
guessed, HLA also provides a set of routines in the HLA Standard Library that handles memory allocation
and deallocation.

The HLA Standard Library malloc and free routines handle the memory allocation and deallocation
chores (respectively)14. The malloc routine uses the following calling sequence:

malloc(Number_of_Bytes_Requested);

The single parameter is a dword value (an unsigned constant) specifying the number of bytes of storage you
are requesting. This procedure calls the Windows API to allocate storage in the heap segment in memory.
Windows locates an unused block of memory of the specified size in the heap segment and marks the block
as “in use” so that future calls to malloc will not reallocate this same storage. After marking the block as “in
use” the malloc routine returns a pointer to the first byte of this storage in the EAX register.

For many objects, you will know the number of bytes you need to represent that object in memory. For
example, if you wish to allocate storage for an uns32 variable, you could use the following call to the malloc
routine:

malloc(4);

Although you can specify a literal constant as this example suggests, it’s generally a poor idea to do so when
allocating storage for a specific data type. Instead, use the HLA built-in compile-time function @size to
compute the size of some data type. The @size function uses the following syntax:

@size(variable_or_type_name)

The @size function returns an unsigned integer constant that specifies the size of its parameter in bytes. So
you should rewrite the previous call to malloc as follows:

malloc(@size(uns32));

This call will properly allocate a sufficient amount of storage for the specified object, regardless of its type.
While it is unlikely that the number of bytes required by an uns32 object will ever change, this is not neces-
sarily true for other data types; so you should always use @size rather than a literal constant in these calls.

Upon return from the malloc routine, the EAX register contains the address of the storage you have
requested (see Figure 2.20):

14. HLA provides some other memory allocation and deallocation routines as well. See the HLA Standard Library documen-
tation for more details.
Page 180 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
Figure 2.20 Call to Malloc Returns a Pointer in the EAX Register

To access the storage malloc allocates you must use a register indirect addressing mode. The following code
sequence demonstrates how to assign the value 1234 to the uns32 variable malloc creates:

malloc(@size(uns32));
mov(1234, (type uns32 [eax]));

Note the use of the type coercion operation. This is necessary in this example because anonymous variables
don’t have a type associated with them and the constant 1234 could be a word or dword value. The type
coercion operator eliminates the ambiguity.

A call to the malloc routine is not guaranteed to succeed. By default, Windows only reserves about a
megabyte for the heap; HLA modifies this default to about 16 megabytes. If there isn’t a single contiguous
block of free memory in the heap segment that is large enough to satisfy the request, then the malloc routine
will raise an ex.MemoryAllocationFailure exception. If you do not provide a TRY..EXCEPTION..ENDTRY
handler to deal with this situation, a memory allocation failure will cause your program to abort execution.
Since most programs do not allocate massive amounts of dynamic storage using malloc, this exception
rarely occurs. However, you should never assume that the memory allocation will always occur without
error.

When you are done using a value that malloc allocates on the heap, you can release the storage (that is,
mark it as “no longer in use”) by calling the free procedure. The free routine requires a single parameter that
must be an address previously returned by the malloc routine that you have not already freed. The following
code fragment demonstrates the nature of the malloc/free pairing:

malloc(@size(uns32));

<< use the storage pointed at by EAX >>
<< Note: this code must not modify EAX >>

free(eax);

This code demonstrates a very important point - in order to properly free the storage that malloc allocates,
you must preserve the value that malloc returns. There are several ways to do this if you need to use EAX
for some other purpose; you could save the pointer value on the stack using PUSH and POP instructions or
you could save EAX’s value in a variable until you need to free it.

EAX

Heap Segment

Uns32 Storage
Allocated by
call to malloc
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 181

Chapter Two Volume Two
Storage you release is available for reuse by future calls to the malloc routine. Like automatic variables
you declare in the VAR section, the ability to allocate storage while you need it and then free the storage for
other use when you are done with it improves the memory efficiency of your program. By deallocating stor-
age once you are finished with it, your program can reuse that storage for other purposes allowing your pro-
gram to operate with less memory than it would if you statically allocated storage for the individual objects.

The are several problems that can occur when you use pointers. You should be aware of a few common
errors that beginning programmers make when using dynamic storage allocation routines like malloc and
free:

• Mistake #1: Continuing to refer to storage after you free it. Once you return storage to the sys-
tem via the call to free, you should no longer access the data allocated by the call to malloc.
Doing so may cause a protection fault or, worse yet, corrupt other data in your program with-
out indicating an error.

• Mistake #2: Calling free twice to release a single block of storage. Doing so may accidentally
free some other storage that you did not intend to release or, worse yet, it may corrupt the sys-
tem memory management tables.

A later chapter will discuss some additional problems you will typically encounter when dealing with
dynamically allocated storage.

The examples thus far in this section have all allocated storage for a single unsigned 32-bit object.
Obviously you can allocate storage for any data type using a call to malloc by simply specifying the size of
that object as malloc’s parameter. It is also possible to allocate storage for a sequence of contiguous objects
in memory when calling malloc. For example, the following code will allocate storage for a sequence of 8
characters:

malloc(@size(char) * 8);

Note the use of the constant expression to compute the number of bytes required by an eight-character
sequence. Since “@size(char)” always returns a constant value (one in this case), the compiler can compute
the value of the expression “@size(char) * 8” without generating any extra machine instructions.

Calls to malloc always allocate multiple bytes of storage in contiguous memory locations. Hence the
former call to malloc produces the sequence appearing in Figure 2.21:

Figure 2.21 Allocating a Sequence of Eight Character Objects Using Malloc

To access these extra character values you use an offset from the base address (contained in EAX upon
return from malloc). For example, “MOV(CH, [EAX + 2]);” stores the character found in CH into the third

EAX

Heap Segment

Eight char values
allocated via a call to
malloc(@size(char) *8)

EAX + 7
EAX + 6
EAX + 5
EAX + 4
EAX + 3
EAX + 2
EAX + 1
EAX + 0
Page 182 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
byte that malloc allocates. You can also use an addressing mode like “[EAX + EBX]” to step through each
of the allocated objects under program control. For example, the following code will set all the characters in
a block of 128 bytes to the NULL character (#0):

malloc(128);
mov(0, ebx);
while(ebx < 128) do

mov(0, (type byte [eax+ebx]));
add(1, ebx);

endwhile;

The chapter on arrays, later in this text, discusses additional ways to deal with blocks of memory.

2.9 The INC and DEC Instructions

As the example in the last section indicates, indeed, as several examples up to this point have indicated,
adding or subtracting one from a register or memory location is a very common operation. In fact, this oper-
ation is so common that Intel’s engineer’s included a pair of instructions to perform these specific opera-
tions: the INC (increment) and DEC (decrement) instructions.

The INC and DEC instructions use the following syntax:

inc(mem/reg);
dec(mem/reg);

The single operand can be any legal eight-bit, 16-bit, or 32-bit register or memory operand. The INC
instruction will add one to the specified operand, the DEC instruction will subtract one from the specified
operand.

These two instructions are slightly more efficient (they are smaller) than the corresponding ADD or
SUB instructions. There is also one slight difference between these two instructions and the corresponding
ADD or SUB instructions: they do not affect the carry flag.

As an example of the INC instruction, consider the example from the previous section, recoded to use
INC rather than ADD:

malloc(128);
mov(0, ebx);
while(ebx < 128) do

mov(0, (type byte [eax+ebx]));
inc(ebx);

endwhile;

2.10 Obtaining the Address of a Memory Object

In the section “The Register Indirect Addressing Modes” on page 153 this chapter discusses how to use
the address-of operator, “&”, to take the address of a static variable15. Unfortunately, you cannot use the
address-of operator to take the address of an automatic variable (one you declare in the VAR section), you
cannot use it to compute the address of an anonymous variable, nor can you use this operator to take the
address of a memory reference that uses an indexed or scaled indexed addressing mode (even if a static vari-
able is part of the address expression). You may only use the address-of operator to take the address of a
static variable that uses the displacement-only memory addressing mode. Often, you will need to take the

15. A static variable is one that you declare in the static, readonly, storage, or data sections of your program.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 183

Chapter Two Volume Two
address of other memory objects as well; fortunately, the 80x86 provides the load effective address instruc-
tion, LEA, to give you this capability.

The LEA instruction uses the following syntax:

lea(reg32, Memory_operand);

The first operand must be a 32-bit register, the second operand can be any legal memory reference using any
valid memory addressing mode. This instruction will load the address of the specified memory location into
the register. This instruction does not modify the value of the memory operand in any way, nor does it refer-
ence that value in memory.

Once you load the effective address of a memory location into a 32-bit general purpose register, you can
use the register indirect, indexed, or scaled indexed addressing modes to access the data at the specified
memory address. For example, consider the following code:

data
b:byte;

byte 7, 0, 6, 1, 5, 2, 4, 3;
.
.
.

lea(ebx, b);
mov(0, ecx);
while(ecx < 8) do

stdout.put(“[ebx+ecx]=”, (type byte [ebx+ecx]), nl);
inc(ecx);

endwhile;

This code steps through each of the eight bytes following the b label in the DATA section and prints their
values. Note the use of the “[ebx+ecx]” addressing mode. The EBX register holds the base address of the
list (that is, the address of the first item in the list) and ECX contains the byte index into the list.

2.11 Bonus Section: The HLA Standard Library CONSOLE Module

The HLA Standard Library contains a module that lets you control output to the console device. The
console device is the virtual text/video display of the command window. The procedures in the console
module let you clear the screen, position the cursor, output text to a specific cursor position in the window,
adjust the window size, control the color of the output characters, handle mouse events, and do other con-
sole-related operations. The judicious use of the console module lets you transform a drab, boring
text-based application into a visually appealing text-based application. The sample programs in this section
demonstrate some of the capabilities of the HLA Standard Library console module.

Note: to use the console module routines in your program you must include one (or both) of the follow-
ing statements in your HLA program:

#include(“stdlib.hhf”);
#include(“console.hhf”);

2.11.1 Clearing the Screen

Perhaps the most important routine in the console module, based on HLA user requests, is the con-
sole.cls() procedure. This routine clears the screen and positions the cursor to coordinate (0,0)16. The fol-
lowing sample application demonstrates the use of this routine.

16. In console coordinates, location (0,0) is the upper left hand corner of the screen. The X coordinates increase as you
progress from left to right and the Y coordinates increase as you progress from top to bottom on the screen.
Page 184 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
program testCls;
#include(“stdlib.hhf”);
begin testCls;

// Throw up some text to prove that
// this program really clears the screen:

stdout.put
(

nl,
“HLA console.cls() Test Routine”, nl
“------------------------------”, nl
nl
“This routine will clear the screen and move the cursor to (0,0),”, nl
“then it will print a short message and quit”, nl
nl
“Press the Enter key to continue:”

);

// Make the user hit Enter to continue. This is so that they
// can see that the screen is not blank.

stdin.readLn();

// Okay, clear the screen and print a simple message:

console.cls();
stdout.put(“The screen was cleared.”, nl);

end testCls;

Program 3.2 The console.cls() Routine

2.11.2 Positioning the Cursor

After clearing the screen, the most often requested console capability is cursor positioning. The HLA
Standard Library console.gotoxy procedure handles this task. The console.gotoxy call uses the following
syntax:

console.gotoxy(RowPosition, ColumnPosition);

Note that RowPosition and ColumnPosition must be 16-bit values (constants, variables, or registers).

The astute reader will notice that the first parameter, the RowPosition, is actually the Y coordinate and
the second parameter, ColumnPosition, is the X coordinate. This coordinate ordering may seem
counter-intuitive given the name of the procedure (gotoxy, with X appearing in the name before Y). How-
ever, in actual practice most people find it more intuitive to specify the Y coordinate first and the X coordi-
nate second. The name “gotoxy” sounds better than “gotoyx” so HLA uses “gotoxy” despite the minor
inconsistency between the name and the parameter ordering.

The following program demonstrates the console.gotoxy procedure:

program testGotoxy;
#include(“stdlib.hhf”);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 185

Chapter Two Volume Two
var
x:int16;
y:int16;

begin testGotoxy;

// Throw up some text to prove that
// this program really clears the screen:

stdout.put
(

nl,
“HLA console.gotoxy() Test Routine”, nl,
“---------------------------------”, nl,
nl,
“This routine will clear the screen then demonstrate the use”, nl,
“of the gotoxy routine to position the cursor at various”, nl,
“points on the screen.”,nl,
nl,
“Press the Enter key to continue:”

);

// Make the user hit Enter to continue. This is so that they
// can control when they see the effect of console.gotoxy.

stdin.readLn();

// Okay, clear the screen:

console.cls();

// Now demonstrate the gotoxy routine:

console.gotoxy(5,10);
stdout.put(“(5,10)”);

console.gotoxy(10, 5);
stdout.put(“(10,5)”);

mov(20, x);
for(mov(0,y); y<20; inc(y)) do

console.gotoxy(y, x);
stdout.put(“(“, x, “,”, y, “)”);
inc(x);

endfor;

end testGotoxy;

Program 3.3 The console.gotoxy(row,column) Routine

2.11.3 Locating the Cursor

In addition to letting you specify a new cursor position, the HLA console module provides routines that
let you determine the current cursor position. The console.getX() and console.getY() routines return the X
Page 186 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
and Y coordinates (respectively) of the current cursor position in the EAX register. The following program
demonstrates the use of these two functions.

program testGetxy;
#include(“stdlib.hhf”);

var
x:uns32;
y:uns32;

begin testGetxy;

// Begin by getting the current cursor position

console.getX();
mov(eax, x);

console.getY();
mov(eax, y);

// Clear the screen and print a banner message:

console.cls();

stdout.put
(

nl,
“HLA console.GetX() and console.GetY() Test Routine”, nl,
“--”, nl,
nl,
“This routine will clear the screen then demonstrate the use”, nl,
“of the GetX and GetY routines to reposition the cursor”, nl,
“to its original location on the screen.”,nl,
nl,
“Press the Enter key to continue:”

);

// Make the user hit Enter to continue. This is so that they
// can control when they see the effect of console.gotoxy.

stdin.readLn();

// Now demonstrate the GetX and GetY routines by calling
// the gotoxy routine to move the cursor back to its original
// position.

console.gotoxy((type uns16 y), (type uns16 x));
stdout.put(“*<- Cursor was originally here.”, nl);

end testGetxy;

Program 3.4 The console.GetX() and console.GetY() Routines
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 187

Chapter Two Volume Two
2.11.4 Text Attributes

The HLA console module lets you specify the color of the text you print to the console window. You
may specify one of sixteen different foreground or background colors for each character you print. The fore-
ground color is the color of the dots that make up the actual character on the display; the background color
is the color of the other pixels (dots) in the character cell. The console module supports any of the following
available foreground and background colors:

win.bgnd_Black
win.bgnd_Blue
win.bgnd_Green
win.bgnd_Cyan
win.bgnd_Red
win.bgnd_Magenta
win.bgnd_Brown
win.bgnd_LightGray
win.bgnd_DarkGray
win.bgnd_LightBlue
win.bgnd_LightGreen
win.bgnd_LightCyan
win.bgnd_LightRed
win.bgnd_LightMagenta
win.bgnd_Yellow
win.bgnd_White

win.fgnd_Black
win.fgnd_Blue
win.fgnd_Green
win.fgnd_Cyan
win.fgnd_Red
win.fgnd_Magenta
win.fgnd_Brown
win.fgnd_LightGray
win.fgnd_DarkGray
win.fgnd_LightBlue
win.fgnd_LightGreen
win.fgnd_LightCyan
win.fgnd_LightRed
win.fgnd_LightMagenta
win.fgnd_Yellow
win.fgnd_White

The “win32.hhf” header file defines the symbolic constants for these colors. Therefore, you must include
one of the following statements in your program to have access to these colors:

#include(“stdlib.hhf”);
#include(“win32.hhf”);

The first routine to take advantage of these color attributes is the console.setOutputAttr routine. A call
to this procedure uses the following syntax:

console.setOuputAttr(ColorValues);

The single parameter to this routine is a single foreground or background color, or a pair of colors (one
background and one foreground) combined with the “|” operator17. E.g.,

console.setOutputAttr(win.fgnd_Yellow);
console.setOutputAttr(win.bgnd_White);

17. This is the bitwise OR operator.
Page 188 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
console.setOutputAttr(win.fgnd_Yellow | win.bgnd_Blue);

If you do not specify both colors, the default for the missing color is black. Therefore, the first call above
sets the foreground color to yellow and the background color to black. Likewise, the second call above sets
the foreground color to black and the background color to white.

The console.setOutputAttr routine does not automatically change the color of all characters on the
screen. Instead, it only affects the color of the characters output after the call. Therefore, you can switch
between various colors on a character-by-character basis, as necessary. The following sample program dem-
onstrates the use of console.setOutputAttr routine.

program testSetOutputAttr;
#include(“stdlib.hhf”);

var
x:uns32;
y:uns32;

begin testSetOutputAttr;

// Clear the screen and print a banner message:

console.cls();

console.setOutputAttr(win.fgnd_LightRed | win.bgnd_Black);
stdout.put
(

nl,
“HLA console.setOutputAttr Test Routine”, nl,
“--------------------------------------”, nl,
nl,
“Press the Enter key to continue:”

);

// Make the user hit Enter to continue. This is so that they
// can control when they see the effect of console.gotoxy.

stdin.readLn();

console.setOutputAttr(win.fgnd_Yellow | win.bgnd_Blue);
stdout.put
(

“ “, nl
“ In blue and yellow “, nl,
“ “, nl,
“ Press Enter to continue “, nl
“ “, nl
nl

);
stdin.readLn();

// Note: set the attributes back to black and white when
// the program exits so the console window doesn’t continue
// displaying text in Blue and Yellow.

console.setOutputAttr(win.fgnd_White | win.bgnd_Black);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 189

Chapter Two Volume Two
end testSetOutputAttr;

Program 3.5 The console.setOutputAttr Routine

2.11.5 Filling a Rectangular Section of the Screen

The console.fillRect procedure gives you the ability to fill a rectangular portion of the screen with a sin-
gle character and a set of text attributes. The call to this routine uses the following syntax:

console.fillRect(ULrow, ULcol, LRrow, LRcol, character, attr);

The ULrow and ULcol parameters must be 16-bit values that specify the row and column number of the
upper left hand corner of the rectangle to draw. Likewise, the LRrow and LRcol parameters are 16-bit values
that specify the lower right hand corner of the rectangle to draw. The character parameter is the character
you wish to draw throughout the rectangular block. This is normally a space if you want to produce a simple
rectangle. The attr parameter is a text attribute parameter, identical to the parameter for the console.setOut-
putAttr routine that the previous section describes. The following sample program demonstrates the use of
the console.fillRect procedure.

program testFillRect;
#include(“stdlib.hhf”);

var
x:uns32;
y:uns32;

begin testFillRect;

console.setOutputAttr(win.fgnd_LightRed | win.bgnd_Black);
stdout.put
(

nl,
“HLA console.fillRect Test Routine”, nl,
“---------------------------------”, nl,
nl,
“Press the Enter key to continue:”

);

// Make the user hit Enter to continue.

stdin.readLn();
console.cls();

// Test outputting rectangular blocks of color.
// Note that the blocks are always filled with spaces,
// so there is no need to specify a foreground color.

console.fillRect(2, 50, 5, 55, ‘ ‘, win.bgnd_Black);
console.fillRect(6, 50, 9, 55, ‘ ‘, win.bgnd_Green);
console.fillRect(10, 50, 13, 55, ‘ ‘, win.bgnd_Cyan);
console.fillRect(14, 50, 17, 55, ‘ ‘, win.bgnd_Red);
console.fillRect(18, 50, 21, 55, ‘ ‘, win.bgnd_Magenta);

console.fillRect(2, 60, 5, 65, ‘ ‘, win.bgnd_Brown);
console.fillRect(6, 60, 9, 65, ‘ ‘, win.bgnd_LightGray);
console.fillRect(10, 60, 13, 65, ‘ ‘, win.bgnd_DarkGray);
Page 190 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
console.fillRect(14, 60, 17, 65, ‘ ‘, win.bgnd_LightBlue);
console.fillRect(18, 60, 21, 65, ‘ ‘, win.bgnd_LightGreen);

console.fillRect(2, 70, 5, 75, ‘ ‘, win.bgnd_LightCyan);
console.fillRect(6, 70, 9, 75, ‘ ‘, win.bgnd_LightRed);
console.fillRect(10, 70, 13, 75, ‘ ‘, win.bgnd_LightMagenta);
console.fillRect(14, 70, 17, 75, ‘ ‘, win.bgnd_Yellow);
console.fillRect(18, 70, 21, 75, ‘ ‘, win.bgnd_White);

// Note: set the attributes back to black and white when
// the program exits so the console window doesn’t continue
// displaying text in Blue and Yellow.

console.setOutputAttr(win.fgnd_White | win.bgnd_Black);

end testFillRect;

Program 3.6 The console.fillRect Procedure

2.11.6 Console Direct String Output

Although you can use the standard output routines (e.g., stdout.put) to write text to the console window,
the console module provides a couple of convenient routines that output strings to the display. These rou-
tines combine the standard library stdout.puts routine with console.gotoxy and console.setOutputAttr. Two
common console output routines are

console.puts(Row, Col, StringToPrint);
console.putsx(Row, Col, Color, MaxChars, StringToPrint);

The Row and Col parameters specify the coordinate of the first output character. StringToPrint is the string
to display at the specified coordinate. The console.putsx routine supports two additional parameters; Color,
that specifies the output foreground and background colors for the text, and MaxChars that specifies the
maximum number of characters to print from StringToPrint18. The following sample program demonstrates
these two routines

program testPutsx;
#include(“stdlib.hhf”);

var
x:uns32;
y:uns32;

begin testPutsx;

// Clear the screen and print a banner message:

console.cls();

// Note that console.puts always defaults to black and white text.
// The following setOutputAttr call proves this.

18. If StringToPrint is a constant, then MaxChars should specify the exact length of the string. When you learn about string
variables in the next chapter you will see the purpose of the MaxChars parameter; it lets you ensure that the text you output
fits within a certain range of cells on the screen.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 191

Chapter Two Volume Two
console.setOutputAttr(win.fgnd_LightRed | win.bgnd_Black);

// Display the text in black and white:

console.puts
(

10,
10,
“HLA console.setOutputAttr Test Routine”

);
console.puts
(

11,
10,
“--------------------------------------”

);
console.puts
(

13,
10,
“Press the Enter key to continue:”

);

// Make the user hit Enter to continue.

stdin.readLn();

// Demonstrate the console.putsx routine.
// Note that the colors set by putsx are
// “local” to this call. Hence, the current
// output attribute colors will not be affected
// by this call.

console.putsx
(

15,
15,
win.bgnd_White | win.fgnd_Blue,
35,
“Putsx at (15, 15) of length 35..........”

);

console.putsx
(

16,
15,
win.bgnd_White | win.fgnd_Red,
40,
“1234567890123456789012345678901234567890”

);

// Since the following is a stdout call, the text
// will use the current output attribute, which
// is the red/black attributes set at the beginning
// of this program.

console.gotoxy(23, 0);
stdout.put(“Press enter to continue:”);
stdin.readLn();
Page 192 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Access and Organization
// Note: set the attributes back to black and white when
// the program exits.

console.setOutputAttr(win.fgnd_White | win.bgnd_Black);
console.cls();

end testPutsx;

Program 3.7 Demonstration of console.puts and console.putsx

2.11.7 Other Console Module Routines

The sample programs in this chapter have really only touched on the capabilities of the HLA Standard
Library Console Module. In addition to the routines this section demonstrates, the HLA Standard Library
provides procedures to scroll the window, to resize the window, to read characters off the screen, to clear
selected portions of the screen, to grab and restore data on the screen, and so forth. Space limitations pre-
clude the further demonstration of the console module in this text. However, if you are interested you should
read the HLA Standard Library documentation to learn more about the console module.

2.12 Putting It All Together

This chapter discussed the 80x86 address modes and other related topics. It began by discussing the
80x86’s register, displacement-only (direct), register indirect, and indexed addressing modes. A good
knowledge of these addressing modes and their uses is essential if you want to write good assembly lan-
guage programs. Although this chapter does not delve deeply into the use of each of these addressing
modes, it does present their syntax and a few simple examples of each (later chapters will expand on how
you use each of these addressing modes).

After discussing addressing modes, this chapter described how HLA and Windows organize your code
and data in memory. At this point this chapter also discussed the HLA STATIC, DATA, READONLY,
STORAGE, and VAR data declaration sections. The alignment of data in memory can affect the perfor-
mance of your programs; therefore, when discussing this topic, this chapter also described how to properly
align objects in memory to obtain the fastest executing code.

One special section of memory is the 80x86 stack. In addition to briefly discussing the stack, this chap-
ter also described how to use the stack to save temporary values using the PUSH and POP instructions (and
several variations on these instructions).

To a running program, a variable is really nothing more than a simple address in memory. In an HLA
source file, however, you may specify the address and type of an object in memory using powerful address
expressions and type coercion operators. These chapter discusses the syntax for these expressions and oper-
ators and gives several examples of why you would want to use them.

This chapter concludes by discussing two modules in the HLA Standard Library: the dynamic memory
allocation routines (malloc and free) and the console module. The console module is interesting because it
lets you write more interesting programs by varying the text display.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 193

Chapter Two Volume Two
Page 194 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Digital Design Chapter Three

Logic circuits are the basis for modern digital computer systems. To appreciate how computer systems
operate you will need to understand digital logic and boolean algebra.

This Chapter provides only a basic introduction to boolean algebra. That subject alone is often the sub-
ject of an entire textbook. This Chapter will concentrate on those subjects that support other chapters in this
text.

3.1 Chapter Overview

Boolean logic forms the basis for computation in modern binary computer systems. You can represent
any algorithm, or any electronic computer circuit, using a system of boolean equations. This chapter pro-
vides a brief introduction to boolean algebra, truth tables, canonical representation, of boolean functions,
boolean function simplification, logic design, and combinatorial and sequential circuits.

This material is especially important to those who want to design electronic circuits or write software
that controls electronic circuits. Even if you never plan to design hardware or write software than controls
hardware, the introduction to boolean algebra this chapter provides is still important since you can use such
knowledge to optimize certain complex conditional expressions within IF, WHILE, and other conditional
statements.

The section on minimizing (optimizing) logic functions uses Veitch Diagrams or Karnaugh Maps. The
optimizing techniques this chapter uses reduce the number of terms in a boolean function. You should realize
that many people consider this optimization technique obsolete because reducing the number of terms in an
equation is not as important as it once was. This chapter uses the mapping method as an example of boolean
function optimization, not as a technique one would regularly employ. If you are interested in circuit design
and optimization, you will need to consult a text on logic design for better techniques.

3.2 Boolean Algebra

Boolean algebra is a deductive mathematical system closed over the values zero and one (false and
true). A binary operator “°” defined over this set of values accepts a pair of boolean inputs and produces a
single boolean value. For example, the boolean AND operator accepts two boolean inputs and produces a
single boolean output (the logical AND of the two inputs).

For any given algebra system, there are some initial assumptions, or postulates, that the system follows.
You can deduce additional rules, theorems, and other properties of the system from this basic set of postu-
lates. Boolean algebra systems often employ the following postulates:

• Closure. The boolean system is closed with respect to a binary operator if for every pair of
boolean values, it produces a boolean result. For example, logical AND is closed in the
boolean system because it accepts only boolean operands and produces only boolean
results.

• Commutativity. A binary operator “°” is said to be commutative if A°B = B°A for all possi-
ble boolean values A and B.

• Associativity. A binary operator “°” is said to be associative if

(A ° B) ° C = A ° (B ° C)

for all boolean values A, B, and C.

• Distribution. Two binary operators “°” and “%” are distributive if

A °(B % C) = (A ° B) % (A ° C)
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 195

Chapter Three Volume Two
for all boolean values A, B, and C.

• Identity. A boolean value I is said to be the identity element with respect to some binary
operator “°” if A ° I = A.

• Inverse. A boolean value I is said to be the inverse element with respect to some binary
operator “°” if A ° I = B and B≠A (i.e., B is the opposite value of A in a boolean system).

For our purposes, we will base boolean algebra on the following set of operators and values:

The two possible values in the boolean system are zero and one. Often we will call these values false
and true (respectively).

The symbol “•” represents the logical AND operation; e.g., A • B is the result of logically ANDing the
boolean values A and B. When using single letter variable names, this text will drop the “•” symbol; There-
fore, AB also represents the logical AND of the variables A and B (we will also call this the product of A and
B).

The symbol “+” represents the logical OR operation; e.g., A + B is the result of logically ORing the
boolean values A and B. (We will also call this the sum of A and B.)

Logical complement, negation, or not, is a unary operator. This text will use the (’) symbol to denote
logical negation. For example, A’ denotes the logical NOT of A.

If several different operators appear in a single boolean expression, the result of the expression depends
on the precedence of the operators. We’ll use the following precedences (from highest to lowest) for the
boolean operators: parenthesis, logical NOT, logical AND, then logical OR. The logical AND and OR oper-
ators are left associative. If two operators with the same precedence are adjacent, you must evaluate them
from left to right. The logical NOT operation is right associative, although it would produce the same result
using left or right associativity since it is a unary operator.

We will also use the following set of postulates:

P1 Boolean algebra is closed under the AND, OR, and NOT operations.

P2 The identity element with respect to • is one and + is zero. There is no identity element
with respect to logical NOT.

P3 The • and + operators are commutative.

P4 • and + are distributive with respect to one another. That is, A • (B + C) = (A • B) + (A • C)
and A + (B • C) = (A + B) • (A + C).

P5 For every value A there exists a value A’ such that A•A’ = 0 and A+A’ = 1. This value is
the logical complement (or NOT) of A.

P6 • and + are both associative. That is, (A•B)•C = A•(B•C) and (A+B)+C = A+(B+C).

You can prove all other theorems in boolean algebra using these postulates. This text will not go into the
formal proofs of these theorems, however, it is a good idea to familiarize yourself with some important theo-
rems in boolean algebra. A sampling includes:

Th1: A + A = A

Th2: A • A = A

Th3: A + 0 = A

Th4: A • 1 = A

Th5: A • 0 = 0

Th6: A + 1 = 1

Th7: (A + B)’ = A’ • B’

Th8: (A • B)’ = A’ + B’

Th9: A + A•B = A

Th10: A •(A + B) = A

Th11: A + A’B = A+B
Page 196 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Digital Design
Th12: A’ • (A + B’) = A’B’

Th13: AB + AB’ = A

Th14: (A’+B’) • (A’ + B) = A’

Th15: A + A’ = 1

Th16: A • A’ = 0

Theorems seven and eight above are known as DeMorgan’s Theorems after the mathematician who discov-
ered them.

The theorems above appear in pairs. Each pair (e.g., Th1 & Th2, Th3 & Th4, etc.) form a dual. An
important principle in the boolean algebra system is that of duality. Any valid expression you can create
using the postulates and theorems of boolean algebra remains valid if you interchange the operators and con-
stants appearing in the expression. Specifically, if you exchange the • and + operators and swap the 0 and 1
values in an expression, you will wind up with an expression that obeys all the rules of boolean algebra. This
does not mean the dual expression computes the same values, it only means that both expressions are legal in
the boolean algebra system. Therefore, this is an easy way to generate a second theorem for any fact you
prove in the boolean algebra system.

Although we will not be proving any theorems for the sake of boolean algebra in this text, we will use
these theorems to show that two boolean equations are identical. This is an important operation when
attempting to produce canonical representations of a boolean expression or when simplifying a boolean
expression.

3.3 Boolean Functions and Truth Tables

A boolean expression is a sequence of zeros, ones, and literals separated by boolean operators. A literal
is a primed (negated) or unprimed variable name. For our purposes, all variable names will be a single alpha-
betic character. A boolean function is a specific boolean expression; we will generally give boolean func-
tions the name F with a possible subscript. For example, consider the following boolean:

F0 = AB+C

This function computes the logical AND of A and B and then logically ORs this result with C. If A=1, B=0,
and C=1, then F0 returns the value one (1•0 + 1 = 1).

Another way to represent a boolean function is via a truth table. A previous chapter (see “Logical Oper-
ations on Bits” on page 55) used truth tables to represent the AND and OR functions. Those truth tables took
the forms:

Table 14: AND Truth Table

AND 0 1

0 0 0

1 0 1
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 197

Chapter Three Volume Two
For binary operators and two input variables, this form of a truth table is very natural and convenient. How-
ever, reconsider the boolean function F0 above. That function has three input variables, not two. Therefore,
one cannot use the truth table format given above. Fortunately, it is still very easy to construct truth tables for
three or more variables. The following example shows one way to do this for functions of three or four vari-
ables:

In the truth tables above, the four columns represent the four possible combinations of zeros and ones for A
& B (B is the H.O. or leftmost bit, A is the L.O. or rightmost bit). Likewise the four rows in the second truth
table above represent the four possible combinations of zeros and ones for the C and D variables. As before,
D is the H.O. bit and C is the L.O. bit.

Table 18 shows another way to represent truth tables. This form has two advantages over the forms
above – it is easier to fill in the table and it provides a compact representation for two or more functions.

Table 15: OR Truth Table

OR 0 1

0 0 1

1 1 1

Table 16: Truth Table for a Function with Three Variables

F = AB + C
BA

00 01 10 11

C
0 0 0 0 1

1 1 1 1 1

Table 17: Truth Table for a Function with Four Variables

F = AB + CD
BA

00 01 10 11

DC

00 0 0 0 1

01 0 0 0 1

10 0 0 0 1

11 1 1 1 1
Page 198 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Digital Design
Note that the truth table above provides the values for three separate functions of three variables.

Although you can create an infinite variety of boolean functions, they are not all unique. For example,
F=A and F=AA are two different functions. By theorem two, however, it is easy to show that these two func-
tions are equivalent, that is, they produce exactly the same outputs for all input combinations. If you fix the
number of input variables, there are a finite number of unique boolean functions possible. For example, there
are only 16 unique boolean functions with two inputs and there are only 256 possible boolean functions of
three input variables. Given n input variables, there are 2**(2n) (two raised to the two raised to the nth

power)1 unique boolean functions of those n input values. For two input variables, 2**(22) = 24 or 16 differ-
ent functions. With three input variables there are 2**(23) = 28 or 256 possible functions. Four input vari-
ables create 2**(24) or 216, or 65,536 different unique boolean functions.

When dealing with only 16 boolean functions, it’s easy enough to name each function. The following
table lists the 16 possible boolean functions of two input variables along with some common names for those
functions:

Table 18: Another Format for Truth Tables

C B A F = ABC F = AB + C F = A+BC

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 0 0

0 1 1 0 1 1

1 0 0 0 1 0

1 0 1 0 1 1

1 1 0 0 1 1

1 1 1 1 1 1

1. In this context, the operator “**” means exponentiation.

Table 19: The 16 Possible Boolean Functions of Two Variables

Function # Description

0 Zero or Clear. Always returns zero regardless of A and B input val-
ues.

1 Logical NOR (NOT (A OR B)) = (A+B)’

2 Inhibition = AB’ (A, not B). Also equivalent to A>B or B < A.

3 NOT B. Ignores A and returns B’.

4 Inhibition = BA’ (B, not A). Also equivalent to B>A or A<B.

5 NOT A. Returns A’ and ignores B

6 Exclusive-or (XOR) = A ⊕ B. Also equivalent to A≠B.

7 Logical NAND (NOT (A AND B)) = (A•B)’

8 Logical AND = A•B. Returns A AND B.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 199

Chapter Three Volume Two
Beyond two input variables there are too many functions to provide specific names. Therefore, we will
refer to the function’s number rather than the function’s name. For example, F8 denotes the logical AND of
A and B for a two-input function and F14 is the logical OR operation. Of course, the only problem is to deter-
mine a function’s number. For example, given the function of three variables F=AB+C, what is the corre-
sponding function number? This number is easy to compute by looking at the truth table for the function (see
Table 22 on page 203). If we treat the values for A, B, and C as bits in a binary number with C being the H.O.
bit and A being the L.O. bit, they produce the binary numbers in the range zero through seven. Associated
with each of these binary strings is a zero or one function result. If we construct a binary value by placing the
function result in the bit position specified by A, B, and C, the resulting binary number is that function’s
number. Consider the truth table for F=AB+C:

CBA: 7 6 5 4 3 2 1 0

F=AB+C : 1 1 1 1 1 0 0 0

If we treat the function values for F as a binary number, this produces the value F816 or 24810. We will usu-
ally denote function numbers in decimal.

This also provides the insight into why there are 2**2n different functions of n variables: if you have n
input variables, there are 2n bits in function’s number. If you have m bits, there are 2m different values.
Therefore, for n input variables there are m=2n possible bits and 2m or 2**2n possible functions.

3.4 Algebraic Manipulation of Boolean Expressions

You can transform one boolean expression into an equivalent expression by applying the postulates the
theorems of boolean algebra. This is important if you want to convert a given expression to a canonical form
(a standardized form) or if you want to minimize the number of literals (primed or unprimed variables) or
terms in an expression. Minimizing terms and expressions can be important because electrical circuits often
consist of individual components that implement each term or literal for a given expression. Minimizing the
expression allows the designer to use fewer electrical components and, therefore, can reduce the cost of the
system.

Unfortunately, there are no fixed rules you can apply to optimize a given expression. Much like con-
structing mathematical proofs, an individual’s ability to easily do these transformations is usually a function
of experience. Nevertheless, a few examples can show the possibilities:

ab + ab’ + a’b = a(b+b’) + a’b By P4
= a•1 + a’b By P5
= a + a’b By Th4
= a + b By Th11

9 Equivalence = (A = B). Also known as exclusive-NOR (not exclu-
sive-or).

10 Copy A. Returns the value of A and ignores B’s value.

11 Implication, B implies A, or A + B’. (if B then A). Also equivalent to
B >= A.

12 Copy B. Returns the value of B and ignores A’s value.

13 Implication, A implies B, or B + A’ (if A then B). Also equivalent to
A >= B.

14 Logical OR = A+B. Returns A OR B.

15 One or Set. Always returns one regardless of A and B input values.

Table 19: The 16 Possible Boolean Functions of Two Variables

Function # Description
Page 200 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Digital Design
(a’b + a’b’ + b’)‘ = (a’(b+b’) + b’)’ By P4
= (a’•1 + b’)’ By P5
= (a’ + b’) By Th4
= ((ab)’)’ By Th8
= ab By definition of not

b(a+c) + ab’ + bc’ + c = ba + bc + ab’ + bc’ + cBy P4
= a(b+b’) + b(c + c’) + cBy P4
= a•1 + b•1 + cBy P5
= a + b + c By Th4

Although these examples all use algebraic transformations to simplify a boolean expression, we can
also use algebraic operations for other purposes. For example, the next section describes a canonical form
for boolean expressions. We can use algebraic manipulation to produce canonical forms even though the
canonical forms are rarely optimal.

3.5 Canonical Forms

Since there are a finite number of boolean functions of n input variables, yet an infinite number of possi-
ble logic expressions you can construct with those n input values, clearly there are an infinite number of
logic expressions that are equivalent (i.e., they produce the same result given the same inputs). To help elim-
inate possible confusion, logic designers generally specify a boolean function using a canonical, or stan-
dardized, form. For any given boolean function there exists a unique canonical form. This eliminates some
confusion when dealing with boolean functions.

Actually, there are several different canonical forms. We will discuss only two here and employ only the
first of the two. The first is the so-called sum of minterms and the second is the product of maxterms. Using
the duality principle, it is very easy to convert between these two.

A term is a variable or a product (logical AND) of several different literals. For example, if you have
two variables, A and B, there are eight possible terms: A, B, A’, B’, A’B’, A’B, AB’, and AB. For three vari-
ables we have 26 different terms: A, B, C, A’, B’, C’, A’B’, A’B, AB’, AB, A’C’, A’C, AC’, AC, B’C’, B’C,
BC’, BC, A’B’C’, AB’C’, A’BC’, ABC’, A’B’C, AB’C, A’BC, and ABC. As you can see, as the number of
variables increases, the number of terms increases dramatically. A minterm is a product containing exactly n
literals. For example, the minterms for two variables are A’B’, AB’, A’B, and AB. Likewise, the minterms for
three variables A, B, and C are A’B’C’, AB’C’, A’BC’, ABC’, A’B’C, AB’C, A’BC, and ABC. In general,
there are 2n minterms for n variables. The set of possible minterms is very easy to generate since they corre-
spond to the sequence of binary numbers:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 201

Chapter Three Volume Two
We can specify any boolean function using a sum (logical OR) of minterms. Given F248=AB+C the
equivalent canonical form is ABC+A’BC+AB’C+A’B’C+ABC’. Algebraically, we can show that these two
are equivalent as follows:

ABC+A’BC+AB’C+A’B’C+ABC’ = BC(A+A’) + B’C(A+A’) + ABC’ By P4
= BC•1 +B’C•1 + ABC’ By Th15
= C(B+B’) + ABC’ By P4
= C + ABC’ By Th15 & Th4
= C + AB By Th11

Obviously, the canonical form is not the optimal form. On the other hand, there is a big advantage to the sum
of minterms canonical form: it is very easy to generate the truth table for a function from this canonical
form. Furthermore, it is also very easy to generate the logic equation from the truth table.

To build the truth table from the canonical form, simply convert each minterm into a binary value by
substituting a “1” for unprimed variables and a “0” for primed variables. Then place a “1” in the correspond-
ing position (specified by the binary minterm value) in the truth table:

1) Convert minterms to binary equivalents:

F248 = CBA + CBA’ + CB’A + CB’A’ + C’BA

= 111 + 110 + 101 + 100 + 011

2) Substitute a one in the truth table for each entry above:

Table 20: Minterms for Three Input Variables

Binary

Equivalent

(CBA)

Minterm

000 A’B’C’

001 AB’C’

010 A’BC’

011 ABC’

100 A’B’C

101 AB’C

110 A’BC

111 ABC
Page 202 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Digital Design
Finally, put zeros in all the entries that you did not fill with ones in the first step above:

Going in the other direction, generating a logic function from a truth table, is almost as easy. First,
locate all the entries in the truth table with a one. In the table above, these are the last five entries. The num-
ber of table entries containing ones determines the number of minterms in the canonical equation. To gener-
ate the individual minterms, substitute A, B, or C for ones and A’, B’, or C’ for zeros in the truth table above.
Then compute the sum of these items. In the example above, F248 contains one for CBA = 111, 110, 101,
100, and 011. Therefore, F248 = CBA + CBA’ + CB’A + CB’A’ + C’AB. The first term, CBA, comes from
the last entry in the table above. C, B, and A all contain ones so we generate the minterm CBA (or ABC, if
you prefer). The second to last entry contains 110 for CBA, so we generate the minterm CBA’. Likewise, 101
produces CB’A; 100 produces CB’A’, and 011 produces C’BA. Of course, the logical OR and logical AND
operations are both commutative, so we can rearrange the terms within the minterms as we please and we
can rearrange the minterms within the sum as we see fit. This process works equally well for any number of
variables. Consider the function F53504 = ABCD + A’BCD + A’B’CD + A’B’C’D. Placing ones in the
appropriate positions in the truth table generates the following:

Table 21: Creating a Truth Table from Minterms, Step One

C B A F = AB+C

0 0 0

0 0 1

0 1 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Table 22: Creating a Truth Table from Minterms, Step Two

C B A F = AB+C

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 203

Chapter Three Volume Two
The remaining elements in this truth table all contain zero.

Perhaps the easiest way to generate the canonical form of a boolean function is to first generate the truth
table for that function and then build the canonical form from the truth table. We’ll use this technique, for
example, when converting between the two canonical forms this chapter presents. However, it is also a sim-
ple matter to generate the sum of minterms form algebraically. By using the distributive law and theorem 15
(A + A’ = 1) makes this task easy. Consider F248 = AB + C. This function contains two terms, AB and C, but
they are not minterms. Minterms contain each of the possible variables in a primed or unprimed form. We
can convert the first term to a sum of minterms as follows:

AB = AB • 1 By Th4
= AB • (C + C’) By Th 15
= ABC + ABC’ By distributive law
= CBA + C’BA By associative law

Similarly, we can convert the second term in F248 to a sum of minterms as follows:

C = C • 1 By Th4
= C • (A + A’) By Th15
= CA + CA’ By distributive law
= CA•1 + CA’•1 By Th4
= CA • (B + B’) + CA’ • (B + B’) By Th15
= CAB + CAB’ + CA’B + CA’B’ By distributive law
= CBA + CBA’ + CB’A + CB’A’ By associative law

Table 23: Creating a Truth Table with Four Variables from Minterms

D C
B A F = ABCD + A’BCD + A’B’CD +

A’B’C’D

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0 1

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0 1

1 1 0 1

1 1 1 0 1

1 1 1 1 1
Page 204 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Digital Design
The last step (rearranging the terms) in these two conversions is optional. To obtain the final canonical form
for F248 we need only sum the results from these two conversions:

F248 = (CBA + C’BA) + (CBA + CBA’ + CB’A + CB’A’)

= CBA + CBA’ + CB’A + CB’A’ + C’BA

Another way to generate a canonical form is to use products of maxterms. A maxterm is the sum (logical
OR) of all input variables, primed or unprimed. For example, consider the following logic function G of
three variables:

G = (A+B+C) • (A’+B+C) • (A+B’+C).

Like the sum of minterms form, there is exactly one product of maxterms for each possible logic func-
tion. Of course, for every product of maxterms there is an equivalent sum of minterms form. In fact, the
function G, above, is equivalent to

F248 = CBA + CBA’ + CB’A + CB’A’ + C’BA = AB +C.

Generating a truth table from the product of maxterms is no more difficult than building it from the sum
of minterms. You use the duality principle to accomplish this. Remember, the duality principle says to swap
AND for OR and zeros for ones (and vice versa). Therefore, to build the truth table, you would first swap
primed and non-primed literals. In G above, this would yield:

G= (A’ + B’ + C’) • (A + B’ + C’) • (A’ + B + C’)

The next step is to swap the logical OR and logical AND operators. This produces

G = A’B’C’ + AB’C’ + A’BC’

Finally, you need to swap all zeros and ones. This means that you store zeros into the truth table for each
of the above entries and then fill in the rest of the truth table with ones. This will place a zero in entries zero,
one, and two in the truth table. Filling the remaining entries with ones produces F248.

You can easily convert between these two canonical forms by generating the truth table for one form
and working backwards from the truth table to produce the other form. For example, consider the function of
two variables, F7 = A + B. The sum of minterms form is F7 = A’B + AB’ + AB. The truth table takes the
form:

Working backwards to get the product of maxterms, we locate all entries that have a zero result. This is
the entry with A and B equal to zero. This gives us the first step of G=A’B’. However, we still need to invert
all the variables to obtain G=AB. By the duality principle we need to swap the logical OR and logical AND
operators obtaining G=A+B. This is the canonical product of maxterms form.

Since working with the product of maxterms is a little messier than working with sums of minterms, this
text will generally use the sum of minterms form. Furthermore, the sum of minterms form is more common
in boolean logic work. However, you will encounter both forms when studying logic design.

Table 24: F7 (OR) Truth Table for Two Variables

F7 A B

0 0 0

0 1 0

1 0 1

1 1 1
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 205

Chapter Three Volume Two
3.6 Simplification of Boolean Functions

Since there are an infinite variety of boolean functions of n variables, but only a finite number of unique
boolean functions of those n variables, you might wonder if there is some method that will simplify a given
boolean function to produce the optimal form. Of course, you can always use algebraic transformations to
produce the optimal form, but using heuristics does not guarantee an optimal transformation. There are,
however, two methods that will reduce a given boolean function to its optimal form: the map method and the
prime implicants method. In this text we will only cover the mapping method, see any text on logic design
for other methods.

Since for any logic function some optimal form must exist, you may wonder why we don’t use the opti-
mal form for the canonical form. There are two reasons. First, there may be several optimal forms. They are
not guaranteed to be unique. Second, it is easy to convert between the canonical and truth table forms.

Using the map method to optimize boolean functions is practical only for functions of two, three, or
four variables. With care, you can use it for functions of five or six variables, but the map method is cumber-
some to use at that point. For more than six variables, attempting map simplifications by hand would not be
wise2.

The first step in using the map method is to build a two-dimensional truth table for the function (see Fig-
ure 3.1)

Figure 3.1 Two, Three, and Four Dimensional Truth Tables

2. However, it’s probably quite reasonable to write a program that uses the map method for seven or more variables.

B'A'

B

A
0 1

0

1 BA'

B'A

BA

C

0

1

BA

00 01 1011

C'B'A' C'B'A C'BA'C'AB

CB'A' CB'A CBA'CAB

Three Variable Truth Table

DC

00

01

BA

00 01 1011

D'C'B'A' D'C'B'A D'C'BA'D'C'AB

D'CB'A' D'CB'A D'CBA'D'CAB

DC'B'A' DC'B'A DC'BA'DC'AB

DCB'A' DCB'A DCBA'DCAB

10

11

Four Variable Truth Table

Two Variable Truth Table
Page 206 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Digital Design
Warning: Take a careful look at these truth tables. They do not use the same forms appearing earlier in
this chapter. In particular, the progression of the values is 00, 01, 11, 10, not 00, 01, 10, 11. This is very
important! If you organize the truth tables in a binary sequence, the mapping optimization method will not
work properly. We will call this a truth map to distinguish it from the standard truth table.

Assuming your boolean function is in canonical form (sum of minterms), insert ones for each of the
truth map entries corresponding to a minterm in the function. Place zeros everywhere else. For example,
consider the function of three variables F=C’B’A + C’BA’ + C’BA + CB’A’ + CB’A + CBA’ + CBA. Figure
3.2 shows the truth map for this function.

Figure 3.2 A Simple Truth Map

The next step is to draw rectangles around rectangular groups of ones. The rectangles you enclose must
have sides whose lengths are powers of two. For functions of three variables, the rectangles can have sides
whose lengths are one, two, and four. The set of rectangles you draw must surround all cells containing ones
in the truth map. The trick is to draw all possible rectangles unless a rectangle would be completely enclosed
within another. Note that the rectangles may overlap if one does not enclose the other. In the truth map in
Figure 3.3 there are three such rectangles (see Figure 3.3)

Figure 3.3 Surrounding Rectangular Groups of Ones in a Truth Map

Each rectangle represents a term in the simplified boolean function. Therefore, the simplified boolean
function will contain only three terms. You build each term using the process of elimination. You eliminate
any variables whose primed and unprimed form both appear within the rectangle. Consider the long skinny
rectangle above that is sitting in the row where C=1. This rectangle contains both A and B in primed and
unprimed form. Therefore, we can eliminate A and B from the term. Since the rectangle sits in the C=1
region, this rectangle represents the single literal C.

Now consider the blue square above. This rectangle includes C, C’, B, B’ and A. Therefore, it represents
the single term A. Likewise, the red square above contains C, C’, A, A’ and B. Therefore, it represents the
single term B.

C

0

1

BA

00 01 11 10

0 1 1 1

1 1 1 1

F=C’B’A + C’BA’ + C’BA + CB’A’ + CB’A + CBA’ + CBA.

C

0

1

BA

00 01 11 10

0 1 1 1

1 1 1 1

Three possible rectangles whose lengths
and widths are powers of two.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 207

Chapter Three Volume Two
The final, optimal, function is the sum (logical OR) of the terms represented by the three squares. There-
fore, F= A + B + C. You do not have to consider the remaining squares containing zeros.

When enclosing groups of ones in the truth map, you must consider the fact that a truth map forms a
torus (i.e., a doughnut shape). The right edge of the map wraps around to the left edge (and vice-versa).
Likewise, the top edge wraps around to the bottom edge. This introduces additional possibilities when sur-
rounding groups of ones in a map. Consider the boolean function F=C’B’A’ + C’BA’ + CB’A’ + CBA’. Fig-
ure 3.4 shows the truth map for this function.

Figure 3.4 Truth Map for F=C’B’A’ + C’BA’ + CB’A’ + CBA’

At first glance, you would think that there are two possible rectangles here as Figure 3.5 shows.

Figure 3.5 First Attempt at Surrounding Rectangles Formed by Ones

However, because the truth map is a continuous object with the right side and left sides connected, we can
form a single, square rectangle, as Figure 3.6 shows.

Figure 3.6 Correct Rectangle for the Function

C
0

1

BA

00 01 11 10

1 0 0 1

1 0 0 1

F=C’'B’A’ + C’BA' + CB’A’ + CBA'.

C

BA
0
0

0
1

1
1

1
0

1 0 0 1

1 0 0 1

C
0

1

BA
00 01 11 10

1 0 0 1

1 0 0 1
Page 208 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Digital Design
So what? Why do we care if we have one rectangle or two in the truth map? The answer is because the
larger the rectangles are, the more terms they will eliminate. The fewer rectangles that we have, the fewer
terms will appear in the final boolean function. For example, the former example with two rectangles gener-
ates a function with two terms. The first rectangle (on the left) eliminates the C variable, leaving A’B’ as its
term. The second rectangle, on the right, also eliminates the C variable, leaving the term BA’. Therefore, this
truth map would produce the equation F=A’B’ + A’B. We know this is not optimal, see Th 13. Now consider
the second truth map above. Here we have a single rectangle so our boolean function will only have a single
term. Obviously this is more optimal than an equation with two terms. Since this rectangle includes both C
and C’ and also B and B’, the only term left is A’. This boolean function, therefore, reduces to F=A’.

There are only two cases that the truth map method cannot handle properly: a truth map that contains all
zeros or a truth map that contains all ones. These two cases correspond to the boolean functions F=0 and
F=1 (that is, the function number is 2n-1), respectively. These functions are easy to generate by inspection of
the truth map.

An important thing you must keep in mind when optimizing boolean functions using the mapping
method is that you always want to pick the largest rectangles whose sides’ lengths are a power of two. You
must do this even for overlapping rectangles (unless one rectangle encloses another). Consider the boolean
function F = C'B'A' + C'BA' + CB'A' + C'AB + CBA' + CBA. This produces the truth map appearing in
Figure 3.7.

Figure 3.7 Truth Map for F = C'B'A' + C'BA' + CB'A' + C'AB + CBA' + CBA

The initial temptation is to create one of the sets of rectangles found in Figure 3.8. However, the correct
mapping appears in Figure 3.9

Figure 3.8 Obvious Choices for Rectangles

C

0

1

BA

00 01 11 10

1 0 1 1

1 0 1 1

C
0

1

BA
00 01 11 10

1 0 1 1

1 0 1 1

C
0

1

BA
00 01 11 10

1 0 1 1

1 0 1 1
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 209

Chapter Three Volume Two
Figure 3.9 Correct Set of Rectangles for F = C'B'A' + C'BA' + CB'A' + C'AB + CBA' + CBA

All three mappings will produce a boolean function with two terms. However, the first two will produce the
expressions F= B + A'B' and F = AB + A'. The third form produces F = B + A'. Obviously, this last form is
more optimal than the other two forms (see theorems 11 and 12).

For functions of three variables, the size of the rectangle determines the number of terms it represents:

• A rectangle enclosing a single square represents a minterm. The associated term will have
three literals (assuming we’re working with functions of three variables).

• A rectangle surrounding two squares containing ones represents a term containing two literals.
• A rectangle surrounding four squares containing ones represents a term containing a single lit-

eral.
• A rectangle surrounding eight squares represents the function F = 1.

Truth maps you create for functions of four variables are even trickier. This is because there are lots of
places rectangles can hide from you along the edges. Figure 3.10 shows some possible places rectangles can
hide.

C
0

1

BA
00 01 11 10

1 0 1 1

1 0 1 1
Page 210 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Digital Design
Figure 3.10 Partial Pattern List for 4x4 Truth Map

This list of patterns doesn’t even begin to cover all of them! For example, these diagrams show none of
the 1x2 rectangles. You must exercise care when working with four variable maps to ensure you select the
largest possible rectangles, especially when overlap occurs. This is particularly important with you have a
rectangle next to an edge of the truth map.

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 211

Chapter Three Volume Two
As with functions of three variables, the size of the rectangle in a four variable truth map controls the
number of terms it represents:

• A rectangle enclosing a single square represents a minterm. The associated term will have four
literals.

• A rectangle surrounding two squares containing ones represents a term containing three liter-
als.

• A rectangle surrounding four squares containing ones represents a term containing two literals.
• A rectangle surrounding eight squares containing ones represents a term containing a single lit-

eral.
• A rectangle surrounding sixteen squares represents the function F=1.

This last example demonstrates an optimization of a function containing four variables. The function is
F = D’C’B’A’ + D’C’B’A + D’C’BA + D’C’BA’ + D’CB’A + D’CBA + DCB’A + DCBA + DC’B’A’ +
DC’BA’, the truth map appears in Figure 3.11.

Figure 3.11 Truth Map for F = D’C’B’A’ + D’C’B’A + D’C’BA + D’C’BA’ + D’CB’A + D’CBA + DCB’A
+ DCBA + DC’B’A’ + DC’BA

Here are two possible sets of maximal rectangles for this function, each producing three terms (see Fig-
ure 3.12). Both functions are equivalent; both are as optimal as you can get3. Either will suffice for our pur-
poses.

Figure 3.12 Two Combinations of Surrounded Values Yielding Three Terms

First, let’s consider the term represented by the rectangle formed by the four corners. This rectangle
contains B, B’, D, and D’; so we can eliminate those terms. The remaining terms contained within these rect-
angles are C’ and A’, so this rectangle represents the term C’A’.

The second rectangle, common to both maps in Figure 3.12, is the rectangle formed by the middle four
squares. This rectangle includes the terms A, B, B’, C, D, and D’. Eliminating B, B’, D, and D’ (since both
primed and unprimed terms exist), we obtain CA as the term for this rectangle.

3. Remember, there is no guarantee that there is a unique optimal solution.

00

01

00 01 1011

10

11

= 1

= 0

BA

DC
Page 212 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Digital Design
The map on the left in Figure 3.12 has a third term represented by the top row. This term includes the
variables A, A’, B, B’, C’ and D’. Since it contains A, A’, B, and B’, we can eliminate these terms. This leaves
the term C’D’. Therefore, the function represented by the map on the left is F=C’A’ + CA + C’D’.

The map on the right in Figure 3.12 has a third term represented by the top/middle four squares. This
rectangle subsumes the variables A, B, B’, C, C’, and D’. We can eliminate B, B’, C, and C’ since both
primed and unprimed versions appear, this leaves the term AD. Therefore, the function represented by the
function on the right is F=C’A’ + CA + AD’.

Since both expressions are equivalent, contain the same number of terms, and the same number of oper-
ators, either form is equivalent. Unless there is another reason for choosing one over the other, you can use
either form.

3.7 What Does This Have To Do With Computers, Anyway?

Although there is a tenuous relationship between boolean functions and boolean expressions in pro-
gramming languages like C or Pascal, it is fair to wonder why we’re spending so much time on this material.
However, the relationship between boolean logic and computer systems is much stronger than it first
appears. There is a one-to-one relationship between boolean functions and electronic circuits. Electrical
engineers who design CPUs and other computer related circuits need to be intimately familiar with this stuff.
Even if you never intend to design your own electronic circuits, understanding this relationship is important
if you want to make the most of any computer system.

3.7.1 Correspondence Between Electronic Circuits and Boolean Functions

There is a one-to-one correspondence between an electrical circuits and boolean functions. For any
boolean function you can design an electronic circuit and vice versa. Since boolean functions only require
the AND, OR, and NOT boolean operators4, we can construct any electronic circuit using these operations
exclusively. The boolean AND, OR, and NOT functions correspond to the following electronic circuits, the
AND, OR, and inverter (NOT) gates (see Figure 3.13).

Figure 3.13 AND, OR, and Inverter (NOT) Gates

One interesting fact is that you only need a single gate type to implement any electronic circuit. This
gate is the NAND gate, shown in Figure 3.14.

Figure 3.14 The NAND Gate

To prove that we can construct any boolean function using only NAND gates, we need only show how to
build an inverter (NOT), an AND gate, and an OR gate from a NAND (since we can create any boolean func-

4. We know this is true because these are the only operators that appear within canonical forms.

A A'
A

B
A and B

A
B

A or B

A

B
not (A and B)
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 213

Chapter Three Volume Two
tion using only AND, NOT, and OR). Building an inverter is easy, just connect the two inputs together (see
Figure 3.15).

Figure 3.15 Inverter Built from a NAND Gate

Once we can build an inverter, building an AND gate is easy – just invert the output of a NAND gate.
After all, NOT (NOT (A AND B)) is equivalent to A AND B (see Figure 3.16). Of course, this takes two
NAND gates to construct a single AND gate, but no one said that circuits constructed only with NAND gates
would be optimal, only that it is possible.

Figure 3.16 Constructing an AND Gate From Two NAND Gates

The remaining gate we need to synthesize is the logical-OR gate. We can easily construct an OR gate
from NAND gates by applying DeMorgan’s theorems.

(A or B)’ = A’ and B’ DeMorgan’s Theorem.
A or B = (A’ and B’)’ Invert both sides of the equation.
A or B = A’ nand B’ Definition of NAND operation.

By applying these transformations, you get the circuit in Figure 3.17.

Figure 3.17 Constructing an OR Gate from NAND Gates

Now you might be wondering why we would even bother with this. After all, why not just use logical
AND, OR, and inverter gates directly? There are two reasons for this. First, NAND gates are generally less
expensive to build than other gates. Second, it is also much easier to build up complex integrated circuits
from the same basic building blocks than it is to construct an integrated circuit using different basic gates.

Note, by the way, that it is possible to construct any logic circuit using only NOR gates5. The correspon-
dence between NAND and NOR logic is orthogonal to the correspondence between the two canonical forms
appearing in this chapter (sum of minterms vs. product of maxterms). While NOR logic is useful for many
circuits, most electronic designs use NAND logic. See the exercises for more examples.

5. NOR is NOT (A OR B).

A A'

A

B
A and B

A

B

A or B
Page 214 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Digital Design
3.7.2 Combinatorial Circuits

A combinatorial circuit is a system containing basic boolean operations (AND, OR, NOT), some inputs,
and a set of outputs. Since each output corresponds to an individual logic function, a combinatorial circuit
often implements several different boolean functions. It is very important that you remember this fact – each
output represents a different boolean function.

A computer’s CPU is built up from various combinatorial circuits. For example, you can implement an
addition circuit using boolean functions. Suppose you have two one-bit numbers, A and B. You can produce
the one-bit sum and the one-bit carry of this addition using the two boolean functions:

S = AB’ + A’B Sum of A and B.
C = AB Carry from addition of A and B.

These two boolean functions implement a half-adder. Electrical engineers call it a half adder because it
adds two bits together but cannot add in a carry from a previous operation. A full adder adds three one-bit
inputs (two bits plus a carry from a previous addition) and produces two outputs: the sum and the carry. The
two logic equations for a full adder are

S = A’B’Cin + A’BCin’ + AB’Cin’ + ABCin
Cout = AB + ACin + BCin

Although these logic equations only produce a single bit result (ignoring the carry), it is easy to construct an
n-bit sum by combining adder circuits (see Figure 3.18). So, as this example clearly illustrates, we can use
logic functions to implement arithmetic and boolean operations.

Figure 3.18 Building an N-Bit Adder Using Half and Full Adders

Another common combinatorial circuit is the seven-segment decoder. This is a combinatorial circuit that
accepts four inputs and determines which of the segments on a seven-segment LED display should be on
(logic one) or off (logic zero). Since a seven segment display contains seven output values (one for each seg-
ment), there will be seven logic functions associated with the display (segment zero through segment six).
See Figure 3.19 for the segment assignments. Figure 3.20 shows the segment assignments for each of the
ten decimal values.

A0
B0

S0
Carry

A1
B1

S1

Carry

A2
B2

S2

•
•
•

Half
Adder

Full
Adder

Full
Adder Carry
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 215

Chapter Three Volume Two
Figure 3.19 Seven Segment Display

Figure 3.20 Seven Segment Values for “0” Through “9”

The four inputs to each of these seven boolean functions are the four bits from a binary number in the
range 0..9. Let D be the H.O. bit of this number and A be the L.O. bit of this number. Each logic function
should produce a one (segment on) for a given input if that particular segment should be illuminated. For
example S4 (segment four) should be on for binary values 0000, 0010, 0110, and 1000. For each value that
illuminates a segment, you will have one minterm in the logic equation:

S4 = D’C’B’A’ + D’C’BA’ + D’CBA’ + DC’B’A’.

S0, as a second example, is on for values zero, two, three, five, six, seven, eight, and nine. Therefore, the
logic function for S0 is

S0 = D’C’B’A’ + D’C’BA’ + D’C’BA + D’CB’A + D’CBA’ + D’CBA + DC’B’A’ + DC’B’A

You can generate the other five logic functions in a similar fashion (see the exercises).

Decoder circuits are among the more important circuits in computer system design. They provide the
ability to recognize (or ‘decode’) a string of bits. One very common use for a decoder is memory expansion.
For example, suppose a system designer wishes to install four (identical) 256 MByte memory modules in a
system to bring the total to one gigabyte of RAM. These 256 MByte memory modules have 28 address lines
assuming each memory modules is eight bits wide (228 x 8 bits is 256 MBytes)6. Unfortunately, if the sys-
tem designer hooked up those four memory modules to the CPU’s address bus they would all respond to the
same addresses on the bus. Pandemonium would result. To correct this problem, we need to select each
memory module when a different set of addresses appear on the address bus. By adding a chip enable line to
each of the memory modules and using a two-input, four-output decoder circuit, we can easily do this. See
Figure 3.21 for the details.

6. Actually, most memory modules are wider than eight bits, so a real 256 MByte memory module will have fewer than 28
address lines, but we will ignore this technicality in this example.

S0

S1 S3S2

S5
S4 S6
Page 216 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Digital Design
Figure 3.21 Adding Four 256 MByte Memory Modules to a System

The two-line to four-line decoder circuit in Figure 3.21 actually incorporates four different logic func-
tions, one function for each of the outputs. Assume the inputs are A and B (A=A28 and B=A29) then the four
output functions have the following (simple) equations:

Q0 = A’ B’

Q1 = A B’

Q2 = A’ B

Q3 = A B

Following standard electronic circuit notation, these equations use “Q” to denote an output (electronic
designers use “Q” for output rather than “O” because “Q” looks somewhat like an “O” and is more easily
differentiated from zero). Also note that most circuit designers use active low logic for decoders and chip
enables. This means that they enable a circuit with a low input value (zero) and disable the circuit with a
high input value (one). Likewise, the output lines of a decoder chip are normally high and go low when the
inputs select a given output line. This means that the equations above really need to be inverted for
real-world examples. We’ll ignore this issue here and use positive (or active high) logic7.

Another big use for decoding circuits is to decode a byte in memory that represents a machine instruc-
tion in order to activate the corresponding circuitry to perform whatever tasks the instruction requires. We’ll
cover this subject in much greater depth in a later chapter, but a simple example at this point will provide
another solid example for using decoders.

Most modern (Von Neumann) computer systems represent machine instructions via values in memory.
To execute an instruction the CPU fetches a value from memory, decodes that value, and the does the appro-
priate activity the instruction specifies. Obviously, the CPU uses decoding circuitry to decode the instruc-
tion. To see how this is done, let’s create a very simple CPU with a very simple instruction set. Figure 3.22
provides the instruction format (that is, it specifies all the numeric codes) for our simple CPU.

7. Electronic circuits often use active low logic because the circuits that employ them typically require fewer transistors to
implement.

Address Lines
A0..A27

A28
A29

Chip Select Lines

Two to Four
Decoder
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 217

Chapter Three Volume Two
Figure 3.22 Instruction (opcode) Format for a Very Simple CPU

To determine the eight-bit operation code (opcode) for a given instruction, the first thing you do is
choose the instruction you want to encode. Let’s pick “MOV(EAX, EBX);” as our simple example. To
convert this instruction to its numeric equivalent we must first look up the value for MOV in the iii table
above; the corresponding value is 000. Therefore, we must substitute 000 for iii in the opcode byte.

Second, we consider our source operand. The source operand is EAX, whose encoding in the source
operand table (ss & dd) is 00. Therefore, we substitute 00 for ss in the instruction opcode.

Next, we need to convert the destination operand to its numeric equivalent. Once again, we look up the
value for this operand in the ss & dd table. The destination operand is EBX and it’s value is 01. So we sub-
stitute 01 for dd in our opcode byte. Assembling these three fields into the opcode byte (a packed data type),
we obtain the following bit value: %00000001. Therefore, the numeric value $1 is the value for the
“MOV(EAX, EBX);” instruction (see Figure 3.23).

Figure 3.23 Encoding the MOV(EAX, EBX); Instruction

0 i i i s s d d

iii

000 = MOV
001 = ADD
010 = SUB
011 = MUL
100 = DIV
101 = AND
110 = OR
111 = XOR

ss & dd

00 = EAX
01 = EBX
10 = ECX
11 = EDX

Instruction (opcode) Format:

7 6 5 4 3 2 1 0Bit:

0 0 0 0 0 0 0 1

iii

000 = MOV
 .
 .
 .

ss & dd

00 = EAX
01 = EBX
10 = ECX
11 = EDX
Page 218 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Digital Design
As another example, consider the “AND(EDX, ECX);” instruction. For this instruction the iii field is
%101, the ss field is %11, and the dd field is %10. This yields the opcode %01011110 or $5E. You may eas-
ily create other opcodes for our simple instruction set using this same technique.

Warning: please do not come to the conclusion that these encodings apply to the 80x86
instruction set. The encodings in this examples are highly simplified in order to demon-
strate instruction decoding. They do not correspond to any real-life CPU, and they espe-
cially don’t apply to the x86 family.

In these past few examples we were actually encoding the instructions. Of course, the real purpose of
this exercise is to discover how the CPU can use a decoder circuit to decode these instructions and execute
them at run time. A typical set of decoder circuits for this might look like that in Figure 3.24:

Figure 3.24 Decoding Simple Machine Instructions

Notice how this circuit uses three separate decoders to decode the individual fields of the opcode. This
is much less complex than creating a seven-line to 128-line decoder to decode each individual opcode. Of
course, all that the circuit above will do is tell you which instruction and what operands a given opcode spec-

0 0 0 0 0 0 0 1

3 line
to
8 line
decoder

Circuitry to do a MOV
Circuitry to do an ADD
Circuitry to do a SUB
Circuitry to do a MUL
Circuitry to do a DIV
Circuitry to do an AND
Circuitry to do an OR
Circuitry to do an XOR

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

A
B
C

2 line
to
4 line
decoder

A
B

Q0
Q1
Q2
Q3

EAX
EBX
ECX
EDX

See Note

Note: the circuitry attached to the destination register bits is identical
to the circuitry for the source register bits.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 219

Chapter Three Volume Two
ifies. To actually execute this instruction you must supply additional circuitry to select the source and desti-
nation operands from an array of registers and act accordingly upon those operands. Such circuitry is
beyond the scope of this chapter, so we’ll save the juicy details for later.

Combinatorial circuits are the basis for many components of a basic computer system. You can con-
struct circuits for addition, subtraction, comparison, multiplication, division, and many other operations
using combinatorial logic.

3.7.3 Sequential and Clocked Logic

One major problem with combinatorial logic is that it is memoryless. In theory, all logic function out-
puts depend only on the current inputs. Any change in the input values is immediately reflected in the out-
puts8. Unfortunately, computers need the ability to remember the results of past computations. This is the
domain of sequential or clocked logic.

A memory cell is an electronic circuit that remembers an input value after the removal of that input
value. The most basic memory unit is the set/reset flip-flop. You can construct an SR flip-flop using two
NAND gates, as shown in Figure 3.25.

Figure 3.25 Set/Reset Flip Flop Constructed from NAND Gates

The S and R inputs are normally high. If you temporarily set the S input to zero and then bring it back to
one (toggle the S input), this forces the Q output to one. Likewise, if you toggle the R input from one to zero
back to one, this sets the Q output to zero. The Q’ input is generally the inverse of the Q output.

Note that if both S and R are one, then the Q output depends upon Q. That is, whatever Q happens to be,
the top NAND gate continues to output that value. If Q was originally one, then there are two ones as inputs
to the bottom flip-flop (Q nand R). This produces an output of zero (Q’). Therefore, the two inputs to the top
NAND gate are zero and one. This produces the value one as an output (matching the original value for Q).

If the original value for Q was zero, then the inputs to the bottom NAND gate are Q=0 and R=1. There-
fore, the output of this NAND gate is one. The inputs to the top NAND gate, therefore, are S=1 and Q’=1.
This produces a zero output, the original value of Q.

Suppose Q is zero, S is zero and R is one. This sets the two inputs to the top flip-flop to one and zero,
forcing the output (Q) to one. Returning S to the high state does not change the output at all. You can obtain
this same result if Q is one, S is zero, and R is one. Again, this produces an output value of one. This value
remains one even when S switches from zero to one. Therefore, toggling the S input from one to zero and
then back to one produces a one on the output (i.e., sets the flip-flop). The same idea applies to the R input,
except it forces the Q output to zero rather than to one.

There is one catch to this circuit. It does not operate properly if you set both the S and R inputs to zero
simultaneously. This forces both the Q and Q’ outputs to one (which is logically inconsistent). Whichever

8. In practice, there is a short propagation delay between a change in the inputs and the corresponding outputs in any elec-
tronic implementation of a boolean function.

Q

Q'

S

R

Page 220 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Digital Design
input remains zero the longest determines the final state of the flip-flop. A flip-flop operating in this mode is
said to be unstable.

The only problem with the S/R flip-flop is that you must use separate inputs to remember a zero or a one
value. A memory cell would be more valuable to us if we could specify the data value to remember on one
input and provide a clock input to latch the input value. This type of flip-flop, the D flip-flop (for data) uses
the circuit in Figure 3.26.

Figure 3.26 Implementing a D flip-flop with NAND Gates

Assuming you fix the Q and Q’ outputs to either 0/1 or 1/0, sending a clock pulse that goes from zero to one
back to zero will copy the D input to the Q output. It will also copy D’ to Q’. The exercises at the end of this
topic section will expect you to describe this operation in detail, so study this diagram carefully.

Although remembering a single bit is often important, in most computer systems you will want to
remember a group of bits. You can remember a sequence of bits by combining several D flip-flops in parallel.
Concatenating flip-flops to store an n-bit value forms a register. The electronic schematic in Figure 3.27
shows how to build an eight-bit register from a set of D flip-flops.

Figure 3.27 An Eight-bit Register Implemented with Eight D Flip-flops

Note that the eight D flip-flops use a common clock line. This diagram does not show the Q’ outputs on the
flip-flops since they are rarely required in a register.

D flip-flops are useful for building many sequential circuits above and beyond simple registers. For
example, you can build a shift register that shifts the bits one position to the left on each clock pulse. A
four-bit shift register appears in Figure 3.28.

Clk

Data

Q

Q'

D0

Q0

D1 D2

Q2

D3

Q3

D4

Q4

D5

Q5

D6 D7

Q7

Clk

Q1 Q6
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 221

Chapter Three Volume Two
Figure 3.28 A Four-bit Shift Register Built from D Flip-flops

You can even build a counter, that counts the number of times the clock toggles from one to zero and
back to one using flip-flops. The circuit in Figure 3.29 implements a four bit counter using D flip-flops.

Figure 3.29 Four-bit Counter Built from D Flip-flops

Surprisingly, you can build an entire CPU with combinatorial circuits and only a few additional sequen-
tial circuits beyond these. For example, you can build a simple state machine known as a sequencer by com-
bining a counter and a decoder as shown in Figure 3.30. For each cycle of the clock this sequencer activates
one of its output lines. Those lines, in turn, may control other circuitry. By “firing” these circuits on each of
the 16 output lines of the decoder, we can control the order in which these 16 different circuits accomplish
their tasks. This is a fundamental need in a CPU since we often need to control the sequence of various
operations (for example, it wouldn’t be a good thing if the “ADD(EAX, EBX);” instruction stored the result
into EBX before fetching the source operand from EAX (or EBX). A simple sequencer such as this one can
tell the CPU when to fetch the first operand, when to fetch the second operand, when to add them together,
and when to store the result away. But we’re getting a little ahead of ourselves, we’ll discuss this in greater
detail in the next chapter.

Q0 Q1 Q2 Q3

Clk
Data In

D D D D

Q'

Clk Clk Clk Clk

Q Q Q Q

Clk

D Clk D Clk D Clk
Q1' Q2' Q3'

D Clk

Q0'

Q0' Q1' Q2' Q3'
Page 222 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Digital Design
Figure 3.30 A Simple 16-State Sequencer

3.8 Okay, What Does It Have To Do With Programming, Then?

Once you have registers, counters, and shift registers, you can build state machines. The implementation
of an algorithm in hardware using state machines is well beyond the scope of this text. However, one impor-
tant point must be made with respect to such circuitry – any algorithm you can implement in software you
can also implement directly in hardware. This suggests that boolean logic is the basis for computation on all
modern computer systems. Any program you can write, you can specify as a sequence of boolean equations.

Of course, it is much easier to specify a solution to a programming problem using languages like Pascal,
C, or even assembly language than it is to specify the solution using boolean equations. Therefore, it is
unlikely that you would ever implement an entire program using a set of state machines and other logic cir-
cuitry. Nevertheless, there are times when a hardware implementation is better. A hardware solution can be
one, two, three, or more orders of magnitude faster than an equivalent software solution. Therefore, some
time critical operations may require a hardware solution.

A more interesting fact is that the converse of the above statement is also true. Not only can you imple-
ment all software functions in hardware, but it is also possible to implement all hardware functions in soft-
ware. This is an important revelation because many operations you would normally implement in hardware
are much cheaper to implement using software on a microprocessor. Indeed, this is a primary use of assem-
bly language in modern systems – to inexpensively replace a complex electronic circuit. It is often possible
to replace many tens or hundreds of dollars of electronic components with a single $5 microcomputer chip.
The whole field of embedded systems deals with this very problem. Embedded systems are computer sys-
tems embedded in other products. For example, most microwave ovens, TV sets, video games, CD players,
and other consumer devices contain one or more complete computer systems whose sole purpose is to
replace a complex hardware design. Engineers use computers for this purpose because they are less expen-
sive and easier to design with than traditional electronic circuitry.

You can easily design software that reads switches (input variables) and turns on motors, LEDs or
lights, locks or unlocks a door, etc. (output functions). To write such software, you will need an understand-
ing of boolean functions and how to implement such functions in software.

Of course, there is one other reason for studying boolean functions, even if you never intend to write
software intended for an embedded system or write software that manipulates real-world devices. Many high
level languages process boolean expressions (e.g., those expressions that control an IF statement or WHILE
loop). By applying transformations like DeMorgan’s theorems or a mapping optimization it is often possible

Clk

Q2

Four-bit
Counter

Q0
Q1

Q3
C

A
B

D

Q2

Q0
Q1

Q3
.
.
.

Q14
Q15

4-line
to
16-line
Decoder

State 0

State 1

State 2

State 3

State 14

State 15
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 223

Chapter Three Volume Two
to improve the performance of high level language code. Therefore, studying boolean functions is important
even if you never intend to design an electronic circuit. It can help you write better code in a traditional pro-
gramming language.

For example, suppose you have the following statement in Pascal:

if ((x=y) and (a <> b)) or ((x=y) and (c <= d)) then SomeStmt;

You can use the distributive law to simplify this to:

if ((x=y) and ((a <> b) or (c <= d)) then SomeStmt;

Likewise, we can use DeMorgan’s theorem to reduce

while (not((a=b) and (c=d)) do Something;

to

while (a <> b) or (c <> d) do Something;

So as you can see, understanding a little boolean algebra can actually help you write better software.

3.9 Putting It All Together

A good understanding of boolean algebra and digital design is absolutely necessary for anyone who
wants to understand the internal operation of a CPU. As an added bonus, programmers who understand dig-
ital design can write better assembly language (and high level language) programs. This chapter provides a
basic introduction to boolean algebra and digital circuit design. Although a detailed knowledge of this mate-
rial isn’t necessary if you simply want to write assembly language programs, this knowledge will help
explain why Intel chose to implement instructions in certain ways; questions that will undoubtedly arise as
we begin to look at the low-level implementation of the CPU.

This chapter is not, by any means, a complete treatment of this subject. If you’re interested in learning
more about boolean algebra and digital circuit design, there are dozens and dozens of texts on this subject
available. Since this is a text on assembly language programming, we cannot afford to spend additional time
on this subject; please see one of these other texts for more information.
Page 224 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
CPU Architecture Chapter Four

4.1 Chapter Overview

This chapter discusses history of the 80x86 CPU family and the major improvements occuring along the
line. The historical background will help you better understand the design compromises they made as well
as understand the legacy issues surrounding the CPU’s design. This chapter also discusses the major
advances in computer architecture that Intel employed while improving the x861.

4.2 The History of the 80x86 CPU Family

Intel developed and delivered the first commercially viable microprocessor way back in the early
1970’s: the 4004 and 4040 devices. These four-bit microprocessors, intended for use in calculators, had very
little power. Nevertheless, they demonstrated the future potential of the microprocessor – an entire CPU on
a single piece of silicon2. Intel rapidly followed their four-bit offerings with their 8008 and 8080 eight-bit
CPUs. A small outfit in Santa Fe, New Mexico, incorporated the 8080 CPU into a box they called the Altair
8800. Although this was not the world’s first "personal computer" (there were some limited distribution
machines built around the 8008 prior to this), the Altair was the device that sparked the imaginations of hob-
byists the world over and the personal computer revolution was born.

Intel soon had competition from Motorola, MOS Technology, and an upstart company formed by dis-
grunteled Intel employees, Zilog. To compete, Intel produced the 8085 microprocessor. To the software
engineer, the 8085 was essentially the same as the 8080. However, the 8085 had lots of hardware improve-
ments that made it easier to design into a circuit. Unfortunately, from a software perspective the other man-
ufacturer’s offerings were better. Motorola’s 6800 series was easier to program, MOS Technologies’ 65xx
family was easier to program and very inexpensive, and Zilog’s Z80 chip was upwards compatible with the
8080 with lots of additional instructions and other features. By 1978 most personal computers were using
the 6502 or Z80 chips, not the Intel offerings.

Sometime between 1976 and 1978 Intel decided that they needed to leap-frog the competition and pro-
duce a 16-bit microprocessor that offered substantially more power than their competitor’s eight-bit offer-
ings. This initiative led to the design of the 8086 microprocessor. The 8086 microprocessor was not the
world’s first (there were some oddball 16-bit microprocessors prior to this point) but it was certainly the
highest performance single-chip 16-bit microprocessor when it was first introduced.

During the design timeframe of the 8086 memory was very expensive. Sixteen Kilobytes of RAM was
selling above $200 at the time. One problem with a 16-bit CPU is that programs tend to consume more
memory than their counterparts on an eight-bit CPU. Intel, ever cogniscent of the fact that designers would
reject their CPU if the total system cost was too high, made a special effort to design an instruction set that
had a high memory density (that is, packed as many instructions into as little RAM as possible). Intel
achieved their design goal and programs written for the 8086 were comparable in size to code running on
eight-bit microprocessors. However, those design decisions still haunt us today as you’ll soon see.

At the time Intel designed the 8086 CPU the average lifetime of a CPU was only a couple of years.
Their experiences with the 4004, 4040, 8008, 8080, and 8085 taught them that designers would quickly ditch
the old technology in favor of the new technology as long as the new stuff was radically better. So Intel
designed the 8086 assuming that whatever compromises they made in order to achieve a high instruction
density would be fixed in newer chips. Based on their experience, this was a reasonable assumption.

Intel’s competitors were not standing still. Zilog created their own 16-bit processor that they called the
Z8000, Motorola created the 68000, their own 16-bit processor, and National Semicondutor introduced the

1. Note that Intel wasn’t the inventor of most of these new technological advances. They simply duplicated research long
since commercially employed by mainframe designers.
2. Prior to this point, commerical computer systems used multiple semiconductor devices to implement the CPU.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 225

Chapter Four Volume Two
16032 device (later to be renamed the 32016). The designers of these chips had different design goals than
Intel. Primarily, they were more interested in providing a reasonable instruction set for programmers even if
their code density wasn’t anywhere near as high as the 8086. The Motorola and National offers even pro-
vided 32-bit integer registers, making programming the chips even easier. All in all, these chips were much
better (from a software development standpoint) than the Intel chip.

Intel wasn’t resting on its laurels with the 8086. Immediately after the release of the 8086 they created
an eight-bit version, the 8088. The purpose of this chip was to reduce system cost (since a minimal system
could get by with half the memory chips and cheaper peripherals since the 8088 had an eight-bit data bus).
In the very early 1980’s, Intel also began work on their intended successor to the 8086 – the iAPX432 CPU.
Intel fully expected the 8086 and 8088 to die away and that system designers who were creating general pur-
pose computer systems would choose the ’432 chip instead.

Then a major event occurred that would forever change history: in 1980 a small group at IBM got the
go-ahead to create a "personal computer" along the likes of the Apple II and TRS-80 computers (the most
popular PCs at the time). IBM’s engineers probably evaluated lots of different CPUs and system designs.
Ultimately, they settled on the 8088 chip. Most likely they chose this chip because they could create a mini-
mal system with only 16 Kilobytes of RAM and a set of cheap eight-bit peripheral devices. So Intel’s design
goals of creating CPUs that worked well in low-cost systems landed them a very big "design win" from
IBM.

Intel was still hard at work on the (ill-fated) iAPX432 project, but a funny thing happened – IBM PCs
started selling far better than anyone had ever dreamed. As the popularity of the IBM PCs increased (and as
people began "cloning" the PC), lots of software developers began writing software for the 8088 (and 8086)
CPU, mostly in assembly language. In the meantime, Intel was pushing their iAPX432 with the Ada pro-
gramming language (which was supposed to be the next big thing after Pascal, a popular language at the
time). Unfortunately for Intel, no one was interested in the ’432. Their PC software, written mostly in
assembly language wouldn’t run on the ’432 and the ’432 was notoriously slow. It took a while, but the
iAPX432 project eventually died off completely and remains a black spot on Intel’s record to this day.

Intel wasn’t sitting pretty on the 8086 and 8088 CPUs, however. In the late 1970’s and early 1980’s they
developed the 80186 and 80188 CPUs. These CPUs, unlike their previous CPU offerings, were fully
upwards compatible with the 8086 and 8088 CPUs. In the past, whenever Intel produced a new CPU it did
not necessarily run the programs written for the previous processors. For example, the 8086 did not run
8080 software and the 8080 did not run 4040 software. Intel, recognizing that there was a tremendous
investment in 8086 software, decided to create an upgrade to the 8086 that was superior (both in terms of
hardware capability and with respect to the software it would execute). Although the 80186 did not find its
way into many PCs, it was a very popular chip in embedded applications (i.e., non-computer devices that use
a CPU to control their functions). Indeed, variants of the 80186 are in common use even today.

The unexpected popularity of the IBM PC created a problem for Intel. This popularity obliterated the
assumption that designers would be willing to switch to a better chip when such a chip arrived, even if it
meant rewriting their software. Unfortunately, IBM and tens of thousands of software developers weren’t
willing to do this to make life easy for Intel. They wanted to stick with the 8086 software they’d written but
they also wanted something a little better than the 8086. If they were going to be forced into jumping ship to
a new CPU, the Motorola, Zilog, and National offerings were starting to look pretty good. So Intel did
something that saved their bacon and has infuriated computer architects ever since: they started creating
upwards compatible CPUs that continued to execute programs written for previous members of their grow-
ing CPU family while adding new features.

As noted earlier, memory was very expensive when Intel first designed the 8086 CPU. At that time,
computer systems with a megabyte of memory usually cost megabucks. Intel was expecting a typical com-
puter system employing the 8086 to have somewhere between 4 Kilobytes and 64 Kilobytes of memory. So
when they designed in a one megabyte limitation, they figured no one would ever install that much memory
in a system. Of course, by 1983 people were still using 8086 and 8088 CPUs in their systems and memory
prices had dropped to the point where it was very common to install 640 Kilobytes of memory on a PC (the
IBM PC design effectively limited the amount of RAM to 640 Kilobytes even though the 8086 was capable
of addressing one megabyte). By this time software developers were starting to write more sophisticated
programs and users were starting to use these programs in more sophisticated ways. The bottom line was
that everyone was bumping up against the one megabyte limit of the 8086. Despite the investment in exist-
Page 226 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
ing software, Intel was about to lose their cash cow if they didn’t do something about the memory addressing
limitations of their 8086 family (the 68000 and 32016 CPUs could address up to 16 Megbytes at the time
and many system designers [e.g., Apple] were defecting to these other chips). So Intel introduced the 80286
which was a big improvement over the previous CPUs. The 80286 added lots of new instructions to make
programming a whole lot easier and they added a new "protected" mode of operation that allowed access to
as much as 16 megabytes of memory. They also improved the internal operation of the CPU and bumped up
the clock frequency so that the 80286 ran about 10 times faster than the 8088 in IBM PC systems.

IBM introduced the 80286 in their IBM PC/AT (AT = "advanced technology"). This change proved
enourmously popular. PC/AT clones based on the 80286 started appearing everywhere and Intel’s financial
future was assured.

Realizing that the 80x86 (x = "", "1", or "2") family was a big money maker, Intel immediately began
the process of designing new chips that continued to execute the old code while improving performance and
adding new features. Intel was still playing catch-up with their competitors in the CPU arena with respect to
features, but they were definitely the king of the hill with respect to CPUs installed in PCs. One significant
difference between Intel’s chips and many of their competitors was that their competitors (noteably Motor-
ola and National) had a 32-bit internal architecture while the 80x86 family was stuck at 16-bits. Again, con-
cerned that people would eventually switch to the 32-bit devices their competitors offered, Intel upgraded
the 80x86 family to 32 bits by adding the 80386 to the product line.

The 80386 was truely a remarkable chip. It maintained almost complete compatibility with the previous
16-bit CPUs while fixing most of the real complaints people had with those older chips. In addition to sup-
porting 32-bit computing, the 80386 also bumped up the maximum addressablility to four gigabytes as well
as solving some problems with the "segmented" organization of the previous chips (a big complaint by soft-
ware developers at the time). The 80386 also represented the most radical change to ever occur in the 80x86
family. Intel more than doubled the total number of instructions, added new memory management facilities,
added hardware debugging support for software, and introduced many other features. Continuing the trend
they set with the 80286, the 80386 executed instructions faster than previous generation chips, even when
running at the same clock speed plus the new chip ran at a higher clock speed than the previous generation
chips. Therefore, it ran existing 8088 and 80286 programs faster than on these older chips. Unfortunately,
while people adopted the new chip for its higher performance, they didn’t write new software to take advan-
tage of the chip’s new features. But more on that in a moment.

Although the 80386 represented the most radical change in the 80x86 architecture from the program-
mer’s view, Intel wasn’t done wringing all the performance out of the x86 family. By the time the 80386
appeared, computer architects were making a big noise about the so-called RISC (Reduced Instruction Set
Computer) CPUs. While there were several advantages to these new RISC chips, a important advantage of
these chips is that they purported to execute one instruction every clock cycle. The 80386 instructions
required a wildly varying number of cycles to execute ranging from a few cycles per instruction to well over
a hundred. Although comparing RISC processors directly with the 80386 was dangerous (because many
80386 instructions actually did the work of two or more RISC instructions), there was a general perception
that, at the same clock speed, the 80386 was slower since it executed fewer instructions in a given amount of
time.

The 80486 CPU introduced two major advances in the x86 design. First, the 80486 integrated the float-
ing point unit (or FPU) directly onto the CPU die. Prior to this point Intel supplied a separate, external, chip
to provide floating point calculations (these were the 8087, 80287, and 80387 devices). By incorporating the
FPU with the CPU, Intel was able to speed up floating point operations and provide this capability at a lower
cost (at least on systems that required floating point arithmetic). The second major architectural advance
was the use of pipelined instruction execution. This feature (which we will discuss in detail a little later in
this chapter) allowed Intel to overlap the execution of two or more instructions. The end result of pipelining
is that they effectively reduced the number of cycles each instruction required for execution. With pipelin-
ing, many of the simpler instructions had an aggregate throughput of one instruction per clock cycle (under
ideal conditions) so the 80486 was able to compete with RISC chips in terms of clocks per instruction cycle.

While Intel was busy adding pipelining to their x86 family, the companies building RISC CPUs weren’t
standing still. To create ever faster and faster CPU offerings, RISC designers began creating superscalar
CPUs that could actually execute more than one instruction per clock cycle. Once again, Intel’s CPUs were
perceived as following the leaders in terms of CPU performance. Another problem with Intel’s CPU is that
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 227

Chapter Four Volume Two
the integrated FPU, though faster than the earlier models, was significantly slower than the FPUs on the
RISC chips. As a result, those designing high-end engineering workstations (that typically require good
floating point hardware support) began using the RISC chips because they were faster than Intel’s offerings.

From the programmer’s perspective, there was very little difference between an 80386 with an 80387
FPU and an 80486 CPU. There were only a handful of new instructions (most of which had very little utility
in standard applications) and not much in the way of other architectural features that software could use.
The 80486, from the software engineer’s point of view, was just a really fast 80386/80387 combination.

So Intel went back to their CAD3 tools and began work on their next CPU. This new CPU featured a
superscalar design with vastly improved floating point performance. Finally, Intel was closing in on the per-
formance of the RISC chips. Like the 80486 before it, this new CPU added only a small number of new
instructions and most of those were intended for use by operating systems, not application software.

Intel did not designate this new chip the 80586. Instead, they called it the Pentium™ Processor4. The
reason they discontinued referring to processors by number and started naming them was because of confu-
sion in the marketplace. Intel was not the only company producing x86 compatible CPUs. AMD, Cyrix,
and a host of others were also building and selling these chips in direct competition with Intel. Until the
80486 came along, the internal design of the CPUs were relatively simple and even small companies could
faithfully reproduce the functionality of Intel’s CPUs. The 80486 was a different story altogether. This chip
was quite complex and taxed the design capabilities of the smaller companies. Some companies, like AMD,
actually licensed Intel’s design and they were able to produce chips that were compatible with Intel’s (since
they were, effectively, Intel’s chips). Other companies attempted to create their own version of the 80486
and fell short of the goal. Perhaps they didn’t integrate an FPU or the new instructions on the 80486. Many
didn’t support pipelining. Some chips lacked other features found on the 80486. In fact, most of the
(non-Intel) chips were really 80386 devices with some very slight improvements. Nevertheless, they called
these chips 80486 CPUs.

This created massive confusion in the marketplace. Prior to this, if you’d purchased a computer with an
80386 chip you knew the capabilities of the CPU. All 80386 chips were equivalent. However, when the
80486 came along and you purchased a computer system with an 80486, you didn’t know if you were get-
ting an actual 80486 or a remarked 80386 CPU. To counter this, Intel began their enormously successful
"Intel Inside" campaign to let people know that there was a difference between Intel CPUs and CPUs from
other vendors. This marketing campaign was so successful that people began specifying Intel CPUs even
though some other vendor’s chips (i.e., AMD) were completely compatible.

Not wanting to repeat this problem with the 80586 generation, Intel ditched the numeric designation of
their chips. They created the term "Pentium Processor" to describe their new CPU so they could trademark
the name and prevent other manufacturers from using the same designation for their chip. Initially, of
course, savvy computer users griped about Intel’s strong-arm tactics but the average user benefited quite a
bit from Intel’s marketing strategy. Other manufacturers release their own 80586 chips (some even used the
"586" designation), but they couldn’t use the Pentium Processor name on their parts so when someone pur-
chased a system with a Pentium in it, they knew it was going to have all the capabilities of Intel’s chip since
it had to be Intel’s chip. This was a good thing because most of the other ’586 class chips that people pro-
duced at that time were not as powerful as the Pentium.

The Pentium cemented Intel’s position as champ of the personal computer. It had near RISC perfor-
mance and ran tons of existing software. Only the Apple Macintosh and high-end UNIX workstations and
servers went the RISC route. Together, these other machines comprised less than 10% of the total desktop
computer market.

Intel still was not satisfied. They wanted to control the server market as well. So they developed the
Pentium Pro CPU. The Pentium Pro had a couple of features that made it ideal for servers. Intel improved
the 32-bit performance of the CPU (at the expense of its 16-bit performance), they added better support for
multiprocessing to allow multiple CPUs in a system (high-end servers usually have two or more processors),
and they added a handful of new instructions to improve the performance of certain instruction sequences on
the pipelined architecture. Unfortunately, most application software written at the time of the Pentium Pro’s

3. Computer aided design.
4. Pentium Processor is a registered trademark of Intel Corporation. For legal reasons Intel could not trademark the name
Pentium by itself, hence the full name of the CPU is the "Pentium Processor".
Page 228 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
release was 16-bit software which actually ran slower on the Pentium Pro than it did on a Pentium at equiva-
lent clock frequencies. So although the Pentium Pro did wind up in a few server machines, it was never as
popular as the other chips in the Intel line.

The Pentium Pro had another big strike against it: shortly after the introduction of the Pentium Pro,
Intel’s engineers introduced an upgrade to the standard Pentium chip, the MMX (multimedia extension)
instruction set. These new instructions (nearly 60 in all) gave the Pentium additional power to handle com-
puter video and audio applications. These extensions became popular overnight, putting the last nail in the
Pentium Pro’s coffin. The Pentium Pro was slower than the standard Pentium chip and slower than high-end
RISC chips, so it didn’t see much use.

Intel corrected the 16-bit performance in the Pentium Pro, added the MMX extensions and called the
result the Pentium II5. The Pentium II demonstrated an interesting point. Computers had reached a point
where they were powerful enough for most people’s everyday activities. Prior to the introduction of the Pen-
tium II, Intel (and most industry pundits) had assumed that people would always want more power out of
their computer systems. Even if they didn’t need the machines to run faster, surely the software developers
would write larger (and slower) systems requiring more and more CPU power. The Pentium II proved this
idea wrong. The average user needed email, word processing, Internet access, multimedia support, simple
graphics editing capabilities, and a spreadsheet now and then. Most of these applications, at least as home
users employed them, were fast enough on existing CPUs. The applications that were slow (e.g., Internet
access) were generally beyond the control of the CPU (i.e., the modem was the bottleneck not the CPU). As
a result, when Intel introduced their pricey Pentium II CPUs, they discovered that system manufacturers
started buying other people’s x86 chips because they were far less expensive and quite suitable for their cus-
tomer’s applications. This nearly stunned Intel since it contradicted their experience up to that point.

Realizing that the competition was capturing the low-end market and stealing sales away, Intel devised a
low-cost (lower performance) version of the Pentium II that they named Celeron6. The initial Celerons con-
sisted of a Pentium II CPU without the on-board level two cache. Without the cache, the chip ran only a lit-
tle bit better than half the speed of the Pentium II part. Nevertheless, the performance was comparable to
other low-cost parts so Intel’s fortunes improved once more.

While designing the low-end Celeron, Intel had not lost sight of the fact that they wanted to capture a
chunk of the high-end workstation and server market as well. So they created a third version of the Pentium
II, the Xeon Processor with improved cache and the capability of multiprocessor more than two CPUs. The
Pentium II supports a two CPU multiprocessor system but it isn’t easy to expand it beyond this number; the
Xeon processor corrected this limitation. With the introduction of the Xeon processor (plus special versions
of Unix and Windows NT), Intel finally started to make some serious inroads into the server and high-end
workstation markets.

You can probably imagine what followed the Pentium II. Yep, the Pentium III. The Pentium III intro-
duced the SIMD (pronounced SIM-DEE) extensions to the instruction set. These new instructions provided
high performance floating point operations for certain types of computations that allow the Pentium III to
compete with high-end RISC CPUs. The Pentium III also introduced another handful of integer instructions
to aid certain applications.

With the introduction of the Pentium III, nearly all serious claims about RISC chips offering better per-
formance were fading away. In fact, for most applications, the Intel chips were actually faster than the RISC
chips available at the time. As this is being written, Intel was just introducing the Pentium IV chip and was
slating it to run at 1.4 GHz, a much higher clock frequency than its RISC contemporaries. One would think
that Intel would soon own it all. Surely by the time of the Pentium V, the RISC competition wouldn’t be a
factor anymore.

There is one problem with this theory: even Intel is admiting that they’ve pushed the x86 architecture
about as far as they can. For nearly 20 years, computer architects have blasted Intel’s architecture as being
gross and bloated having to support code written for the 8086 processor way back in 1978. Indeed, Intel’s
design decisions (like high instruction density) that seemed so important in 1978 are holding back the CPU
today. So-called "clean" designs, that don’t have to support legacy applications, allow CPU designers to cre-

5. Interestingly enough, by the time the Pentium II appeared, the 16-bit efficiency was no longer a facter since most software
was written as 32-bit code.
6. The term "Celeron Processor" is also an Intel trademark.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 229

Chapter Four Volume Two
ate high-performance CPUs with far less effort than Intel’s. Worse, those decisions Intel made in the
1976-1978 time frame are beginning to catch up with them and will eventually stall further development of
the CPU. Computer architects have been warning everyone about this problem for twenty years; it is a tes-
tament to Intel’s design effort (and willingness to put money into R&D) that they’ve taken the CPU as far as
they have.

The biggest problem on the horizon is that most RISC manufacturers are now extending their architec-
tures to 64-bits. This has two important impacts on computer systems. First, arithmetic calculations will be
somewhat faster as will many internal operations and second, the CPUs will be able to directly address more
than four gigabytes of main memory. This last factor is probably the most important for server and worksta-
tion systems. Already, high-end servers have more than four gigabytes installed. In the future, the ability to
address more than four gigabytes of physical RAM will become essential for servers and high-end worksta-
tions. As the price of a gigabyte or more of memory drops below $100, you’ll see low-end personal comput-
ers with more than four gigabytes installed. To effectively handle this kind of memory, Intel will need a
64-bit processor to compete with the RISC chips.

Perhaps Intel has seen the light and decided it’s time to give up on the x86 architecture. Towards the
middle to end of the 1990’s Intel announced that they were going to create a partnership with Hewlet-Pack-
ard to create a new 64-bit processor based around HP’s PA-RISC architecture. This new 64-bit chip would
execute x86 code in a special "emulation" mode and run native 64-bit code using a new instruction set. It’s
too early to tell if Intel will be successful with this strategy, but there are some major risks (pardon the pun)
with this approach. The first such CPUs (just becoming available as this is being written) run 32-bit code far
slower than the Pentium III and IV chips. Not only does the emulation of the x86 instruction set slow things
down, but the clock speeds of the early CPUs are half the speed of the Pentium IVs. This is roughly the
same situation Intel had with the Pentium Pro running 16-bit code slower than the Pentium. Second, the
64-bit CPUs (the IA64 family) rely heavily on compiler technology and are using a commercially untested
architecture. This is similar to the situation with the iAPX432 project that failed quite miserably. Hopefully
Intel knows what they’re doing and ten years from now we’ll all be using IA64 processors and wondering
why anyone ever stuck with the IA32. On the other hand, hopefully Intel has a back-up plan in case the
IA64 intiative fails.

Intel is betting that people will move to the IA64 when they need 64-bit computing capabilities. AMD,
on the other hand, is betting that people would rather have a 64-bit x86 processor. Although the details are
sketchy, AMD has announced that they will extend the x86 architecture to 64 bits in much the same way that
Intel extend the 8086 and 80286 to 32-bits with the introduction of the the 80386 microprocessor. Only time
will tell if Intel or AMD (or both) are successful with their visions.

Table 25: 80x86 CPU Family

Processor
Date of

Introduction
Transistors

on Chip

Maximum
MIPS at

Introductiona

Maximum
Clock

Frequency at
Introductionb

On-chip
Cache

Memory

Maximum
Addressable

Memory

8086 1978 29K 0.8 8 MHz 1 MB

80286 1982 134K 2.7 12.5 MHz 16 MB

80386 1985 275K 6 20 MHz 4 GB

80486 1989 1.2M 20 25 MHzc 8K Level 1 4 GB

Pentium 1993 3.1M 100 60MHz 16K Level 1 4 GB

Pentium Pro 1995 5.5M 440 200 MHz 16K Level 1,
256K/512K

Level 2

 64 GB
Page 230 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
4.3 A History of Software Development for the x86

A section on the history of software development may seem unusual in a chapter on CPU Architecture.
However, the 80x86’s architecture is inexorably tied to the development of the software for this platform.
Many architectural design decisions were a direct result of ensuring compatibility with existing software. So
to fully understand the architecture, you must know a little bit about the history of the software that runs on
the chip.

From the date of the very first working sample of the 8086 microprocessor to the latest and greatest
IA-64 CPU, Intel has had an important goal: as much as possible, ensure compatibility with software writ-
ten for previous generations of the processor. This mantra existed even on the first 8086, before there was a
previous generation of the family. For the very first member of the family, Intel chose to include a modicum
of compatibilty with their previous eight-bit microprocessor, the 8085. The 8086 was not capable of running
8085 software, but Intel designed the 8086 instruction set to provide almost a one for one mapping of 8085
instructions to 8086 instructions. This allowed 8085 software developers to easily translate their existing
assembly language programs to the 8086 with very little effort (in fact, software translaters were available
that did about 85% of the work for these developers).

Intel did not provide object code compatibility7 with the 8085 instruction set because the design of the
8085 instruction set did not allow the expansion Intel needed for the 8086. Since there was very little soft-
ware running on the 8085 that needed to run on the 8086, Intel felt that making the software developers
responsible for this translation was a reasonable thing to do.

When Intel introduced the 8086 in 1978, the majority of the world’s 8085 (and Z80) software was writ-
ten in Microsoft’s BASIC running under Digital Research’s CP/M operating system. Therefore, to "port" the
majority of business software (such that it existed at the time) to the 8086 really only required two things:
porting the CP/M operating system (which was less than eight kilobytes long) and Microsoft’s BASIC (most
versions were around 16 kilobytes a the time). Porting such small programs may have seemed like a bit of
work to developers of that era, but such porting is trivial compared with the situation that exists today.
Anyway, as Intel expected, both Microsoft and Digital Research ported their products to the 8086 in short

Pentium II 1997 7M 466 266 MHz 32K Level 1,
256/512K

Level 2

 64 GB

Pentium III 1999 8.2M 1,000 500 MHz 32K Level 1,
512K Level 2

 64 GB

a. By the introduction of the next generation this value was usually higher.
b. Maximum clock frequency at introduction was very limited sampling. Usually, the chips were available
at the next lower clock frequency in Intel’s scale. Also note that by the introduction of the next generation
this value was usually much higher.
c. Shortly after the introduction of the 25MHz 80486, Intel began using "Clock doubling" techniques to run
the CPU twice as fast internally as the external clock. Hence, a 50 MHz 80486 DX2 chip was really running
at 25 MHz externally and 50 MHz internally. Most chips after the 80486 employ a different internal clock
frequency compared to the external (or "bus") frequency.

7. That is, the ability to run 8085 machine code directly.

Table 25: 80x86 CPU Family

Processor
Date of

Introduction
Transistors

on Chip

Maximum
MIPS at

Introductiona

Maximum
Clock

Frequency at
Introductionb

On-chip
Cache

Memory

Maximum
Addressable

Memory
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 231

Chapter Four Volume Two
order so it was possible for a large percentage of the 8085 software to run on 8086 within about a year of the
8086’s introduction.

Unfortunately, there was no great rush by computer hobbyists (the computer users of that era) to switch
to the 8086. About this time the Radio Shack TRS-80 and the Apple II microcomputer systems were battling
for supremacy of the home computer market and no one was really making computer systems utilizing the
8086 that appealed to the mass market. Intel wasn’t doing poorly with the 8086; its market share, when you
compared it with the other microprocessors, was probably better than most. However, the situation certainly
wasn’t like it is today (circa 2001) where the 80x86 CPU family owns 85% of the general purpose computer
market.

The 8086 CPU, and it smaller sibling, the eight-bit 8088, was happily raking in its portion of the micro-
processor market and Intel naturally assumed that it was time to start working on a 32-bit processor to
replace the 8086 in much the same way that the 8086 replaced the eight-bit 8085. As noted earlier, this new
processor was the ill-fated iAPX 432 system. The iAPX 432 was such a dismal failure that Intel might not
have survived had it not been for a big stroke of luck – IBM decided to use the 8088 microprocessor in their
personal computer system.

To most computer historians, there were two watershed events in the history of the personal computer.
The first was the introduction of the Visicalc spreadsheet program on the Apple II personal computer system.
This single program demonstrated that there was a real reason for owning a computer beyond the nerdy "gee,
I’ve got my own computer" excuse. Visicalc quickly (and, alas, briefly) made Apple Computer the largest
PC company around. The second big event in the history of personal computers was, of course, the intro-
duction of the IBM PC. The fact that IBM, a "real" computer company, would begin building PCs legiti-
mized the market. Up to that point, businesses tended to ignore PCs and treated them as toys that nerdy
engineers liked to play with. The introduction of the IBM PC caused a lot of businesses to take notice of
these new devices. Not only did they take notice, but they liked what they saw. Although IBM cannot make
the claim that they started the PC revolution, they certainly can take credit for giving it a big jumpstart early
on in its life.

Once people began buying lots of PCs, it was only natural that people would start writing and selling
software for these machines. The introduction of the IBM PC greatly expanded the marketplace for com-
puter systems. Keep in mind that at the time of the IBM PC’s introduction, most computer systems had only
sold tens of thousands of units. The more popular models, like the TRS-80 and Apple II had only sold hun-
dreds of thosands of units. Indeed, it wasn’t until a couple of years after the introduction of the IBM PC that
the first computer system sold one million units; and that was a Commodore 64 system, not the IBM PC.

For a brief period, the introduction of the IBM PC was a godsend to most of the other computer manu-
facturers. The original IBM PC was underpowered and quite a bit more expensive than its counterparts. For
example, a dual-floppy disk drive PC with 64 Kilobytes of memory and a monochrome display sold for
$3,000. A comparable Apple II system with a color display sold for under $2,000. The original IBM PC
with it’s 4.77 MHz 8088 processor (that’s four-point-seven-seven, not four hundred seventy-seven!) was
only about two to three times as fast as the Apple II with its paltry 1 MHz eight-bit 6502 processor. The fact
that most Apple II software was written by expert assembly language programmers while most (early) IBM
software was written in a high level language (often interpreted) or by inexperienced 8086 assembly lan-
guage programmers narrowed the gap even more.

Nonetheless, software development on PCs accelerated. The wide range of different (and incompatible)
systems made software development somewhat risky. Those who did not have an emotional attachment to
one particular company (and didn’t have the resources to develop for more than one platform) generally
decided to go with IBM’s PC when developing their software.

One problem with the 8086’s architecture was beginning to show through by 1983 (remember, this is
five years after Intel introduced the 8086). The segmented memory architecture that allowed them to extend
their 16-bit addressing scheme to 20 bits (allowing the 8086 to address a megabyte of memory) was being
attacked on two fronts. First, this segmented addressing scheme was difficult to use in a program, especially
if a program needed to access more than 64 kilobytes of data or, worse yet, needed to access a single data
structure that was larger than 64K long. By 1983 software had reached the level of sophistication that most
programs were using this much memory and many needed large data structures. The software community as
a whole began to grumble and complain about this segmented memory architecture and what a stupid thing
it was.
Page 232 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
The second problem with Intel’s segmented architecture is that it only supported a maximum of a one
megabyte address space. Worse, the design of the IBM PC effectively limited the amount of RAM the sys-
tem could have to 640 kilobytes. This limitation was also beginning to create problems for more sophisti-
cated programs running on the PC. Once again, the software development community grumbled and
complained about Intel’s segmented architecture and the limitations it imposed upon their software.

About the time people began complaining about Intel’s architecture, Intel began running an ad cam-
paign bragging about how great their chip was. They quoted top executives at companies like Visicorp (the
outfit selling Visicalc) who claimed that the segmented architecture was great. They also made a big deal
about the fact that over a billion dollars worth of software had been written for their chip. This was all mar-
keting hype, of course. Their chip was not particularly special. Indeed, the 8086’s contemporaries (Z8000,
68000, and 16032) were archiecturally superior. However, Intel was quite right about one thing – people had
written a lot of software for the 8086 and most of the really good stuff was written in 8086 assembly lan-
guage and could not be easily ported to the other processors. Worse, the software that people were writing
for the 8086 was starting to get large; making it even more difficult to port it to the other chips. As a result,
software developers were becoming locked into using the 8086 CPU.

About this time Intel undoubted realized that they were getting locked into the 80x86 architecture, as
well. The iAPX 432 project was on its death bed. People were no more interested in the iAPX 432 than they
were the other processors (in fact, they were less interested). So Intel decided to do the only reasonable
thing – extend the 8086 family so they could continue to make more money off their cash cow.

The first real extension to the 8086 family that found its way into general purpose PCs was the 80286
that appeared in 1982. This CPU answered the second complaint by adding the ability to address up to 16
MBytes of RAM (a formidable amount in 1982). Unfortunately, it did not extend the segment size beyond
64 kilobytes. In 1985 Intel introduced the 80386 microprocessor. This chip answered most of the com-
plaints about the x86 family, and then some, but people still complained about these problems for nearly ten
years after the introduction of the 80386.

Intel was suffering at the hands of Microsoft and the installed base of existing PCs. When IBM intro-
duced the floppy disk drive for the IBM PC they didn’t choose an operating system to ship with it. Instead,
they offered their customers a choice of the widely available operating systems at the time. Of course, Digi-
tal Research had ported CP/M to the PC, UCSD/Softech had ported UCSD Pascal (a very popular lan-
guage/operating system at the time) to the PC, and Microsoft had quickly purchased a CP/M knock-off
named QD DOS (for Quick and Dirty DOS) from Seattle Microsystems, relabelled it "MS-DOS", and
offered this as well. CP/M-86 cost somewhere in the vicenity of $595. UCSD Pascal was selling for some-
thing like $795. MS-DOS was selling for $50. Guess which one sold more copies! Within a year, almost no
one ran CP/M or UCSD Pascal on PCs. Microsoft and MS-DOS (also called IBM DOS) ruled the PC.

MS-DOS v1.0 lived up to its "quick and dirty" heritage. Working furiously, Microsoft’s engineers
added lots of new features (many taken from the UNIX operating system and shell program) and MS-DOS
v2.0 appeared shortly thereafter. Although still crude, MS-DOS v2.0 was a substantial improvement and
people started writing tons of software for it.

Unfortunately, MS-DOS, even in its final version, wasn’t the best operating system design. In particu-
lar, it left all but rudimentary control of the hardware to the application programmer. It provided a file sys-
tem so application writers didn’t have to deal with the disk drive and it provided mediocre support for
keyboard input and character display. It provided nearly useless support for other devices. As a result, most
application programmers (and most high level languages) bypassed MS-DOS’ device control and used
MS-DOS primarily as a file system module.

In addition to poor device management, MS-DOS provided nearly non-existant memory management.
For all intents and purposes, once MS-DOS started a program running, it was that program’s responsibility
to manage the system’s resources. Not only did this create extra work for application programmers, but it
was one of the main reasons most software could not take advantage of the new features Intel was adding to
their microprocessors.

When Intel introduced the 80286 and, later, the 80386, the only way to take advantage of their extra
addressing capabilities and the larger segments of the 80386 was to operate in a so-called protected mode.
Unfortunately, neither MS-DOS nor most applications (that managed memory themselves) were capable of
operating in protected mode without substantial change (actually, it would have been easy to modify
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 233

Chapter Four Volume Two
MS-DOS to use protected mode, but it would have broken all the existing software that ran under MS-DOS;
Microsoft, like Intel, couldn’t afford to alienate the software developers in this manner).

Even if Microsoft could magically make MS-DOS run under protected mode, they couldn’t afford to do
so. When Intel introduced the 80386 microprocessor it was a very expensive device (the chip itself cost over
$1,000 at initial introduction). Although the 80286 had been out for three years, systems built around the
8088 were still extremely popular (since they were much lower cost than systems using the 80386). Soft-
ware developers had a choice: they could solve their memory addressing problems and use the new features
of the 80386 chip but limit their market to the few who had 80386 systems, or they could continue to suffer
with the 64K segment limitation imposed by the 8088 and MS-DOS and be able to sell their software to mil-
lions of users who owned one of the earlier machines. The marketing departments of these companies ruled
the day, all software was written to run on plain 8088 boxes so that it had a larger market. It wasn’t until
1995, when Microsoft introduced Windows 95 that people finally felt they could abandon processors earlier
than the 80386. The end result was the people were still complaining about the Intel architecture and its 64K
segment limitation ten years after Intel had corrected the problem. The concept of upwards compatibility
was clearly a double-edged sword in this case.

Segmentation had developed such a bad name over the years that Microsoft abandoned the use of seg-
ments in their 32-bit versions of Windows (95, 98, NT, 2000, ME, etc.). In a couple of respects, this was a
real shame because Intel finally did segmentation right (or, at least, pretty good) in the 80386 and later pro-
cessors. By not allowing the use of segmentation in Win32 programs Microsoft limited the use of this pow-
erful feature. They also limited their users to a maximum address space of 4GB (the Pentium Pro and later
processors were capable of addressing 64GB of physical memory). Considering that many applications are
starting to push the 4GB barrier, this limitation on Microsoft’s part was ill-considered. Nevertheless, the
"flat" memory model that Microsoft employs is easier to write software for, undoubtedly a big part of their
decision not to use segmentation.

The introduction of Windows NT, that actually ran on CPUs other than Intel’s, must have given Intel a
major scare. Fortunately for Intel, NT was an asbysmal failure on non-Intel architectures like the Alpha and
the PowerPC. On the other hand, the new Windows architecture does make it easier to move existing appli-
cations to 64-bit processors like the IA-64; so maybe WinNT’s flexibility will work to Intel’s advantage
after all.

The 8086 software legacy has both advanced and retarded the 80x86 architecture. On the one hand, had
software developers not written so much software for the 80x86, Intel would have abandoned the family in
favor of something better a long time ago (not an altogether bad thing, in many people’s opinions). On the
other hand, however, the general acceptance of the 80386 and later processors was greatly delayed by the
fact that software developers were writing software for the installed base of processors.

Around 1996, two types of software actually accellerated the design and acceptance of Intel’s newer
processors: multimedia software and games. When Intel introduced the MMX extensions to the 80x86
instruction set, software developers ignored the installed base and immediately began writing software to
take advantage of these new instructions. This change of heart took place because the MMX instructions
allowed developers to do things they hadn’t been able to do before - not simply run faster, but run fast
enough to display actual video and quick render 3D images. Combined with a change in pricing policy by
Intel on new processor technology, the public quickly accepted these new systems.

Hard-core gamers, multimedia artists, and others quickly grabbed new machines and software as it
became available. More often than not, each new generation of software would only run on the latest hard-
ware, forcing these individuals to upgrade their equipment far more rapidly than ever before.

Intel, sensing an opportunity here, began developing CPUs with additional instruction targetted at spe-
cific applications. For example, the Pentium III introduced the SIMD (pronounced SIM-DEE) instructions
that did for floating point calculations what the MMX instructions did for integer applications. Intel also
hired lots of software engineers and began funding research into topic areas like speech recognition and
(visual) pattern recognition in order to drive the new technologies that would require the new instructions
their Pentium IV and later processors would offer. As this is being written, Intel is busy developing new uses
for their specialized instructions so that system designers and software developers continue to use the 80x86
(and, perhaps, IA-64) family chips.

However, this discussion of fancy instruction sets is getting way ahead of the game. Let’s take a long
step back to the original 8086 chip and take a look at how system designers put a CPU together.
Page 234 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
4.4 Basic CPU Design

A fair question to ask at this point is “How exactly does a CPU perform assigned chores?” This is
accomplished by giving the CPU a fixed set of commands, or instructions, to work on. Keep in mind that
CPU designers construct these processors using logic gates to execute these instructions. To keep the number
of logic gates to a reasonably small set CPU designers must necessarily restrict the number and complexity
of the commands the CPU recognizes. This small set of commands is the CPU’s instruction set.

Programs in early (pre-Von Neumann) computer systems were often “hard-wired” into the circuitry.
That is, the computer’s wiring determined what problem the computer would solve. One had to rewire the
circuitry in order to change the program. A very difficult task. The next advance in computer design was the
programmable computer system, one that allowed a computer programmer to easily “rewire” the computer
system using a sequence of sockets and plug wires. A computer program consisted of a set of rows of holes
(sockets), each row representing one operation during the execution of the program. The programmer could
select one of several instructions by plugging a wire into the particular socket for the desired instruction (see
Figure 4.1).

Figure 4.1 Patch Panel Programming

Of course, a major difficulty with this scheme is that the number of possible instructions is severely lim-
ited by the number of sockets one could physically place on each row. However, CPU designers quickly dis-
covered that with a small amount of additional logic circuitry, they could reduce the number of sockets
required from n holes for n instructions to log2(n) holes for n instructions. They did this by assigning a
numeric code to each instruction and then encode that instruction as a binary number using log2(n) holes
(see Figure 4.2).

Figure 4.2 Encoding Instructions

Instr #1

Instr #2

Instr #3
 .
 .
 .

m
ov

e

ad
d

su
bt

ra
ct

m
ul

tip
ly

di
vi

de

an
d

or xo
r

Instr #1

Instr #2

Instr #3
 .
 .
 .

C B A CBA Instruction
000 move
001 add
010 subtract
011 multiply
100 divide
101 and
110 or
111 xor
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 235

Chapter Four Volume Two
This addition requires eight logic functions to decode the A, B, and C bits from the patch panel, but the
extra circuitry is well worth the cost because it reduces the number of sockets that must be repeated for each
instruction (this circuitry, by the way, is nothing more than a single three-line to eight-line decoder).

Of course, many CPU instructions are not stand-alone. For example, the move instruction is a command
that moves data from one location in the computer to another (e.g., from one register to another). Therefore,
the move instruction requires two operands: a source operand and a destination operand. The CPU’s
designer usually encodes these source and destination operands as part of the machine instruction, certain
sockets correspond to the source operand and certain sockets correspond to the destination operand. Figure
4.3 shows one possible combination of sockets to handle this. The move instruction would move data from
the source register to the destination register, the add instruction would add the value of the source register to
the destination register, etc.

Figure 4.3 Encoding Instructions with Source and Destination Fields

One of the primary advances in computer design that the VNA provides is the concept of a stored pro-
gram. One big problem with the patch panel programming method is that the number of program steps
(machine instructions) is limited by the number of rows of sockets available on the machine. John Von Neu-
mann and others recognized a relationship between the sockets on the patch panel and bits in memory; they
figured they could store the binary equivalents of a machine program in main memory and fetch each pro-
gram from memory, load it into a special decoding register that connected directly to the instruction decod-
ing circuitry of the CPU.

The trick, of course, was to add yet more circuitry to the CPU. This circuitry, the control unit (CU),
fetches instruction codes (also known as operation codes or opcodes) from memory and moves them to the
instruction decoding register. The control unit contains a special register, the instruction pointer that contains
the address of an executable instruction. The control unit fetches this instruction’s opcode from memory and
places it in the decoding register for execution. After executing the instruction, the control unit increments
the instruction pointer and fetches the next instruction from memory for execution, and so on.

When designing an instruction set, the CPU’s designers generally choose opcodes that are a multiple of
eight bits long so the CPU can easily fetch complete instructions from memory. The goal of the CPU’s
designer is to assign an appropriate number of bits to the instruction class field (move, add, subtract, etc.)
and to the operand fields. Choosing more bits for the instruction field lets you have more instructions, choos-
ing additional bits for the operand fields lets you select a larger number of operands (e.g., memory locations
or registers). There are additional complications. Some instructions have only one operand or, perhaps, they
don’t have any operands at all. Rather than waste the bits associated with these fields, the CPU designers

Instr #1

Instr #2

Instr #3
 .
 .
 .

C B A

CBA Instruction
000 move
001 add
010 subtract
011 multiply
100 divide
101 and
110 or
111 xor

DD SS

DD -or- SS Register

 00 AX
 01 BX
 10 CX
 11 DX
Page 236 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
often reuse these fields to encode additional opcodes, once again with some additional circuitry. The Intel
80x86 CPU family takes this to an extreme with instructions ranging from one to almost 15 bytes long8.

4.5 Decoding and Executing Instructions: Random Logic Versus Microcode

Once the control unit fetches an instruction from memory, you may wonder "exactly how does the CPU
execute this instruction?" In traditional CPU design there have been two common approaches: hardwired
logic and emulation. The 80x86 family uses both of these techniques.

A hardwired, or random logic9, approach uses decoders, latches, counters, and other logic devices to
move data around and operate on that data. The microcode approach uses a very fast but simple internal pro-
cessor that uses the CPU’s opcodes as an index into a table of operations (the microcode) and executes a
sequence of microinstructions that do the work of the macroinstruction (i.e., the CPU instruction) they are
emulating.

The random logic approach has the advantage that it is possible to devise faster CPUs if typical CPU
speeds are faster than typical memory speeds (a situation that has been true for quite some time). The draw-
back to random logic is that it is difficult to design CPUs with large and complex instruction sets using a ran-
dom logic approach. The logic to execute the instructions winds up requiring large percentage of the chip’s
real estate and it becomes difficult to properly lay out the logic so that related circuits are close to one
another in the two-dimensional space of the chip,

CPUs based on microcode contain a small, very fast, execution unit that fetches instructions from the
microcode bank (which is really nothing more than fast ROM on the CPU chip). This microcode executes
one microinstruction per clock cycle and a sequence of microinstructions decode the instruction, fetch its
operands, move the operands to appropriate functional units that do whatever calculations are necessary,
store away necessary results, and then update appropriate registers and flags in anticipation of the next
instruction.

The microcode approach may appear to be substantially slower than the random logic approach because
of all the steps involved. Actually, this isn’t necessarily true. Keep in mind that with a random logic
approach to instruction execution, part of the random logic is often a sequencer that steps through several
states (one state per clock cycle). Whether you use your clock cycles executing microinstructions or step-
ping through a random logic state machine, you’re still burning up clock cycles.

One advantage of microcode is that it makes better reuse of existing silicon on the CPU. Many CPU
instructions (macroinstructions) execute some of the same microinstructions as many other instructions.
This allows the CPU designer to use microcode subroutines to implement many common operations, thus
saving silicon on the CPU. While it is certainly possible to share circuitry in a random logic device, this is
often difficult if two circuits could otherwise share some logic but are across the chip from one another.

Another advantage of microcode is that it lets you create some very complex instructions that consist of
several different operations. This provides programmers (especially assembly language programmers) with
the ability to do more work with fewer instructions in their programs. In theory, this lets them write faster
programs since they now execute half as many instructions, each doing twice the work of a simpler instruc-
tion set (the 80x86 MMX instruction set extension is a good example of this theory in action, although the
MMX instructions do not use a microcode implementation).

Microcode does suffer from one disadvantage compared to random logic: the speed of the processor is
tied to the speed of the internal microcode execution unit. Although the "microengine" itself is usually quite
fast, the microengine must fetch its instruction from the microcode ROM. Therefore, if memory technology
is slower than the execution logic, the microcode ROM will slow the microengine down because the system
will have to introduce wait states into the microcode ROM access. Actually, microengines generally don’t
support the use of wait states, so this means that the microengine will have to run at the same speed as the

8. Though this is, by no means, the most complex instruction set. The VAX, for example, has instructions up to 150 bytes
long!
9. There is actually nothing random about this logic at all. This design technique gets its name from the fact that if you view
a photomicrograph of a CPU die that uses microcode, the microcode section looks very regular; the same photograph of a
CPU that utilizes random logic contains no such easily discernable patterns.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 237

Chapter Four Volume Two
microcode ROM. This effectively limits the speed at which the microengine, and therefore the CPU, can
run.

Which approach is better for CPU design? That depends entirely on the current state of memory tech-
nology. If memory technology is faster than CPU technology, then the microcode approach tends to make
more sense. If memory technology is slower than CPU technology, then random logic tends to produce the
faster CPUs.

When Intel first began designing the 8086 CPU sometime between 1976 and 1978, memory technology
was faster so they used microcode. Today, CPU technology is much faster than memory technology, so ran-
dom logic CPUs tend to be faster. Most modern (non-x86) processors use random logic. The 80x86 family
uses a combination of these technologies to improve performance while maintaining compatibility with the
complex instruction set that relied on microcode way back in 1978.

4.6 RISC vs. CISC vs. VLIW

In the 1970’s, CPU designers were busy extending their instruction sets to make their chips easier to
program. It was very common to find a CPU designer poring over the assembly output of some high level
language compiler searching for common two and three instruction sequences the compiler would emit. The
designer would then create a single instruction that did the work of this two or three instruction sequence, the
compiler writer would modify the compiler to use this new instruction, and a recompilation of the program
would, presumably, produce a faster and shorter program than before.

Digital Equipment Corporation (now part of Compaq Computer) raised this process to a new level in
their VAX minicomputer series. It is not surprising, therefore, that many research papers appearing in the
1980’s would commonly use the VAX as an example of what not to do.

The problem is, these designers lost track of what they were trying to do, or to use the old cliche, they
couldn’t see the forest for the trees. They assumed that there were making their processors faster by execut-
ing a single instruction that previously required two or more. They also assumed that they were making the
programs smaller, for exactly the same reason. They also assumed that they were making the processors
easier to program because programmers (or compilers) could write a single instruction instead of using mul-
tiple instructions. In many cases, they assumed wrong.

In the early 80’s, researchers at IBM and several institutions like Stanford and UC Berkeley challenged
the assumptions of these designers. They wrote several papers showing how complex instructions on the
VAX minicomputer could actually be done faster (and sometimes in less space) using a sequence of simpler
instructions. As a result, most compiler writers did not use the fancy new instructions on the VAX (nor did
assembly language programmers). Some might argue that having an unused instruction doesn’t hurt any-
thing, but these researchers argued otherwise. They claimed that any unnecessary instructions required addi-
tional logic to implement and as the complexity of the logic grows it becomes more and more difficult to
produce a high clock speed CPU.

This research led to the development of the RISC, or Reduced Instruction Set Computer, CPU. The
basic idea behind RISC was to go in the opposite direction of the VAX. Decide what the smallest reasonable
instruction set could be and implement that. By throwing out all the complex instructions, RISC CPU
designers could use random logic rather than microcode (by this time, CPU speeds were outpacing memory
speeds). Rather than making an individual instruction more complex, they could move the complexity to the
system level and add many on-chip features to improve the overall system performance (like caches, pipe-
lines, and other advanced mainframe features of the time). Thus, the great "RISC vs. CISC10" debate was
born.

Before commenting further on the result of this debate, you should realize that RISC actually means
"(Reduced Instruction) Set Computer," not "Reduced (Instruction Set) Computer." That is, the goal of RISC
was to reduce the complexity of individual instructions, not necessarily reduce the number of instructions a
RISC CPU supports. It was often the case that RISC CPUs had fewer instructions than their CISC counter-

10. CISC stands for Complex Instruction Set Computer and defines those CPUs that were popular at the time like the VAX
and the 80x86.
Page 238 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
parts, but this was not a precondition for calling a CPU a RISC device. Many RISC CPUs had more instruc-
tions than some of their CISC contemporaries, depending on how you count instructions.

First, there is no debate about one thing: if you have two CPUs, one RISC and one CISC and they both
run at the same clock frequency and they execute the same average number of instructions per clock cycle,
CISC is the clear winner. Since CISC processors do more work with each instruction, if the two CPUs exe-
cute the same number of instructions in the same amount of time, the CISC processor usually gets more
work done.

However, RISC performance claims were based on the fact that RISC’s simpler design would allow the
CPU designers to reduce the overall complexity of the chip, thereby allowing it to run at a higher clock fre-
quency. Further, with a little added complexity, they could easily execute more instructions per clock cycle,
on the average, than their CISC contemporaries.

One drawback to RISC CPUs is that their code density was much lower than CISC CPUs. Although
memory devices were dropping in price and the need to keep programs small was decreasing, low code den-
sity requires larger caches to maintain the same number of instructions in the cache. Further, since memory
speeds were not keeping up with CPU speeds, the larger instruction sizes found in the RISC CPUs meant
that the system spent more time bringing in those instructions from memory to cache since they could trans-
fer fewer instructions per bus transaction. For many years, CPU architects argued to and fro about whether
RISC or CISC was the better approach. With one big footnote, the RISC approach has generally won the
argument. Most of the popular CISC systems, e.g., the VAX, the Z8000, the 16032/32016, and the 68000,
have quitely faded away to be replaced by the likes of the PowerPC, the MIPS CPUs, the Alpha, and the
SPARC. The one footnote here is, of course, the 80x86 family. Intel has proven that if you really want to
keep extending a CISC architecture, and you’re willing to throw a lot of money at it, you can extend it far
beyond what anyone ever expected. As of late 2000/early 2001 the 80x86 is the raw performance leader.
The CPU runs at a higher clock frequency than the competing RISC chips; it executes fairly close to the
same number of instructions per clock cycle as the competing RISC chips; it has about the same "average
instruction size to cache size" ratio as the RISC chips; and it is a CISC, so many of the instructions do more
work than their RISC equivalents. So overall, the 80x86 is, on the average, faster than contemporary RISC
chips11.

To achieve this raw performance advantage, the 80x86 has borrowed heavily from RISC research. Intel
has divided the instruction set into a set of simple instructions that Intel calls the "RISC core" and the
remaining, complex instructions. The complex instructions do not execute as rapidly as the RISC core
instructions. In fact, it is often the case that the task of a complex instruction can be accomplished faster
using multiple RISC core instructions. Intel supports the complex instructions to provide full compatibility
with older software, but compiler writers and assembly language programmers tend to avoid the use of these
instructions. Note that Intel moves instructions between these two sets over time. As Intel improves the pro-
cessor they tend to speed up some of the slower, complex, instructions. Therefore, it is not possible to give a
static list of instructions you should avoid; instead, you will have to refer to Intel’s documentation for the
specific processor you use.

Later Pentium processors do not use an interpretive engine and microcode like the earlier 80x86 proces-
sors. Instead, the Pentium core processors execute a set of "micro-operations" (or "micro-ops"). The Pen-
tium processors translate the 80x86 instruction set into a sequence of micro-ops on the fly. The RISC core
instructions typically generate a single micro-op while the CISC instructions generate a sequence of two or
more micro-ops. For the purposes of determining the performance of a section of code, we can treat each
micro-op as a single instruction. Therefore, the CISC instructions are really nothing more than
"macro-instructions" that the CPU automatically translates into a sequence of simpler instructions. This is
the reason the complex instructions take longer to execute.

Unfortunately, as the x86 nears its 25th birthday, it’s clear (to Intel, at least) that it’s been pushed to its
limits. This is why Intel is working with HP to base their IA-64 architecture on the PA-RISC instruction set.
The IA-64 architecture is an interesting blend. On the one hand, it (supposedly) supports object-code com-
patibility with the previous generation x86 family (though at reduced performance levels). Obviously, it’s a

11. Note, by the way, that this doesn’t imply that 80x86 systems are faster than computer systems built around RISC chips.
Many RISC systems gain additional speed by supporting multiple processors better than the x86 or by having faster bus
throughput. This is one reason, for example, why Internet companies select Sun equipment for their web servers.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 239

Chapter Four Volume Two
RISC architecture since it was originally based on Hewlet-Packard’s PA-RISC (PA=Precision Architecture)
design. However, Intel and HP have extended on the RISC design by using another technology: Very Long
Instruction Word (VLIW) computing. The idea behind VLIW computing is to use a very long opcode that
handle multiple operations in parallel. In some respects, this is similar to CISC computing since a single
VLIW "instruction" can do some very complex things. However, unlike CISC instructions, a VLIW instruc-
tion word can actually complete several independent tasks simultaneously. Effectively, this allows the CPU
to execute some number of instructions in parallel.

Intel’s VLIW approach is risky. To succeed, they are depending on compiler technology that doesn’t yet
exist. They made this same mistake with the iAPX 432. It remains to be seen whether history is about to
repeat itself or if Intel has a winner on their hands.

4.7 Instruction Execution, Step-By-Step

To understand the problems with developing an efficient CPU, let’s consider four representative 80x86
instructions: MOV, ADD, LOOP, and JNZ (jump if not zero). These instructions will allow us to explore
many of the issues facing the x86 CPU designer.

You’ve seen the MOV and ADD instructions in previous chapters so there is no need to review them
here. The LOOP and JNZ instructions are new, so it’s probably a good idea to explain what they do before
proceeding. Both of these instructions are conditional jump instructions. A conditional jump instruction
tests some condition and jumps to some other instruction in memory if the condition is true and they fall
through to the next instruction if the condition is false. This is basically the opposite of HLA’s IF statement
(which falls through if the condition is true and jumps to the else section if the condition is false). The JNZ
(jump if not zero) instruction tests the CPU’s zero flag and transfers control to some target location if the
zero flag contains zero; JNZ falls through to the next instruction if the zero flag contains one. The program
specifies the target instruction to jump to by specifying the distance from the JNZ instruction to the target
instruction as a small signed integer (for our purposes here, we’ll assume that the distance is within the range
±128 bytes so the instruction uses a single byte to specify the distance to the target location).

The last instruction of interest to us here is the LOOP instruction. The LOOP instruction decrements
the value of the ECX register and transfers control to a target instruction within ±128 bytes if ECX does not
contain zero (after the decrement). This is a good example of a CISC instruction since it does multiple oper-
ations: (1) it subtracts one from ECX and then it (2) does a conditional jump if ECX does not contain zero.
That is, LOOP is equivalent to the following two 80x86 instructions12:

loop SomeLabel;

-is roughly equivalent to-

dec(ecx);
jnz SomeLabel;

Note that SomeLabel specifies the address of the target instruction that must be within about ±128 bytes of
the LOOP or JNZ instructions above. The LOOP instruction is a good example of a complex (vs. RISC
core) instruction on the Pentium processors. It is actually faster to execute a DEC and a JNZ instruction13

than it is to execute a LOOP instruction. In this section we will not concern ourselves with this issue; we
will assume that the LOOP instruction operates as though it were a RISC core instruction.

The 80x86 CPUs do not execute instructions in a single clock cycle. For example, the MOV instruction
(which is relatively simple) could use the following execution steps14:

• Fetch the instruction byte from memory.
• Update the EIP register to point at the next byte.
• Decode the instruction to see what it does.

12. This sequence is not exactly equivalent to LOOP since this sequence affects the flags while LOOP does not.
13. Actually, you’ll see a little later that there is a decrement instruction you can use to subtract one from ECX. The decre-
ment instruction is better because it is shorter.
14. It is not possible to state exactly what steps each CPU requires since many CPUs are different from one another.
Page 240 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
• If required, fetch a 16-bit instruction operand from memory.
• If required, update EIP to point beyond the operand.
• If required, compute the address of the operand (e.g., EBX+disp) .
• Fetch the operand.
• Store the fetched value into the destination register

If we allocate one clock cycle for each of the above steps, an instruction could take as many as eight clock
cycles to complete (note that three of the steps above are optional, depending on the MOV instruction’s
addressing mode, so a simple MOV instruction could complete in as few as five clock cycles).

The ADD instruction is a little more complex. Here’s a typical set of operations the ADD(reg, reg)
instruction must complete:

• Fetch the instruction byte from memory.
• Update EIP to point at the next byte.
• Decode the instruction.
• Get the value of the source operand and send it to the ALU.
• Fetch the value of the destination operand (a register) and send it to the ALU.
• Instruct the ALU to add the values.
• Store the result back into the first register operand.
• Update the flags register with the result of the addition operation.

If the source operand is a memory location, the operation is slightly more complicated:

• Fetch the instruction byte from memory.
• Update EIP to point at the next byte.
• Decode the instruction.
• If required, fetch a displacement for use in the effective address calculation
• If required, update EIP to point beyond the displacement value.
• Get the value of the source operand from memory and send it to the ALU.
• Fetch the value of the destination operand (a register) and send it to the ALU.
• Instruct the ALU to add the values.
• Store the result back into the register operand.
• Update the flags register with the result of the addition operation.

ADD(const, memory) is the messiest of all, this code sequence looks something like the following:

• Fetch the instruction byte from memory.
• Update EIP to point at the next byte.
• Decode the instruction.
• If required, fetch a displacement for use in the effective address calculation
• If required, update EIP to point beyond the displacement value.
• Fetch the constant value from memory and send it to the ALU.
• Update EIP to point beyond the constant’s value (at the next instruction in memory).
• Get the value of the source operand from memory and send it to the ALU.
• Instruct the ALU to add the values.
• Store the result back into the memory operand.
• Update the flags register with the result of the addition operation.

Note that there are other forms of the ADD instruction requiring their own special processing. These are just
representative examples. As you see in these examples, the ADD instruction could take as many as ten steps
(or cycles) to complete. Note that this is one advantage of a RISC design. Most RISC design have only one
or two forms of the ADD instruction (that add registers together and, perhaps, that add constants to regis-
ters). Since register to register adds are often the fastest (and constant to register adds are probably the sec-
ond fastest), the RISC CPUs force you to use the fastest forms of these instructions.

The JNZ instruction might use the following sequence of steps:

• Fetch the instruction byte from memory.
• Update EIP to point at the next byte.
• Decode the instruction.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 241

Chapter Four Volume Two
• Fetch a displacement byte to determine the jump distance send this to the ALU
• Update EIP to point at the next byte.
• Test the zero flag to see if it is clear.
• If the zero flag was clear, copy the EIP register to the ALU.
• If the zero flag was clear, instruct the ALU to add the displacement and EIP register values.
• If the zero flag was clear, copy the result of the addition above back to the EIP register.

Notice how the JNZ instruction requires fewer steps if the jump is not taken. This is very typical for condi-
tional jump instructions. If each step above corresponds to one clock cycle, the JNZ instruction would take
six or nine clock cycles, depending on whether the branch is taken. Because the 80x86 JNZ instruction does
not allow different types of operands, there is only one sequence of steps needed for this application.

The 80x86 LOOP instruction might use an execution sequence like the following:

• Fetch the instruction byte from memory.
• Update EIP to point at the next byte.
• Decode the instruction.
• Fetch the value of the ECX register and send it to the ALU.
• Instruct the ALU to decrement the value.
• Send the result back to the ECX register. Set a special internal flag if this value is non-zero.
• Fetch a displacement byte to determine the jump distance send this to the ALU
• Update EIP to point at the next byte.
• Test the special flag to see if ECX was non-zero.
• If the flag was set, copy the EIP register to the ALU.
• If the flag was set, instruct the ALU to add the displacement and EIP register values.
• If the flag was set, copy the result of the addition above back to the EIP register.

Although a given 80x86 CPU might not execute the steps for the instructions above, they all execute
some sequence of operations. Each operation requires a finite amount of time to execute (generally, one
clock cycle per operation or stage as we usually refer to each of the above steps). Obviously, the more steps
needed for an instruction, the slower it will run. This is why complex instructions generally run slower than
simple instructions, complex instructions usually have lots of execution stages.

4.8 Parallelism – the Key to Faster Processors

An early goal of the RISC processors was to execute one instruction per clock cycle, on the average.
However, even if a RISC instruction is simplified, the actual execution of the instruction still requires multi-
ple steps. So how could they achieve this goal? And how do later members the 80x86 family with their
complex instruction sets also achieve this goal? The answer is parallelism.

Consider the following steps for a MOV(reg, reg) instruction:

• Fetch the instruction byte from memory.
• Update the EIP register to point at the next byte.
• Decode the instruction to see what it does.
• Fetch the source register.
• Store the fetched value into the destination register

There are five stages in the exection of this instruction with certain dependencies between each stage.
For example, the CPU must fetch the instruction byte from memory before it updates EIP to point at the next
byte in memory. Likewise, the CPU must decode the instruction before it can fetch the source register (since
it doesn’t know it needs to fetch a source register until it decodes the instruction). As a final example, the
CPU must fetch the source register before it can store the fetched value in the destination register.

Most of the stages in the execution of this MOV instruction are serial. That is, the CPU must execute
one stage before proceeding to the next. The one exception is the "Update EIP" step. Although this stage
must follow the first stage, none of the following stages in the instruction depend upon this step. Therefore,
this could be the third, forth, or fifth step in the calculation and it wouldn’t affect the outcome of the instruc-
Page 242 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
tion. Further, we could execute this step concurrently with any of the other steps and it wouldn’t affect the
operation of the MOV instruction, e.g.,

• Fetch the instruction byte from memory.
• Decode the instruction to see what it does.
• Fetch the source register and update the EIP register to point at the next byte.
• Store the fetched value into the destination register

By doing two of the stages in parallel, we can reduce the execution time of this instruction by one clock
cycle. Although the remaining stages in the "mov(reg, reg);" instruction must remain serialized (that is,
they must take place in exactly this order), other forms of the MOV instruction offer similar opportunities to
overlapped portions of their execution to save some cycles. For example, consider the
"mov([ebx+disp], eax);" instruction:

• Fetch the instruction byte from memory.
• Update the EIP register to point at the next byte.
• Decode the instruction to see what it does.
• Fetch a displacement operand from memory.
• Update EIP to point beyond the displacement.
• Compute the address of the operand (e.g., EBX+disp) .
• Fetch the operand.
• Store the fetched value into the destination register

Once again there is the opportunity to overlap the execution of several stages in this instruction, for example:

• Fetch the instruction byte from memory.
• Decode the instruction to see what it does and update the EIP register to point at the next byte.
• Fetch a displacement operand from memory.
• Compute the address of the operand (e.g., EBX+disp) and update EIP to point beyond the dis-

placement..
• Fetch the operand.
• Store the fetched value into the destination register

In this example, we reduced the number of execution steps from eight to six by overlapping the update of
EIP with two other operations.

As a last example, consider the "add(const, [ebx+disp]);" instruction (the instruction with the largest
number of steps we’ve considered thus far). It’s non-overlapped execution looks like this:

• Fetch the instruction byte from memory.
• Update EIP to point at the next byte.
• Decode the instruction.
• Fetch a displacement for use in the effective address calculation
• Update EIP to point beyond the displacement value.
• Fetch the constant value from memory and send it to the ALU.
• Compute the address of the memory operand (EBX+disp).
• Get the value of the source operand from memory and send it to the ALU.
• Instruct the ALU to add the values.
• Store the result back into the memory operand.
• Update the flags register with the result of the addition operation.
• Update EIP to point beyond the constant’s value (at the next instruction in memory).

We can overlap at least three steps in this instruction by noting that certain stages don’t depend on the result
of their immediate predecessor

• Fetch the instruction byte from memory.
• Decode the instruction and update EIP to point at the next byte.
• Fetch a displacement for use in the effective address calculation
• Update EIP to point beyond the displacement value.
• Fetch the constant value from memory and send it to the ALU.
• Compute the address of the memory operand (EBX+disp).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 243

Chapter Four Volume Two
• Get the value of the source operand from memory and send it to the ALU.
• Instruct the ALU to add the values.
• Store the result back into the memory operand and update the flags register with the result of

the addition operation and update EIP to point beyond the constant’s value.

Note that we could not merge one of the "Update EIP" operations because the previous stage and following
stages of the instruction both use the value of EIP before and after the update.

Unlike the MOV instruction, the steps in the ADD instruction above are not all dependent upon the pre-
vious stage in the instruction’s execution. For example, the sequence above fetches the constant from mem-
ory and then computes the effective address (EBX+disp) of the memory operand. Neither operation depends
upon the other, so we could easily swap their positions above to yield the following:

• Fetch the instruction byte from memory.
• Decode the instruction and update EIP to point at the next byte.
• Fetch a displacement for use in the effective address calculation
• Update EIP to point beyond the displacement value.
• Compute the address of the memory operand (EBX+disp).
• Fetch the constant value from memory and send it to the ALU.
• Get the value of the source operand from memory and send it to the ALU.
• Instruct the ALU to add the values.
• Store the result back into the memory operand and update the flags register with the result of

the addition operation and update EIP to point beyond the constant’s value.

This doesn’t save any steps, but it does reduce some dependencies between certain stages and their immedi-
ate predecessors, allowing additional parallel operation. For example, we can now merge the "Update EIP"
operation with the effective address calculation:

• Fetch the instruction byte from memory.
• Decode the instruction and update EIP to point at the next byte.
• Fetch a displacement for use in the effective address calculation
• Compute the address of the memory operand (EBX+disp) and update EIP to point beyond the

displacement value.
• Fetch the constant value from memory and send it to the ALU.
• Get the value of the source operand from memory and send it to the ALU.
• Instruct the ALU to add the values.
• Store the result back into the memory operand and update the flags register with the result of

the addition operation and update EIP to point beyond the constant’s value.

Although it might seem possible to fetch the constant and the memory operand in the same step (since their
values do not depend upon one another), the CPU can’t actually do this (yet!) because it has only a single
data bus. Since both of these values are coming from memory, we can’t bring them into the CPU during the
same step because the CPU uses the data bus to fetch these two values. In the next section you’ll see how we
can overcome this problem.

By overlapping various stages in the execution of these instructions we’ve been able to substantially
reduce the number of steps (i.e., clock cycles) that the instructions need to complete execution. This process
of executing various steps of the instruction in parallel with other steps is a major key to improving CPU per-
formance without cranking up the clock speed on the chip. In this section we’ve seen how to speed up the
execution of an instruction by doing many of the internal operations of that instruction in parallel. However,
there’s only so much to be gained from this approach. In this approach, the instructions themselves are still
serialized (one instruction completes before the next instruction begins execution). Starting with the next
section we’ll start to see how to overlap the execution of adjacent instructions in order to save additional
cycles.
Page 244 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
4.8.1 The Prefetch Queue – Using Unused Bus Cycles

The key to improving the speed of a processor is to perform operations in parallel. If we were able to do
two operations on each clock cycle, the CPU would execute instructions twice as fast when running at the
same clock speed. However, simply deciding to execute two operations per clock cycle is not so easy. Many
steps in the execution of an instruction share functional units in the CPU (functional units are groups of logic
that perform a common operation, e.g., the ALU and the CU). A functional unit is only capable of one oper-
ation at a time. Therefore, you cannot do two operations that use the same functional unit concurrently (e.g.,
incrementing the EIP register and adding two values together). Another difficulty with doing certain opera-
tions concurrently is that one operation may depend on the other’s result. For example, the two steps of the
ADD instruction that involve adding two values and then storing their sum. You cannot store the sum into a
register until after you’ve computed the sum. There are also some other resources the CPU cannot share
between steps in an instruction. For example, there is only one data bus; the CPU cannot fetch an instruction
opcode at the same time it is trying to store some data to memory. The trick in designing a CPU that executes
several steps in parallel is to arrange those steps to reduce conflicts or add additional logic so the two (or
more) operations can occur simultaneously by executing in different functional units.

Consider again the steps the MOV(mem/reg, reg) instruction requires:

• Fetch the instruction byte from memory.
• Update the EIP register to point at the next byte.
• Decode the instruction to see what it does.
• If required, fetch a displacement operand from memory.
• If required, update EIP to point beyond the displacement.
• Compute the address of the operand, if required (i.e., EBX+xxxx) .
• Fetch the operand.
• Store the fetched value into the destination register

The first operation uses the value of the EIP register (so we cannot overlap incrementing EIP with it)
and it uses the bus to fetch the instruction opcode from memory. Every step that follows this one depends
upon the opcode it fetches from memory, so it is unlikely we will be able to overlap the execution of this step
with any other.

The second and third operations do not share any functional units, nor does decoding an opcode depend
upon the value of the EIP register. Therefore, we can easily modify the control unit so that it increments the
EIP register at the same time it decodes the instruction. This will shave one cycle off the execution of the
MOV instruction.

The third and fourth operations above (decoding and optionally fetching the displacement operand) do
not look like they can be done in parallel since you must decode the instruction to determine if it the CPU
needs to fetch an operand from memory. However, we could design the CPU to go ahead and fetch the oper-
and anyway, so that it’s available if we need it. There is one problem with this idea, though, we must have the
address of the operand to fetch (the value in the EIP register) and if we must wait until we are done incre-
menting the EIP register before fetching this operand. If we are incrementing EIP at the same time we’re
decoding the instruction, we will have to wait until the next cycle to fetch this operand.

Since the next three steps are optional, there are several possible instruction sequences at this point:

#1 (step 4, step 5, step 6, and step 7) – e.g., MOV([ebx+1000], eax)

#2 (step 4, step 5, and step 7) – e.g., MOV(disp, eax) -- assume disp’s address is 1000

#3 (step 6 and step 7) – e.g., MOV([ebx], eax)

#4 (step 7) – e.g., MOV(ebx, eax)

In the sequences above, step seven always relies on the previous steps in the sequence. Therefore, step
seven cannot execute in parallel with any of the other steps. Step six also relies upon step four. Step five can-
not execute in parallel with step four since step four uses the value in the EIP register, however, step five can
execute in parallel with any other step. Therefore, we can shave one cycle off the first two sequences above
as follows:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 245

Chapter Four Volume Two
#1 (step 4, step 5/6, and step 7)

#2 (step 4, step 5/7)

#3 (step 6 and step 7)

#4 (step 7)

Of course, there is no way to overlap the execution of steps seven and eight in the MOV instruction
since it must surely fetch the value before storing it away. By combining these steps, we obtain the following
steps for the MOV instruction:

• Fetch the instruction byte from memory.
• Decode the instruction and update ip
• If required, fetch a displacement operand from memory.
• Compute the address of the operand, if required (i.e., ebx+xxxx) .
• Fetch the operand, if required update EIP to point beyond xxxx.
• Store the fetched value into the destination register

By adding a small amount of logic to the CPU, we’ve shaved one or two cycles off the execution of the
MOV instruction. This simple optimization works with most of the other instructions as well.

Consider what happens with the MOV instruction above executes on a CPU with a 32-bit data bus. If
the MOV instruction fetches an eight-bit displacement from memory, the CPU may actually wind up fetch-
ing the following three bytes after the displacement along with the displacement value (since the 32-bit data
bus lets us fetch four bytes in a single bus cycle). The second byte on the data bus is actually the opcode of
the next instruction. If we could save this opcode until the execution of the next instruction, we could shave
a cycle of its execution time since it would not have to fetch the opcode byte. Furthermore, since the instruc-
tion decoder is idle while the CPU is executing the MOV instruction, we can actually decode the next
instruction while the current instruction is executing, thereby shaving yet another cycle off the execution of
the next instruction. This, effectively, overlaps a portion of the MOV instruction with the beginning of the
execution of the next instruction, allowing additional parallelism.

Can we improve on this? The answer is yes. Note that during the execution of the MOV instruction the
CPU is not accessing memory on every clock cycle. For example, while storing the data into the destination
register the bus is idle. During time periods when the bus is idle we can pre-fetch instruction opcodes and
operands and save these values for executing the next instruction.

The hardware to do this is the prefetch queue. Figure 4.4 shows the internal organization of a CPU with
a prefetch queue. The Bus Interface Unit, as its name implies, is responsible for controlling access to the
address and data busses. Whenever some component inside the CPU wishes to access main memory, it
sends this request to the bus interface unit (or BIU) that acts as a "traffic cop" and handles simultaneous
requests for bus access by different modules (e.g., the execution unit and the prefetch queue).
Page 246 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
Figure 4.4 CPU Design with a Prefetch Queue

Whenever the execution unit is not using the Bus Interface Unit, the BIU can fetch additional bytes from
the instruction stream. Whenever the CPU needs an instruction or operand byte, it grabs the next available
byte from the prefetch queue. Since the BIU grabs four bytes at a time from memory (assuming a 32-bit data
bus) and it generally consumes fewer than four bytes per clock cycle, any bytes the CPU would normally
fetch from the instruction stream will already be sitting in the prefetch queue.

Note, however, that we’re not guaranteed that all instructions and operands will be sitting in the prefetch
queue when we need them. For example, consider the "JNZ Label;" instruction, if it transfers control to
Label, will invalidate the contents of the prefetch queue. If this instruction appears at locations 400 and 401
in memory (it is a two-byte instruction), the prefetch queue will contain the bytes at addresses 402, 403, 404,
405, 406, 407, etc. If the target address of the JNZ instruction is 480, the bytes at addresses 402, 403, 404,
etc., won’t do us any good. So the system has to pause for a moment to fetch the double word at address 480
before it can go on.

Another improvement we can make is to overlap instruction decoding with the last step of the previous
instruction. After the CPU processes the operand, the next available byte in the prefetch queue is an opcode,
and the CPU can decode it in anticipation of its execution. Of course, if the current instruction modifies the
EIP register then any time spent decoding the next instruction goes to waste, but since this occurs in parallel
with other operations, it does not slow down the system (though it does require extra circuitry to do this).

The instruction execution sequence now assumes that the following events occur in the background:

CPU Prefetch Events:

• If the prefetch queue is not full (generally it can hold between eight and thirty-two bytes,
depending on the processor) and the BIU is idle on the current clock cycle, fetch the next dou-

ble word from memory at the address in EIP at the beginning of the clock cycle15.

• If the instruction decoder is idle and the current instruction does not require an instruction
operand, begin decoding the opcode at the front of the prefetch queue (if present), otherwise
begin decoding the byte beyond the current operand in the prefetch queue (if present). If the
desired byte is not in the prefetch queue, do not execute this event.

15. This operation fetches only a byte if ip contains an odd value.

r
e
g
i
s
t
e
r
s

CPU

A
L
U

Control
Unit

Bus
Interface
Unit
(BIU)

Prefetch
Queue

Data

Address

Execution
Unit
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 247

Chapter Four Volume Two
Now let’s reconsider our "mov(reg, reg);" instruction from the previous section. With the addition of
the prefetch queue and the bus interface unit, fetching and decoding opcode bytes, as well as updating the
EIP register, takes place in parallel with the previous instruction. Without the BIU and the prefetch queue,
the "mov(reg, reg);" requires the following steps:

• Fetch the instruction byte from memory.
• Decode the instruction to see what it does.
• Fetch the source register and update the EIP register to point at the next byte.
• Store the fetched value into the destination register

However, now that we can overlap the instruction fetch and decode with the previous instruction, we now get
the following steps:

• Fetch and Decode Instruction - overlapped with previous instruction
• Fetch the source register and update the EIP register to point at the next byte.
• Store the fetched value into the destination register

The instruction execution timings make a few optimistic assumptions, namely that the opcode is already
present in the prefetch queue and that the CPU has already decoded it. If either case is not true, additional
cycles will be necessary so the system can fetch the opcode from memory and/or decode the instruction.

Because they invalidate the prefetch queue, jump and conditional jump instructions (when actually
taken) are much slower than other instructions. This is because the CPU cannot overlap fetching and decod-
ing the opcode for the next instruction with the execution of the jump instruction since the opcode is (proba-
bly) not in the prefetch queue. Therefore, it may take several cycles after the execution of one of these
instructions for the prefetch queue to recover and the CPU is decoding opcodes in parallel with the execution
of previous instructions. The has one very important implication to your programs: if you want to write fast
code, make sure to avoid jumping around in your program as much as possible.

Note that the conditional jump instructions only invalidate the prefetch queue if they actually make the
jump. If the condition is false, they fall through to the next instruction and continue to use the values in the
prefetch queue as well as any pre-decoded instruction opcodes. Therefore, if you can determine, while writ-
ing the program, which condition is most likely (e.g., less than vs. not less than), you should arrange your
program so that the most common case falls through and conditional jump rather than take the branch.

Instruction size (in bytes) can also affect the performance of the prefetch queue. The longer the instruc-
tion, the faster the CPU will empty the prefetch queue. Instructions involving constants and memory oper-
ands tend to be the largest. If you place a string of these in a row, the CPU may wind up having to wait
because it is removing instructions from the prefetch queue faster than the BIU is copying data to the
prefetch queue. Therefore, you should attempt to use shorter instructions whenever possible since they will
improve the performance of the prefetch queue.

Usually, including the prefetch queue improves performance. That’s why Intel provides the prefetch
queue on every model of the 80x86, from the 8088 on up. On these processors, the BIU is constantly fetch-
ing data for the prefetch queue whenever the program is not actively reading or writing data.

Prefetch queues work best when you have a wide data bus. The 8086 processor runs much faster than
the 8088 because it can keep the prefetch queue full with fewer bus accesses. Don’t forget, the CPU needs to
use the bus for other purposes than fetching opcodes, displacements, and immediate constants. Instructions
that access memory compete with the prefetch queue for access to the bus (and, therefore, have priority). If
you have a sequence of instructions that all access memory, the prefetch queue may become empty if there
are only a few bus cycles available for filling the prefetch queue during the execution of these instructions.
Of course, once the prefetch queue is empty, the CPU must wait for the BIU to fetch new opcodes from
memory, slowing the program.

A wider data bus allows the BIU to pull in more prefetch queue data in the few bus cycles available for
this purpose, so it is less likely the prefetch queue will ever empty out with a wider data bus. Executing
shorter instructions also helps keep the prefetch queue full. The reason is that the prefetch queue has time to
refill itself with the shorter instructions. Moral of the story: when programming a processor with a prefetch
queue, always use the shortest instructions possible to accomplish a given task.
Page 248 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
4.8.2 Pipelining – Overlapping the Execution of Multiple Instructions

Executing instructions in parallel using a bus interface unit and an execution unit is a special case of
pipelining. The 80x86 family, starting with the 80486, incorporates pipelining to improve performance. With
just a few exceptions, we’ll see that pipelining allows us to execute one instruction per clock cycle.

The advantage of the prefetch queue was that it let the CPU overlap instruction fetching and decoding
with instruction execution. That is, while one instruction is executing, the BIU is fetching and decoding the
next instruction. Assuming you’re willing to add hardware, you can execute almost all operations in parallel.
That is the idea behind pipelining.

4.8.2.1 A Typical Pipeline

Consider the steps necessary to do a generic operation:

• Fetch opcode.
• Decode opcode and (in parallel) prefetch a possible displacement or constant operand (or both)
• Compute complex addressing mode (e.g., [ebx+xxxx]), if applicable.
• Fetch the source value from memory (if a memory operand) and the destination register value

(if applicable).
• Compute the result.
• Store result into destination register.

Assuming you’re willing to pay for some extra silicon, you can build a little “mini-processor” to handle
each of the above steps. The organization would look something like Figure 4.5.

Figure 4.5 A Pipelined Implementation of Instruction Execution

Note how we’ve combined some stages from the previous section. For example, in stage four of Figure
4.5 the CPU fetches the source and destination operands in the same step. You can do this by putting multi-
ple data paths inside the CPU (e.g., from the registers to the ALU) and ensuring that no two operands ever
compete for simultaneous use of the data bus (i.e., no memory-to-memory operations).

If you design a separate piece of hardware for each stage in the pipeline above, almost all these steps
can take place in parallel. Of course, you cannot fetch and decode the opcode for more than one instruction
at the same time, but you can fetch one opcode while decoding the previous instruction. If you have an
n-stage pipeline, you will usually have n instructions executing concurrently.

Stage 1 2 3 4 5 6
Fetch
Opcode

Decode
Opcode &
Prefetch
Operand

Compute
Effective
Address

Fetch
Source &
Dest
Values

Compute
Result

Store
Result
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 249

Chapter Four Volume Two
Figure 4.6 Instruction Execution in a Pipeline

Figure 4.6 shows pipelining in operatoin. T1, T2, T3, etc., represent consecutive “ticks” of the system
clock. At T=T1 the CPU fetches the opcode byte for the first instruction.

At T=T2, the CPU begins decoding the opcode for the first instruction. In parallel, it fetches a block of
bytes from the prefetch queue in the event the instruction has an operand. Since the first instruction no longer
needs the opcode fetching circuitry, the CPU instructs it to fetch the opcode of the second instruction in par-
allel with the decoding of the first instruction. Note there is a minor conflict here. The CPU is attempting to
fetch the next byte from the prefetch queue for use as an operand, at the same time it is fetching operand data
from the prefetch queue for use as an opcode. How can it do both at once? You’ll see the solution in a few
moments.

At T=T3 the CPU computes an operand address for the first instruction, if any. The CPU does nothing
on the first instruction if it does not use an addressing mode requiring such computation. During T3, the
CPU also decodes the opcode of the second instruction and fetches any necessary operand. Finally the CPU
also fetches the opcode for the third instruction. With each advancing tick of the clock, another step in the
execution of each instruction in the pipeline completes, and the CPU fetches yet another instruction from
memory.

This process continues until at T=T6 the CPU completes the execution of the first instruction, computes
the result for the second, etc., and, finally, fetches the opcode for the sixth instruction in the pipeline. The
important thing to see is that after T=T5 the CPU completes an instruction on every clock cycle. Once the
CPU fills the pipeline, it completes one instruction on each cycle. Note that this is true even if there are com-
plex addressing modes to be computed, memory operands to fetch, or other operations which use cycles on a
non-pipelined processor. All you need to do is add more stages to the pipeline, and you can still effectively
process each instruction in one clock cycle.

A bit earlier you saw a small conflict in the pipeline organization. At T=T2, for example, the CPU is
attempting to prefetch a block of bytes for an operand and at the same time it is trying to fetch the next
opcode byte. Until the CPU decodes the first instruction it doesn’t know how many operands the instruction
requires nor does it know their length. However, the CPU needs to know this information to determine the
length of the instruction so it knows what byte to fetch as the opcode of the next instruction. So how can the
pipeline fetch an instruction opcode in parallel with an address operand?

One solution is to disallow this. If an instruction as an address or constant operand, we simply delay the
start of the next instruction (this is known as a hazard as you shall soon see). Unfortunately, many instruc-
tions have these additional operands, so this approach will have a substantial negative impact on the execu-
tion speed of the CPU.

The second solution is to throw (a lot) more hardware at the problem. Operand and constant sizes usu-
ally come in one, two, and four-byte lengths. Therefore, if we actually fetch three bytes from memory, at
offsets one, three, and five, beyond the current opcode we are decoding, we know that one of these bytes will
probably contain the opcode of the next instruction. Once we are through decoding the current instruction
we know how long it will be and, therefore, we know the offset of the next opcode. We can use a simple data
selector circuit to choose which of the three opcode bytes we want to use.

In actual practice, we have to select the next opcode byte from more than three candidates because
80x86 instructions take many different lengths. For example, an instruction that moves a 32-bit constant to a
memory location can be ten or more bytes long. And there are instruction lengths for nearly every value

T1 T2 T3 T4 T5 T6 T7 T8 T9...
Opcode Decode Address Values Compute Store

Opcode Decode Address Values Compute Store

Opcode Decode Address Values Compute Store

Opcode Decode Address Values Compute Store

Instruction #1

Instruction #2

Instruction #3
Page 250 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
between one and fifteen bytes. Also, some opcodes on the 80x86 are longer than one byte, so the CPU may
have to fetch multiple bytes in order to properly decode the current instruction. Nevertheless, by throwing
more hardware at the problem we can decode the current opcode at the same time we’re fetching the next.

4.8.2.2 Stalls in a Pipeline

Unfortunately, the scenario presented in the previous section is a little too simplistic. There are two
drawbacks to that simple pipeline: bus contention among instructions and non-sequential program execu-
tion. Both problems may increase the average execution time of the instructions in the pipeline.

Bus contention occurs whenever an instruction needs to access some item in memory. For example, if a
"mov(reg, mem);" instruction needs to store data in memory and a "mov(mem, reg);" instruction is reading
data from memory, contention for the address and data bus may develop since the CPU will be trying to
simultaneously fetch data and write data in memory.

One simplistic way to handle bus contention is through a pipeline stall. The CPU, when faced with con-
tention for the bus, gives priority to the instruction furthest along in the pipeline. The CPU suspends fetching
opcodes until the current instruction fetches (or stores) its operand. This causes the new instruction in the
pipeline to take two cycles to execute rather than one (see Figure 4.7).

Figure 4.7 A Pipeline Stall

This example is but one case of bus contention. There are many others. For example, as noted earlier,
fetching instruction operands requires access to the prefetch queue at the same time the CPU needs to fetch
an opcode. Given the simple scheme above, it’s unlikely that most instructions would execute at one clock
per instruction (CPI).

Fortunately, the intelligent use of a cache system can eliminate many pipeline stalls like the ones dis-
cussed above. The next section on caching will describe how this is done. However, it is not always possible,
even with a cache, to avoid stalling the pipeline. What you cannot fix in hardware, you can take care of with
software. If you avoid using memory, you can reduce bus contention and your programs will execute faster.
Likewise, using shorter instructions also reduces bus contention and the possibility of a pipeline stall.

What happens when an instruction modifies the EIP register? This, of course, implies that the next set of
instructions to execute do not immediately follow the instruction that modifies EIP. By the time the instruc-
tion

JNZ Label;

completes execution (assuming the zero flag is clear so the branch is taken), we’ve already started five other
instructions and we’re only one clock cycle away from the completion of the first of these. Obviously, the
CPU must not execute those instructions or it will compute improper results.

T1 T2 T3 T4 T5 T6 T7 T8 T9...
Opcode Decode Address Values Compute Store

Opcode Decode Address Values Compute Store

Opcode Decode Address Values Compute Store

Instruction #1

Instruction #2

Pipeline stall occurs here because instruction #1
is attempting to store a value to memory at the
same time instruction #2 is attempting to read
a value from memory.

Instruction #3 appears
to take two clock cycles
to execute because of
the pipeline stall.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 251

Chapter Four Volume Two
The only reasonable solution is to flush the entire pipeline and begin fetching opcodes anew. However,
doing so causes a severe execution time penalty. It will take six clock cycles (the length of the pipeline in our
examples) before the next instruction completes execution. Clearly, you should avoid the use of instructions
which interrupt the sequential execution of a program. This also shows another problem – pipeline length.
The longer the pipeline is, the more you can accomplish per cycle in the system. However, lengthening a
pipeline may slow a program if it jumps around quite a bit. Unfortunately, you cannot control the number of
stages in the pipeline16. You can, however, control the number of transfer instructions which appear in your
programs. Obviously you should keep these to a minimum in a pipelined system.

4.8.3 Instruction Caches – Providing Multiple Paths to Memory

System designers can resolve many problems with bus contention through the intelligent use of the
prefetch queue and the cache memory subsystem. They can design the prefetch queue to buffer up data from
the instruction stream, and they can design the cache with separate data and code areas. Both techniques can
improve system performance by eliminating some conflicts for the bus.

The prefetch queue simply acts as a buffer between the instruction stream in memory and the opcode
fetching circuitry. The prefetch queue works well when the CPU isn’t constantly accessing memory. When
the CPU isn’t accessing memory, the BIU can fetch additional instruction opcodes for the prefetch queue.
Alas, the pipelined 80x86 CPUs are constantly accessing memory since they fetch an opcode byte on every
clock cycle. Therefore, the prefetch queue cannot take advantage of any “dead” bus cycles to fetch additional
opcode bytes – there aren’t any “dead” bus cycles. However, the prefetch queue is still valuable for a very
simple reason: the BIU fetches multiple bytes on each memory access and most instructions are shorter.
Without the prefetch queue, the system would have to explicitly fetch each opcode, even if the BIU had
already “accidentally” fetched the opcode along with the previous instruction. With the prefetch queue, how-
ever, the system will not refetch any opcodes. It fetches them once and saves them for use by the opcode
fetch unit.

For example, if you execute two one-byte instructions in a row, the BIU can fetch both opcodes in one
memory cycle, freeing up the bus for other operations. The CPU can use these available bus cycles to fetch
additional opcodes or to deal with other memory accesses.

Of course, not all instructions are one byte long. The 80x86 has a large number of different instruction
sizes. If you execute several large instructions in a row, you’re going to run slower. Once again we return to
that same rule: the fastest programs are the ones which use the shortest instructions. If you can use shorter
instructions to accomplish some task, do so.

Suppose, for a moment, that the CPU has two separate memory spaces, one for instructions and one for
data, each with their own bus. This is called the Harvard Architecture since the first such machine was built
at Harvard. On a Harvard machine there would be no contention for the bus. The BIU could continue to fetch
opcodes on the instruction bus while accessing memory on the data/memory bus (see Figure 4.8),

16. Note, by the way, that the number of stages in an instruction pipeline varies among CPUs.
Page 252 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
Figure 4.8 A Typical Harvard Machine

In the real world, there are very few true Harvard machines. The extra pins needed on the processor to
support two physically separate busses increase the cost of the processor and introduce many other engineer-
ing problems. However, microprocessor designers have discovered that they can obtain many benefits of the
Harvard architecture with few of the disadvantages by using separate on-chip caches for data and instruc-
tions. Advanced CPUs use an internal Harvard architecture and an external Von Neumann architecture. Fig-
ure 4.9 shows the structure of the 80x86 with separate data and instruction caches.

Figure 4.9 Using Separate Code and Data Caches

CPU

I/O Subsystem

Data Memory

Instruction Memory

Data/Memory Bus

Instruction Bus

Data
Cache BIU

Instruction
Cache

Prefetch
Queue

Data/Address
Busses

Exe-
cution
Unit
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 253

Chapter Four Volume Two
Each path inside the CPU represents an independent bus. Data can flow on all paths concurrently. This
means that the prefetch queue can be pulling instruction opcodes from the instruction cache while the execu-
tion unit is writing data to the data cache. Now the BIU only fetches opcodes from memory whenever it can-
not locate them in the instruction cache. Likewise, the data cache buffers memory. The CPU uses the
data/address bus only when reading a value which is not in the cache or when flushing data back to main
memory.

Although you cannot control the presence, size, or type of cache on a CPU, as an assembly language
programmer you must be aware of how the cache operates to write the best programs. On-chip level one
instruction caches are generally quite small (8,192 bytes on the 80486, for example). Therefore, the shorter
your instructions, the more of them will fit in the cache (getting tired of “shorter instructions” yet?). The
more instructions you have in the cache, the less often bus contention will occur. Likewise, using registers to
hold temporary results places less strain on the data cache so it doesn’t need to flush data to memory or
retrieve data from memory quite so often. Use the registers wherever possible!

4.8.4 Hazards

There is another problem with using a pipeline: the data hazard. Let’s look at the execution profile for
the following instruction sequence:

mov(Somevar, ebx);
mov([ebx], eax);

When these two instructions execute, the pipeline will look something like shown in Figure 4.10:

Figure 4.10 A Data Hazard

Note a major problem here. These two instructions fetch the 32 bit value whose address appears at loca-
tion &SomeVar in memory. But this sequence of instructions won’t work properly! Unfortunately, the second
instruction has already used the value in EBX before the first instruction loads the contents of memory loca-
tion &SomeVar (T4 & T6 in the diagram above).

CISC processors, like the 80x86, handle hazards automatically17. However, they will stall the pipeline
to synchronize the two instructions. The actual execution would look something like shown in Figure 4.11.

17. Some RISC chips do not. If you tried this sequence on certain RISC chips you would get an incorrect answer.

into ebx

T1 T2 T3 T4 T5 T6 T7 ...
Operand Address Store mov(SomeVar, ebx);

mov([ebx], eax);

Opcode

Operand Load Load StoreOpcode

&SomeVar ***

ebx [ebx] into eax

from SomeVar

Load Compute

Address
Page 254 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
Figure 4.11 How the 80x86 Handles a Data Hazard

By delaying the second instruction two clock cycles, the CPU guarantees that the load instruction will
load EAX from the proper address. Unfortunately, the second load instruction now executes in three clock
cycles rather than one. However, requiring two extra clock cycles is better than producing incorrect results.
Fortunately, you can reduce the impact of hazards on execution speed within your software.

Note that the data hazard occurs when the source operand of one instruction was a destination operand
of a previous instruction. There is nothing wrong with loading EBX from SomeVar and then loading EAX
from [EBX], unless they occur one right after the other. Suppose the code sequence had been:

mov(2000, ecx);
mov(SomeVar, ebx);
mov([ebx], eax);

We could reduce the effect of the hazard that exists in this code sequence by simply rearranging the
instructions. Let’s do that and obtain the following:

mov(SomeVar, ebx);
mov(2000, ecx);
mov([ebx], eax);

Now the "mov([ebx], eax);" instruction requires only one additional clock cycle rather than two. By insert-
ing yet another instruction between the "mov(SomeVar, ebx);" and the "mov([ebx], eax);" instructions you
can eliminate the effects of the hazard altogether18.

On a pipelined processor, the order of instructions in a program may dramatically affect the perfor-
mance of that program. Always look for possible hazards in your instruction sequences. Eliminate them
wherever possible by rearranging the instructions.

In addition to data hazards, there are also control hazards. We’ve actually discussed control hazards
already, although we did not refer to them by that name. A control hazard occurs whenever the CPU
branches to some new location in memory and the CPU has to flush the following instructions following the
branch that are in various stages of execution.

4.8.5 Superscalar Operation– Executing Instructions in Parallel

With the pipelined architecture we could achieve, at best, execution times of one CPI (clock per instruc-
tion). Is it possible to execute instructions faster than this? At first glance you might think, “Of course not,
we can do at most one operation per clock cycle. So there is no way we can execute more than one instruc-
tion per clock cycle.” Keep in mind however, that a single instruction is not a single operation. In the exam-
ples presented earlier each instruction has taken between six and eight operations to complete. By adding
seven or eight separate units to the CPU, we could effectively execute these eight operations in one clock

18. Of course, any instruction you insert at this point must not modify the values in the eax and ebx registers. Also note that
the examples in this section are contrived to demonstrate pipeline stalls. Actual 80x86 CPUs have additional circuitry to help
reduce the effect of pipeline stalls on the execution time.

into ebx

T3 T4 T5 T6 T7 ...

Address Store mov(SomeVar, ebx);

mov([ebx], eax);Operand Load Load Store

ebx [ebx] into eax

from
SomeVar

Load Compute

Address Delay Delay
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 255

Chapter Four Volume Two
cycle, yielding one CPI. If we add more hardware and execute, say, 16 operations at once, can we achieve
0.5 CPI? The answer is a qualified “yes.” A CPU including this additional hardware is a superscalar CPU
and can execute more than one instruction during a single clock cycle. The 80x86 family began supporting
superscalar execution with the introduction of the Pentium processor.

A superscalar CPU has, essentially, several execution units (see Figure 4.12). If it encounters two or
more instructions in the instruction stream (i.e., the prefetch queue) which can execute independently, it will
do so.

Figure 4.12 A CPU that Supports Superscalar Operation

There are a couple of advantages to going superscalar. Suppose you have the following instructions in
the instruction stream:

mov(1000, eax);
mov(2000, ebx);

If there are no other problems or hazards in the surrounding code, and all six bytes for these two instructions
are currently in the prefetch queue, there is no reason why the CPU cannot fetch and execute both instruc-
tions in parallel. All it takes is extra silicon on the CPU chip to implement two execution units.

Besides speeding up independent instructions, a superscalar CPU can also speed up program sequences
which have hazards. One limitation of superscalar CPU is that once a hazard occurs, the offending instruc-
tion will completely stall the pipeline. Every instruction which follows will also have to wait for the CPU to
synchronize the execution of the instructions. With a superscalar CPU, however, instructions following the
hazard may continue execution through the pipeline as long as they don’t have hazards of their own. This
alleviates (though does not eliminate) some of the need for careful instruction scheduling.

As an assembly language programmer, the way you write software for a superscalar CPU can dramati-
cally affect its performance. First and foremost is that rule you’re probably sick of by now: use short instruc-
tions. The shorter your instructions are, the more instructions the CPU can fetch in a single operation and,
therefore, the more likely the CPU will execute faster than one CPI. Most superscalar CPUs do not com-
pletely duplicate the execution unit. There might be multiple ALUs, floating point units, etc. This means that
certain instruction sequences can execute very quickly while others won’t. You have to study the exact com-
position of your CPU to decide which instruction sequences produce the best performance.

Superscalar CPU

Data/Address
Busses

B

I

U

Instruction
Cache

Prefetch
Queue

D
a
t
a

C
a
c
h
e

E
x
e
c
u
t
i
o
n

U
n
i
t

#
2

E
x
e
c
u
t
i
o
n

U
n
i
t

#
1

Page 256 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
4.8.6 Out of Order Execution

In a standard superscalar CPU it is the programmer’s (or compiler’s) responsibility to schedule
(arrange) the instructions to avoid hazards and pipeline stalls. Fancier CPUs can actually remove some of
this burden and improve performance by automatically rescheduling instructions while the program exe-
cutes. To understand how this is possible, consider the following instruction sequence:

mov(SomeVar, ebx);
mov([ebx], eax);
mov(2000, ecx);

A data hazard exists between the first and second instructions above. The second instruction must delay
until the first instruction completes execution. This introduces a pipeline stall and increases the running time
of the program. Typically, the stall affects every instruction that follows. However, note that the third
instruction’s execution does not depend on the result from either of the first two instructions. Therefore,
there is no reason to stall the execution of the "mov(2000, ecx);" instruction. It may continue executing
while the second instruction waits for the first to complete. This technique, appearing in later members of
the Pentium line, is called "out of order execution" because the CPU completes the execution of some
instruction prior to the execution of previous instructions appearing in the code stream.

Clearly, the CPU may only execute instruction out of sequence if doing so produces exactly the same
results as in-order execution. While there a lots of little technical issues that make this problem a little more
difficult than it seems, with enough engineering effort it is quite possible to implement this feature.

Although you might think that this extra effort is not worth it (why not make it the programmer’s or
compiler’s responsibility to schedule the instructions) there are some situations where out of order execution
will improve performance that static scheduling could not handle.

4.8.7 Register Renaming

One problem that hampers the effectiveness of superscalar operation on the 80x86 CPU is the 80x86’s
limited number of general purpose registers. Suppose, for example, that the CPU had four different pipe-
lines and, therefore, was capable of executing four instructions simultaneously. Actually achieving four
instructions per clock cycle would be very difficult because most instructions (that can execute simulta-
neously with other instructions) operate on two register operands. For four instructions to execute concur-
rently, you’d need four separate destination registers and four source registers (and the two sets of registers
must be disjoint, that is, a destination register for one instruction cannot be the source of another). CPUs
that have lots of registers can handle this task quite easily, but the limited register set of the 80x86 makes this
difficult. Fortunately, there is a way to alleviate part of the problem: through register renaming.

Register renaming is a sneaky way to give a CPU more registers than it actually has. Programmers will
not have direct access to these extra registers, but the CPU can use these additional register to prevent haz-
ards in certain cases. For example, consider the following short instruction sequence:

mov(0, eax);
mov(eax, i);
mov(50, eax);
mov(eax, j);

Clearly a data hazard exists between the first and second instructions and, likewise, a data hazard exists
between the third and fourth instructions in this sequence. Out of order execution in a superscalar CPU
would normally allow the first and third instructions to execute concurrently and then the second and fourth
instructions could also execute concurrently. However, a data hazard, of sorts, also exists between the first
and third instructions since they use the same register. The programmer could have easily solved this prob-
lem by using a different register (say EBX) for the third and fourth instructions. However, let’s assume that
the programmer was unable to do this because the other registers are all holding important values. Is this
sequence doomed to executing in four cycles on a superscalar CPU that should only require two?
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 257

Chapter Four Volume Two
One advanced trick a CPU can employ is to create a bank of registers for each of the general purpose
registers on the CPU. That is, rather than having a single EAX register, the CPU could support an array of
EAX registers; let’s call these registers EAX[0], EAX[1], EAX[2], etc. Similarly, you could have an array
of each of the registers, so we could also have EBX[0]..EBX[n], ECX[0]..ECX[n], etc. Now the instruction
set does not give the programmer the ability to select one of these specific register array elements for a given
instruction, but the CPU can automatically choose a different register array element if doing so would not
change the overall computation and doing so could speed up the execution of the program. For example,
consider the following sequence (with register array elements automatically chosen by the CPU):

mov(0, eax[0]);
mov(eax[0], i);
mov(50, eax[1]);
mov(eax[1], j);

Since EAX[0] and EAX[1] are different registers, the CPU can execute the first and third instructions con-
currently. Likewise, the CPU can execute the second and fourth instructions concurrently.

The code above provides an example of register renaming. Dynamically, the CPU automatically selects
one of several different elements from a register array in order to prevent data hazards. Although this is a
simple example, and different CPUs implement register renaming in many different ways, this example does
demonstrate how the CPU can improve performance in certain instances through the use of this technique.

4.8.8 Very Long Instruction Word Architecture (VLIW)

Superscalar operation attempts to schedule, in hardware, the execution of multiple instructions simulta-
neously. Another technique that Intel is using in their IA-64 architecture is the use of very long instruction
words, or VLIW. In a VLIW computer system, the CPU fetches a large block of bytes (41 in the case of the
IA-64 Itanium CPU) and decodes and executes this block all at once. This block of bytes usually contains
two or more instructions (three in the case of the IA-64). VLIW computing requires the programmer or
compiler to properly schedule the instructions in each block (so there are no hazards or other conflicts), but
if properly scheduled, the CPU can execute three or more instructions per clock cycle.

The Intel IA-64 Architecture is not the only computer system to employ a VLIW architecture. Trans-
meta’s Crusoe processor family also uses a VLIW architecture. The Crusoe processor is different than the
IA-64 architecture insofar as it does not support native execution of IA-32 instructions. Instead, the Crusoe
processor dynamically translates 80x86 instructions to Crusoe’s VLIW instructions. This "code morphing"
technology results in code running about 50% slower than native code, though the Crusoe processor has
other advantages.

We will not consider VLIW computing any further since the IA-32 architecture does not support it. But
keep this architectural advance in mind if you move towards the IA-64 family or the Crusoe family.

4.8.9 Parallel Processing

Most of the techniques for improving CPU performance via architectural advances involve the parallel
(overlapped) execution of instructions. Most of the techniques of this chapter are transparent to the pro-
grammer. That is, the programmer does not have to do anything special to take minimal advantage of the
parallel operation of pipelines and superscalar operations. True, if programmers are aware of the underlying
architecture they can write code that runs even faster, but these architectural advances often improve perfor-
mance even if programmers do not write special code to take advantage of them.

The only problem with this approach (attempting to dynamically parallelize an inherently sequential
program) is that there is only so much you can do to parallelize a program that requires sequential execution
for proper operation (which covers most programs). To truly produce a parallel program, the programmer
must specifically write parallel code; of course, this does require architectural support from the CPU. This
section and the next touches on the types of support a CPU can provide.
Page 258 © 2001, By Randall Hyde Beta Draft - Do not distribute

CPU Architecture
Typical CPUs use what is known as the SISD model: Single Instruction, Single Data. This means that
the CPU executes one instruction at a time that operates on a single piece of data19. Two common parallel
models are the so-called SIMD (Single Instruction, Multiple Data) and MIMD (Multiple Instruction, Multi-
ple Data) models. As it turns out, x86 systems can support both of these parallel execution models.

In the SIMD model, the CPU executes a single instruction stream, just like the standard SISD model.
However, the CPU executes the specified operation on multiple pieces of data concurrently rather than a sin-
gle data object. For example, consider the 80x86 ADD instruction. This is a SISD instruction that operates
on (that is, produces) a single piece of data; true, the instruction fetches values from two source operands
and stores a sum into a destination operand but the end result is that the ADD instruction will only produce a
single sum. An SIMD version of ADD, on the other hand, would compute the sum of several values simul-
taneously. The Pentium III’s MMX and SIMD instruction extensions operate in exactly this fashion. With
an MMX instruction, for example, you can add up to eight separate pairs of values with the execution of a
single instruction. The aptly named SIMD instruction extensions operate in a similar fashion.

Note that SIMD instructions are only useful in specialized situations. Unless you have an algorithm that
can take advantage of SIMD instructions, they’re not that useful. Fortunately, high-speed 3-D graphics and
multimedia applications benefit greatly from these SIMD (and MMX) instructions, so their inclusion in the
80x86 CPU offers a huge performance boost for these important applications.

The MIMD model uses multiple instructions, operating on multiple pieces of data (usually one instruc-
tion per data object, though one of these instructions could also operate on multiple data items). These mul-
tiple instructions execute independently of one another. Therefore, it’s very rare that a single program (or,
more specifically, a single thread of execution) would use the MIMD model. However, if you have a multi-
programming environment with multiple programs attempting to execute concurrently in memory, the
MIMD model does allow each of those programs to execute their own code stream concurrently. This type
of parallel system is usually called a multiprocessor system. Multiprocessor systems are the subject of the
next section.

The common computation models are SISD, SIMD, and MIMD. If you’re wondering if there is a MISD
model (Multiple Instruction, Single Data) the answer is no. Such an architecture doesn’t really make sense.

4.8.10 Multiprocessing

Pipelining, superscalar operation, out of order execution, and VLIW design are techniques CPU design-
ers use in order to execute several operations in parallel. These techniques support fine-grained parallel-
ism20 and are useful for speeding up adjacent instructions in a computer system. If adding more functional
units increases parallelism (and, therefore, speeds up the system), you might wonder what would happen if
you added two CPUs to the system. This technique, known as multiprocessing, can improve system perfor-
mance, though not as uniformly as other techniques. As noted in the previous section, a multiprocessor sys-
tem uses the MIMD parallel execution model.

The techniques we’ve considered to this point don’t require special programming to realize a perfor-
mance increase. True, if you do pay attention you will get better performance; but no special programming
is necessary to activate these features. Multiprocessing, on the other hand, doesn’t help a program one bit
unless that program was specifically written to use multiprocessor (or runs under an O/S specfically written
to support multiprocessing). If you build a system with two CPUs, those CPUs cannot trade off executing
alternate instructions within a program. In fact, it is very expensive (timewise) to switch the execution of a
program from one processor to another. Therefore, multiprocessor systems are really only effective in a sys-
tem that execute multiple programs concurrently (i.e., a multitasking system)21. To differentiate this type of
parallelism from that afforded by pipelining and superscalar operation, we’ll call this kind of parallelism
coarse-grained parallelism.

19. We will ignore the parallelism provided by pipelining and superscalar operation in this discussion.
20. For our purposes, fine-grained parallelism means that we are executing adjacent program instructions in parallel.
21. Technically, it only needs to execute multiple threads concurrently, but we’ll ignore this distinction here since the techni-
cal distinction between threads and programs/processes is beyond the scope of this chapter.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 259

Chapter Four Volume Two
Adding multiple processors to a system is not as simple as wiring the processor to the motherboard. A
big problem with multiple processors is the cache coherency problem. To understand this problem, consider
two separate programs running on separate processors in a multiprocessor system. Suppose also that these
two processor communicate with one another by writing to a block of shared physical memory. Unfortu-
nately, when CPU #1 writes to this block of addresses the CPU caches the data up and might not actually
write the data to physical memory for some time. Simultaneously, CPU #2 might be attempting to read this
block of shared memory but winds up reading the data out of its local cache rather than the data that CPU #1
wrote to the block of shared memory (assuming the data made it out of CPU #1’s local cache). In order for
these two functions to operate properly, the two CPU’s must communicate writes to common memory
addresses in cache between themselves. This is a very complex and involved process.

Currently, the Pentium III and IV processors directly support cache updates between two CPUs in a sys-
tem. Intel also builds a more expensive processor, the XEON, that supports more than two CPUs in a sys-
tem. However, one area where the RISC CPUs have a big advantage over Intel is in the support for multiple
processors in a system. While Intel systems reach a point of diminishing returns at about 16 processors, Sun
SPARC and other RISC processors easily support 64-CPU systems (with more arriving, it seems, every day).
This is why large databases and large web server systems tend to use expensive UNIX-based RISC systems
rather than x86 systems.

4.9 Putting It All Together

The performance of modern CPUs is intrinsically tied to the architecture of that CPU. Over the past
half century there have been many major advances in CPU design that have dramatically improved pre-
formance. Although the clock frequency has improved by over four orders of magnitude during this time
period, other improvements have added one or two orders of magnitude improvement as well. Over the
80x86’s lifetime, performance has improved 10,000-fold.

Unfortunately, the 80x86 family has just about pushed the limits of what it can achieve by extending the
architecture. Perhaps another order of manitude is possible, but Intel is reaching the point of diminishing
returns. Having realized this, Intel has chosen to implement a new architecture using VLIW for their IA-64
family. Only time will prove whether their approach is the correct one, but most people believe that the
IA-32 has reached the end of its lifetime. On the other hand, people have been announcing the death of the
IA-32 for the past decade, so we’ll see what happens now.
Page 260 © 2001, By Randall Hyde Beta Draft - Do not distribute

Instruction Set Architecture
Instruction Set Architecture Chapter Five

5.1 Chapter Overview

This chapter discusses the low-level implementation of the 80x86 instruction set. It describes how the
Intel engineers decided to encode the instructions in a numeric format (suitable for storage in memory) and
it discusses the trade-offs they had to make when designing the CPU. This chapter also presents a historical
background of the design effort so you can better understand the compromises they had to make.

5.2 The Importance of the Design of the Instruction Set

In this chapter we will be exploring one of the most interesting and important aspects of CPU design:
the design of the CPU’s instruction set. The instruction set architecture (or ISA) is one of the most important
design issues that a CPU designer must get right from the start. Features like caches, pipelining, superscalar
implementation, etc., can all be grafted on to a CPU design long after the original design is obsolete. How-
ever, it is very difficult to change the instructions a CPU executes once the CPU is in production and people
are writing software that uses those instructions. Therefore, one must carefully choose the instructions for a
CPU.

You might be tempted to take the "kitchen sink" approach to instruction set design1 and include as many
instructions as you can dream up in your instruction set. This approach fails for several reasons we’ll dis-
cuss in the following paragraphs. Instruction set design is the epitome of compromise management. Good
CPU design is the process of selecting what to throw out rather than what to leave in. It’s easy enough to say
"let’s include everything." The hard part is deciding what to leave out once you realize you can’t put every-
thing on the chip.

Nasty reality #1: Silicon real estate. The first problem with "putting it all on the chip" is that each fea-
ture requires some number of transistors on the CPU’s silicon die. CPU designers work with a "silicon bud-
get" and are given a finite number of transistors to work with. This means that there aren’t enough
transistors to support "putting all the features" on a CPU. The original 8086 processor, for example, had a
transistor budget of less than 30,000 transistors. The Pentium III processor had a budget of over eight mil-
lion transistors. These two budgets reflect the differences in semiconductor technology in 1978 vs. 1998.

Nasty reality #2: Cost. Although it is possible to use millions of transistors on a CPU today, the more
transistors you use the more expensive the CPU. Pentium III processors, for example, cost hundreds of dol-
lars (circa 2000). A CPU with only 30,000 transistors (also circa 2000) would cost only a few dollars. For
low-cost systems it may be more important to shave some features and use fewer transistors, thus lowering
the CPU’s cost.

Nasty reality #3: Expandability. One problem with the "kitchen sink" approach is that it’s very diffi-
cult to anticipate all the features people will want. For example, Intel’s MMX and SIMD instruction
enhancements were added to make multimedia programming more practical on the Pentium processor.
Back in 1978 very few people could have possibly anticipated the need for these instructions.

Nasty reality #4: Legacy Support. This is almost the opposite of expandability. Often it is the case
that an instruction the CPU designer feels is important turns out to be less useful than anticipated. For exam-
ple, the LOOP instruction on the 80x86 CPU sees very little use in modern high-performance programs.
The 80x86 ENTER instruction is another good example. When designing a CPU using the "kitchen sink"
approach, it is often common to discover that programs almost never use some of the available instructions.
Unfortunately, you cannot easily remove instructions in later versions of a processor because this will break
some existing programs that use those instructions. Generally, once you add an instruction you have to sup-
port it forever in the instruction set. Unless very few programs use the instruction (and you’re willing to let

1. As in "Everything, including the kitchen sink."
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 261

Chapter Five Volume Two
them break) or you can automatically simulate the instruction in software, removing instructions is a very
difficult thing to do.

Nasty reality #4: Complexity. The popularity of a new processor is easily measured by how much
software people write for that processor. Most CPU designs die a quick death because no one writes soft-
ware specific to that CPU. Therefore, a CPU designer must consider the assembly programmers and com-
piler writers who will be using the chip upon introduction. While a "kitchen sink" approach might seem to
appeal to such programmers, the truth is no one wants to learn an overly complex system. If your CPU does
everything under the sun, this might appeal to someone who is already familiar with the CPU. However, pity
the poor soul who doesn’t know the chip and has to learn it all at once.

These problems with the "kitchen sink" approach all have a common solution: design a simple instruc-
tion set to begin with and leave room for later expansion. This is one of the main reasons the 80x86 has
proven to be so popular and long-lived. Intel started with a relatively simple CPU and figured out how to
extend the instruction set over the years to accommodate new features.

5.3 Basic Instruction Design Goals

In a typical Von Neumann architecture CPU, the computer encodes CPU instructions as numeric values
and stores these numeric values in memory. The encoding of these instructions is one of the major tasks in
instruction set design and requires very careful thought.

To encode an instruction we must pick a unique numeric opcode value for each instruction (clearly, two
different instructions cannot share the same numeric value or the CPU will not be able to differentiate them
when it attempts to decode the opcode value). With an n-bit number, there are 2n different possible opcodes,
so to encode m instructions you will need an opcode that is at least log2(m) bits long.

Encoding opcodes is a little more involved than assigning a unique numeric value to each instruction.
Remember, we have to use actual hardware (i.e., decoder circuits) to figure out what each instruction does
and command the rest of the hardware to do the specified task. Suppose you have a seven-bit opcode. With
an opcode of this size we could encode 128 different instructions. To decode each instruction individually
requires a seven-line to 128-line decode – an expensive piece of circuitry. Assuming our instructions contain
certain patterns, we can reduce the hardware by replacing this large decoder with three smaller decoders.

If you have 128 truly unique instructions, there’s little you can do other than to decode each instruction
individually. However, in most architectures the instructions are not completely independent of one another.
For example, on the 80x86 CPUs the opcodes for "mov(eax, ebx);" and "mov(ecx, edx);" are different
(because these are different instructions) but these instructions are not unrelated. They both move data from
one register to another. In fact, the only difference between them is the source and destination operands.
This suggests that we could encode instructions like MOV with a sub-opcode and encode the operands using
other strings of bits within the opcode.

For example, if we really have only eight instructions, each instruction has two operands, and each oper-
and can be one of four different values, then we can encode the opcode as three packed fields containing
three, two, and two bits (see Figure 5.1). This encoding only requires the use of three simple decoders to
completely determine what instruction the CPU should execute. While this is a bit of a trivial case, it does
demonstrate one very important facet of instruction set design – it is important to make opcodes easy to
decode and the easiest way to do this is to break up the opcode into several different bit fields, each field con-
tributing part of the information necessary to execute the full instruction. The smaller these bit fields, the
easier it will be for the hardware to decode and execute them2.

2. Not to mention faster and less expensive.
Page 262 © 2001, By Randall Hyde Beta Draft - Do not distribute

Instruction Set Architecture
Figure 5.1 Separating an Opcode into Separate Fields to Ease Decoding

Although Intel probably went a little overboard with the design of the original 8086 instruction set, an
important design goal is to keep instruction sizes within a reasonable range. CPUs with unnecessarily long
instructions consume extra memory for their programs. This tends to create more cache misses and, there-
fore, hurts the overall performance of the CPU. Therefore, we would like our instructions to be as compact
as possible so our programs’ code uses as little memory as possible.

It would seem that if we are encoding 2n different instructions using n bits, there would be very little
leeway in choosing the size of the instruction. It’s going to take n bits to encode those 2n instructions, you
can’t do it with any fewer. You may, of course, use more than n bits. And believe it or not, that’s the secret
to reducing the size of a typical program on the CPU.

Before discussing how to use longer instructions to generate shorter programs, a short digression is nec-
essary. The first thing to note is that we generally cannot choose an arbitrary number of bits for our opcode
length. Assuming that our CPU is capable of reading bytes from memory, the opcode will probably have to
be some even multiple of eight bits long. If the CPU is not capable of reading bytes from memory (e.g.,
most RISC CPUs only read memory in 32 or 64 bit chunks) then the opcode is going to be the same size as

0 0 0 0 0 0 0 1

3 line
to
8 line
decoder

Circuitry to do a MOV
Circuitry to do an ADD
Circuitry to do a SUB
Circuitry to do a MUL
Circuitry to do a DIV
Circuitry to do an AND
Circuitry to do an OR
Circuitry to do an XOR

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

A
B
C

2 line
to
4 line
decoder

A
B

Q0
Q1
Q2
Q3

EAX
EBX
ECX
EDX

See Note

Note: the circuitry attached to the destination register bits is identical
to the circuitry for the source register bits.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 263

Chapter Five Volume Two
the smallest object the CPU can read from memory at one time (e.g., 32 bits on a typical RISC chip). Any
attempt to shrink the opcode size below this data bus enforced lower limit is futile. Since we’re discussing
the 80x86 architecture in this text, we’ll work with opcodes that must be an even multiple of eight bits long.

Another point to consider here is the size of an instruction’s operands. Some CPU designers (specifi-
cally, RISC designers) include all operands in their opcode. Other CPU designers (typically CISC design-
ers) do not count operands like immediate constants or address displacements as part of the opcode (though
they do usually count register operand encodings as part of the opcode). We will take the CISC approach
here and not count immediate constant or address displacement values as part of the actual opcode.

With an eight-bit opcode you can only encode 256 different instructions. Even if we don’t count the
instruction’s operands as part of the opcode, having only 256 different instructions is somewhat limiting. It’s
not that you can’t build a CPU with an eight-bit opcode, most of the eight-bit processors predating the 8086
had eight-bit opcodes, it’s just that modern processors tend to have far more than 256 different instructions.
The next step up is a two-byte opcode. With a two-byte opcode we can have up to 65,536 different instruc-
tions (which is probably enough) but our instructions have doubled in size (not counting the operands, of
course).

If reducing the instruction size is an important design goal3 we can employ some techniques from data
compression theory to reduce the average size of our instructions. The basic idea is this: first we analyze
programs written for our CPU (or a CPU similar to ours if no one has written any programs for our CPU)
and count the number of occurrences of each opcode in a large number of typical applications. We then cre-
ate a sorted list of these opcodes from most-frequently-used to least-frequently-used. Then we attempt to
design our instruction set using one-byte opcodes for the most-frequently-used instructions, two-byte
opcodes for the next set of most-frequently-used instructions, and three (or more) byte opcodes for the rarely
used instructions. Although our maximum instruction size is now three or more bytes, most of the actual
instructions appearing in a program will use one or two byte opcodes, so the average opcode length will be
somewhere between one and two bytes (let’s call it 1.5 bytes) and a typical program will be shorter than had
we chosen a two byte opcode for all instructions (see Figure 5.2).

3. To many CPU designers it is not; however, since this was a design goal for the 8086 we’ll follow this path.
Page 264 © 2001, By Randall Hyde Beta Draft - Do not distribute

Instruction Set Architecture
Figure 5.2 Encoding Instructions Using a Variable-Length Opcode

Although using variable-length instructions allows us to create smaller programs, it comes at a price.
First of all, decoding the instructions is a bit more complicated. Before decoding an instruction field, the
CPU must first decode the instruction’s size. This extra step consumes time and may affect the overall per-
formance of the CPU (by introducing delays in the decoding step and, thereby, limiting the maximum clock

0 1 X X X X X X

If the H.O. two bits of the first opcode byte are not both zero, then
the whole opcode is one byte long and the remaining six bits let us
encode 64 one-byte instructions. Since there are a total of three
opcode bytes of these form, we can encode up to 192 different
one-byte instructions.

If the H.O. three bits of our first opcode byte contain %001, then the
opcode is two bytes long and the remaining 13 bits let us encode 8192
different instructions.

If the H.O. three bits of our first opcode byte contain all zeros, then the
opcode is three bytes long and the remaining 21 bits let us encode two
million (221) different instructions.

1 0 X X X X X X

1 1 X X X X X X

X X X X X X X X

0 0 1 X X X X X

0 0 0 X X X X X

X X X X X X X X

X X X X X X X X
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 265

Chapter Five Volume Two
frequency of the CPU). Another problem with variable length instructions is that it makes decoding multiple
instructions in a pipeline quite difficult (since we cannot trivially determine the instruction boundaries in the
prefetch queue). These reasons, along with some others, is why most popular RISC architectures avoid vari-
able-sized instructions. However, for our purpose, we’ll go with a variable length approach since saving
memory is an admirable goal.

Before actually choosing the instructions you want to implement in your CPU, now would be a good
time to plan for the future. Undoubtedly, you will discover the need for new instructions at some point in the
future, so reserving some opcodes specifically for that purpose is a real good idea. If you were using the
instruction encoding appearing in Figure 5.2 for your opcode format, it might not be a bad idea to reserve
one block of 64 one-byte opcodes, half (4,096) of the two-byte instructions, and half (1,048,576) of the
three-byte opcodes for future use. In particular, giving up 64 of the very valuable one-byte opcodes may
seem extravagant, but history suggests that such foresight is rewarded.

The next step is to choose the instructions you want to implement. Note that although we’ve reserved
nearly half the instructions for future expansion, we don’t actually have to implement instructions for all the
remaining opcodes. We can choose to leave a good number of these instructions unimplemented (and effec-
tively reserve them for the future as well). The right approach is not to see how quickly we can use up all the
opcodes, but rather to ensure that we have a consistent and complete instruction set given the compromises
we have to live with (e.g., silicon limitations). The main point to keep in mind here is that it’s much easier to
add an instruction later than it is to remove an instruction later. So for the first go-around, it’s generally bet-
ter to go with a simpler design rather than a more complex design.

The first step is to choose some generic instruction types. For a first attempt, you should limit the
instructions to some well-known and common instructions. The best place to look for help in choosing these
instructions is the instruction sets of other processors. For example, most processors you find will have
instructions like the following:

• Data movement instructions (e.g., MOV)
• Arithmetic and logical instructions (e.g., ADD, SUB, AND, OR, NOT)
• Comparison instructions
• A set of conditional jump instructions (generally used after the compare instructions)
• Input/Output instructions
• Other miscellaneous instructions

Your goal as the designer of the CPU’s initial instruction set is to chose a reasonable set of instructions
that will allow programmers to efficiently write programs (using as few instructions as possible) without
adding so many instructions you exceed your silicon budget or violate other system compromises. This is a
very strategic decision, one that CPU designers should base on careful research, experimentation, and simu-
lation. The job of the CPU designer is not to create the best instruction set, but to create an instruction set
that is optimal given all the constraints.

Once you’ve decided which instructions you want to include in your (initial) instruction set, the next
step is to assign opcodes for them. The first step is to group your instructions into sets by common charac-
teristics of those instructions. For example, an ADD instruction is probably going to support the exact same
set of operands as the SUB instruction. So it makes sense to put these two instructions into the same group.
On the other hand, the NOT instruction generally requires only a single operand4 as does a NEG instruction.
So you’d probably put these two instructions in the same group but a different group than ADD and SUB.

Once you’ve grouped all your instructions, the next step is to encode them. A typical encoding will use
some bits to select the group the instruction falls into, it will use some bits to select a particular instruction
from that group, and it will use some bits to determine the types of operands the instruction allows (e.g., reg-
isters, memory locations, and constants). The number of bits needed to encode all this information may have
a direct impact on the instruction’s size, regardless of the frequency of the instruction. For example, if you
need two bits to select a group, four bits to select an instruction within that group, and six bits to specify the
instruction’s operand types, you’re not going to fit this instruction into an eight-bit opcode. On the other
hand, if all you really want to do is push one of eight different registers onto the stack, you can use four bits

4. Assuming this operation treats its single operand as both a source and destination operand, a common way of handling this
instruction.
Page 266 © 2001, By Randall Hyde Beta Draft - Do not distribute

Instruction Set Architecture
to select the PUSH instruction and three bits to select the register (assuming the encoding in Figure 5.2 the
eighth and H.O. bit would have to contain zero).

Encoding operands is always a problem because many instructions allow a large number of operands.
For example, the generic 80x86 MOV instruction requires a two-byte opcode5. However, Intel noticed that
the "mov(disp, eax);" and "mov(eax, disp);" instructions occurred very frequently. So they created a spe-
cial one byte version of this instruction to reduce its size and, therefore, the size of those programs that use
this instruction frequently. Note that Intel did not remove the two-byte versions of these instructions. They
have two different instructions that will store EAX into memory or load EAX from memory. A compiler or
assembler would always emit the shorter of the two instructions when given an option of two or more
instructions that wind up doing exactly the same thing.

Notice an important trade-off Intel made with the MOV instruction. They gave up an extra opcode in
order to provide a shorter version of one of the MOV instructions. Actually, Intel used this trick all over the
place to create shorter and easier to decode instructions. Back in 1978 this was a good compromise (reduc-
ing the total number of possible instructions while also reducing the program size). Today, a CPU designer
would probably want to use those redundant opcodes for a different purpose, however, Intel’s decision was
reasonable at the time (given the high cost of memory in 1978).

To further this discussion, we need to work with an example. So the next section will go through the
process of designing a very simple instruction set as a means of demonstrating this process.

5.4 The Y86 Hypothetical Processor

Because of enhancements made to the 80x86 processor family over the years, Intel’s design goals in
1978, and advances in computer architecture occurring over the years, the encoding of 80x86 instructions is
very complex and somewhat illogical. Therefore, the 80x86 is not a good candidate for an example architec-
ture when discussing how to design and encode an instruction set. However, since this is a text about 80x86
assembly language programming, attempting to present the encoding for some simpler real-world processor
doesn’t make sense. Therefore, we will discuss instruction set design in two stages: first, we will develop a
simple (trivial) instruction set for a hypothetical processor that is a small subset of the 80x86, then we will
expand our discussion to the full 80x86 instruction set. Our hypothetical processor is not a true 80x86 CPU,
so we will call it the Y86 processor to avoid any accidental association with the Intel x86 family.

The Y86 processor is a very stripped down version of the x86 CPUs. First of all, the Y86 only supports
one operand size – 16 bits. This simplification frees us from having to encode the size of the operand as part
of the opcode (thereby reducing the total number of opcodes we will need). Another simplification is that
the Y86 processor only supports four 16-bit registers: AX, BX, CX, and DX. This lets us encode register
operands with only two bits (versus the three bits the 80x86 family requires to encode eight registers).
Finally, the Y86 processors only support a 16-bit address bus with a maximum of 65,536 bytes of address-
able memory. These simplifications, plus a very limited instruction set will allow us to encode all Y86
instructions using a single byte opcode and a two-byte displacement/offset (if needed).

The Y86 CPU provides 20 instructions. Seven of these instructions have two operands, eight of these
instructions have a single operand, and five instructions have no operands at all. The instructions are MOV
(two forms), ADD, SUB, CMP, AND, OR, NOT, JE, JNE, JB, JBE, JA, JAE, JMP, BRK, IRET, HALT, GET,
and PUT. The following paragraphs describe how each of these work.

The MOV instruction is actually two instruction classes merged into the same instruction. The two
forms of the mov instruction take the following forms:

mov(reg/memory/constant, reg);
mov(reg, memory);

where reg is any of AX, BX, CX, or DX; constant is a numeric constant (using hexadecimal notation), and
memory is an operand specifying a memory location. The next section describes the possible forms the

5. Actually, Intel claims it’s a one byte opcode plus a one-byte "mod-reg-r/m" byte. For our purposes, we’ll treat the
mod-reg-r/m byte as part of the opcode.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 267

Chapter Five Volume Two
memory operand can take. The “reg/memory/constant” operand tells you that this particular operand may be
a register, memory location, or a constant.

The arithmetic and logical instructions take the following forms:

add(reg/memory/constant, reg);
sub(reg/memory/constant, reg);
cmp(reg/memory/constant, reg);
and(reg/memory/constant, reg);
or(reg/memory/constant, reg);

not(reg/memory);

Note: the NOT instruction appears separately because it is in a different class than the other arithmetic
instructions (since it supports only a single operand).

The ADD instruction adds the value of the first operand to the second (register) operand, leaving the
sum in the second (register) operand. The SUB instruction subtracts the value of the first operand from the
second, leaving the difference in the second operand. The CMP instruction compares the first operand
against the second and saves the result of this comparison for use with one of the conditional jump instruc-
tions (described in a moment). The AND and OR instructions compute the corresponding bitwise logical
operation on the two operands and store the result into the first operand. The NOT instruction inverts the bits
in the single memory or register operand.

The control transfer instructions interrupt the sequential execution of instructions in memory and trans-
fer control to some other point in memory either unconditionally, or after testing the result of the previous
CMP instruction. These instructions include the following:

ja dest; -- Jump if above (i.e., greater than)
jae dest; -- Jump if above or equal (i.e., greater than or equal)
jb dest; -- Jump if below (i.e., less than)
jbe dest; -- Jump if below or equal (i.e., less than or equal)
je dest; -- Jump if equal
jne dest; -- Jump if not equal

jmp dest; -- Unconditional jump

iret; -- Return from an interrupt

The first six instructions let you check the result of the previous CMP instruction for greater than, greater or
equal, less than, less or equal, equality, or inequality6. For example, if you compare the AX and BX registers
with a "cmp(ax, bx);" instruction and execute the JA instruction, the Y86 CPU will jump to the specified
destination location if AX was greater than BX. If AX was not greater than BX, control will fall through to
the next instruction in the program.

The JMP instruction unconditionally transfers control to the instruction at the destination address. The
IRET instruction returns control from an interrupt service routine, which we will discuss later.

The GET and PUT instructions let you read and write integer values. GET will stop and prompt the user
for a hexadecimal value and then store that value into the AX register. PUT displays (in hexadecimal) the
value of the AX register.

The remaining instructions do not require any operands, they are HALT and BRK. HALT terminates
program execution and BRK stops the program in a state that it can be restarted.

The Y86 processors require a unique opcode for every different instruction, not just the instruction
classes. Although “mov(bx, ax);” and “mov(cx, ax);” are both in the same class, they must have different
opcodes if the CPU is to differentiate them. However, before looking at all the possible opcodes, perhaps it
would be a good idea to learn about all the possible operands for these instructions.

6. The Y86 processor only performs unsigned comparisons.
Page 268 © 2001, By Randall Hyde Beta Draft - Do not distribute

Instruction Set Architecture
5.4.1 Addressing Modes on the Y86

The Y86 instructions use five different operand types: registers, constants, and three memory addressing
schemes. Each form is called an addressing mode. The Y86 processor supports the register addressing
mode7, the immediate addressing mode, the indirect addressing mode, the indexed addressing mode, and the
direct addressing mode. The following paragraphs explain each of these modes.

Register operands are the easiest to understand. Consider the following forms of the MOV instruction:

mov(ax, ax);
mov(bx, ax);
mov(cx, ax);
mov(dx, ax);

The first instruction accomplishes absolutely nothing. It copies the value from the AX register back into
the AX register. The remaining three instructions copy the values of BX, CX and DX into AX. Note that
these instructions leave BX, CX, and DX unchanged. The second operand (the destination) is not limited to
AX; you can move values to any of these registers.

Constants are also pretty easy to deal with. Consider the following instructions:

mov(25, ax);
mov(195, bx);
mov(2056, cx);
mov(1000, dx);

These instructions are all pretty straightforward; they load their respective registers with the specified hexa-
decimal constant8.

There are three addressing modes which deal with accessing data in memory. The following instructions
demonstrate the use of these addressing modes:

mov([1000], ax);
mov([bx], ax);
mov([1000+bx], ax);

The first instruction above uses the direct addressing mode to load AX with the 16 bit value stored in
memory starting at location $1000.

The "mov([bx], ax);" instruction loads AX from the memory location specified by the contents of the
bx register. This is an indirect addressing mode. Rather than using the value in BX, this instruction accesses
to the memory location whose address appears in BX. Note that the following two instructions:

mov(1000, bx);
mov([bx], ax);

are equivalent to the single instruction:

mov([1000], ax);

Of course, the second sequence is preferable. However, there are many cases where the use of indirection is
faster, shorter, and better. We’ll see some examples of this a little later.

The last memory addressing mode is the indexed addressing mode. An example of this memory address-
ing mode is

mov([1000+bx], ax);

This instruction adds the contents of BX with $1000 to produce the address of the memory value to fetch.
This instruction is useful for accessing elements of arrays, records, and other data structures.

7. Technically, registers do not have an address, but we apply the term addressing mode to registers nonetheless.
8. All numeric constants in Y86 assembly language are given in hexadecimal. The "$" prefix is not necessary.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 269

Chapter Five Volume Two
5.4.2 Encoding Y86 Instructions

Although we could arbitrarily assign opcodes to each of the Y86 instructions, keep in mind that a real
CPU uses logic circuitry to decode the opcodes and act appropriately on them. A typical CPU opcode uses a
certain number of bits in the opcode to denote the instruction class (e.g., MOV, ADD, SUB), and a certain
number of bits to encode each of the operands.

A typical Y86 instruction takes the form shown in Figure 5.3. The basic instruction is either one or three
bytes long. The instruction opcode consists of a single byte that contains three fields. The first field, the H.O.
three bits, defines the instruction. This provides eight combinations. As you may recall, there are 20 different
instructions; we cannot encode 20 instructions with three bits, so we’ll have to pull some tricks to handle the
other instructions. As you can see in Figure 5.3, the basic opcode encodes the MOV instructions (two
instructions, one where the rr field specifies the destination, one where the mmm field specifies the destina-
tion), and the ADD, SUB, CMP, AND, and OR instructions. There is one additional instruction field: special.
The special instruction class provides a mechanism that allows us to expand the number of available instruc-
tion classes, we will return to this expansion opcode shortly.

Figure 5.3 Basic Y86 Instruction Encoding

To determine a particular instruction’s opcode, you need only select the appropriate bits for the iii, rr,
and mmm fields. The rr field contains the destination register (except for the MOV instruction whose iii field
is %111) and the mmm field encodes the source operand. For example, to encode the "mov(bx, ax);"
instruction you would select iii=110 ("mov(reg, reg);), rr=00 (AX), and mmm=001 (BX). This produces the
one-byte instruction %11000001 or $C0.

Some Y86 instructions require more than one byte. For example, the instruction "mov([1000], ax);"
loads the AX register from memory location $1000. The encoding for the opcode is %11000110 or $C6.
However, the encoding for the "mov([2000], ax);" instruction’s opcode is also $C6. Clearly these two
instructions do different things, one loads the AX register from memory location $1000 while the other loads
the AX register from memory location $2000. To encode an address for the [xxxx] or [xxxx+bx] addressing
modes, or to encode the constant for the immediate addressing mode, you must follow the opcode with the
16-bit address or constant, with the L.O. byte immediately following the opcode in memory and the H.O.
byte after that. So the three byte encoding for "mov([1000], ax);" would be $C6, $00, $10 and the three
byte encoding for "mov([2000], ax);" would be $C6, $00, $20.

The special opcode allows the x86 CPU to expand the set of available instructions. This opcode handles
several zero and one-operand instructions as shown in Figure 5.4 and Figure 5.5.

i i i r r m m m

i i i

000 = special
001 = or
010 = and
011 = cmp
100 = sub
101 = add
110 = mov(mem/reg/const, reg)
111 = mov(reg, mem)

r r

00 = AX
01 = BX
10 = CX
11 = DX

mmm

0 0 0 = AX
0 0 1 = BX
0 1 0 = CX
0 1 1 = DX
1 0 0 = [BX]
1 0 1 = [xxxx+BX]
1 1 0 = [xxxx]
1 1 1 = constant

This 16-bit field is present
only if the instruction is a
jump instruction or an operand
is a memory addressing mode
of the form [xxxx+bx], [xxxxx],
or a constant.
Page 270 © 2001, By Randall Hyde Beta Draft - Do not distribute

Instruction Set Architecture
Figure 5.4 Single Operand Instruction Encodings

Figure 5.5 Zero Operand Instruction Encodings

There are four one-operand instruction classes. The first encoding (00) further expands the instruction
set with a set of zero-operand instructions (see Figure 5.5). The second opcode is also an expansion opcode
that provides all the Y86 jump instructions (see Figure 5.6). The third opcode is the NOT instruction. This is
the bitwise logical not operation that inverts all the bits in the destination register or memory operand. The
fourth single-operand opcode is currently unassigned. Any attempt to execute this opcode will halt the pro-
cessor with an illegal instruction error. CPU designers often reserve unassigned opcodes like this one to
extend the instruction set at a future date (as Intel did when moving from the 80286 processor to the 80386).

0 0 0 i i m m m

i i

00 = zero operand instructions
01 = jump instructions
10 = not
11 = illegal (reserved)

mmm (if ii = 10)

000 = AX
001 = BX
010 = CX
011 = DX
100 = [BX]
101 = [xxxx+BX]
110 = [xxxx]
111 = constant

This 16-bit field is present
only if the instruction is a
jump instruction or an operand
is a memory addressing mode
of the form [bx+xxxx], [xxxxx],
or a constant.

0 0 0 0 0 i i i

i i i

000 = illegal
001 = illegal
010 = illegal
011 = brk
100 = iret
101 = halt
110 = get
111 = put
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 271

Chapter Five Volume Two
Figure 5.6 Jump Instruction Encodings

There are seven jump instructions in the x86 instruction set. They all take the following form:

jxx address;

The JMP instruction copies the 16-bit value (address) following the opcode into the IP register. There-
fore, the CPU will fetch the next instruction from this target address; effectively, the program “jumps” from
the point of the JMP instruction to the instruction at the target address.

The JMP instruction is an example of an unconditional jump instruction. It always transfers control to
the target address. The remaining six instructions are conditional jump instructions. They test some condi-
tion and jump if the condition is true; they fall through to the next instruction if the condition is false. These
six instructions, JA, JAE, JB, JBE, JE, and JNE let you test for greater than, greater than or equal, less than,
less than or equal, equality, and inequality. You would normally execute these instructions immediately after
a CMP instruction since it sets the less than and equality flags that the conditional jump instructions test.
Note that there are eight possible jump opcodes, but the x86 uses only seven of them. The eighth opcode is
another illegal opcode.

The last group of instructions, the zero operand instructions, appear in Figure 5.5. Three of these
instructions are illegal instruction opcodes. The BRK (break) instruction pauses the CPU until the user man-
ually restarts it. This is useful for pausing a program during execution to observe results. The IRET (inter-
rupt return) instruction returns control from an interrupt service routine. We will discuss interrupt service
routines later. The HALT program terminates program execution. The GET instruction reads a hexadecimal
value from the user and returns this value in the AX register; the PUT instruction outputs the value in the AX
register.

5.4.3 Hand Encoding Instructions

Keep in mind that the Y86 processor fetches instructions as bit patterns from memory. It decodes and
executes those bit patterns. The processor does not execute instructions of the form "mov(ax, bx);" (that is,
a string of characters that are readable by humans. Instead, it executes the bit pattern $C1 from memory.
Instructions like "mov(ax, bx);" and "add(5, cx);" are human-readable representations of these instructions
that we must first convert into machine code (that is, the binary representation of the instruction that the
machine actually executes). In this section we will explore how to manually accomplish this task.

The first step is to chose an instruction to convert into machine code. We’ll start with a very simple
example, the "add(cx, dx);" instruction. Once you’ve chosen the instruction, you look up the instruction in
one of the figures of the previous section. The ADD instruction is in the first group (see Figure 5.3) and has

0 0 0 0 1 i i i

mmm (if ii = 10)

000 = je
001 = jne
010 = jb
011 = jbe
100 = ja
101 = jae
110 = jmp
111 = illegal

This 16-bit field is always present
and contains the target address to
jump move into the instruction
pointer register if the jump
is taken.
Page 272 © 2001, By Randall Hyde Beta Draft - Do not distribute

Instruction Set Architecture
an iii field of %101. The source operand is CX, so the mmm field is %010 and the destination operand is DX
so the rr field is %11. Merging these bits produces the opcode %10111010 or $BA.

Figure 5.7 Encoding ADD(cx, dx);

Now consider the "add(5, ax);" instruction. Since this instruction has an immediate source operand,
the mmm field will be %111. The destination register operand is AX (%00) so the full opcode becomes
$10100111 or $A7. Note, however, that this does not complete the encoding of the instruction. We also
have to include the 16-bit constant $0005 as part of the instruction. The binary encoding of the constant
must immediately follow the opcode in memory, so the sequence of bytes in memory (from lowest address
to highest address) is $A7, $05, $00. Note that the L.O. byte of the constant follows the opcode and the H.O.
byte of the constant follows the L.O. byte. This sequence appears backwards because the bytes are arranged
in order of increasing memory address and the H.O. byte of a constant always appears in the highest memory
address.

Figure 5.8 Encoding ADD(5, ax);

The "add([2ff+bx], cx);" instruction also contains a 16-bit constant associated with the instruction’s
encoding – the displacement portion of the indexed addressing mode. To encode this instruction we use the
following field values: iii=%101, rr=%10, and mmm=%101. This produces the opcode byte %10110101 or
$B5. The complete instruction also requires the constant $2FF so the full instruction is the three-byte
sequence $B5, $FF, $02.

Figure 5.9 Encoding ADD([$2ff+bx], cx);

1 0 1 1 1 0 1 0

i i i

101 = add

r r

11 = DX

mmm

0 1 0 = CX
This 16-bit field is not present
since no numeric operand
is required by this insruction

1 0 1 0 0 1 1 1

i i i

101 = add

r r

00 = AX

mmm

111 = constant
This 16-bit field holds the
binary equivalent of the
constant (5)

5

1 0 1 1 0 1 0 1

i i i

101 = add

r r

10 = CX

mmm

101 = [$2ff+bx]
This 16-bit field holds the
binary equivalent of the
displacement ($2FF)

$2FF
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 273

Chapter Five Volume Two
Now consider the "add([1000], ax);" instruction. This instruction adds the 16-bit contents of memory
locations $1000 and $1001 to the value in the AX register. Once again, iii=%101 for the ADD instruction.
The destination register is AX so rr=%00. Finally, the addressing mode is the displacement-only addressing
mode, so mmm=%110. This forms the opcode %10100110 or $A6. The instruction is three bytes long since
it must encode the displacement (address) of the memory location in the two bytes following the opcode.
Therefore, the complete three-byte sequence is $A6, $00, $10.

Figure 5.10 Encoding ADD([1000], ax);

The last addressing mode to consider is the register indirect addressing mode, [bx]. The
"add([bx], bx);" instruction uses the following encoded values: mmm=%101, rr=%01 (bx), and
mmm=%100 ([bx]). Since the value in the BX register completely specifies the memory address, there is no
need for a displacement field. Hence, this instruction is only one byte long.

Figure 5.11 Encoding the ADD([bx], bx); Instruction

You use a similar approach to encode the SUB, CMP, AND, and OR instructions as you do the ADD
instruction. The only difference is that you use different values for the iii field in the opcode.

The MOV instruction is special because there are two forms of the MOV instruction. You encode the
first form (iii=%110) exactly as you do the ADD instruction. This form copies a constant or data from mem-
ory or a register (the mmm field) into a destination register (the rr field).

The second form of the MOV instruction (iii=%111) copies data from a source register (rr) to a destina-
tion memory location (that the mmm field specifies). In this form of the MOV instruction, the source/desti-
nation meanings of the rr and mmm fields are reversed so that rr is the source field and mmm is the
destination field. Another difference is that the mmm field may only contain the values %100 ([bx]), %101
([disp+bx]), and %110 ([disp]). The destination values cannot be %000..%011 (registers) or %111 (con-
stant). These latter five encodings are illegal (the register destination instructions are handled by the other
MOV instruction and storing data into a constant doesn’t make any sense).

The Y86 processor supports a single instruction with a single memory/register operand – the NOT
instruction. The NOT instruction has the syntax: "not(reg);" or "not(mem);" where mem represents one of
the memory addressing modes ([bx], [disp+bx], or [disp]). Note that you may not specify a constant as the
operand of the NOT instruction.

Since the NOT instruction has only a single operand, it only uses the mmm field to encode this operand.
The rr field, combined with the iii field, selects the NOT instruction (iii=%000 and rr=%10). Whenever the

1 0 1 0 0 1 1 0

i i i

101 = add

r r

00 = AX

mmm

110 = [$1000]
This 16-bit field holds the
binary equivalent of the
displacement ($1000)

$1000

1 0 1 0 1 1 0 0

i i i

101 = add

r r

01 = BX

mmm

100 = [bx]

Since there isn’t a displacement
or constant associated with this
instruction, this 16-bit field is
not present in the instruction.
Page 274 © 2001, By Randall Hyde Beta Draft - Do not distribute

Instruction Set Architecture
iii field contains zero this tells the CPU that special decoding is necessary for the instruction. In this case,
the rr field specifies whether we have the NOT instruction or one of the other specially decoded instructions.

To encode an instruction like "not(ax);" you would simply specify %000 for iii and %10 for the rr
fields. Then you would encode the mmm field the same way you would encode this field for the ADD
instruction. Since mmm=%000 for AX, the encoding of "not(ax);" would be %00010000 or $10.

Figure 5.12 Encoding the NOT(ax); Instruction

The NOT instruction does not allow an immediate (constant) operand, hence the opcode %00010111
($17) is an illegal opcode.

The Y86 conditional jump instructions also use a special encoding. These instructions are always three
bytes long. The first byte (the opcode) specifies which conditional jump instruction to execute and the next
two bytes specify where the CPU transfers if the condition is met. There are seven different Y86 jump
instructions, six conditional jumps and one unconditional jump. These instructions set mmm=%000,
rr=%01, and use the mmm field to select one of the seven possible jumps; the eighth possible opcode is an
illegal opcode (see Figure 5.6). Encoding these instructions is relatively straight-forward. Once you pick
the instruction you want to encode, you’ve determined the opcode (since there is a single opcode for each
instruction). The opcode values fall in the range $08..$0E ($0F is the illegal opcode).

The only field that requires some thought is the 16-bit operand that follows the opcode. This field holds
the address of the target instruction to which the (un)conditional jump transfers if the condition is true (e.g.,
JE transfers control to this address if the previous CMP instruction found that its two operands were equal).
To properly encode this field you must know the address of the opcode byte of the target instruction. If
you’ve already converted the instruction to binary form and stored it into memory, this isn’t a problem; just
specify the address of that instruction as the operand of the condition jump. On the other hand, if you
haven’t yet written, converted, and placed that instruction into memory, knowing its address would seem to
require a bit of divination. Fortunately, you can figure out the target address by computing the lengths of all
the instructions between the current jump instruction you’re encoding and the target instruction. Unfortu-
nately, this is an arduous task. The best solution is to write all your instructions down on paper, compute
their lengths (which is easy, all instructions are one or three bytes long depending on the presence of a 16-bit
operand), and then assign an appropriate address to each instruction. Once you’ve done this (and, assuming
you haven’t made any mistakes) you’ll know the starting address for each instruction and you can fill in tar-
get address operands in your (un)conditional jump instructions as you encode them. Fortunately, there is a
better way to do this, as you’ll see in the next section.

The last group of instructions, the zero operand instructions, are the easiest to encode. Since they have
no operands they are always one byte long and the instruction uniquely specifies the opcode for the instruc-
tion. These instructions always have iii=%000, rr=%00, and mmm specifies the particular instruction
opcode (see Figure 5.5). Note that the Y86 CPU leaves three of these instructions undefined (so we can use
these opcodes for future expansion).

5.4.4 Using an Assembler to Encode Instructions

Of course, hand coding machine language programs as demonstrated in the previous section is impracti-
cal for all but the smallest programs. Certainly you haven’t had to do anything like this when writing HLA

0 0 0 1 0 0 0 0

i i i

000 = special

r r

10 = NOT

mmm

000 = AX

Since there isn’t a displacement
or constant associated with this
instruction, this 16-bit field is
not present in the instruction.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 275

Chapter Five Volume Two
programs. The HLA compiler lets you create a text file containing human readable forms of the instructions.
You might wonder why we can write such code for the 80x86 but not for the Y86. The answer is to use an
assembler or compiler for the Y86. The job of an assembler/compiler is to read a text file containing human
readable text and translate that text into the binary encoded representation for the corresponding machine
language program.

An assembler or compiler is nothing special. It’s just another program that executes on your computer
system. The only thing special about an assembler or compiler is that it translates programs from one form
(source code) to another (machine code). A typical Y86 assembler, for example, would read lines of text
with each line containing a Y86 instruction, it would parse9 each statement and then write the binary equiv-
alent of each instruction to memory or to a file for later execution. In the laboratory exercises associated
with this chapter, you’ll get the opportunity to use a simple Y86 assembler to translate Y86 source programs
into Y86 machine code.

Assemblers have two big advantages over coding in machine code. First, they automatically translate
strings like "ADD(ax, bx);" and "MOV(ax, [1000]);" to their corresponding binary form. Second, and
probably even more important, assemblers let you attach labels to statements and refer to those labels within
jump instructions; this means that you don’t have to know the target address of an instruction in order to
specify that instruction as the target of a jump or conditional jump instruction. The laboratory exercises
associated with this chapter provide a very simple Y86 assembler that lets you specify up to 26 labels in a
program (using the symbols ’A’..’Z’). To attach a label to a statement, you simply preface the instruction
with the label and a colon, e.g.,

L: mov(0, ax);

To transfer control to a statement with a label attached to it, you simply specify the label name as the oper-
and of the jump instruction, e.g.,

jmp L;

The assembler will compute the address of the label and fill in the address for you whenever you specify the
label as the operand of a jump or conditional jump instruction. The assembler can do this even if it hasn’t
yet encountered the label in the program’s source file (i.e., the label is attached to a later instruction in the
source file). Most assemblers accomplish this magic by making two passes over the source file. During the
first pass the assembler determines the starting address of each symbol and stores this information in a sim-
ple database called the symbol table. The assembler does not emit any machine code during this first pass.
Then the assembler makes a second pass over the source file and actually emits the machine code. During
this second pass it looks up all label references in the symbol table and uses the information it retrieves from
this database to fill in the operand fields of the instructions that refer to some symbol.

5.4.5 Extending the Y86 Instruction Set

The Y86 CPU is a trivial CPU, suitable only for demonstrating how to encode machine instructions.
However, like any good CPU the Y86 design does provide the capability for expansion. So if you wanted to
improve the CPU by adding new instructions, the ability to accomplish this exists in the instruction set.

There are two standard ways to increase the number of instructions in a CPU’s instruction set. Both
mechanisms require the presence of undefined (or illegal) opcodes on the CPU. Since the Y86 CPU has sev-
eral of these, we can expand the instruction set.

The first method is to directly use the undefined opcodes to define new instructions. This works best
when there are undefined bit patterns within an opcode group and the new instruction you want to add falls
into that same group. For example, the opcode %00011mmm falls into the same group as the NOT instruc-
tion. If you decided that you really needed a NEG (negate, take the two’s complement) instruction, using
this particular opcode for this purpose makes a lot of sense because you’d probably expect the NEG instruc-
tion to use the same syntax (and, therefore, decoding) as the NOT instruction.

9. "Parse" means to figure out the meaning of the statement.
Page 276 © 2001, By Randall Hyde Beta Draft - Do not distribute

Instruction Set Architecture
Likewise, if you want to add a zero-operand instruction to the instruction set, there are three undefined
zero-operand instructions that you could use for this purpose. You’d just appropriate one of these opcodes
and assign your instruction to it.

Unfortunately, the Y86 CPU doesn’t have that many illegal opcodes open. For example, if you wanted
to add the SHL, SHR, ROL, and ROR instructions (shift and rotate left and right) as single-operand instruc-
tions, there is insufficient space in the single operand instruction opcodes to add these instructions (there is
currently only one open opcode you could use). Likewise, there are no two-operand opcodes open, so if you
wanted to add an XOR instruction or some other two-operand instruction, you’d be out of luck.

A common way to handle this dilemma (one the Intel designers have employed) is to use a prefix
opcode byte. This opcode expansion scheme uses one of the undefined opcodes as an opcode prefix byte.
Whenever the CPU encounters a prefix byte in memory, it reads and decodes the next byte in memory as the
actual opcode. However, it does not treat this second byte as it would any other opcode. Instead, this second
opcode byte uses a completely different encoding scheme and, therefore, lets you specify as many new
instructions as you can encode in that byte (or bytes, if you prefer). For example, the opcode $FF is illegal
(it corresponds to a "mov(dx, const);" instruction) so we can use this byte as a special prefix byte to further
expand the instruction set10.

Figure 5.13 Using a Prefix Byte to Extend the Instruction Set

5.5 Encoding 80x86 Instructions

The Y86 processor is simple to understand, easy to hand encode instructions for it, and a great vehicle
for learning how to assign opcodes. It’s also a purely hypothetical device intended only as a teaching tool
Therefore, you can now forget all about the Y86, it’s served its purpose. Now it’s time to take a look that the
actual machine instruction format for the 80x86 CPU family.

They don’t call the 80x86 CPU a Complex Instruction Set Computer for nothing. Although more com-
plex instruction encodings do exist, no one is going to challenge the assertion that the 80x86 has a complex
instruction encoding. The generic 80x86 instruction takes the form shown in Figure 5.14. Although this dia-
gram seems to imply that instructions can be up to 16 bytes long, in actuality the 80x86 will not allow
instructions greater than 15 bytes in length.

10. We could also have used values $F7, $EF, and $E7 since they also correspond to an attempt to store a register into a con-
stant. However, $FF is easier to decode. On the other hand, if you need even more prefix bytes for instruction expansion, you
can use these three values as well.

1 1 1 1 1 1 1 1

Opcode Expansion Prefix Byte ($FF) Instruction opcode
byte (you have to
define this)

Any additional
operand bytes
as defined by
your instructions.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 277

Chapter Five Volume Two
Figure 5.14 80x86 Instruction Encoding

The prefix bytes are not the "opcode expansion prefix" that the previous sections in this chapter dis-
cussed. Instead, these are special bytes to modify the behavior of existing instructions (rather than define
new instructions). We’ll take a look at a couple of these prefix bytes in a little bit, others we’ll leave for dis-
cussion in later chapters. The 80x86 certainly supports more than four prefix values, however, an instruction
may have a maximum of four prefix bytes attached to it. Also note that the behavior of many prefix bytes are
mutually exclusive and the results are undefined if you put a pair of mutually exclusive prefix bytes in front
of an instruction.

The 80x86 supports two basic opcode sizes: a standard one-byte opcode and a two-byte opcode consist-
ing of a $0F opcode expansion prefix byte and a second byte specifying the actual instruction. One way to
view these opcode bytes is as an eight-bit extension of the iii field in the Y86 encoding. This provides for up
to 512 different instruction classes (although the 80x86 does not yet use them all). In reality, various instruc-
tion classes use certain bits in this opcode for decidedly non-instruction-class purposes. For example, con-
sider the ADD instruction opcode. It takes the form shown in Figure 5.15.

Note that bit number zero specifies the size of the operands the ADD instruction operates upon. If this
field contains zero then the operands are eight bit registers and memory locations. If this bit contains one
then the operands are either 16-bits or 32-bits. Under Win32 the default is 32-bit operands if this field con-
tains a one. To specify a 16-bit operand (under Win32) you must insert a special "operand-size prefix byte"
in front of the instruction.

Bit number one specifies the direction of the transfer. If this bit is zero, then the destination operand is a
memory location (e.g., "add(al, [ebx]);" If this bit is one, then the destination operand is a register (e.g.,
"add([ebx], al);" You’ll soon see that this direction bit creates a problem that results in one instruction have
two different possible opcodes.

Prefix Bytes
Zero to four
special prefix
values that
affect the
operation of
the instruction

One or two byte
instruction opcode (two
bytes if the special $0F
opcode expansion prefix is
present)

“mod-reg-r/m”
byte that specifies
the addressing mode
and instruction
operand size.

This byte is only
required if the
instruction supports
register or memory
operands

Optional
Scaled Indexed
Byte if the
instruction uses
a scaled indexed
memory addressing
mode

Displacement.
This is a zero,
one, two, or
four byte value
that specifies a
memory address
displacement for
the instruction.

Immediate
(constant) data.
This is a zero,
one, two, or four
byte constant value
if the instruction has
an immediate operand.
Page 278 © 2001, By Randall Hyde Beta Draft - Do not distribute

Instruction Set Architecture
Figure 5.15 80x86 ADD Opcode

5.5.1 Encoding Instruction Operands

The "mod-reg-r/m" byte (in Figure 5.14) specifies a basic addressing mode. This byte contains the fol-
lowing fields:

Figure 5.16 MOD-REG-R/M Byte

The REG field specifies an 80x86 register. Depending on the instruction, this can be either the source or
the destination operand. Many instructions have the "d" (direction) field in their opcode to choose whether
this operand is the source (d=0) or the destination (d=1) operand. This field is encoded using the bit patterns
found in Table 26

Table 26 REG Field Encoding

REG Value
Register if data size is

eight bits
Register if data size is

16-bits
Register if data size is

32 bits

%000 al ax eax

%001 cl cx ecx

%010 dl dx edx

%011 bl bx ebx

%100 ah sp esp

%101 ch bp ebp

%110 dh si esi

0 0 0 0 0 0 d s

ADD opcode.

d = 0 if adding from register to memory.

d = 1 if adding from memory to register.

s = 0 if adding eight-bit operands.
s = 1 if adding 16-bit or 32-bit operands

7 6 5 4 3 2 1 0

MOD REG R/M
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 279

Chapter Five Volume Two
For certain (single operand) instructions, the REG field may contain an opcode extension rather than a
register value (the R/M field will specify the operand in this case).

The MOD and R/M fields combine to specify the other operand in a two-operand instruction (or the
only operand in a single-operand instruction like NOT or NEG). Remember, the "d" bit in the opcode deter-
mines which operand is the source and which is the destination. The MOD and R/M fields together specify
the following addressing modes:

%111 bh di edi

Table 27 Meaning of the MOD Field

MOD Meaning

%00 Register indirect
addressing mode or SIB
with no displacement
(when R/M=%100) or
Displacement only
addressing mode (when
R/M=%101).

%01 One-byte signed dis-
placement follows
addressing mode
byte(s).

%10 Four-byte signed dis-
placement follows
addressing mode
byte(s).

%11 Register addressing
mode.

Table 28 MOD and R/M Addressing Modes

MOD R/M Addressing Mode

%00 %000 [eax]

%01 %000 [eax+disp8]

%10 %000 [eax+disp32]

%11 %000 register (al/ax/eax)a

%00 %001 [ecx]

%01 %001 [ecx+disp8]

Table 26 REG Field Encoding

REG Value
Register if data size is

eight bits
Register if data size is

16-bits
Register if data size is

32 bits
Page 280 © 2001, By Randall Hyde Beta Draft - Do not distribute

Instruction Set Architecture
There are a couple of interesting things to note about this table. First of all, note that there are two
forms of the [reg+disp] addressing modes: one form with an eight-bit displacement and one form with a
32-bit displacement. Addressing modes whose displacement falls in the range -128..+127 require only a sin-
gle byte displacement after the opcode; hence these instructions will be shorter (and sometimes faster) than

%10 %001 [ecx+disp32]

%11 %001 register (cl/cx/ecx)

%00 %010 [edx]

%01 %010 [edx+disp8]

%10 %010 [edx+disp32]

%11 %010 register (dl/dx/edx)

%00 %011 [ebx]

%01 %011 [ebx+disp8]

%10 %011 [ebx+disp32]

%11 %011 register (bl/bx/ebx)

%00 %100 SIB Mode

%01 %100 SIB + disp8 Mode

%10 %100 SIB + disp32 Mode

%11 %100 register (ah/sp/esp)

%00 %101 Displacement Only Mode
(32-bit displacement)

%01 %101 [ebp+disp8]

%10 %101 [ebp+disp32]

%11 %101 register (ch/bp/ebp)

%00 %110 [esi]

%01 %110 [esi+disp8]

%10 %110 [esi+disp32]

%11 %110 register (dh/si/esi)

%00 %111 [edi]

%01 %111 [edi+disp8]

%10 %111 [edi+disp32]

%11 %111 register (bh/di/edi)

a. The size bit in the opcode specifies eight or 32-bit register size. To select a 16-bit register
requires a prefix byte.

Table 28 MOD and R/M Addressing Modes

MOD R/M Addressing Mode
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 281

Chapter Five Volume Two
instructions whose displacement value is outside this range. It turns out that many offsets are within this
range, so the assembler/compiler can generate shorter instructions for a large percentage of the instructions.

The second thing to note is that there is no [ebp] addressing mode. If you look in the table above where
this addressing mode logically belongs, you’ll find that it’s slot is occupied by the 32-bit displacement only
addressing mode. The basic encoding scheme for addressing modes didn’t allow for a displacement only
addressing mode, so Intel "stole" the encoding for [ebp] and used that for the displacement only mode. For-
tunately, anything you can do with the [ebp] addressing mode you can do with the [ebp+disp8] addressing
mode by setting the eight-bit displacement to zero. True, the instruction is a bit longer, but the capabilities
are still there. Intel (wisely) chose to replace this addressing mode because they anticipated that program-
mers would use this addressing mode less often than the other register indirect addressing modes (for rea-
sons you’ll discover in a later chapter).

Another thing you’ll notice missing from this table are addressing modes of the form [ebx+edx*4], the
so-called scaled indexed addressing modes. You’ll also notice that the table is missing addressing modes of
the form [esp], [esp+disp8], and [esp+disp32]. In the slots where you would normally expect these address-
ing modes you’ll find the SIB (scaled index byte) modes. If these values appear in the MOD and R/M fields
then the addressing mode is a scaled indexed addressing mode with a second byte (the SIB byte) following
the MOD-REG-R/M byte that specifies the registers to use (note that the MOD field still specifies the dis-
placement size of zero, one, or four bytes). The following diagram shows the layout of this SIB byte and the
following tables explain the values for each field.

Figure 5.17 SIB (Scaled Index Byte) Layout

Table 29 SIB Scale Field Values

Scale Value Index*Scale Value

%00 Index*1

%01 Index*2

%10 Index*4

%11 Index*8

Table 30 Index Field Values

Index Register

%000 EAX

%001 ECX

%010 EDX

7 6 5 4 3 2 1 0

Scale Index Base
Page 282 © 2001, By Randall Hyde Beta Draft - Do not distribute

Instruction Set Architecture
The MOD-REG-R/M and SIB bytes are complex and convoluted, no question about that. The reason
these addressing mode bytes are so convoluted is because Intel reused their 16-bit addressing circuitry in the
32-bit mode rather than simply abandoning the 16-bit format in the 32-bit mode. There are good hardware
reasons for this, but the end result is a complex scheme for specifying addressing modes.

Part of the reason the addressing scheme is so convoluted is because of the special cases for the SIB and
displacement-only modes. You will note that the intuitive encoding of the MOD-REG-R/M byte does not
allow for a displacement-only mode. Intel added a quick kludge to the addressing scheme replacing the
[EBP] addressing mode with the displacement-only mode. Programmers who actually want to use the
[EBP] addressing mode have to use [EBP+0] instead. Semantically, this mode produces the same result but
the instruction is one byte longer since it requires a displacement byte containing zero.

You will also note that if the REG field of the MOD-REG-R/M byte contains %100 and MOD does not
contain %11 then the addressing mode is an "SIB" mode rather than the expected [ESP], [ESP+disp8], or
[ESP+disp32] mode. The SIB mode is used when an addressing mode uses one of the scaled indexed regis-
ters, i.e., one of the following addressing modes:

[reg32+eax*n] MOD = %00

[reg32+ebx*n] Note: n = 1, 2, 4, or 8.

[reg32+ecx*n]

[reg32+edx*n]

[reg32+ebp*n]

[reg32+esi*n]

%011 EBX

%100 Illegal

%101 EBP

%110 ESI

%111 EDI

Table 31 Base Field Values

Base Register

%000 EAX

%001 ECX

%010 EDX

%011 EBX

%100 ESP

%101 Displacement-only if
MOD = %00, EBP if
MOD = %01 or %10

%110 ESI

%111 EDI

Table 30 Index Field Values

Index Register
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 283

Chapter Five Volume Two
[reg32+edi*n]

[disp+reg8+eax*n] MOD = %01

[disp+reg8+ebx*n]

[disp+reg8+ecx*n]

[disp+reg8+edx*n]

[disp+reg8+ebp*n]

[disp+reg8+esi*n]

[disp+reg8+edi*n]

[disp+reg32+eax*n] MOD = %10

[disp+reg32+ebx*n]

[disp+reg32+ecx*n]

[disp+reg32+edx*n]

[disp+reg32+ebp*n]

[disp+reg32+esi*n]

[disp+reg32+edi*n]

[disp+eax*n] MOD = %00 and BASE field contains %101
[disp+ebx*n]
[disp+ecx*n]
[disp+edx*n]
[disp+ebp*n]
[disp+esi*n]
[disp+edi*n]

In each of these addressing modes, the MOD field of the MOD-REG-R/M byte specifies the size of the
displacement (zero, one, or four bytes). This is indicated in Table 28 via the modes "SIB Mode," "SIB +
disp8 Mode," and "SIB + disp32 Mode." The Base and Index fields of the SIB byte select the base and index
registers, respectively. Note that this addressing mode does not allow the use of the ESP register as an index
register. Presumably, Intel left this particular mode undefined to provide the ability to extend the addressing
modes in a future version of the CPU (although extending the addressing mode sequence to three bytes
seems a bit extreme).

Like the MOD-REG-R/M encoding, the SIB format redefines the [EBP+index*scale] mode as a dis-
placement plus index mode. Once again, if you really need this addressing mode, you will have to use a sin-
gle byte displacement value containing zero to achieve the same result.

5.5.2 Encoding the ADD Instruction: Some Examples

To figure out how to encode an instruction using this complex scheme, some examples are warranted.
So let’s take a lot at how to encode the 80x86 ADD instruction using various addressing modes. The ADD
opcode is $00, $01, $02, or $03, depending on the direction and size bits in the opcode (see Figure 5.15).
The following figures each describe how to encode various forms of the ADD instruction using different
addressing modes.
Page 284 © 2001, By Randall Hyde Beta Draft - Do not distribute

Instruction Set Architecture
Figure 5.18 Encoding the ADD(al, cl); Instruction

There is an interesting side effect of the operation of the direction bit and the MOD-REG-R/M organiza-
tion: some instructions have two different opcodes (and both are legal). For example, we could encode the
"add(al, cl);" instruction from Figure 5.18 as $02, $C8 by reversing the AL and CL registers in the REG and
R/M fields and then setting the d bit in the opcode (bit #1). This issue applies to instructions with two regis-
ter operands.

Figure 5.19 Encoding the ADD(eax, ecx); instruction

Note that we can also encode "add(eax, ecx);" using the bytes $03, $C8.

0 0 0 0 0 0 0 0

%000000 indicates
that this is an ADD
instruction.

Zero indicates that we
are adding the REG
field to the R/M field.

Zero indicates that
we are adding eight
bit values together

1 1 0 0 0 0 0 1

%11 indicates
that the R/M
field is a
register.

This field, along
with the d bit
in the opcode,
indicates that
the source field
is the AL register.

This field, along with the d bit
in the opcode indicates that the
destination field is the CL reg-
ister.

ADD(al, cl) = $00, $C1

0 0 0 0 0 0 0 1

%000000 indicates
that this is an ADD
instruction.

Zero indicates that we
are adding the REG
field to the R/M field.

One indicates that
we are adding 32
bit values together

1 1 0 0 0 0 0 1

%11 indicates
that the R/M
field is a
register.

This field, along
with the d bit
in the opcode,
indicates that
the source field
is the EAX register.

This field, along with the d bit
in the opcode indicates that the
destination field is the ECX
register.

ADD(eax, ecx) =
$01, $C1
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 285

Chapter Five Volume Two
Figure 5.20 Encoding the ADD(disp, edx); Instruction

Figure 5.21 Encoding the ADD([ebx], edi); Instruction

0 0 0 0 0 0 1 1

%000000 indicates
that this is an ADD
instruction.

One indicates that we
are adding the R/M
field to the REG field.

One indicates that
we are adding 32
bit values together

0 0 0 1 1 1 0 1

The combination of MOD =%00
and R/M = %101 indicates that
this is the Displacement-only
addressing mode.

This field, along
with the d bit
in the opcode,
indicates that
the destination field
is the EDX register.

ADD(disp, edx) = $03, $1D, $ww, $xx, $yy, $zz

DISP32

32-bit displacement
follows the instruction.

Note: $ww, $xx, $yy, $zz represent the four displace-
ment byte values with $ww being the L.O. byte and $zz
being the H.O. byte.

0 0 0 0 0 0 1 1

%000000 indicates
that this is an ADD
instruction.

One indicates that we
are adding the R/M
field to the REG field.

One indicates that
we are adding 32
bit values together

0 0 1 1 1 0 1 1

%00 indicates
a zero byte
displacement.

This field, along
with the d bit
in the opcode,
indicates that
the destination field
is the EDI register. ADD([ebx], edi) =

$03, $3B

%011 indicates the
use of the [EBX]
addressing mode.
Page 286 © 2001, By Randall Hyde Beta Draft - Do not distribute

Instruction Set Architecture
Figure 5.22 Encoding the ADD([esi+disp8], eax); Instruction

Figure 5.23 Encoding the ADD ([ebp+disp32], ebx); Instruction

0 0 0 0 0 0 1 1

%000000 indicates
that this is an ADD
instruction.

One indicates that we
are adding the R/M
field to the REG field.

One indicates that
we are adding 32
bit values together

0 1 0 0 0 1 1 0

%01 indicates
a one byte
displacement.

This field, along
with the d bit
in the opcode,
indicates that
the destination field
is the EAX register.

ADD ([esi + disp8], eax) = $03, $46, $xx

%110 indicates the
use of the [ESI]
addressing mode.

Disp8

Eight-bit
displacement
follows the
MOD-REG-R/M
byte.

0 0 0 0 0 0 1 1

%000000 indicates
that this is an ADD
instruction.

One indicates that we
are adding the R/M
field to the REG field.

One indicates that
we are adding 32
bit values together

1 0 0 1 1 1 0 1

MOD = %10 indi-
cates the use of a
32-bit displace-
ment.

This field, along
with the d bit
in the opcode,
indicates that
the destination field
is the EBX register.

ADD([ebp+disp32], ebx) = $03, $9D, $ww, $xx, $yy, $zz

DISP32

32-bit displacement
follows the instruction.

Note: $ww, $xx, $yy, $zz represent the four displace-
ment byte values with $ww being the L.O. byte and $zz
being the H.O. byte.

R/M = %101
is [ebp]
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 287

Chapter Five Volume Two
Figure 5.24 Encoding the ADD([disp32 +eax*1], ebp); Instruction

Figure 5.25 Encoding the ADD([ebx + edi * 4], ecx); Instruction

%000000 indicates
that this is an ADD
instruction.

One indicates that we
are adding the R/M
field to the REG field.

One indicates that
we are adding 32
bit values together

ADD ([disp32 + eax*1], ebp) = $03, $2C, $05, $ww, $xx, $yy, $zz

Note: $ww, $xx, $yy, $zz represent the four displace-
ment byte values with $ww being the L.O. byte and $zz
being the H.O. byte.

100000 0 0 0 0 0 1 1 10100000

MOD=%00 and
R/M=%100 means
disp32+reg*1 mode

Base=%101 means
displacement only
addressing mode.

Disp32101

EBP is the des-
tination register.

These two fields
select the EAX*1
scaled index mode.

%000000 indicates
that this is an ADD
instruction.

One indicates that we
are adding the R/M
field to the REG field.

One indicates that
we are adding 32
bit values together

ADD ([ebx+ edi*4], ecx) = $03, $0C, $BB

100000 0 0 0 0 0 1 1 01111110

MOD=%00 and
R/M=%100 means
SIB mode Base=%011 = EBX.

001

ECX is the des-
tination register.

These two fields
select the EDI*4
scaled index mode.
Page 288 © 2001, By Randall Hyde Beta Draft - Do not distribute

Instruction Set Architecture
5.5.3 Encoding Immediate Operands

You may have noticed that the MOD-REG-R/M and SIB bytes don’t contain any bit combinations you
can use to specify an immediate operand. The 80x86 uses a completely different opcode to specify an
immediate operand. Figure 5.26 shows the basic encoding for an ADD immediate instruction.

Figure 5.26 Encoding an ADD Immediate Instruction

There are three major differences between the encoding of the ADD immediate and the standard ADD
instruction. First, and most important, the opcode has a one in the H.O. bit position. This tells the CPU that
the instruction has an immediate constant. This individual change, however, does not tell the CPU that it
must execute an ADD instruction, as you’ll see momentarily.

The second difference is that there is no direction bit in the opcode. This makes sense because you can-
not specify a constant as a destination operand. Therefore, the destination operand is always the location the
MOD and R/M bits specify in the MOD-REG-R/M field.

In place of the direction bit, the opcode has a sign extension (x) bit. For eight-bit operands, the CPU
ignores this bit. For 16-bit and 32-bit operands, this bit specifies the size of the constant following the ADD
instruction. If this bit contains zero then the constant is the same size as the operand (i.e., 16 or 32 bits). If
this bit contains one then the constant is a signed eight-bit value and the CPU sign extends this value to the
appropriate size before adding it to the operand. This little trick often makes programs quite a bit shorter
because one commonly adds small valued constants to 16 or 32 bit operands.

The third difference between the ADD immediate and the standard ADD instruction is the meaning of
the REG field in the MOD-REG-R/M byte. Since the instruction implies that the source operand is a con-
stant and the MOD-R/M fields specify the destination operand, the instruction does not need to use the REG
field to specify an operand. Instead, the 80x86 CPU uses these three bits as an opcode extension. For the
ADD immediate instruction these three bits must contain zero (other bit patterns would correspond to a dif-
ferent instruction).

Note that when adding a constant to a memory location, the displacement (if any) associated with the
memory location immediately precedes the immediate (constant) data in the opcode sequence.

1 0 0 0 0 0 x s

%100000 indicates that
this is an immediate
mode instruction.

0 indicates that the constant is the
same size as specified by the s field,

s=0: 8-bit operands
s=1: 32-bit operands

0 0 0 0 0 1 0 1

These fields have the usual MOD-
REG-R/M meaning and specify
the destination operand.

Constant

Eight, 16, or 32-bit constant
follows the instruction.

Opcode exten-
sion, 000 for
ADD immediate

1 indicates that the constant is a one byte operand
that is sign extended to the size of the operand.

Optional one or
two byte dis-
placement (as
specified by
MOD-R/M)
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 289

Chapter Five Volume Two
5.5.4 Encoding Eight, Sixteen, and Thirty-Two Bit Operands

When Intel designed the 8086 they used one bit (s) to select between eight and sixteen bit integer oper-
and sizes in the opcode. Later, when they extended the 80x86 architecture to 32 bits with the introduction of
the 80386, they had a problem, with this single bit they could only encode two sizes but they needed to
encode three (8, 16, and 32 bits). To solve this problem, they used a operand size prefix byte.

Intel studied their instruction set and came to the conclusion that in a 32-bit environment, programs
were more likely to use eight-bit and 32-bit operands far more often than 16-bit operands. So Intel decided
to let the size bit (s) in the opcode select between eight and thirty-two bit operands, as the previous sections
describe. Although modern 32-bit programs don’t use 16-bit operands that often, they do need them now
and then. To allow for 16-bit operands, Intel lets you prefix a 32-bit instruction with the operand size prefix
byte, whose value is $66. This prefix byte tells the CPU to operand on 16-bit data rather than 32-bit data.

You do not have to explicitly put an operand size prefix byte in front of your 16-bit instructions; the
assembler will take care of this automatically for you whenever you use a 16-bit operand in an instruction.
However, do keep in mind that whenever you use a 16-bit operand in a 32-bit program, the instruction is
longer (by one byte) because of the prefix value. Therefore, you should be careful about using 16-bit
instructions if size (and to a lesser extent, speed) are important because these instructions are longer (and
may be slower because of their effect on the cache).

5.5.5 Alternate Encodings for Instructions

As noted earlier in this chapter, one of Intel’s primary design goals for the 80x86 was to create an
instruction set to allow programmers to write very short programs in order to save precious (at the time)
memory. One way they did this was to create alternate encodings of some very commonly used instructions.
These alternate instructions were shorter than the standard counterparts and Intel hoped that programmers
would make extensive use of these instructions, thus creating shorter programs.

A good example of these alternate instructions are the "add(constant, accumulator);" instructions (the
accumulator is AL, AX, or EAX). The 80x86 provides a single byte opcode for "add(constant, al);" and
"add(constant, eax);" (the opcodes are $04 and $05, respectively). With a one-byte opcode and no
MOD-REG-R/M byte, these instructions are one byte shorter than their standard ADD immediate counter-
parts. Note that the "add(constant, ax);" instruction requires an operand size prefix (as does the standard
"add(constant, ax);" instruction, so it’s opcode is effectively two bytes if you count the prefix byte. This,
however, is still one byte shorter than the corresponding standard ADD immediate.

You do not have to specify anything special to use these instructions. Any decent assembler will auto-
matically choose the shortest possible instruction it can use when translating your source code into machine
code. However, you should note that Intel only provides alternate encodings for the accumulator registers.
Therefore, if you have a choice of several instructions to use and the accumulator registers are among these
choices, the AL/AX/EAX registers almost always make the best bet. This is a good reason why you should
take some time and scan through the encodings of the 80x86 instructions some time. By familiarizing your-
self with the instruction encodings, you’ll know which instructions have special (and, therefore, shorter)
encodings.

5.6 Putting It All Together

Designing an instruction set that can stand the test of time is a true intellectual challenge. An engineer
must balance several compromises when choosing an instruction set and assigning opcodes for the instruc-
tions. The Intel 80x86 instruction set is a classic example of a kludge that people are currently using for pur-
poses the original designers never intended. However, the 80x86 is also a marvelous testament to the
ingenuity of Intel’s engineers who were faced with the difficult task of extending the CPU in ways it was
never intended. The end result, though functional, is extremely complex. Clearly, no one designing a CPU
(from scratch) today would choose the encoding that Intel’s engineers are using. Nevertheless, the 80x86
Page 290 © 2001, By Randall Hyde Beta Draft - Do not distribute

Instruction Set Architecture
CPU does demonstrate that careful planning (or just plain luck) does give the designer the ability to extend
the CPU far beyond it’s original design.

Historically, an important fact we’ve learned from the 80x86 family is that it’s very poor planning to
assume that your CPU will last only a short time period and that users will replace the chip and their soft-
ware when something better comes along. Software developers usually don’t have a problem adapting to a
new architecture when they write new software (assuming financial incentive to do so), but they are very
resistant to moving existing software from one platform to another. This is the primary reason the Intel
80x86 platform remains popular to this day.

Choosing which instructions you want to incorporate into the initial design of a new CPU is a difficult
task. You must balance the desire to provide lots of useful instructions with the silicon budget and you must
also be careful not to include lots of irrelevant instructions that programmers wind up ignoring for one rea-
son or another. Remember, all future versions of the CPU will probably have to support all the instructions
in the initial instruction set, so it’s better to err on the side of supplying too few instructions rather than too
many. Remember, you can always expand the instruction set in a later version of the chip.

Hand in hand with selecting the optimal instruction set is allowing for easy future expansion of the chip.
You must leave some undefined opcodes available so you can easily expand the instruction set later on.
However, you must balance the number of undefined opcodes with the number of initial instructions and the
size of your opcodes. For efficiency reasons, we want the opcodes to be as short as possible. We also need a
reasonable set of instructions in the initial instruction set. A reasonable instruction set may consume most of
the legal bit patterns in small opcode. So a hard decision has to be made: reduce the number of instructions
in the initial instruction set, increase the size of the opcode, or rely on an opcode prefix byte (which makes
the newer instructions (you add later) longer. There is no easy answer to this problem, as the CPU designer,
you must carefully weigh these choices during the initial CPU design. Unfortunately, you can’t easily
change your mind later on.

Most CPUs (Von Neumann architecture) use a binary encoding of instructions and fetch these instruc-
tions from memory. This chapter introduces the concept of binary instruction encoding via the hypothetical
"Y86" processor. This is a trivial (and not very practical) CPU design that makes it easy to demonstrate how
to choose opcodes for a simple instruction set, encode operands, and leave room for future expansion. Some
of the more interesting features the Y86 demonstrates includes the fact that an opcode often contains sub-
fields and we usually group instructions by the number of types of operands they support. The Y86 encoding
also demonstrates how to use special opcodes to differentiate one group of instructions from another and to
provide undefined (illegal) opcodes that we can use for future expansion.

The Y86 CPU is purely hypothetical and useful only as an educational tool. After exploring the design
of a simple instruction set with the Y86, this chapter began to discuss the encoding of instructions on the
80x86 platform. While the full 80x86 instruction set is far too complex to discuss this early in this text (i.e.,
there are lots of instructions we still have to discuss later in this text), this chapter was able to discuss basic
instruction encoding using the ADD instruction as an example. Note that this chapter only touches on the
80x86 instruction encoding scheme. For a full discussion of 80x86 encoding, see the appendices in this text
and the Intel 80x86 documentation.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 291

Chapter Five Volume Two
Page 292 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Architecture
Memory Architecture Chapter Six

6.1 Chapter Overview

This chapter discusses the memory hierarchy – the different types and performance levels of memory
found on a typical 80x86 computer system. Many programmers tend to view memory as this big nebulous
block of storage that holds values for future use. From a semantic point of view, this is a reasonable view.
However, from a performance point of view there are many different kinds of memory and using the wrong
one or using one form improperly can have a dramatically negative impact on the performance of a program.
This chapter discusses the memory hierarchy and how to best use it within your programs.

6.2 The Memory Hierarchy

Most modern programs can benefit greatly from a large amount of very fast memory. A physical reality,
however, is that as a memory device gets larger, it tends to get slower. For example, cache memories (see
“Cache Memory” on page 147) are very fast but are also small and expensive. Main memory is inexpensive
and large, but is slow (requiring wait states, see “Wait States” on page 146). The memory hierarchy is a
mechanism of comparing the cost and performance of the various places we can store data and instructions.
Figure 6.1 provides a look at one possible form of the memory hierarchy.

Figure 6.1 The Memory Hierarchy

At the top level of the memory hierarchy are the CPU’s general purpose registers. The registers provide
the fastest access to data possible on the 80x86 CPU. The register file is also the smallest memory object in
the memory hierarchy (with just eight general purpose registers available). By virtue of the fact that it is vir-
tually impossible to add more registers to the 80x86, registers are also the most expensive memory locations.
Note that we can include FPU, MMX, SIMD, and other CPU registers in this class as well. These additional

Increasing
Cost,
Increasing
Speed,
Decreasing
Size.

Decreasing
Cost,
Decreasing
Speed,
Increasing
Size.

Registers

Level One Cache

Level Two Cache

Main Memory

NUMA

Virtual Memory

Near-Line Storage

Off-Line Storage

Hard Copy

File Storage

Network Storage
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 293

Chapter Six Volume Two
registers do not change the fact that there are a very limited number of registers and the cost per byte is quite
high (figuring the cost of the CPU divided by the number of bytes of register available).

Working our way down, the Level One Cache system is the next highest performance subsystem in the
memory hierarchy. On the 80x86 CPUs, the Level One Cache is provided on-chip by Intel and cannot be
expanded. The size is usually quite small (typically between 4Kbytes and 32Kbytes), though much larger
than the registers available on the CPU chip. Although the Level One Cache size is fixed on the CPU and
you cannot expand it, the cost per byte of cache memory is much lower than that of the registers because the
cache contains far more storage than is available in all the combined registers.

The Level Two Cache is present on some CPUs, on other CPUs it is the system designer’s task to incor-
porate this cache (if it is present at all). For example, most Pentium II, III, and IV CPUs have a level two
cache as part of the CPU package, but many of Intel’s Celeron chips do not1. The Level Two Cache is gen-
erally much larger than the level one cache (e.g., 256 or 512KBytes versus 16 Kilobytes). On CPUs where
Intel includes the Level Two Cache as part of the CPU package, the cache is not expandable. It is still lower
cost than the Level One Cache because we amortize the cost of the CPU across all the bytes in the Level Two
Cache. On systems where the Level Two Cache is external, many system designers let the end user select
the cache size and upgrade the size. For economic reasons, external caches are actually more expensive that
caches that are part of the CPU package, but the cost per bit at the transistor level is still equivalent to the
in-package caches.

Below the Level Two Cache system in the memory hierarchy falls the main memory subsystem. This is
the general-purpose, relatively low-cost memory found in most computer systems. Typically, this is DRAM
or some similar inexpensive memory technology.

Below main memory is the NUMA category. NUMA, which stands for NonUniform Memory Access is
a bit of a misnomer here. NUMA means that different types of memory have different access times. There-
fore, the term NUMA is fairly descriptive of the entire memory hierarchy. In Figure 6.1a, however, we’ll use
the term NUMA to describe blocks of memory that are electronically similar to main memory but for one
reason or another operate significantly slower than main memory. A good example is the memory on a video
display card. Access to memory on video display cards is often an order of magnitude slower than access to
main memory. Other peripheral devices that provide a block of shared memory between the CPU and the
peripheral probably have similar access times as this video card example. Another example of NUMA
includes certain slower memory technologies like Flash Memory that have significant slower access and
transfers times than standard semiconductor RAM. We’ll use the term NUMA in this chapter to describe
these blocks of memory that look like main memory but run at slower speeds.

Most modern computer systems implement a Virtual Memory scheme that lets them simulate main
memory using storage on a disk drive. While disks are significantly slower than main memory, the cost per
bit is also significantly lower. Therefore, it is far less expensive (by three orders of magnitude) to keep some
data on magnetic storage rather than in main memory. A Virtual Memory subsystem is responsible for trans-
parently copying data between the disk and main memory as needed by a program.

File Storage also uses disk media to store program data. However, it is the program’s responsibility to
store and retrieve file data. In many instances, this is a bit slower than using Virtual Memory, hence the
lower position in the memory hierarchy2.

Below File Storage in the memory hierarchy comes Network Storage. At this level a program is keep-
ing data on a different system that connects the program’s system via a network. With Network Storage you
can implement Virtual Memory, File Storage, and a system known as Distributed Shared Memory (where
processes running on different computer systems share data in a common block of memory and communi-
cate changes to that block across the network).

Virtual Memory, File Storage, and Network Storage are examples of so-called on-line memory sub-
systems. Memory access via these mechanism is slower than main memory access, but when a program
requests data from one of these memory devices, the device is ready and able to respond to the request as
quickly as is physically possible. This is not true for the remaining levels in the memory hierarchy.

1. Note, by the way, that the level two cache on the Pentium CPUs is typically not on the same chip as the CPU. Instead, Intel
packages a separate chip inside the box housing the Pentium CPU and wires this second chip (containing the level two cache)
directly to the Pentium CPU inside the package.
2. Note, however, that in some degenerate cases Virtual Memory can be much slower than file access.
Page 294 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Architecture
The Near-Line and Off-Line Storage subsystems are not immediately ready to respond to a program’s
request for data. An Off-Line Storage system keeps its data in electronic form (usually magnetic or optical)
but on media that is not (necessarily) connected to the computer system while the program that needs the
data is running. Examples of Off-Line Storage include magnetic tapes, disk cartridges, optical disks, and
floppy diskettes. When a program needs data from an off-line medium, the program must stop and wait for a
someone or something to mount the appropriate media on the computer system. This delay can be quite
long (perhaps the computer operator decided to take a coffee break?). Near-Line Storage uses the same
media as Off-Line Storage, the difference is that the system holds the media in a special robotic jukebox
device that can automatically mount the desired media when some program requests it. Tapes and remov-
able media are among the most inexpensive electronic data storage formats available. Hence, these media
are great for storing large amounts of data for long time periods.

Hard Copy storage is simply a print-out (in one form or another) of some data. If a program requests
some data and that data is present only in hard copy form, someone will have to manual enter the data into
the computer. Paper (or other hard copy media) is probably the least expensive form of memory, at least for
certain data types.

6.3 How the Memory Hierarchy Operates

The whole point of the memory hierarchy is to allow reasonably fast access to a large amount of mem-
ory. If only a little memory was necessary, we’d use fast static RAM (i.e., the stuff they make cache memory
out of) for everything. If speed wasn’t necessary, we’d just use low-cost dynamic RAM for everything. The
whole idea of the memory hierarchy is that we can take advantage of the principle of locality of reference
(see “Cache Memory” on page 147) to move often-referenced data into fast memory and leave less-used data
in slower memory. Unfortunately, the selection of often-used versus lesser-used data varies over the execu-
tion of any given program. Therefore, we cannot simply place our data at various levels in the memory hier-
archy and leave the data alone throughout the execution of the program. Instead, the memory subsystems
need to be able to move data between themselves dynamically to adjust for changes in locality of reference
during the program’s execution.

Moving data between the registers and the rest of the memory hierarchy is strictly a program function.
The program, of course, loads data into registers and stores register data into memory using instructions like
MOV. It is strictly the programmer’s or compiler’s responsibility to select an instruction sequence that keeps
heavily referenced data in the registers as long as possible.

The program is largely unaware of the memory hierarchy. In fact, the program only explicitly controls
access to main memory and those components of the memory hierarchy at the file storage level and below
(since manipulating files is a program-specific operation). In particular, cache access and virtual memory
operation are generally transparent to the program. That is, access to these levels of the memory hierarchy
usually take place without any intervention on the program’s part. The program just accesses main memory
and the hardware (and operating system) take care of the rest.

Of course, if the program really accessed main memory on each access, the program would run quite
slowly since modern DRAM main memory subsystems are much slower than the CPU. The job of the cache
memory subsystems (and the cache controller) is to move data between main memory and the cache so that
the CPU can quickly access data in the cache. Likewise, if data is not available in main memory, but is avail-
able in slower virtual memory, the virtual memory subsystem is responsible for moving the data from hard
disk to main memory (and then the caching subsystem may move the data from main memory to cache for
even faster access by the CPU).

With few exceptions, most transparent memory subsystem accesses always take place between one level
of the memory hierarchy and the level immediately below or above it. For example, the CPU rarely accesses
main memory directly. Instead, when the CPU requests data from memory, the Level One Cache subsystem
takes over. If the requested data is in the cache, then the Level One Cache subsystem returns the data and
that’s the end of the memory access. On the other hand if the data is not present in the level one cache, then
it passes the request on down to the Level Two Cache subsystem. If the Level Two Cache subsystem has the
data, it returns this data to the Level One Cache, which then returns the data to the CPU. Note that requests
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 295

Chapter Six Volume Two
for this same data in the near future will come from the Level One Cache rather than the Level Two Cache
since the Level One Cache now has a copy of the data.

If neither the Level One nor Level Two Cache subsystems have a copy of the data, then the memory sub-
system goes to main memory to get the data. If found in main memory, then the memory subsystems copy
this data to the Level Two Cache which passes it to the Level One Cache which gives it to the CPU. Once
again, the data is now in the Level One Cache, so any references to this data in the near future will come
from the Level One Cache.

If the data is not present in main memory, but is present in Virtual Memory on some storage device, the
operating system takes over, reads the data from disk (or other devices, such as a network storage server) and
places this data in main memory. Main memory then passes this data through the caches to the CPU.

Because of locality of reference, the largest percentage of memory accesses take place in the Level One
Cache system. The next largest percentage of accesses occur in the Level Two Cache subsystems. The most
infrequent accesses take place in Virtual Memory.

6.4 Relative Performance of Memory Subsystems

If you take another look at Figure 6.1 you’ll notice that the speed of the various levels increases at the
higher levels of the memory hierarchy. A good question to ask, and one we’ll hope to answer in this section,
is "how much faster is each successive level in the memory hierarchy?" It actually ranges from "almost no
difference" to "four orders of magnitude" as you’ll seem momentarily.

Registers are, unquestionably, the best place to store data you need to access quickly. Accessing a regis-
ter never requires any extra time3. Further, instructions that access data can almost always access that data in
a register. Such instructions already encode the register "address" as part of the MOD-REG-R/M byte (see
“Encoding Instruction Operands” on page 279). Therefore, it never takes any extra bits in an instruction to use a
register. Instructions that access memory often require extra bytes (i.e., displacement bytes) as part of the
instruction encoding. This makes the instruction longer which means fewer of them can sit in the cache or in
a prefetch queue. Hence, the program may run slower if it uses memory operands more often than register
operands simply due to the instruction size difference.

If you read Intel’s instruction timing tables, you’ll see that they claim that an instruction like
"mov(someVar, ecx);" is supposed to run as fast as an instruction of the form "mov(ebx, ecx);" However,
if you read the fine print, you’ll find that they make several assumptions about the former instruction. First,
they assume that someVar’s value is present in the level one cache memory. If it is not, then the cache con-
troller needs to look in the level two cache, in main memory, or worse, on disk in the virtual memory sub-
system. All of a sudden, this instruction that should execute in one cycle (e.g., one nanosecond on a one
gigahertz processor) requires several milliseconds to execution. That’s over six orders of magnitude differ-
ence, if you’re counting. Now granted, locality of reference suggests that future accesses to this variable will
take place in one cycle. However, if you access someVar’s value one million times immediately thereafter,
the average access time of each instruction will be two cycles because of the large amount of time needed to
access someVar the very first time (when it was on a disk in the virtual memory system). Now granted, the
likelihood that some variable will be on disk in the virtual memory subsystem is quite low. But there is a
three orders of magnitude difference in performance between the level one cache subsystem and the main
memory subsystem. So if the program has to bring in the data from main memory, 999 accesses later you’re
still paying an average cost of two cycles for the instruction that Intel’s documentation claims should execute
in one cycle. Note that register accesses never suffer from this problem. Hence, register accesses are much
faster.

The difference between the level one and level two cache systems is not so dramatic. Usually, a level
two caching subsystem introduces between one and eight wait states (see “Wait States” on page 146). The
difference is usually much greater, though, if the secondary cache is not packaged together with the CPU.

On a one gigahertz processor the level one cache must respond within one nanosecond if the cache oper-
ates with zero wait states (note that some processors actually introduce wait states in accesses to the level

3. Okay, strictly speaking this is not true. However, we’ll ignore data hazards in this discussion and assume that the program-
mer or compiler has scheduled their instructions properly to avoid pipeline stalls due to data hazards with register data.
Page 296 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Architecture
one cache, but system designers try not to do this). Accessing data in the level two cache is always slower
than in the level one cache and there is always the equivalent of at least one wait state, perhaps more, when
accessing data in the level two cache. The reason is quite simple – it takes the CPU time to determine that
the data it is seeking is not in the L1 (level one) cache; by the time it determines that the data is not present,
the memory access cycle is nearly complete and there is no time to access the data in the L2 (level two)
cache.

It may also be that the L2 cache is slower than the L1 cache. This is usually done in order to make the
L2 cache less expensive. Also, larger memory subsystems tend to be slower than smaller ones, and L2
caches are usually 16 to 64 times larger than the L1 cache, hence they are usually slower as well. Finally,
because L2 caches are not usually on the same silicon chip as the CPU, there are some delays associated
with getting data in and out of the cache. All this adds up to additional wait states when accessing data in the
L2 cache. As noted above, the L2 cache can be as much as an order of magnitude slower than the L1 cache.

Another difference between the L1 and L2 caches is the amount of data the system fetches when there is
an L1 cache miss. When the CPU fetches data from the L1 cache, it generally fetches (or writes) only the
data requested. If you execute a "mov(al, memory);" instruction, the CPU writes only a single byte to the
cache. Likewise, if you execute "mov(mem32, eax);" then the CPU reads 32 bits from the L1 cache.
Access to memory subsystems below the L1 cache, however, do not work in small chucks like this. Usually,
memory subsystems read blocks (or cache lines) of data whenever accessing lower levels of the memory
hierarchy. For example, if you execute the "mov(mem32, eax);" instruction and mem32’s value is not in the
L1 cache, the cache controller doesn’t simply read mem32’s value from the L2 cache (assuming it’s present
there). Instead, the cache controller will actually read a block of bytes (generally 16, 32, or 64 bytes, this
depends on the particular processor) from the lower memory levels. The hope is that spatial locality exists
and reading a block of bytes will speed up accesses to adjacent objects in memory4. The bad news, however,
is that the "mov(mem32, eax);" instruction doesn’t complete until the L1 cache reads the entire cache line
(of 16, 32, 64, etc., bytes) from the L2 cache. Although the program may amortize the cost of reading this
block of bytes over future accesses to adjacent memory locations, there is a large passage of time between
the request for mem32 and the actual completion of the "mov(mem32, eax);" instruction. This excess time
is known as latency. As noted, the hope is that extra time will be worth the cost when future accesses to adja-
cent memory locations occur; however, if the program does not access memory objects adjacent to mem32,
this latency is lost time.

A similar performance gulf separates the L2 cache and main memory. Main memory is typically an
order of magnitude slower than the L2 cache. Again the L2 cache reads data from main memory in blocks
(cache lines) to speed up access to adjacent memory elements.

There is a three to four order of magnitude difference in performance between standard DRAM and disk
storage. To overcome this difference, there is usually a two to three orders of magnitude difference in size
between the L2 cache and the main memory. In other words, the idea is "if the access time difference
between main memory and virtual memory is two orders of magnitude greater than the difference between
the L2 cache and main memory, then we’d better make sure we have two orders of magnitude more main
memory than we have L2 cache." This keeps the performance loss to a reasonable level since we access vir-
tual memory on disk two orders of magnitude less often.

We will not consider the performance of the other memory hierarchy subsystems since they are more or
less under programmer control (their access is not automatic by the CPU or operating system). Hence, very
little can be said about how frequently a program will access them.

6.5 Cache Architecture

Up to this point, cache has been this magical place that automatically stores data when we need it, per-
haps fetching new data as the CPU requires it. However, a good question is "how exactly does the cache do
this?" Another might be "what happens when the cache is full and the CPU is requesting additional data not

4. Note that reading a block of n bytes is much faster than n reads of one byte. So this scheme is many times faster if spatial
locality does occur in the program. For information about spatial locality, see “Cache Memory” on page 147.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 297

Chapter Six Volume Two
in the cache?" In this section, we’ll take a look at the internal cache organization and try to answer these
questions along with a few others.

The basic idea behind a cache is that a program only access a small amount of data at a given time. If
the cache is the same size as the typical amount of data the program access at any one given time, then we
can put that data into the cache and access most of the data at a very high speed. Unfortunately, the data
rarely sits in contiguous memory locations; usually, there’s a few bytes here, a few bytes there, and some
bytes somewhere else. In general, the data is spread out all over the address space. Therefore, the cache
design has got to accommodate the fact that it must map data objects at widely varying addresses in memory.

As noted in the previous section, cache memory is not organized as a group of bytes. Instead, cache
organization is usually in blocks of cache lines with each line containing some number of bytes (typically a
small number that is a power of two like 16, 32, or 64), see Figure 6.2.

Figure 6.2 Possible Organization of an 8 Kilobyte Cache

The idea of a cache system is that we can attach a different (non-contiguous) address to each of the
cache lines. So cache line #0 might correspond to addresses $10000..$1000F and cache line #1 might corre-
spond to addresses $21400..$2140F. Generally, if a cache line is n bytes long (n is usually some power of
two) then that cache line will hold n bytes from main memory that fall on an n-byte boundary. In this exam-
ple, the cache lines are 16 bytes long, so a cache line holds blocks of 16 bytes whose addresses fall on
16-byte boundaries in main memory (i.e., the L.O. four bits of the address of the first byte in the cache line
are always zero).

When the cache controller reads a cache line from a lower level in the memory hierarchy, a good ques-
tion is "where does the data go in the cache?" The most flexible cache system is the fully associative cache.
In a fully associative cache subsystem, the caching controller can place a block of bytes in any one of the
cache lines present in the cache memory. While this is a very flexible system, the flexibility is not without
cost. The extra circuitry to achieve full associativity is expensive and, worse, can slow down the memory
subsystem. Most L1 and L2 caches are not fully associative for this reason.

At the other extreme is the direct mapped cache (also known as the one-way set associative cache). In a
direct mapped cache, a block of main memory is always loaded into the same cache line in the cache. Gen-
erally, some number of bits in the main memory address select the cache line. For example, Figure 6.3
shows how the cache controller could select a cache line for an 8 Kilobyte cache with 16-byte cache lines
and a 32-bit main memory address. Since there are 512 cache lines, this example uses bits four through
twelve to select one of the cache lines (bits zero through three select a particular byte within the 16-byte
cache line). The direct-mapped cache scheme is very easy to implement. Extracting nine (or some other
number of) bits from the address and using this as an index into the array of cache lines is trivial and fast.
However, direct-mapped caches to suffer from some other problems.

An 8KByte cache is often organized as a set
of 512 lines of 16 bytes each.
Page 298 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Architecture
Figure 6.3 Selecting a Cache Line in a Direct-mapped Cache

Perhaps the biggest problem with a direct-mapped cache is that it may not make effective use of all the
cache memory. For example, the cache scheme in Figure 6.3 maps address zero to cache line #0. It also
maps address $2000 (8K), $4000 (16K), $6000 (24K), $8000 (32K), and, in fact, it maps every address that
is an even multiple of eight kilobytes to cache line #0. This means that if a program is constantly accessing
data at addresses that are even multiples of 8K and not accessing any other locations, the system will only
use cache line #0, leaving all the other cache lines unused. Each time the CPU requests data at an address
that is not at an address within cache line #0, the CPU will have to go down to a lower level in the memory
hierarchy to access the data. In this pathological case, the cache is effectively limited to the size of one
cache line. Had we used a fully associative cache organization, each access (up to 512 cache lines’ worth)
could have their own cache line, thus improving performance.

If a fully associative cache organization is too complex, expensive, and slow to implement, but a
direct-mapped cache organization isn’t as good as we’d like, one might ask if there is a compromise that
gives us more capability that a direct-mapped approach without all the complexity of a fully associative
cache. The answer is yes, we can create an n-way set associative cache which is a compromise between
these two extremes. The idea here is to break up the cache into sets of cache lines. The CPU selects a par-
ticular set using some subset of the address bits, just as for direct-mapping. Within each set there are n cache
lines. The caching controller uses a fully associative mapping algorithm to select one of the n cache lines
within the set.

As an example, an 8 kilobyte two-way set associative cache subsystem with 16-byte cache lines orga-
nizes the cache as a set of 256 sets with each set containing two cache lines ("two-way" means each set con-
tains two cache lines). Eight bits from the memory address select one of these 256 different sets. Then the
cache controller can map the block of bytes to either cache line within the set (see Figure 6.4). The advan-
tage of a two-way set associative cache over a direct mapped cache is that you can have two accesses on 8
Kilobyte boundaries (using the current example) and still get different cache lines for both accesses. How-
ever, once you attempt to access a third memory location at an address that is an even multiple of eight kilo-
bytes you will have a conflict.

An 8KByte cache
organized as a set
of 512 lines of 16
bytes each.

034121331
32-bit physical address

Nine bits (bits 4..12)
provide an index to
select one of the 512
different cache lines
in the cache.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 299

Chapter Six Volume Two
Figure 6.4 A Two-Way Set Associative Cache

A two-way set associative cache is much better than a direct-mapped cache and considerably less com-
plex than a fully associative cache. However, if you’re still getting too many conflicts, you might consider
using a four-way set associative cache. A four-way set associative cache puts four associative cache lines in
each block. In the current 8K cache example, a four-way set associative example would have 128 sets with
each set containing four cache lines. This would allow up to four accesses to an address that is an even mul-
tiple of eight kilobytes before a conflict would occur.

Obviously, we can create an arbitrary m-way set associative cache (well, m does have to be a power of
two). However, if m is equal to n, where n is the number of cache lines, then you’ve got a fully associative
cache with all the attendant problems (complexity and speed). Most cache designs are direct-mapped,
two-way set associative, or four-way set associative. The 80x86 family CPUs use all three (depending on
the CPU and cache).

Although this section has made direct-mapped cache look bad, they are, in fact, very effective for many
types of data. In particular, they are very good for data that you access in a sequential rather than random
fashion. Since the CPU typically executes instructions in a sequential fashion, instructions are a good thing
to put into a direct-mapped cache. Data access is probably a bit more random access, so a two-way or
four-way set associative cache probably makes a better choice.

Because access to data and instructions is different, many CPU designers will use separate caches for
instructions and data. For example, the CPU designer could choose to implement an 8K instruction cache
and an 8K data cache rather than a 16K unified cache. The advantage is that the CPU designer could choose
a more appropriate caching scheme for instructions versus data. The drawback is that the two caches are
now each half the size of a unified cache and you may get fewer cache misses from a unified cache. The
choice of an appropriate cache organization is a difficult one and can only be made after analyzing lots of
running programs on the target processor. How to choose an appropriate cache format is beyond the scope
of this text, just be aware that it’s not an easy choice you can make by reading some textbook.

Thus far, we’ve answered the question "where do we put a block of data when we read it into the
cache?" An equally important question we ignored until now is "what happens if a cache line isn’t available
when we need to read data from memory?" Clearly, if all the lines in a set of cache lines contain data, we’re
going to have to replace one of these lines with the new data. The question is, "how do we choose the cache
line to replace?"

For a direct-mapped (one-way set associative) cache architecture, the answer is trivial. We replace
exactly the block that the memory data maps to in the cache. The cache controller replaces whatever data

034111231
32-bit physical address

Eight bits (bits 4..11)
provide an index to
select one of the 256
different sets of cache
lines in the cache.

The cache control-
ler chooses one of
the two different
cache lines within
the set.
Page 300 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Architecture
was formerly in the cache line with the new data. Any reference to the old data will result in a cache miss
and the cache controller will have to bring that data into the cache replacing whatever data is in that block at
that time.

For a two-way set associative cache, the replacement algorithm is a bit more complex. Whenever the
CPU references a memory location, the cache controller uses some number of the address bits to select the
set that should contain the cache line. Using some fancy circuity, the caching controller determines if the
data is already present in one of the two cache lines in the set. If not, then the CPU has to bring the data in
from memory. Since the main memory data can go into either cache line, somehow the controller has to
pick one or the other. If either (or both) cache lines are currently unused, the selection is trivial: pick an
unused cache line. If both cache lines are currently in use, then the cache controller must pick one of the
cache lines and replace its data with the new data. Ideally, we’d like to keep the cache line that will be ref-
erenced first (that is, we want to replace the one whose next reference is later in time). Unfortunately, nei-
ther the cache controller nor the CPU is omniscient, they cannot predict which is the best one to replace.
However, remember the principle of temporal locality (see “Cache Memory” on page 147): if a memory
location has been referenced recently, it is likely to be referenced again in the very near future. A corollary
to this is "if a memory location has not been accessed in a while, it is likely to be a long time before the CPU
accesses it again." Therefore, a good replacement policy that many caching controllers use is the "least
recently used" or LRU algorithm. The idea is to pick the cache line that was not most frequently accessed
and replace that cache line with the new data. An LRU policy is fairly easy to implement in a two-way set
associative cache system. All you need is a bit that is set to zero whenever the CPU accessing one cache line
and set it to one when you access the other cache line. This bit will indicate which cache line to replace
when a replacement is necessary. For four-way (and greater) set associative caches, maintaining the LRU
information is a bit more difficult, which is one of the reasons the circuitry for such caches is more complex.
Other possible replacement policies include First-in, First-out5 (FIFO) and random. These are easier to
implement than LRU, but they have their own little problems.

The replacement policies for four-way and n-way set associative caches are roughly the same as for
two-way set associative caches. The major difference is in the complexity of the circuit needed to imple-
ment the replacement policy (see the comments on LRU in the previous paragraph).

Another problem we’ve overlooked in this discussion on caches is "what happens when the CPU writes
data to memory?" The simple answer is trivial, the CPU writes the data to the cache. However, what hap-
pens when the cache line containing this data is replaced by incoming data? If the contents of the cache line
is not written back to main memory, then the data that was written will be lost. The next time the CPU reads
that data, it will fetch the original data values from main memory and the value written is lost.

Clearly any data written to the cache must ultimately be written to main memory as well. There are two
common write policies that caches use: write-back and write-through. Interestingly enough, it is sometimes
possible to set the write policy under software control; these aren’t hardwired into the cache controller like
most of the rest of the cache design. However, don’t get your hopes up. Generally the CPU only allows the
BIOS or operating system to set the cache write policy, your applications don’t get to mess with this. How-
ever, if you’re the one writing the operating system...

The write-through policy states that any time data is written to the cache, the cache immediately turns
around and writes a copy of that cache line to main memory. Note that the CPU does not have to halt while
the cache controller writes the data to memory. So unless the CPU needs to access main memory shortly
after the write occurs, this writing takes place in parallel with the execution of the program. Still, writing a
cache line to memory takes some time and it is likely that the CPU (or some CPU in a multiprocessor sys-
tem) will want to access main memory during this time, so the write-through policy may not be a high per-
formance solution to the problem. Worse, suppose the CPU reads and writes the value in a memory location
several times in succession. With a write-through policy in place the CPU will saturate the bus with cache
line writes and this will have a very negative impact on the program’s performance. On the positive side, the
write-through policy does update main memory with the new value as rapidly as possible. So if two differ-
ent CPUs are communicating through the use of shared memory, the write-through policy is probably better
because the second CPU will see the change to memory as rapidly as possible when using this policy.

5. This policy does exhibit some anomalies. These problems are beyond the scope of this chapter, but a good text on architec-
ture or operating systems will discuss the problems with the FIFO replacement policy.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 301

Chapter Six Volume Two
The second common cache write policy is the write-back policy. In this mode, writes to the cache are
not immediately written to main memory; instead, the cache controller updates memory at a later time. This
scheme tends to be higher performance because several writes to the same variable (or cache line) only
update the cache line, they do not generate multiple writes to main memory.

Of course, at some point the cache controller must write the data in cache to memory. To determine
which cache lines must be written back to main memory, the cache controller usually maintains a dirty bit
with each cache line. The cache system sets this bit whenever it writes data to the cache. At some later time
the cache controller checks this dirty bit to determine if it must write the cache line to memory. Of course,
whenever the cache controller replaces a cache line with other data from memory, it must first write that
cache line to memory if the dirty bit is set. Note that this increases the latency time when replacing a cache
line. If the cache controller were able to write dirty cache lines to main memory while no other bus access
was occurring, the system could reduce this latency during cache line replacement.

A cache subsystem is not a panacea for slow memory access. In order for a cache system to be effective
the software must exhibit locality of reference. If a program accesses memory in a random fashion (or in a
fashion guaranteed to exploit the caching controller’s weaknesses) then the caching subsystem will actually
cause a big performance drop. Fortunately, real-world programs do exhibit locality of reference, so most
programs will benefit from the presence of a cache in the memory subsystem.

6.6 Virtual Memory, Protection, and Paging

In a modern operating system such as Windows, it is very common to have several different programs
running concurrently in memory. This presents several problems. First, how do you keep the programs from
interfering with one another? Second, if one program expects to load into memory at address $1000 and a
second program also expects to load into memory at address $1000, how can you load and execute both pro-
grams at the same time? One last question we might ask is what happens if our computer has 64 megabytes
of memory and we decide to load and execute three different applications, two of which require 32 mega-
bytes and one that requires 16 megabytes (not to mention the memory the operating system requires for its
own purposes)? The answer to all these questions lies in the virtual memory subsystem the 80x86 proces-
sors support6.

Virtual memory on the 80x86 gives each process its own 32-bit address space7. This means that address
$1000 in one program is physically different than address $1000 in a separate program. The 80x86 achieves
this sleight of hand by using paging to remap virtual addresses within one program to different physical
addresses in memory. A virtual address in the memory address that the program uses. A physical address is
the bit pattern than actually appears on the CPU’s address bus. The two don’t have to be the same (and usu-
ally, they aren’t). For example, program #1’s virtual address $1000 might actually correspond to physical
address $215000 while program #2’s virtual address $1000 might correspond to physical memory address
$300000. How can the CPU do this? Easy, by using paging.

The concept behind paging is quite simple. First, you break up memory into blocks of bytes called
pages. A page in main memory is comparable to a cache line in a cache subsystem, although pages are usu-
ally much larger than cache lines. For example, the 80x86 CPUs use a page size of 4,096 bytes.

After breaking up memory into pages, you use a lookup table to translate the H.O. bits of a virtual
address to select a page; you use the L.O. bits of the virtual address as an index into the page. For example,
with a 4,096-byte page, you’d use the L.O. 12 bits of the virtual address as the offset within the page in phys-
ical memory. The upper 20 bits of the address you would use as an index into a lookup table that returns the
actual upper 20 bits of the physical address (see Figure 6.5).

6. Actually, virtual memory is really only supported by the 80386 and later processors. We’ll ignore this issue here since most
people have an 80386 or later processor.
7. Strictly speaking, you actually get a 36-bit address space on Pentium Pro and later processors, but Windows limits you to
32-bits so we’ll use that limitation here.
Page 302 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Architecture
Figure 6.5 Translating a Virtual Address to a Physical Address

Of course, a 20-bit index into the page table would require over one million entries in the page table. If
each entry is 32 bits (20 bits for the offset plus 12 bits for other purposes), then the page table would be four
megabytes long. This would be larger than most of the programs that would run in memory! However,
using what is known as a multi-level page table, it is very easy to create a page table that is only 8 kilobytes
long for most small programs. The details are unimportant here, just rest assured that you don’t need a four
megabyte page table unless your program consumes the entire four gigabyte address space.

If you study Figure 6.5 for a few moments, you’ll probably discover one problem with using a page
table – it requires two memory accesses in order to access an address in memory: one access to fetch a value
from the page table and one access to read or write the desired memory location. To prevent cluttering the
data (or instruction) cache with page table entries (thus increasing the number of cache misses), the page
table uses its own cache known as the Translation Lookaside Buffer, or TLB. This cache typically has 32
entries on a Pentium family processor. This provides a sufficient lookup capability to handle 128 kilobytes
of memory (32 pages) without a miss. Since a program typically works with less data than this at any given
time, most page table accesses come from the cache rather than main memory.

As noted, each entry in the page table is 32 bits even though the system really only needs 20 bits to
remap the addresses. Intel uses some of the remaining 12 bits to provide some memory protection informa-
tion. For example, one bit marks whether a page is read/write or read-only. Another bit determines if you
can execute code on that page. Some bits determine if the application can access that page or if only the
operating system can do so. Some bits determine if the page is "dirty" (that is, if the CPU has written to the
page) and whether the CPU has accessed the page recently (these bits have the same meaning as for cache
lines). Another bit determines whether the page is actually present in physical memory or if it’s stored on
secondary storage somewhere. Note that your applications do not have access to the page table, and there-
fore they cannot modify these bits. However, Windows does provide some functions you can call if you
want to change certain bits in the page table (e.g., Windows will allow you to set a page to read-only if you
want to do so).

Beyond remapping memory so multiple programs can coexist in memory even though they access the
same virtual addresses, paging also provides a mechanism whereby the operating system can move infre-
quently used pages to secondary storage (i.e., a disk drive). Just as locality of reference applies to cache
lines, it applies to pages in memory as well. At any one given time a program will only access a small per-

0111231

32-bit Virtual Address

...

...

32-bit Physical Address

Page
Table
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 303

Chapter Six Volume Two
centage of the pages in memory that contain data and code (this set of pages is known as the working set).
While this working set of pages varies (slowly) over time, for a reasonable time period the working set
remains constant. Therefore, there is little need to have the remainder of the program in memory consuming
valuable physical memory that some other process could be using. If the operating system can save those
(currently unused) pages to disk, the physical memory they consume would be available for other programs
that need it.

Of course, the problem with moving data out of physical memory is that sooner or later the program
might actually need it. If you attempt to access a page of memory and the page table bit tells the MMU
(memory management unit) that this page is not present in physical memory, then the CPU interrupts the
program and passes control to the operating system. The operating system analyzes the memory access
request and reads the corresponding page of data from the disk drive to some available page in memory. The
process is nearly identical to that used by a fully associative cache subsystem except, of course, accessing
the disk is much slower than main memory. In fact, you can think of main memory as a fully associative
write-back cache with 4,096 byte cache lines that caches the data on the disk drive. Placement and replace-
ment policies and other issues are very similar to those we’ve discussed for caches. Discussing how the vir-
tual memory subsystem works beyond equating it to a cache is will beyond the scope of this text. If you’re
interested, any decent text on operating system design will explain how a virtual memory subsystem swaps
pages between main memory and the disk. Our main goal here is to realize that this process takes place in
operating systems like Windows and that accessing the disk is very slow.

One important issue resulting from the fact that each program as a separate page table and the programs
themselves don’t have access to the page table is that programs cannot interfere with the operation of other
programs by overwriting those other program’s data (assuming, of course, that the operating system is prop-
erly written). Further, if your program crashes by overwriting itself, it cannot crash other programs at the
same time. This is a big benefit of a paging memory system.

Note that if two programs want to cooperate and share data, they can do so. All they’ve got to do is to
tell the operating system that they want to share some blocks of memory. The operating system will map
their corresponding virtual addresses (of the shared memory area) to the same physical addresses in mem-
ory. Under Windows, you can achieve this use memory mapped files; see the Windows documentation for
more details.

6.7 Thrashing

Thrashing is a degenerate case that occurs when there is insufficient memory at one level in the memory
hierarchy to properly contain the working set required by the upper levels of the memory hierarchy. This can
result in the overall performance of the system dropping to the speed of a lower level in the memory hierar-
chy. Therefore, thrashing can quickly reduce the performance of the system to the speed of main memory
or, worse yet, the speed of the disk drive.

There are two primary causes of thrashing: (1) insufficient memory at a given level in the memory hier-
archy, and (2) the program does not exhibit locality of reference. If there is insufficient memory to hold a
working set of pages or cache lines, then the memory system is constantly replacing one block (cache line or
page) with another. As a result, the system winds up operating at the speed of the slower memory in the hier-
archy. A common example occurs with virtual memory. A user may have several applications running at the
same time and the sum total of these programs’ working sets is greater than all of physical memory available
to the program. As a result, as the operating system switches between the applications it has to copy each
application’s data to and from disk and it may also have to copy the code from disk to memory. Since a
context switch between programs is often much faster than retrieving data from the disk, this slows the pro-
grams down by a tremendous factor since thrashing slows the context switch down to the speed of swapping
the applications to and from disk.

If the program does not exhibit locality of reference and the lower memory subsystems are not fully
associative, then thrashing can occur even if there is free memory at the current level in the memory hierar-
chy. For example, suppose an eight kilobyte L1 caching system uses a direct-mapped cache with 16-byte
cache lines (i.e., 512 cache lines). If a program references data objects 8K apart on each access then the sys-
Page 304 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Architecture
tem will have to replace the same line in the cache over and over again with each access. This occurs even
though the other 511 cache lines are currently unused.

If insufficient memory is the cause of thrashing, an easy solution is to add more memory (if possible, it
is rather hard to add more L1 cache when the cache is on the same chip as the processor). Another alterna-
tive is to run fewer processes concurrently or modify the program so that it references less memory over a
given time period. If lack of locality of reference is causing the problem, then you should restructure your
program and its data structures to make references local to one another.

6.8 NUMA and Peripheral Devices

Although most of the RAM memory in a system is based on high-speed DRAM interfaced directly to
the processor’s bus, not all memory is connected to the CPU in this manner. Sometimes a large block of
RAM is part of a peripheral device and you communicate with that device by writing data to the RAM on the
peripheral. Video display cards are probably the most common example, but some network interface cards
and USB controllers also work this way (as well as other peripherals). Unfortunately, the access time to the
RAM on these peripheral devices is often much slower than access to normal memory. We’ll call such
access NUMA8 access to indicate that access to such memory isn’t uniform (that is, not all memory loca-
tions have the same access times). In this section we’ll use the video card as an example, although NUMA
performance applies to other devices and memory technologies as well.

A typical video card interfaces to the CPU via the PCI (or much worse, ISA) bus inside the computer
system. The PCI bus nominally runs at 33 MHz and is capable of transferring four bytes per bus cycle. In
burst mode, a video controller card, therefore, is capable of transferring 132 megabytes per second (though
few would ever come close to achieving this for technical reasons). Now compare this with main memory
access. Main memory usually connects directly to the CPU’s bus and modern CPUs have a 100 MHz 64-bit
wide bus. Technically (if memory were fast enough), the CPU’s bus could transfer 800 MBytes/sec.
between memory and the CPU. This is six times faster than transferring data across the PCI bus. Game pro-
grammers long ago discovered that it’s much faster to manipulate a copy of the screen data in main memory
and only copy that data to the video display memory when a vertical retrace occurs (about 60 times/sec.).
This mechanism is much faster than writing directly to the video memory every time you want to make a
change.

Unlike caches and the virtual memory subsystem that operate in a transparent fashion, programs that
write to NUMA devices must be aware of this and minimize the accesses whenever possible (e.g., by using
an off-screen bitmap to hold temporary results). If you’re actually storing and retrieving data on a NUMA
device, like a Flash memory card, then you must explicitly cache the data yourself. Later in this text you’ll
learn about hash tables and searching. Those techniques will help you create your own caching system for
NUMA devices.

6.9 Segmentation

Segmentation is another memory management scheme, like paging, that provides memory protection
and virtual memory capabilities. Windows does not support the use of segments, nor does HLA provide any
instructions that let you manipulate segment registers or use segment override prefixes on an instruction.
The Win32 operating system employs the flat memory model that, essentially, ignores segments on the
80x86. Furthermore, the remainder of this text also ignores segmentation. What this means is that you don’t
really need to know anything about segmentation in order to write assembly language programs that run
under Windows. However, it’s unthinkable to write a book on 80x86 assembly language programming that
doesn’t at least mention segmentation. Hence this section.

The basic idea behind the segmentation model is that memory is managed using a set of segments. Each
segment is, essentially, its own address space. A segment consists of two components: a base address that
contains the address of some physical memory location and a length value that specifies the length of the

8. Remember, NUMA stands for NonUniform Memory Access.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 305

Chapter Six Volume Two
segment. A segmented address also consists of two components: a segment selector and an offset into the
segment. The segment selector specifies the segment to use (that is, the base address and length values)
while the offset component specifies the offset from the base address for the actual memory access. The
physical address of the actual memory location is the sum of the offset and the base address values. If the
offset exceeds the length of the segment, the system generates a protection violation.

Segmentation on the 80x86 got a (deservedly) bad name back in the days of the 8086, 8088, and 80286
processors. The problem back then is that the offset into the segment was only a 16-bit value, effectively
limiting segments to 64 kilobytes in length. By creating multiple segments in memory it was possible to
address more than 64K within a single program; however, it was a major pain to do so, especially if a single
data object exceeded 64 kilobytes in length. With the advent of the 80386, Intel solved this problem (and
others) with their segmentation model. By then, however, the damage had been done; segmentation had
developed a really bad name that it still bears to this day.

Segments are an especially powerful memory management system when a program needs to manipulate
different variable sized objects and the program cannot determine the size of the objects before run time.
For example, suppose you want to manipulate several different files using Windows’ memory mapped file
scheme. Under Win32, which doesn’t support segmentation, you have to specify the maximum size of the
file before you map it into memory. If you don’t do this, then Windows can’t leave sufficient space at the
end of the first file in memory before the second file starts. On the other hand, if Windows supported seg-
mentation, it could easily return segmented pointers to these two memory mapped files, each in their own
logical address space. This would allow the files to grow to the size of the maximum offset within a segment
(or the maximum file size, whichever is smaller). Likewise, if two programs wanted to share some common
data, a segmented system could allow the two programs to put the shared data in a segment. This would
allow both programs to reference objects in the shared area using like-valued pointer (offset) values. This
makes is easier to pass pointer data (within the shared segment) between the two programs, a very difficult
thing to do when using a flat memory model without segmentation as Windows currently does.

One of the more interesting features of the 80386 and later processors is the fact that Intel combined
both segmentation and paging in the same memory management unit. Prior to the 80386 most real-world
CPUs used paging or segmentation but not both. The 80386 processor merged both of these memory man-
agement mechanisms into the same chip, offering the advantages of both systems on a single chip. Unfortu-
nately, most 32-bit operating systems (e.g., Linux and Windows) fail to take advantage of segmentation so
this feature goes wasted on the chip.

6.10 Segments and HLA

Although HLA creates programs use the flat memory model under Win32, HLA does provide limited
support for segments in your code. However, HLA’s (and Window’s) segments are not the same thing as
80x86 segments; HLA segments are a logical organization of memory that has very little to do with segmen-
tation on the 80x86. HLA’s segments provide a simple way to organize variables and other objects in mem-
ory.

Logically, a segment is a block of memory where you place related objects. By default, HLA supports
five different segments: a segment that holds machine instructions, a read-only segment that holds constant
objects that HLA creates, a readonly segment that holds values you declare in the READONLY section, a
data segment that holds variables and other objects you declare in the STATIC section, and a "BSS" section
that holds uninitialized variables you declare in the STORAGE section9.

Normally you are completely unaware of the fact that HLA creates these segments in memory. The use
of these segments is automatic and generally transparent to your HLA programs. In a few cases, however,
you may need access to this segment information. For example, when linking your HLA programs with
high level languages like C/C++ or Delphi you may need to tell HLA to use different names for the five seg-
ments it create (as imposed by the high level language). By default, HLA uses the following segment names
for its five segments:

9. In theory, there is also a stack and a heap segment. However, the linker, not HLA, defines and allocates these two seg-
ments. You cannot explicitly declare static objects in these two segments during compilation.
Page 306 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Architecture
• _TEXT for the code segment (corresponds to the ".code" segment).
• _DATA for the STATIC section (corresponds to the ".data" segment).
• _BSS for the STORAGE section (corresponds to the ".bss" segment).
• "CONST" for the HLA constant segment (corresponds to the ".edata" segment).
• "readonly" for the HLA READONLY segment (this is not a standardized segment name).

The "_TEXT", "_DATA", "_BSS", and "CONST" segment names are quite standard under Win32.
Most common compilers that generate Win32 code use these segment names for the code, data, uninitial-
ized, and constant data sections. There does not seem to be a common segment that high level language
compilers use for read-only data (other than CONST), so HLA creates a separate specifically for this pur-
pose: the "readonly" segment where HLA puts the objects you declare in the READONLY section.

Examples of objects HLA puts in the "CONST" segment include string literal constants for string vari-
ables, constants HLA emits for extended syntax forms of the mul, imul, div, idiv, bounds, and other instruc-
tions, floating point constants that HLA automatically emits (e.g., for the "fld(1.234);" instruction) and so
on. Generally, you do not explicitly declare values that wind up in this section (other than through the use of
one of the aforementioned instructions).

HLA provides special directives that let you change the default names for these segments. Although
"_TEXT", "_DATA", "_BSS" and "CONST" are very standard names, some compilers may use different
names and expect HLA to put its code and data in those different segments. The "readonly" segment is def-
initely non-standard, some compilers may not allow you to use it (indeed, some compilers may not even
allow read-only segments in memory). Should you encounter a language that wants different segment
names or doesn’t allow readonly segments, you can tell HLA to use a different segment name or to map the
read-only segments to the static data segment. Here are the directives to achieve this:

#code("codeSegmentName", "alignment", "class")
#static("dataSegmentName", "alignment", "class")
#storage("bssSegmentName", "alignment", "class")
#readonly("readOnlySegmentName", "alignment", "class")
#const("constSegmentName", "alignment", "class")

The #code directive tells HLA to rename the code segment ("_TEXT") or use different alignment or
classification options. The #static directive renames the data segment ("_DATA", the segment the STATIC
section uses). The #storage directive renames the uninitialized data segment ("_BSS", the segment the
STORAGE section uses). The #readonly directive renames the "readonly" segment (where HLA places data
you declare in the READONLY section). Finally, the #const directive renames HLA’s "CONST" segments
(where HLA places constants that it emits internally).

Each of these directives contains three string expression operands. The first string operand specifies the
name of the segment. The second string specifies the segment alignment; we’ll return to a discussion of this
operand in a moment. The third operand is the segment class; the linker uses this name to combine seg-
ments that have different names into a single memory block. Generally, the class name is some variant of
the segment name, but this is not necessarily the case (e.g., the standard class name for the "_TEXT" seg-
ment is "CODE").

The alignment operand must be a string that contains one of the following identifiers: "byte", "word",
"dword", "para", or "page". HLA will only allow a string constant containing one of these five strings. The
alignment option specifies the boundary on which the linker will start a segment. This option is only mean-
ingful if you combine two different segments by using the same string for the class parameter. The linker
combines two segments by concatenating them in memory. When the linker combines the segments, it
makes sure that the concatenated segments start on the boundary the alignment operand specifies. A "byte"
alignment means that the segment can start at an arbitrary byte boundary. The "word" and "dword" align-
ment options tell the linker that the segment must start on a word or double word boundary (respectively).
The "para" alignment option tells the linker to start the segment on a paragraph (16-byte) boundary. The
"page" option tells the linker to align the segment on a 256-byte page boundary (this has nothing to do with
4K pages). Most systems expect paragraph alignment, so the most common option here is "para"10.

10. In fact, MASM requires PARA alignment for the standard segment names. You may only change the alignment if you
specify different segment names.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 307

Chapter Six Volume Two
By default, the linker will start each segment in memory on a 4K MMU page boundary. Therefore, if
each segment in an HLA program uses only one byte, that program will consume at least 20K because each
segment in memory will start on a different 4K boundary 11. This is why a simple "Hello World" applica-
tion consumes so much memory – the five default HLA segments each consume 4K of the memory space
whether or not the segments actually have 4K of data. The program isn’t really 20K long, it’s just spread out
over the 20K. As you add more code to the "Hello World" program, you’ll notice that the executable file
doesn’t grow in size until you reach some magic point. Then the program jumps in size by increments of 4K
(each time a segment’s length crosses a 4K boundary, the program grows in length by 4K). If you want the
shortest possible executable file, you can tell HLA to combine all the segments into a single segment. How-
ever, saving 8K, 12K, or even 16K of data is hardly useful on modern computer systems. Combining seg-
ments only saves a significant percentage of the program’s size on very tiny programs, so it’s not worth the
effort for most real applications.

To combine two segments you use the same name for the third parameter in the #code, #data, #static,
#readonly, and #const directives. For example, if you want to combine the "CONST" and "readonly" seg-
ments into a single memory segment, you can do so with the following two statements (this is actually the
default definition):

#readonly("readonly", "para", "CONST")
#const("CONST", "para", "CONST")

By using the same class names but different segment names you tell the linker to combine these two seg-
ments in memory. Of course, you can also combine the two segments by giving them the same segment
name, e.g.,

#readonly("readonly", "para", "readonly")
#const("readonly", "para", "readonly") // This is a bad idea, see below.

Generally, though, you should not give the #const ("CONST") segment the same name as other segments.
This can create code generation problems. If you want to combine the "CONST" segment with a different
segment, use the class parameter to achieve this. If you give the #const segment the same name as one of the
other segments, HLA may interleave data objects between the other segment and the #const segment; HLA
generally assumes this is not the case, so the combination of segments may introduce some subtle bugs in
your programs.

If the particular language you are using doesn’t support read-only segments, you should map the "rea-
donly" and "CONST" segments to the "_TEXT" (or equivalent) segment using the "CODE" combine class
parameter. Do not map the rename these segments to "_TEXT" because this will interleave data with code
and that will most likely crash your program.

The segment renaming directives do not check the syntax of the strings you specify for the segment
name and class fields. These should be legal MASM identifiers and should not be MASM keywords. Gen-
erally, legal HLA identifiers work just fine here (unless, of course, you just happen to pick a MASM reserved
word). If you specify a syntactically incorrect segment name or class name, HLA will not complain until it
attempts to assemble its output file with MASM.

You may only rename the HLA segments once and these directives must appear before the UNIT or
PROGRAM statements in an HLA source file. HLA does not allow you to change the name of one of these
segments after it has emitted any code for a specific segment. Since HLA emits segment declarations in
response to a UNIT or PROGRAM statement, you must do any segment renaming prior to these statements
in an HLA source file; i.e., these directives will typically be the very first statements in a source file.

Here are the default segment names, alignments, and class values that HLA uses:

#code("_TEXT", "para", "CODE")
#static("_DATA", "para", "DATA")
#storage("_BSS", "para", "BSS")
#const("CONST", "para", "CONST")
#readonly("readonly", "para", "CONST")

11. Actually, the smallest HLA program will probably be at least 24K or 28K because the Win32 libraries also consume a few
pages in memory.
Page 308 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Architecture
If you use the MASM-defined names "_TEXT", "_DATA", "_BSS", or "CONST" you must provide the
alignment and class parameters given above or MASM will complain when it compile’s HLA’s output.

6.11 User Defined Segments in HLA

In addition to the five standard segments, HLA lets you declare your own segments in your assembly
programs. Like the five standard segments, you should not confuse HLA segments with 80x86 segments.
You do not use the 80x86 segment registers to access data in user-defined segments. Instead, user segments
exist as a logical entity to group a set of related objects into the same physical block of memory. In this sec-
tion we’ll take a look at why you would want to use segments and how you declare them in HLA.

It should come as no surprise that when you declare two variables in adjacent statements in a declaration
section (e.g., STATIC) that HLA allocates those objects in adjacent memory locations. What may be sur-
prising is that HLA will probably not allocate two variables adjacently in memory if you declare those vari-
ables in two adjacent declaration selections. E.g., HLA will allocate i and j below in adjacent memory
locations, but it probably will not allocate j and k in adjacent memory locations:

static
i:uns32;
j:int32;

storage
k:dword;

The reason k does not immediately follow j in memory is because k is in the "_BSS" segment while i and j
are in the "_DATA" segment. Since segments typically start on 4K boundaries, there may be a huge gap
between j and k, assuming that the "_BSS" segment follows the "_DATA" segment in memory (and it may
not).

Another somewhat surprising result is that HLA (and MASM and the linker) will combine declarations
from declaration sections with the same segment name, even if those declarations are not adjacent. Consider
the following code:

static
i:uns32;
j:int32;

storage
k:dword;

static
m:real32;

Although j and k probably won’t occupy adjacent memory locations, nor will k and m, it is quite possible for
j and m to occupy adjacent memory locations since HLA places both declarations in the "_DATA" segment.
There is no requirement for HLA to allocate m immediately after j, but HLA will allocate both objects in the
same block of physical memory. If you need allocate two variables in adjacent memory locations, or one
variable must appear at a lower address than another in memory, you must allocate both objects in the same
(physical) declaration sequence. I.e., i and j (in the declarations above) will be allocated in adjacent memory
locations with i at the lower address. HLA allocates m in the same segment as i and j, but there’s no guaran-
tee that m will appear at a higher or lower address than i and j.

In addition to the five standard segments, HLA lets you define your own memory segments. You use the
SEGMENT declaration statement to accomplish this. The SEGMENT statement takes the following form:

segment segName("alignment", "class");
<< Declarations >>

You would use this declaration anywhere a STATIC, READONLY, or STORAGE, declaration section is
legal12. Anything legal after a STATIC keyword is legal after the SEGMENT declaration.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 309

Chapter Six Volume Two
The segName field in the declaration above is the name you’re going to give this segment. You should
choose a unique name and it probably shouldn’t be _TEXT, _BSS, _DATA, readonly, or CONST (HLA
doesn’t prevent the use of these segment names; however, there is little purpose to using most of them since
you can create objects in most of these segments using the standard declaration sections). This segment
name will automatically be a public name, so you should use an identifier that doesn’t conflict with any
MASM keywords or other global symbols.

The alignment field must be one of the following strings: "byte", "word", "dword", "para", or "page".
This alignment directive has the same meaning as the corresponding string in the segment renaming direc-
tives.

The "class" operand specifies the combine class. This field has the same meaning as the combine class
operand in the segment renaming directives. Note that, like those directives, this operand must be a string
constant. HLA does not check the syntax of this string. It should be a legal identifier that doesn’t conflict
with any MASM reserved words (just like the segment renaming directives’ class field).

Segment names are global, even if you define a segment within a procedure. You may use the same seg-
ment name in several different segment declaration sections throughout your program; if you do, HLA (and
MASM and the linker) will physically combine all the objects you declare in such a segment.

One nice thing about using different segments for variable declarations is that you physically separate
the objects in memory. This reduces the impact of errant programs on data unrelated to the task at hand. For
example, if you put each procedure’s static variables in their own separate segment, this will reduce the like-
lihood that one procedure will accidentally overwrite another procedure’s data if it oversteps an array bounds
by a few bytes. Of course, the procedure can still wipe out its own variables by doing this, however, keeping
the values in their own segment localizes the impact and makes it easier to track down this defect in your
code. One bad thing about using separate segments for each procedure is that each segment consumes a
minimum of 4K of memory; so you’re program’s executable will contain a lot of empty data if you have a
large number of these segments and you don’t declare 4K of data in each procedure.

6.12 Controlling the Placement and Attributes of Segments in Memory

Whenever you compile and HLA program, HLA produces several output files: in particular, HLA pro-
duces an ".ASM" file that HLA assembles via MASM, and a ".LINK" file that contains information for the
linker. The ".LINK" file controls the placement of segments within memory (when the program actually
executes) and it also controls other attributes of segments (such as whether they may contain executable
code, whether the segment is writable, etc.). When HLA compiles a program to an executable, it first calls a
program named "HLAPARSE.EXE" which is actually responsible for translating the HLA source code to a
MASM-compatible ".ASM" file. Then HLA calls the LINK program to link the OBJ files that MASM pro-
duces with various library files to produce an executable file13. In addition to passing in the list of OBJ and
LIB filenames, HLA also provides the linker with other useful information about segment placement. In this
section we’ll explore some of the linker options so you can run the linker separately should you want to exer-
cise explicit control over the placement of segments in memory.

To get a (partial) list of the linker options, run the link.exe program with the "/?" command line option.
The linker will respond with a list that looks something like the following:

Microsoft (R) Incremental Linker Version 6.00.8168
Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

usage: LINK [options] [files] [@commandfile]

 options:

 /ALIGN:#

12. Well, not really. segment declarations may not appear in classes or namespaces. See the appropriate sections later in this
text for a discussion of classes and namespaces.
13. If you’ve got any resource files, HLA will also call the resource compiler, rc.exe, to compile these files. Resource files are
beyond the scope of this chapter, so we will ignore them here.
Page 310 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Architecture
 /BASE:{address|@filename,key}
 /COMMENT:comment
 /DEBUG
 /DEBUGTYPE:{CV|COFF}
 /DEF:filename
 /DEFAULTLIB:library
 /DELAY:{NOBIND|UNLOAD}
 /DELAYLOAD:dll
 /DLL
 /DRIVER[:{UPONLY|WDM}]
 /ENTRY:symbol
 /EXETYPE:DYNAMIC
 /EXPORT:symbol
 /FIXED[:NO]
 /FORCE[:{MULTIPLE|UNRESOLVED}]
 /GPSIZE:#
 /HEAP:reserve[,commit]
 /IMPLIB:filename
 /INCLUDE:symbol
 /INCREMENTAL:{YES|NO}
 /LARGEADDRESSAWARE[:NO]
 /LIBPATH:dir
 /LINK50COMPAT
 /MACHINE:{ALPHA|ARM|IX86|MIPS|MIPS16|MIPSR41XX|PPC|SH3|SH4}
 /MAP[:filename]
 /MAPINFO:{EXPORTS|FIXUPS|LINES}
 /MERGE:from=to
 /NODEFAULTLIB[:library]
 /NOENTRY
 /NOLOGO
 /OPT:{ICF[,iterations]|NOICF|NOREF|NOWIN98|REF|WIN98}
 /ORDER:@filename
 /OUT:filename
 /PDB:{filename|NONE}
 /PDBTYPE:{CON[SOLIDATE]|SEPT[YPES]}
 /PROFILE
 /RELEASE
 /SECTION:name,[E][R][W][S][D][K][L][P][X]
 /STACK:reserve[,commit]
 /STUB:filename
 /SUBSYSTEM:{NATIVE|WINDOWS|CONSOLE|WINDOWSCE|POSIX}[,#[.##]]
 /SWAPRUN:{CD|NET}
 /VERBOSE[:LIB]
 /VERSION:#[.#]
 /VXD
 /WARN[:warninglevel]
 /WINDOWSCE:{CONVERT|EMULATION}
 /WS:AGGRESSIVE

Most of these options are very advanced, or of little use to us right now. However, a good number of
them are useful on occasion so we’ll discuss them here.

/ALIGN:number The number value must be a decimal number and it must be a power of two14. The
default (which HLA uses) is 4096. This specifies the default alignment for each segment in the program.
You should normally leave this at 4K, but if you write a lot of very short assembly programs you can shrink
the size of the executable image by setting this to a smaller value. Note that this number should be at least as
large as the largest alignment option (byte, word, dword, para, or page) that you specify for you segments.

14. You can use a hexadecimal value if you specify the number using C/C++ syntax, e.g., "0x123ABC".
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 311

Chapter Six Volume Two
The /BASE:address option lets you specify the starting address of the code segment ("_TEXT"). The
linker defaults this address to 0x4000000 (i.e., $400_0000). HLA typically uses a default value of
0x3000000 ($300_0000). This leaves room for a 16 Mbyte unused block, a 16 Mbyte stack segment, and a
16 Mbyte heap segment below the code segment in memory (which is where the linker normally puts the
stack and heap). If you want a larger heap or stack segment, you should specify a higher starting address
with the /BASE linker option.

The /ENTRY:name options specifies the name of the main program. This is the location where program
execution begins when Windows first executes the program. For HLA console window applications, the
name of the main program is "?HLAMain". Unless you’re linking HLA code with a main program written
in another language, or you completely understand the HLA start up sequence, you should always use this
identifier to specify the entry point of an HLA main program. Note that if you circumvent this entry point,
HLA does not properly set up the exception handling facilities and other features of the language. So
change this name at your own risk.

/HEAP:reserve,commit This option specifies the amount of memory that the system reserves for the
heap. The first numeric value indicates the amount of heap space to reserve, the second parameter specifies
the amount of that heap space to actual map into the address space. By default, HLA supplies 0x1000000
($100_0000, or 16 Mbytes) for both values. This sets aside room for a 16 Mbyte heap and makes all of it
available to your program. This is a rather large value for the heap, especially if you write short programs
that don’t allocate much memory dynamically. For most small applications you may want to set this to a
more reasonable (smaller) value. The Windows default is one megabyte (0x100000 or $10_0000). If you
don’t do much dynamic memory allocation, your code will probably coexist better with other applications if
you set this value to 128K (0x20000 or $2_0000). As a general rule, you should set both operands to the
same value.

The /MACHINE:IX86 option tells the linker that you’re creating code for an 80x86 CPU. You should
not attempt to specify a different CPU when using HLA.

/MAP and /MAP:filename. These options tell the linker to produce a map file. The first form, without
the optional filename, causes the linker to produce a map file with the same base name as the output file and
a suffix of ".map". The second form lets you specify the name of the map file. The map file is a text file that
contains several bits of information about the object file. You should produce a map file something and view
this information with a text editor to see the kind of information the linker produces. None of this informa-
tion is usually essential, but it is handy to have now and then. By default, HLA does not produce a map file.

/MERGE:from=to. This option merges the segment (section) named from to to. This will cause the
linker to concatenate the two segments in memory. This is roughly equivalent to using the same combine
class string in the segment declaration. For example, "/MERGE:readonly=.edata" merges the readonly seg-
ment with the CONST segment by concatenating the two.

/OUT:filename. This option specifies the output (executable) filename. By default, HLA appends
".EXE" to the base name of your program and uses that as the executable name. If you would prefer a differ-
ent name, then use this option to specify the executable file name that LINK produces.

/SECTION:name,options. This option lets you specify the ordering of segments in memory as well as
apply attributes to those segments. The ".LINK" file that HLA produces contains a list of /SECTION com-
mands to feed to the linker that specifies the ordering of the segments (by their appearance in the ".LINK"
file) and the attributes of those segments. The name field is the segment name. This is a case sensitive field,
so the case of name must exactly match the original segment declaration. The options field is a string of one
or more characters that specifies the characteristics of that segment in memory. Here are some of the more
common options:

• E Allows the execution of code in this segment
• R Allows the program to read data in this segment
• W Allows the program to write data in this segment
• S Shared. Allows multiple copies of this program to share this data.
• K Marks the page as non-cachable (generally for multiprocessing applications).
• P Marks the page as non-pageable (i.e., it must always be in real memory).
Page 312 © 2001, By Randall Hyde Beta Draft - Do not distribute

Memory Architecture
Most of the other options are either very advanced, uninteresting. or not applicable to HLA programs. Most
segments will have at least one of the E, R, or W options. HLA’s default segments generally use the follow-
ing section options:

/SECTION:.text,ER -- Note: .text = _TEXT
/SECTION:.edata,R -- Note: .edata = CONST
/SECTION:readonly,R
/SECTION:.data,RW -- Note: .data = _DATA
/SECTION:.bss,RW -- Note: .bss = _BSS

/STACK:reserve,commit. This option is similar to the /HEAP option except it reserves space for the
program’s stack segment rather than the heap segment. Like the HEAP segment, HLA defaults the stack
size to 16 Mbytes (0x4000000 or $400_0000). If you write shorter applications that don’t use a lot of local
variable space or heavy recursion, you may want to consider setting this value to one megabyte or less, e.g.,
/STACK:0x100000,0x100000.

/SUBSYSTEM:system. You must supply a subsystem option when you create an executable program.
For HLA programs you would normally use "/SUBSYSTEM:CONSOLE" when writing a standard console
application. You can use HLA to write GUI applications, if you do this, then you will need to use the
"/SUBSYSTEM:WINDOWS" linker option. By default, HLA links your code with the "/SUB-
SYSTEM:CONSOLE" option. If you use the HLA "-w" command line option, then HLA will invoke the
linker with the "/SUBSYSTEM:WINDOWS" option. Of course, if you explicitly run the linker yourself,
you will have to supply one of these two options.

The preceding paragraphs explain most of the command line options you’ll use when linking programs
written in HLA. For more information about the linker, see the Microsoft on-line documentation that
accompanies the linker.

If you get tired of typing really long linker command lines every time you compile and link an HLA
program, you can gather all the (non-changing) command line options into a linker command file and tell the
linker to grab those options and filenames from the command file rather than from the command line. The
".LINK" file that the HLA compiler produces is a good example of a linker command file. The ".LINK" file
contains the /SECTION options for the default and user-defined segments found in an HLA program.
Rather than manually supplying these options on each call to the linker, you can use a command line like the
following:

link @filename.link other_options file_names

The at-sign ("@") tells the linker to read a list of commands from the specified command file. Note that you
can have several different command files, so if you’re compiling and linking several different HLA source
files, you can specify the ".link" file for each compilation on the command line.

The filenames you specify on the linker command line should be the names of OBJ and LIB files that
you wish to link together. In addition to the OBJ files you’ve created with HLA, you’ll probably want to
specify the following library files:

• kernel32.lib Contains definitions for the base Windows API (e.g., console stuff)
• user32.lib Contains the definition of the MessageBox dialog (used for exceptions).
• hlalib.lib The HLA Standard Library

If you don’t call any HLA Standard Library routines (unlikely, but possible) then you obviously don’t
need to specify the hlalib.lib file. Note that it doesn’t hurt to specify the name of a library whose members
you don’t use. The linker will not include any object code from a library unless the program actually uses
code or data from that library.

If you’re manually linking code that you compile with HLA, you will probably want to create one linker
command file containing all the static commands and include that and any appropriate HLA ".LINK" files on
the linker command line. Here’s a typical example of a static link file (i.e., a file that doesn’t get rewritten
each time you compile the HLA program):

/heap:0x20000, 0x20000
/stack:0x2000, 0x20000
/base:0x1000000
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 313

Chapter Six Volume Two
/machine:IX86
/entry:?HLAMain
/out:mypgm.exe
kernel32.lib
user32.lib
hlalib.lib

Generally, you’d use the /SECTION commands from the HLA ".LINK" file unless you wanted to explicitly
set the segment ordering or change the attributes of the memory segments.

To run the linker manually, you’d normally tell HLA to perform a compile (and assemble) only opera-
tion. This is done using the HLA "-c" command line option. That is, a command like "hla -c myfile.hla" will
compile "myfile.hla" to "myfile.asm" and then run MASM to assemble this to "myfile.obj". HLA will not
run the linker when you specify the "-c" option. If you prefer, you can run MASM separately by using the
"-s" command line option as follows:

hla -s myfile.hla
ml -c -Cp -COFF myfile.asm

However, there is very little benefit to running the assembler yourself (run "MASM /?" to see the available
MASM command line options).

Once you’ve compiled all necessary source files, you can link them by using the Microsoft LINK.EXE
program with the command line (or command file) options this section discusses. Note that this section dis-
cusses options specific to the LINK.EXE v6.0 product. These features may change in a future version of the
linker. Please see the Microsoft documentation if you have any questions about how the linker operates or if
you’re using a different version of the linker.

6.13 Putting it All Together

CPU architects divide memory into several different types depending on cost, capacity, and speed. They
call this the memory hierarchy. Many of the levels in the memory hierarchy are transparent to the program-
mer. That is, the system automatically moves data between levels in the memory hierarchy without interven-
tion on the programmer’s part. However, if you are aware of the effects of the memory hierarchy on
program performance, you can write faster programs by organizing your data and code so that it conforms to
the expectations of the caching and virtual memory subsystems in the memory hierarchy.
Page 314 © 2001, By Randall Hyde Beta Draft - Do not distribute

The I/O Subsystem
The I/O Subsystem Chapter Seven

7.1 Chapter Overview

A typical program does three basic activities: input, computation, and output. In this section we will
discuss the other two activities beyond computation: input and output or I/O. This chapter concentrates on
low-level CPU I/O rather than high level file or character I/O. This chapter discusses how the CPU transfers
bytes of data to and from the outside world. This chapter discusses the mechanisms and performance issues
behind the I/O.

7.2 Connecting a CPU to the Outside World

Most I/O devices interface to the CPU in a fashion quite similar to memory. Indeed, many devices
appear to the CPU as though they were memory devices. To output data to the outside world the CPU sim-
ply stores data into a "memory" location and the data magically appears on some connectors external to the
computer. Similarly, to input data from some external device, the CPU simply transfers data from a "mem-
ory" location into the CPU; this "memory" location holds the value found on the pins of some external con-
nector.

An output port is a device that looks like a memory cell to the computer but contains connections to the
outside world. An I/O port typically uses a latch rather than a flip-flop to implement the memory cell. When
the CPU writes to the address associated with the latch, the latch device captures the data and makes it avail-
able on a set of wires external to the CPU and memory system (see Figure 7.1). Note that output ports can
be write-only, or read/write. The port in Figure 7.1, for example, is a write-only port. Since the outputs on
the latch do not loop back to the CPU’s data bus, the CPU cannot read the data the latch contains. Both the
address decode and write control lines must be active for the latch to operate; when reading from the latch’s
address the decode line is active, but the write control line is not.

Figure 7.1 A Typical Output Port

Figure 7.2 shows how to create a read/write input/output port. The data written to the output port loops
back to a transparent latch. Whenever the CPU reads the decoded address the read and decode lines are
active and this activates the lower latch. This places the data previously written to the output port on the
CPU’s data bus, allowing the CPU to read that data. A read-only (input) port is simply the lower half of Fig-
ure 7.2; the system ignores any data written to an input port.

Data Bus from CPU

L
a
t
c
h

CPU write control line

Address decode line

W

En

Data Data to outside world
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 315

Chapter Seven Volume Two
Figure 7.2 An Output Port that Supports Read/Write Access

Note that the port in Figure 7.2 is not an input port. Although the CPU can read this data, this port orga-
nization simply lets the CPU read the data it previously wrote to the port. The data appearing on an external
connector is an output port (only). One could create a (read-only) input port by using the lower half of the
circuit in Figure 7.2. The input to the latch would appear on the CPU’s data bus whenever the CPU reads the
latch data.

A perfect example of an output port is a parallel printer port. The CPU typically writes an ASCII charac-
ter to a byte-wide output port that connects to the DB-25F connector on the back of the computer’s case. A
cable transmits this data to the printer where an input port (to the printer) receives the data. A processor
inside the printer typically converts this ASCII character to a sequence of dots it prints on the paper.

Generally, a given peripheral device will use more than a single I/O port. A typical PC parallel printer
interface, for example, uses three ports: a read/write port, an input port, and an output port. The read/write
port is the data port (it is read/write to allow the CPU to read the last ASCII character it wrote to the printer
port). The input port returns control signals from the printer; these signals indicate whether the printer is
ready to accept another character, is off-line, is out of paper, etc. The output port transmits control informa-
tion to the printer such as whether data is available to print.

The first thing to learn about the input/output subsystem is that I/O in a typical computer system is radi-
cally different than I/O in a typical high level programming language. In a real computer system you will
rarely find machine instructions that behave like writeln, cout, printf, or even the HLA stdin and stdout state-
ments. In fact, most input/output instructions behave exactly like the 80x86’s MOV instruction. To send data
to an output device, the CPU simply moves that data to a special memory location. To read data from an
input device, the CPU simply moves data from the address of that device into the CPU. Other than there are
usually more wait states associated with a typical peripheral device than actual memory, the input or output
operation looks very similar to a memory read or write operation.

7.3 Read-Only, Write-Only, Read/Write, and Dual I/O Ports

We can classify input/output ports into four categories based on the CPU’s ability to read and write data
at a given port address. These four categories are read-only ports, write-only ports, read/write ports, and
dual I/O ports.

A read-only port is (obviously) an input port. If the CPU can only read the data from the port, then that
port is providing data appearing on lines external to the CPU. The system typically ignores any attempt to

Data Bus from CPU

L
a
t
c
h

CPU write control line

Address decode line

W

En

Data

Data Bus to CPU

L
a
t
c
h

CPU read control line

Address decode line

R

En

Data

Data to outside world
Page 316 © 2001, By Randall Hyde Beta Draft - Do not distribute

The I/O Subsystem
write data to a read-only port1. A good example of a read-only port is the status port on a PC’s parallel
printer interface. Reading data from this port lets you test the current condition of the printer. The system
ignores any data written to this port.

A write-only port is always an output port. Writing data to such a port presents the data for use by an
external device. Attempting to read data from a write-only port generally returns garbage (i.e., whatever val-
ues that just happen to be on the data bus at that time). You generally cannot depend on the meaning of any
value read from a write-only port.

A read/write port is an output port as far as the outside world is concerned. However, the CPU can read
as well as write data to such a port. Whenever the CPU reads data from a read/write port, it reads the data
that was last written to the port. Reading the port does not affect the data the external peripheral device sees,
reading the port is a simple convenience for the programmer so that s/he doesn’t have to save the value last
written to the port should they want to retrieve the value.

A dual I/O port is also a read/write port, but reading the port reads data from some external device while
writing data to the port transmits data to a different external device. Figure 7.3 shows how you could inter-
face such a device to the system. Note that the input and output ports are actually a read-only and a
write-only port that share the same address. Reading the address accesses one port while writing to the
address accesses the other port. Essentially, this port arrangement uses the R/W control line(s) as an extra
address bit when selecting these ports.

Figure 7.3 An Input and an Output Device That Share the Same Address (a Dual I/O Port)

These examples may leave you with the impression that the CPU always reads and writes data to
peripheral devices using data on the data bus (that is, whatever data the CPU places on the data bus when it
writes to an output port is the data actually written to that output port). While this is generally true for input
ports (that is, the CPU transfers input data across the data bus when reading data from the input port), this
isn’t necessarily true for output ports. In fact, a very common output mechanism is simply accessing a port.
Figure 7.4 provides a very simple example. In this circuit, an address decoder decodes two separate
addresses. Any access (read or write) to the first address sets the output line high; any read or write of the
second address clears the output line. Note that this circuit ignores the data on the CPU’s data lines. It is not
important whether the CPU reads or writes data to these addresses, nor is the data written of any conse-
quence. The only thing that matters is that the CPU access one of these two addresses.

1. Note, however, that some devices may fail if you attempt to write to their corresponding input ports, so it’s never a good
idea to write data to a read-only port.

Data Bus from CPU

L
a
t
c
h

CPU write control line

Address decode line

W

En

Data

Data Bus to CPU

L
a
t
c
h

CPU read control line

Address decode line

R

En

Data

Data to the
outside world

Data from the
outside world

Data Bus
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 317

Chapter Seven Volume Two
Figure 7.4 Outputting Data to a Port by Simply Accessing That Port

Another possible way to connect an output port to the CPU is to use a D flip-flop and connect the
read/write status lines to the D input on the flip-flop. Figure 7.5 shows how you could design such a device.
In this diagram any read of the selected port sets the output bit to zero while a write to this output port sets
the output bit to one.

Figure 7.5 Outputting Data Using the Read/Write Control as the Data to Output

There are a wide variety of ways you can connect external devices to the CPU. This section only pro-
vides a few examples as a sampling of what is possible. In the real world, there are an amazing number of
different ways that engineers connect external devices to the CPU. Unless otherwise noted, the rest of this
chapter will assume that the CPU reads and writes data to an external device using the data bus. This is not
to imply that this is the only type of I/O that one could use in a given example.

7.4 I/O (Input/Output) Mechanisms

There are three basic forms of input and output that a typical computer system will use: I/O-mapped
I/O, memory-mapped I/O, and direct memory access (DMA). I/O-mapped input/output uses special instruc-
tions to transfer data between the computer system and the outside world; memory-mapped I/O uses special
memory locations in the normal address space of the CPU to communicate with real-world devices; DMA is
a special form of memory-mapped I/O where the peripheral device reads and writes data in memory without
going through the CPU. Each I/O mechanism has its own set of advantages and disadvantages, we will dis-
cuss these in this section.

7.4.1 Memory Mapped Input/Output

 A memory mapped peripheral device is connected to the CPU’s address and data lines exactly like
memory, so whenever the CPU reads or writes the address associated with the peripheral device, the CPU
transfers data to or from the device. This mechanism has several benefits and only a few disadvantages.

Address decode line #1 S

R

S/R
Flip-Flop

Q

Address decode line #2

Single bit output
to the outside
world.

Address decode line #1 Clk

D

D
Flip-Flop

Q

Read control line
(active low)

Single bit output
to the outside
world.
Page 318 © 2001, By Randall Hyde Beta Draft - Do not distribute

The I/O Subsystem
The principle advantage of a memory-mapped I/O subsystem is that the CPU can use any instruction
that accesses memory to transfer data between the CPU and a memory-mapped I/O device. The MOV
instruction is the one most commonly used to send and receive data from a memory-mapped I/O device, but
any instruction that reads or writes data in memory is also legal. For example, if you have an I/O port that is
read/write, you can use the ADD instruction to read the port, add data to the value read, and then write data
back to the port.

Of course, this feature is only usable if the port is a read/write port (or the port is readable and you’ve
specified the port address as the source operand of your ADD instruction). If the port is read-only or
write-only, an instruction that reads memory, modifies the value, and then writes the modified value back to
memory will be of little use. You should use such read/modify/write instructions only with read/write ports
(or dual I/O ports if such an operation makes sense).

Nevertheless, the fact that you can use any instruction that accesses memory to manipulate port data is
often a big advantage since you can operate on the data with a single instruction rather than first moving the
data into the CPU, manipulating the data, and then writing the data back to the I/O port.

The big disadvantage of memory-mapped I/O devices is that they consume addresses in the memory
map. Generally, the minimum amount of space you can allocate to a peripheral (or block of related periph-
erals) is a four kilobyte page. Therefore, a few independent peripheral peripherals can wind up consuming a
fair amount of the physical address space. Fortunately, a typical PC has only a couple dozen such devices,
so this isn’t much of a problem. However, some devices, like video cards, consume a large chunk of the
address space (e.g., some video cards have 32 megabytes of on-board memory that they map into the mem-
ory address space).

7.4.2 I/O Mapped Input/Output

I/O-mapped input/output uses special instructions to access I/O ports. Many CPUs do not provide this
type of I/O, though the 80x86 does. The Intel 80x86 family uses the IN and OUT instructions to provide
I/O-mapped input/output capabilities. The 80x86 IN and OUT instructions behave somewhat like the MOV
instruction except they transmit their data to and from a special I/O address space that is distinct from the
memory address space. The IN and OUT instructions use the following syntax:

in(port, al); // ... or AX or EAX, port is a constant in the range
out(al, port); // 0..255.

in(dx, al); // Or AX or EAX.
out(al, dx);

The 80x86 family uses a separate address bus for I/O transfers2. This bus is only 16-bits wide, so the
80x86 can access a maximum of 65,536 different bytes in the I/O space. The first two instructions encode
the port address as an eight-bit constant, so they’re actually limited to accessing only the first 256 I/O
addresses in this address space. This makes the instruction shorter (two bytes instead of three). Unfortu-
nately, most of the interesting peripheral devices are at addresses above 255, so the first pair of instructions
above are only useful for accessing certain on-board peripherals in a PC system.

To access I/O ports at addresses beyond 255 you must use the latter two forms of the IN and OUT
instructions above. These forms require that you load the 16-bit I/O address into the DX register and use DX
as a pointer to the specified I/O address. For example, to write a byte to the I/O address $3783 you would
use an instruction sequence like the following:

mov($378, dx);
out(al, dx);

2. Physically, the I/O address bus is the same as the memory address bus, but additional control lines determine whether the
address on the bus is accessing memory or and I/O device.
3. This is typically the address of the data port on the parallel printer port.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 319

Chapter Seven Volume Two
The advantage of an I/O address space is that peripheral devices mapped to this area do not consume
space in the memory address space. This allows you to fully expand the memory address space with RAM
or other memory. On the other hand, you cannot use arbitrary memory instructions to access peripherals in
the I/O address space, you can only use the IN and OUT instructions.

Another disadvantage to the 80x86’s I/O address space is that it is quite small. Although most periph-
eral devices only use a couple of I/O address (and most use fewer than 16 I/O addresses), a few devices, like
video display cards, can occupy millions of different I/O locations (e.g., three bytes for each pixel on the
screen). As noted earlier, some video display cards have 32 megabytes of dual-ported RAM on board.
Clearly we cannot easily map this many locations into the 64K I/O address space.

7.4.3 Direct Memory Access

Memory-mapped I/O subsystems and I/O-mapped subsystems both require the CPU to move data
between the peripheral device and main memory. For this reason, we often call these two forms of input/out-
put programmed I/O. For example, to input a sequence of ten bytes from an input port and store these bytes
into memory the CPU must read each value and store it into memory. For very high-speed I/O devices the
CPU may be too slow when processing this data a byte (or word or double word) at a time. Such devices
generally have an interface to the CPU’s bus so they can directly read and write memory. This is known as
direct memory access since the peripheral device accesses memory directly, without using the CPU as an
intermediary. This often allows the I/O operation to proceed in parallel with other CPU operations, thereby
increasing the overall speed of the system. Note, however, that the CPU and DMA device cannot both use
the address and data busses at the same time. Therefore, concurrent processing only occurs if the CPU has a
cache and is executing code and accessing data found in the cache (so the bus is free). Nevertheless, even if
the CPU must halt and wait for the DMA operation to complete, the I/O is still much faster since many of the
bus operations during I/O or memory-mapped input/output consist of instruction fetches or I/O port accesses
which are not present during DMA operations.

A typical DMA controller consists of a pair of counters and other circuitry that interfaces with memory
and the peripheral device. One of the counters serves as an address register. This counter supplies an
address on the address bus for each transfer. The second counter specifies the number of transfers to com-
plete. Each time the peripheral device wants to transfer data to or from memory, it sends a signal to the
DMA controller. The DMA controller places the value of the address counter on the address bus. At the
same time, the peripheral device places data on the data bus (if this is an input operation) or reads data from
the data bus (if this is an output operation). After a successful data transfer, the DMA controller increments
its address register and decrements the transfer counter. This process repeats until the transfer counter decre-
ments to zero.

7.5 I/O Speed Hierarchy

Different devices have different data transfer rates. Some devices, like keyboards, are extremely slow
(comparing their speed to CPU speeds). Other devices like disk drives can actually transfer data faster than
the CPU can read it. The mechanisms for data transfer differ greatly based on the transfer speed of the
device. Therefore, it makes sense to create some terminology to describe the different transfer rates of
peripheral devices.

Low-speed devices are those that produce or consume data at a rate much slower than the CPU is capa-
ble of processing. For the purposes of discussion, we’ll claim that low-speed devices operate at speeds that
are two to three orders of magnitude (or more) slower than the CPU. Medium-speed devices are those that
transfer data at approximately the same rate (within an order of magnitude slower, but never faster) than the
CPU. High-speed devices are those that transfer data faster than the CPU is capable of moving data between
the device and the CPU. Clearly, high-speed devices must use DMA since the CPU is incapable of transfer-
ring the data between the CPU and memory.

With typical bus architectures, modern day PCs are capable of one transfer per microsecond or better.
Therefore, high-speed devices are those that transfer data more rapidly than once per microsecond.
Page 320 © 2001, By Randall Hyde Beta Draft - Do not distribute

The I/O Subsystem
Medium-speed transfers are those that involve a data transfer every one to 100 microseconds. Low-speed
devices usually transfer data less often than once every 100 microseconds. The difference between these
speeds will decide the mechanism we use for the I/O operation (e.g., high-speed transfers require the use of
DMA or other techniques).

Note that one transfer per microsecond is not the same thing as a one megabyte per second data transfer
rate. A peripheral device can actually transfer more than one byte per data transfer operation. For example,
when using the "in(dx, eax);" instruction, the peripheral device can transfer four bytes in one transfer.
Therefore, if the device is reaching one transfer per microsecond, then the device can transfer four mega-
bytes per second. Likewise, a DMA device on a Pentium processor can transfer 64 bits at a time, so if the
device completes one transfer per microsecond it will achieve an eight megabyte per second data transfer
rate.

7.6 System Busses and Data Transfer Rates

In Chapter One of this Volume (see “The System Bus” on page 132) you saw that the CPU communi-
cates to memory and I/O devices using the system bus. In that chapter you saw that a typical Von Neumann
Architecture machine has three different busses: the address bus, the data bus, and the control bus. If you’ve
ever opened up a computer and looked inside or read the specifications for a system, you’ve probably heard
terms like PCI, ISA, EISA, or even NuBus mentioned when discussing the computer’s bus. If you’re familiar
with these terms, you may wonder what their relationship is with the CPU’s bus. In this section we’ll dis-
cuss this relationship and describe how these different busses affect the performance of a system.

Computer system busses like PCI (Peripheral Connection Interface) and ISA (Industry Standard Archi-
tecture) are definitions for physical connectors inside a computer system. These definitions describe a set of
signals, physical dimensions (i.e., connector layouts and distances from one another), and a data transfer
protocol for connecting different electronic devices. These busses are related to the CPU’s bus only insofar
as many of the signals on one of the peripheral busses also appear on the CPU’s bus. For example, all of the
aforementioned busses provide lines for address, data, and control functions.

Peripheral interconnection busses do not necessarily mirror the CPU’s bus. All of these busses contain
several additional lines that are not present on the CPU’s bus. These additional lines let peripheral devices
communicate with one other directly (without having to go through the CPU or memory). For example,
most busses provide a common set of interrupt control signals that let various I/O devices communicate
directly with the system’s interrupt controller (which is also a peripheral device). Nor does the peripheral
bus always include all the signals found on the CPU’s bus. For example, the ISA bus only supports 24
address lines whereas the Pentium II supports 36 address lines. Therefore, peripherals on the ISA bus only
have access to 16 megabytes of the Pentium II’s 64 gigabyte address range.

A typical modern-day PC supports the PCI bus (although some older systems also provide ISA connec-
tors). The organization of the PCI and ISA busses in a typical computer system appears in Figure 7.6.

Figure 7.6 Connection of the PCI and ISA Busses in a Typical PC

CPU Address and
data busses

PCI
Bus
Controller

ISA
Bus
Controller

PCI Slots
(connectors)

ISA Slots
(connectors)
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 321

Chapter Seven Volume Two
Notice how the CPU’s address and data busses connect to a PCI Bus Controller device (which is, itself,
a peripheral of sorts). The actual PCI bus is connected to this chip. Note that the CPU does not connect
directly to the PCI bus. Instead, the PCI Bus Controller acts as an intermediary, rerouting all data transfer
requests between the CPU and the PCI bus.

Another interesting thing to note is that the ISA Bus Controller is not directly connected to the CPU.
Instead, it is connected to the PCI Bus Controller. There is no logical reason why the ISA Controller
couldn’t be connected directly to the CPU’s bus, however, in most modern PCs the ISA and PCI controllers
appear on the same chip and the manufacturer of this chip has chosen to interface the ISA bus through the
PCI controller for cost or performance reasons.

The CPU’s bus (often called the local bus) usually runs at some submultiple of the CPU’s frequency.
Typical local bus frequencies include 66 MHz, 100 MHz, 200 MHz, 400 MHz, and, possibly, beyond4. Usu-
ally, only memory and a few selected peripherals (e.g., the PCI Bus Controller) sit on the CPU’s bus and
operate at this high frequency. Since the CPU’s bus is typically 64 bits wide (for Pentium and later proces-
sors) and it is theoretically possible to achieve one data transfer per cycle, the CPU’s bus has a maximum
possible data transfer rate (or maximum bandwidth) of eight times the clock frequency (e.g., 800 mega-
bytes/second for a 100 Mhz bus). In practice, CPU’s rarely achieve the maximum data transfer rate, but
they do achieve some percentage of this, so the faster the bus, the more data can move in and out of the CPU
(and caches) in a given amount of time.

The PCI bus comes in several configurations. The base configuration has a 32-bit wide data bus operat-
ing at 33 MHz. Like the CPU’s local bus, the PCI is theoretically capable of transferring data on each clock
cycle. This provides a theoretical maximum of 132 MBytes/second data transfer rate (33 MHz times four
bytes). In practice, the PCI bus doesn’t come anywhere near this level of performance except in short bursts.
Whenever the CPU wishes to access a peripheral on the PCI bus, it must negotiate with other peripheral
devices for the right to use the bus. This negotiation can take several clock cycles before the PCI controller
grants the CPU the bus. If a CPU writes a sequence of values to a peripheral a double word per bus request,
then the negotiation takes the majority of the time and the data transfer rate drops dramatically. The only
way to achieve anywhere near the maximum theoretical bandwidth on the bus is to use a DMA controller
and move blocks of data. In this block mode the DMA controller can negotiate just once for the bus and
transfer a fair sized block of data without giving up the bus between each transfer. This "burst mode" allows
the device to move lots of data quickly.

There are a couple of enhancements to the PCI bus that improve performance. Some PCI busses sup-
port a 64-bit wide data path. This, obviously, doubles the maximum theoretical data transfer rate. Another
enhancement is to run the bus at 66 MHz, which also doubles the throughput. In theory, you could have a
64-bit wide 66 MHz bus that quadruples the data transfer rate (over the performance of the baseline configu-
ration). Few systems or peripherals currently support anything other than the base configuration, but these
optional enhancements to the PCI bus allow it to grow with the CPU as CPUs increase their performance.

The ISA bus is a carry over from the original PC/AT computer system. This bus is 16 bits wide and
operates at 8 MHz. It requires four cycles for each bus cycle. This this and other reasons, the ISA bus is
capable of about only one data transmission per microsecond. With a 16-bit wide bus, data transfer is lim-
ited to about two megabytes per second. This is much slower than the CPU’s local bus and the PCI bus
Generally, you would only attach low-speed devices like an RS-232 communications device, a modem, or a
parallel printer to the ISA bus. Most other devices (disks, scanners, network cards, etc.) are too fast for the
ISA bus. The ISA bus is really only capable of supporting low-speed and medium speed devices.

Note that accessing the ISA bus on most systems involves first negotiating for the PCI bus. The PCI bus
is so much faster than the ISA bus that this has very little impact on the performance of peripherals on the
ISA bus. Therefore, there is very little difference to be gained by connecting the ISA controller directly to
the CPU’s local bus.

4. 400 MHz was the maximum CPU bus frequency as this was being written.
Page 322 © 2001, By Randall Hyde Beta Draft - Do not distribute

The I/O Subsystem
7.7 The AGP Bus

Video display cards are a very special peripheral that need the maximum possible amount of bus band-
width to ensure quick screen updates and fast graphic operations. Unfortunately, if the CPU has to con-
stantly negotiate with other peripherals for the use of the PCI bus, graphics performance can suffer. To
overcome this problem, video card designers created the AGP (Advanced Graphics Port) interface between
the CPU and the video display card.

The AGP is a secondary bus interface that a video card uses in addition to the PCI bus. The AGP con-
nection lets the CPU quickly move data to and from the video display RAM. The PCI bus provides a con-
nection to the other I/O ports on the video display card (see Figure 7.7). Since there is only one AGP port
per system, only one card can use the AGP and the system never has to negotiate for access to the AGP bus.

Figure 7.7 AGP Bus Interface

7.8 Buffering

If a particular I/O device produces or consumes data faster than the system is capable of transferring
data to that device, the system designer has two choices: provide a faster connection between the CPU and
the device or slow down the rate of transfer between the two.

Creating a faster connection is possible if the peripheral device is already connected to a slow bus like
ISA. Another possibility is going to a wider bus (e.g., to the 64-bit PCI bus) to increase bandwidth, or to use
a bus with a higher frequency (e.g., a 66 MHz bus rather than a 33 MHz bus). Systems designers can some-
times create a faster interface to the bus; the AGP connection is a good example. However, once you’re
using the fastest bus available on the system, improving system performance by selecting a faster connection
to the computer can be very expensive.

The other alternative is to slow down the transfer rate between the peripheral and the computer system.
This isn’t always as bad as it seems. Most high-speed devices don’t transfer data at a constant rate to the
system. Instead, devices typically transfer a block of data rapidly and then sit idle for some period of time.
Although the burst rate is high (and faster than the CPU or system can handle), the average data transfer rate
is usually lower than what the CPU/system can handle. If you could average out the peaks and transfer some
of the data when the peripheral is inactive, you could easily move data between the peripheral and the com-
puter system without resorting to an expensive, high-bandwidth, solution.

The trick is to use memory to buffer the data on the peripheral side. The peripheral can rapidly fill this
buffer with data (or extract data from the buffer). Once the buffer is empty (or full) and the peripheral device
is inactive, the system can refill (or empty) the buffer at a sustainable rate. As long as the average data rate of
the peripheral device is below the maximum bandwidth the system will support, and the buffer is large
enough to hold bursts of data to/from the peripheral, this scheme lets the peripheral communicate with the
system at a lower data transfer rate than the device requires during burst operation.

CPU Address and
data busses

PCI
Bus
Controller

AGP Interface

Video Display Card
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 323

Chapter Seven Volume Two
7.9 Handshaking

Many I/O devices cannot accept data at an arbitrary rate. For example, a Pentium based PC is capable of
sending several hundred million characters a second to a printer, but that printer is (probably) unable to print
that many characters each second. Likewise, an input device like a keyboard is unable to provide several mil-
lion keystrokes per second (since it operates at human speeds, not computer speeds). The CPU needs some
mechanism to coordinate data transfer between the computer system and its peripheral devices.

One common way to coordinate data transfer is to provide some status bits in a secondary input port.
For example, a one in a single bit in an I/O port can tell the CPU that a printer is ready to accept more data, a
zero would indicate that the printer is busy and the CPU should not send new data to the printer. Likewise, a
one bit in a different port could tell the CPU that a keystroke from the keyboard is available at the keyboard
data port, a zero in that same bit could indicate that no keystroke is available. The CPU can test these bits
prior to reading a key from the keyboard or writing a character to the printer.

Using status bits to indicate that a device is ready to accept or transmit data is known as handshaking. It
gets this name because the protocol is similar to two people agreeing on some method of transfer by a hand
shake.

Figure 7.8 shows the layout of the parallel printer port’s status register. For the LPT1: printer interface,
this port appears at I/O address $379. As you can see from this diagram, bit seven determines if the printer is
capable of receiving data from the system; this bit will contain a one when the printer is capable of receiving
data.

Figure 7.8 The Parallel Port Status Port

The following short program segment will continuously loop while the H.O. bit of the printer status reg-
ister contains zero and will exit once the printer is ready to accept data:

mov($379, dx);
repeat

in(dx, al);
and($80, al); // Clears Z flag if bit seven is set.

until(@nz);

// Okay to write another byte to the printer data port here.

The code above begins by setting DX to $379 since this is the I/O address of the printer status port.
Within the loop the code reads a byte from the status port (the IN instruction) and then tests the H.O. bit of
the port using the AND instruction. Note that logically ANDing the AL register with $80 will produce zero if
the H.O. bit of AL was zero (that is, if the byte read from the input port was zero). Similarly, logically and-
ing AL with $80 will produce $80 (a non-zero result) if the H.O. bit of the printer status port was set. The

Unused
Printer ackon PS/2 systems (active if zero)
Device error (active if zero)
Device selected (selected if one)
Device out of paper (out of paper if one)
Printer acknowledge (ack if zero)
Printer busy (busy if zero)

Parallel Port Status Register (read only)

7 6 5 4 3 2 1 0
Page 324 © 2001, By Randall Hyde Beta Draft - Do not distribute

The I/O Subsystem
80x86 zero flag reflects the result of the AND instruction; therefore, the zero flag will be set if AND pro-
duces a zero result, it will be reset otherwise. The REPEAT..UNTIL loop repeats this test until the AND
instruction produces a non-zero result (meaning the H.O. bit of the status port is set).

One problem with using the AND instruction to test bits as the code above is that you might want to test
other bits in AL once the code leaves the loop. Unfortunately, the "and($80, al);" instruction destroys the
values of the other bits in AL while testing the H.O. bit. To overcome this problem, the 80x86 supports
another form of the AND instruction – TEST. The TEST instruction works just like AND except it only
updates the flags; it does not store the result of the logical AND operation back into the destination register
(AL in this case). One other advantage to TEST is that it only reads its operands, so there are less problems
with data hazards when using this instruction (versus AND). Also, you can safely use the TEST instruction
directly on read-only memory-mapped I/O ports since it does not write data back to the port. As an example,
let’s recode the previous loop using the TEST instruction:

mov($379, dx);
repeat

in(dx, al);
test($80, al); // Clears Z flag if bit seven is set.

until(@nz);

// Okay to write another byte to the printer data port here.

Once the H.O. bit of the printer status port is set, it’s okay to transmit another byte to the printer. The
computer can make a byte available by storing the byte data into I/O address $378 (for LPT1:). However,
simply storing data to this port does not inform the printer that it can take the byte. The system must com-
plete the other half of the handshake operation and send the printer a signal to indicate that a byte is avail-
able.

Figure 7.9 The Parallel Port Command Register

Bit zero (the strobe line) must be set to one and then back to zero when the CPU makes data available
for the printer (the term "strobe" suggests that the system pulses this line in the command port). In order to
pulse this bit without affecting the other control lines, the CPU must first read this port, OR a one into the
L.O. bit, write the data to the port, then mask out the L.O. bit using an AND instruction, and write the final
result back to the control port again. Therefore, it takes three accesses (a read and two writes) to send the
strobe to the printer. The following code handles this transmission:

mov($378, dx); // Data port address
mov(Data2Xmit, al); // Send the data to the printer.
out(al, dx);

mov($37a, dx); // Point DX at the control port.

Strobe (data available = 1)
Autofeed (add linefeed = 1)
Init (initialize printer = 0)
Select input (On-line = 1)
Enable parallel port IRQ (active if 1)
PS/2 Data direction (output = 0, input = 1)
Unused

Parallel Port Control Register

7 6 5 4 3 2 1 0
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 325

Chapter Seven Volume Two
in(dx, al); // Get the current port setting.
or(1, al); // Set the L.O. bit.
out(al, dx); // Set the strobe line high.
and($fe, al); // Clear the L.O. bit.
out(al, dx); // Set the strobe line low.

The code above would normally follow the REPEAT..UNTIL loop in the previous example. To transmit a
second byte to the printer you would jump back to the REPEAT..UNTIL loop and wait for the printer to con-
sume the current byte.

Note that it takes a minimum of five I/O port accesses to transmit a byte to the printer use the code
above (minimum one IN instruction in the REPEAT..UNTIL loop plus four instructions to send the byte and
strobe). If the parallel port is connected to the ISA bus, this means it takes a minimum of five microseconds
to transmit a single byte; that works out to less than 200,000 bytes per second. If you are sending ASCII
characters to the printer, this is far faster than the printer can print the characters. However, if you are send a
bitmap or a Postscript file to the printer, the printer port bandwidth limitation will become the bottleneck
since it takes considerable data to print a page of graphics. For this reason, most graphic printers use a dif-
ferent technique than the above to transmit data to the printer (some parallel ports support DMA in order to
get the data transfer rate up to a reasonable level).

7.10 Time-outs on an I/O Port

One problem with the REPEAT..UNTIL loop in the previous section is that it could spin indefinitely
waiting for the printer to become ready to accept additional input. If someone turns the printer off or the
printer cable becomes disconnected, the program could freeze up, forever waiting for the printer to become
available. Usually, it’s a good idea to indicate to the user that something has gone wrong rather than simply
freezing up the system. A typical way to handle this problem is using a time-out period to determine that
something is wrong with the peripheral device.

With most peripheral devices you can expect some sort of response within a reasonable amount of time.
For example, most printers will be ready to accept additional character data within a few seconds of the last
transmission (worst case). Therefore, if 30 seconds or more have passed since the printer was last willing to
accept a character, this is probably an indication that something is wrong. If the program could detect this,
then it could ask the user to check the printer and tell the program to resume printing once the problem is
resolved.

Choosing a good time-out period is not an easy task. You must carefully balance the irritation of having
the program constantly ask you what’s wrong when there is nothing wrong with the printer (or other device)
with the program locking up for long periods of time when there is something wrong. Both situations are
equally annoying to the end user.

Any easy way to create a time-out period is to count the number of times the program loops while wait-
ing for a handshake signal from a peripheral. Consider the following modification to the REPEAT..UNTIL
loop of the previous section:

mov($379, dx);
mov(30_000_000, ecx);
repeat

dec(ecx); // Count down to see if the time-out has expired.
breakif(@z); // Leave this loop if ecx counted down to zero.

in(dx, al);
test($80, al); // Clears Z flag if bit seven is set.

until(@nz);

 if(ecx = 0) then

// We had a time-out error.
Page 326 © 2001, By Randall Hyde Beta Draft - Do not distribute

The I/O Subsystem
else

// Okay to write another byte to the printer data port here.

endif;

The code above will exit once the printer is ready to accept data or when approximately 30 seconds have
expired. You may question the 30 second figure. After all, a software based loop (counting down ECX to
zero) should run a different speeds on different processors. However, don’t miss the fact that there is an IN
instruction inside this loop. The IN instruction reads a port on the ISA bus and that means this instruction
will take approximately one microsecond to execute (about the fastest operation on the ISA bus). Hence,
every one million times through the loop will take about a second (±50%, but close enough for our pur-
poses). This is true regardless of the CPU frequency.

The 80x86 provides a couple of instructions that are quite useful for implementing time-outs in a poll-
ing loop: LOOPZ and LOOPNZ. We’ll consider the LOOPZ instruction here since it’s perfect for the loop
above. The LOOPZ instruction decrements the ECX register by one and falls through to the next instruction
if ECX contains zero. If ECX does not contain zero, then this instruction checks the zero flag setting prior to
decrementing ECX; if the zero flag was set, then LOOPZ transfers control to a label specified as LOOPZ’s
operand. Consider the implementation of the previous REPEAT..UNTIL loop using LOOPZ:

mov($379, dx);
mov(30_000_000, ecx);
PollingLoop:

in(dx, al);
test($80, al); // Clears Z flag if bit seven is set.

loopz PollingLoop; // Repeat while zero and ECX<>0.

 if(ecx = 0) then

// We had a time-out error.

else

// Okay to write another byte to the printer data port here.

endif;

Notice how this code doesn’t need to explicitly decrement ECX and check to see if it became zero.

Warning: the LOOPZ instruction can only transfer control to a label with ±127 bytes of
the LOOPZ instruction. Due to a design problem, HLA cannot detect this problem. If the
branch range exceeds 127 bytes HLA will not report an error. Instead, MASM will report
the error when it assembles HLA’s output. Since it’s somewhat difficult to track down
these problems in the MASM listing, the best solution is to never use the LOOPZ instruc-
tion to jump more than a few instructions in your code. It’s perfect for short polling loops
like the one above, it’s not suitable for branching large distances.

7.11 Interrupts and Polled I/O

Polling is constantly testing a port to see if data is available. That is, the CPU polls (asks) the port if it
has data available or if it is capable of accepting data. The REPEAT..UNTIL loop in the previous section is a
good example of polling. The CPU continually polls the port to see if the printer is ready to accept data.
Polled I/O is inherently inefficient. Consider what happens in the previous section if the printer takes ten sec-
onds to accept another byte of data – the CPU spins in a loop doing nothing (other than testing the printer
status port) for those ten seconds.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 327

Chapter Seven Volume Two
In early personal computer systems, this is exactly how a program would behave; when it wanted to
read a key from the keyboard it would poll the keyboard status port until a key was available. Such comput-
ers could not do other operations while waiting for the keyboard.

The solution to this problem is to provide an interrupt mechanism. An interrupt is an external hardware
event (such as the printer becoming ready to accept another byte) that causes the CPU to interrupt the current
instruction sequence and call a special interrupt service routine. (ISR). An interrupt service routine typically
saves all the registers and flags (so that it doesn’t disturb the computation it interrupts), does whatever oper-
ation is necessary to handle the source of the interrupt, it restores the registers and flags, and then it resumes
execution of the code it interrupted. In many computer systems (e.g., the PC), many I/O devices generate an
interrupt whenever they have data available or are able to accept data from the CPU. The ISR quickly pro-
cesses the request in the background, allowing some other computation to proceed normally in the fore-
ground.

An interrupt is essentially a procedure call that the hardware makes (rather than explicit call to some
procedure, like a call to the stdout.put routine). The most important thing to remember about an interrupt is
that it can pause the execution of some program at any point between two instructions when an interrupt
occurs. Therefore, you typically have no guarantee that one instruction always executes immediately after
another in the program because an interrupt could occur between the two instructions. If an interrupt occurs
in the middle of the execution of some instruction, then the CPU finishes that instruction before transferring
control to the appropriate interrupt service routine. However, the interrupt generally interrupts execution
before the start of the next instruction5. Suppose, for example, that an interrupt occurs between the execu-
tion of the following two instructions:

add(i, eax);
<---- Interrupt occurs here.

mov(eax, j);

When the interrupt occurs, control transfers to the appropriate ISR that handles the hardware event. When
that ISR completes and executes the IRET (interrupt return) instruction, control returns back to the point of
interruption and execution of the original code continues with the instruction immediately after the point of
interrupt (e.g., the MOV instruction above). Imagine an interrupt service routine that executes the following
code:

mov(0, eax);
iret;

If this ISR executes in response to the interrupt above, then the main program will not produce a correct
result. Specifically, the main program should compute "j := eax +i;" Instead, it computes "j := 0;" (in this
particular case) because the interrupt service routine sets EAX to zero, wiping out the sum of i and the previ-
ous value of EAX. This highlights a very important fact about ISRs: ISRs must preserve all registers and
flags whose values they modify. If an ISR does not preserve some register or flag value, this will definitely
affect the correctness of the programs running when an interrupt occurs. Usually, the ISR mechanism itself
preserves the flags (e.g., the interrupt pushes the flags onto the stack and the IRET instruction restores those
flags). However, the ISR itself is responsible for preserving any registers that it modifies.

Although the preceding discussion makes it clear that ISRs must preserve registers and the flags, your
ISRs must exercise similar care when manipulating any other resources the ISR shares with other processes.
This includes variables, I/O ports, etc. Note that preserving the values of such objects isn’t always the cor-
rect solution. Many ISRs communicate their results to the foreground program using shared variables.
However, as you will see, the ISR and the foreground program must coordinate access to shared resources or
they may produce incorrect results. Writing code that correctly works with shared resources is a difficult
challenge; the possibility of subtle bugs creeping into the program is very great. We’ll consider some of
these issues a little later in this chapter; the messy details will have to wait for a later volume of this text.

5. The situation is somewhat fuzzy if you have pipelines and superscalar operation. Exactly what instruction does an interrupt
precede if there are multiple instructions executing simultaneously? The answer is somewhat irrelevant, however, since the
interrupt does take place between the execution of some pair of instructions; in reality, the interrupt may occur immediately
after the last instruction to enter the pipeline when the interrupt occurs. Nevertheless, the system does interrupt the execution
of the foreground process after the execution of some instruction.
Page 328 © 2001, By Randall Hyde Beta Draft - Do not distribute

The I/O Subsystem
CPUs that support interrupts must provide some mechanism that allows the programmer to specify the
address of the ISR to execute when an interrupt occurs. Typically, an interrupt vector is a special memory
location that contains the address of the ISR to execute when an interrupt occurs. PCs typically support up to
16 different interrupts.

After an ISR completes its operation, it generally returns control to the foreground task with a special
“return from interrupt” instruction. On the Y86 hypothetical processor, for example, the IRET (interrupt
return) instruction handles this task. This same instruction does a similar task on the 80x86. An ISR should
always end with this instruction so the ISR can return control to the program it interrupted.

7.12 Using a Circular Queue to Buffer Input Data from an ISR

A typical interrupt-driven input system uses the ISR to read data from an input port and buffer it up
whenever data becomes available. The foreground program can read that data from the buffer at its leisure
without losing any data from the port. A typical foreground/ISR arrangement appears in Figure 7.10. In this
diagram the ISR reads a value from the peripheral device and then stores the data into a common buffer that
the ISR shares with the foreground application. Sometime later, the foreground process removes the data
from the buffer. If (during a burst of input) the device and ISR produce data faster than the foreground
application reads data from the buffer, the ISR will store up multiple unread data values in the buffer. As
long as the average consumption rate of the foreground process matches the average production rate of the
ISR, and the buffer is large enough to hold bursts of data, there will be no lost data.

Figure 7.10 Interrupt Service Routine as a Data Produce/Application as a Data Consumer

If the foreground process in Figure 7.10 consumes data faster than the ISR produces it, sooner or later
the buffer will become empty. When this happens the foreground process will have to wait for the back-
ground process to produce more data. Typically the foreground process would poll the data buffer (or, in a
more advanced system, block execution) until additional data arrives. Then the foreground process can eas-
ily extract the new data from the buffer and continue execution.

There is nothing special about the data buffer. It is just a block of contiguous bytes in memory and a
few additional pieces of information to maintain the list of data in the buffer. While there are lots of ways to
maintain data in a buffer such as this one, probably the most popular technique is to use a circular buffer. A
typical circular buffer implementation contains three objects: an array that holds the actual data, a pointer to
the next available data object in the buffer, and a length value that specifies how many objects are currently
in the buffer.

In the next volume of this series you will see how to declare and use arrays. However, in Chapter Two
of this volume you saw how to allocate a block of data in the STATIC section (see “The Static Sections” on

Foreground
Process
(application)

Background
Process
(ISR)

Data Buffer

The background process produces data (by reading it from the device)
and places it in the buffer. The foreground process consumes data by
removing it from the buffer.

Peripheral
Device
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 329

Chapter Seven Volume Two
page 161) or how to use malloc to allocate a block of bytes (see “Dynamic Memory Allocation and the Heap
Segment” on page 180). For our purposes, declaring a block of bytes in the STATIC section is just fine; the
following code shows one way to set aside 16 bytes for a buffer:

static
buffer: byte := 0; // Reserves one byte.

byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 // 15 additional bytes.

Of course, this technique would not be useful if you wanted to set aside storage for a really large buffer, but
it works fine for small buffers (like our example above). See the discussion of arrays in the next volume if
you need to allocate storage for a larger buffer.

In addition to the buffer data itself, a circular buffer also needs at least two other values: an index into
the buffer that specifies where the next available data object appears and a count of valid items in the buffer.
Given that the 80x86’s addressing modes all use 32-bit registers, we’ll find it most convenient to use a 32-bit
unsigned integer for this purpose even though the index and count values never exceed 16. The declaration
for these values might be the following:

static
index: uns32 := 0; // Start with first element of the array.
count: uns32 := 0; // Initially, there is no data in the array.

The data producer (the ISR in our example) inserts data into the buffer by following these steps:

• Check the count. If the count is equal to the buffer size, then the buffer is full and some correc-
tive action is necessary.

• Store the new data object at location ((index+count) mod buffer_size).
• Increment the count variable.

Suppose that the producer wishes to add a character to the initially empty buffer. The count is zero so
we don’t have to deal with a buffer overflow. The index value is also zero, so ((index+count) MOD 16) is
zero and we store our first data byte at index zero in the array. Finally, we increment count by one so that the
producer will put the next byte at offset one in the array of bytes.

If the consumer never removes any bytes and the producer keeps producing bytes, sooner or later the
buffer will fill up and count will hit 16. Any attempt to insert additional data into the buffer is an error con-
dition. The producer needs to decide what to do at that point. Some simple routines may simply ignore any
additional data (that is, any additional incoming data from the device will be lost). Some routines may sig-
nal an exception and leave it up to the main application to deal with the error. Some other routines may
attempt to expand the buffer size to allow additional data in the buffer. The corrective action is applica-
tion-specific. In our examples we’ll assume the program either ignores the extra data or immediately stops
the program if a buffer overflow occurs.

You’ll notice that the producer stores the data at location ((index+count) MOD buffer_size) in the array.
This calculation, as you’ll soon see, is how the circular buffer obtains its name. HLA does provide a MOD
instruction that will compute the remainder after the division of two values, however, most buffer routines
don’t compute remainder using the MOD instruction. Instead, most buffer routines rely on a cute little trick
to compute this value much more efficiently than with the MOD instruction. The trick is this: if a buffer’s
size is a power of two (16 in our case), you can compute (x MOD buffer_size) by logically ANDing x with
buffer_size - 1. In our case, this means that the following instruction sequence computes ((index+count)
MOD 16) in the EBX register:

mov(index, ebx);
add(count, ebx);
and(15, ebx);

Remember, this trick only works if the buffer size is an integral power of two. If you look at most programs
that use a circular buffer for their data, you’ll discover that they commonly use a buffer size that is an inte-
gral power of two. The value is not arbitrary; they do this so they can use the AND trick to efficiently com-
pute the remainder.

To remove data from the buffer, the consumer half of the program follows these steps:
Page 330 © 2001, By Randall Hyde Beta Draft - Do not distribute

The I/O Subsystem
• The consumer first checks to the count to see if there is any data in the buffer. If not, the con-
sumer waits until data is available.

• If (or when) data is available, the consumer fetches the value at the location index specifies
within the buffer.

• The consumer then decrements the count and computes index := (index + 1) MOD buffer_size.

To remove a byte from the circular buffer in our current example, you’d use code like the following:

// wait for data to appear in the buffer.

repeat
until(count <> 0);

// Remove the character from the buffer.

mov(index, ebx);
mov(buffer[ebx], al); // Fetch the byte from the buffer.
dec(count); // Note that we’ve removed a character.
inc(ebx); // Index := Index + 1;
and(15, ebx); // Index := (index + 1) mod 16;
mov(ebx, index); // Save away the new index value.

As the consumer removes data from the circular queue, it advances the index into the array. If you’re
wondering what happens at the end of the array, well that’s the purpose of the MOD calculation. If index
starts at zero and increments with each character, you’d expect the sequence 0, 1, 2, ... At some point or
another the index will exceed the bounds of the buffer (i.e., when index increments to 16). However, the
MOD operation resets this value back to zero (since 16 MOD 16 is zero). Therefore, the consumer, after that
point, will begin removing data from the beginning of the buffer.

Take a close look at the REPEAT..UNTIL loop in the previous code. At first blush you may be tempted
to think that this is an infinite loop if count initially contains zero. After all, there is no code in the body of
the loop that modifies count’s value. So if count contains zero upon initial entry, how does it ever change?
Well, that’s the job of the ISR. When an interrupt comes along the ISR suspends the execution of this loop at
some arbitrary point. Then the ISR reads a byte from the device, puts the byte into the buffer, and updates
the count variable (from zero to one). Then the ISR returns and the consumer code above resumes where it
left off. On the next loop iteration, however, count’s value is no longer zero, so the loop falls through to the
following code. This is a classic example of how an ISR communicates with a foreground process – by
writing a value to some shared variable.

There is a subtle problem with the producer/consumer code in this section. It will fail if the producer is
attempting to insert data into the buffer at exactly the same time the consumer is removing data. Consider
the following sequence of instructions:

// wait for data to appear in the buffer.

repeat
until(count <> 0);

// Remove the character from the buffer.

mov(index, ebx);
mov(buffer[ebx], al); // Fetch the byte from the buffer.
dec(count); // Note that we’ve removed a character.

*** Assume the interrupt occurs here, so we begin executing
*** the data insertion sequence:

mov(index, ebx);
add(count, ebx);
and(15, ebx);
mov(al, buffer[ebx]);
inc(count);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 331

Chapter Seven Volume Two
*** now the ISR returns to the consumer code (assume we’ve preserved EBX):

inc(ebx); // Index := Index + 1;
and(15, ebx); // Index := (index + 1) mod 16;
mov(ebx, index); // Save away the new index value.

The problem with this code, which is very subtle, is that the consumer has decremented the count variable
and an interrupt occurs before the consumer can update the index variable as well. Therefore, upon arrival
into the ISR, the count value and the index value are inconsistent. That is, index+count now points at the last
value placed in the buffer rather than the next available location. Therefore, the ISR will overwrite the last
byte in the buffer rather than properly placing this byte after the (current) last byte. Worse, once the ISR
returns to the consumer code, the consumer will update the index value and effectively add a byte of garbage
to the end of the circular buffer. The end result is that we wipe out the next to last value in the buffer and add
a garbage byte to the end of the buffer.

Note that this problem doesn’t occur all the time, or even frequently for that matter. In fact, it only
occurs in the very special case where the interrupt occurs between the "dec(count);" and "mov(ebx, index);"
instructions in this code. If this code executes a very tiny percentage of the time, the likelihood of encoun-
tering this error is quite small. This may seem good, but this is actually worse than having the problem occur
all the time; the fact that the problem rarely occurs just means that it’s going to be really hard to find and
correct this problem when you finally do detect that something has gone wrong. ISRs and concurrent pro-
grams are among the most difficult programs in the world to test and debug. The best solution is to carefully
consider the interaction between foreground and background tasks when writing ISRs and other concurrent
programs. In a later volume, this text will consider the issues in concurrent programming, for now, be very
careful about using shared objects in an ISR.

There are two ways to correct the problem that occurs in this example. One way is to use a pair of
(somewhat) independent variables to manipulate the queue. The original PC’s type ahead keyboard buffer,
for example, used two index variables rather than an index and a count to maintain the queue. The ISR
would use one index to insert data and the foreground process would use the second index to remove data
from the buffer. The only sharing of the two pointers was a comparison for equality, which worked okay
even in an interrupt environment. Here’s how the code worked:

// Declarations

static
buffer: byte := 0; byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
Ins: uns32 := 0; // Insert bytes starting here.
Rmv: uns32 := 0; // Remove bytes starting here.

// Insert a byte into the queue (the ISR):

mov(Ins, ebx);
inc(ebx);
and(15, ebx);
if(ebx <> Rmv) then

mov(al, buffer[ebx]);
mov(ebx, Ins);

else

// Buffer overflow error.
// Note that we don’t update INS in this case.

endif;

// Remove a byte from the queue (the consumer process).
Page 332 © 2001, By Randall Hyde Beta Draft - Do not distribute

The I/O Subsystem
mov(Rmv, ebx);
repeat

// Wait for data to arrive

until(ebx <> Ins);
mov(buffer[ebx], al);
inc(ebx);
and(15, ebx);
mov(ebx, Rmv);

If you study this code (very) carefully, you’ll discover that the two code sequences don’t interfere with
one another. The difference between this code and the previous code is that the foreground and background
processes don’t write to a (control) variable that the other routine uses. The ISR only writes to Ins while the
foreground process only writes to Rmv. In general, this is not a sufficient guarantee that the two code
sequences won’t interfere with one another, but it does work in this instance.

One drawback to this code is that it doesn’t fully utilize the buffer. Specifically, this code sequence can
only hold 15 characters in the buffer; one byte must go unused because this code determines that the buffer
is full when the value of Ins is one less than Rmv (MOD 16). When the two indices are equal, the buffer is
empty. Since we need to test for both these conditions, we can’t use one of the bytes in the buffer.

A second solution, that many people prefer, is to protect that section of code in the foreground process
that could fail if an interrupt comes along. There are lots of ways to protect this critical section6 of code.
Alas, most of the mechanisms are beyond the scope of this chapter and will have to wait for a later volume in
this text. However, one simple way to protect a critical section is to simply disable interrupts during the exe-
cution of that code. The 80x86 family provides two instructions, CLI and STI that let you enable and disable
interrupts. The CLI instruction (clear interrupt enable flag) disables interrupts by clearing the "I" bit in the
flags register (this is the interrupt enable flag). Similarly, the STI instruction enables interrupts by setting
this flag. These two instructions use the following syntax:

cli(); // Disables interrupts from this point forward...
 .
 .
 .
sti(); // Enables interrupts from this point forward...

You can surround a critical section in your program with these two instructions to protect that section from
interrupts. The original consumer code could be safely written as follows:

// wait for data to appear in the buffer.

repeat
until(count <> 0);

// Remove the character from the buffer.

cli(); // Protect the following critical section.
mov(index, ebx);
mov(buffer[ebx], al); // Fetch the byte from the buffer.
dec(count); // Note that we’ve removed a character.
inc(ebx); // Index := Index + 1;
and(15, ebx); // Index := (index + 1) mod 16;
mov(ebx, index); // Save away the new index value.
sti(); // Critical section is done, restore interrupts.

6. A critical section is a region of code during which certain resources have to be protected from other processes. For exam-
ple, the consumer code that fetches data from the buffer needs to be protected from the ISR.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 333

Chapter Seven Volume Two
Perhaps a better sequence to use is to push the EFLAGs register (that contains the I flag) and turn off the
interrupts. Then, rather than blindly turning interrupts back on, you can restore the original I flag setting
using a POPFD instruction:

// Remove the character from the buffer.

pushfd(); // Preserve current I flag value.
cli(); // Protect the following critical section.
mov(index, ebx);
mov(buffer[ebx], al); // Fetch the byte from the buffer.
dec(count); // Note that we’ve removed a character.
inc(ebx); // Index := Index + 1;
and(15, ebx); // Index := (index + 1) mod 16;
mov(ebx, index); // Save away the new index value.
popfd(); // Restore original I flag value

This mechanism is arguably safer since it doesn’t turn the interrupts on even if they were already off before
executing this sequence.

In our simple example (with a single producer and a single consumer) there is no need to protect the
code in the ISR. However, if it were possible for two different ISRs to insert data into the buffer, and one
ISR could interrupt another, then you would have to protect the code inside the ISR as well.

You must be very careful about turning the interrupts on and off. If you turn the interrupts off and forget
to turn them back on, the next time you enter a loop like one of the REPEAT..UNTIL loops in this section the
program will lock up because the loop control variable (count) will never change if an ISR cannot execute
and update its value. This situation is called deadlock and you must take special care to avoid it.

Note that applications under Win32 cannot change the state of the interrupt disable flag. This technique
is useful mainly in embedded system or under simpler operating systems like DOS. Fortunately, advanced
32-bit operating systems like Windows provide other mechanisms for protecting critical sections. A later
chapter will discuss these facilities.

7.13 Using a Circular Queue to Buffer Output Data for an ISR

You can also use a circular buffer to hold data waiting for transmission. For example, a program can
buffer up data in bursts while an output device is busy and then the output device can empty the buffer at a
steady state. The queuing and dequeuing routines are very similar to those found in the previous section
with one major difference: output devices don’t automatically initiate the transfer like input devices. This
problem is a source of many bugs in output buffering routines and one that we’ll pay careful attention to in
this section.

As noted above, one advantage of an input device is that it automatically interrupts the system whenever
data is available. This activates the corresponding ISR that reads the data from the device and places the
data in the buffer. No special processing is necessary to prepare the interrupt system for the next input value.

There is a subtle difference between the interrupts an input device generates and the interrupts an output
device generates. An input device generates an interrupt when data is available, output devices generate an
interrupt when they are ready to accept more data. For example, a keyboard device generates an interrupt
when the user presses a key and the system has to read the character from the keyboard. A printer device, on
the other hand, generates an interrupt once it is done with the last character transmitted to it and it’s ready to
accept another character. Whenever the user presses a keyboard for the very first time, the system will gen-
erate an interrupt in response to that event. However, the printer does not generate an interrupt when the sys-
tem first powers up to tell the system that it’s ready to accept a character. Even if it did, the system would
ignore the interrupt since it (probably) doesn’t have any data to transmit to the printer at that point. Later,
when the system puts data in the printer’s buffer for transmission, there is no interrupt that activates the ISR
to remove a character from the buffer and send it to the printer. The printer device only sends interrupts
when it is done processing a character; if it isn’t processing any characters, it won’t generate any interrupts.

This creates a bit of a problem. If the foreground process places characters in the queue and the back-
ground process (the ISR, which is the consumer in this case) only removes those characters when an inter-
Page 334 © 2001, By Randall Hyde Beta Draft - Do not distribute

The I/O Subsystem
rupt occurs, the system will never activate the ISR since the device isn’t currently processing anything. To
correct this problem, the producer code (the foreground process) must maintain a flag that indicates whether
the output device is currently processing a character; if so, then the producer can simply queue up the char-
acter in the buffer. If the device is not currently processing any data, then the producer should send the data
directly to the device rather than queue up the data in the buffer7. Old time programmers refer to this as
"priming the pump" since we have to put data in the transmission pipeline in order to get the process work-
ing properly.

Once the producer "primes the pump" the process continues automatically as long as there is data in the
buffer. After the output device processes the current byte it generates an interrupt. The ISR removes a byte
from the buffer and transmits this data to the device. When that byte completes transmission the device gen-
erates another interrupt and the process repeats. This process repeats automatically as long as there is data in
the buffer to transmit to the output device.

When the ISR transmits the last character from the buffer, the output device still generates an interrupt
at the end of the transmission. The ISR, upon noting that the buffer is empty, returns without sending any
new data to the output device. Since there is no pending data transmission to the output device, there will be
no new interrupts to activate the ISR when new data appears in the buffer. Once again the foreground pro-
cess (producer) will have to prime the pump to get the process going when it attempts to put data in the
buffer.

Perhaps the easiest way to handle this process is to use a boolean variable to indicate whether the output
device is currently transmitting data (and will generate an interrupt to process the next byte). If the flag is set,
the foreground process can simply enqueue the data; if the flag is clear, the foreground process must trans-
mit the data directly to the device (or call the code that does this). In this latter case, the foreground process
must also set the flag to denote a transmission in progress.

Here is some code that can implement this functionality:

static
OutBuf: byte := 0; byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
Index: uns32 := 0;
Count: uns32 := 0;
Xmitting: boolean := false; // Flag to denote transmission in progress.
 .
 .
 .
// Code to enqueue a byte (foreground process executes this)

if(Count = 16) then

// Error, buffer is full. Do whatever processing is necessary to
// deal with this problem.

.

.

.

elseif(Xmitting) then

// If we’re currently transmitting data, just add the byte to the queue.

pushfd(); // Critical region! Turn off the interrupts.
cli();
mov(Index, ebx); // Store the new byte at address (Index+Count) mod 16
add(Count, ebx);
and(15, ebx);
mov(al, OutBuf[ebx]);
inc(Count);
popfd(); // Restore the interrupt flag’s value.

7. Another possibility is to go ahead and queue up the data and then manually activate the code that dequeues the data and
sends it to the output device.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 335

Chapter Seven Volume Two
else

// The buffer is empty and there is no character in transmission.
// Do whatever is necessary to transmit the character to the output
// device.

.

.

.

// Be sure to set the Xmitting flag since a character is now being
// transmitted to the output device.

mov(true, Xmitting);

endif;
.
.
.

// Here’s the code that would appear inside the ISR to remove a character
// from the buffer and send it to the output device. The system calls this
// ISR whenever the device finishes processing some character.
// (Presumably, the ISR preserves all registers this code sequence modifies)

if(Count > 0) then

// Okay, there are characters in the buffer. Remove the first one
// and transmit it to the device:

mov(Index, ebx);
mov(OutBuf[ebx], al); // Get the next character to output
inc(ebx); // Point Index at the next byte in the
and(15, ebx); // circular buffer.
mov(ebx, Index);
dec(Count); // Decrement count since we removed a char.

<< At this point, do whatever needs to be done in order to
transmit a character to the output device >>
.
.
.

else

// At this point, the ISR was called but the buffer is empty.
// Simply clear the Xmitting flag and return. (this will force the
// next buffer insertion operation to transmit the data directly to the
// device.)

mov(true, Xmitting);

endif;

7.14 I/O and the Cache

It goes without saying that the CPU cannot cache values for memory-mapped I/O ports. If a port is an
input port, caching the data from that port would always return the first value read; subsequent reads would
read the value in the cache rather than the possible (volatile) data at the input port. Similarly, with a
write-back cache mechanism, writes to an output port may never reach that port (i.e., the CPU may save up
Page 336 © 2001, By Randall Hyde Beta Draft - Do not distribute

The I/O Subsystem
several writes in the cache and send the last such write to the actual I/O port). Therefore, there must be some
mechanism to tell the CPU not to cache up accesses to certain memory locations.

The solution is in the virtual memory subsystem of the 80x86. The 80x86’s page table entries contain
information that the CPU can use to determine whether it is okay to map data from a page in memory to
cache. If this flag is set one way, then the cache operates normally; if the flag is set the other way, then the
CPU does not cache up accesses to that page.

Unfortunately, the granularity (that is, the minimum size) of this access is the 4K page. So if you need
to map 16 device registers into memory somewhere and cannot cache them, you must actually consume 4K
of the address space to hold these 16 locations. Fortunately, there is a lot of room in the 4 GByte virtual
address space and there aren’t that many peripheral devices that need to be mapped into the memory address
space. So assigning these device addresses sparsely in the memory map will not present too many problems.

7.15 Windows and Protected Mode Operation

Windows employs the 80x86’s protected mode of operation. In this mode of operation, direct access to
devices is restricted to the operating system and certain privileged programs. Standard applications, even
those written in assembly language, are not so privileged. If you write a simple program that attempts to
send data to an I/O port via an IN or an OUT instruction, the system will generate an illegal access exception
and halt your program. Unless you’re willing to write a device driver for Windows, you’ll probably not be
able to access the I/O devices directly.

Not all versions of Windows deny access to the peripherals. Windows 95 and 98, for example, don’t
prevent I/O access. So if you’re using one of these operating systems, you can write assembly code that
accesses the ports directly. However, the days of being able to access I/O devices directly from an applica-
tion are clearly over. Future versions of Windows will restrict this activity.

This chapter has provided an introduction to I/O in a very general, architectural sense. It hasn’t spent
too much time discussing the particular peripheral devices present in a typical PC. This is an intended omis-
sion; there is no need to confuse readers with information they can’t use. Furthermore, as manufacturers
introduce new PCs they are removing many of the common peripherals like parallel and serial ports that are
relatively easy to program in assembly language. They are replacing these devices with complex peripherals
like USB and Firewire. Unfortunately, programming these newer peripheral devices is well beyond the
scope of this text (Microsoft’s USB code, for example, is well over 100 pages of C++ code).

Those who are interested in additional information about programming standard PC peripherals may
want to consult one of the many excellent hardware references available for the PC or take a look at the
DOS/16-bit version of this text.

IN and OUT aren’t the only instructions that you cannot execute in an application running under pro-
tected mode. The system considers many instructions to be "privileged" and will abort your program if you
attempt to use these instructions. The CLI and STI instructions are good examples. If you attempt to exe-
cute either of these instructions, the system will stop your program.

Some instructions will execute in an application, but behave differently than they do when the operating
system executes them. The PUSHFD and POPFD instructions are good examples. These instruction push
and pop the interrupt enable flag (among others). Therefore, you could use PUSHFD to push the flags on the
stack, pop this double word off the stack and clear the bit associated with the interrupt flag, push the value
back onto the stack and then use POPFD to restore the flags (and, in the process, clear the interrupt flag).
This would seem like a sneaky way around clearing the interrupt flag. The CPU must allow applications to
push and pop the flags for other reasons. However, for various security reasons the CPU cannot allow appli-
cations to manipulate the interrupt disable flag. Therefore, the POPFD instruction behaves a little differently
in an application that it does when the operating system executes it. In an application, the CPU ignores the
interrupt flag bit it pops off the stack. In operating system ("kernel") mode, popping the flags register does
restore the interrupt flag.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 337

Chapter Seven Volume Two
7.16 Device Drivers

If Win32 doesn’t allow direct access to peripheral devices, how does a program communicate with these
devices? Clearly this can be done since applications interact with real-world devices all the time. If you
reread the previous section carefully, you’ll note that it doesn’t claim that programs can’t access the devices,
it only states that application programs are denied such access. Specially written modules, known as device
drivers, are able to access I/O ports by special permission from the operating system. Writing device drivers
is well beyond the scope of this chapter (though it will make an excellent subject for a later volume in this
text). Nevertheless, an understanding of how device drivers work may help you understand the possibilities
and limitations of I//O under a Win32 operating system.

A device driver is a special type of program that connects to the Windows operating system. The device
driver must follow some special protocols and it must make some special calls to Windows that are not avail-
able to standard applications. Further, in order to install a device driver in your system you must have
administrator privileges (device drivers create all kinds of security and resource allocation problems; you
can’t have every hacker in the world taking advantage of rogue device drivers running on your system).
Therefore, "whipping out a device driver" is not a trivial process and application programs cannot load and
unload arbitrary drivers at will.

Fortunately, there are only a limited number of devices you’d typically find on a PC, therefore you only
need a limited number of device drivers. You would typically install a device driver in the operating system
the same time you install the device (or when you install the operating system if the device is built into the
PC). About the only time you’d really need to write your own device driver is when you build your own
device or in some special instance when you need to take advantage of some devices capabilities that the
standard device drivers don’t allow for.

One big advantage to the device driver mechanism is that the operating system (or device vendors) must
provide a reasonable set of device drivers or the system will never become popular (one of the reasons
Microsoft and IBM’s OS/2 operating system was never successful was the dearth of device drivers). This
means that applications can easily manipulate lots of devices without the application programmer having to
know much about the device itself; the real work has been taken care of by the operating system.

The device driver model does have a few drawbacks, however. The device driver model is great for
low-speed devices, where the OS and device driver can respond to the device much more quickly than the
device requires. The device driver model is also great for medium and high-speed devices where the system
transmits large blocks of data in one direction at a time; in such a situation the application can pass a large
block of data to the operating system and the OS can transmit this data to the device (or conversely, read a
large block of data from the device and place it in an application-supplied buffer). One problem with the
device driver model is that it does not support medium and high-speed data transfers that require a high
degree of interaction between the device and the application.

The problem is that calling the operating system is an expensive process. Whenever an application
makes a call to the OS to transmit data to the device it could actually take hundreds of microseconds, if not
milliseconds, before the device driver actually sees the data. If the interaction between the device and the
application requires a constant flurry of bytes moving back and forth, there will be a big delay if each trans-
fer has to go through the operating system. For such applications you will need to write a special device
driver to handle the transactions directly in the driver rather than continually returning to the application.

7.17 Putting It All Together

Although the CPU is where all the computation takes place in a computer system, that computation
would be for naught if there was no way to get information into and out of the computer system. This is the
responsibility of the I/O subsystem. I/O at the machine level is considerably different than the interface high
level languages and I/O subroutine libraries (like stdout.put) provide. At the machine level, I/O transfers
consist of moving bytes (or other data units) between the CPU and device registers or memory.

The 80x86 family supports two types of programmed I/O: memory-mapped input/output and
I/O-mapped I/O. PCs also provide a third form of I/O that is mostly independent of the CPU: direct memory
Page 338 © 2001, By Randall Hyde Beta Draft - Do not distribute

The I/O Subsystem
access or DMA. Memory-mapped input/output uses standard instructions that access memory to move data
between the system and the peripheral devices. I/O-mapped input/output uses special instructions, IN and
OUT, to move data between the CPU and peripheral devices. I/O-mapped devices have the advantage that
they do not consume memory addresses normally intended for system memory. However, the only access to
devices using this scheme is through the IN and OUT instructions; you cannot use arbitrary instructions that
manipulate memory to control such peripherals. Devices that use DMA have special hardware that let them
transmit data to and from system memory without going through the CPU. Devices that use DMA tend to be
very high performance, but this I/O mechanism is really only useful for devices that transmit large blocks of
data at high speeds.

I/O devices have many different operating speeds. Some devices are far slower than the CPU while
other devices can actually produce or consume data faster than the CPU. For devices that are slower than the
CPU, some sort of handshaking mechanism is necessary in order to coordinate the data transfer between the
CPU and the device. High-speed devices require a DMA controller or buffering since the CPU cannot han-
dle the data rates of these devices. In all cases, some mechanism is necessary to tell the CPU that the I/O
operation is complete so the CPU can go about other business.

In modern 32-bit operating systems like Win32, applications programs do not have direct access to the
peripheral devices. The operating system coordinates all I/O via the use of device drivers. The good thing
about device drivers is that you (usually) don’t have to write them – the operating system provides them for
you. The bad thing about writing device drivers is if you have to write one, they are very complex. A later
volume in this text will discuss how to do this.

Because HLA programs usually run as applications under Win32, you will not be able to use most of the
coding techniques this chapter discusses within your HLA applications. Nevertheless, understanding how
device I/O works can help you write better applications. Of course, if you ever have to write a device driver
for some device, then the basic knowledge this chapter presents is a good foundation for learning how to
write such code.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 339

Chapter Seven Volume Two
Page 340 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
Questions, Projects, and Labs Chapter Eight

8.1 Questions

1. What three components make up Von Neumann Machines?

2. What is the purpose of

a) The system bus

b) The address bus

c) The data bus

d) The control bus

3. Which bus defines the “size” of the processor?

4. Which bus controls how much memory you can have?

5. Does the size of the data bus control the maximum value the CPU can process? Explain.

6. What are the data bus sizes of:

a) 8088 b) 8086 c) 80286 d) 80386sx

e) 80386 f) 80486 g)Pentium h) Pentium II

7. What are the address bus sizes of the above processors?

8. How many “banks” of memory do each of the above processors have?

9. Explain how to store a word in byte addressable memory (that is, at what addresses). Explain how to store
a double word.

10. How many memory operations will it take to read a word from the following addresses on the following
processors?

11. Repeat the above for double words

Table 32: Memory Cycles for Word Accesses

$100 $101 $102 $103 $104 $105

8088

80286

80386

Table 33: Memory Cycles for Doubleword Accesses

$100 $101 $102 $103 $104 $105

8088
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 341

Chapter Eight Volume Two
12. Explain which addresses are best for byte, word, and doubleword variables on an 8088, 80286, and 80386
processor.

13. Given the system bus size, what address boundary is best for a real64 object in memory?

14. What is the purpose of the system clock?

15. What is a clock cycle?

16. What is the relationship between clock frequency and the clock period?

17. Explain why 10ns memory should not work on a 500 MHz Pentium III processor? Explain why it does.

18. What does the term “memory access time” mean?

19. What is a wait state?

20. If you are running an 80486 at the following clock speeds, how many wait states are required if you are
using 80ns RAM (assuming no other delays)?

a) 20 MHz b) 25 MHz c) 33 MHz d) 50 MHz e) 100 MHz

21. If your CPU runs at 50 MHz, 20ns RAM probably won’t be fast enough to operate at zero wait states.
Explain why.

22. Since sub-10ns RAM is available, why aren’t most systems zero wait state systems?

23. Explain how the cache operates to save some wait states.

24. What is the difference between spatial and temporal locality of reference?

25. Explain where temporal and spatial locality of reference occur in the following Pascal code:

while i < 10 do begin
x := x * i;
i := i + 1;

end;

26. How does cache memory improve the performance of a section of code exhibiting spatial locality of refer-
ence?

27. Under what circumstances is a cache not going to save you any wait states?

28. What is the effective (average) number of wait states the following systems will operate under?

a) 80% cache hit ratio, 10 wait states (WS) for memory, 0 WS for cache.

b) 90% cache hit ratio; 7 WS for memory; 0 WS for cache.

c) 95% cache hit ratio; 10 WS memory; 1 WS cache.

d) 50% cache hit ratio; 2 WS memory; 0 WS cache.

29. What is the purpose of a two level caching system? What does it save?

30. What is the effective number of wait states for the following systems?

a) 80% primary cache hit ratio (HR) zero WS; 95% secondary cache HR with 2 WS; 10 WS for main mem-
ory access.

80286

80386

Table 33: Memory Cycles for Doubleword Accesses

$100 $101 $102 $103 $104 $105
Page 342 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
b) 50% primary cache HR, zero WS; 98% secondary cache HR, one WS; five WS for main memory access.

c) 95% primary cache HR, one WS; 98% secondary cache HR, 4 WS; 10 WS for main memory access.

32. In what HLA declaration section would you declare initialized values that must not be changed during pro-
gram execution?

33. In what HLA declaration section would you declare uninitialized variables?

34. In what HLA declaration section would you declare automatic variables?

35. Explain how you allocate and deallocate dynamic memory using the HLA Standard Library.

36. Provide two ways to take the address of a variable you declare in the STATIC section of your program.

37. What is the difference between the DATA and STATIC sections of your program?

38. Suppose you have a word variable, “w”, and you wish to load the L.O. byte of “w” into the AH register.
What MOV instruction could you use to achieve this?

39. Suppose you have a word variable, “w”, and you wish to load the H.O. byte of “w” into the AL register.
What MOV instruction could you use to achieve this?

40. What is the difference between “add(1, [eax]);” and “add(0, [eax+1]);”?

41. By default, the “stdout.put(eax);” statement will print EAX as an eight-digit hexadecimal value. Explain
how to tell stdout.put to print EAX as an unsigned 32-bit integer; as a signed 32-bit integer. Provide the
actual instructions to accomplish this.

42. Explain, step by step, what the “PUSH(EAX);” instruction does.

43. Explain, step by step, what the “POP(EAX);” instruction does.

44. What is the purpose of the PUSHW and PUSHD instructions? What kind of data do they push? Why are
there no POPW and POPD instructions?

45. What is the purpose of the “PUSHAD();” instruction? In what order does it push its data onto the stack?

46. Suppose you execute the following three instructions:

push(eax);
pop(bx);
pop(cx);

What value will be left in BX after this sequence? What value will be left in CX?

47. Suppose you needed to save the value of the carry flag across the execution of several instructions.
Explain how you could do this (and provide the code).

48. Suppose you’ve executed the following two instructions to push EAX and EBX onto the stack:

push(eax);
push(ebx);

Without popping any data off the stack, explain how you can reload EAX’s value that was pushed on the
stack. Provide a single instruction that will do this.

49. What is the difference between the “DEC(EAX);” instruction and the “SUB(1, EAX);” instruction?

50. How can you check for unsigned arithmetic overflow immediately after an “INC(EAX);” instruction?

51. What is the identity element with respect to

a) AND b) OR c) XOR d) NOT e) NAND f) NOR

52. Provide truth tables for the following functions of two input variables:

a) AND b) OR c) XOR d) NAND e) NOR

f) Equivalence g) A < B h) A > B i) A implies B

53. Provide the truth tables for the following functions of three input variables:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 343

Chapter Eight Volume Two
a) ABC (and) b) A+B+C (OR) c) (ABC)’ (NAND)d) (A+B+C)’ (NOR)

e) Equivalence (ABC) + (A’B’C’)f) XOR (ABC + A’B’C’)’

54. Provide schematics (electrical circuit diagrams) showing how to implement each of the functions in ques-
tion three using only two-input gates and inverters. E.g.,

A) ABC =

55. Provide implementations of an AND gate, OR gate, and inverter gate using one or more NOR gates.

56. What is the principle of duality? What does it do for us?

57. Build a single truth table that provides the outputs for the following three boolean functions of three vari-
ables:

Fx= A + BC

Fy - AB + C’B

Fz = A’B’C’ + ABC + C’B’A

58. Provide the function numbers for the three functions in question seven above.

59. How many possible (unique) boolean functions are there if the function has

a) one inputb) two inputsc) three inputs d) four inputs e) five inputs

60. Simplify the following boolean functions using algebraic transformations. Show your work.

a) F = AB + AB’b) F = ABC + BC’ + AC + ABC’

c) F = A’B’C’D’ + A’B’C’D + A’B’CD + A’B’CD’

d) F = A’BC + ABC’ + A’BC’ + AB’C’ + ABC + AB’C

61. Simplify the boolean functions in question 60 using the mapping method.

62. Provide the logic equations in canonical form for the boolean functions S0..S6 for the seven segment dis-
play (see “Combinatorial Circuits” on page 215).

63. Provide the truth tables for each of the functions in question 62

64. Minimize each of the functions in question 62 using the map method.

65. The logic equation for a half-adder (in canonical form) is

Sum = AB’ + A’B Carry = AB

a) Provide an electronic circuit diagram for a half-adder using AND, OR, and Inverter gates

b) Provide the circuit using only NAND gates

66. The canonical equations for a full adder take the form:

Sum = A’B’C + A’BC’ + AB’C’ + ABC

Carry = ABC + ABC’ + AB’C + A’BC

a) Provide the schematic for these circuits using AND, OR, and inverter gates.

b) Optimize these equations using the map method.

c) Provide the electronic circuit for the optimized version (using AND, OR, and inverter gates).

67. Assume you have a D flip-flop (use this definition in this text) whose outputs currently are Q=1 and Q’=0.
Describe, in minute detail, exactly what happens when the clock line goes

a) from low to high with D=0

A

B

C
ABC
Page 344 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
b) from high to low with D=0

68. Rewrite the following Pascal statements to make them more efficient:

a) if (x or (not x and y)) then write(‘1’);

b) while(not x and not y) do somefunc(x,y);

c) if not((x <> y) and (a = b)) then Something;

69. Provide canonical forms (sum of minterms) for each of the following:

a) F(A,B,C) = A’BC + AB + BCb) F(A,B,C,D) = A + B + CD’ + D

c) F(A,B,C) = A’B + B’Ad) F(A,B,C,D) = A + BD’

e) F(A,B,C,D) = A’B’C’D + AB’C’D’ + CD + A’BCD’

70. Convert the sum of minterms forms in question 69 to the product of maxterms forms.

71. What is the difference between the Harvard and the Von Neumann Architectures?

72. Explain how encoding instructions in binary saves space in an opcode (see “Basic CPU Design” on
page 235).

73. What is the difference between Random Logic and Microcode?

74. What do the following acronyms stand for? CISC, RISC, VLIW.

75. Is the LOOP instruction a “RISC Core” or a “Complex” instruction? Explain.

76. What is the difference between an 80x86 “RISC Core” and a “Complex” instruction?

77. What sequence of instructions is the LOOP instruction equivalent to?

78. Explain, step-by-step, how a MOV instruction might work.

79. Explain how CPU designers use parallelism to increase the CPU’s throughput (# of instrs/second).

80. What is a prefetch queue?

81. What is pipelining?

82. What is a pipeline stall?

83. How can creating separate instruction and data caches improve performance?

84. Why do separate instruction and data caches often operate at a greater miss rate than a unified cache?

85. What is a data hazard?

86. What is a superscalar CPU?

87. Explain how “out of order” execution works. Under what circumstances can “out of order” execution
improve performance?

88. What is “register renaming?” How can it improve performance?

89. Explain the following terms: SISD, SIMD, MIMD.

90. Are MMX instructions SISD, SIMD, or MIMD?

91. Provide four reasons why we can’t/shouldn’t design a CPU with as many instructions as possible.

92. Explain why, when decoding an instruction, it is better to use several smaller decoders rather than one big
decoder.

93. Explain how to use an opcode prefix byte to extend an instruction set.

94. What is the value of the opcode prefix byte on the 80x86 CPU?

95. What is the maximum length of an 80x86 instruction?

96. What is the purpose of the MOD-REG-R/M byte on the 80x86?

97. What is the purpose of the SIB byte on the 80x86?

98. How long (in bytes) is the 80x86 opcode?
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 345

Chapter Eight Volume Two
99. When encoding an instruction with a memory addressing mode that has a displacement, where does the
80x86 expect the displacement value to appear?

100. On the 80x86, how do you encode immediate constant within the instruction?

101. What are the displacement sizes that the 80x86 supports for memory operands (under Win32)? Hint: this
one is a little tricky.

102. How do you select the displacement size in the instruction encoding?

103. Based on the values in the MOD-REG-R/M byte, explain why the 80x86 instructions don’t allow memory
to memory operations.

104. Explain why there is no “[EBP]” addressing mode on the 80x86.

105. The “[ESP]” address mode requires an SIB byte even though this instruction doesn’t have an index register
associated with it. Explain.

106. 80x86 opcodes only have one bit to specify the operand size. Explain how the 80x86 encodes three differ-
ent operand sizes.

107. Under Win32, what are the two default operand sizes?

108. What is an alternate instruction encoding?

109. What is the memory hierarchy?

110. What is the difference between a direct-mapped cache and a fully associative cache?

111. What is the difference between a two-way set associative cache and a four-way set associative cache?

112. Why would a direct-mapped cache offer better performance than a fully associative cache? Why would a
fully associative cache offer better performance than a direct-mapped cache? Give the circumstances for
both.

113. What is the difference between the write-through and the write-back cache policies? Which is higher per-
formance? Which is best in a multiprocessor system?

114. What is paging?

115. What is virtual memory?

116. What is thrashing?

117. What does NUMA stand for? How can it affect the performance of your programs?

118. What is the difference between the read-only, write-only, read/write, and dual I/O ports?

119. If the CPU sees a port as read/write, how does the external world see that port (input, output, both)?

120. What is the difference between I/O-mapped input/output and memory-mapped input/output?

121. What is DMA? Explain, don’t just spell out the acronym.

122. What is polling?

123. What are the relative speed differences between low, medium, and high speed I/O devices?

124. How are busses like PCI and ISA different than the CPU’s address and data busses?

125. Which bus is higher performance, PCI or ISA? Give performance numbers to back up your claim.

126. What is the AGP bus and what advantage does it have over the PCI bus?

127. What is I/O buffering? How can it keep a system from losing data?

128. What is the purpose of handshaking?

129. What is a time-out? What are some convienent instructions for checking for a time-out while waiting on a
bit in an I/O port?

130. What is the difference between interrupt driven I/O and polled I/O?
Page 346 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
8.2 Programming Projects

1. Write a program that requests a number from the user and then allows the user to enter the specified num-
ber of characters. Display the characters in the reverse order the user enters them. If the user enters fewer
than the specified number of characters, fill the remainder of you buffer with spaces. Repeat until the user
enters an empty line of text. (Idea: Use the HLA Standard Library stdin.eoln() function, that returns true
(1) or false (0) depending on whether the character just read by stdin.getc() was the last character on the
line). Be sure to free up any dynamically allocated storage you use after displaying the user output.

2. Write a program that requests a count from the user and allocates storage for that many 32-bit integers
(don’t forget to multiply the count by four since int32 objects are four bytes long; use SHL to multiply by
four). The program should then read the specified number of integers from the user and store them away in
the allocated buffer. Finally, the program should sum up each value in the buffer, display the sum, and then
free the allocated storage and quit.

3. Modify program (2) above so that it reports the largest (maximum) and smallest (minimum) integer values
in the buffer.

4. Write a program that allocates a buffer containing 32 bytes of storage, reads an integer value from the user,
and then copies each bit from the integer into successive bytes of memory; that is, bit zero winds up in the
first byte, bit 1 winds up in the second byte, etc. When your program is done copying the bits, the 32 bytes
should all contain a zero or a one depending upon the setting of the corresponding bit in the input integer.
Write each of these bits to the display. Sum the 32 bits up and print the sum (which tells you how many
one-bits were in the number). Be sure to free the storage before your program quits.

5. Write a program that allocates storage for two buffers. A single user input should determine the size of
these two buffers: the first buffer will contain the number of bytes specified by the user and the second
buffer will contain four times this many bytes. Read a sequence of int8 values from the user and store
them into the first buffer. The copy the values from first buffer to consecutive dwords in the second buffer,
using sign extension to convert the values. Display both buffers using hexadecimal notation once the con-
version is complete.

6. Using HLA Standard Library console.fillRect procedure, write a program that generates a checkerboard
pattern on the screen. The user should be able to specify the number of squares on each side of the check-
erboard as well as the two colors to use for the checkerboard display. Your program should verify that the
checkerboard will fit on the display before drawing it and report an error if it does not fit.

7. Write a two-player tic-tac-toe game. Use the HLA Standard Library console module to clear the screen
and draw the board between each move. Let the users alternate moves until one of them decides to quit
(don’t bother trying to have your program determine if the game is over, just use a special input value to
end the game). Be sure to draw a second game board listing numbers or characters by which each player
can choose the square into which they want to move. Use different colors for each player’s symbols. If
you want to get real fancy, you can draw the X’s and O’s by printing blocks of spaces on the screen. If you
really want to be impressive, read the HLA console documentation and learn how to use the mouse. Then
use mouse clicks to make the moves (this is optional!).

8. Write a program that inputs an (x,y) coordinate from the user and a single unsigned integer value. Your
program should draw a rectangle on the screen using the PC’s line drawing graphic characters (see Appen-
dix B). The upper left hand corner of the rectangle should be at the coordinate specified by the user. The
integer value specifies the width and height of the rectangle on the screen. Before drawing the rectangle,
verify that it will fit on the screen and print an error message if it won’t. Use the console.gotoxy procedure
to position the cursor before drawing each character; do not disturb any other characters on the screen
except those character positions where you actually draw one of the line drawing characters.

9. The HLA “console.getRect(top, left, bottom, right, buffer)” function copies the data in the specified rect-
angle on the screen to the buffer passed as the last parameter. E.g., “console.getRect(10, 10, 20, 20, (type
byte [eax]));” copies the 10x10 matrix of characters into the block of memory pointed at by EAX. Simi-
larly, the “console.putRect(top, left, bottom, right, buffer);” call will copy the data from the specified
buffer to the screen at the specified coordinates. The buffer must contain twice the number of bytes as
there are characters in the rectangular region. Allocate a sufficient amount of storage using malloc and
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 347

Chapter Eight Volume Two
then use these two routines to temporarily save a portion of the screen while you write something else to it.
Then, upon prompt from the program’s user, restore the original rectangle.

10) Write a program that reads four values from the user, I, J, K, and L, and plugs these values into a truth table
with B’A’ = I, B’A = J, BA’ = K, and BA = L. Ensure that these input values are only zero or one. Then
input a series of pairs of zeros or ones from the user and plug them into the truth table. Display the result
for each computation.

11) Write a program that, given a 4-bit logic function number, displays the truth table for that function of two
variables.

12) Write a program that, given an 8-bit logic function number, displays the truth table for that function of
three variables.

13) Write a program that, given a 16-bit logic function number, displays the truth table for that function of four
variables.

14) Write a program that, given a 16-bit logic function number, displays the canonical equation for that func-
tion (hint: build the truth table).
Page 348 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
8.3 Chapters One and Two Laboratory Exercises

Accompanying this text is a significant amount of software. This software can be found in the
AOA_Software directory. Inside this directory are a set of subdirectories with names like Volume2 and
Volume3. Inside those directories are files with names like Ch02 and Ch03 with the names obviously corre-
sponding to chapters in this text. The code for these laboratory exercises appears in the Volume2\Ch08 sub-
directory. Please see this directory for more details.

8.3.1 Memory Organization Exercises

The following program (Program 8.1) demonstrates the memory layout of an HLA program. It does
this by declaring variables or other symbols in each of the various run-time memory segments. This pro-
gram uses the LEA instruction to take the address of each memory object and then displays the address using
hexadecimal notation. Run this program and compare the addresses of each of the objects.

For your lab report, compare the output addresses against the memory layout presented in this chapter.
Since each memory segment begins on a 4096 byte ($1000) boundary, what clues do the output addresses
give us concerning the grouping of variables in the memory segments? Given the output of this program,
and the address of some other variable declared in this program, describe how you could determine which
segment that other variable is in given no other information than the variable’s location.

// Sample program for Memory Organization Laboratory Exercise
// in “The Art of Assembly Language Programming”
// (HLA Edition).

program MemOrg;
#include(“stdlib.hhf”);

// Declare a set of variables in each of the
// different memory sections so we can compare
// their addresses in memory.

var
AutoVar:int32;

static
StaticVar:int32;

data
DataVar:int32;

dword 0;

readonly
ROVar: int32 := 0;

storage
StorageVar:int32;

begin MemOrg;

// Take the address of each of the variables (plus allocate
// storage for a dynamic variable) and display the addresses.

lea(eax, AutoVar);
stdout.put(“AutoVar address in memory is: $”, eax, nl);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 349

Chapter Eight Volume Two
lea(eax, StaticVar);
stdout.put(“StaticVar address in memory is: $”, eax, nl);

lea(eax, DataVar);
stdout.put(“DataVar address in memory is: $”, eax, nl);

lea(eax, ROVar);
stdout.put(“ROVar address in memory is: $”, eax, nl);

lea(eax, StorageVar);
stdout.put(“StorageVar address in memory is: $”, eax, nl);

// Dynamically allocate a variable on the heap.

malloc(4);
stdout.put(“Dynamic variable address in memory is: $”, eax, nl);
free(eax);

// The following code computes the address of this instruction
// in memory:

CodeAdrs: lea(eax, CodeAdrs);
stdout.put(“CodeAdrs label’s address in memory is: $”, eax, nl);

// Just to put things into perspective, display the value of the
// stack pointer as well:

stdout.put(“Stack Pointer contains the address: $”, esp, nl);

end MemOrg;

Program 8.1 Demonstration of Memory Sections

8.3.2 Data Alignment Exercises

The following program lets you test the effect of data alignment on your program. It allocates a block
of 1,000,000 dword values and then runs through two loops that access these values on an address that is an
even multiple of four and at an address that is not an even multiple of four. By measuring the time these two
code fragments take to execute, you can compare the difference between aligned and non-aligned memory
access.

Note: keep in mind that Windows is a multi-tasking operating system. Therefore, the difference in exe-
cution time will not be as great as you might expect because a large percentage of the execution time you
measure with this program will be spent in another process. You can assume that approximately the same
amount of time is spent outside this process in both halves of the program.

To avoid optimizations by the cache hardware, this program accesses data at over four million different
addresses. The fact that most memory accesses will experience a cache miss will also skew the timings (and
make them more similar). Finally, different processors (e.g., Pentium vs. Pentium II vs. K6 vs. Athlon) have
different penalties for misaligned data. Hence, you should expect to see only a small percentage difference
between the two halves of the following program.
Page 350 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
This program also demonstrates the use of the align directive in the code segment. If used immediately
before a loop that executes a large number of times (as it is in this code), the align directive can improve the
performance of the loop slightly.

Run this program and time the two halves using a watch. Record the difference in your lab report and
provide an explanation for the different running times.

// Sample program for Data Alignment Laboratory Exercise
// in “The Art of Assembly Language Programming”
// (HLA Edition).

program DataAlign;
#include(“stdlib.hhf”);

begin DataAlign;

console.cls();
stdout.put
(

“Memory Alignment Exercise”,nl,
nl,
“Using a watch (preferably a stopwatch), time the execution of”, nl
“the following code to determine how many seconds it takes to”, nl
“execute.”, nl
nl
“Press Enter to begin timing the code:”

);

// Allocate enough dynamic memory to ensure that it does not
// all fit inside the cache. Note: the machine had better have
// at least four megabytes free or virtual memory will kick in
// and invalidate the timing.

malloc(4_000_000);

// Zero out the memory (this loop really exists just to
// ensure that all memory is mapped in by the OS).

mov(1_000_000, ecx);
repeat

dec(ecx);
mov(0, (type dword [eax+ecx*4]));

until(!ecx);// Repeat until ECX = 0.

// Okay, wait for the user to press the Enter key.

stdin.readLn();

// Note: as processors get faster and faster, you may
// want to increase the size of the following constant.
// Execution time for this loop should be approximately
// 10-30 seconds.

mov(1000, edx);
add(30, eax);// Force misalignment of data.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 351

Chapter Eight Volume Two
repeat

mov(999_992, ecx);
align(16);
repeat

sub(4, ecx);
mov([eax+ecx*4], ebx);
mov([eax+ecx*4], ebx);
mov([eax+ecx*4], ebx);
mov([eax+ecx*4], ebx);

until(!ecx);
dec(edx);

until(!edx); // Repeat until EAX is zero.

stdout.put(stdio.bell, “Stop timing and record time spent”, nl, nl);

// Okay, time the aligned access.

stdout.put
(

“Press Enter again to begin timing access to aligned variable:”
);
stdin.readLn();

// Note: if you change the constant above, be sure to change
// this one, too!

mov(1000, edx);
add(30, eax);// Realign the data.
repeat

mov(999_992, ecx);
align(16);
repeat

sub(4, ecx);
mov([eax+ecx*4], ebx);
mov([eax+ecx*4], ebx);
mov([eax+ecx*4], ebx);
mov([eax+ecx*4], ebx);

until(!ecx);
dec(edx);

until(!edx); // Repeat until EAX is zero.

stdout.put(stdio.bell, “Stop timing and record time spent”, nl, nl);
free(eax);

end DataAlign;

Program 8.2 Data Alignment Exercise
Page 352 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
8.3.3 Readonly Segment Exercises

The following exercise demonstrates that you cannot write data to a readonly variable. The variable i,
appearing in the READONLY section, generates an ex.AccessViolation exception if you attempt to write to
it. Run this program and document what happens in your lab report. Explain how you might use REA-
DONLY variables in your program to protect against errors in your code.

// Sample program for Read Only Data Laboratory Exercise
// in “The Art of Assembly Language Programming”
// (HLA Edition).

program ReadOnlyDemo;
#include(“stdlib.hhf”);

readonly
i:int32 := 10;

begin ReadOnlyDemo;

stdout.put(“i = “, i, nl);
try

mov(0, i);
stdout.put(“Now i contains “, i, nl);

 exception(ex.AccessViolation)

stdout.put(“Error attempting to write to variable ‘i’”, nl);

endtry;

end ReadOnlyDemo;

Program 8.3 READONLY Variable Demonstration

8.3.4 Type Coercion Exercises

The HLA type coercion operators are actually useful for many things besides letting you load a portion
of a variable into a smaller register (the primary example this chapter has given thus far). Many HLA
instructions and Standard Library routines use the type information associated with a variable to determine
how to use that variable. For example, the stdout.put routine in the Standard Library determines how to dis-
play a value based on its type. For example, if you have an int32 variable, i32, and you decide to print it with
stdout.put, it will use the type information to determine that it must print this value as a signed 32-bit integer.
This laboratory exercise demonstrates that you can use the type coercion operators to display a value as a
different type.

Compile and run the following program that demonstrates how to display an int32 variable (testVar)
using hexadecimal notation:

// Sample program for Coercion Laboratory Exercise
// in “The Art of Assembly Language Programming”
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 353

Chapter Eight Volume Two
// (HLA Edition).

program Coercion;
#include(“stdlib.hhf”);

static
testVar:int32;

begin Coercion;

stdout.put(“Enter a 32-bit signed integer value: “);
stdin.get(testVar);
stdout.put
(

nl,
“In decimal: “, testVar, nl
“In hexadecimal: $”, (type dword testVar), nl

);

end Coercion;

Program 8.4 Type Coercion Exercise

After running this program and noting the results, modify the type of testVar so that it is a real32 vari-
able. Rerun the program. Based on what you’ve learned from Chapter Two, explain the output when you
enter 1.0 as the real value. Note that you can also use type coercion in the stdin.get routine. Type cast the
testVar parameter in stdin.get so that it is a real32 object. Rerun the program and explain the results in your
lab report.

8.3.5 Dynamic Memory Allocation Exercises

The following short program demonstrates how to use the malloc procedure to allocate storage for 10
integer values. Note that this program doesn’t declare any variables at all. All memory accesses occur in the
dynamically allocated block of memory. Compile and run this program. Describe the results in your lab
report.

// Sample program for dynamic allocation Laboratory Exercise
// in “The Art of Assembly Language Programming”
// (HLA Edition).

program DynAlloc;
#include(“stdlib.hhf”);

begin DynAlloc;

stdout.put(“Allocating storage for 10 integers”, nl);

// Note: we must allocate storage for 40 bytes since
// each integer consumes four bytes. This function
// returns a pointer to the data in EAX.

malloc(40);

// Move pointer to storage to the ESI register so we
Page 354 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
// can use EAX for other purposes.

mov(eax, esi);

// Prompt the user to enter a value:

stdout.put(“Enter a integer to initialize the data with: “);
stdin.geti32();

// Use the input value as a starting value with which to
// initialize the storage we’ve just created:

stdout.newln();
for(mov(0, ebx); ebx < 10; inc(ebx)) do

mov(eax, [esi+ebx*4]);
inc(eax);

endfor;

// Okay, display these values from the allocated storage:

for(mov(0, ebx); ebx < 10; inc(ebx)) do

mov([esi+ebx*4], eax);
stdout.put
(

“Value[“,
(type uns32 ebx),
“] = “,
(type int32 eax),
nl

);

endfor;

// Free up the storage allocated above.

stdout.put(nl, “Freeing storage:”, nl);
free(esi);

end DynAlloc;

Program 8.5 MALLOC and FREE Exercise

Modify this program to read and display 20 characters rather than 10 integers. Describe the necessary
changes in your lab report and include a copy of the new program with your lab report.

8.4 Chapter Three Laboratory Exercises

This laboratory uses several Windows programs to manipulate truth tables and logic expressions, opti-
mize logic equations, and simulate logic equations. These programs will help you understand the relation-
ship between logic equations and truth tables as well as gain a fuller understanding of logic systems.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 355

Chapter Eight Volume Two

001:
The WLOGIC.EXE program simulates logic circuitry. WLOGIC stores several logic equations that
describe an electronic circuit and then it simulates that circuit using “switches” as inputs and “LEDs” as out-
puts.

8.4.1 Truth Tables and Logic Equations Exercises

In this laboratory exercise you will create several different truth tables of two, three, and four variables.
The TRUTHTBL.EXE program (found in the Volume2\Ch08 subdirectory) will automatically convert the
truth tables you input into logic equations in the sum of minterms canonical form.

The TRUTHTBL.EXE program provides three buttons that let you choose a two variable, three variable,
or four variable truth table. Pressing one of these buttons rearranges the truth table in an appropriate fashion.
By default, the TRUTHTBL program assumes you want to work with a four variable truth table. Try press-
ing the Two Variables, Three Variables, and Four Variables buttons and observe the results. Describe what
happens in your lab report.

To change the truth table entries, all you need do is click on the square associated with the truth table
value you want to change. Clicking on one of these boxes toggles (inverts) that value in that square. For
example, try clicking on the DCBA square several times and observe the results.

Note that as you click on different truth table entries, the TRUTHTBL program automatically recom-
putes the sum of minterms canonical logic equation and displays it at the bottom of the window. What equa-
tion does the program display if you set all squares in the truth table to zero?1

Set up the TRUTHTBL program to work with four variables. Set the DCBA square to one. Now press
the Two Variables button. Press the Four Variables button and set all the squares to one. Now press the Two
Variables button again. Finally, press the Four Variables button and examine the results. What does the
TRUTHTBL program do when you switch between different sized truth tables? Feel free to try additional
experiments to verify your hypothesis. Describe your results in your lab report.

Switch to two variable mode. Input the truth tables for the logical AND, OR, XOR, and NAND truth
tables. Verify the correctness of the resulting logic equations. Write up the results in your lab report. Note: if
there is a Windows-compatible printer attached to your computer, you can print each truth table you create
by pressing the Print button in the window. This makes it very easy to include the truth table and correspond-
ing logic equation in your lab report. For additional credit: input the truth tables for all 16 functions of two
variables. In your lab report, present the results for these 16 functions.

Design several two, three, and four variable truth tables by hand. Manually determine their logic equa-
tions in sum of minterms canonical form. Input the truth tables and verify the correctness of your logic equa-
tions. Include your hand designed truth tables and logic equations as well as the machine produced versions
in your lab report.

Consider the following layout for a seven-segment display:

Here are the segments to light for the binary values DCBA = 0000..1

1. Note: On initial entry to the program, TRUTHTBL does not display a logic equation. Therefore, you will need to set at
least one square to one and then back to zero to see this equation.

E

F G
H

K
I J
Page 356 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises

’A

 + DC’B’A
E = D’C’B’A’ + D’C’BA’ + D’C’BA + D’CB’A + D’CBA’ + D’CBA + DC’B’A’ + DC’B’A
F = D’C’B’A’+ D’CB’A’ + D’CB’A + D’CBA’ + DC’B’A’ + DC’B’A
G = D’C’B’A’ + D’C’B’A + D’C’BA’ + D’C’BA + D’CB’A’ + D’CBA + DC’B’A’ + DC’B
H = D’C’BA’ + D’C’BA + D’CB’A’ + D’CB’A + D’CBA’ + DC’B’A’ + DC’B’A
I = D’C’B’A’ + D’C’BA’ + D’CBA’ + DC’B’A’
J = D’C’B’A’ + D’C’B’A + D’C’BA + D’CB’A’ + D’CB’A +D’CBA’ + D’CBA + DC’B’A’
K = D’C’B’A’ + D’C’BA’ + D’C’BA + D’CB’A + D’CBA’ + DC’B’A’

Convert each of these logic equations to a truth table by setting all entries in the table to zero and then
clicking on each square corresponding to each minterm in the equation. Verify by observing the equation
that TRUTHTBL produces that you’ve successfully converted each equation to a truth table. Describe the
results and provide the truth tables in your lab report.

For Additional Credit: Modify the equations above to include the following hexadecimal characters.
Determine the new truth tables and use the TRUTHTBL program to verify that your truth tables and logic
equations are correct.

8.4.2 Canonical Logic Equations Exercises

In this laboratory you will enter several different logic equations and compute their canonical forms as
well as generate their truth table. In a sense, this exercise is the opposite of the previous exercise where you
generated a canonical logic equation from a truth table.

This exercise uses the CANON.EXE program found in the Volume2\Ch08 subdirectory. Run this pro-
gram from Windows by double clicking on its icon. This program displays a text box, a truth table, and sev-
eral buttons. Unlike the TRUTHTBL.EXE program from the previous exercise, you cannot modify the truth
table in the CANON.EXE program; it is a display-only table. In this program you will enter logic equations
in the text entry box and then press the “Compute” button to see the resulting truth table. This program also
produces the sum of minterms canonical form for the logic equation you enter (hence this program’s name).

Valid logic equations take the following form:

• A term is either a variable (A, B, C, or D) or a logic expression surrounded by parentheses.

• A factor is either a term, or a factor followed by the prime symbol (an apostrophe, i.e.,
“‘”). The prime symbol logically negates the factor immediately preceding it.

• A product is either a factor, or a factor concatenated with a product. The concatenation
denotes logical AND operation.

• An expression is either a product or a product followed by a “+” (denoting logical OR) and
followed by another expression.

Note that logical OR has the lowest precedence, logical AND has an intermediate precedence, and logi-
cal NOT has the highest precedence of these three operators. You can use parentheses to override operator
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 357

Chapter Eight Volume Two
precedence. The logical NOT operator, since its precedence is so high, applies only to a variable or a paren-
thesized expression. The following are all examples of legal expressions:

AB’C + D(B’+C’)
AB(C+D)’ + A’B’(C+D)
A’B’C’D’ + ABCD + A(B+C)
(A+B)’ + A’B’

For this set of exercises, you should create several logic expression and feed them through
CANON.EXE. Include the truth tables and canonical logic forms in your lab report. Also verify that the the-
orems appearing in this chapter (See “Boolean Algebra” on page 195.) are valid by entering each side of the
theorem and verifying that they both produce the same truth table (e.g., (AB)’ = A’ + B’). For additional
credit, create several complex logic equations and generate their truth tables and canonical forms by hand.
Then input them into the CANON.EXE program to verify your work.

8.4.3 Optimization Exercises

In this set of laboratory exercises, the OPTIMZP.EXE program (found in the Volume2\Ch08 subdirec-
tory) will guide you through the steps of logic function optimization. The OPTIMZP.EXE program uses the
Karnaugh Map technique to produce an equation with the minimal number of terms.

Run the OPTIMZP.EXE program by clicking on its icon or running the OPTIMZP.EXE program using
the program manager’s File>Run menu option. This program lets you enter an arbitrary logic equation using
the same syntax as the CANON.EXE program in the previous exercise.

After entering an equation press the “Optimize” button in the OPTIMZP.EXE window. This will con-
struct the truth table, canonical equation, and an optimized form of the logic equation you enter. Once you
have optimized the equation, OPTIMZP.EXE enables the “Step” button. Pressing this button walks you
through the optimization process step-by-step.

For this exercise you should enter the seven equations for the seven-segment display. Generate and
record the optimize versions of these equations for your lab report and the next set of exercises. Single step
through each of the equations to make sure you understand how OPTIMZP.EXE produces the optimal
expressions.

For additional credit: OPTIMZP.EXE generates a single optimal expression for any given logic func-
tion. Other optimal functions may exist. Using the Karnaugh mapping technique, see if you can determine if
other, equivalent, optimal expressions exist. Feed the optimal equations OPTIMZP.EXE produces and your
optimal expressions into the CANON.EXE program to verify that their canonical forms are identical (and,
hence, the functions are equivalent).

8.4.4 Logic Evaluation Exercises

In this set of laboratory exercises you will use the LOGIC.EXE program to enter, edit, initialize, and
evaluation logic expressions. This program lets you enter up to 22 distinct logic equations involving as many
as 26 variables plus a clock value. LOGIC.EXE provides four input variables and 11 output variables (four
simulated LEDs and a simulated seven-segment display).

Execute the LOGIC.EXE program by double-clicking on its icon. This program consists of three main
parts: an equation editor, an initialization screen, and an execution module. LOGIC.EXE uses a set of tabbed
notebook screens to switch between these three modules. By clicking on the “Create”, Initialize, and Execute
tabs at the top of the screen with your mouse, you can select the specific module you want to use. Typically,
you would first create a set of equations on the Create page and then execute those functions on the Execute
page. Optionally, you can initialize any necessary logic variables (D-Z) on the Initialize page. At any time
you can easily switch between modules by pressing on the appropriate notebook tab. For example, you could
create a set of equations, execute them, and then go back and modify the equations (e.g., to correct any mis-
takes) by pressing on the Create tab.

The Create page lets you add, edit, and delete logic equations. Logic equations may use the variables
A-Z plus the “#” symbol (“#” denotes the clock). The equations use a syntax that is very similar to the logic
Page 358 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
expressions you’ve used in previous exercises in this chapter. In fact, there are only two major differences
between the functions LOGIC.EXE allows and the functions that the other programs allow. First,
LOGIC.EXE lets you use the variables A-Z and “#” (the other programs only let you enter functions of four
variables using A-D). The second difference is that LOGIC.EXE functions must take the form:

variable = expression

where variable is a single alphabetic character E-Z2 and expression is a logic expression using the variables
A-Z and #. An expression may use a maximum of four different variables (A-Z) plus the clock value (#).
During the expression evaluation, the LOGIC.EXE program will evaluate the expression and store the result
into the specified destination variable.

If you enter more than four variables, LOGIC.EXE will complain about your expression. LOGIC.EXE can
only evaluation expressions that contain a maximum of four alphabetic characters (not counting the variable
to the left of the equals sign). Note that the destination variable may appear within the expression; the fol-
lowing is perfectly legal:

F = FA+FB

This expression would use the current value of F, along with the current values of A and B to compute the
new value for F.

Unlike a programming language like “C++”, LOGIC.EXE does not evaluate this expression only once
and store the result into F. It will evaluate the expression several times until the value for F stabilizes. That
is, it will evaluate the expression several times until the evaluation produces the same result twice in a row.
Certain expressions will produce an infinite loop since they will never produce the same value twice in a row.
For example, the following function is unstable:

F = F’

Note that instabilities can cross function boundaries. Consider the following pair of equations:

F = G
G = F’

LOGIC.EXE will attempt to execute this set of equations until the values for the variables stop changing.
However, the system above will produce an infinite loop.

Sometimes a system of logic equations will only produce an infinite loop given certain data values. For
example, consider the following of logic equation:

F = GF’ + G’F (F = G xor F)

If G’s value is one, this system is unstable. If G’s value is zero, this equation is stable. Unstable equations
like this one are somewhat harder to discover.

LOGIC.EXE will detect and warn you about logic system instabilities when you attempt to execute the
logic functions. Unfortunately, it will not pinpoint the problem for you; it will simply tell you that the prob-
lem exists and expect you to fix it.

The A-D, E-K, and W-Z variables are special. A-D are read-only input variables. E-K correspond to the
seven segments of a simulated seven-segment display on the Execute page:

2. A-D are read-only values that you read from a set of switches. Therefore, you cannot store a value into these variables.

E

F G
H

K
I J
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 359

Chapter Eight Volume Two
W-Z correspond to four output LEDs on the Execute page. If the variables E-K or W-Z contain a one, then
the corresponding LED (or segment) turns red (on). If the variable contains zero, the corresponding LED is
off.

The Create page contains three important buttons: Add, Edit, and Delete. When you press the Add but-
ton LOGIC.EXE opens a dialog box that lets you enter an equation. Type your equation (or edit the default
equation) and press the Okay button. If there is a problem with the equation you enter, LOGIC.EXE will
report the error and make you fix the problem, otherwise, LOGIC.EXE will attempt to add this equation to
the system you are building. If a function already exists that has the same destination variable as the equation
you’ve just added, LOGIC.EXE will ask you if you really want to replace that function before proceeding
with the replacement. Once LOGIC.EXE adds your equation to its list, it also displays the truth table for that
equation. You can add up to 22 equations to the system (since there are 22 possible destination variables,
E-Z). LOGIC.EXE displays those functions in the list box on the right hand side of the window.

Once you’ve entered two or more logic functions, you can view the truth table for a given logic function
by simply clicking on that function with the mouse in the function list box.

If you make a mistake in a logic function you can delete that function by selecting with the mouse and
pressing the delete button, or you can edit it by selecting it with the mouse and pressing the edit button. You
can also edit a function by double-clicking on the function in the expression list.

The Initialize page displays boxes for each of the 26 possible variables. It lets you view the current val-
ues for these 26 variables and change the values of the E-Z variables (remember, A-D are read-only). As a
general rule, you will not need to initialize any of the variables, so you can skip this page if you don’t need to
initialize any variables.

The Execute page contains five buttons of importance: A-D and Pulse.. The A-D toggle switches let you
set the input values for the A-D variables. The Pulse switch toggles the clock value from zero to one and then
back to zero, evaluating the system of logic functions while the clock is in each state.

In addition to the input buttons, there are several outputs on the Execute page. First, of course, are the
four LEDs (W, X, Y, and Z) as well as the seven-segment display (output variables E-K as noted above). In
addition to the LEDs, there is an Instability annunciator that turns red if LOGIC.EXE detects an instability in
the system. There is also a small panel that displays the current values of all the system variables at the bot-
tom of the window.

To execute the system of equations simply change one of the input values (A-D) or press the Pulse but-
ton. LOGIC.EXE will automatically reevaluate the system of equations whenever A-D or # changes.

To familiarize yourself with the LOGIC.EXE program, enter the following equations into the equation
editor:

W = AB A and B
X = A + B A or B
Y = A’B + AB’ A xor B
Z = A’ not A

After entering these equations, go to the execute page and enter the four values 00, 01, 10, and 11 for BA.
Note the values for W, X, Y, and Z for your lab report.

The LOGIC.EXE program simulates a seven segment display. Variables E-K light the individual seg-
ments as follows:

Here are the segments to light for the binary values DCBA = 0000 - 1001:

E

F G
H

K
I J
Page 360 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
Enter the seven equations for these segments into LOGIC.EXE and try out each of the patterns (0000
through 1111). Hint: use the optimized equations you developed earlier. Optional, for additional credit:
enter the equations for the 16 hexadecimal values and cycle through those 16 values. Include the results in
your lab manual.

A simple sequential circuit. For this exercise you will enter the logic equations for a simple set / reset
flip-flop. The circuit diagram is

Since there are two outputs, this circuit has two corresponding logic equations. They are

X = (AY)’
Y = (BX)’

These two equations form a sequential circuit since they both use variables that are function outputs. In
particular, Y uses the previous value for X and X uses the previous value for Y when computing new values
for X and Y.

Enter these two equations into LOGIC.EXE. Set the A and B inputs to one (the normal or quiescent
state) and run the logic simulation. Try setting the A switch to zero and determine what happens. Press the
Pulse button several times with A still at zero to see what happens. Then switch A back to one and repeat this
process. Now try this experiment again, this time setting B to zero. Finally, try setting both A and B to zero
and then press the Pulse key several times while they are zero. Then set A back to one. Try setting both to
zero and then set B back to one. For your lab report: provide diagrams for the switch settings and resultant
LED values for each time you toggle one of the buttons.

A true D flip-flop only latches the data on the D input during a clock transition from low to high. In this
exercise you will simulate a D flip-flop. The circuit diagram for a true D flip-flop is

X

Y (=X')'

A

B

A Set/Reset Flip-Flop
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 361

Chapter Eight Volume Two
F = (IG)’
G = (#F)’
H = (G#I)’
I = (DH)’
X = (GY)’
Y = (HX)’

Enter this set of equations and then test your flip-flop by entering different values on the D input switch
and pressing the clock pulse button. Explain your results in your lab report.

In this exercise you will build a three-bit shift register using the logic equations for a true D flip-flop. To
construct a shift register, you connect the outputs from each flip-flop to the input of the next flip-flop. The
data input line provides the input to the first flip-flop, the last output line is the “carry out” of the circuit.
Using a simple rectangle to represent a flip-flop and ignoring the Q’ output (since we don’t use it), the sche-
matic for a four-bit shift register looks something like the following:

In the previous exercise you used six boolean expressions to define the D flip-flop. Therefore, we will
need a total of 18 boolean expressions to implement a three-bit flip-flop. These expressions are

Flip-Flop #1:

W = (GR)’
F = (IG)’

X

Y (=X')

A True D flip-flop

Clk (#)

D

F

G

H

I

W X Y

Clk (#)

A Three-bit Shift Register Built from D Flip-flops

Data In

D D D
Q Q Q
Page 362 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
G = (F#)’
H = (G#I)’
I = (DH)’
R = (HW)’

Flip-Flop #2:

X = (KS)’
J = (MK)’
K = (J#)’
L = (K#M)’
M = (WL)’
S = (LX)’

Flip-Flop #3:

Y = (OT)’
N = (QO)’
O = (N#)’
P = (O#Q)’
Q = (XP)’
T = (PY)’

Enter these equations into LOGIC.EXE. Initialize W, X, and Y to zero. Set D to one and press the Pulse
button once to shift a one into W. Now set D to zero and press the pulse button several times to shift that sin-
gle bit through each of the output bits. For your lab report: try shifting several bit patterns through the shift
register. Describe the step-by-step operation in your lab report.

For additional credit: Describe how to create a recirculating shift register. One whose output from bit
four feeds back into bit zero. What would be the logic equations for such a shift register? How could you ini-
tialize it (since you cannot use the D input) when using LOGIC.EXE?

Post-lab, for additional credit: Design a two-bit full adder that computes the sum of BA and DC and
stores the binary result to the WXY LEDs. Include the equations and sample results in your lab report.

8.5 Laboratory Exercises for Chapters Four, Five, Six, and Seven

In this laboratory you will use the “SIMY86.EXE” program found in the Volume\Ch08 subdirectory.
This program contains a built-in assembler (compiler), debugger, and interrupter for the Y86 hypothetical
CPUs. You will learn how to write basic Y86 assembly language programs, assemble (compile) them, mod-
ify the contents of memory, and execute your Y86 programs. You will also experiment with memory-mapped
I/O, I/O-mapped input/output, DMA, and polled as well as interrupt-driven I/O systems.

8.5.1 The SIMY86 Program – Some Simple Y86 Programs

To run the SIMY86 program double click on its icon or enter the pathname for SIMY86 at a command
line prompt. The SIMY86 program consists of three main screen that you can select by clicking on the Edi-
tor, Memory, or Emulator notebook tabs in the window. By default, SIMY86 opens the Editor screen. From
the Editor screen you can edit and assemble Y86 programs; from Memory screen you can view and modify
the contents of memory; from the Emulator screen you execute Y86 programs and view Y86 programs in
memory.

The SIMY86 program contains two menu items: File and Edit. These are standard Windows menus so
there is little need to describe their operation except for two points. First, the New, Open, Save, and Save As
items under the file menu manipulate the data in the text editor box on the Editor screen, they do not affect
anything on the other screens. Second, the Print menu item in the File menu prints the source code appearing
in the text editor if the Editor screen is active, it prints the entire form if the Memory or Emulator screens are
active.

To see how the SIMY86 program operates, switch to the Editor screen (if you are not already there).
Select “Open” from the File menu and choose “EX1.Y86” from the Volume2\Ch08 subdirectory. That file
should look like the following:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 363

Chapter Eight Volume Two
mov([1000], ax);
mov([1002], bx);
add(bx, ax);
sub(1, ax);
mov(ax, bx);
add(ax, bx);
add(bx, ax);
halt;

This short code sequence adds the two values at location 1000 and 1002, subtracts one from their sum, and
multiplies the result by three ((ax + ax) + ax) = ax*3), leaving the result in AX and then it halts.

On the Editor screen you will see three objects: the editor window itself, a box that holds the “Starting
Address,” and an “Assemble” button. The “Starting Address” box holds a hexadecimal number that specifies
where the assembler will store the machine code for the Y86 program you write with the editor. By default,
this address is zero. About the only time you should change this is when writing interrupt service routines
since the default reset address is zero. The “Assemble” button directs the SIMY86 program to convert your
assembly language source code into Y86 machine code and store the result beginning at the Starting Address
in memory. Go ahead and press the “Assemble” button at this time to assemble this program to memory.

Now press the “Memory” tab to select the memory screen. On this screen you will see a set of 64 boxes
arranged as eight rows of eight boxes. To the left of these eight rows you will see a set of eight (hexadecimal)
memory addresses (by default, these are 0000, 0008, 0010, 0018, 0020, 0028, 0030, and 0038). This tells
you that the first eight boxes at the top of the screen correspond to memory locations 0, 1, 2, 3, 4, 5, 6, and 7;
the second row of eight boxes correspond to locations 8, 9, A, B, C, D, E, and F; and so on. At this point you
should be able to see the machine codes for the program you just assembled in memory locations 0000
through 000D. The rest of memory will contain zeros.

The memory screen lets you look at and possibly modify 64 bytes of the total 64K memory provided for
the Y86 processors. If you want to look at some memory locations other than 0000 through 003F, all you
need do is edit the first address (the one that currently contains zero). At this time you should change the
starting address of the memory display to 1000 so you can modify the values at addresses 1000 and 1002
(remember, the program adds these two values together). Type the following values into the corresponding
cells: at address 1000 enter the value 34, at location 1001 the value 12, at location 1002 the value 01, and at
location 1003 the value 02. Note that if you type an illegal hexadecimal value, the system will turn that cell
red and beep at you.

By typing an address in the memory display starting address cell, you can look at or modify locations
almost anywhere in memory. Note that if you enter a hexadecimal address that is not an even multiple of
eight, the SIMY86 program disable up to seven cells on the first row. For example, if you enter the starting
address 1002, SIMY86 will disable the first two cells since they correspond to addresses 1000 and 1001. The
first active cell is 1002. Note the SIMY86 reserves memory locations FFF0 through FFFF for mem-
ory-mapped I/O. Therefore, it will not allow you to edit these locations. Addresses FFF0 through FFF7 cor-
respond to read-only input ports (and you will be able to see the input values even though SIMY86 disables
these cells). Locations FFF8 through FFFF are write-only output ports, SIMY86 displays garbage values if
you look at these locations.

On the Memory page along with the memory value display/edit cells, there are two other entry cells and
a button. The “Clear Memory” button clears memory by writing zeros throughout. Since your program’s
object code and initial values are currently in memory, you should not press this button. If you do, you will
need to reassemble your code and reenter the values for locations 1000 through 1003.

The other two items on the Memory screen let you set the interrupt vector address and the reset vector
address. By default, the reset vector address contains zero. This means that the SIMY86 begins program exe-
cution at address zero whenever you reset the emulator. Since your program is currently sitting at location
zero in memory, you should not change the default reset address.

The “Interrupt Vector” value is FFFF by default. FFFF is a special value that tells SIMY86 “there is no
interrupt service routine present in the system, so ignore all interrupts.” Any other value must be the address
of an ISR that SIMY86 will call whenever an interrupt occurs. Since the program you assembled does not
have an interrupt service routine, you should leave the interrupt vector cell containing the value FFFF.
Page 364 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
Finally, press the “Emulator” tab to look at the emulator screen. This screen is much busier than the
other two. In the upper left hand corner of the screen is a data entry box with the label IP. This box holds the
current value of the Y86 instruction pointer register. Whenever SIMY86 runs a program, it begins execution
with the instruction at this address. Whenever you press the reset button (or enter SIMY86 for the first time),
the IP register contains the value found in the reset vector. If this register does not contain zero at this point,
press the reset button on the Emulator screen to reset the system.

Immediately below the IP value, the Emulator page disassembles the instruction found at the address in
the IP register. This is the very next instruction that SIMY86 will execute when you press the “Run” or
“Step” buttons. Note that SIMY86 does not obtain this instruction from the source code window on the Edi-
tor screen. Instead, it decodes the opcode in memory (at the address found in IP) and generates this string
itself. Therefore, there may be minor differences between the instruction you wrote and the instruction
SIMY86 displays on this page. Note that a disassembled instruction contains several numeric values in front
of the actual instruction. The first (four-digit) value is the memory address of that instruction. The next pair
of digits (or the next three pairs of digits) are the opcodes and possible instruction operand values. For exam-
ple, the “mov([1000], ax);” instruction’s machine code is C6 00 10 since these are the three sets of digits
appearing at this point.

Below the current disassembled instruction, SIMY86 displays 15 instructions it disassembles. The start-
ing address for this disassembly is not the value in the IP register. Instead, the value in the lower right hand
corner of the screen specifies the starting disassembly address. The two little arrows next to the disassembly
starting address let you quickly increment or decrement the disassembly starting address. Assuming the
starting address is zero (change it to zero if it is not), press the down arrow. Note that this increments the
starting address by one. Now look back at the disassembled listing. As you can see, pressing the down arrow
has produced an interesting result. The first instruction (at address 0001) is “****”. The four asterisks indi-
cate that this particular opcode is an illegal instruction opcode. The second instruction, at address 0002, is
“not(ax);”. Since the program you assembled did not contain an illegal opcode or a “not(ax);” instruction,
you may be wondering where these instructions came from. However, note the starting address of the first
instruction: 0001. This is the second byte of the first instruction in your program. In fact, the illegal instruc-
tion (opcode=00) and the “not(ax);” instruction (opcode=10) are actually a disassembly of the
“mov([1000], ax);” instruction’s two-byte operand. This should clearly demonstrate a problem with disas-
sembly – it is possible to get “out of phase” by specify a starting address that is in the middle of a multi-byte
instruction. You will need to consider this when disassembling code.

In the middle of the Emulator screen there are several buttons: Run, Step, Halt, Interrupt, and Reset (the
“Running” box is an annunciator, not a button). Pressing the Run button will cause the SIMY86 program to
run the program (starting at the address in the IP register) at “full” speed. Pressing the Step button instructs
SIMY86 to execute only the instruction that IP points at and then stop. The Halt button, which is only active
while a program is running, will stop execution. Pressing the Interrupt button generates an interrupt and
pressing the Reset button resets the system (and halts execution if a program is currently running). Note that
pressing the Reset button clears the Y86 registers to zero and loads the ip register with the value in the reset
vector.

The “Running” annunciator is gray if SIMY86 is not currently running a program. It turns red when a
program is actually running. You can use this annunciator as an easy way to tell if a program is running if the
program is busy computing something (or is in an infinite loop) and there is no I/O to indicate program exe-
cution.

The boxes with the AX, BX, CX, and DX labels let you modify the values of these registers while a pro-
gram is not running (the entry cells are not enabled while a program is actually running). These cells also
display the current values of the registers whenever a program stops or between instructions when you are
stepping through a program. Note that while a program is running the values in these cells are static and do
not reflect their current values.

The “Less” and “Equal” check boxes denote the values of the less than and equal flags. The Y86 CMP
instruction sets these flags depending on the result of the comparison. You can view these values while the
program is not running. You can also initialize them to true or false by clicking on the appropriate box with
the mouse (while the program is not running).

In the middle section of the Emulator screen there are four “LEDs” and four “toggle switches.” Above
each of these objects is a hexadecimal address denoting their memory-mapped I/O addresses. Writing a zero
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 365

Chapter Eight Volume Two
to a corresponding LED address turns that LED “off” (turns it white). Writing a one to a corresponding LED
address turns that LED “on” (turns it red). Note that the LEDs only respond to bit zero of their port
addresses. These output devices ignore all other bits in the value written to these addresses.

The toggle switches provide four memory-mapped input devices. If you read the address above each
switch SIMY86 will return a zero if the switch is off. SIMY86 will return a one if the switch is in the on
position. You can toggle a switch by clicking on it with the mouse. Note that a little rectangle representing
the switch turns red if the switch is in the “on” position.

The two columns on the right side of the Emulate screen (“Input” and “Output”) display input values
read with the GET instruction and output values the PUT instruction prints.

For this first exercise, you will use the Step button to single step through each of the instructions in the
EX1.Y86 program. First, begin by pressing the Reset button3. Next, press the Step button once. Note that the
values in the IP and AX registers change. The IP register value changes to 0003 since that is the address of
the next instruction in memory, AX’S value changed to 1234 since that’s the value you placed at location
1000 when operating on the Memory screen. Single step through the remaining instructions (by repeatedly
pressing Step) until you get the “Halt Encountered” dialog box.

For your lab report: explain the results obtained after the execution of each instruction. Note that sin-
gle-stepping through a program as you’ve done here is an excellent way to ensure that you fully understand
how the program operates. As a general rule, you should always single-step through every program you
write when testing it.

8.5.2 Simple I/O-Mapped Input/Output Operations

Go to the Editor screen and load the EX2.Y86 file into the editor. This program introduces some new
concepts, so take a moment to study this code:

mov(1000, bx);
a: get;

mov(ax, [bx]);
add(2, bx);
cmp(ax, 0);
jne a;

mov(bx, cx);
mov(1000, bx)
mov(0, ax);

b: add([bx], ax);
add(2, bx);
cmp(bx, cx);
jb b;

put;
halt;

The first thing to note are the two strings “a:” and “b:” appearing in column one of the listing. The
SIMY86 assembler lets you specify up to 26 statement labels by specifying a single alphabetic character fol-
lowed by a colon. Labels are generally the operand of a jump instruction of some sort. Therefore, the “jne a;”
instruction above really says “jump if not equal to the statement prefaced with the ‘a:’ label” rather than say-
ing “jump if not equal to location ten (0Ah) in memory.”

Using labels is much more convenient than figuring out the address of a target instruction manually,
especially if the target instruction appears later in the code. The SIMY86 assembler computes the address of
these labels and substitutes the correct address for the operands of the jump instructions. Note that you can
specify a numeric address in the operand field of a jump instruction. However, all numeric addresses must
begin with a decimal digit (even though they are hexadecimal values). If your target address would normally

3. It is a good idea to get in the habit of pressing the Reset button before running or stepping through any program.
Page 366 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
begin with a value in the range A through F, simply prepend a zero to the number. For example, if “jne a;”
was supposed to mean “jump if not equal to location 0Ah” you would write the instruction as “jne 0a;”.

This program contains two loops. In the first loop, the program reads a sequence of values from the user
until the user enters the value zero. This loop stores each word into successive memory locations starting at
address 1000h. Remember, each word read by the user requires two bytes; this is why the loop adds two to
bx on each iteration.

The second loop in this program scans through the input values and computes their sum. At the end of
the loop, the code prints the sum to the output window using the PUT instruction.

For your lab report: single-step through this program and describe how each instruction works. Reset
the Y86 and run this program at full speed. Enter several values and describe the result. Discuss the GET and
PUT instructions. Describe why they do the equivalent of I/O-mapped input/output operations rather than
memory-mapped input/output operations.

8.5.3 Memory Mapped I/O

From the Editor screen, load the EX3.Y86 program file. That program takes the following form (the
comments were added here to make the operation of this program clearer):

a: mov([fff0], ax);
mov([fff2], bx);

mov(ax, cx); // Compute Sw0 and Sw1
and(bx, cx);
mov(cx, [fff8]);

mov(ax, cx) ; // Computes Sw0 OR Sw1
or(bx, cx);
mov(cx, [fffa]);

mov(ax, cx); // Computes Sw0 xor Sw1
mov(bx, dx); // XOR = AB’ + A’B
not(cx);
not(dx);
and(bx, cx);
and(ax, dx);
or(dx, cx);
mov(cx, [fffc]);

not(cx); // Computes Sw0 = Sw1
mov(cx, [fffe]); // Note: equals is not xor

mov([fff4], ax); // Read the third switch.
cmp(ax, 0); // See if it’s on.
je a; // Repeat this program while it’s on.
halt;

Locations $FFF0, $FFF2, and $FFF4 correspond to the first three toggle switches on the Execution
page. These are memory-mapped I/O devices that put a zero or one into the corresponding memory locations
depending upon whether the toggle switch is in the on or off state. Locations $FFF8, $FFFA, $FFFC, and
$FFFE correspond to the four LEDs. Writing a zero to these locations turns the corresponding LED off, writ-
ing a one turns it on.

This program computes the logical AND, OR, XOR, and XNOR (not XOR) functions for the values
read from the first two toggle switches. This program displays the results of these functions on the four out-
put LEDs. This program reads the value of the third toggle switch to determine when to quit. When the third
toggle switch is in the on position, the program will stop.

For your lab report: run this program and cycle through the four possible combinations of on and off
for the first two switches. Include the results in your lab report.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 367

Chapter Eight Volume Two
8.5.4 DMA Exercises

In this exercise you will start a program running (EX4.Y86) that examines and operates on values found
in memory. Then you will switch to the Memory screen and modify values in memory (that is, you will
directly access memory while the program continues to run), thus simulating a peripheral device that uses
DMA.

The EX4.Y86 program begins by setting memory location $1000 to zero. Then it loops until one of two
conditions is met – either the user toggles the FFF0 switch or the user changes the value in memory location
$1000. Toggling the FFF0 switch terminates the program. Changing the value in memory location $1000
transfers control to a section of the program that adds together n words, where n is the new value in memory
location $1000. The program sums the words appearing in contiguous memory locations starting at address
$1002. The actual program looks like the following:

d: mov(0, cx); // Clear location $1000 before we begin testing it.
mov(cx, [1000]);

// The following loop checks to see if memory location $1000 changes or if
// the FFF0 switch is in the on position.

a: mov([1000], cx); // Check to see if location $1000
cmp(cx, 0); // Changes. Jump to the section that
jne c; // sums the values if it does.

mov([fff0], ax); // If location $1000 still contains zero,
cmp(ax, 0); // read the FFF0 switch and see if it is
je a; // of. If so, loop back. If the switch
halt; // is on, quit the program.

// The following code sums up the “cx” contiguous words of memory starting at
// memory location $1002. After it sums up these values, it prints their sum.

c: mov(1002, bx); // Initialize BX to point at data array.
mov(0, ax); // Initialize the sum.

b: add([bx], ax); // Sum in the next array value.
add(2, bx); // Point BX at the next item in the array.
sub(1, cx); // Decrement the element count.
cmp(cx, 0); // Test to see if we’ve added up all the
jne b; // values in the array.

put; // Print the sum and start over.
jmp d;

Load this program into SIMY86 and assemble it. Switch to the Emulate screen, press the Reset button,
make sure the FFF0 switch is in the off position, and then run the program. Once the program is running
switch to the memory screen by pressing the Memory tab. Change the starting display address to $1000.
Change the value at location $1000 to 5. Switch back to the emulator screen. Assuming memory locations
$1002 through $100B all contain zero, the program should display a zero in the output column.

Switch back to the memory page. What does location $1000 now contain? Change the L.O. bytes of the
words at address $1002, $1004, and $1006 to 1, 2, and 3, respectively. Change the value in location $1000 to
three. Switch to the Emulator page. Describe the output in your lab report. Try entering other values into
memory. Toggle the FFF0 switch when you want to quit running this program.

For your lab report: explain how this program uses DMA to provide program input. Run several tests
with different values in location $1000 and different values in the data array starting at location $1002.
Include the results in your report.

For additional credit: Store the value $12 into memory location $1000. Explain why the program
prints two values instead of just one value.
Page 368 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
8.5.5 Interrupt Driven I/O Exercises

In this exercise you will load two programs into memory: a main program and an interrupt service rou-
tine. This exercise demonstrates the use of interrupts and an interrupt service routine.

The main program (EX5a.Y86) will constantly compare memory locations $1000 and $1002. If they are
not equal, the main program will print the value of location $1000 and then copy this value to location $1002
and repeat this process. The main program repeats this loop until the user toggles switch FFF0 to the on
position. The code for the main program is the following:

a: mov([1000], ax); // Fetch the data at location $1000 and
cmp(ax, [1002]); // see if it is the same as location
je b; // $1002. If so, check the FFF0 switch.
put; // If the two values are different, print
mov(ax, [1002]); // $1000’s value and make them the same.

b: mov([fff0], ax); // Test the FFF0 switch to see if we
cmp(ax, 0); // should quit this program.
je a;
halt;

The interrupt service routine (EX5b.Y86) sits at location $100 in memory. Whenever an interrupt
occurs, this ISR simply increments the value at location $1000 by loading this value into AX, adding one to
the value in AX, and then storing this value back to location $1000. After these instructions, the ISR returns
to the main program. The interrupt service routine contains the following code:

mov(ax, [1004]); // The ISR must preserve any register it uses!
mov([1000], ax); // Increment the value at location $1000 by one
add(1, ax); // and return to the interrupted code.
mov(ax, [1000]);
mov([1004], ax); // Restore AX’s original value.
iret; // Return from the interrupt.

You must load and assemble both files before attempting to run the main program. Begin by loading the
main program (EX5a.Y86) into memory and assemble it at address zero. Then load the ISR (EX5b.Y86) into
memory, set the Starting Address to 100, and then assemble your code. Warning: if you forget to change the
starting address you will wipe out your main program when you assemble the ISR. If this happens, you will
need to repeat this procedure from the beginning.

After assembling the code, the next step is to set the interrupt vector so that it contains the address of the
ISR. To do this, switch to the Memory screen. The interrupt vector cell should currently contain $FFFF (this
value indicates that interrupts are disabled). Change this to $100 so that it contains the address of the inter-
rupt service routine. This also enables the interrupt system.

Finally, switch to the Emulator screen, make sure the FFF0 toggle switch is in the off position, reset the
program, and start it running. Normally, nothing will happen. Now press the interrupt button and observe the
results.

For your lab report: describe the output of the program whenever you press the interrupt button.
Explain all the steps you would need to follow to place the interrupt service routine at address $2000 rather
than $100.

For additional credit: write your own interrupt service routine that does something simple. Run the
main program and press the interrupt button to test your code. Verify that your ISR works properly.

8.5.6 Machine Language Programming & Instruction Encoding Exercises

To this point you have been creating machine language programs with SIMY86’s built-in assembler. An
assembler is a program that translates an ASCII source file containing textual representations of a program
into the actual machine code. The assembler program saves you a considerable amount of work by translat-
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 369

Chapter Eight Volume Two
ing human readable instructions into machine code. Although tedious, you can perform this translation your-
self. In this exercise you will create some very short machine language programs by encoding the
instructions and entering their hexadecimal opcodes into memory on the memory screen.

Using the instruction encodings found in Figure 5.3, Figure 5.4, Figure 5.5, and Figure 5.6, write the
hexadecimal values for the opcodes beside each of the following instructions:

Figure 8.1 A Simple Program to Convert to Machine Code

You can assume that the program starts at address zero and, therefore, label a will be at address $0003 since
the “mov(0, cx);” instruction is three bytes long.

For your lab report: enter the hexadecimal opcodes and operands into memory starting at location zero
using the Memory editor screen. Dump these values and include them in your lab report. Switch to the Emu-
lator screen and disassemble the code starting at address zero. Verify that this code is the same as the assem-
bly code above. Print a copy of the disassembled code and include it in your lab report. Run the program and
verify that it works properly.

mov(0, cx);

a: get;

put;

add(ax, ax);

put;

add(ax, ax);

put;

add(ax, ax);

put;

add(1, cx);

cmp(cx, 4);

jb a;

halt;

Binary Opcode Hex Operand
Page 370 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
8.5.7 Self Modifying Code Exercises

In the previous laboratory exercise, you discovered that the system doesn’t really differentiate data and
instructions in memory. You were able to enter hexadecimal data and the Y86 processor treats it as a
sequence of executable instructions. It is also possible for a program to store data into memory and then exe-
cute it. A program is self-modifying if it creates or modifies some of the instructions it executes.

Consider the following Y86 program (EX6.Y86):

sub(ax, ax); // Trick: sets AX to zero.
mov(ax, [100]);

a: mov([100], ax);
cmp(ax, 0);
je b;
halt;

b: mov(c6, ax);
mov(ax, [100]);
mov(710, ax);
mov(ax, [102]);
mov(a6a0, ax);
mov(ax, [104]);
mov(1000, ax);
mov(ax, [106]);
mov(8007, ax);
mov(ax, [108]);
mov(e6, ax);
mov(ax, [10a]);
mov(e10, ax);
mov(ax, [10c]);
mov(4, ax);
mov(ax, [10e]));
jmp 100;

This program writes the following code to location $100 and then executes it:

mov([1000], ax);
put;
add(ax, ax);
add([1000], ax);
put;
sub(ax, ax);
mov(ax, [1000]);
put;
sub(ax, ax);
mov(ax, [1000]);
jmp 0004; // $0004 is the address of the a: label.

For your lab report: execute the EX7.Y86 program and verify that it generates the above code at loca-
tion 100.

Although this program demonstrates the principle of self-modifying code, it hardly does anything use-
ful. As a general rule, one would not use self-modifying code in the manner above, where one segment
writes some sequence of instructions and then executes them. Instead, most programs that use self-modify-
ing code only modify existing instructions and often only the operands of those instructions.

Self-modifying code is rarely found in modern assembly language programs. Programs that are
self-modifying are hard to read and understand, difficult to debug, and often unstable. Programmers often
resort to self-modifying code when the CPU’s architecture lacks sufficient power to achieve a desired goal.
The later Intel 80x86 processors do not lack for instructions or addressing modes, so it is very rare to find
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 371

Chapter Eight Volume Two
80x86 programs that use self-modifying code4. The Y86 processors, however, have a very weak instruction
set, so there are actually a couple of instances where self-modifying code may prove useful.

A good example of an architectural deficiency where the Y86 is lacking is with respect to subroutines.
The Y86 instruction set does not provide any (direct) way to call and return from a subroutine. However, you
can easily simulate a call and return using the JMP instruction and self-modifying code. Consider the follow-
ing Y86 “subroutine” that sits at location $100 in memory:

// Integer to Binary converter.
// Expects an unsigned integer value in AX.
// Converts this to a string of zeros and ones storing this string of
// values into memory starting at location $1000.

mov(1000, ax); // Starting address of string.
mov(10, cx); // 16 ($10) digits in a word.

a: mov(0, dx); // Assume current bit is zero.
cmp(ax, 8000); // See if AX’s H.O. bit is zero or one.
jb b; // Branch if AX’x H.O. bit is zero.
mov(1, dx); // AX’s H.O. bit is one, set that here.

b: mov(dx, [bx]); // Store zero or one to next location.
add(1, bx); // Bump BX to point at next byte in memory.
add(ax, ax); // AX = AX *2 (shift left operation).
sub(1, cx); // Count off 16 bits.
cmp(cx, 0); // Repeat 16 times.
ja a;
jmp 0; // Return to caller via self-modifying code.

The only instruction that a program will modify in this subroutine is the very last JMP instruction. This
jump instruction must transfer control to the first instruction beyond the JMP in the calling code that trans-
fers control to this subroutine; that is, the caller must store the return address into the operand of the JMP
instruction in the code above. As it turns out, the JMP instruction is at address $120 (assuming the code
above starts at location $100). Therefore, the caller must store the return address into location $121 (the
operand of the JMP instruction). The following sample “main” program makes three calls to the “subrou-
tine” above:

mov(c, ax); // Address of the BRK instruction below.
mov(ax, [121]); // Store into JMP as return address.
mov(1234, ax); // Convert $1234 to binary.
jmp 100; // “Call” the subroutine above.
brk; // Pause to let the user example bytes at $1000.

mov(19, ax); // Address of the BRK instruction below.
mov(ax, [121]); // Store into JMP as return address.
mov(fdeb, ax); // Convert $FDEB to binary.
jmp 100; // “Call” the subroutine above.
brk; // Pause to let the user example bytes at $1000.

mov(16, ax); // Address of the BRK instruction below.
mov(ax, [121]); // Store into JMP as return address.
mov(2345, ax); // Convert $2345 to binary.
jmp 100; // “Call” the subroutine above.
brk; // Pause to let the user example bytes at $1000.

halt;

Load the subroutine (EX7s.Y86) into SIMY86 and assemble it starting at location $100. Next, load the
main program (EX7m.Y86) into memory and assemble it starting at location zero. Switch to the Emulator
screen and verify that all the return addresses ($c, $19, and $26) are correct. Also verify that the return

4. Many viruses and copy protection programs use self modifying code to make it difficult to detect or bypass them.
Page 372 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
address needs to be written to location $121. Next, run the program. The program will execute a BRK
instruction after each of the first two calls. The BRK instruction pauses the program. At this point you can
switch to the memory screen at look at locations $1000..100F in memory. They should contain the
pseudo-binary conversion of the value passed to the subroutine. Once you verify that the conversion is cor-
rect, switch back to the Emulator screen and press the Run button to continue program execution after the
BRK.

For your lab report: describe how self-modifying code works and explain in detail how this code uses
self-modifying code to simulate call and return instructions. Explain the modifications you would need to
make to move the main program to address $800 and the subroutine to location $900.

For additional credit: Actually change the program and subroutine so that they work properly at the
addresses above ($800 and $900).

8.5.8 Virtual Memory Exercise

The SIMY86 emulator treats the two 4K blocks of memory starting at addresses $D000 and $E000 spe-
cially. These blocks use virtual memory for their actual implementation. Only one block at a time can be in
memory. If you access an address in the range $D000..$DFFF and that block is not currently in memory, the
SIMY86 program will read the data for this block from the disk. Ditto for $E000..$EFFF. However, since
only one of the two blocks can be in memory at a time, any attempt to access a block that is not in memory
replaces other other block. If the block is “dirty” when the system needs to replace it (i.e., you’ve written
data to the block) then the system first writes the data to the “paging file” before reading the other block
from memory. In this laboratory exercise you will experiment with the performance of virtual memory on
the Y86 hypothetical processor.

In the first exercise you will measure the amount of time a program takes to execute that exhibits spatial
locality of reference. The first version of this program (EX8a.Y86) reads and writes data to locations
$B000..$CFFF. This is our control case; we’ll run this program and time its execution to obtain a baseline
to compare with our other experiments. Here’s the code for the control case:

mov(80, dx); // Repeat the outer loop this many times (128).
a: mov(0, bx); // Starting index for block one.

mov(0, ax); // Write zeros to page $b000.
b: mov(ax, [b000+bx]);

mov(ax, [c000+bx]); // Write zeros to page $c000 too.
add(2, bx); // Move on to the next word in these pages.
cmp(bx, 1000); // See if we’re done yet.
jb b;
sub(1, dx); // Repeat this whole process DX times.
cmp(dx, 0);
ja a;
halt;

This program will repeatedly clear locations $D000..$EFFF in a sequential fashion, starting at location
$D000. Note that this code writes two adjacent words in memory and bumps the index by four on each iter-
ation of the loop. This ensures that we access all the locations in page $D000 in a sequential fashion and
then access all the locations in page $E000 in a sequential fashion. This keeps these two pages in (physical)
memory for the greatest length of time. Here’s the program (EX8b.Y86) that does the job:

mov(80, dx); // Repeat the outer loop this many times (128).
a: mov(0, bx); // Starting index for block one.

mov(0, ax);
b: mov(ax, [d000+bx]); // Write zeros to pages $d000-$e000

mov(ax, [d002+bx]); // Write alternate words.
add(4, bx); // Move on to the next word in these pages.
cmp(bx, 2000); // See if we’re done yet.
jb b;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 373

Chapter Eight Volume Two
sub(1, dx); // Repeat this whole process DX times.
cmp(dx, 0);
ja a;
halt;

Now load the following program into memory (EX8c.Y86) and repeat the timing of this code. This
code also accesses pages $D000 and $E000 but the access pattern is different. Rather than accessing all the
locations in page $D000 and then accessing all the locations in $E000, this code “ping-pongs” between the
two pages, accessing a word in one page and then accessing a word in the second page. This forces the vir-
tual memory subsystem to continuously reload the two pages on each access (i.e., thrashing occurs). Mea-
sure the amount of time it takes to execute. Record the time for your lab report. Note a major difference
between this program and the previous two: the previous programs executed the outer loop 128 times while
the following program only executes eight times. Be sure to multiply the running time of the following pro-
gram by 16 to obtain a fair comparison of the running time of this program.

mov(8, dx); // Repeat the outer loop this many times (8).
a: mov(0, bx); // Starting index for block one.

mov(0, ax); // Write zeros to page $d000.
b: mov(ax, [d000+bx]);

mov(ax, [e000++bx]); // Write zeros to page $e000 too.
add(2, bx); // Move on to the next word in these pages.
cmp(bx, 1000); // See if we’re done yet.
jb b;
sub(1, dx); // Repeat this whole process DX times.
cmp(dx, 0);
ja a;
halt;

For your lab report: Measure the execution time of these three programs. Present the results in your
lab report. In light of this experiment, describe how you might restructure a real program running in virtual
memory to obtain the best performance.

For additional credit: Explain, based on your knowledge of the hardware needed to implement paging,
why there is a difference in execution time between the first and second programs in this experiment.
Page 374 © 2001, By Randall Hyde Beta Draft - Do not distribute

V
o
lu

m
e
 T

h
re

e
:

BB
aa

ss
ii cc

 AA
ss
ss
ee
mm

bb
ll yy

 LL
aa

nn
gg

uu
aa

gg
ee
Volume Three: Basic Assembly Language

Chapter One: Constants, Variables, and Data Types

How to declare objects in HLA.

Chapter Two: Character Strings

A discussion of HLA’s character string representation
and an introduction to string routines in the HLA Stan-
dard Library.

Chapter Three: Characters and Character Sets

A discussion of characters and the operations on them
plus character sets and HLA’s representation of charac-
ter sets.

Chapter Four: Arrays

How to declare and access elements of arrays.

Chapter Five: Records, Unions, and Namespaces

How to declare records (structures) and how to access
the fields within those records.

Chapter Six: Dates and Times

Dates and Times are two important data types whose
importance was underscored by the Y2K problem. This
chapter discusses how to properly implement these data
types.

Chapter Seven: File I/O

Maintaining persistent information (across executions)
within your programs.

Chapter Eight: Introduction to Procedures

The ability to create your own procedures is of great
importance in any program. This chapter discusses
HLA’s high level procedure declaration syntax and how
to call procedures you’ve written.

Chapter Nine: Managing Large Programs

This chapter discusses how to break up a program into
modules and separately compile them.

Volume 3
Chapter Ten: Integer Arithmetic

This chapter discusses how to compute the values of integer expressions. In particular, it describes
how to convert arithmetic expressions into assembly language.

Chapter Eleven: Real Arithmetic

This chapter discusses how to compute the values of floating point expressions. In particular, it
describes how to convert arithmetic expressions into assembly language.

Chapter Twelve: Calculation Via Table Lookups

This chapter discusses how to quickly compute some value using a table lookup.

Chapter Thirteen: Questions, Projects, and Laboratory Exercises

Test your knowledge.

This Volume provides a basic introduction to assembly language programming. By the end of
this volume you should be able to write meaningful programs using HLA. This Volume plus
Volume Four present all the basic skills a typical assembly language programmer needs to
write real-world applications in assembly language.

Chapters One through Seven provide information about important data types and data struc-
tures found in typical assembly language programs. For courses that have a limited amount of
time available, Chapters One, Four, and Five from this set are the most important, closely fol-
lowed by Chapters Two and Seven. Chapters Three and Six are optional though students
should read these on their own.

Chapters Eight and Ten are also essential. Chapters Nine and Eleven are important and the
course should cover them if time permits. Chapter Twelve discusses an optimization that is
becoming less and less important as CPU speeds vastly outstrip memory access times. Those
interested in programming embedded systems should read this chapter, other instructors may
elect to skip this material.
Page 376 © 2000, By Randall Hyde Beta Draft - Do not distribute

Constants, Variables, and Data Types
Constants, Variables, and Data Types Chapter One

Volume One discussed the basic format for data in memory. Volume Two covered how a computer sys-
tem physically organizes that data. This chapter finishes this discussion by connecting the concept of data
representation to its actual physical representation. As the title implies, this chapter concerns itself with
three main topics: constants, variables and data structures. This chapter does not assume that you’ve had a
formal course in data structures, though such experience would be useful.

1.1 Chapter Overview

This chapter discusses how to declare and use constants, scalar variables, integers, reals, data types,
pointers, arrays, and structures. You must master these subjects before going on to the next chapter. Declar-
ing and accessing arrays, in particular, seems to present a multitude of problems to beginning assembly lan-
guage programmers. However, the rest of this text depends on your understanding of these data structures
and their memory representation. Do not try to skim over this material with the expectation that you will
pick it up as you need it later. You will need it right away and trying to learn this material along with later
material will only confuse you more.

1.2 Some Additional Instructions: INTMUL, BOUND, INTO

This chapter introduces arrays and other concepts that will require the expansion of your 80x86 instruc-
tion set knowledge. In particular, you will need to learn how to multiply two values; hence the first instruc-
tion we will look at is the INTMUL (integer multiply) instruction. Another common task when accessing
arrays is to check to see if an array index is within bounds. The 80x86 BOUNDS instruction provides a con-
venient way to check a register’s value to see if it is within some range. Finally, the INTO (interrupt on over-
flow) instruction provides a quick check for signed arithmetic overflow. Although INTO isn’t really
necessary for array (or other data type access), its function is very similar to BOUND, hence the presentation
at this point.

The INTMUL instruction takes one of the following forms:

// The following compute destreg = destreg * constant

intmul(constant, destreg16);

intmul(constant, destreg32);

// The following compute dest = src * constant

intmul(constant, srcreg16, destreg16);

intmul(constant, srcmem16, destreg16);

intmul(constant, srcreg32, destreg32);

intmul(constant, srcmem32, destreg32);

// The following compute dest = dest * src

intmul(srcreg16, destreg16);

intmul(srcmem16, destreg16);

intmul(srcreg32, destreg32);

intmul(srcmem32, destreg32);

Note that the syntax of the INTMUL instruction is different than the ADD and SUB instructions. In particu-
lar, note that the destination operand must be a register (ADD and SUB both allow a memory operand as a
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 377

Chapter One Volume Three
destination). Also note that INTMUL allows three operands when the first operand is a constant. Another
important difference is that the INTMUL instruction only allows 16-bit and 32-bit operands; it does not
allow eight-bit operands.

INTMUL computes the product of its specified operands and stores the result into the destination regis-
ter. If an overflow occurs (which is always a signed overflow, since INTMUL only multiplies signed integer
values), then this instruction sets both the carry and overflow flags. INTMUL leaves the other condition
code flags undefined (so, for example, you cannot check the sign flag or the zero flag after INTMUL and
expect them to tell you anything about the INTMUL operation).

The BOUND instruction checks a 16-bit or 32-bit register to see if it is between one of two values. If
the value is outside this range, the program raises an exception and aborts operation. This instruction is par-
ticularly useful for checking to see if an array index is within a given range. The BOUND instruction takes
one of the following forms:

bound(reg16, LBconstant, UBconstant);

bound(reg32, LBconstant, UBconstant);

bound(reg16, Mem16[2]);
1

bound(reg32, Mem32[2]);
2

The BOUND instruction compares its register operand against an unsigned lower bound value and an
unsigned upper bound value to ensure that the register is in the range:

lower_bound <= register <= upper_bound

The form of the BOUND instruction with three operands compares the register against the second and third
parameters (the lower bound and upper bound, respectively)3. The BOUND instruction with two operands
checks the register against one of the following ranges:

Mem16[0] <= register <= Mem16[2]

Mem32[0] <= register <= Mem32[4]

If the specified register is not within the given range, then the 80x86 raises an exception. You can trap
this exception using the HLA TRY..ENDTRY exception handling statement. The excepts.hhf header file
defines an exception, ex.BoundInstr, specifically for this purpose. The following code fragment demon-
strates how to use the BOUND instruction to check some user input:

program BoundDemo;
#include(“stdlib.hhf”);

static
InputValue:int32;
GoodInput:boolean;

begin BoundDemo;

// Repeat until the user enters a good value:

repeat

// Assume the user enters a bad value.

mov(false, GoodInput);

1. The “[2]” suggests that this variable must be an array of two consecutive word values in memory.
2. Likewise, this memory operand must be two consecutive dwords in memory.
3. This form isn’t a true 80x86 instruction. HLA converts this form of the bound instruction to the two operand form by cre-
ating two readonly memory variables initialized with the specified constant.
Page 378 © 2001, By Randall Hyde Beta Draft - Do not distribute

Constants, Variables, and Data Types
// Catch bad numeric input via the try..endtry statement.

try

stdout.put(“Enter an integer between 1 and 10: “);
stdin.flushInput();
stdin.geti32();

mov(eax, InputValue);

// Use the BOUND instruction to verify that the
// value is in the range 1..10.

bound(eax, 1, 10);

// If we get to this point, the value was in the
// range 1..10, so set the boolean “GoodInput”
// flag to true so we can exit the loop.

mov(true, GoodInput);

// Handle inputs that are not legal integers.

 exception(ex.ConversionError)

 stdout.put(“Illegal numeric format, reenter”, nl);

// Handle integer inputs that don’t fit into an int32.

 exception(ex.ValueOutOfRange)

 stdout.put(“Value is *way* too big, reenter”, nl);

// Handle values outside the range 1..10 (BOUND instruction)

 exception(ex.BoundInstr)

 stdout.put

(
“Value was “,
InputValue,
“, it must be between 1 and 10, reenter”,
nl

);

endtry;

until(GoodInput);
stdout.put(“The value you entered, “, InputValue, “ is valid.”, nl);

end BoundDemo;

Program 1.1 Demonstration of the BOUND Instruction
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 379

Chapter One Volume Three
The INTO instruction, like BOUND, also generates an exception under certain conditions. Specifically,
INTO generates an exception if the overflow flag is set. Normally, you would use INTO immediately after a
signed arithmetic operation (e.g., INTMUL) to see if an overflow occurs. If the overflow flag is not set, the
system ignores the INTO instruction; however, if the overflow flag is set, then the INTO instruction raises
the HLA ex.IntoInstr exception. The following code sample demonstrates the use of the INTO instruction:

program INTOdemo;
#include(“stdlib.hhf”);

static
LOperand:int8;
ResultOp:int8;

begin INTOdemo;

// The following try..endtry checks for bad numeric
// input and handles the integer overflow check:

try

// Get the first of two operands:

stdout.put(“Enter a small integer value (-128..+127):”);
stdin.geti8();
mov(al, LOperand);

// Get the second operand:

stdout.put(“Enter a second small integer value (-128..+127):”);
stdin.geti8();

// Produce their sum and check for overflow:

add(LOperand, al);
into();

// Display the sum:

stdout.put(“The eight-bit sum is “, (type int8 al), nl);

// Handle bad input here:

 exception(ex.ConversionError)

 stdout.put(“You entered illegal characters in the number”, nl);

// Handle values that don’t fit in a byte here:

 exception(ex.ValueOutOfRange)

 stdout.put(“The value must be in the range -128..+127”, nl);

// Handle integer overflow here:

 exception(ex.IntoInstr)

Page 380 © 2001, By Randall Hyde Beta Draft - Do not distribute

Constants, Variables, and Data Types
 stdout.put
(

“The sum of the two values is outside the range -128..+127”,
nl

);

endtry;

end INTOdemo;

Program 1.2 Demonstration of the INTO Instruction

1.3 The QWORD and TBYTE Data Types

HLA lets you declare eight-byte and ten-byte variables using the qword, and tbyte data types, respec-
tively. Since HLA does not allow the use of 64-bit or 80-bit non-floating point constants, you may not asso-
ciate an initializer with these two data types. However, if you wish to reserve storage for a 64-bit or 80-bit
variable, you may use these two data types to do so.

The qword type lets you declare quadword (eight byte) variables. Generally, qword variables will hold
64-bit integer or unsigned integer values, although HLA and the 80x86 certainly don’t enforce this. The
HLA Standard Library contains several routines to let you input and display 64-bit signed and unsigned inte-
ger values. The chapter on advanced arithmetic will discuss how to calculate 64-bit results on the 80x86 if
you need integers of this size.

The tbyte directive allocates ten bytes of storage. There are two data types indigenous to the 80x87
(math coprocessor) family that use a ten byte data type: ten byte BCD values and extended precision (80 bit)
floating point values. Since you would normally use the real80 data type for floating point values, about the
only purpose of tbyte in HLA is to reserve storage for a 10-byte BCD value (or other data type that needs 80
bits). Once again, the chapter on advanced arithmetic may provide some insight into the use of this data
type. However, except for very advanced applications, you could probably ignore this data type and not suf-
fer.

1.4 HLA Constant and Value Declarations

HLA’s CONST and VAL sections let you declare symbolic constants. The CONST section lets you
declare identifiers whose value is constant throughout compilation and run-time; the VAL section lets you
declare symbolic constants whose value can change at compile time, but whose values are constant at
run-time (that is, the same name can have a different value at several points in the source code, but the value
of a VAL symbol at a given point in the program cannot change while the program is running).

The CONST section appears in the same declaration section of your program that contains the STATIC,
READONLY, STORAGE, VAR, and DATA sections. It begins with the CONST reserved word and has a
syntax that is nearly identical to the READONLY section, that is, the CONST section contains a list of iden-
tifiers followed by a type and a constant expression. The following example will give you an idea of what
the CONST section looks like:

const
pi: real32 := 3.14159;
MaxIndex: uns32 := 15;
Delimiter: char := ‘/’;
BitMask: byte := $F0;
DebugActive: boolean:= true;

Once you declare these constants in this manner, you may use the symbolic identifiers anywhere the
corresponding literal constant is legal. These constants are known as manifest constants. A manifest con-
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 381

Chapter One Volume Three
stant is a symbolic representation of a constant that allows you to substitute the literal value for the symbol
anywhere in the program. Contrast this with READONLY variables; a READONLY variable is certainly a
constant value since you cannot change such a variable at run time. However, there is a memory location
associated with READONLY variables and the operating system, not the HLA compiler, enforces the
read-only attribute at run-time. Although it will certainly crash your program when it runs, it is perfectly
legal to write an instruction like “MOV(EAX, ReadOnlyVar);” On the other hand, it is no more legal to
write “MOV(EAX, MaxIndex);” (using the declaration above) than it is to write “MOV(EAX, 15);” In
fact, both of these statements are equivalent since the compiler substitutes “15” for MaxIndex whenever it
encounters this manifest constant.

If there is absolutely no ambiguity about a constant’s type, then you may declare a constant by specify-
ing only the name and the constant’s value, omitting the type specification. In the example earlier, the pi,
Delimiter, MaxIndex, and DebugActive constants could use the following declarations:

const
pi := 3.14159;
MaxIndex := 15;
Delimiter: := ‘/’;
DebugActive: := true;

Symbol constants that have an integer literal constant are always given the type uns32 if the constant is
zero or positive, or int32 if the value is negative. This is why MaxIndex was okay in this CONST declaration
but BitMask was not. Had we included the statement “BitMask := $F0;” in this latter CONST section, the
declaration would have been legal but BitMask would be of type uns32 rather than byte.

Constant declarations are great for defining “magic” numbers that might possibly change during pro-
gram modification. The following is a modification of the data alignment exercise in the previous Volume.

program ConstDemo;
#include(“stdlib.hhf”);

const
MemToAllocate:= 4_000_000;
NumDWords:= MemToAllocate div 4;
MisalignBy:= 62;

MainRepetitions:= 1000;
DataRepetitions := 999_900;

CacheLineSize:= 16;

begin ConstDemo;

console.cls();
stdout.put
(

“Memory Alignment Exercise”,nl,
nl,
“Using a watch (preferably a stopwatch), time the execution of”, nl
“the following code to determine how many seconds it takes to”, nl
“execute.”, nl
nl
“Press Enter to begin timing the code:”

);

// Allocate enough dynamic memory to ensure that it does not
// all fit inside the cache. Note: the machine had better have
// at least four megabytes free or virtual memory will kick in
// and invalidate the timing.
Page 382 © 2001, By Randall Hyde Beta Draft - Do not distribute

Constants, Variables, and Data Types
malloc(MemToAllocate);

// Zero out the memory (this loop really exists just to
// ensure that all memory is mapped in by the OS).

mov(NumDWords, ecx);
repeat

dec(ecx);
mov(0, (type dword [eax+ecx*4]));

until(!ecx);// Repeat until ECX = 0.

// Okay, wait for the user to press the Enter key.

stdin.readLn();

// Note: as processors get faster and faster, you may
// want to increase the size of the following constant.
// Execution time for this loop should be approximately
// 10-30 seconds.

mov(MainRepetitions, edx);
add(MisalignBy, eax);// Force misalignment of data.

repeat

mov(DataRepetitions, ecx);
align(CacheLineSize);
repeat

sub(4, ecx);
mov([eax+ecx*4], ebx);
mov([eax+ecx*4], ebx);
mov([eax+ecx*4], ebx);
mov([eax+ecx*4], ebx);

until(!ecx);
dec(edx);

until(!edx); // Repeat until EAX is zero.

stdout.put(stdio.bell, “Stop timing and record time spent”, nl, nl);

// Okay, time the aligned access.

stdout.put
(

“Press Enter again to begin timing access to aligned variable:”
);
stdin.readLn();

// Note: if you change the constant above, be sure to change
// this one, too!

mov(MainRepetitions, edx);
sub(MisalignBy, eax);// Realign the data.
repeat
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 383

Chapter One Volume Three
mov(DataRepetitions, ecx);
align(CacheLineSize);
repeat

sub(4, ecx);
mov([eax+ecx*4], ebx);
mov([eax+ecx*4], ebx);
mov([eax+ecx*4], ebx);
mov([eax+ecx*4], ebx);

until(!ecx);
dec(edx);

until(!edx); // Repeat until EAX is zero.

stdout.put(stdio.bell, “Stop timing and record time spent”, nl, nl);
free(eax);

end ConstDemo;

Program 1.3 Data Alignment Program Rewritten Using CONST Definitions

1.4.1 Constant Types

Manifest constants can be any of the HLA primitive types plus a few of the composite types this chapter
discusses. Volumes One and Two discussed most of the primitive types; these primitive types include the
following:

• Boolean constants (true or false)
• Uns8 constants (0..255)
• Uns16 constants (0..65535)
• Uns32 constants (0..4,294,967,295)
• Int8 constants (-128..+127)
• Int16 constants (-32768..+32767)
• Int32 constants (-2,147,483,648..+2,147,483,647)
• Char constants (any ASCII character with a character code in the range 0..255)
• Byte constants (any eight-bit value including integers, booleans, and characters)
• Word constants (any 16-bit value)
• DWord constants (any 32-bit value)
• Real32 constants (floating point values)
• Real64 constants (floating point values)
• Real80 constants (floating point values)

In addition to the constant types appearing above, the CONST section supports six additional constant types:

• String constants
• Text constants
• Enumerated constant values
• Array constants
• Record/Union constants
• Character set constants

These data types are the subject of this Volume and the discussion of most of them appears in later chapters.
However, the string and text constants are sufficiently important to warrant an early discussion of these con-
stant types.
Page 384 © 2001, By Randall Hyde Beta Draft - Do not distribute

Constants, Variables, and Data Types
1.4.2 String and Character Literal Constants

HLA, like most programming languages, draws a distinction between a sequence of characters, a string,
and a single character. This distinction is present both in the type declarations and in the syntax for literal
character and string constants. Until now, this text has not drawn a fine distinction between character and
string literal constants; now it is time to do so.

String literal constants consist of a sequence of zero or more characters surrounded by the ASCII quote
characters. The following are all examples of legal literal string constants:

“This is a string” // String with 16 characters.
““ // Zero length string.
“a” // String with a single character.
“123” // String of length three.

A string of length one is not the same thing as a character constant. HLA uses two completely different
internal representations for character and string values. Hence, “a” is not a character value, it is a string
value that just happens to contain a single character.

Character literal constants take a couple forms, but the most common consist of a single character sur-
rounded by ASCII apostrophe characters:

‘2’ // Character constant equivalent to ASCII code $32.
‘a’ // Character constant for lower case ‘A’.

As noted above, “a” and ‘a’ are not equivalent.

Those who are familiar with C/C++/Java probably recognize these literal constant forms, since they are
similar to the character and string constants in C/C++/Java. In fact, this text has made a tacit assumption to
this point that you are somewhat familiar with C/C++ insofar as examples appearing up to this point use
character and string constants without an explicit definition of them4.

Another similarity between C/C++ strings and HLA’s is the automatic concatenation of adjacent literal
string constants within your program. For example, HLA concatenates the two string constants

“First part of string, “ “second part of string”

to form the single string constant

“First part of string, second part of string”

Beyond these few similarities, however, HLA strings and C/C++ strings are different. For example,
C/C++ strings let you specify special character values using the escape character sequence consisting of a
backslash character followed by one or more special characters; HLA does not use this escape character
mechanism. HLA does provide, however, several other ways to achieve this same goal.

Since HLA does not allow escape character sequences in literal string and character constants, the first
question you might ask is “How does one embed quote characters in string constants and apostrophe charac-
ters in character constants?” To solve this problem, HLA uses the same technique as Pascal and many other
languages: you insert two quotes in a string constant to represent a single quote or you place two apostrophes
in a character constant to represent a single apostrophe character, e.g.,

“He wrote a ““Hello World”” program as an example.”

The above is equivalent to:

He wrote a “Hello World” program as an example.

‘’’’

The above is equivalent to a single apostrophe character.

4. Apologies are due to those of you who do not know C/C++/Java or a language that shares these string and constant defini-
tions.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 385

Chapter One Volume Three
HLA provides a couple of other features that eliminate the need for escape characters. In addition to
concatenating two adjacent string constants to form a longer string constant, HLA will also concatenate any
combination of adjacent character and string constants to form a single string constant:

‘1’ ‘2’ ‘3’ // Equivalent to “123”
“He wrote a “ ‘”’ “Hello World” ‘”’ “ program as an example.”

Note that the two “He wrote...” strings in the above examples are identical to HLA.

HLA provides a second way to specify character constants that handles all the other C/C++ escape char-
acter sequences: the ASCII code literal character constant. This literal character constant form uses the syn-
tax:

#integer_constant

This form creates a character constant whose value is the ASCII code specified by numeric_constant. The
numeric constant can be a decimal, hexadecimal, or binary value, e.g.,

#13 #$d #%1101 // All three are the same character, a
// carriage return.

Since you may concatenate character literals with strings, and the #constant form is a character literal, the
following are all legal strings:

“Hello World” #13 #10 // #13 #10 is the newline sequence (carriage
// return followed by line feed).

“Error: Bad Value” #7 // #7 is the bell character.
“He wrote a “ #$22 “Hello World” #$22 “ program as an example.”

Since $22 is the ASCII code for the quote character, this last example is yet a third form of the “He wrote...”
string literal.

1.4.3 String and Text Constants in the CONST Section

String and text constants in the CONST section use the following declaration syntax:

const
AStringConst: string := “123”;
ATextConst: text := “123”;

Other than the data type of these two constants, their declarations are identical. However, their behavior in
an HLA program is quite different.

Whenever HLA encounters a symbolic string constant within your program, it substitutes the string lit-
eral constant in place of the string name. So a statement like “stdout.put(AStringConst);” prints the string
“123” (without quotes, of course) to the display. No real surprise here.

Whenever HLA encounters a symbolic text constant within your program, it substitutes the text of that
string (rather than the string literal constant) for the identifier. That is, HLA substitutes the characters
between the delimiting quotes in place of the symbolic text constant. Therefore, the following statement is
perfectly legal given the declarations above:

mov(ATextConst, al); // equivalent to mov(123, al);

Note that substituting AStringConst for ATextConst in this example is illegal:

mov(AStringConst, al); // equivalent to mov(“123”, al);

This latter example is illegal because you cannot move a string literal constant into the AL register.

Whenever HLA encounters a symbol text constant in your program, it immediately substitutes the value
of the text constant’s string for that text constant and continues the compilation as though you had written
the text constant’s value rather than the symbolic identifier in your program. This can save some typing and
Page 386 © 2001, By Randall Hyde Beta Draft - Do not distribute

Constants, Variables, and Data Types
help make your programs a little more readable if you often enter some sequence of text in your program.
For example, consider the nl (newline) text constant declaration found in the HLA stdio.hhf library header
file:

const
nl: text := “#$d #$a”;

Whenever HLA encounters the symbol nl, it immediately substitutes the value of the string “#$d #$a” for the
nl identifier. When HLA sees the #$d (carriage return) character constant followed by the #$a (line feed)
character constants, it concatenates the two to form the string containing the newline sequence (a carriage
return followed by a line feed). Consider the following two statements:

stdout.put(“Hello World”, nl);
stdout.put(“Hello World” nl);

(Notice that the second statement above does not separate the string literal and the nl symbol with a comma.)
In the first example, HLA emits code that prints the string “Hello World” and then emits some additional
code that prints a newline sequence. In the second example, HLA expands the nl symbol as follows:

stdout.put(“Hello World” #$d #$a);

Now HLA sees a string literal constant (“Hello World”) followed by two character constants. It concate-
nates the three of them together to form a single string and then prints this string with a single call. There-
fore, leaving off the comma between the string literal and the nl symbol produces slightly more efficient
code. Keep in mind that this only works with string literal constants. You cannot concatenate string vari-
ables, or a string variable with a string literal, by using this technique.

In the constant section, if you specify only a constant identifier and a string constant (i.e., you do not
supply a type), HLA defaults to type string. If you want to declare a text constant you must explicitly supply
the type.

const
AStrConst := “String Constant”;
ATextConst: text := “mov(0, eax);”;

1.4.4 Constant Expressions

Thus far, this chapter has given the impression that a symbolic constant definition consists of an identi-
fier, an optional type, and a literal constant. Actually, HLA constant declarations can be a lot more sophisti-
cated than this because HLA allows the assignment of a constant expression, not just a literal constant, to a
symbolic constant. The generic constant declaration takes one of the following two forms:

Identifier : typeName := constant_expression ;
Identifier := constant_expression ;

Constant expressions take the familiar form you’re used to in high level languages like C/C++ and Pas-
cal. They may contain literal constant values, previously declared symbolic constants, and various arith-
metic operators. The following lists some of the operations possible in a constant expression:

Arithmetic Operators

- (unary negation) Negates the expression immediately following the “-”.
* Multiplies the integer or real values around the asterisk.
div Divides the left integer operand by the right integer operand

producing an integer (truncated) result.
mod Divides the left integer operand by the right integer operand

producing an integer remainder.
/ Divides the left numeric operand by the second numeric operand

producing a floating point result.
+ Adds the left and right numeric operands.
- Subtracts the right numeric operand from the left numeric operand.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 387

Chapter One Volume Three
Comparison Operators

=, == Compares left operand with right operand. Returns TRUE if equal.
<>, != Compares left operand with right operand. Returns TRUE if not equal.
< Returns true if left operand is less than right operand.
<= Returns true if left operand is <= right operand.
> Returns true if left operand is greater than right operand.
>= Returns true if left operand is >= right operand.

Logical Operators5:

&, && For boolean operands, returns the logical AND of the two operands.
|, || For boolean operands, returns the logical OR of the two operands.
^ For boolean operands, returns the logical exclusive-OR.
! Returns the logical NOT of the single operand following “!”.

Bitwise Logical Operators:

&, && For integer numeric operands, returns bitwise AND of the operands.
|, || For integer numeric operands, returns bitwise OR of the operands.
^ For integer numeric operands, returns bitwise XOR of the operands.
! For an integer numeric operand, returns bitwise NOT of the operand.

String Operators:

‘+’ Returns the concatenation of the left and right string operands.

The constant expression operators follow standard precedence rules; you may use the parentheses to over-
ride the precedence if necessary. See the HLA reference in the appendix for the exact precedence relation-
ships between the operators. In general, if the precedence isn’t obvious, use parentheses to exactly state the
order of evaluation.

If an identifier appears in a constant expression, that identifier must be a constant identifier that you have
previously defined in your program. You may not use variable identifiers in a constant expression; their val-
ues are not defined at compile-time when HLA evaluates the constant expression. Also, don’t confuse the
following two types of operations:

// Constant expression, computed while HLA is compiling your program:

const
x := 5;
y := 6;
Sum := x + y;

// Run-time calculation, computed while your program is running, long after
// HLA has compiled it:

mov(x, al);
add(y, al);

HLA directly interprets the value of a constant expression during compilation. It does not emit any
machine instructions to compute “x+y” in the constant expression above. Instead, it directly computes the
sum of these two constant values. From that point forward in the program, HLA associates the value 11 with
the constant Sum just as if the program had contained the statement “Sum := 11;” rather than “Sum := x+y;”
On the other hand, HLA does not precompute the value 11 in AL for the MOV and ADD instructions above6,

5. Note to C/C++ and Java users. HLA’s constant expressions use complete boolean evaluation rather than short-circuit bool-
ean evaluation. Hence, HLA constant expressions do not behave identically to C/C++/Java expressions.
Page 388 © 2001, By Randall Hyde Beta Draft - Do not distribute

Constants, Variables, and Data Types
it faithfully emits the object code for these two instructions and the 80x86 computes their sum when the pro-
gram is run (sometime after the compilation is complete).

In general, constant expressions don’t get very sophisticated. Usually, you’re adding, subtracting, or
multiplying two integer values. For example, the following CONST section defines a set of constants that
have consecutive values:

const
TapeDAT := 1;
Tape8mm := TapeDAT + 1;
TapeQIC80 := Tape8mm + 1;
TapeTravan := TapeQIC80 + 1;
TapeDLT := TapeTravan + 1;

The constants above have the following values: TapeDAT = 1, Tape8mm = 2, TapeQIC80 = 3,
TapeTravan = 4, and TapeDLT = 5.

1.4.5 Multiple CONST Sections and Their Order in an HLA Program

Although CONST sections must appear in the declaration section of an HLA program (e.g., between the
“PROGRAM pgmname;” header and the corresponding “BEGIN pgmname;” statement), they do not have to
appear before or after any other items in the declaration section. In fact, like the variable declaration sec-
tions, you can place multiple CONST sections in the declaration section. The only restriction on HLA con-
stant declarations is that you must declare any constant symbol before it appears in some other constant
expression.

The CONST section begins with the CONST keyword and ends with the next declaration keyword or
BEGIN (e.g., VAR, STATIC, or READONLY). In fact, you could have multiple CONST sections adjacent
to one another. Some C/C++ programmers, for example, are more comfortable writing their constant decla-
rations as follows (since this is closer to C/C++’s syntax for declaring constants):

const TapeDAT := 1;
const Tape8mm := TapeDAT + 1;
const TapeQIC80 := Tape8mm + 1;
const TapeTravan := TapeQIC80 + 1;
const TapeDLT := TapeTravan + 1;

The placement of the CONST section in a program seems to be a personal issue among programmers.
Other than the requirements of defining all constants before you use them, you may feel free to insert the
constant declaration section anywhere in the declaration section. Some programmers prefer to put all their
CONST declarations at the beginning of their declaration section, some programmers prefer to spread them
throughout declaration section, defining the constants just before they need them for some other purpose.
Putting all your constants at the beginning of an HLA declaration section is probably the wisest choice right
now. Later in this text you’ll see reasons why you might want to define your constants later in a declaration
section.

1.4.6 The HLA VAL Section

You cannot change the value of a constant you define in the CONST section. While this seems perfectly
reasonable (constants after all, are supposed to be, well, constant), there are different ways we can define the
term constant and CONST objects only follow the rules of one specific definition. HLA’s VAL section lets
you define constant objects that follow slightly different rules. This section will discuss the VAL section and
the difference between VAL constants and CONST constants.

6. Technically, if HLA had an optimizer it could replace these two instructions with a single “MOV(11, al);” instruction.
HLA, however, does not do this.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 389

Chapter One Volume Three
The concept of “const-ness” can exist at two different times: while HLA is compiling your program and
later when your program executes (and HLA is no longer running). All reasonable definitions of a constant
require that a value not change while the program is running. Whether or not the value of a “constant” can
change during compilation is a separate issue. The difference between HLA CONST objects and HLA VAL
objects is whether the value of the constant can change during compilation.

Once you define a constant in the CONST section, the value of that constant is immutable from that
point forward both at run-time and while HLA is compiling your program. Therefore, an instruction like
“mov(SymbolicCONST, EAX);” always moves the same value into EAX, regardless of where this instruc-
tion appears in the HLA main program. Once you define the symbol SymbolicCONST in the CONST sec-
tion, this symbol has the same value from that point forward.

The HLA VAL section lets you declare symbolic constants, just like the CONST section. However,
HLA VAL constants can change their value throughout the source code in your program. The following
HLA declarations are perfectly legal:

val InitialValue := 0;
const SomeVal := InitialValue + 1; // = 1
const AnotherVal := InitialValue + 2; // = 2

val InitialValue := 100;
const ALargerVal := InitialValue; // = 100
const LargeValTwo := InitialValue*2; // = 200

All of the symbols appearing in the CONST sections use the symbolic value InitialValue as part of the
definition. Note, however, that InitialValue has different values at different points in this code sequence; at
the beginning of the code sequence InitialValue has the value zero, while later it has the value 100.

Remember, at run-time a VAL object is not a variable; it is still a manifest constant and HLA will sub-
stitute the current value of a VAL identifier for that identifier7. Statements like “MOV(25, InitialValue);”
are no more legal than “MOV(25, 0);” or “MOV(25, 100);”

1.4.7 Modifying VAL Objects at Arbitrary Points in Your Programs

If you declare all your VAL objects in the declaration section, it would seem that you would not be able
to change the value of a VAL object between the BEGIN and END statements of your program. After all,
the VAL section must appear in the declaration section of the program and the declaration section ends
before the BEGIN statement. Later, you will learn that most VAL object modifications occur between the
BEGIN and END statements; hence, HLA must provide someway to change the value of a VAL object out-
side the declaration section. The mechanism to do this is the “?” operator.

Not only does HLA allow you to change the value of a VAL object outside the declaration section, it
allows you to change the value of a VAL object almost anywhere in the program. Anywhere a space is
allowed inside an HLA program, you can insert a statement of the form:

? ValIdentifier := constant_expression ;

This means that you could write a short program like the following:

program VALdemo;
#include(“stdlib.hhf”);

val
NotSoConstant := 0;

7. In this context, current means the value last assigned to a VAL object looking backward in the source code.
Page 390 © 2001, By Randall Hyde Beta Draft - Do not distribute

Constants, Variables, and Data Types
begin VALdemo;

mov(NotSoConstant, eax);
stdout.put(“EAX = “, (type uns32 eax), nl);

?NotSoConstant := 10;
mov(NotSoConstant, eax);
stdout.put(“EAX = “, (type uns32 eax), nl);

?NotSoConstant := 20;
mov(NotSoConstant, eax);
stdout.put(“EAX = “, (type uns32 eax), nl);

?NotSoConstant := 30;
mov(NotSoConstant, eax);
stdout.put(“EAX = “, (type uns32 eax), nl);

end VALdemo;

Program 1.4 Demonstration of VAL Redefinition Using “?” Operator

You probably won’t have much use for VAL objects at this time. However, you’ll see (in the chapter on
the HLA compile-time language) how useful VAL objects can be to you.

1.5 The HLA TYPE Section

Let’s say that you simply do not like the names that HLA uses for declaring byte, word, double word,
real, and other variables. Let’s say that you prefer Pascal’s naming convention or, perhaps, C’s naming con-
vention. You want to use terms like integer, float, double, or whatever. If this were Pascal you could redefine
the names in the type section of the program. With C you could use a #define or a typedef statement to
accomplish the task. Well, HLA, like Pascal, has it’s own TYPE statement that also lets you create aliases of
these names. The following example demonstrates how to set up some C/C++/Pascal compatible names in
your HLA programs:

type
integer: int32;
float: real32;
double: real64;
colors: byte;

Now you can declare your variables with more meaningful statements like:

static
i: integer;
x: float;
HouseColor: colors;

If you are an Ada, C/C++, or FORTRAN programmer (or any other language, for that matter), you can
pick type names you’re more comfortable with. Of course, this doesn’t change how the 80x86 or HLA reacts
to these variables one iota, but it does let you create programs that are easier to read and understand since the
type names are more indicative of the actual underlying types. One warning for C/C++ programmers: don’t
get too excited and go off and define an int data type. Unfortunately, INT is an 80x86 machine instruction
(interrupt) and therefore, this is a reserved word in HLA.

The TYPE section is useful for much more than creating type isomorphism (that is, giving a new name
to an existing type). The following sections will demonstrate many of the possible things you can do in the
TYPE section.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 391

Chapter One Volume Three
1.6 ENUM and HLA Enumerated Data Types

In a previous section discussing constants and constant expressions, you saw the following example:

const TapeDAT := 1;
const Tape8mm := TapeDAT + 1;
const TapeQIC80 := Tape8mm + 1;
const TapeTravan := TapeQIC80 + 1;
const TapeDLT := TapeTravan + 1;

This example demonstrates how to use constant expressions to develop a set of constants that contain
unique, consecutive, values. There are, however, a couple of problems with this approach. First, it involves
a lot of typing (and extra reading when reviewing this program). Second, it’s very easy make a mistake
when creating long lists of unique constants and reuse or skip some values. The HLA ENUM type provides
a better way to create a list of constants with unique values.

ENUM is an HLA type declaration that lets you associate a list of names with a new type. HLA associ-
ates a unique value with each name (that is, it enumerates the list). The ENUM keyword typically appears in
the TYPE section and you use it as follows:

type
enumTypeID: enum { comma_separated_list_of_names };

The symbol enumTypeID becomes a new type whose values are specified by the specified list of names. As
a concrete example, consider the data type TapeDrives and a corresponding variable declaration of type
TypeDrives:

type
TapeDrives: enum{ TapeDAT, Tape8mm, TapeQIC80, TapeTravan, TapeDLT};

static
BackupUnit: TapeDrives := TapeDAT;

.

.

.

mov(BackupUnit, al);
if(al = Tape8mm) then

...

endif;

// etc.

By default, HLA reserves one byte of storage for enumerated data types. So the BackupUnit variable
will consume one byte of memory and you would typically use an eight-bit register to access it8. As for the
constants, HLA associates consecutive uns8 constant values starting at zero with each of the enumerated
identifiers. In the TapeDrives example, the tape drive identifiers would have the values TapeDAT=0,
Tape8mm=1, TapeQIC80=2, TapeTravan=3, and TapeDLT=4. You may use these constants exactly as
though you had defined them with these values in a CONST section.

8. HLA provides a mechanism by which you can specify that enumerated data types consume two or four bytes
of memory. See the HLA documentation for more details.
Page 392 © 2001, By Randall Hyde Beta Draft - Do not distribute

Constants, Variables, and Data Types
1.7 Pointer Data Types

Some people refer to pointers as scalar data types, others refer to them as composite data types. This text
will treat them as scalar data types even though they exhibit some tendencies of both scalar and composite
data types.

Of course, the place to start is with the question “What is a pointer?” Now you’ve probably experienced
pointers first hand in the Pascal, C, or Ada programming languages and you’re probably getting worried
right now. Almost everyone has a real bad experience when they first encounter pointers in a high level lan-
guage. Well, fear not! Pointers are actually easier to deal with in assembly language. Besides, most of the
problems you had with pointers probably had nothing to do with pointers, but rather with the linked list and
tree data structures you were trying to implement with them. Pointers, on the other hand, have lots of uses in
assembly language that have nothing to do with linked lists, trees, and other scary data structures. Indeed,
simple data structures like arrays and records often involve the use of pointers. So if you’ve got some
deep-rooted fear about pointers, well forget everything you know about them. You’re going to learn how
great pointers really are.

Probably the best place to start is with the definition of a pointer. Just exactly what is a pointer, anyway?
Unfortunately, high level languages like Pascal tend to hide the simplicity of pointers behind a wall of
abstraction. This added complexity (which exists for good reason, by the way) tends to frighten program-
mers because they don’t understand what’s going on.

Now if you’re afraid of pointers, well, let’s just ignore them for the time being and work with an array.
Consider the following array declaration in Pascal:

M: array [0..1023] of integer;

Even if you don’t know Pascal, the concept here is pretty easy to understand. M is an array with 1024
integers in it, indexed from M[0] to M[1023]. Each one of these array elements can hold an integer value
that is independent of all the others. In other words, this array gives you 1024 different integer variables each
of which you refer to by number (the array index) rather than by name.

If you encountered a program that had the statement “M[0]:=100;” you probably wouldn’t have to think
at all about what is happening with this statement. It is storing the value 100 into the first element of the
array M. Now consider the following two statements:

i := 0; (* Assume “i” is an integer variable *)
M [i] := 100;

You should agree, without too much hesitation, that these two statements perform the same exact opera-
tion as “M[0]:=100;”. Indeed, you’re probably willing to agree that you can use any integer expression in the
range 0…1023 as an index into this array. The following statements still perform the same operation as our
single assignment to index zero:

i := 5; (* assume all variables are integers*)
j := 10;
k := 50;
m [i*j-k] := 100;

“Okay, so what’s the point?” you’re probably thinking. “Anything that produces an integer in the range
0…1023 is legal. So what?” Okay, how about the following:

M [1] := 0;
M [M [1]] := 100;

Whoa! Now that takes a few moments to digest. However, if you take it slowly, it makes sense and you’ll
discover that these two instructions perform the exact same operation you’ve been doing all along. The first
statement stores zero into array element M[1]. The second statement fetches the value of M[1], which is an
integer so you can use it as an array index into M, and uses that value (zero) to control where it stores the
value 100.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 393

Chapter One Volume Three
If you’re willing to accept the above as reasonable, perhaps bizarre, but usable nonetheless, then you’ll
have no problems with pointers. Because m[1] is a pointer! Well, not really, but if you were to change “M”
to “memory” and treat this array as all of memory, this is the exact definition of a pointer.

1.7.1 Using Pointers in Assembly Language

A pointer is simply a memory location whose value is the address (or index, if you prefer) of some other
memory location. Pointers are very easy to declare and use in an assembly language program. You don’t
even have to worry about array indices or anything like that.

An HLA pointer is a 32 bit value that may contain the address of some other variable. If you have a
word variable p that contains $1000_0000, then p “points” at memory location $1000_0000. To access the
word that p points at, you could use code like the following:

mov(p, ebx); // Load EBX with the value of pointer p.
mov([ebx], eax); // Fetch the data that p points at.

By loading the value of p into EBX this code loads the value $1000_0000 into EBX (assuming p con-
tains $1000_0000 and, therefore, points at memory location $1000_0000). The second instruction above
loads the EAX register with the word starting at the location whose offset appears in EBX. Since EBX now
contains $1000_0000, this will load EAX from locations $1000_0000 through $1000_0003.

Why not just load EAX directly from location $1000_0000 using an instruction like
“MOV(mem, EAX);” (assuming mem is at address $1000_0000)? Well, there are lots of reasons. But the
primary reason is that this single instruction always loads EAX from location mem. You cannot change the
location from which it loads EAX. The former instructions, however, always load EAX from the location
where p is pointing. This is very easy to change under program control. In fact, the simple instruction
“MOV(&mem2, p);” will cause those same two instructions above to load EAX from mem2 the next time
they execute. Consider the following instructions:

mov(&i, p); // Assume all variables are STATIC variables.
.
.
.

if(some_expression) then

mov(&j, p); // Assume the code above skips this instruction and
. // you get to the next instruction by jumping
. // to this point from somewhere else.
.

endif;
mov(p, ebx); // Assume both of the above code paths wind up
mov([ebx], eax); // down here.

This short example demonstrates two execution paths through the program. The first path loads the vari-
able p with the address of the variable i. The second path through the code loads p with the address of the
variable j. Both execution paths converge on the last two MOV instructions that load EAX with i or j
depending upon which execution path was taken. In many respects, this is like a parameter to a procedure in
a high level language like Pascal. Executing the same instructions accesses different variables depending on
whose address (i or j) winds up in p.
Page 394 © 2001, By Randall Hyde Beta Draft - Do not distribute

Constants, Variables, and Data Types
1.7.2 Declaring Pointers in HLA

Since pointers are 32 bits long, you could simply use the dword directive to allocate storage for your
pointers. However, there is a much better way to do this: HLA provides the POINTER TO phrase specifi-
cally for declaring pointer variables. Consider the following example:

static
b: byte;
d: dword;
pByteVar: pointer to byte := &b;
pDWordVar: pointer to dword := &d;

This example demonstrates that it is possible to initialize as well as declare pointer variables in HLA. Note
that you may only take addresses of static variables (STATIC, READONLY, DATA, and STORAGE objects)
with the address-of operator, so you can only initialize pointer variables with the addresses of static objects.

You can also define your own pointer types in the TYPE section of an HLA program. For example, if
you often use pointers to characters, you’ll probably want to use a TYPE declaration like the one in the fol-
lowing example:

type
ptrChar: pointer to char;

static
cString: ptrChar;

1.7.3 Pointer Constants and Pointer Constant Expressions

HLA allows two literal constant forms: the address-of operator followed by the name of a static variable
or the constant zero. In addition to these two literal pointer constants, HLA also supports simple pointer
constant expressions.

The constant zero represents the NULL or NIL pointer, that is, an illegal address that does not exist9.
Programs typically initialize pointers with NULL to indicate that a pointer has explicitly not been initialized.
The HLA Standard Library predefines both the “NULL” and “nil” constants in the memory.hhf header file10.

In addition to simple address literals and the value zero, HLA allows very simple constant expressions
wherever a pointer constant is legal. Pointer constant expressions take one of the two following forms:

&StaticVarName + PureConstantExpression
&StaticVarName - PureConstantExpression

The PureConstantExpression term is a numeric constant expression that does not involve any pointer con-
stants. This type of expression produces a memory address that is the specified number of bytes before or
after (“-” or “+”, respectively) the StaticVarName variable in memory.

Since you can create pointer constant expressions, it should come as no surprise to discover that HLA
lets you define manifest pointer constants in the CONST section. The following program demonstrates how
you can do this.

program PtrConstDemo;
#include(“stdlib.hhf”);

9. Actually, address zero does exist, but if you try to access it under Win32 you will get a general protection fault.
10. NULL is for C/C++ programmers and nil is familiar to Pascal/Delphi programmers.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 395

Chapter One Volume Three
static
b: byte := 0;

byte1, 2, 3, 4, 5, 6, 7;

const
pb:= &b + 1;

begin PtrConstDemo;

mov(pb, ebx);
mov([ebx], al);
stdout.put(“Value at address pb = $”, al, nl);

end PtrConstDemo;

Program 1.5 Pointer Constant Expressions in an HLA Program

Upon execution, this program prints the value of the byte just beyond b in memory (which contains the
value $01).

1.7.4 Pointer Variables and Dynamic Memory Allocation

Pointer variables are the perfect place to store the return result from the HLA Standard Library malloc
function. The malloc function returns the address of the storage it allocates in the EAX register; therefore,
you can store the address directly into a pointer variable with a single MOV instruction immediately after a
call to malloc:

type
bytePtr: pointer to byte;

var
bPtr: bytePtr;

.

.

.
malloc(1024); // Allocate a block of 1,024 bytes.
mov(eax, bPtr); // Store address of block in bPtr.

.

.

.
free(bPtr); // Free the allocated block when done using it.

.

.

.

In addition to malloc and free, that the last volume introduced, the HLA Standard Library provides a
realloc procedure. The realloc routine takes two parameters, a pointer to a block of storage that malloc (or
realloc) previously created, and a new size. If the new size is less than the old size, realloc releases the stor-
age at the end of the allocated block back to the system. If the new size is larger than the current block, then
realloc will allocate a new block and move the old data to the start of the new block, then free the old block.

Typically, you would use realloc to correct a bad guess about a memory size you’d made earlier. For
example, suppose you want to read a set of values from the user but you won’t know how many memory
locations you’ll need to hold the values until after the user has entered the last value. You could make a wild
guess and then allocate some storage using malloc based on your estimate. If, during the input, you discover
that your estimate was too low, simply call realloc with a larger value. Repeat this as often as required until
Page 396 © 2001, By Randall Hyde Beta Draft - Do not distribute

Constants, Variables, and Data Types
all the input is read. Once input is complete, you can make a call to realloc to release any unused storage at
the end of the memory block.

The realloc procedure uses the following calling sequence:

realloc(ExistingPointer, NewSize);

Realloc returns a pointer to the newly allocated block in the EAX register.

One danger exists when using realloc. If you’ve made multiple copies of pointers into a block of stor-
age on the heap and then call realloc to resize that block, all the existing pointers are now invalid. Effec-
tively realloc frees the existing storage and then allocates a new block. That new block may not be in the
same memory location at the old block, so any existing pointers (into the block) that you have will be invalid
after the realloc call.

1.7.5 Common Pointer Problems

There are five common problems programmers encounter when using pointers. Some of these errors
will cause your programs to immediately stop with a diagnostic message; other problems are more subtle,
yielding incorrect results without otherwise reporting an error or simply affecting the performance of your
program without displaying an error. These five problems are

• Using an uninitialized pointer
• Using a pointer that contains an illegal value (e.g., NULL)
• Continuing to use malloc’d storage after that storage has been free’d
• Failing to free storage once the program is done using it
• Accessing indirect data using the wrong data type.

The first problem above is using a pointer variable before you have assigned a valid memory address to
the pointer. Beginning programmers often don’t realize that declaring a pointer variable only reserves stor-
age for the pointer itself, it does not reserve storage for the data that the pointer references. The following
short program demonstrates this problem:

// Program to demonstrate use of
// an uninitialized pointer. Note
// that this program should terminate
// with a Memory Access Violation exception.

program UninitPtrDemo;
#include(“stdlib.hhf”);

static

// Note: by default, varibles in the
// static section are initialized with
// zero (NULL) hence the following
// is actually initialized with NULL,
// but that will still cause our program
// to fail because we haven’t initialized
// the pointer with a valid memory address.

Uninitialized: pointer to byte;

begin UninitPtrDemo;

mov(Uninitialized, ebx);
mov([ebx], al);
stdout.put(“Value at address Uninitialized: = $”, al, nl);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 397

Chapter One Volume Three
end UninitPtrDemo;

Program 1.6 Uninitialized Pointer Demonstration

Although variables you declare in the STATIC section are, technically, initialized; static initialization still
doesn’t initialize the pointer in this program with a valid address.

Of course, there is no such thing as a truly uninitialized variable on the 80x86. What you really have are
variables that you’ve explicitly given an initial value and variables that just happen to inherit whatever bit
pattern was in memory when storage for the variable was allocated. Much of the time, these garbage bit pat-
terns laying around in memory don’t correspond to a valid memory address. Attempting to dereference such
a pointer (that is, access the data in memory at which it points) raises a Memory Access Violation exception.

Sometimes, however, those random bits in memory just happen to correspond to a valid memory loca-
tion you can access. In this situation, the CPU will access the specified memory location without aborting
the program. Although to a naive programmer this situation may seem preferable to aborting the program, in
reality this is far worse because your defective program continues to run with a defect without alerting you to
the problem. If you store data through an uninitialized pointer, you may very well overwrite the values of
other important variables in memory. This defect can produce some very difficult to locate defects in your
program.

The second problem programmers have with pointers is storing invalid address values into a pointer.
The first problem, above, is actually a special case of this second problem (with garbage bits in memory sup-
plying the invalid address rather than you producing via a miscalculation). The effects are the same; if you
attempt to dereference a pointer containing an invalid address you will either get a Memory Access Violation
exception or you will access an unexpected memory location.

The third problem listed above is also known as the dangling pointer problem. To understand this prob-
lem, consider the following code fragment:

malloc(256); // Allocate some storage.
mov(eax, ptr); // Save address away in a pointer variable.

.

. // Code that use the pointer variable “ptr”.

.
free(ptr); // Free the storage associated with “ptr”.

.

. // Code that does not change the value in “ptr”.

.
mov(ptr, ebx);
mov(al, [ebx]);

In this example you will note that the program allocates 256 bytes of storage and saves the address of that
storage away in the ptr variable. Then the code uses this block of 256 bytes for a while and frees the stor-
age, returning it to the system for other uses. Note that calling free does not change the value of ptr in any
way; ptr still points at the block of memory allocated by malloc earlier. Indeed, free does not change any
data in this block, so upon return from free, ptr still points at the data stored into the block by this code.
However, note that the call to free tells the system that this 256-byte block of memory is no longer needed by
the program and the system can use this region of memory for other purposes. The free function cannot
enforce that fact that you will never access this data again, you are simply promising that you won’t. Of
course, the code fragment above breaks this promise; as you can see in the last two instructions above the
program fetches the value in ptr and accesses the data it points at in memory.

The biggest problem with dangling pointers is that you can get away with using them a good part of the
time. As long as the system doesn’t reuse the storage you’ve free’d, using a dangling pointer produces no ill
effects in your program. However, with each new call to malloc, the system may decide to reuse the memory
released by that previous call to free. When this happens, any attempt to dereference the dangling pointer
may produce some unintended consequences. The problems range from reading data that has been overwrit-
ten (by the new, legal, use of the data storage), to overwriting the new data, to (the worst case) overwriting
Page 398 © 2001, By Randall Hyde Beta Draft - Do not distribute

Constants, Variables, and Data Types
system heap management pointers (doing so will probably cause your program to crash). The solution is
clear: never use a pointer value once you free the storage associated with that pointer.

Of all the problems, the fourth (failing to free allocated storage) will probably have the least impact on
the proper operation of your program. The following code fragment demonstrates this problem:

malloc(256);
mov(eax, ptr);

. // Code that uses the data where ptr is pointing.

. // This code does not free up the storage

. // associated with ptr.
malloc(512);
mov(eax, ptr);

// At this point, there is no way to reference the original
// block of 256 bytes pointed at by ptr.

In this example the program allocates 256 bytes of storage and references this storage using the ptr vari-
able. At some later time, the program allocates another block of bytes and overwrites the value in ptr with
the address of this new block. Note that the former value in ptr is lost. Since this address no longer exists in
the program, there is no way to call free to return the storage for later use. As a result, this memory is no
longer available to your program. While making 256 bytes of memory inaccessible to your program may
not seem like a big deal, imagine now that this code is in a loop that repeats over and over again. With each
execution of the loop the program loses another 256 bytes of memory. After a sufficient number of loop iter-
ations, the program will exhaust the memory available on the heap. This problem is often called a memory
leak because the effect is the same as though the memory bits were leaking out of your computer (yielding
less and less available storage) during program execution11.

Memory leaks are far less damaging than using dangling pointers. Indeed, there are only two problems
with memory leaks: the danger of running out of heap space (which, ultimately, may cause the program to
abort, though this is rare) and performance problems due to virtual memory page swapping. Nevertheless,
you should get in the habit of always free all storage once you are done using it.

The last problem with pointers is the lack of type-safe access. HLA cannot and does not enforce pointer
type checking. For example, consider the following program:

// Program to demonstrate use of
// lack of type checking in pointer
// accesses.

program BadTypePtrDemo;
#include(“stdlib.hhf”);

static
ptr:pointer to char;
cnt:uns32;

begin BadTypePtrDemo;

// Allocate sufficient characters
// to hold a line of text input
// by the user:

malloc(256);
mov(eax, ptr);

11. Note that the storage isn’t lost from you computer; once your program quits it returns all memory (including unfree’d
storage) to the O/S. The next time the program runs it will start with a clean slate.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 399

Chapter One Volume Three
// Okay, read the text a character
// at a time by the user:

stdout.put(“Enter a line of text: “);
stdin.flushInput();
mov(0, cnt);
mov(ptr, ebx);
repeat

stdin.getc();// Read a character from the user.
mov(al, [ebx]);// Store the character away.
inc(cnt);// Bump up count of characters.
inc(ebx);// Point at next position in memory.

until(stdin.eoln());

// Okay, we’ve read a line of text from the user,
// now display the data:

mov(ptr, ebx);
for(mov(cnt, ecx); ecx > 0; dec(ecx)) do

mov([ebx], eax);
stdout.put(“Current value is $”, eax, nl);
inc(ebx);

endfor;
free(ptr);

end BadTypePtrDemo;

Program 1.7 Type-Unsafe Pointer Access Example

This program reads in data from the user as character values and then displays the data as double word
hexadecimal values. While a powerful feature of assembly language is that it lets you ignore data types at
will and automatically coerce the data without any effort, this power is a two-edged sword. If you make a
mistake and access indirect data using the wrong data type, HLA and the 80x86 may not catch the mistake
and your program may produce inaccurate results. Therefore, you need to take care when using pointers and
indirection in your programs that you use the data consistently with respect to data type.

1.8 Putting It All Together

This chapter contains an eclectic combination of subjects. It begins with a discussion of the INTMUL,
BOUND, and INTO instructions that will prove useful throughout this text. Then this chapter discusses how
to declare constants and data types, including enumerated data types. This chapter also introduces constant
expressions and pointers. The following chapters in this text will make extensive use of these concepts.
Page 400 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Strings
Introduction to Character Strings Chapter Two

2.1 Chapter Overview

This chapter discusses how to declare and use character strings in your programs. While not a complete
treatment of this subject (a whole volume on this material appears later in this text), this chapter will provide
sufficient information to allow basic string manipulation within your HLA programs.

2.2 Composite Data Types

Composite data types are those that are built up from other (generally scalar) data types. This chapter
will cover one of the more important composite data types – the character string. A string is a good example
of a composite data type – it is a data structure built up from a sequence of individual characters and some
other data.

2.3 Character Strings

After integer values, character strings are probably the most popular data type that modern programs
use. The 80x86 does support a handful of string instructions, but these instructions are really intended for
block memory operations, not a specific implementation of a character string. Therefore, this section will
concentrate mainly on the HLA definition of character strings and also discuss the string handling routines
available in the HLA Standard Library.

In general, a character string is a sequence of ASCII characters that possesses two main attributes: a
length and the character data. Different languages use different data structures to represent strings. To bet-
ter understand the reasoning behind HLA strings, it is probably instructive to look at two different string rep-
resentations popularized by various high level languages.

Without question, zero-terminated strings are probably the most common string representation in use
today because this is the native string format for C/C++ and programs written in C/C++ (e.g., Windows). A
zero terminated string consists of a sequence of zero or more ASCII characters ending with a byte containing
zero. For example, in C/C++, the string “abc” requires four characters: the three characters ‘a’, ‘b’, and ‘c’
followed by a byte containing zero. As you’ll soon see, HLA character strings are upwards compatible with
zero terminated strings, but in the meantime you should note that it is very easy to create zero terminated
strings in HLA. The easiest place to do this is in the DATA section using code like the following:

data
zeroTerminatedString: char;

byte “This is the zero terminated string”, 0;

Remember, in the DATA section no space is actually reserved for a variable declaration, so the zeroTerminat-
edString variable’s address in memory corresponds to the first character in the following BYTE directive.
Whenever a character string appears in the BYTE directive as it does here, HLA emits each character in the
string to successive memory locations. The zero value at the end of the string properly terminates this string.

Zero terminated strings have two principle attributes: they are very simple to implement and the strings
can be any length. On the other hand, zero terminated string haves a few drawbacks. First, though not usu-
ally important, zero terminated strings cannot contain the NUL character (whose ASCII code is zero). Gen-
erally, this isn’t a problem, but it does create havoc once in a great while. The second problem with zero
terminated strings is that many operations on them are somewhat inefficient. For example, to compute the
length of a zero terminated string you must scan the entire string looking for that zero byte (counting each
character as you encounter it). The following program fragment demonstrates how to compute the length of
the string above:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 401

Chapter Two Volume Three
mov(&zeroTerminatedString, ebx);
mov(0, eax);
while((type byte [ebx]) <> 0) do

inc(ebx);
inc(eax);

endwhile;

// String length is now in EAX.

As you can see from this code, the time it takes to compute the length of the string is proportional to the
length of the string; as the string gets longer it will take longer to compute its length.

 A second string format, length-prefixed strings, overcomes some of the problems with zero terminated
strings. Length-prefixed strings are common in languages like Pascal; they generally consist of a length byte
followed by zero or more character values. The first byte specifies the length of the string, the remaining
bytes (up to the specified length) are the character data itself. In a length-prefixed scheme, the string “abc”
would consist of the four bytes $03 (the string length) followed by ‘a’, ‘b’, and ‘c’. Once again, you can cre-
ate length prefixed strings in HLA using code like the following:

data
lengthPrefixedString:char;

byte 3, “abc”;

Counting the characters ahead of time and inserting them into the byte statement, as was done here, may
seem like a major pain. Fortunately, there are ways to have HLA automatically compute the string length for
you.

Length-prefixed strings solve the two major problems associated with zero-terminated strings. It is pos-
sible to include the NUL character in length-prefixed strings and those operations on zero terminated strings
that are relatively inefficient (e.g., string length) are more efficient when using length prefixed strings. How-
ever, length prefixed strings suffer from their own drawbacks. The principal drawback to length-prefixed
strings, as described, is that they are limited to a maximum of 255 characters in length.

HLA uses an expanded scheme for strings that is upwards compatible with both zero-terminated and
length-prefixed strings. HLA strings enjoy the advantages of both zero-terminated and length-prefixed
strings without the disadvantages. In fact, the only drawback to HLA strings over these other formats is that
HLA strings consume a few additional bytes (the overhead for an HLA string is nine bytes compared to one
byte for zero-terminated or length-prefixed strings; the overhead being the number of bytes needed above
and beyond the actual characters in the string).

An HLA string value consists of four components. The first element is a double word value that speci-
fies the maximum number of characters that the string can hold. The second element is a double word value
specifying the current length of the string. The third component is the sequence of characters in the string.
The final component is a zero terminating byte. You could create an HLA-compatible string in the data sec-
tion using the following code1:

data
dword 11;
dword 11;

TheString: char;
byte “Hello there”;
byte 0;

Note that the address associated with the HLA string is the address of the first character, not the maximum or
current length values.

1. Actually, there are some restrictions on the placement of HLA strings in memory. This text will not cover those issues. See
the HLA documentation for more details.
Page 402 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Strings
“So what is the difference between the current and maximum string lengths?” you’re probably wonder-
ing. Well, in a fixed string like the above they are usually the same. However, when you allocate storage for
a string variable at run-time, you will normally specify the maximum number of characters that can go into
the string. When you store actual string data into the string, the number of characters you store must be less
than or equal to this maximum value. The HLA Standard Library string routines will raise an exception if
you attempt to exceed this maximum length (something the C/C++ and Pascal formats can’t do).

The terminating zero byte at the end of the HLA string lets you treat an HLA string as a zero-terminated
string if it is more efficient or more convenient to do so. For example, most calls to Windows require
zero-terminated strings for their string parameters. Placing a zero at the end of an HLA string ensures com-
patibility with Windows and other library modules that use zero-terminated strings.

2.4 HLA Strings

As noted in the previous section, HLA strings consist of four components: a maximum length, a current
string length, character data, and a zero terminating byte. However, HLA never requires you to create string
data by manually emitting these components yourself. HLA is smart enough to automatically construct this
data for you whenever it sees a string literal constant. So if you use a string constant like the following,
understand that somewhere HLA is creating the four-component string in memory for you:

stdout.put(“This gets converted to a four-component string by HLA”);

HLA doesn’t actually work directly with the string data described in the previous section. Instead,
when HLA sees a string object it always works with a pointer to that object rather than the object directly.
Without question, this is the most important fact to know about HLA strings, and is the biggest source of
problems beginning HLA programmers have with strings in HLA: strings are pointers! A string variable
consumes exactly four bytes, the same as a pointer (because it is a pointer!). Having said all that, let’s take a
look at a simple string variable declaration in HLA:

static
StrVariable: string;

Since a string variable is a pointer, you must initialize it before you can use it. There are three general
ways you may initialize a string variable with a legal string address: using static initializers, using the stral-
loc routine, or calling some other HLA Standard Library that initializes a string or returns a pointer to a
string.

In one of the static declaration sections that allow initialized variables (STATIC, DATA, and REA-
DONLY) you can initialize a string variable using the standard initialization syntax, e.g.,

static
InitializedString: string := “This is my string”;

Note that this does not initialize the string variable with the string data. Instead, HLA creates the string
data structure (see the previous section) in a special, hidden, memory segment and initializes the Initialized-
String variable with the address of the first character in this string (the “T” in “This”). Remember, strings are
pointers!

Since string variables are pointers, you can load the value of a string variable into a 32-bit register. The
pointer itself points at the first character position of the string. You can find the current string length in the
double word four bytes prior to this address, you can find the maximum string length in the double word
eight bytes prior to this address. The following program demonstrates one way to access this data2.

// Program to demonstrate accessing Length and Maxlength fields of a string.

2. Note that this scheme is not recommended. If you need to extract the length information from a string, use the routines
provided in the HLA string library for this purpose.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 403

Chapter Two Volume Three
program StrDemo;
#include(“stdlib.hhf”);

static
theString:string := “String of length 19”;

begin StrDemo;

mov(theString, ebx);// Get pointer to the string.

mov([ebx-4], eax);// Get current length
mov([ebx-8], ecx);// Get maximum length

stdout.put
(

“theString = ‘”, theString, “‘”, nl,
“length(theString)= “, (type uns32 eax), nl,
“maxLength(theString)= “, (type uns32 ecx), nl

);

end StrDemo;

Program 2.1 Accessing the Length and Maximum Length Fields of a String

When accessing the various fields of a string variable it is not wise to access them using fixed numeric
offsets as done in this example. In the future, the definition of an HLA string may change slightly. In partic-
ular, the offsets to the maximum length and length fields are subject to change. A safer way to access string
data is to coerce your string pointer using the str.strRec data type. The str.strRec data type is a record data
type (see “Records, Unions, and Name Spaces” on page 465) that defines symbolic names for the offsets of
the length and maximum length fields in the string data type. Were the offsets to the length and maximum
length fields to change in a future version of HLA, then the definitions in str.strRec would also change, so if
you use str.strRec then recompiling your program would automatically make any necessary changes to your
program.

To use the str.strRec data type properly, you must first load the string pointer into a 32-bit register, e.g.,
“MOV(SomeString, EBX);” Once the pointer to the string data is in a register, you can coerce that register
to the str.strRec data type using the HLA construct “(type str.strRec [EBX])”. Finally, to access the length or
maximum length fields, you would use either “(type str.strRec [EBX]).length” or “(type str.strRec
[EBX]).MaxStrLen” (respectively). Although there is a little more typing involved (versus using simple off-
sets like “-4” or “-8”), these forms are far more descriptive and much safer than straight numeric offsets.
The following program corrects the previous example by using the str.strRec data type.

// Program to demonstrate accessing Length and Maxlength fields of a string.

program LenMaxlenDemo;
#include(“stdlib.hhf”);

static
theString:string := “String of length 19”;

begin LenMaxlenDemo;

mov(theString, ebx);// Get pointer to the string.

mov((type str.strRec [ebx]).length, eax);// Get current length
mov((type str.strRec [ebx]).MaxStrLen, ecx);// Get maximum length
Page 404 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Strings
stdout.put
(

“theString = ‘”, theString, “‘”, nl,
“length(theString)= “, (type uns32 eax), nl,
“maxLength(theString)= “, (type uns32 ecx), nl

);

end LenMaxlenDemo;

Program 2.2 Correct Way to Access Length and MaxStrLen Fields of a String

A second way to manipulate strings in HLA is to allocate storage on the heap to hold string data.
Because strings can’t directly use pointers returned by malloc (since strings need to access eight bytes prior
to the pointer address), you shouldn’t use malloc to allocate storage for string data. Fortunately, the HLA
Standard Library memory module provides a memory allocation routine specifically designed to allocate
storage for strings: stralloc. Like malloc, stralloc expects a single dword parameter. This value specifies the
(maximum) number of characters needed in the string. The stralloc routine will allocate the specified num-
ber of bytes of memory, plus between nine and thirteen additional bytes to hold the extra string information3.

The stralloc routine will allocate storage for a string, initialize the maximum length to the value passed
as the stralloc parameter, initialize the current length to zero, and store a zero (terminating byte) in the first
character position of the string. After all this, stralloc returns the address of the zero terminating byte (that
is, the address of the first character element) in the EAX register.

Once you’ve allocated storage for a string, you can call various string manipulation routines in the HLA
Standard Library to operate upon the string. The next section will discuss the HLA string routines in detail;
this section will introduce a couple of string related routines for the sake of example. The first such routine is
the “stdin.gets(strvar)”. This routine reads a string from the user and stores the string data into the string
storage pointed at by the string parameter (strvar in this case). If the user attempts to enter more characters
than you’ve allocated for the string, then stdin.gets raises the ex.StringOverflow exception. The following
program demonstrates the use of stralloc.

// Program to demonstrate stralloc and stdin.gets.

program strallocDemo;
#include(“stdlib.hhf”);

static
theString:string;

begin strallocDemo;

stralloc(16);// Allocate storage for the string and store
mov(eax, theString);// the pointer into the string variable.

// Prompt the user and read the string from the user:

stdout.put(“Enter a line of text (16 chars, max): “);
stdin.flushInput();
stdin.gets(theString);

// Echo the string back to the user:

stdout.put(“The string you entered was: “, theString, nl);

3. Stralloc may allocate more than nine bytes for the overhead data because the memory allocated to an HLA string must
always be double word aligned and the total length of the data structure must be an even multiple of four.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 405

Chapter Two Volume Three
end strallocDemo;

Program 2.3 Reading a String from the User

If you look closely, you see a slight defect in the program above. It allocates storage for the string by
calling stralloc but it never frees the storage allocated. Even though the program immediately exits after the
last use of the string variable, and Windows will deallocate the storage anyway, it’s always a good idea to
explicitly free up any storage you allocate. Doing so keeps you in the habit of freeing allocated storage (so
you don’t forget to do it when it’s important) and, also, programs have a way of growing such that an inno-
cent defect that doesn’t affect anything in today’s program becomes a show-stopping defect in tomorrow’s
version.

To free storage allocated via stralloc, you must call the corresponding strfree routine, passing the string
pointer as the single parameter. The following program is a correction of the previous program with this
minor defect corrected:

// Program to demonstrate stralloc, strfree, and stdin.gets.

program strfreeDemo;
#include(“stdlib.hhf”);

static
theString:string;

begin strfreeDemo;

stralloc(16);// Allocate storage for the string and store
mov(eax, theString);// the pointer into the string variable.

// Prompt the user and read the string from the user:

stdout.put(“Enter a line of text (16 chars, max): “);
stdin.flushInput();
stdin.gets(theString);

// Echo the string back to the user:

stdout.put(“The string you entered was: “, theString, nl);

// Free up the storage allocated by stralloc:

strfree(theString);

end strfreeDemo;

Program 2.4 Corrected Program that Reads a String from the User

When looking at this corrected program, please take note that the stdin.gets routine expects you to pass
it a string parameter that points at an allocated string object. Without question, one of the most common
mistakes beginning HLA programmers make is to call stdin.gets and pass it a string variable that has not
been initialized. This may be getting old now, but keep in mind that strings are pointers! Like pointers, if
you do not initialize a string with a valid address, your program will probably crash when you attempt to
manipulate that string object. The call to stralloc plus moving the returned result into theString is how the
Page 406 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Strings
programs above initialize the string pointer. If you are going to use string variables in your programs, you
must ensure that you allocate storage for the string data prior to writing data to the string object.

Allocating storage for a string option is such a common operation that many HLA Standard Library rou-
tines will automatically do the allocation to save you the effort. Generally, such routines have an “a_” prefix
as part of their name. For example, the stdin.a_gets combines a call to stralloc and stdin.gets into the same
routine. This routine, which doesn’t have any parameters, reads a line of text from the user, allocates a string
object to hold the input data, and then returns a pointer to the string in the EAX register. The following pro-
gram is an adaptation of the previous two programs that uses stdin.a_gets:

// Program to demonstrate strfree and stdin.a_gets.

program strfreeDemo2;
#include(“stdlib.hhf”);

static
theString:string;

begin strfreeDemo2;

// Prompt the user and read the string from the user:

stdout.put(“Enter a line of text: “);
stdin.flushInput();
stdin.a_gets();
mov(eax, theString);

// Echo the string back to the user:

stdout.put(“The string you entered was: “, theString, nl);

// Free up the storage allocated by stralloc:

strfree(theString);

end strfreeDemo2;

Program 2.5 Reading a String from the User with stdin.a_gets

Note that, as before, you must still free up the storage stdin.a_gets allocates by calling the strfree rou-
tine. One big difference between this routine and the previous two is the fact that HLA will automatically
allocate exactly enough space for the string read from the user. In the previous programs, the call to stralloc
only allocates 16 bytes. If the user types more than this then the program raises an exception and quits. If
the user types less than 16 characters, then some space at the end of the string is wasted. The stdin.a_gets
routine, on the other hand, always allocates the minimum necessary space for the string read from the user.
Since it allocates the storage, there is little chance of overflow.

2.5 Accessing the Characters Within a String

Extracting individual characters from a string is a very common and easy task. In fact, it is so easy that
HLA doesn’t provide any specific procedure or language syntax to accomplish this - it’s easy enough just to
use machine instructions to accomplish this. Once you have a pointer to the string data, a simple indexed
addressing mode will do the rest of the work for you.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 407

Chapter Two Volume Three
Of course, the most important thing to keep in mind is that strings are pointers. Therefore, you cannot
apply an indexed addressing mode directly to a string variable an expect to extract characters from the string.
I.e, if s is a string variable, then “MOV(s[ebx], al);” does not fetch the character at position EBX in string
s and place it in the AL register. Remember, s is just a pointer variable, an addressing mode like s[ebx] will
simply fetch the byte at offset EBX in memory starting at the address of s (see Figure 2.1).

Figure 2.1 Incorrectly Indexing Off a String Variable

In Figure 2.1, assuming EBX contains three, “s[ebx]” does not access the fourth character in the string
s, instead it fetches the fourth byte of the pointer to the string data. It is very unlikely that this is the desired
effect you would want. Figure 2.2 shows the operation that is necessary to fetch a character from the string,
assuming EBX contains the value of s:

Figure 2.2 Correctly Indexing Off the Value of a String Variable

In Figure 2.2 EBX contains the value of string s. The value of s is a pointer to the actual string data in
memory. Therefore, EBX will point at the first character of the string when you load the value of s into
EBX. The following code demonstrates how to access the fourth character of string s in this fashion:

mov(s, ebx); // Get pointer to string data into EBX.
mov([ebx+3], al); // Fetch the fourth character of the string.

If you want to load the character at a variable, rather than fixed, offset into the string, then you can use
one of the 80x86’s scaled indexed addressing modes to fetch the character. For example, if an uns32 vari-
able index contains the desired offset into the string, you could use the following code to access the character
at s[index]:

Low memory
addresses

High memory
addresses

S

Pointer to string data

s[ebx] (if ebx=3)

Pointer to string data

Low memory
addresses

High memory
addresses

S

MaxLength Length A B C D

[EBX+3]
Page 408 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Strings
mov(s, ebx); // Get address of string data into EBX.
mov(index, ecx); // Get desired offset into string.
mov([ebx+ecx], al); // Get the desired character into AL.

There is only one problem with the code above- it does not check to ensure that the character at offset
index actually exists. If index is greater than the current length of the string, then this code will fetch a gar-
bage byte from memory. Unless you can apriori determine that index is always less than the length of the
string, code like this is dangerous to use. A better solution is to check the index against the string’s current
length before attempting to access the character. the following code provides one way to do this.

mov(s, ebx);
mov(index, ecx);
if(ecx < (type str.strRec [ebx]).Length) then

mov([ebx+ecx], al);

else

<< error, string index is of bounds >>

endif;

In the ELSE portion of this IF statement you could take corrective action, print an error message, or
raise an exception. If you want to explicitly raise an exception, you can use the HLA RAISE statement to
accomplish this. The syntax for the RAISE statement is

raise(integer_constant);
raise(reg32);

The value of the integer_constant or 32-bit register must be an exception number. Usually, this is one of the
predefined constants in the excepts.hhf header file. An appropriate exception to raise when a string index is
greater than the length of the string is ex.StringIndexError. The following code demonstrates raising this
exception if the string index is out of bounds:

mov(s, ebx);
mov(index, ecx);
if(ecx < (type str.strRec [ebx]).Length) then

mov([ebx+ecx], al);

else

raise(ex.StringIndexError);

endif;

2.6 The HLA String Module and Other String-Related Routines

Although HLA provides a powerful definition for string data, the real power behind HLA’s string capa-
bilities lies in the HLA Standard Library, not in the definition of HLA string data. HLA provides several
dozen string manipulation routines that far exceed the capabilities found in standard HLLs like C/C++, Java,
or Pascal; indeed, HLA’s string handling capabilities rival those in string processing languages like Icon or
SNOBOL4. While it is premature to introduce all of HLA’s character string handling routines, this chapter
will discuss many of the string facilities that HLA provides.

Perhaps the most basic string operation you will need is to assign one string to another. There are three
different ways to assign strings in HLA: by reference, by copying a string, and by duplicating a string. Of
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 409

Chapter Two Volume Three
these, assignment by reference is the fastest and easiest. If you have two strings and you wish to assign one
string to the other, a simple and fast way to do this is to copy the string pointer. The following code fragment
demonstrates this:

static
string1: string := “Some String Data”;
string2: string;

.

.

.
mov(string1, eax);
mov(eax, string2);

.

.

.

String assignment by reference is very efficient because it only involves two simple MOV instructions,
regardless of the actual length of the string. Assignment by reference works great if you never modify the
string data after the assignment operation. Do keep in mind, though, that both string variables (string1 and
string2 in the example above) wind up pointing at the same data. So if you make a change to the data
pointed at by one string variable, you will change the string data pointed at by the second string object since
both objects point at the same data. The following program demonstrates this problem:

// Program to demonstrate the problem
// with string assignment by reference.

program strRefAssignDemo;
#include(“stdlib.hhf”);

static
string1:string;
string2:string;

begin strRefAssignDemo;

// Get a value into string1

forever

stdout.put(“Enter a string with at least three characters: “);
stdin.a_gets();
mov(eax, string1);

breakif((type str.strRec [eax]).length >= 3);

stdout.put(“Please enter a string with at least three chars.” nl);

endfor;

stdout.put(“You entered: ‘”, string1, “‘” nl);

// Do the string assignment by copying the pointer

mov(string1, ebx);
mov(ebx, string2);

stdout.put(“String1= ‘”, string1, “‘” nl);
stdout.put(“String2= ‘”, string2, “‘” nl);
Page 410 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Strings
// Okay, modify the data in string1 by overwriting
// the first three characters of the string (note that
// a string pointer always points at the first character
// position in the string and we know we’ve got at least
// three characters here).

mov(‘a’, (type char [ebx]));
mov(‘b’, (type char [ebx+1]));
mov(‘c’, (type char [ebx+2]));

// Okay, demonstrate the problem with assignment via
// pointer copy.

stdout.put
(

“After assigning ‘abc’ to the first three characters in string1:”
nl
nl

);
stdout.put(“String1= ‘”, string1, “‘” nl);
stdout.put(“String2= ‘”, string2, “‘” nl);

strfree(string1);// Don’t free string2 as well!

end strRefAssignDemo;

Program 2.6 Problem with String Assignment by Copying Pointers

Since both string1 and string2 point at the same string data in this example, any change you make to one
string is reflected in the other. While this is sometimes acceptable, most programmers expect assignment to
produce a different copy of a string; they expect the semantics of string assignment to produce two unique
copies of the string data.

An important point to remember when using copy by reference (this term means copying a pointer
rather than copying the actual data) is that you have created an alias to the string data. The term “alias”
means that you have two names for the same object in memory (e.g., in the program above, string1 and
string2 are two different names for the same string data). When you read a program it is reasonable to
expect that different variables refer to different memory objects. Aliases violate this rule, thus making your
program harder to read and understand because you’ve got to remember that aliases do not refer to different
objects in memory. Failing to keep this in mind can lead to subtle bugs in your program. For instance, in the
example above you have to remember that string1 and string2 are aliases so as not to free both objects at the
end of the program. Worse still, you to remember that string1 and string2 are aliases so that you don’t con-
tinue to use string2 after freeing string1 in this code since string2 would be a dangling reference at that
point.

Since using copy by reference makes your programs harder to read and increases the possibility that you
might introduce subtle defects in your programs, you might wonder why someone would use copy by refer-
ence at all. There are two reasons for this: first, copy by reference is very efficient; it only involves the exe-
cution of two MOV instructions. Second, some algorithms actually depend on copy by reference semantics.
Nevertheless, you should carefully consider whether copying string pointers is the appropriate way to do a
string assignment in your program before using this technique.

The second way to assign one string to another is to actually copy the string data. The HLA Standard
Library str.cpy routine provides this capability. A call to the str.cpy procedure using the following form:

str.cpy(source_string, destination_string);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 411

Chapter Two Volume Three
The source and destination strings must be string variables (pointers) or 32-bit registers containing the
addresses of the string data in memory.

The str.cpy routine first checks the maximum length field of the destination string to ensure that it is at
least as big as the current length of the source string. If it is not, then str.cpy raises the ex.StringOverflow
exception. If the maximum string length field of the destination string is at least as big as the current string
length of the source string, then str.cpy copies the string length, the characters, and the zero terminating byte
from the source string to the data area at which the destination string points. When this process is complete,
the two strings point at identical data, but they do not point at the same data in memory4. The following pro-
gram is a rework of the previous example using str.cpy rather than copy by reference.

// Program to demonstrate string assignment using str.cpy.

program strcpyDemo;
#include(“stdlib.hhf”);

static
string1:string;
string2:string;

begin strcpyDemo;

// Allocate storage for string2:

stralloc(64);
mov(eax, string2);

// Get a value into string1

forever

stdout.put(“Enter a string with at least three characters: “);
stdin.a_gets();
mov(eax, string1);

breakif((type str.strRec [eax]).length >= 3);

stdout.put(“Please enter a string with at least three chars.” nl);

endfor;

// Do the string assignment via str.cpy

str.cpy(string1, string2);

stdout.put(“String1= ‘”, string1, “‘” nl);
stdout.put(“String2= ‘”, string2, “‘” nl);

// Okay, modify the data in string1 by overwriting
// the first three characters of the string (note that
// a string pointer always points at the first character
// position in the string and we know we’ve got at least
// three characters here).

mov(string1, ebx);

4. Unless, of course, both string pointers contained the same address to begin with, in which case str.cpy copies the string data
over the top of itself.
Page 412 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Strings
mov(‘a’, (type char [ebx]));
mov(‘b’, (type char [ebx+1]));
mov(‘c’, (type char [ebx+2]));

// Okay, demonstrate that we have two different strings
// since we used str.cpy to copy the data:

stdout.put
(

“After assigning ‘abc’ to the first three characters in string1:”
nl
nl

);
stdout.put(“String1= ‘”, string1, “‘” nl);
stdout.put(“String2= ‘”, string2, “‘” nl);

// Note that we have to free the data associated with both
// strings since they are not aliases of one another.

strfree(string1);
strfree(string2);

end strcpyDemo;

Program 2.7 Copying Strings using str.cpy

There are two really important things to note about this program. First, note that this program begins by
allocating storage for string2. Remember, the str.cpy routine does not allocate storage for the destination
string, it assumes that the destination string already has storage allocated to it. Keep in mind that str.cpy
does not initialize string2, it only copies data to the location where string2 is pointing. It is the program’s
responsibility to initialize the string by allocating sufficient memory before calling str.cpy. The second thing
to notice here is that the program calls strfree to free up the storage for both string1 and string2 before the
program quits.

Allocating storage for a string variable prior to calling str.cpy is so common that the HLA Standard
Library provides a routine that allocates and copies the string: str.a_cpy. This routine uses the following call
syntax:

str.a_cpy(source_string);

Note that there is no destination string. This routine looks at the length of the source string, allocates suffi-
cient storage, makes a copy of the string, and then returns a pointer to the new string in the EAX register.
The following program demonstrates the current example using the str.a_cpy procedure.

// Program to demonstrate string assignment using str.a_cpy.

program stra_cpyDemo;
#include(“stdlib.hhf”);

static
string1:string;
string2:string;

begin stra_cpyDemo;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 413

Chapter Two Volume Three
// Get a value into string1

forever

stdout.put(“Enter a string with at least three characters: “);
stdin.a_gets();
mov(eax, string1);

breakif((type str.strRec [eax]).length >= 3);

stdout.put(“Please enter a string with at least three chars.” nl);

endfor;

// Do the string assignment via str.a_cpy

str.a_cpy(string1);
mov(eax, string2);

stdout.put(“String1= ‘”, string1, “‘” nl);
stdout.put(“String2= ‘”, string2, “‘” nl);

// Okay, modify the data in string1 by overwriting
// the first three characters of the string (note that
// a string pointer always points at the first character
// position in the string and we know we’ve got at least
// three characters here).

mov(string1, ebx);
mov(‘a’, (type char [ebx]));
mov(‘b’, (type char [ebx+1]));
mov(‘c’, (type char [ebx+2]));

// Okay, demonstrate that we have two different strings
// since we used str.cpy to copy the data:

stdout.put
(

“After assigning ‘abc’ to the first three characters in string1:”
nl
nl

);
stdout.put(“String1= ‘”, string1, “‘” nl);
stdout.put(“String2= ‘”, string2, “‘” nl);

// Note that we have to free the data associated with both
// strings since they are not aliases of one another.

strfree(string1);
strfree(string2);

end stra_cpyDemo;

Program 2.8 Copying Strings using str.a_cpy
Page 414 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Strings
Warning: Whenever using copy by reference or str.a_cpy to assign a string, don’t forget to
free the storage associated with the destination string if you have previously allocated stor-
age and have not yet freed the previous string. Failure to do so may produce a memory
leak if you do not have another pointer to the previous string data laying around.

Obtaining the length of a character string is such a common need that the HLA Standard Library pro-
vides a str.length routine specifically for this purpose. Of course, you can fetch the length by using the
str.strRec data type to access the length field directly, but constant use of this mechanism can be tiring since
it involves a lot of typing. The str.length routine provides a more compact and convenient way to fetch the
length information. You call str.length using one of the following two formats:

str.length(Reg32);

str.length(string_variable);

This routine returns the current string length in the EAX register.

Another pair of useful string routines are the str.cat and str.a_cat procedures. They use the following
calling sequence:

str.cat(srcStr, destStr);
str.a_cat(src1Str, src2Str);

These two routines concatenate two strings (that is, they create a new string by joining the two strings
together). The str.cat procedure concatenates the source string to the end of the destination string. Before
the concatenation actually takes place, str.cat checks to make sure that the destination string is large enough
to hold the concatenated result, it raises the ex.StringOverflow exception if the destination string is too small.

The str.a_cat, as its name suggests, allocates storage for the resulting string before doing the concatena-
tion. This routine will allocate sufficient storage to hold the concatenated result, then it will copy the
src1Str to the allocated storage, finally it will append the string data pointed at by src2Str to the end of this
new string and return a pointer to the new string in the EAX register.

Warning: note a potential source of confusion. The str.cat procedure concatenates its first operand to
the end of the second operand. Therefore, str.cat follows the standard (src, dest) operand format present in
many HLA statements. The str.a_cat routine, on the other hand, has two source operands rather than a
source and destination operand. The str.a_cat routine concatenates its two operands in an intuitive
left-to-right fashion. This is the opposite of str.cat. Keep this in mind when using these two routines.

The following program demonstrates the use of the str.cat and str.a_cat routines:

// Program to demonstrate str.cat and str.a_cat.

program strcatDemo;
#include(“stdlib.hhf”);

static
UserName:string;
Hello: string;
a_Hello:string;

begin strcatDemo;

// Allocate storage for the concatenated result:

stralloc(1024);
mov(eax, Hello);

// Get some user input to use in this example:

stdout.put(“Enter your name: “);
stdin.flushInput();
stdin.a_gets();
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 415

Chapter Two Volume Three
mov(eax, UserName);

// Use str.cat to combine the two strings:

str.cpy(“Hello “, Hello);
str.cat(UserName, Hello);

// Use str.a_cat to combine the string strings:

str.a_cat(“Hello “, UserName);
mov(eax, a_Hello);

stdout.put(“Concatenated string #1 is ‘”, Hello, “‘” nl);
stdout.put(“Concatenated string #2 is ‘”, a_Hello, “‘” nl);

strfree(UserName);
strfree(a_Hello);
strfree(Hello);

end strcatDemo;

Program 2.9 Demonstration of str.cat and str.a_cat Routines

The str.insert and str.a_insert routines are closely related to the string concatenation procedures. How-
ever, the str.insert and str.a_insert routines let you insert one string anywhere into another string, not just at
the end of the string. The calling sequence for these two routines is

str.insert(src, dest, index);
str.a_insert(StrToInsert, StrToInsertInto, index);

These two routines insert the source string (src or StrToInsert) into the destination string (dest or StrTo-
InsertInto) starting at character position index. The str.insert routine inserts the source string directly into
the destination string; if the destination string is not large enough to hold both strings, str.insert raises an
ex.StringOverflow exception. The str.a_insert routine first allocates a new string on the heap, copies the des-
tination string (StrToInsertInto) to the new string, and then inserts the source string (StrToInsert) into this
new string at the specified offset; str.a_insert returns a pointer to the new string in the EAX register.

Indexes into a string are zero-based. This means that if you supply the value zero as the index in
str.insert or str.a_insert, then these routines will insert the source string before the first character of the desti-
nation string. Likewise, if the index is equal to the length of the string minus one, then these routines will
simply concatenate the source string to the end of the destination string. Note: if the index is greater than the
length of the string, the str.insert and str.a_insert procedures will not raise an exception; instead, they will
simply append the source string to the end of the destination string.

The str.delete and str.a_delete routines let you remove characters from a string. They use the following
calling sequence:

str.delete(str, StartIndex, Length);
str.a_delete(str, StartIndex, Length);

Both routines delete Length characters starting at character position StartIndex in string str. The differ-
ence between the two is that str.delete deletes the characters directly from str whereas str.a_delete first allo-
cates storage and copies str, then deletes the characters from the new string (leaving str untouched). The
str.a_delete routine returns a pointer to the new string in the EAX register.

The str.delete and str.a_delete routines are very forgiving with respect to the values you pass in StartIn-
dex and Length. If StartIndex is greater than the current length of the string, these routines do not delete any
characters from the string. If StartIndex is less than the current length of the string, but StartIndex+Length is
Page 416 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Strings
greater than the length of the string, then these routines will delete all characters from StartIndex to the end
of the string.

Another very common string operation is the need to copy a portion of a string to a different string with-
out otherwise affecting the source string. The str.substr and str.a_substr routines provide this capability.
These routines use the following calling sequence:

str.substr(src, dest, StartIndex, Length);
str.a_substr(src, StartIndex, Length);

The str.substr routine copies length characters, starting at position StartIndex, from the src string to the
dest string. The dest string must have sufficient storage allocated to hold the new string or str.substr will
raise an ex.StringOverflow exception. If the StartIndex value is greater than the length of the string, then
str.substr will raise an ex.StringIndexError exception. If StartIndex+Length is greater than the length of the
source string, but StartIndex is less than the length of the string, then str.substr will extract only those char-
acters from StartIndex to the end of the string.

The str.a_substr procedure behaves in a fashion nearly identical to str.substr except it allocates storage
on the heap for the destination string. Other than overflow never occurs, str.a_substr handles exceptions the
identically to str.substr5. As you can probably guess by now, str.a_substr returns a pointer to the newly allo-
cated string in the EAX register.

After you begin working with string data for a little while, the need will invariably arise to compare two
strings. A first attempt at string comparison, using the standard HLA relational operators, will compile but
not necessarily produce the desired results:

mov(s1, eax);
if(eax = s2) then

<< code to execute if the strings are equal >>

else

<< code to execute if the strings are not equal >>

endif;

As stated above, this code will compile and execute just fine. However, it’s probably not doing what you
expect it to do. Remember strings are pointers. This code compares the two pointers to see if they are
equal. If they are equal, clearly the two strings are equal (since both s1 and s2 point at the exact same string
data). However, the fact that the two pointers are different doesn’t necessarily mean that the strings are not
equivalent. Both s1 and s2 could contain different values (that is, they point at different addresses in mem-
ory) yet the string data at those two different addresses could be identical. Most programmers expect a
string comparison for equality to be true if the data for the two strings is the same. Clearly a pointer compar-
ison does not provide this type of comparison. To overcome this problem, the HLA Standard Library pro-
vides a set of string comparison routines that will compare the string data, not just their pointers. These
routines use the following calling sequence:

str.eq(src1, src2);
str.ne(src1, src2);
str.lt(src1, src2);
str.le(src1, src2);
str.gt(src1, src2);
str.ge(src1, src2);

Each of these routines compares the src1 string to the src2 string and return true (1) or false (0) in the EAX
register depending on the comparison. For example, “str.eq(s1, s2);” returns true in EAX if s1 is equal to s2.
HLA provides a small extension that allows you to use the string comparison routines within an IF state-

5. Technically, str.a_substr, like all routines that call malloc to allocate storage, can raise an ex.MemoryAllocationFailure
exception, but this is very unlikely to occur.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 417

Chapter Two Volume Three
ment6. The following code demonstrates the use of some of these comparison routines within an IF state-
ment:

stdout.put(“Enter a single word: “);
stdin.a_gets();
if(str.eq(eax, “Hello”)) then

stdout.put(“You entered ‘Hello’”, nl);

endif;
strfree(eax);

Note that the string the user enters in this example must exactly match “Hello”, including the use of an
upper case “H” (rather than lower case) at the beginning of the string. When processing user input, it is best
to ignore alphabetic case in string comparisons because different users have different ideas about when they
should be pressing the shift key on the keyboard. An easy solution is to use the HLA case insensitive string
comparison functions. These routines compare two strings ignoring any differences in alphabetic case.
These routines use the following calling sequence:

str.ieq(src1, src2);
str.ine(src1, src2);
str.ilt(src1, src2);
str.ile(src1, src2);
str.igt(src1, src2);
str.ige(src1, src2);

Other than they treat upper case characters the same as their lower case equivalents, these routines behave
exactly like the former routines, returning true or false in EAX depending on the result of the comparison.

Like most high level languages, HLA compares strings using lexicographical ordering. This means that
two strings are equal if and only if their lengths are the same and the corresponding characters in the two
strings are exactly the same. For less than or greater than comparisons, lexicographical ordering corre-
sponds to the way words appear in a dictionary. That is, “a” is less than “b” is less than “c” etc. Actually,
HLA compares the strings using the ASCII numeric codes for the characters, so if you are unsure whether
“a” is less than a period, simply consult the ASCII character chart (incidentally, “a” is greater than a period
in the ASCII character set, just in case you were wondering).

If two strings have different lengths, lexicographical ordering only worries about the length if the two
strings exactly match up through the length of the shorter string. If this is the case, then the longer string is
greater than the shorter string (and, conversely, the shorter string is less than the longer string). Note, how-
ever, that if the characters in the two strings do not match, then HLA’s string comparison routines ignore the
length of the string; e.g., “z” is always greater than “aaaaa” even though it has a shorter length.

The str.eq routine checks to see if two strings are equal. Sometimes, however, you might want to know
whether one string contains another string. For example, you may want to know if some string contains the
substring “north” or “south” to determine some action to take in a game. The HLA str.index routine lets you
check to see if one string is contained as a substring of another. The str.index routine uses the following call-
ing sequence:

str.index(StrToSearch, SubstrToSearchFor);

This function returns, in EAX, the offset into StrToSearch where SubstrToSearchFor appears. This routine
returns -1 in EAX if SubstrToSearchFor is not present in StrToSearch. Note that str.index will do a case sen-
sitive search. Therefore the strings must exactly match. There is no case insensitive variant of str.index you
can use7.

6. This extension is actually a little more general than this section describes. The next chapter will explain it fully.
7. However, HLA does provide routines that will convert all the characters in a string to one case or another. So you can make
copies of the strings, convert all the characters in both copies to lower case, and then search using these converted strings.
This will achieve the same result.
Page 418 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Strings
The HLA strings module contains many additional routines besides those this section presents. Space
limitations and prerequisite knowledge prevent the presentation of all the string functions here; however,
this does not mean that the remaining string functions are unimportant. You should definitely take a look at
the HLA documentation to learn everything you can about the powerful HLA string library routines. The
chapters on advanced string handling contain more information on HLA string and pattern matching rou-
tines.

2.7 In-Memory Conversions

The HLA Standard Library’s string module contains dozens of routines for converting between strings
and other data formats. Although it’s a little premature in this text to present a complete description of those
functions, it would be rather criminal not to discuss at least one of the available functions: the str.put routine.
This one routine (which is actually a macro) encapsulates the capabilities of all the other string conversion
functions, so if you learn how to use this one, you’ll have most of the capabilities of those other routines at
your disposal. For more information on the other string conversions, see the volume on Advanced String
Handling.

You use the str.put routine in a manner very similar to the stdout.put routine. The only difference is that
the str.put routine “writes” its data to a string instead of the standard output device. A call to str.put has the
following syntax:

str.put(destString, values_to_convert);

Example of a call to str.put:

str.put(destString, “I =”, i:4, “ J= “, j, “ s=”, s);

Note: generally you would not put a newline character seqeuence at the end of the string as you would if you
were printing the string to the standard output device.

The destString parameter at the beginning of the str.put parameter list must be a string variable and it
must already have storage associated with it. If str.put attempts to store more characters than allowed into
the destString parameter, then this function raises the ex.StringOverflow exception.

Most of the time you won’t know the length of the string that str.put will produce. In those instances,
you should simply allocate sufficient storage for a really large string, one that is way larger than you expect,
and use this string data as the first parameter of the str.put call. This will prevent an exception from crashing
your program. Generally, if you expect to produce about one screen line of text, you should probably allo-
cate at least 256 characters for the destination string. If you’re creating longer strings, you should probably
use a default of 1024 characters (or more, if you’re going to produce really large strings).

Example:

static
s: string;

.

.

.
mov(stralloc(256), s);

.

.

.
str.put(s, “R: “, r:16:4, “ strval: ‘”, strval:-10, “‘”);

You can use the str.put routine to convert any data to a string that you can print using stdout.put. You
will probably find this routine invaluable for common value-to-string conversions.

At the time this is being written, there is no corresponding str.get routine that will read values from an
input string (this routine will probably appear in a future version of the HLA Standard Library, so watch out
for it). In the meantime, the HLA strings and conversions modules in the Standard Library do provide lots of
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 419

Chapter Two Volume Three
stand-alone conversion functions you can use to convert string data to some other format. See the chapter on
“Advanced String Handling” for more details about these routines.

2.8 Putting It All Together

There are many different ways to represent character strings. This chapter began by discussing how the
C/C++ and Pascal languages represent strings using zero-terminated and length prefixed strings. HLA uses
a hybrid representation for its string. HLA strings consist of a pointer to a zero terminated sequence of char-
acter with a pair of prefix length values. HLA’s format offers all the advantages of the other two forms with
the slight disadvantage of a few extra bytes of overhead.

After discussing string formats, this chapter discussed how to operate on string data. In addition to
accessing the characters in a string directly (which is easy, you just index off the pointer to the string data),
this chapter described how to manipulate strings using several routines from the HLA Standard Library.
This chapter provides a very basic introduction to string handling in HLA. To learn more about string
manipulation in assembly language (and the use of the routines in the HLA Standard Library), see the sepa-
rate volume on “Advanced String Handling” in this text.
Page 420 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Sets
Characters and Character Sets Chapter Three

3.1 Chapter Overview

This chapter completes the discussion of the character data type by describing several character transla-
tion and classification functions found in the HLA Standard Library. These functions provide most of the
character operations that aren’t trivial to realize using a few 80x86 machine instructions.

This chapter also introduces another composite data type based on the character – the character set data
type. Character sets and their associated operations, let you quickly test characters to see if they belong to
some set. These operations also let you manipulate sets of characters using familiar operations like set
union, intersection, and difference.

3.2 The HLA Standard Library CHARS.HHF Module

The HLA Standard Library chars.hhf module provides a couple of routines that convert characters from
one form to another and several routines that classify characters according to their graphic representation.
These functions are especially useful for processing user input to verify that it is correct.

The first two routines we will consider are the translation/conversion functions. These functions are
chars.toUpper and chars.toLower. These functions use the following syntax:

chars.toLower(characterValue); // Returns converted character in AL.
chars.toUpper(characterValue); // Returns converted character in AL.

These two functions require a byte-sized parameter (typically a register or a char variable). They check the
character to see if it is an alphabetic character; if it is not, then these functions return the unmodified param-
eter value in the AL register. If the character is an alphabetic character, then these functions may translate
the value depending on the particular function. The chars.toUpper function translates lower case alphabetic
characters to upper case; it returns upper case character unmodified. The chars.toLower function does the
converse – it translates upper case characters to lower case characters and leaves lower case characters alone.

These two functions are especially useful when processing user input containing alphabetic characters.
For example, suppose you expect a “Y” or “N” answer from the user at some point in your program. You
code might look like the following:

forever

stdout.put(“Answer ‘Y’ or ‘N’:”);
stdin.FlushInput(); // Force input of new line of text.
stdin.getc(); // Read user input in AL.
breakif(al = ‘Y’);
breakif(al = ‘N’);
stdout.put(“Illegal input, please reenter”, nl);

endfor;

The problem with this program is that the user must answer exactly “Y” or “N” (using upper case) or the
program will reject the user’s input. This means that the program will reject “y” and “n” since the ASCII
codes for these characters are different than “Y” and “N”.

One way to solve this problem is to include two additional BREAKIF statements in the code above that
test for “y” and “n” as well as “Y” and “N”. The problem with this approach is that AL will still contain one
of four different characters, complicating tests of AL once the program exits the loop. A better solution is to
use either chars.toUpper or chars.toLower to translate all alphabetic characters to a single case. Then you
can test AL for a single pair of characters, both in the loop and outside the loop. The resulting code would
look like the following:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 421

Sets
forever

stdout.put(“Answer ‘Y’ or ‘N’:”);
stdin.FlushInput(); // Force input of new line of text.
stdin.getc(); // Read user input in AL.
chars.toUpper(al); // Convert “y” and “n” to “Y” and “N”.
breakif(al = ‘Y’);
breakif(al = ‘N’);
stdout.put(“Illegal input, please reenter”, nl);

endfor;
 << test for “Y” or “N” down here to determine user input >>

As you can see from this example, the case conversion functions can be quite useful when processing user
input. As a final example, consider a program that presents a menu of options to the user and the user selects
an option using an alphabetic character. Once again, you can use chars.toUpper or chars.toLower to map
the input character to a single case so that it is easier to process the user’s input:

stdout.put(“Enter selection (A-G):”);
stdin.FlushInput();
stdin.getc();
chars.toLower(al);
if(al = ‘a’) then

<< Handle Menu Option A >>

elseif(al = ‘b’) then

<< Handle Menu Option B >>

elseif(al = ‘c’) then

<< Handle Menu Option C >>

elseif(al = ‘d’) then

<< Handle Menu Option D >>

elseif(al = ‘e’) then

<< Handle Menu Option E >>

elseif(al = ‘f’) then

<< Handle Menu Option F >>

elseif(al = ‘g’) then

<< Handle Menu Option G >>

else

stdout.put(“Illegal input!” nl);

endif;

The remaining functions in the chars.hhf module all return a boolean result depending on the type of the
character you pass them as a parameter. These classification functions let you quickly and easily test a char-
acter to determine if it’s type is valid for the some intended use. These functions expect a single byte (char)
Page 422 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Sets
parameter and they return true (1) or false (0) in the EAX register. These functions use the following calling
syntax:

chars.isAlpha(c); // Returns true if c is alphabetic
chars.isUpper(c); // Returns true if c is upper case alphabetic.
chars.isLower(c); // Returns true if c is lower case alphabetic.
chars.isAlphaNum(c); // Returns true if c is alphabetic or numeric.
chars.isDigit(c); // Returns true if c is a decimal digit.
chars.isXDigit(c); // Returns true if c is a hexadecimal digit.
chars.isGraphic(c); // See notes below.
chars.isSpace(c); // Returns true if c is a whitespace character.
chars.isASCII(c); // Returns true if c is in the range #$00..#$7f.
chars.isCtrl(c); // Returns true if c is a control character.

Notes: Graphic characters are the printable characters whose ASCII codes fall in the range $21..$7E. Note
that a space is not considered a graphic character (nor are the control characters). Whitespace characters are
the space, the tab, the carriage return, and the linefeed. Control characters are those characters whose ASCII
code is in the range $00..$1E and $7F.

These classification functions are great for validating user input. For example, if you want to check to
ensure that a user has entered nothing but numeric characters in a string you read from the standard input,
you could use code like the following:

stdin.a_gets(); // Read line of text from the user.
mov(eax, ebx); // save ptr to string in EBX.
mov(ebx, ecx); // Another copy of string pointer to test each char.
while((type char [ecx]) <> #0) do // Repeat while not at end of string.

breakif(!chars.isDigit((type char [ecx])));
inc(ecx); // Move on to the next character;

endwhile;
if((type char [ecx]) = #0) then

<< Valid string, process it >>

else

<< invalid string >>

endif;

Although the chars.hhf module’s classification functions handle many common situations, you may find
that you need to test a character to see if it belongs in a class that the chars.hhf module does not handle. Fear
not, checking for such characters is very easy. The next section will explain how to do this.

3.3 Character Sets

Character sets are another composite data type, like strings, built upon the character data type. A char-
acter set is a mathematical set of characters with the most important attribute being membership. That is, a
character is either a member of a set or it is not a member of a set. The concept of sequence (e.g., whether
one character comes before another, as in a string) is completely foreign to a character set. If two characters
are members of a set, their order in the set is irrelevant. Also, membership is a binary relation; a character is
either in the set or it is not in the set; you cannot have multiple copies of the same character in a character
set. Finally, there are various operations that are possible on character sets including the mathematical set
operations of union, intersection, difference, and membership test. HLA implements a restricted form of
character sets that allows set members to be any of the 128 standard ASCII characters (i.e., HLA’s character
set facilities do not support extended character codes in the range #128..#255). Despite this restriction, how-
ever, HLA’s character set facilities are very powerful and are very handy when writing programs that work
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 423

Sets
with string data. The following sections describe the implementation and use of HLA’s character set facili-
ties so you may take advantage of character sets in your own programs.

3.4 Character Set Implementation in HLA

There are many different ways to represent character sets in an assembly language program. HLA
implements character sets by using an array of 128 boolean values. Each boolean value determines whether
the corresponding character is or is not a member of the character set; i.e., a true boolean value indicates
that the specified character is a member of the set, a false value indicates that the corresponding character is
not a member of the set. To conserve memory, HLA allocates only a single bit for each character in the set;
therefore, HLA character sets consume 16 bytes of memory since there are 128 bits in 16 bytes. This array
of 128 bits is organized in memory as shown in Figure 3.1.

Figure 3.1 Bit Layout of a Character Set Object

Bit zero of byte zero corresponds to ASCII code zero (the NUL character). If this bit is one, then the
character set contains the NUL character; if this bit contains false, then the character set does not contain the
NUL character. Likewise, bit zero of byte one (the eighth bit in the 128-bit array) corresponds to the back-
space character (ASCII code is eight). Finally bit one of byte eight corresponds to ASCII code 65, an upper
case ‘A’. Bit 65 will contain a one if ‘A’ is a current member of the character set, it will contain zero if ‘A’ is
not a member of the set.

While there are other possible ways to implement character sets, this bit vector implementation has the
advantage that it is very easy to implement set operations like union, intersection, difference comparison,
and membership tests.

HLA supports character set variables using the cset data type. To declare a character set variable, you
would use a declaration like the following:

static
CharSetVar: cset;

This declaration will reserve 16 bytes of storage to hold the 128 bits needed to represent an ASCII character
set.

Although it is possible to manipulate the bits in a character set using instructions like AND, OR, XOR,
etc., the 80x86 instruction set includes several bit test, set, reset, and complement instructions that are nearly
perfect for manipulating character sets. The BT (bit test) instruction, for example will copy a single bit in
memory to the carry flag. The BT instruction allows the following syntactical forms:

bt(BitNumber, BitsToTest);

bt(reg16, reg16);

bt(reg32, reg32);

bt(constant, reg16);

bt(constant, reg32);

bt(reg16, mem16);

...
7 6 5 4 3 2 1127 126 125 124 123 122 121 121 0

Byte 0Byte 15
Page 424 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Sets
bt(reg32, mem32);

bt(constant, mem16);

bt(constant, mem32);

The first operand holds a bit number, the second operand specifies a register or memory location whose
bit should be copied into the carry flag. If the second operand is a register, the first operand must contain a
value in the range 0..n-1, where n is the number of bits in the second operand. If the first operand is a con-
stant and the second operand is a memory location, the constant must be in the range 0..255. Here are some
examples of these instructions:

bt(7, ax); // Copies bit #7 of AX into the carry flag (CF).
mov(20, eax);
bt(eax, ebx); // Copies bit #20 of EBX into CF.

// Copies bit #0 of the byte at CharSetVar+3 into CF.

bt(24, CharSetVar);

// Copies bit #4 of the byte at DWmem+2 into CF.

bt(eax, CharSetVar);

The BT instruction turns out to be quite useful for testing set membership. For example, to see if the
character ‘A’ is a member of a character set, you could use a code sequence like the following:

bt(‘A’, CharSetVar);
if(@c) then

<< Do something if ‘A’ is a member of the set >>

endif;

The BTS (bit test and set), BTR (bit test and reset), and BTC (bit test and complement) instructions are
also quite useful for manipulating character set variables. Like the BT instruction, these instructions copy
the specified bit into the carry flag; after copying the specified bit, these instructions will set, clear, or invert
(respectively) the specified bit. Therefore, you can use the BTS instruction to add a character to a character
set via set union (that is, it adds a character to the set if the character was not already a member of the set,
otherwise the set is unaffected). You can use the BTR instruction to remove a character from a character set
via set intersection (That is, it removes a character from the set if and only if it was previously in the set; oth-
erwise it has no effect on the set). The BTC instruction lets you add a character to the set if it wasn’t previ-
ously in the set, it removes the character from the set if it was previously a member (that is, it toggles the
membership of that character in the set).

The HLA Standard Library provides lots of character set handling routines. See “Character Set Support
in the HLA Standard Library” on page 427. for more details about HLA’s character set facilities.

3.5 HLA Character Set Constants and Character Set Expressions

HLA supports literal character set constants. These cset constants make it easy to initialize cset vari-
ables at compile time and they make it very easy to pass character set constants as procedure parameters. An
HLA character set constant takes the following form:

{ Comma_separated_list_of_characters_and_character_ranges }

The following is an example of a simple character set holding the numeric digit characters:

{ ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’ }
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 425

Sets
When specifying a character set literal that has several contiguous values, HLA lets you concisely spec-
ify the values using only the starting and ending values of the range thusly:

{ ‘0’..’9’ }

You may combine characters and various ranges within the same character set constant. For example,
the following character set constant is all the alphanumeric characters:

{ ‘0’..’9’, ‘a’..’z’, ‘A’..’Z’ }

You can use these cset literal constants in the CONST and VAL sections. The following example dem-
onstrates how to create the symbolic constant AlphaNumeric using the character set above:

const
AlphaNumeric: cset := {‘0’..’9’, ‘a’..’z’, ‘A’..’Z’ };

After the above declaration, you can use the identifier AlphaNumeric anywhere the character set literal is
legal.

You can also use character set literals (and, of course, character set symbolic constants) as the initializer
field for a STATIC, DATA, or READONLY variable. The following code fragment demonstrates this:

static
Alphabetic: cset := { ‘a’..’z’, ‘A’..’Z’ };

Anywhere you can use a character set literal constant, a character set constant expression is also legal.
HLA supports the following operators in character set constant expressions:

CSetConst + CSetConst Computes the union of the two sets1.

CSetConst * CSetConst Computes the intersection of the two sets2.

CSetConst - CSetConst Computes the set difference of the two sets3.

-CSetConst Computes the set complement4.

Note that these operators only produce compile-time results. That is, the expressions above are com-
puted by the compiler during compilation, they do not emit any machine code. If you want to perform these
operations on two different sets while your program is running, the HLA Standard Library provides routines
you can call to achieve the results you desire. HLA also provides other compile-time character set operators.
See the chapter on the compile-time language and macros for more details.

3.6 The IN Operator in HLA HLL Boolean Expressions

The HLA IN operator can dramatically reduce the logic in your HLA programs. This text has waited
until now to discuss this operator because certain forms require a knowledge of character sets and character
set constants. Now that you’ve seen character set constants, there is no need to delay the introduction of this
important language feature.

In addition to the standard boolean expressions in IF, WHILE, REPEAT..UNTIL, and other statements,
HLA also supports boolean expressions that take the following forms:

reg8 in CSetConstant

reg8 not in CSetConstant

reg8 in CSetVariable

reg8 not in CSetVariable

1. The set union is the set of all characters that are in either set.
2. The set intersection is the set of all characters that appear in both operand sets.
3. The set difference is the set of characters that appear in the first set but do not appear in the second set.
4. The set complement is the set of all characters not in the set.
Page 426 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Sets
These four forms of the IN and NOT IN operators check to see if a character in an eight-bit register is a
member of a character set (either a character set constant or a character set variable). The following code
fragment demonstrates these operators:

const
Alphabetic: cset := {‘a’..’z’, ‘A’..’Z’};

.

.

.
stdin.getc();
if(al in Alphabetic) then

stdout.put(“You entered an alphabetic character” nl);

elseif(al in {‘0’..’9’}) then

stdout.put(“You entered a numeric character” nl);

endif;

3.7 Character Set Support in the HLA Standard Library

As noted in the previous sections, the HLA Standard Library provides several routines that provide
character set support. The character set support routines fall into four categories: standard character set
functions, character set tests, character set conversions, and character set I/O. This section describes these
routines in the HLA Standard Library.

To begin with, let’s consider the Standard Library routines that help you construct character sets. These
routines include: cs.empty, cs.cpy, cs.charToCset, cs.unionChar, cs.removeChar, cs.rangeChar, cs.strToCset,
and cs.unionStr. These procedures let you build up character sets at run-time using character and string
objects.

The cs.empty procedure initializes a character set variable to the empty set by setting all the bits in the
character set to zero. This procedure call uses the following syntax (CSvar is a character set variable):

cs.empty(CSvar);

The cs.cpy procedure copies one character set to another, replacing any data previously held by the des-
tination character set. The syntax for cs.cpy is

cs.cpy(srcCsetValue, destCsetVar);

The cs.cpy source character set can be either a character set constant or a character set variable. The destina-
tion character set must be a character set variable.

The cs.unionChar procedure adds a character to a character set. It uses the following calling sequence:

cs.unionChar(CharVar, CSvar);

This call will add the first parameter, a character, to the set via set union. Note that you could use the BTS
instruction to achieve this same result although the cs.unionChar call is often more convenient (though
slower).

The cs.charToCset function creates a singleton set (a set containing a single character). The calling for-
mat for this function is

cs.charToCset(CharValue, CSvar);

The first operand, the character value CharValue, can be an eight-bit register, a constant, or a character vari-
able. The second operand (CSvar) must be a character set variable. This function clears the destination
character set to all zeros and then adds the specified character to the character set.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 427

Sets
The cs.removeChar procedure lets you remove a single character from a character set without affecting
the other characters in the set. This function uses the same syntax as cs.charToCset and the parameters have
the same attributes. The calling sequence is

cs.removeChar(CharValue, CSVar);

The cs.rangeChar constructs a character set containing all the characters between two characters you
pass as parameters. This function sets all bits outside the range of these two characters to zero. The calling
sequence is

cs.rangeChar(LowerBoundChar, UpperBoundChar, CSVar);

The LowerBoundChar and UpperBoundChar parameters can be constants, registers, or character variables.
CSVar, the destination character set, must be a cset variable.

The cs.strToCset procedure creates a new character set containing the union of all the characters in a
character string. This procedure begins by setting the destination character set to the empty set and then it
unions in the characters in the string one by one until it exhausts all characters in the string. The calling
sequence is

cs.strToCset(StringValue, CSVar);

Technically, the StringValue parameter can be a string constant as well as a string variable, however, it
doesn’t make any sense to call cs.strToCset in this fashion since cs.cpy is a much more efficient way to ini-
tialize a character set with a constant set of characters. As usual, the destination character set must be a cset
variable. Typically, you’d use this function to create a character set based on a string input by the user.

The cs.unionStr procedure will add the characters in a string to an existing character set. Like cs.str-
ToCset, you’d normally use this function to union characters into a set based on a string input by the user.
The calling sequence for this is

cs.unionStr(StringValue, CSVar);

Standard set operations include union, intersection, and set difference. The HLA Standard Library rou-
tines cs.setunion, cs.intersection, and cs.difference provide these operations, respectively5. These routines
all use the same calling sequence:

cs.setunion(srcCset, destCset);
cs.intersection(srcCset, destCset);
cs.difference(srcCset, destCset);

The first parameter can be a character set constant or a character set variable. The second parameter must be
a character set variable. These procedures compute “destCset := destCset op srcCset” where op represents
set union, intersection, or difference, depending on the function call.

The third category of character set routines test character sets in various ways. They typically return a
boolean value indicating the result of the test. The HLA character set routines in this category include
cs.IsEmpty, cs.member, cs.subset, cs.psubset, cs.superset, cs.psuperset, cs.eq, and cs.ne.

The cs.IsEmpty function tests a character set to see if it is the empty set. The function returns true or
false in the EAX register. This function uses the following calling sequence:

cs.IsEmpty(CSetValue);

The single parameter may be a constant or a character set variable, although it doesn’t make much sense to
pass a character set constant to this procedure (since you would know at compile-time whether this set is
empty or not empty).

The cs.member function tests to see if a character value is a member of a set. This function returns true
in the EAX register if the supplied character is a member of the specified set. Note that you can use the BT
instruction to (more efficiently) test this same condition. However, the cs.member function is probably a lit-
tle more convenient to use. The calling sequence for cs.member is

5. “cs.setunion” was used rather than “cs.union” because “union” is an HLA reserved word.
Page 428 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Sets
cs.member(CharValue, CsetValue);

The first parameter is a register, character variable, or a constant. The second parameter is either a character
set constant or a character set variable. It would be unusual for both parameters to be constants.

The cs.subset, cs.psubset (proper subset), cs.superset, and cs.psuperset (proper superset) functions let
you check to see if one character set is a subset or superset of another. The calling sequence for these four
routines is nearly identical, it is one of the following:

cs.subset(CsetValue1, CsetValue2);
cs.psubset(CsetValue1, CsetValue2);
cs.superset(CsetValue1, CsetValue2);
cs.psuperset(CsetValue1, CsetValue2);

These routines compare the first parameter against the second parameter and return true or false in the EAX
register depending upon the result of the comparison. One set is a subset of another if all the members of the
first character set can be found in the second character set. It is a proper subset if the second character set
also contains characters not found in the first (left) character set. Likewise, one character set is a superset of
another if it contains all the characters in the second (right) set. A proper superset contains additional char-
acters above and beyond those found in the second set. The parameters can be either character set variables
or character set constants; however, it would be unusual for both parameters to be character set constants.

The cs.eq and cs.ne check to see if two sets are equal or not equal. These functions return true or false
in EAX depending upon the set comparison. The calling sequence is identical to the sub/superset functions
above:

cs.eq(CsetValue1, CsetValue2);
cs.ne(CsetValue1, CsetValue2);

The cs.extract routine removes an arbitrary character from a character set and returns that character in
the EAX register6. The calling sequence is the following:

cs.extract(CsetVar);

The single parameter must be a character set variable. Note that this function will modify the character set
variable by removing some character from the character set. This function returns $FFFF_FFFF in EAX if
the character set was empty prior to the call.

In addition to the routines found in the cs (character set) library module, the string and standard output
modules also provide functions that allow or expect character set parameters. For example, if you supply a
character set value as a parameter to stdout.put, the stdout.put routine will print the characters currently in
the set. See the HLA Standard Library documentation for more details on character set handling procedures.

3.8 Using Character Sets in Your HLA Programs

Character sets are valuable for many different applications in your programs. For example, in the vol-
ume on advanced string handling you’ll discover how to use character sets to match complex patterns. How-
ever, such use of character sets is a little beyond the scope of this chapter, so at this point we’ll concentrate
on another common use of character sets: validating user input. This section will also present a couple of
other applications for character sets to help you start thinking about how you could use them in your pro-
gram.

Consider the following short code segment that gets a yes/no type answer from the user:

static
answer: char;

.

.

.

6. This routine returns the character in AL and zeros out the H.O. three bytes of EAX.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 429

Sets
repeat
.
.
.

stdout.put(“Would you like to play again? “);
stdin.FlushInput();
stdin.get(answer);

until(answer = ‘n’);

A major problem with this code sequence is that it will only stop if the user presses a lower case ‘n’
character. If they type anything other than ‘n’ (including upper case ‘N’) the program will treat this as an
affirmative answer and transfer back to the beginning of the repeat..until loop. A better solution would be to
validate the user input before the UNTIL clause above to ensure that the user has only typed “n”, “N”, “y”,
or “Y”. The following code sequence will accomplish this:

repeat
.
.
.

repeat

stdout.put(“Would you like to play again? “);
stdin.FlushInput();
stdin.get(answer);

until(cs.member(answer, { ‘n’, ‘N’, ‘Y’, ‘y’ });
if(answer = ‘N’) then

mov(‘n’, answer);

endif;

until(answer = ‘n’);

While an excellent use for character sets is to validate user input, especially when you must restrict the
user to a small set of non-contiguous input characters, you should not use the cs.member function to test to
see if a character value is within literal set. For example, you should never do something like the following:

repeat

stdout.put(“Enter a character between 0..9: “);
stdin.getc();

until(cs.member(al, {‘0’..’9’ });

While there is nothing logically wrong with this code, keep in mind that HLA run-time boolean expressions
allow simple membership tests using the IN operator. You could write the code above far more efficiently
using the following sequence:

repeat

stdout.put(“Enter a character between 0..9: “);
stdin.getc();

until(al in ‘0’..’9’);

The place where the cs.member function becomes useful is when you need to see if an input character is
within a set of characters that you build at run time.
Page 430 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Sets
3.9 Low-level Implementation of Set Operations

Although the HLA Standard Library character set module simplifies the use of character sets within
your assembly language programs, it is instructive to look at how all these functions operate so you know the
cost associated with each function. Also, since many of these functions are quite trivial, you might want to
implement them in-line for performance reasons. The following subsections describe how each of the func-
tions operate.

3.9.1 Character Set Functions That Build Sets

The first group of functions we will look at in the Character Set module are those that construct or copy
character sets. These functions are cs.empty, cs.cpy, cs.charToCset, cs.unionChar, cs.removeChar, cs.range-
Char, cs.strToCset, and cs.unionStr.

Creating an empty set is, perhaps, the easiest of all the operations. To create an empty set all we need to
is zero out all 128 bits in the cset object. Program 3.1 provides the implementation of this function.

// Program that demonstrates the implmentation of
// the cs.empty function.

program csEmpty;
#include(“stdlib.hhf”)

static
csetDest: cset;
csetSrc: cset := {‘a’..’z’, ‘A’..’Z’};

begin csEmpty;

// How to create an empty set (cs.empty):
// (Zero out all bits in the cset)

mov(0, eax);
mov(eax, (type dword csetDest));
mov(eax, (type dword csetDest[4]));
mov(eax, (type dword csetDest[8]));
mov(eax, (type dword csetDest[12]));

stdout.put(“Empty set = {“, csetDest, “}” nl);

end csEmpty;

Program 3.1 cs.empty Implementation

Note that cset objects are 16 bytes long. Therefore, this code zeros out those 16 bytes by storing EAX
into the four consecutive double words that comprise the object. Note the use of type coercion in the MOV
statements; this is necessary since cset objects are not the same size as dword objects.

To copy one character set to another is only a little more difficult than creating an empty set. All we
have to do is copy the 16 bytes from the source character set to the destination character set. We can accom-
plish this with four pairs of double word MOV statements. Program 3.2 provides the sample implementa-
tion.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 431

Sets
// Program that demonstrates the implmentation of
// the cs.empty function.

program csCpy;
#include(“stdlib.hhf”)

static
csetDest: cset;
csetSrc: cset := {‘a’..’z’, ‘A’..’Z’};

begin csCpy;

// How to create an empty set (cs.empty):
// (Zero out all bits in the cset)

mov((type dword csetSrc), eax);
mov(eax, (type dword csetDest));

mov((type dword csetSrc[4]), eax);
mov(eax, (type dword csetDest[4]));

mov((type dword csetSrc[8]), eax);
mov(eax, (type dword csetDest[8]));

mov((type dword csetSrc[12]), eax);
mov(eax, (type dword csetDest[12]));

stdout.put(“Copied set = {“, csetDest, “}” nl);

end csCpy;

Program 3.2 cs.cpy Implementation

The cs.charToCset function creates a singleton set containing the specified character. To implement this
function we first begin by creating an empty set (using the same code as cs.empty) and then we set the bit
corresponding to the single character in the character set. We can use the BTS (bit test and set) instruction to
easily set the specified bit in the cset object. Program 3.3 provides the implementation of this function.

// Program that demonstrates the implmentation of
// the cs.charToCset function.

program cscharToCset;
#include(“stdlib.hhf”)

static
csetDest: cset;
chrValue: char := ‘a’;

begin cscharToCset;

// Begin by creating an empty set:

mov(0, eax);
mov(eax, (type dword csetDest));
Page 432 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Sets
mov(eax, (type dword csetDest[4]));
mov(eax, (type dword csetDest[8]));
mov(eax, (type dword csetDest[12]));

// Okay, use the BTS instruction to set the specified bit in
// the character set.

movzx(chrValue, eax);
bts(eax, csetDest);

stdout.put(“Singleton set = {“, csetDest, “}” nl);

end cscharToCset;

Program 3.3 cs.charToCset Implementation

If you study this code carefully, you will note an interesting fact: the BTS instruction’s operands are not
the same size (dword and cset). Since programmers often use the BTx instructions to manipulate items in a
character set, HLA allows you to specify a cset object as the destination operand of a BTx(reg32, mem)
instruction. Technically, the memory operand should be a double word object; HLA automatically coerces
cset objects to dword for these instructions. Note that BTS requires a 16 or 32-bit register. Therefore, this
code zero extends the character’s value into EAX prior to executing the BTS instruction. Note that the value
in EAX must not exceed 127 or this code will manipulate data beyond the end of the character set in mem-
ory. The use of a BOUND instruction might be warranted here if you can’t ensure that the chrValue variable
contains a value in the range 0..127.

The cs.unionChar adds a single character to the character set (if that character was not already present
in the character set). This code is actually a bit simpler than the cs.charToCset function; the only difference
is that the code does not clear the set to begin with – it simply sets the bit corresponding to the given charac-
ter. Program 3.4 provides the implementation.

// Program that demonstrates the implmentation of
// the cs.unionChar function.

program csUnionChar;
#include(“stdlib.hhf”)

static
csetDest: cset := {‘0’..’9’};
chrValue: char := ‘a’;

begin csUnionChar;

// Okay, use the BTS instruction to add the specified bit to
// the character set.

movzx(chrValue, eax);
bts(eax, csetDest);

stdout.put(“New set = {“, csetDest, “}” nl);

end csUnionChar;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 433

Sets
Program 3.4 cs.unionChar Implementation

Once again, note that this code assumes that the character value is in the range 0..127. If it is possible
for the character to fall outside this range, you should check the value before attempting to union the charac-
ter into the character set. You can use an IF statement or the BOUND instruction for this check.

The cs.removeChar function removes a character from a character set, provided that character was a
member of the set. If the character was not originally in the character set, then cs.removeChar does not
affect the original character set. To accomplish this, the code must clear the bit associated with the character
to remove from the set. Program 3.5 uses the BTR (bit test and reset) instruction to achieve this.

// Program that demonstrates the implmentation of
// the cs.removeChar function.

program csRemoveChar;
#include(“stdlib.hhf”)

static
csetDest: cset := {‘0’..’9’};
chrVal1: char := ‘0’;
chrVal2: char := ‘a’;

begin csRemoveChar;

// Okay, use the BTC instruction to remove the specified bit from
// the character set.

movzx(chrVal1, eax);
btr(eax, csetDest);

stdout.put(“Set w/o ‘0’ = {“, csetDest, “}” nl);

// Now remove a character not in the set to demonstrate
// that removal of a non-existant character doesn’t affect
// the set:

movzx(chrVal2, eax);
btr(eax, csetDest);
stdout.put(“Final set = {“, csetDest, “}” nl);

end csRemoveChar;

Program 3.5 cs.removeChar Implementation

Don’t forget to use a BOUND instruction or an IF statement in Program 3.5 if it is possible for the char-
acter’s value to fall outside the range 0..127. This will prevent the code from manipulating memory beyond
the end of the character set.

The cs.rangeChar function creates a set containing all the characters between two specified boundaries.
This function begins by creating an empty set; then it loops over the range of character to insert, inserting
each character into the set as appropriate. Program 3.6 provides an example implementation of this function.
Page 434 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Sets
// Program that demonstrates the implmentation of
// the cs.rangeChar function.

program csRangeChar;
#include(“stdlib.hhf”)

static
csetDest: cset;
startRange: char := ‘a’;
endRange: char := ‘z’;

begin csRangeChar;

// Begin by creating the empty set:

mov(0, eax);
mov(eax, (type dword csetDest));
mov(eax, (type dword csetDest[4]));
mov(eax, (type dword csetDest[8]));
mov(eax, (type dword csetDest[12]));

// Run the following loop for each character between
// ‘startRange’ and ‘endRange’ and set the corresponding
// bit in the cset for each character in the range.

movzx(startRange, eax);
while(al <= endRange) do

bts(eax, csetDest);
inc(al);

endwhile;
stdout.put(“Final set = {“, csetDest, “}” nl);

end csRangeChar;

Program 3.6 cs.rangeChar Implementation

One interesting thing to note about the code in Program 3.6 is how it takes advantage of the fact that AL
contains the actual character index even though it has to use EAX with the BTS instruction. As usual, you
should check the range of the two values if there is any possibility that they could be outside the range
0..127.

One problem with this particular implementation of the cs.rangeChar function is that it is not particu-
larly efficient if you ask it to create a set with a lot of characters in it. As you can see by studying the code,
the execution time of this function is proportional to the number of characters in the range. In particular, the
loop in this function iterates once for each character in the range. So if the range is large the loop executes
many more times than if the range is small. There is a more efficient solution to this problem using table
lookups whose execution time is independent of the size of the character set it creates. For more details on
using table lookups, see “Calculation Via Table Lookups” on page 625.

The cs.strToCset function scans through an HLA string character by character and creates a new charac-
ter set by adding each character in the string to an empty character set.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 435

Sets
// Program that demonstrates the implmentation of
// the cs.strToCset function.

program csStrToCset;
#include(“stdlib.hhf”)

static
StrToAdd: string := “Hello_World”;
csetDest: cset;

begin csStrToCset;

// Begin by creating the empty set:

mov(0, eax);
mov(eax, (type dword csetDest));
mov(eax, (type dword csetDest[4]));
mov(eax, (type dword csetDest[8]));
mov(eax, (type dword csetDest[12]));

// For each character in the source string, add that character
// to the set.

mov(StrToAdd, eax);
while((type char [eax]) <> #0) do // While not at end of string.

movzx((type char [eax]), ebx);
bts(ebx, csetDest);
inc(eax);

endwhile;
stdout.put(“Final set = {“, csetDest, “}” nl);

end csStrToCset;

Program 3.7 cs.strToCset Implementation

This code begins by fetching the pointer to the first character in the string. The loop repeats for each
character in the string up to the zero terminating byte of the string. For each character, this code uses the
BTS instruction to set the corresponding bit in the destination character set. As usual, don’t forget to use an
IF statement or BOUND instruction if it is possible for the characters in the string to have values outside the
range 0..127.

 The cs.unionStr function is very similar to the cs.strToCset function; in fact, the only difference is that
it doesn’t create an empty character set prior to adding the characters in a string to the destination character
set.

// Program that demonstrates the implmentation of
// the cs.unionStr function.

program csUnionStr;
#include(“stdlib.hhf”)
Page 436 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Sets
static
StrToAdd: string := “Hello_World”;
csetDest: cset := {‘0’..’9’};

begin csUnionStr;

// For each character in the source string, add that character
// to the set.

mov(StrToAdd, eax);
while((type char [eax]) <> #0) do // While not at end of string.

movzx((type char [eax]), ebx);
bts(ebx, csetDest);
inc(eax);

endwhile;
stdout.put(“Final set = {“, csetDest, “}” nl);

end csUnionStr;

Program 3.8 cs.unionStr Implementation

3.9.2 Traditional Set Operations

The previous section describes how to construct character sets from characters and strings. In this sec-
tion we’ll take a look at how you can manipulate character sets using the traditional set operations of inter-
section, union, and difference.

The union of two sets A and B is the collection of all items that are in set A, set B, or both. In the bit
array representation of a set, this means that a bit in the destination character set will be one if either or both
of the corresponding bits in sets A or B are set. This of course, corresponds to the logical OR operation.
Therefore, we can easily create the set union of two sets by logically ORing their bytes together. Program
3.9 provides the complete implementation of this function.

// Program that demonstrates the implmentation of
// the cs.setunion function.

program cssetUnion;
#include(“stdlib.hhf”)

static
csetSrc1: cset := {‘a’..’z’};
csetSrc2: cset := {‘A’..’Z’};
csetDest: cset;

begin cssetUnion;

// To compute the union of csetSrc1 and csetSrc2 all we have
// to do is logically OR the two sets together.

mov((type dword csetSrc1), eax);
or((type dword csetSrc2), eax);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 437

Sets
mov(eax, (type dword csetDest));

mov((type dword csetSrc1[4]), eax);
or((type dword csetSrc2[4]), eax);
mov(eax, (type dword csetDest[4]));

mov((type dword csetSrc1[8]), eax);
or((type dword csetSrc2[8]), eax);
mov(eax, (type dword csetDest[8]));

mov((type dword csetSrc1[12]), eax);
or((type dword csetSrc2[12]), eax);
mov(eax, (type dword csetDest[12]));

stdout.put(“Final set = {“, csetDest, “}” nl);

end cssetUnion;

Program 3.9 cs.setunion Implementation

The intersection of two sets is those elements that are members of both sets. In the bit array representa-
tion of character sets that HLA uses, this means that a bit is set in the destination character set if the corre-
sponding bit is set in both the source sets; this corresponds to the logical AND operation; therefore, to
compute the set intersection of two character sets, all you need do is logically AND the 16 bytes of the two
source sets together. Program 3.10 provides a sample implementation.

// Program that demonstrates the implmentation of
// the cs.intersection function.

program csIntersection;
#include(“stdlib.hhf”)

static
csetSrc1: cset := {‘a’..’z’};
csetSrc2: cset := {‘A’..’z’};
csetDest: cset;

begin csIntersection;

// To compute the intersection of csetSrc1 and csetSrc2 all we have
// to do is logically AND the two sets together.

mov((type dword csetSrc1), eax);
and((type dword csetSrc2), eax);
mov(eax, (type dword csetDest));

mov((type dword csetSrc1[4]), eax);
and((type dword csetSrc2[4]), eax);
mov(eax, (type dword csetDest[4]));

mov((type dword csetSrc1[8]), eax);
and((type dword csetSrc2[8]), eax);
mov(eax, (type dword csetDest[8]));

mov((type dword csetSrc1[12]), eax);
and((type dword csetSrc2[12]), eax);
Page 438 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Sets
mov(eax, (type dword csetDest[12]));

stdout.put(“ Set A = {“, csetSrc1, “}” nl);
stdout.put(“ Set B = {“, csetSrc2, “}” nl);
stdout.put(“Intersection of A and B = {“, csetDest, “}” nl);

end csIntersection;

Program 3.10 cs.intersection Implementation

The difference of two sets is all the elements in the first set that are not also present in the second set. To
compute this result we must logically AND the values from the first set with the inverted values of the sec-
ond set; i.e., to compute C := A - B we use the following expression:

C := A and (not B);

Program 3.11 provides the code to implement this operation.

// Program that demonstrates the implmentation of
// the cs.difference function.

program csDifference;
#include(“stdlib.hhf”)

static
csetSrc1: cset := {‘0’..’9’, ‘a’..’z’};
csetSrc2: cset := {‘A’..’z’};
csetDest: cset;

begin csDifference;

// To compute the difference of csetSrc1 and csetSrc2 all we have
// to do is logically AND A and NOT B together.

mov((type dword csetSrc2), eax);
not(eax);
and((type dword csetSrc1), eax);
mov(eax, (type dword csetDest));

mov((type dword csetSrc2[4]), eax);
not(eax);
and((type dword csetSrc1[4]), eax);
mov(eax, (type dword csetDest[4]));

mov((type dword csetSrc2[8]), eax);
not(eax);
and((type dword csetSrc1[8]), eax);
mov(eax, (type dword csetDest[8]));

mov((type dword csetSrc2[12]), eax);
not(eax);
and((type dword csetSrc1[12]), eax);
mov(eax, (type dword csetDest[12]));

stdout.put(“ Set A = {“, csetSrc1, “}” nl);
stdout.put(“ Set B = {“, csetSrc2, “}” nl);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 439

Sets
stdout.put(“Difference of A and B = {“, csetDest, “}” nl);

end csDifference;

Program 3.11 cs.difference Implementation

3.9.3 Testing Character Sets

In addition to manipulating the members of a character set, the need often arises to compare character
sets, check to see if a character is a member of a set, and check to see if a set is empty. In this section we’ll
discuss how HLA implements the relational operations on character sets.

Occasionally you’ll want to check a character set to see if it contains any members. Although you could
achieve this by creating a static cset variable with no elements and comparing the set in question against this
empty set, there is a more efficient way to do this – just check to see if all the bits in the set in question are
zero. An easy way to do this, that uses, is to logically OR the four double words in a cset object together. If
the result is zero, then all the bits in the cset variable are zero and, hence, the character set is empty.

// Program that demonstrates the implmentation of
// the cs.IisEmpty function.

program csIsEmpty;
#include(“stdlib.hhf”)

static
csetSrc1: cset := {};
csetSrc2: cset := {‘A’..’Z’};

begin csIsEmpty;

// To see if a set is empty, simply OR all the dwords
// together and see if the result is zero:

mov((type dword csetSrc1[0]), eax);
or((type dword csetSrc1[4]), eax);
or((type dword csetSrc1[8]), eax);
or((type dword csetSrc1[12]), eax);

if(@z) then

stdout.put(“csetSrc1 is empty ({“, csetSrc1, “})” nl);

else

stdout.put(“csetSrc1 is not empty ({“, csetSrc1, “})” nl);

endif;

// Repeat the test for csetSrc2:

mov((type dword csetSrc2[0]), eax);
or((type dword csetSrc2[4]), eax);
or((type dword csetSrc2[8]), eax);
or((type dword csetSrc2[12]), eax);
Page 440 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Sets
if(@z) then

stdout.put(“csetSrc2 is empty ({“, csetSrc2, “})” nl);

else

stdout.put(“csetSrc2 is not empty ({“, csetSrc2, “})” nl);

endif;

end csIsEmpty;

Program 3.12 Implementation of cs.IsEmpty

Perhaps the most common check on a character set is set membership; that is, checking to see if some
character is a member of a given character set. As you’ve seen already (see “Character Set Implementation
in HLA” on page 424), the BT instruction is perfect for this. Since we’ve already discussed how to use the
BT instruction (along with, perhaps, a MOVZX instruction), there is no need to repeat the implementation of
this operation here.

Two sets are equal if and only if all the bits are equal in the two set objects. Therefore, we can imple-
ment the cs.ne and cs.eq (set inequality and set equality) functions by comparing the four double words in a
cset object and noting if there are any differences. Program 3.13 demonstrates how you can do this.

// Program that demonstrates the implmentation of
// the cs.eq and cs.ne functions.

program cseqne;
#include(“stdlib.hhf”)

static
csetSrc1: cset := {‘a’..’z’};
csetSrc2: cset := {‘a’..’z’};
csetSrc3: cset := {‘A’..’Z’};

begin cseqne;

// To see if a set equal to another, check to make sure
// all four dwords are equal. One sneaky way to do this
// is to use the XOR operator (XOR is “not equals” as you
// may recall).

mov((type dword csetSrc1[0]), eax); // Set EAX to zero if these
xor((type dword csetSrc2[0]), eax); // two dwords are equal
mov(eax, ebx); // Accumulate result here.

mov((type dword csetSrc1[4]), eax);
xor((type dword csetSrc2[4]), eax);
or(eax, ebx);

mov((type dword csetSrc1[8]), eax);
xor((type dword csetSrc2[8]), eax);
or(eax, ebx);

mov((type dword csetSrc1[12]), eax);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 441

Sets
xor((type dword csetSrc2[12]), eax);
or(eax, ebx);

// At this point, EBX is zero if the two csets are equal
// (also, the zero flag is set if they are equal).

if(@z) then

stdout.put(“csetSrc1 is equal to csetSrc2” nl);

else

stdout.put(“csetSrc1 is not equal to csetSrc2” nl);

endif;

// Implementation of cs.ne:

mov((type dword csetSrc1[0]), eax); // Set EAX to zero if these
xor((type dword csetSrc3[0]), eax); // two dwords are equal
mov(eax, ebx); // Accumulate result here.

mov((type dword csetSrc1[4]), eax);
xor((type dword csetSrc3[4]), eax);
or(eax, ebx);

mov((type dword csetSrc1[8]), eax);
xor((type dword csetSrc3[8]), eax);
or(eax, ebx);

mov((type dword csetSrc1[12]), eax);
xor((type dword csetSrc3[12]), eax);
or(eax, ebx);

// At this point, EBX is non-zero if the two csets are not equal
// (also, the zero flag is clear if they are not equal).

if(@nz) then

stdout.put(“csetSrc1 is not equal to csetSrc3” nl);

else

stdout.put(“csetSrc1 is equal to csetSrc3” nl);

endif;

end cseqne;

Program 3.13 Implementation of cs.ne and cs.eq

The remaining tests on character sets roughly correspond to tests for less than or greater than; though in
set theory we refer to these as superset and subset. One set is a subset of another if the second set contains
all the elements of the first set; the second set may contain additional elements. The subset relationship is
roughly equivalent to “less than or equal.” The proper subset relation of two sets states that the elements of
Page 442 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Character Sets
one set are all present in a second set and the two sets are not equal (i.e., the second set contains additional
elements). This is roughly equivalent to the “less than” relationship.

Testing for a subset is an easy task. All you have to do is take the set intersection of the two sets and
verify that the intersection of the two is equal to the first set. That is, A <= B if and only if:

A == (A * B) “*” denotes set intersection

Testing for a proper subset is a little more work. The same relationship above must hold but the result-
ing inspection must not be equal to B. That is, A < B if and only if,

(A == (A * B)) and (B <> (A * B))

The algorithms for superset and proper superset are nearly identical. They are:

B == (A * B) A >= B
(B == (A * B)) and (A <> (A * B)) A > B

The implementation of these four relational operations is left as an exercise.

3.10 Putting It All Together

This chapter describes HLA’s implementation of character sets. Character sets are a very useful tool for
validating user input and for other character scanning and manipulation operations. HLA uses a bit array
implementation for character set objects. HLA’s implementation allows for 128 different character values in
a character set.

The HLA Standard Library provides a wide set of functions that let you build, manipulate, and compare
character sets. Although these functions are convenient to use, most of the character set operations are so
simple that you can implement them directly using in-line code. This chapter provided the implementation
of many of the HLA Standard Library character set functions.

Note that this chapter does not cover all the uses of character sets in an assembly language program. In
the volume on “Advanced String Handling” you will see many more uses for character sets in your pro-
grams.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 443

Sets
Page 444 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays
Arrays Chapter Four

4.1 Chapter Overview

This chapter discusses how to declare and use arrays in your assembly language programs. This is prob-
ably the most important chapter on composite data structures in this text. Even if you elect to skip the chap-
ters on Strings, Character Sets, Records, and Dates and Times, be sure you read and understand the material
in this chapter. Much of the rest of the text depends on your understanding of this material.

4.2 Arrays

Along with strings, arrays are probably the most commonly used composite data type. Yet most begin-
ning programmers have a very weak understanding of how arrays operate and their associated efficiency
trade-offs. It’s surprising how many novice (and even advanced!) programmers view arrays from a com-
pletely different perspective once they learn how to deal with arrays at the machine level.

Abstractly, an array is an aggregate data type whose members (elements) are all the same type. Selec-
tion of a member from the array is by an integer index1. Different indices select unique elements of the array.
This text assumes that the integer indices are contiguous (though this is by no means required). That is, if the
number x is a valid index into the array and y is also a valid index, with x < y, then all i such that x < i < y are
valid indices into the array.

Whenever you apply the indexing operator to an array, the result is the specific array element chosen by
that index. For example, A[i] chooses the ith element from array A. Note that there is no formal requirement
that element i be anywhere near element i+1 in memory. As long as A[i] always refers to the same memory
location and A[i+1] always refers to its corresponding location (and the two are different), the definition of
an array is satisfied.

In this text, we will assume that array elements occupy contiguous locations in memory. An array with
five elements will appear in memory as shown in Figure 4.1

Figure 4.1 Array Layout in Memory

The base address of an array is the address of the first element on the array and always appears in the
lowest memory location. The second array element directly follows the first in memory, the third element
follows the second, etc. Note that there is no requirement that the indices start at zero. They may start with
any number as long as they are contiguous. However, for the purposes of discussion, it’s easier to discuss
accessing array elements if the first index is zero. This text generally begins most arrays at index zero unless

1. Or some value whose underlying representation is integer, such as character, enumerated, and boolean types.

A[0] A[1] A[2] A[3] A[4

A: array [0..4] of sometype;

Low memory
addresses

High memory
addressesBase address of A
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 445

arrays
there is a good reason to do otherwise. However, this is for consistency only. There is no efficiency benefit
one way or another to starting the array index at some value other than zero.

To access an element of an array, you need a function that translates an array index to the address of the
indexed element. For a single dimension array, this function is very simple. It is

Element_Address = Base_Address + ((Index - Initial_Index) * Element_Size)

where Initial_Index is the value of the first index in the array (which you can ignore if zero) and the value
Element_Size is the size, in bytes, of an individual element of the array.

4.3 Declaring Arrays in Your HLA Programs

Before you access elements of an array, you need to set aside storage for that array. Fortunately, array
declarations build on the declarations you’ve seen thus far. To allocate n elements in an array, you would use
a declaration like the following in one of the variable declaration sections:

ArrayName: basetype[n];

ArrayName is the name of the array variable and basetype is the type of an element of that array. This sets
aside storage for the array. To obtain the base address of the array, just use ArrayName.

The “[n]” suffix tells HLA to duplicate the object n times. Now let’s look at some specific examples:

static

CharArray: char[128]; // Character array with elements 0..127.
IntArray: integer[8]; // “integer” array with elements 0..7.
ByteArray: byte[10]; // Array of bytes with elements 0..9.
PtrArray: dword[4]; // Array of double words with elements 0..3.

The second example, of course, assumes that you have defined the integer data type in the TYPE section of
the program.

These examples all allocate storage for uninitialized arrays. You may also specify that the elements of
the arrays be initialized to a single value using declarations like the following in the STATIC and REA-
DONLY sections:

RealArray: real32[8] := [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];
IntegerAry: integer[8] := [1, 1, 1, 1, 1, 1, 1, 1];

These definitions both create arrays with eight elements. The first definition initializes each four-byte real
value to 1.0, the second declaration initializes each integer element to one. Note that the number of con-
stants within the square brackets must match the size you declare for the array.

This initialization mechanism is fine if you want each element of the array to have the same value. What
if you want to initialize each element of the array with a (possibly) different value? No sweat, just specify a
different set of values in the list surrounded by the square brackets in the example above:

RealArray: real32[8] := [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
IntegerAry: integer[8] := [1, 2, 3, 4, 5, 6, 7, 8];

4.4 HLA Array Constants

The last few examples in the last section demonstrate the use of HLA array constants. An HLA array
constant is nothing more than a list of values (all the same time) surrounded by a pair of brackets. The fol-
lowing are all legal array constants:

[1, 2, 3, 4]
[2.0, 3.14159, 1.0, 0.5]
[‘a’, ‘b’, ‘c’, ‘d’]
Page 446 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays
[“Hello”, “world”, “of”, “assembly”]

(note that this last array constant contains four double word pointers to the four HLA strings appearing else-
where in memory.)

As you saw in the previous section you can use array constants in the STATIC, READONLY, and DATA
sections to provide initial values for array variables. Of course, the number of comma separated items in an
array constant must exactly match the number of array elements in the variable declaration. Likewise, the
type of the array constant’s elements must match the type of the elements in the array variable.

Using array constants to initialize small arrays is very convenient. Of course, if your array has several
thousand elements in it, typing them all in will not be very much fun. Most arrays initialized this way have
no more than a couple hundred entries, and generally far less than 100. It is reasonable to use an array con-
stant to initialize such variables. However, at some point it will become far too tedious and error-prone to
initialize arrays in this fashion. It is doubtful, for example, that you would want to manually initialize an
array with 1,000 different elements using an array constant2. However, if you want to initialize all the ele-
ments of an array with the same value, HLA does provide a special array constant syntax for doing so. Con-
sider the following declaration:

BigArray: uns32[1000] := 1000 dup [1];

This declaration creates a 1,000 element integer array initializing each element of the array with the
value one. The “1000 dup [1]” expression tells HLA to create an array constant by duplicating the single
value “[1]” one thousand times. You can even use the DUP operator to duplicate a series of values (rather
than a single value) as the following example indicates:

SixteenInts: int32[16] := 4 dup [1,2,3,4];

This example initializes SixteenInts with four copies of the sequence “1, 2, 3, 4” yielding a total of sixteen
different integers (i.e., 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4).

You will see some more possibilities with the DUP operator when looking at multidimensional arrays a
little later.

4.5 Accessing Elements of a Single Dimension Array

To access an element of a zero-based array, you can use the simplified formula:

Element_Address = Base_Address + index * Element_Size

For the Base_Address entry you can use the name of the array (since HLA associates the address of the
first element of an array with the name of that array). The Element_Size entry is the number of bytes for each
array element. If the object is an array of bytes, the Element_Size field is one (resulting in a very simple com-
putation). If each element of the array is a word (or other two-byte type) then Element_Size is two. And so
on. To access an element of the SixteenInts array in the previous section, you’d use the formula:

Element_Address = Squares + index*4

The 80x86 code equivalent to the statement “EAX:=SixteenInts[index]” is

mov(index, ebx);
shl(2, ebx); //Sneaky way to compute 4*ebx
mov(SixteenInts[ebx], eax);

There are two important things to notice here. First of all, this code uses the SHL instruction rather than
the INTMUL instruction to compute 4*index. The main reason for choosing SHL is that it was more effi-
cient. It turns out that SHL is a lot faster than INTMUL on many processors.

2. In the chapter on Macros and the HLA Run-Time Language you will learn how to automate the initialization of large array
objects. So initializing large objects is not completely out of the question.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 447

arrays
The second thing to note about this instruction sequence is that it does not explicitly compute the sum of
the base address plus the index times two. Instead, it relies on the indexed addressing mode to implicitly
compute this sum. The instruction “mov(SixteenInts[ebx], eax);” loads EAX from location Sixteen-
Ints+EBX which is the base address plus index*4 (since EBX contains index*4). Sure, you could have used

lea(eax, SixteenInts);
mov(index, ebx);
shl(2, ebx); //Sneaky way to compute 4*ebx
add(eax, ebx); //Compute base address plus index*4
mov(SixteenInts[ebx], eax);

in place of the previous sequence, but why use five instructions where three will do the same job? This is a
good example of why you should know your addressing modes inside and out. Choosing the proper address-
ing mode can reduce the size of your program, thereby speeding it up.

Of course, as long as we’re discussing efficiency improvements, it’s worth pointing out that the 80x86
scaled indexed addressing modes let you automatically multiply an index by one, two, four, or eight. Since
this current example multiplies the index by four, we can simplify the code even farther by using the scaled
indexed addressing mode:

mov(index, ebx);
mov(SixteenInts[ebx*4], eax);

Note, however, that if you need to multiply by some constant other than one, two, four, or eight, then you
cannot use the scaled indexed addressing modes. Similarly, if you need to multiply by some element size
that is not a power of two, you will not be able to use the SHL instruction to multiply the index by the ele-
ment size; instead, you will have to use INTMUL or some other instruction sequence to do the multiplica-
tion.

The indexed addressing mode on the 80x86 is a natural for accessing elements of a single dimension
array. Indeed, it’s syntax even suggests an array access. The only thing to keep in mind is that you must
remember to multiply the index by the size of an element. Failure to do so will produce incorrect results.

Before moving on to multidimensional arrays, a couple of additional points about addressing modes and
arrays are in order. The above sequences work great if you only access a single element from the SixteenInts
array. However, if you access several different elements from the array within a short section of code, and
you can afford to dedicate another register to the operation, you can certainly shorten your code and, per-
haps, speed it up as well. Consider the following code sequence:

lea(ebx, SixteenInts);
mov(index, esi);
mov([ebx+esi*4], eax);

Now EBX contains the base address and ESI contains the index value. Of course, this hardly appears to
be a good trade-off. However, when accessing additional elements if SixteenInts you do not have to reload
EBX with the base address of SixteenInts for the next access. The following sequence is a little shorter than
the comparable sequence that doesn’t load the base address into EBX:

lea(ebx, SixteenInts);
mov(index, esi);
mov([ebx+esi*4], eax);
 .
 . //Assumption: EBX is left alone
 . // through this code.
mov(index2, esi);
mov([ebx+esi*4], eax);

This code is slightly shorter because the “mov([ebx+esi*4], eax);” instruction is slightly shorter than
the “mov(SixteenInts[ebx*4], eax);” instruction. Of course the more accesses to SixteenInts you make
without reloading EBX, the greater your savings will be. Tricky little code sequences such as this one some-
times pay off handsomely. However, the savings depend entirely on which processor you’re using. Code
Page 448 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays
sequences that run faster on one 80x86 CPU might actually run slower on a different CPU. Unfortunately, if
speed is what you’re after there are no hard and fast rules. In fact, it is very difficult to predict the speed of
most instructions on the 80x86 CPUs.

4.5.1 Sorting an Array of Values

Almost every textbook on this planet gives an example of a sort when introducing arrays. Since you’ve
probably seen how to do a sort in high level languages already, it’s probably instructive to take a quick look
at a sort in HLA. The example code in this section will use a variant of the Bubble Sort which is great for
short lists of data and lists that are nearly sorted, but horrible for just about everything else3.

const
 NumElements:= 16;

static
 DataToSort: uns32[NumElements] :=
 [
 1, 2, 16, 14,
 3, 9, 4, 10,
 5, 7, 15, 12,
 8, 6, 11, 13
];

 NoSwap: boolean;

.

.

.

 // Bubble sort for the DataToSort array:

 repeat

 mov(true, NoSwap);
 for(mov(0, ebx); ebx <= NumElements-2; inc(ebx)) do

 mov(DataToSort[ebx*4], eax);
 if(eax > DataToSort[ebx*4 + 4]) then

 mov(DataToSort[ebx*4 + 4], ecx);
 mov(ecx, DataToSort[ebx*4]);
 mov(eax, DataToSort[ebx*4 + 4]); // Note: EAX contains
 mov(false, NoSwap); // DataToSort[ebx*4]

 endif;

 endfor;

 until(NoSwap);

The bubble sort works by comparing adjacent elements in an array. The interesting thing to note in this code
fragment is how it compares adjacent elements. You will note that the IF statement compares EAX (which
contains DataToSort[ebx*4]) against DataToSort[EBX*4 + 4]. Since each element of this array is four bytes
(uns32), the index [EBX*4 + 4] references the next element beyond [EBX*4].

3. Fear not, you’ll see some better sorting algorithms in the next chapter once we cover procedures and recursion.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 449

arrays
As is typical for a bubble sort, this algorithm terminates if the innermost loop completes without swap-
ping any data. If the data is already presorted, then the bubble sort is very efficient, making only one pass
over the data. Unfortunately, if the data is not sorted (worst case, if the data is sorted in reverse order), then
this algorithm is extremely inefficient. Indeed, although it is possible to modify the code above so that, on
the average, it runs about twice as fast, such optimizations are wasted on such a poor algorithm. However,
the Bubble Sort is very easy to implement and understand (which is why introductory texts continue to use it
in examples). Fortunately, you will learn about more advanced sorts later in this text, so you won’t be stuck
with it for very long.

4.6 Multidimensional Arrays

The 80x86 hardware can easily handle single dimension arrays. Unfortunately, there is no magic
addressing mode that lets you easily access elements of multidimensional arrays. That’s going to take some
work and lots of instructions.

Before discussing how to declare or access multidimensional arrays, it would be a good idea to figure
out how to implement them in memory. The first problem is to figure out how to store a multi-dimensional
object into a one-dimensional memory space.

Consider for a moment a Pascal array of the form “A:array[0..3,0..3] of char;”. This array contains 16
bytes organized as four rows of four characters. Somehow you’ve got to draw a correspondence with each of
the 16 bytes in this array and 16 contiguous bytes in main memory. Figure 4.2 shows one way to do this:

Figure 4.2 Mapping a 4x4 Array to Sequential Memory Locations

The actual mapping is not important as long as two things occur: (1) each element maps to a unique
memory location (that is, no two entries in the array occupy the same memory locations) and (2) the map-
ping is consistent. That is, a given element in the array always maps to the same memory location. So what
you really need is a function with two input parameters (row and column) that produces an offset into a lin-
ear array of sixteen memory locations.

Now any function that satisfies the above constraints will work fine. Indeed, you could randomly choose
a mapping as long as it was unique. However, what you really want is a mapping that is efficient to compute
at run time and works for any size array (not just 4x4 or even limited to two dimensions). While there are a
large number of possible functions that fit this bill, there are two functions in particular that most program-
mers and most high level languages use: row major ordering and column major ordering.

0
1
2
3

0 1 2 3

Memory
Page 450 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays
4.6.1 Row Major Ordering

Row major ordering assigns successive elements, moving across the rows and then down the columns,
to successive memory locations. The mapping is best described in Figure 4.3:

Figure 4.3 Row Major Array Element Ordering

Row major ordering is the method employed by most high level programming languages including Pas-
cal, C, Ada, Modula-2, etc. It is very easy to implement and easy to use in machine language. The conversion
from a two-dimensional structure to a linear array is very intuitive. You start with the first row (row number
zero) and then concatenate the second row to its end. You then concatenate the third row to the end of the list,
then the fourth row, etc. (see Figure 4.4).

Figure 4.4 Another View of Row-Major Ordering for a 4x4 Array

For those who like to think in terms of program code, the following nested Pascal loop also demon-
strates how row major ordering works:

0
1
2
3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

Memory

15 A[3,3]
14 A[3,2]
13 A[3,1]
12 A[3,0]
11 A[2,3]
10 A[2,2]
9 A[2,1]
8 A[2,0]
7 A[1,3]
6 A[1,2]
5 A[1,1]
4 A[1,0]
3 A[0,3]
2 A[0,2]
1 A[0,1]
0 A[0,0]

A:array [0..3,0..3] of char;

0 1 2 3

8 9 10 11

12 13 14 15

4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Low Addresses High Addresses
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 451

arrays
index := 0;
for colindex := 0 to 3 do

for rowindex := 0 to 3 do
begin

memory [index] := rowmajor [colindex][rowindex];
index := index + 1;

end;

The important thing to note from this code, that applies regardless of the number of dimensions, is that
the rightmost index increases the fastest. That is, as you allocate successive memory locations you increment
the rightmost index until you reach the end of the current row. Upon reaching the end, you reset the index
back to the beginning of the row and increment the next successive index by one (that is, move down to the
next row.). This works equally well for any number of dimensions4. The following Pascal segment demon-
strates row major organization for a 4x4x4 array:

index := 0;
for depthindex := 0 to 3 do

for colindex := 0 to 3 do
 for rowindex := 0 to 3 do begin

memory [index] := rowmajor [depthindex][colindex][rowindex];
index := index + 1;

 end;

The actual function that converts a list of index values into an offset doesn’t involve loops or much in
the way of fancy computations. Indeed, it’s a slight modification of the formula for computing the address of
an element of a single dimension array. The formula to compute the offset for a two-dimension row major
ordered array declared in Pascal as “A:array [0..3,0..3] of integer” is

Element_Address = Base_Address + (colindex * row_size + rowindex) * Element_Size

As usual, Base_Address is the address of the first element of the array (A[0][0] in this case) and
Element_Size is the size of an individual element of the array, in bytes. Colindex is the leftmost index, rowin-
dex is the rightmost index into the array. Row_size is the number of elements in one row of the array (four, in
this case, since each row has four elements). Assuming Element_Size is one, this formula computes the fol-
lowing offsets from the base address:

Column Row Offset into Array
index Index
0 0 0
0 1 1
0 2 2
0 3 3
1 0 4
1 1 5
1 2 6
1 3 7
2 0 8
2 1 9
2 2 10
2 3 11
3 0 12
3 1 13
3 2 14
3 3 15

For a three-dimensional array, the formula to compute the offset into memory is the following:

Address = Base + ((depthindex*col_size+colindex) * row_size + rowindex) * Element_Size

4. By the way, the number of dimensions of an array is its arity.
Page 452 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays
Col_size is the number of items in a column, row_size is the number of items in a row. In C/C++, if you’ve
declared the array as “type A[i] [j] [k];” then row_size is equal to k and col_size is equal to j.

For a four dimensional array, declared in C/C++ as “type A[i] [j] [k] [m];” the formula for computing
the address of an array element is

Address =
Base + (((LeftIndex * depth_size + depthindex)*col_size+colindex) * row_size +
rowindex) * Element_Size

Depth_size is equal to j, col_size is equal to k, and row_size is equal to m. LeftIndex represents the value of
the leftmost index.

By now you’re probably beginning to see a pattern. There is a generic formula that will compute the off-
set into memory for an array with any number of dimensions, however, you’ll rarely use more than four.

Another convenient way to think of row major arrays is as arrays of arrays. Consider the following sin-
gle dimension Pascal array definition:

A: array [0..3] of sometype;

Assume that sometype is the type “sometype = array [0..3] of char;”.

A is a single dimension array. Its individual elements happen to be arrays, but you can safely ignore that
for the time being. The formula to compute the address of an element of a single dimension array is

Element_Address = Base + Index * Element_Size

In this case Element_Size happens to be four since each element of A is an array of four characters. So
what does this formula compute? It computes the base address of each row in this 4x4 array of characters
(see Figure 4.5):

Figure 4.5 Viewing a 4x4 Array as an Array of Arrays

Of course, once you compute the base address of a row, you can reapply the single dimension formula to
get the address of a particular element. While this doesn’t affect the computation at all, conceptually it’s
probably a little easier to deal with several single dimension computations rather than a complex multidi-
mensional array element address computation.

Consider a Pascal array defined as “A:array [0..3] [0..3] [0..3] [0..3] [0..3] of char;” You can view this
five-dimension array as a single dimension array of arrays. The following Pascal code demonstrates such a
definition:

type
OneD = array [0..3] of char;

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

A[0]

A[1]

A[2]

A[3]

(A[0]) [0]
(A[0]) [1]
(A[0]) [2]
(A[0]) [3]

Each elemen
of A is four
bytes long.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 453

arrays
TwoD = array [0..3] of OneD;
ThreeD = array [0..3] of TwoD;
FourD = array [0..3] of ThreeD;

var
A : array [0..3] of FourD;

The size of OneD is four bytes. Since TwoD contains four OneD arrays, its size is 16 bytes. Likewise,
ThreeD is four TwoDs, so it is 64 bytes long. Finally, FourD is four ThreeDs, so it is 256 bytes long. To com-
pute the address of “A [b, c, d, e, f]” you could use the following steps:

• Compute the address of A [b] as “Base + b * size”. Here size is 256 bytes. Use this result as the
new base address in the next computation.

• Compute the address of A [b, c] by the formula “Base + c*size”, where Base is the value
obtained immediately above and size is 64. Use the result as the new base in the next computa-
tion.

• Compute the address of A [b, c, d] by “Base + d*size” with Base coming from the above com-
putation and size being 16.

• Compute the address of A [b, c, d, e] with the formula “Base + e*size” with Base from above
and size being four. Use this value as the base for the next computation.

• Finally, compute the address of A [b, c, d, e, f] using the formula “Base + f*size” where base
comes from the above computation and size is one (obviously you can simply ignore this final
multiplication). The result you obtain at this point is the address of the desired element.

Not only is this scheme easier to deal with than the fancy formulae given earlier, but it is easier to com-
pute (using a single loop) as well. Suppose you have two arrays initialized as follows

A1 = [256, 64, 16, 4, 1] and A2 = [b, c, d, e, f]

then the Pascal code to perform the element address computation becomes:

for i := 0 to 4 do
base := base + A1[i] * A2[i];

Presumably base contains the base address of the array before executing this loop. Note that you can easily
extend this code to any number of dimensions by simply initializing A1 and A2 appropriately and changing
the ending value of the for loop.

As it turns out, the computational overhead for a loop like this is too great to consider in practice. You
would only use an algorithm like this if you needed to be able to specify the number of dimensions at run
time. Indeed, one of the main reasons you won’t find higher dimension arrays in assembly language is that
assembly language displays the inefficiencies associated with such access. It’s easy to enter something like
“A [b,c,d,e,f]” into a Pascal program, not realizing what the compiler is doing with the code. Assembly lan-
guage programmers are not so cavalier – they see the mess you wind up with when you use higher dimen-
sion arrays. Indeed, good assembly language programmers try to avoid two dimension arrays and often
resort to tricks in order to access data in such an array when its use becomes absolutely mandatory. But more
on that a little later.

4.6.2 Column Major Ordering

Column major ordering is the other function frequently used to compute the address of an array ele-
ment. FORTRAN and various dialects of BASIC (e.g., older versions of Microsoft BASIC) use this method
to index arrays.

In row major ordering the rightmost index increased the fastest as you moved through consecutive
memory locations. In column major ordering the leftmost index increases the fastest. Pictorially, a column
major ordered array is organized as shown in Figure 4.6:
Page 454 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays
Figure 4.6 Column Major Array Element Ordering

The formulae for computing the address of an array element when using column major ordering is very
similar to that for row major ordering. You simply reverse the indexes and sizes in the computation:

For a two-dimension column major array:

Element_Address = Base_Address + (rowindex * col_size + colindex) * Element_Size

For a three-dimension column major array:

Address = Base + ((rowindex*col_size+colindex) * depth_size + depthindex) *
Element_Size

For a four-dimension column major array:

Address =
Base + (((rowindex * col_size + colindex)*depth_size + depthindex) *

Left_size + Leftindex) * Element_Size

The single Pascal loop provided for row major access remains unchanged (to access A[b][c][d][e][f]):

for i := 0 to 4 do
base := base + A1[i] * A2[i];

Likewise, the initial values of the A1 array remain unchanged:

A1 = {256, 64, 16, 4, 1}

The only thing that needs to change is the initial values for the A2 array, and all you have to do here is
reverse the order of the indices:

A2 = {f, e, d, c, b}

4.7 Allocating Storage for Multidimensional Arrays

If you have an m x n array, it will have m * n elements and require m*n*Element_Size bytes of storage.
To allocate storage for an array you must reserve this amount of memory. As usual, there are several different
ways of accomplishing this task. Fortunately, HLA’s array declaration syntax is very similar to high level

0
1
2
3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

Memory

15 A[3,3]
14 A[2,3]
13 A[1,3]
12 A[0,3]
11 A[3,2]
10 A[2,2]
9 A[1,2]
8 A[0,2]
7 A[3,1]
6 A[2,1]
5 A[1,1]
4 A[0,1]
3 A[3,0]
2 A[2,0]
1 A[1,0]
0 A[0,0]

A:array [0..3,0..3] of char;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 455

arrays
language array declaration syntax, so C/C++, BASIC, and Pascal programmers will feel right at home. To
declare a multidimensional array in HLA, you use a declaration like the following:

ArrayName: elementType [comma_separated_list_of_dimension_bounds];

For example, here is a declaration for a 4x4 array of characters:

GameGrid: char[4, 4];

Here is another example that shows how to declare a three dimensional array of strings:

NameItems: string[2, 3, 3];

Remember, string objects are really pointers, so this array declaration reserves storage for 18 double word
pointers (2*3*3=18).

As was the case with single dimension arrays, you may initialize every element of the array to a specific
value by following the declaration with the assignment operator and an array constant. Array constants
ignore dimension information; all that matters is that the number of elements in the array constant corre-
spond to the number of elements in the actual array. The following example shows the GameGrid declara-
tion with an initializer:

GameGrid: char[4, 4] :=
[

‘a’, ‘b’, ‘c’, ‘d’,
‘e’, ‘f’, ‘g’, ‘h’,
‘i’, ‘j’, ‘k’, ‘l’,
‘m’, ‘n’, ‘o’, ‘p’

];

Note that HLA ignores the indentation and extra whitespace characters (e.g., newlines) appearing in this
declaration. It was laid out to enhance readability (which is always a good idea). HLA does not interpret the
four separate lines as representing rows of data in the array. Humans do, which is why it’s good to lay out
the initial data in this manner, but HLA completely ignores the physical layout of the declaration. All that
matters is that there are 16 (4*4) characters in the array constant. You’ll probably agree that this is much
easier to read than

GameGrid: char[4,4] :=
[‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’, ‘k’, ‘l’, ‘m’,
 ‘n’, ‘o’, ‘p’];

Of course, if you have a large array, an array with really large rows, or an array with many dimensions,
there is little hope for winding up with something reasonable. That’s when comments that carefully explain
everything come in handy.

As with single dimension arrays, you can use the DUP operator to initialize each element of a really
large array with the same value. The following example initializes a 256x64 array of bytes so that each byte
contains the value $FF:

StateValue: byte[256, 64] := 256*64 dup [$ff];

Note the use of a constant expression to compute the number of array elements rather than simply using the
constant 16,384 (256*64). The use of the constant expression more clearly suggests that this code is initial-
izing each element of a 256x64 element array than does the simple literal constant 16,384.

Another HLA trick you can use to improve the readability of your programs is to use nested array con-
stants. The following is an example of an HLA nested array constant:

[[0, 1, 2], [3, 4], [10, 11, 12, 13]]

Whenever HLA encounters an array constant nested inside another array constant, it simply removes the
brackets surrounding the nested array constant and treats the whole constant as a single array constant. For
example, HLA converts the nested array constant above to the following:

[0, 1, 2, 3, 4, 10, 11, 12, 13]
Page 456 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays
You can take advantage of this fact to help make your programs a little more readable. For multidimensional
array constants you can enclose each row of the constant in square brackets to denote that the data in each
row is grouped and separate from the other rows. As an example, consider the following declaration for the
GameGrid array that is identical (as far as HLA is concerned) to the previous declaration:

GameGrid: char[4, 4] :=
[

[‘a’, ‘b’, ‘c’, ‘d’],
[‘e’, ‘f’, ‘g’, ‘h’],
[‘i’, ‘j’, ‘k’, ‘l’],
[‘m’, ‘n’, ‘o’, ‘p’]

];

This declaration makes it clearer that the array constant is a 4x4 array rather than just a 16-element
one-dimensional array whose elements wouldn’t fit all on one line of source code. Little aesthetic improve-
ments like this are what separate mediocre programmers from good programmers.

4.8 Accessing Multidimensional Array Elements in Assembly Language

Well, you’ve seen the formulae for computing the address of an array element. You’ve even looked at
some Pascal code you could use to access elements of a multidimensional array. Now it’s time to see how to
access elements of those arrays using assembly language.

The MOV, SHL, and INTMUL instructions make short work of the various equations that compute off-
sets into multidimensional arrays. Let’s consider a two dimension array first:

static
i: int32;
j: int32;
TwoD: int32[4, 8];

 .
 .
 .

// To peform the operation TwoD[i,j] := 5; you’d use code like the following.
// Note that the array index computation is (i*8 + j)*4.

mov(i, ebx);
shl(3, ebx); // Multiply by eight (shl by 3 is a multiply by 8).
add(j, ebx);
mov(5, TwoD[ebx*4]);

Note that this code does not require the use of a two register addressing mode on the 80x86. Although
an addressing mode like TwoD[ebx][esi] looks like it should be a natural for accessing two dimensional
arrays, that isn’t the purpose of this addressing mode.

Now consider a second example that uses a three dimension array:

static
i: int32;
j: int32;
k: int32;
ThreeD: int32[3, 4, 5];

.

.

.

// To peform the operation ThreeD[i,j,k] := ESI; you’d use the following code
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 457

arrays
// that computes ((i*4 + j)*5 + k)*4 as the address of ThreeD[i,j,k].

mov(i, ebx);
shl(2, ebx); // Four elements per column.
add(j, ebx);
intmul(5, ebx); // Five elements per row.
add(k, ebx);
mov(esi, ThreeD[ebx*4]);

Note that this code uses the INTMUL instruction to multiply the value in EBX by five. Remember, the SHL
instruction can only multiply a register by a power of two. While there are ways to multiply the value in a
register by a constant other than a power of two, the INTMUL instruction is more convenient5.

4.9 Large Arrays and MASM

There is a defect in later versions of MASM v6.x that create some problems when you declare large
static arrays in your programs. Now you may be wondering what this has to do with you since we’re using
HLA, but don’t forget that HLA v1.x compiles to MASM assembly code and then runs MASM to assemble
this output. Therefore, any defect in MASM is going to be a problem for HLA users.

The problem occurs when the total number of array elements you declare in a static section (STATIC,
READONLY, or STORAGE) starts to get large. Large in this case is CPU dependent, but it falls somewhere
between 128,000 and one million elements for most systems. MASM, for whatever reason, uses a very slow
algorithm to emit array code to the object file; by the time you declare 64K array elements, MASM starts to
produce a noticeable delay while compiling your code. After that point, the delay grows linearly with the
number of array elements (i.e., as you double the number of array elements you double the assembly time)
until the data saturates MASM’s internal buffers and the cache. Then there is a big jump in execution time.
For example, on a 300 MHz Pentium II processor, compiling a program with an array with 256,000 elements
takes about 30 seconds, compiling a program with an array having 512,000 element takes several minutes.
Compiling a program with a one-megabyte array seems to take forever.

There are a couple of ways to solve this problem. First, of course, you can limit the size of your arrays
in your program. Unfortunately, this isn’t always an option available to you. The second possibility is to use
MASM v6.11; the defect was introduced in MASM after this version. The problem with MASM v6.11 is
that it doesn’t support the MMX instruction set, so if you’re going to compile MMX instructions (or other
instructions that MASM v6.11 doesn’t support) with HLA you will not be able to use this option. A third
option is to put your arrays in a VAR section rather than a static declaration section; HLA processes arrays
you declare in the VAR section so MASM never sees them. Hence, arrays you declare in the VAR section
don’t suffer from this problem.

4.10 Dynamic Arrays in Assembly Language

One problem with arrays up to this point is that their size is static. That is, the number of elements in all
of the examples is chosen when writing the program, it is not set while the program is running (i.e., dynami-
cally). Alas, sometimes you simply don’t know how big an array needs to be when you’re writing the pro-
gram; you can only determine the size of the array while the program is running. This section describes
how to allocate storage for arrays dynamically so you can set their size at run time.

Allocating storage for a single dimension array, and accessing elements of that array, is a nearly trivial
task at run time. All you need to do is call the HLA Standard Library malloc routine specifying the size of
the array, in bytes. Malloc will return a pointer to the base address of the new array in the EAX register.
Typically, you would save this address in a pointer variable and use that value as the base address of the
array in all future array accesses.

5. A full discussion of multiplication by constants other than a power of two appears in the chapter on arithmetic.
Page 458 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays
To access an element of a single dimensional dynamic array, you would generally load the base address
into a register and compute the index in a second register. Then you could use the based indexed addressing
mode to access elements of that array. This is not a whole lot more work than accessing elements of a stati-
cally allocated array. The following code fragment demonstrates how to allocate and access elements of a
single dimension dynamic array:

static
ArySize: uns32;
BaseAdrs: pointer to uns32;

.

.

.
stdout.put(“How many elements do you want in your array? “);
stdin.getu32();
mov(eax, ArySize; // Save away the upper bounds on this array.
shl(2, eax); // Multiply eax by four to compute the number of bytes.
malloc(eax); // Allocate storage for the array.
mov(eax, BaseAdrs); // Save away the base address of the new array.

.

.

.

// Zero out each element of the array:

mov(BaseAdrs, ebx);
mov(0, eax);
for(mov(0, esi); esi < ArySize; inc(esi)) do

mov(eax, [ebx + esi*4]);

endfor;

Dynamically allocating storage for a multidimensional array is fairly straight-forward. The number of
elements in a multidimensional array is the product of all the dimension values; e.g., a 4x5 array has 20 ele-
ments. So if you get the bounds for each dimension from the user, all you need do is compute the product of
all of these bound values and multiply the final result by the size of a single element. This computes the total
number of bytes in the array, the value that malloc expects.

Accessing elements of multidimensional arrays is a little more problematic. The problem is that you
need to keep the dimension information (that is, the bounds on each dimension) around because these values
are needed when computing the row major (or column major) index into the array6. The conventional solu-
tion is to store these bounds into a static array (generally you know the arity, or number of dimensions, at
compile-time, so it is possible to statically allocate storage for this array of dimension bounds). This array of
dynamic array bounds is known as a dope vector. The following code fragment shows how to allocate stor-
age for a two-dimensional dynamic array using a simple dope vector.

var
 ArrayPtr: pointer to uns32;
 ArrayDims: uns32[2];

.

.

.
 // Get the array bounds from the user:

 stdout.put("Enter the bounds for dimension #1: ");
 stdin.get(ArrayDims[0]);

6. Technically, you don’t need the value of the left-most dimension bound to compute an index into the array, however, if you
want to check the index bounds using the BOUND instruction (or some other technique), you will need this value around at
run-time as well.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 459

arrays
 stdout.put("Enter the bounds for dimension #2: ");
 stdin.get(ArrayDims[1*4]);

 // Allocate storage for the array:

 mov(ArrayDims[0], eax);
 intmul(ArrayDims[1*4], eax);
 shl(2, eax); // Multiply by four since each element is 4 bytes.
 malloc(eax); // Allocate storage for the array and
 mov(eax, ArrayPtr); // save away the pointer to the array.

 // Initialize the array:

 mov(0, edx);
 mov(ArrayPtr, edi);
 for(mov(0, ebx); ebx < ArrayDims[0]; inc(ebx)) do

 for(mov(0, ecx); ecx < ArrayDims[1*4]; inc(ecx)) do

 // Compute the index into the array
 // as esi := (ebx * ArrayDims[1*4] + ecx) * 4
 // (Note that the final multiplication by four is
 // handled by the scaled indexed addressing mode below.)

 mov(ebx, esi);
 intmul(ArrayDims[1*4], esi);
 add(ecx, esi);

 // Initialize the current array element with edx.

 mov(edx, [edi+esi*4]);
 inc(edx);

 endfor;

 endfor;

4.11 HLA Standard Library Array Support

The HLA Standard Library provides an array module that helps reduce the effort needed to support
static and dynamic arrays in your program. The “arrays.hhf” library module provides code to declare and
allocate dynamic arrays, compute the index into an array, copy arrays, perform row reductions, transpose
arrays, and more. This section will explore some of the more useful features the arrays module provides.

One of the more interesting features of the HLA Standard Library arrays module is that most of the
array manipulation procedures support both statically allocated and dynamically allocated arrays. In fact,
the HLA array procedures can automatically figure out if an array is static or dynamic and generate the
appropriate code for that array. There is one catch, however. In order for HLA to be able to differentiate
statically and dynamically allocated arrays, you must use the dynamic array declarations found in the arrays
package. This won’t be a problem because HLA’s dynamic array facilities are powerful and very easy to
use.

To declare a dynamic array with the HLA arrays package, you use a variable declaration like the follow-
ing:

variableName: array.dArray(elementType, Arity);
Page 460 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays
The elementType parameter is a regular HLA data type identifier (e.g., int32 or some type identifier
you’ve defined in the TYPE section). The Arity parameter is a constant that specifies the number of dimen-
sions for the array (arity is the formal name for “number of dimensions”). Note that you do not specify the
bounds of each dimension in this declaration. Storage allocation occurs later, at run time. The following is
an example of a declaration for a dynamically allocated two-dimensional matrix:

ScreenBuffer: array.dArray(char, 2);

The array.dArray data type is actually an HLA macro7 that expands the above to the following:

ScreenBuffer: record
dataPtr: dword;
dopeVector: uns32[2];
elementType: char;

endrecord;

The dataPtr field will hold the base address of the array once the program allocates storage for it. The dope-
Vector array has one element for each array dimension (the macro uses the second parameter of the
array.dArray type as the number of dimensions for the dopeVector array). The elementType field is a single
object that has the same type as an element of the dynamic array. HLA provides a couple of built-in func-
tions that you can use on these fields to extract important information. The @Elements function returns the
number of elements in an array. Therefore, “@Elements(ScreenBuffer.dopeVector)” will return the number
of elements (two) in the ScreenBuffer.dopeVector array. Since this array contains one element for each
dimension in the dynamic array, you can use the @Elements function with the dopeVector field to determine
the arity of the array. You can use the HLA @Size function on the ScreenBuffer.elementType field to deter-
mine the size of an array element in the dynamic array. Most of the time you will know the arity and type of
your dynamic arrays (after all, you declared them), so you probably won’t use these functions often until you
start writing macros that process dynamic arrays.

After you declare a dynamic array, you must initialize the dynamic array object before attempting to use
the array. The HLA Standard Library array.daAlloc routine handles this task for you. This routine uses the
following syntax:

array.daAlloc(arrayName, comma_separated_list_of_array_bounds);

To allocate storage for the ScreenBuffer variable in the previous example you could use a call like the follow-
ing:

array.daAlloc(ScreenBuffer, 20, 40);

This call will allocate storage for a 20x40 array of characters. It will store the base address of the array into
the ScreenBuffer.dataPtr field. It will also initialize ScreenBuffer.dopeVector[0] with 20 and ScreenBuf-
fer.dopeVector[1*4] with 40. To access elements of the ScreenBuffer array you can use the techniques of the
previous section, or you could use the array.index function.

The array.index function automatically computes the address of an array element for you. This function
uses the following call syntax:

array.index(reg32, arrayName, comma_separated_list_of_index_values);

The first parameter must be a 32-bit register. The array.index function will store the address of the spec-
ified array element in this register. The second array.index parameter must be the name of an array; this can
be either a statically allocated array or an array you’ve declared with array.dArray and allocated dynami-
cally with array.daAlloc. Following the array name parameter is a list of one or more array indices. The
number of array indices must match the arity of the array. These array indices can be constants, dword mem-
ory variables, or registers (however, you must not specify the same register that appears in the first parameter
as one of the array indices). Upon return from this function, you may access the specified array element
using the register indirect addressing mode and the register appearing as the first parameter.

7. See the chapter on Macros and the HLA Compile-Time Language for details on macros.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 461

arrays
One last routine you’ll want to know about when manipulating HLA dynamic arrays is the array.daFree
routine. This procedure expects a single parameter that is the name of an HLA dynamic array. Calling
array.daFree will free the storage associated with the dynamic array. The following code fragment is a
rewrite of the example from the previous section that uses HLA dynamic arrays:

var
 da: array.dArray(uns32, 2);
 Bnd1: uns32;
 Bnd2: uns32;

.

.

.
 // Get the array bounds from the user:

 stdout.put("Enter the bounds for dimension #1: ");
 stdin.get(Bnd1);

 stdout.put("Enter the bounds for dimension #2: ");
 stdin.get(Bnd2);

 // Allocate storage for the array:

 array.daAlloc(da, Bnd1, Bnd2);

 // Initialize the array:

 mov(0, edx);
 for(mov(0, ebx); ebx < Bnd1; inc(ebx)) do

 for(mov(0, ecx); ecx < Bnd2; inc(ecx)) do

 // Initialize the current array element with edx.
 // Use array.index to compute the address of the array element.

 array.index(edi, da, ebx, ecx);
 mov(edx, [edi]);
 inc(edx);

 endfor;

 endfor;

Another extremely useful library module is the array.cpy routine. This procedure will copy the data
from one array to another. The calling syntax is:

array.cpy(sourceArrayName, destArrayName);

The source and destination arrays can be static or dynamic arrays. The array.cpy automatically adjusts and
emits the proper code for each combination of parameters. With most of the array manipulation procedures
in the HLA Standard Library, you pay a small performance penalty for the convenience of these library mod-
ules. Not so with array.cpy. This procedure is very, very fast; much faster than writing a loop to copy the
data element by element.

4.12 Putting It All Together

Accessing elements of an array is a very common operation in assembly language programs. This chap-
ter provides the basic information you need to efficiently access array elements. After mastering the material
Page 462 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays
in this chapter you should know how to declare arrays in HLA and access elements of those arrays in your
programs.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 463

arrays
Page 464 © 2001, By Randall Hyde Beta Draft - Do not distribute

Records, Unions, and Namespaces
Records, Unions, and Name Spaces Chapter Five

5.1 Chapter Overview

This chapter discusses how to declare and use record (structures), unions, and name spaces in your pro-
grams. After strings and arrays, records are among the most commonly used composite data types; indeed,
records are the mechanism you use to create user-defined composite data types. Many assembly language
programmers never bother to learn how to use records in assembly language, yet would never consider not
using them in high level language programs. This is somewhat inconsistent since records (structures) are
just as useful in assembly language programs as in high level language programs. Given that you use
records in assembly language (and especially HLA) in a manner quite similar to high level languages, there
really is no reason for excluding this important tool from your programmer’s tool chest. Although you’ll use
unions and name spaces far less often than records, their presence in the HLA language is crucial for many
advanced applications. This brief chapter provides all the information you need to successfully use records,
unions, and name spaces within your HLA programs.

5.2 Records

Another major composite data structure is the Pascal record or C/C++ structure1. The Pascal terminol-
ogy is probably better, since it tends to avoid confusion with the more general term data structure. Since
HLA uses the term “record” we’ll adopt that term here.

Whereas an array is homogeneous, whose elements are all the same, the elements in a record can be of
any type. Arrays let you select a particular element via an integer index. With records, you must select an
element (known as a field) by name.

The whole purpose of a record is to let you encapsulate different, but logically related, data into a single
package. The Pascal record declaration for a student is probably the most typical example:

student =
record

Name: string [64];
Major: integer;
SSN: string[11];
Midterm1: integer;
Midterm2: integer;
Final: integer;
Homework: integer;
Projects: integer;

end;

Most Pascal compilers allocate each field in a record to contiguous memory locations. This means that
Pascal will reserve the first 65 bytes for the name2, the next two bytes hold the major code, the next 12 the
Social Security Number, etc.

In HLA, you can also create structure types using the RECORD/ENDRECORD declaration. You would
encode the above record in HLA as follows:

type
student: record

Name: char[65];
Major: int16;
SSN: char[12];
Midterm1: int16;

1. It also goes by some other names in other languages, but most people recognize at least one of these names.
2. Strings require an extra byte, in addition to all the characters in the string, to encode the length.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 465

Chapter Five Volume Three
Midterm2: int16;
Final: int16;
Homework: int16;
Projects: int16;

endrecord;

As you can see, the HLA declaration is very similar to the Pascal declaration. Note that, to be true to the
Pascal declaration, this example uses character arrays rather than strings for the Name and SSN (U.S Social
Security Number) fields. In a real HLA record declaration you’d probably use a string type for at least the
name (keeping in mind that a string variable is only a four byte pointer).

The field names within the record must be unique. That is, the same name may not appear two or more
times in the same record. However, all field names are local to that record. Therefore, you may reuse those
field names elsewhere in the program.

The RECORD/ENDRECORD type declaration may appear in a variable declaration section (e.g.,
STATIC or VAR) or in a TYPE declaration section. In the previous example the Student declaration appears
in the TYPE section, so this does not actually allocate any storage for a Student variable. Instead, you have
to explicitly declare a variable of type Student. The following example demonstrates how to do this:

var
John: Student;

This allocates 81 bytes of storage laid out in memory as shown in Figure 5.1.

Figure 5.1 Student Data Structure Storage in Memory

If the label John corresponds to the base address of this record, then the Name field is at offset John+0, the
Major field is at offset John+65, the SSN field is at offset John+67, etc.

To access an element of a structure you need to know the offset from the beginning of the structure to
the desired field. For example, the Major field in the variable John is at offset 65 from the base address of
John. Therefore, you could store the value in AX into this field using the instruction

mov(ax, (type word John[65]));

Unfortunately, memorizing all the offsets to fields in a record defeats the whole purpose of using them in the
first place. After all, if you’ve got to deal with these numeric offsets why not just use an array of bytes
instead of a record?

Well, as it turns out, HLA lets you refer to field names in a record using the same mechanism C/C++
and Pascal use: the dot operator. To store AX into the Major field, you could use “mov(ax, John.Major);”
instead of the previous instruction. This is much more readable and certainly easier to use.

Note that the use of the dot operator does not introduce a new addressing mode. The instruction
“mov(ax, John.Major);” still uses the displacement only addressing mode. HLA simply adds the base
address of John with the offset to the Major field (65) to get the actual displacement to encode into the
instruction.

Like any type declaration, HLA requires all record type declarations to appear in the program before
you use them. However, you don’t have to define all records in the TYPE section to create record variables.
You can use the RECORD/ENDRECORD declaration directly in a variable declaration section. This is con-
venient if you have only one instance of a given record object in your program. The following example dem-
onstrates this:

Name
(65 bytes)

Major
(2 bytes)

SSN
(12 bytes)

Mid 1
(2 bytes)

Final
(2 bytes)

Homework
(2 bytes)

Projects
(2 bytes)

John

Mid 2
(2 bytes)
Page 466 © 2001, By Randall Hyde Beta Draft - Do not distribute

Records, Unions, and Namespaces
storage

OriginPoint: record
x: uns8;
y: uns8;
z: uns8;

endrecord;

5.3 Record Constants

HLA lets you define record constants. In fact, HLA supports both symbolic record constants and literal
record constants. Record constants are useful as initializers for static record variables. They are also quite
useful as compile-time data structures when using the HLA compile-time language (see the chapters on
Macros and the HLA Compile-Time Language). This section discusses how to create record constants.

A record literal constant takes the following form:

RecordTypeName:[List_of_comma_separated_constants]

The RecordTypeName is the name of a record data type you’ve defined in an HLA TYPE section prior to
this point. To create a record constant you must have previously defined the record type in a TYPE section
of your program.

The constant list appearing between the brackets are the data items for each of the fields in the specified
record. The first item in the list corresponds to the first field of the record, the second item in the list corre-
sponds to the second field, etc. The data types of each of the constants appearing in this list must match their
respective field types. The following example demonstrates how to use a literal record constant to initialize
a record variable:

type
point: record

x:int32;
y:int32;
z:int32;

endrecord;

static
Vector: point := point:[1, -2, 3];

This declaration initializes Vector.x with 1, Vector.y with -2, and Vector.z with 3.

You can also create symbolic record constants by declaring record objects in the CONST or VAL sec-
tions of your program. You access fields of these symbolic record constants just as you would access the
field of a record variable, using the dot operator. Since the object is a constant, you can specify the field of a
record constant anywhere a constant of that field’s type is legal. You can also employ symbolic record con-
stants as record variable initializers. The following example demonstrates this:

type
point: record

x:int32;
y:int32;
z:int32;

endrecord;

const
PointInSpace: point := point:[1, 2, 3];

static
Vector: point := PointInSpace;
XCoord: int32 := PointInSpace.x;

.

.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 467

Chapter Five Volume Three
.
stdout.put(“Y Coordinate is “, PointInSpace.y, nl);

.

.

.

5.4 Arrays of Records

It is a perfectly reasonable operation to create an array of records. To do so, you simply create a record
type and then use the standard array declaration syntax when declaring an array of that record type. The fol-
lowing example demonstrates how you could do this:

type
recElement:

record
<< fields for this record >>

endrecord;
.
.
.

static
recArray: recElement[4];

To access an element of this array you use the standard array indexing techniques found in the chapter
on arrays. Since recArray is a single dimension array, you’d compute the address of an element of this array
using the formula “baseAddress + index*@size(recElement).” For example, to access an element of recAr-
ray you’d use code like the following:

// Access element i of recArray:

intmul(@size(recElement), i, ebx); // ebx := i*@size(recElement)
mov(recArray.someField[ebx], eax);

Note that the index specification follows the entire variable name; remember, this is assembly not a high
level language (in a high level language you’d probably use “recArray[i].someField”).

Naturally, you can create multidimensional arrays of records as well. You would use the standard row or
column major order functions to compute the address of an element within such records. The only thing that
really changes (from the discussion of arrays) is that the size of each element is the size of the record object.

static
rec2D: recElement[4, 6];

.

.

.
// Access element [i,j] of rec2D and load “someField” into EAX:

intmul(6, i, ebx);
add(j, ebx);
intmul(@size(recElement), ebx);
mov(rec2D.someField[ebx], eax);

5.5 Arrays/Records as Record Fields

Records may contain other records or arrays as fields. Consider the following definition:

type
Page 468 © 2001, By Randall Hyde Beta Draft - Do not distribute

Records, Unions, and Namespaces
Pixel:
record

Pt: point;
color: dword;

endrecord;

The definition above defines a single point with a 32 bit color component. When initializing an object of type
Pixel, the first initializer corresponds to the Pt field, not the x-coordinate field. The following definition is
incorrect:

static
ThisPt: Pixel := Pixel:[5, 10]; // Syntactically incorrect!

The value of the first field (“5”) is not an object of type point. Therefore, the assembler generates an error
when encountering this statement. HLA will allow you to initialize the fields of Pixel using declarations like
the following:

static
ThisPt: Pixel := Pixel:[point:[1, 2, 3], 10];
ThatPt: Pixel := Pixel:[point:[0, 0, 0], 5];

Accessing Pixel fields is very easy. Like a high level language you use a single period to reference the Pt
field and a second period to access the x, y, and z fields of point:

stdout.put(“ThisPt.Pt.x = “, ThisPt.Pt.x, nl);
stdout.put(“ThisPt.Pt.y = “, ThisPt.Pt.y, nl);
stdout.put(“ThisPt.Pt.z = “, ThisPt.Pt.z, nl);
 .
 .
 .

mov(eax, ThisPt.Color);

You can also declare arrays as record fields. The following record creates a data type capable of repre-
senting an object with eight points (e.g., a cube):

type
Object8:

record
Pts: point[8];
Color: dword;

endrecord;

This record allocates storage for eight different points. Accessing an element of the Pts array requires that
you know the size of an object of type point (remember, you must multiply the index into the array by the
size of one element, 12 in this particular case). Suppose, for example, that you have a variable CUBE of type
Object8. You could access elements of the Pts array as follows:

// CUBE.Pts[i].x := 0;

mov(i, ebx);
intmul(12, ebx);
mov(0, CUBE.Pts.x[ebx]);

The one unfortunate aspect of all this is that you must know the size of each element of the Pts array.
Fortunately, HLA provides a built-in function that will compute the size of an array element (in bytes) for
you: the @size function. You can rewrite the code above using @size as follows:

// CUBE.Pts[i].x := 0;

mov(i, ebx);
intmul(@size(point), ebx);
mov(0, CUBE.Pts.x[ebx]);

This solution is much better than multiplying by the literal constant 12. Not only does HLA figure out
the size for you (so you don’t have to), it automatically substitutes the correct size if you ever change the def-
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 469

Chapter Five Volume Three
inition of the point record in your program. For this reason, you should always use the @size function to
compute the size of array element objects in your programs.

Note in this example that the index specification (“[ebx]”) follows the whole object name even though
the array is Pts, not x. Remember, the “[ebx]” specification is an indexed addressing mode, not an array
index. Indexes always follow the entire name, you do not attach them to the array component as you would
in a high level language like C/C++ or Pascal. This produces the correct result because addition is commu-
tative, and the dot operator (as well as the index operator) corresponds to addition. In particular, the expres-
sion “CUBE.Pts.x[ebx]” tells HLA to compute the sum of CUBE (the base address of the object) plus the
offset to the Pts field, plus the offset to the x field plus the value of EBX. Technically, we’re really comput-
ing offset(CUBE)+offset(Pts)+EBX+offset(x) but we can rearrange this since addition is commutative.

You can also define two-dimensional arrays within a record. Accessing elements of such arrays is no
different than any other two-dimensional array other than the fact that you must specify the array’s field
name as the base address for the array. E.g.,

type
RecW2DArray:

record
intField: int32;
aField: int32[4,5];

.

.

.
endrecord;

static
recVar: RecW2DArray;

.

.

.
// Access element [i,j] of the aField field using Row-major ordering:

mov(i, ebx);
intmul(5, ebx);
add(j, ebx);
mov(recVar.aField[ebx*4], eax);

.

.

.

The code above uses the standard row-major calculation to index into a 4x5 array of double words. The
only difference between this example and a stand alone array access is the fact that the base address is rec-
Var.aField.

There are two common ways to nest record definitions. As noted earlier in this section, you can create a
record type in a TYPE section and then use that type name as the data type of some field within a record
(e.g., the Pt:point field in the Pixel data type above). It is also possible to declare a record directly within
another record without creating a separate data type for that record; the following example demonstrates
this:

type
NestedRecs:

record
iField: int32;
sField: string;
rField:

record
i:int32;
u:uns32;

endrecord;
cField:char;

endrecord;
Page 470 © 2001, By Randall Hyde Beta Draft - Do not distribute

Records, Unions, and Namespaces
Generally, it’s a better idea to create a separate type rather than embed records directly in other records,
but nesting them is perfectly legal and a reasonable thing to do on occasion.

If you have an array of records and one of the fields of that record type is an array, you must compute
the indexes into the arrays independently of one another and then use the sum of these indexes as the ulti-
mate index. The following example demonstrates how to do this:

type
recType:

record
arrayField: dword[4,5];
<< Other Fields >>

endrecord;

static
aryOfRecs: recType[3,3];

.

.

.
// Access aryOfRecs[i,j].arrayField[k,l]:

intmul(5, i, ebx); // Computes index into aryOfRecs
add(j, ebx); // as (i*5 +j)*@size(recType).
intmul(@size(recType), ebx);

intmul(3, k, eax); // Computes index into aryOfRecs
add(l, eax); // as (k*3 + j) (*4 handled later).

mov(aryOfRecs.arrayField[ebx + eax*4], eax);

Note the use of the base plus scaled indexed addressing mode to simplify this operation.

5.6 Controlling Field Offsets Within a Record

By default, whenever you create a record, HLA automatically assigns the offset zero to the first field of
that record. This corresponds to records in a high level language and is the intuitive default condition. In
some instances, however, you may want to assign a different starting offset to the first field of the record.
HLA provides a mechanism that lets you set the starting offset of the first field in the record.

The syntax to set the first offset is

name:
record := startingOffset

<< Record Field Declarations >>
endrecord;

Using the syntax above, the first field will have the starting offset specified by the startingOffset int32 con-
stant expression. Since this is an int32 value, the starting offset value can be positive, zero, or negative.

One circumstance where this feature is invaluable is when you have a record whose base address is actu-
ally somewhere within the data structure. The classic example is an HLA string. An HLA string uses a
record declaration similar to the following:

record
MaxStrLen: dword;
length: dword;
charData: char[xxxx];

endrecord;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 471

Chapter Five Volume Three
As you’re well aware by now, HLA string pointers do not contain the address of the MaxStrLen field;
they point at the charData field. The str.strRec record type found in the HLA Standard Library Strings mod-
ule uses a record declaration similar to the following:

type
strRec:

record := -8
MaxStrLen: dword;
length: dword;
charData: char;

endrecord;

The starting offset for the MaxStrLen field is -8. Therefore, the offset for the length field is -4 (four bytes
later) and the offset for the charData field is zero. Therefore, if EBX points at some string data, then “(type
str.strRec [ebx]).length” is equivalent to “[ebx-4]” since the length field has an offset of -4.

Generally, you will not use HLA’s ability to specify the starting field offset when creating your own
record types. Instead, this feature finds most of its use when you are mapping an HLA data type over the top
of some other predefined data type in memory (strings are a good example, but there are many other exam-
ples as well).

5.7 Aligning Fields Within a Record

To achieve maximum performance in your programs, or to ensure that HLA’s records properly map to
records or structures in some high level language, you will often need to be able to control the alignment of
fields within a record. For example, you might want to ensure that a dword field’s offset is an even multiple
of four. You use the ALIGN directive to do this, the same way you would use ALIGN in the STATIC decla-
ration section of your program. The following example shows how to align some fields on important bound-
aries:

type
PaddedRecord:

record
c:char;
align(4);
d:dword;
b:boolean;
align(2);
w:word;

endrecord;

Whenever HLA encounters the ALIGN directive within a record declaration, it automatically adjusts the
following field’s offset so that it is an even multiple of the value the ALIGN directive specifies. It accom-
plishes this by increasing the offset of that field, if necessary. In the example above, the fields would have
the following offsets: c:0, d:4, b:8, w:10. Note that HLA inserts three bytes of padding between c and d and
it inserts one byte of padding between b and w. It goes without saying that you should never assume that this
padding is present. If you want to use those extra bytes, then declare fields for them.

Note that specifying alignment within a record declaration does not guarantee that the field will be
aligned on that boundary in memory; it only ensures that the field’s offset is aligned on the specified bound-
ary. If a variable of type PaddedRecord starts at an odd address in memory, then the d field will also start at
an odd address (since any odd address plus four is an odd address). If you want to ensure that the fields are
aligned on appropriate boundaries in memory, you must also use the ALIGN directive before variable decla-
rations of that record type, e.g.,

static
.
.
.

align(4);
Page 472 © 2001, By Randall Hyde Beta Draft - Do not distribute

Records, Unions, and Namespaces
PRvar: PaddedRecord;

The value of the ALIGN operand should be an even value that is evenly divisible by the largest ALIGN
expression within the record type (four is the largest value in this case, and it’s already evenly divisible by
two).

If you want to ensure that the record’s size is a multiple of some value, then simply stick an ALIGN
directive as the last item in the record declaration. HLA will emit an appropriate number of bytes of padding
at the end of the record to fill it in to the appropriate size. The following example demonstrates how to
ensure that the record’s size is a multiple of four bytes:

type
PaddedRec:

record
<< some field declarations >>

align(4);
endrecord;

5.8 Pointers to Records

During execution, your program may refer to structure objects directly or indirectly using a pointer.
When you use a pointer to access fields of a structure, you must load one of the 80x86’s 32-bit registers with
the address of the desired record. Suppose you have the following variable declarations (assuming the
Object8 structure from “Arrays/Records as Record Fields” on page 468):

static
Cube: Object8;
CubePtr: pointer to Object8 := &Cube;

CubePtr contains the address of (i.e., it is a pointer to) the Cube object. To access the Color field of the Cube
object, you could use an instruction like “mov(Cube.Color, eax);”. When accessing a field via a pointer you
need to load the address of the object into a 32-bit register such as EBX. The instruction
“mov(CubePtr EBX);” will do the trick. After doing so, you can access fields of the Cube object using the
[EBX+offset] addressing mode. The only problem is “How do you specify which field to access?” Consider
briefly, the following incorrect code:

mov(CubePtr, ebx);
mov([ebx].Color, eax); // This does not work!

There is one major problem with the code above. Since field names are local to a structure and it’s possible
to reuse a field name in two or more structures, how does HLA determine which offset Color represents?
When accessing structure members directly (.e.g., “mov(Cube.Color, EAX);”) there is no ambiguity since
Cube has a specific type that the assembler can check. “[EBX]”, on the other hand, can point at anything. In
particular, it can point at any structure that contains a Color field. So the assembler cannot, on its own,
decide which offset to use for the Color symbol.

HLA resolves this ambiguity by requiring that you explicitly supply a type. To do this, you must coerce
“[EBX]” to type Cube. Once you do this, you can use the normal dot operator notation to access the Color
field:

mov(CubePtr, ebx);
mov((type Cube [ebx]).Color, eax);

By specifying the record name, HLA knows which offset value to use for the Color symbol.

If you have a pointer to a record and one of that record’s fields is an array, the easiest way to access ele-
ments of that field is by using the base plus indexed addressing mode. To do so, you just load the pointer to
the record into one register and compute the index into the array in a second register. Then you combine
these two registers in the address expression. In the example above, the Pts field is an array of eight point
objects. To access field x of the ith element of the Cube.Pts field, you’d use code like the following:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 473

Chapter Five Volume Three
mov(CubePtr, ebx);
intmul(@size(point), i, esi); // Compute index into point array.
mov((type Object8 [ebx]).Pts.x[esi*4], eax);

As usual, the index appears after all the field names.

If you use a pointer to a particular record type frequently in your program, typing a coercion operator
like “(type Object8 [ebx])” can get old pretty quick. One way to reduce the typing needed to coerce EBX is
to use a TEXT constant. For example, consider the following statement in a program:

const
O8ptr: text := “(type Object8 [ebx])”;

With this statement at the beginning of your program you can use O8ptr in place of the type coercion opera-
tor and HLA will automatically substitute the appropriate text. With a text constant like the above, the
former example becomes a little more readable and writable:

mov(CubePtr, ebx);
intmul(@size(point), i, esi); // Compute index into point array.
mov(O8Ptr.Pts.x[esi*4], eax);

5.9 Unions

A record definition assigns different offsets to each field in the record according to the size of those
fields. This behavior is quite similar to the allocation of memory offsets in a VAR or STATIC section. HLA
provides a second type of structure declaration, the UNION, that does not assign different addresses to each
object; instead, each field in a UNION declaration has the same offset – zero. The following example dem-
onstrates the syntax for a UNION declaration:

type
unionType:

union
<< fields (syntactically identical to record declarations) >>

endunion;

You access the fields of a UNION exactly the same way you access the fields of a record: using dot notation
and field names. The following is a concrete example of a UNION type declaration and a variable of the
UNION type:

type
numeric:

union
i: int32;
u: uns32;
r: real64;

endunion;
.
.
.

static
number: numeric;

.

.

.
mov(55, number.u);

.

.

.
mov(-5, number.i);

.

Page 474 © 2001, By Randall Hyde Beta Draft - Do not distribute

Records, Unions, and Namespaces
.

.
stdout.put(“Real value = “, number.r, nl);

The important thing to note about UNION objects is that all the fields of a UNION have the same offset
in the structure. In the example above, the number.u, number.i, and number.r fields all have the same offset:
zero. Therefore, the fields of a UNION overlap one another in memory; this is very similar to the way the
eight, sixteen, and thirty-two bit registers overlap one another. Usually, access to the fields of a UNION are
mutually exclusive; that is, you do not manipulate separate fields of a particular UNION variable concur-
rently because writing to one field overwrite’s the other fields. In the example above, any modification of
number.u would also change number.i and number.r.

Programmers typically use UNIONs for two different reasons: to conserve memory or to create aliases.
Memory conservation is the intended use of this data structure facility. To see how this works, let’s compare
the numeric UNION above with a corresponding record type:

type
numericRec:

record
i: int32;
u: uns32;
r: real64;

endrecord;

If you declare a variable, say n, of type numericRec, you access the fields as n.i, n,u, and n.r; exactly as
though you had declared the variable to be type numeric. The difference between the two is that numericRec
variables allocate separate storage for each field of the record while numeric objects allocate the same stor-
age for all fields. Therefore, @size(numericRec) is 16 since the record contains two double word fields and
a quad word (real64) field. @size(numeric), however, is eight. This is because all the fields of a UNION
occupy the same memory locations and the size of a UNION object is the size of the largest field of that
object (see Figure 5.2).

Figure 5.2 Layout of a UNION versus a RECORD Variable

In addition to conserving memory, programmers often use UNIONs to create aliases in their code. As
you may recall, an alias is a different name for the same memory object. Aliases are often a source of confu-
sion in a program so you should use them sparingly; sometimes, however, using an alias can be quite conve-
nient. For example, in some section of your program you might need to constantly use type coercion to refer
to an object using a different type. Although you can use an HLA TEXT constant to simplify this process,

i u r

r

i, u

Offset Zero Offset Four
Offset Eight

UNION Variable

RECORD Variable
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 475

Chapter Five Volume Three
another way to do this is to use a UNION variable with the fields representing the different types you want to
use for the object. As an example, consider the following code:

type
CharOrUns:

union
c:char;
u:uns32;

endrecord;

static
v:CharOrUns;

With a declaration like the above, you can manipulate an uns32 object by accessing v.u. If, at some
point, you need to treat the L.O. byte of this uns32 variable as a character, you can do so by simply accessing
the v.c variable, e.g.,

mov(eax, v.u);
stdout.put(“v, as a character, is ‘”, v.c, “‘” nl);

You can use UNIONs exactly the same way you use RECORDs in an HLA program. In particular,
UNION declarations may appear as fields in RECORDs, RECORD declarations may appear as fields in
UNIONs, array declarations may appear within UNIONs, you can create arrays of UNIONs, etc.

5.10 Anonymous Unions

Within a RECORD declaration you can place a UNION declaration without specifying a fieldname for
the union object. The following example demonstrates the syntax for this:

type
HasAnonUnion:

record
r:real64;
union

u:uns32;
i:int32;

endunion;
s:string;

endrecord;

static
v: HasAnonUnion;

Whenever an anonymous union appears within an RECORD you can access the fields of the UNION as
though they were direct fields of the RECORD. In the example above, for example, you would access v’s u
and i fields using the syntax “v.u” and “v.i”, respectively. The u and i fields have the same offset in the
record (eight, since they follow a real64 object). The fields of v have the following offsets from v’s base
address:

v.r 0
v.u 8
v.i 8
v.s 12

@size(v) is 16 since the u and i fields only consume four bytes between them.

Warning: HLA gets confused if you attempt to create a record constant when that record has anonymous
unions (HLA doesn’t allow UNION constants). So don’t create record constants of a record if that record
contains anonymous unions as fields.
Page 476 © 2001, By Randall Hyde Beta Draft - Do not distribute

Records, Unions, and Namespaces
5.11 Variant Types

One big use of UNIONs in programs is to create variant types. A variant variable can change its type
dynamically while the program is running. A variant object can be an integer at one point in the program,
switch to a string at a different part of the program, and then change to a real value at a later time. Many
very high level language systems use a dynamic type system (i.e., variant objects) to reduce the overall com-
plexity of the program; indeed, proponents of many very high level languages insist that the use of a
dynamic typing system is one of the reasons you can write complex programs in so few lines. Of course, if
you can create variant objects in a very high level language, you can certainly do it in assembly language. In
this section we’ll look at how we can use the UNION structure to create variant types.

Of course, at any one given instant during program execution a variant object has a specific type, but
under program control the variable can switch to a different type. Therefore, when the program processes a
variant object it must use an IF statement or SWITCH statement to execute a different sequence of instruc-
tions based on the object’s current type. Very high level languages do this transparently to the program. In
assembly language you will have to provide the code to test the type yourself. To achieve this, the variant
type needs some additional information beyond the object’s value. Specifically, the variant object needs a
field that specifies the current type of the object. This field (often known as the tag field) is a small enumer-
ated type or integer that specifies the type of the object at any given instant. The following code demon-
strates how to create a variant type:

type
VariantType:

record
tag:uns32; // 0-uns32, 1-int32, 2-real64
union

u:uns32;
i:int32;
r:real64;

endunion;
endrecord;

static
v:VariantType;

The program would test the v.tag field to determine the current type of the v object. Based on this test, the
program would manipulate the v.i, v.u, or v.r field.

5.12 Namespaces

One really nice feature of RECORDs and UNIONs is that the field names are local to a given RECORD
or UNION declaration. That is, you can reuse field names in different RECORDs or UNIONs. This is an
important feature of HLA because it helps avoid name space pollution. Name space pollution occurs when
you use up all the “good” names within the current scope and you have to start creating non-descriptive
names for some object because you’ve already used the most appropriate name for something else. Because
you can reuse names in different RECORD/UNION definitions (and you can even reuse those names outside
of the RECORD/UNION definitions) you don’t have to dream up new names for the objects that have less
meaning. We use the term namespace to describe how HLA associates names with a particular object. The
field names of a RECORD have a namespace that is limited to objects of that record type. HLA provides a
generalization of this namespace mechanism that lets you create arbitrary namespaces. These namespace
objects let you shield the names of constants, types, variables, and other objects so their names do not inter-
fere with other declarations in your program.

An HLA NAMESPACE section encapsulates a set of generic declarations in much the same way that a
RECORD encapsulates a set of variable declarations. A NAMESPACE declaration takes the following
form:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 477

Chapter Five Volume Three
namespace name;

<< declarations >>

end name;

The name identifier provides the name for the NAMESPACE. The identifier after the END clause must
exactly match the identifier after NAMESPACE. You may have several NAMESPACE declarations within a
program as long as the identifiers for the name spaces are all unique. Note that a NAMESPACE declaration
section is a section unto itself. It does not have to appear in a TYPE or VAR section. A NAMESPACE may
appear anywhere one of the HLA declaration sections is legal. A program may contain any number of
NAMESPACE declarations; in fact, the name space identifiers don’t even have to be unique as you will soon
see.

The declarations that appear between the NAMESPACE and END clauses are all the standard HLA dec-
laration sections except that you cannot nest name space declarations. You may, however, put CONST, VAL,
TYPE, STATIC, DATA, READONLY, STORAGE, and VAR sections within a namespace3. The following
code provides an example of a typical NAMESPACE declaration in an HLA program:

namespace myNames;

type
integer: int32;

static
i:integer;
j:uns32;

const
pi:real64 := 3.14159;

end myNames;

To access the fields of a name space you use the same dot notation that records and unions use. For
example, to access the fields of myNames outside of the name space you’d use the following identifiers:

myNames.integer - A type declaration equivalent to int32.
myNames.i - An integer variable (int32).
myNames.j - An uns32 variable.
myNames.pi - A real64 constant.

This example also demonstrates an important point about NAMESPACE declarations: within a name
space you may reference other identifiers in that same NAMESPACE declaration without using the dot nota-
tion. For example, the i field above uses type integer from the myNames name space without the
“mynames.” prefix.

What is not obvious from the example above is that NAMESPACE declarations create a clean symbol
table whenever you open up a declaration. The only external symbols that HLA recognizes in a
NAMESPACE declaration are the predefined type identifiers (e.g., int32, uns32, and char). HLA does not
recognize any symbols you’ve declared outside the NAMESPACE while it is processing your namespace
declaration. This creates a problem if you want to use symbols outside the NAMESPACE when declaring
other symbols inside the NAMESPACE. For example, suppose the type integer had been defined outside
myNames as follows:

type
integer: int32;

namespace myNames;

3. Procedure and macro declarations, the subjects of later chapters, are also legal within a name space declaration section.
Page 478 © 2001, By Randall Hyde Beta Draft - Do not distribute

Records, Unions, and Namespaces
static
i:integer;
j:uns32;

const
pi:real64 := 3.14159;

end myNames;

If you were to attempt to compile this code, HLA would complain that the symbol integer is undefined.
Clearly integer is defined in this program, but HLA hides all external symbols when creating a name space
so that you can reuse (and redefine) those symbols within the name space. Of course, this doesn’t help much
if you actually want to use a name that you’ve defined outside myNames within that name space. HLA pro-
vides a solution to this problem: the @global: operator. If, within a name space declaration section, you pre-
fix a name with “@global:” then HLA will use the global definition of that name rather than the local
definition (if a local definition even exists). To correct the problem in the previous example, you’d use the
following code:

type
integer: int32;

namespace myNames;

static
i:@global:integer;
j:uns32;

const
pi:real64 := 3.14159;

end myNames;

With the @global: prefix, the i variable will be type int32 even if a different declaration of integer appears
within the myNames name space.

You cannot nest NAMESPACE declarations4. However, you can have multiple NAMESPACE declara-
tions in the same program that use the same name space identifier, e.g.,

namespace ns;

<< declaration group #1 >>

end ns;
.
.
.

namespace ns;

<< declaration group #2 >>

end ns;

When HLA encounters a second NAMESPACE declaration for a given identifier, it simply appends the dec-
larations in the second group to the end of the symbol list it created for the first group. Therefore, after pro-
cessing the two NAMESPACE declarations about, the ns name space would contain the set of all symbols
you’ve declared in both the name space blocks.

4. There really doesn’t seem to be a need to do this; hence its omission from HLA.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 479

Chapter Five Volume Three
Perhaps the most common use of name spaces is in library modules. If you create a set of library rou-
tines to use in various projects or distribute to others, you have to be careful about the names you choose for
your functions and other objects. If you use common names like get and put, the users of your module will
complain when your names collide with theirs. An easily solution is to put all your code in a NAMESPACE
block. Then the only name you have to worry about is the name of the NAMESPACE itself. This is the only
name that will collide with other users’ code. That can happen, but it’s much less likely to happen than if
you don’t use a name space and your library module introduces dozens, if not hundreds, of new names into
the global name space5. The HLA Standard Library provides many good examples of name spaces in use.
The HLA Standard Library defines several name spaces like stdout, stdin, str, cs, and console. You refer to
functions in these name spaces using names like stdout.put, stdin.get, cs.intersection, str.eq, and con-
sole.gotoxy. The use of name spaces in the HLA Standard Library prevents conflicts with similar names in
your own programs.

5.13 Putting It All Together

One of the more amazing facts about programmer psychology is the fact that a high level language pro-
grammer would refuse to use a high level language that doesn’t support records or structures; then that same
programmer won’t bother to learn how to use them in assembly language (all the time, grumbling about their
absence). You use records in assembly language for the same reason you use them in high level languages.
Given that most programmers consider records and structure essential in high level languages, it is surprising
they aren’t as concerned about using them in assembly language.

This short chapter demonstrates that it doesn’t take much effort to master the concept of records in an
assembly language program. Taken together with UNIONs and NAMESPACEs, RECORDs can help you
write HLA programs that are far more readable and easier to understand. Therefore, you should use these
language features as appropriate when writing assembly code.

5. The global name space is the global section of your program.
Page 480 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
Dates and Times Chapter Six

6.1 Chapter Overview

This chapter discusses dates and times as a data type. In particular, this chapter discusses the data/time
data structures the HLA Standard Library defines and it also discusses date arithmetic and other operations
on dates and times.

6.2 Dates

For the first 50 years, or so, of the computer’s existence, programmers did not give much thought to date
calculations. They either used a date/time package provided with their programming language, or they
kludged together their own date processing libraries. It wasn’t until the Y2K1 problem came along that pro-
grammers began to give dates serious consideration in their programs. The purpose of this chapter is
two-fold. First, this chapter teaches that date manipulation is not as trivial as most people would like to
believe – it takes a lot of work to properly compute various date functions. Second, this chapter presents the
HLA date and time formats found in the “datetime.hhf” library module. Hopefully this chapter will con-
vince you that considerable thought has gone into the HLA datetime.hhf module so you’ll be inclined to use
it rather than trying to create your own date/time formats and routines.

Although date and time calculations may seem like they should be trivial, they are, in fact, quite com-
plex. Just remember the Y2K problem to get a good idea of the kinds of problems your programs may create
if they don’t calculate date and time values correctly. Fortunately, you don’t have to deal with the complexi-
ties of date and time calculations, the HLA Standard Library does the hard stuff for you.

The HLA Standard Library date routines produce valid results for dates between January 1, 1583 and
December 31, 99992. HLA represents dates using the following record definition (in the date namespace):

type
daterec:

record
day:uns8;
month:uns8;
year:uns16;

endrecord;

This format (date.daterec) compactly represents all legal dates using only four bytes. Note that this is
the same date format Volume One presents for the extended data format (see “Bit Fields and Packed Data”
on page 71). You should use the date.daterec data type when declaring date objects in your HLA programs,
e.g.,

static
TodaysDate: date.daterec;
Century21: date.daterec := date.daterec:[1, 1, 2001]; // note: d, m ,y

As the second example above demonstrates, keep in mind that the first field is the day field and the second
field is the month field if you use a date.daterec constant to initialize a static date.daterec object.

1. For those who missed it, the Y2K (or Year 2000) problem occurred when programmers used two digits for the date and
assumed that the H.O. two digits were “19”. Clearly this code malfunctioned when the year 2000 came along.
2. The Gregorial Calendar came into existence in Oct, 1582, so any dates earlier than this are meaningless as far as date calcu-
lations are concerned. The last legal date, 9999, was chosen arbitrarily as a trap for wild dates entering the calculation. This
means, of course, that code calling the HLA Standard Library Date/Time package will suffer from the Y10K problem. How-
ever, you’ll probably not consider this a severe limitation!
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 481

Chapter Six Volume Three
The HLA date.daterec format has a couple of advantages. First, it is a trivial matter to convert between
the internal and external representations of a date. All you have to do is extract the d, m, and y fields and
manipulate them as integers of the appropriate sizes. Second, this format makes it very easy to compare two
dates to see if one date follows another in time; all you’ve got to do is compare the date.daterec object as
though it were a 32-bit unsigned integer and you’ll get the correct result. The Standard Library data.daterec
format does have a few disadvantages. Specifically, certain calculations like computing the number of days
between two dates is a bit difficult. Fortunately, the HLA Standard Library Date module provides most of
the functions you’ll ever need for date calculations, so this won’t prove to be much of a disadvantage.

A second disadvantage to the date.daterec format is that the resolution is only one day. Some calcula-
tions need to maintain the time of day (down to some fraction of a second) as well as the calendar date. The
HLA Standard Library also provides a TIME data structure. By combining these two structures together you
should be able handle any problem that comes along.

Before going on and discussing the functions available in the HLA Standard Library’s Date module, it’s
probably worthwhile to briefly discuss some other date formats that find common use. Perhaps the most
common date format is to use an integer value that specifies the number of days since an epoch, or starting,
date. The advantage to this scheme is that it’s very easy to do certain kinds of date arithmetic (e.g., to com-
pute the number of days between two dates you simply subtract them) and it’s also very easy to compare
these dates. The disadvantages to this scheme include the fact that it is difficult to convert between the inter-
nal representation and an external representation like “xx/yy/zzzz.” Another problem with this scheme,
which it shares with the HLA scheme, is that the granularity is one day. You cannot represent time with any
more precision than one day.

Another popular format combines dates and times into the same value. For example, the representation
of time on most UNIX systems measures the number of seconds that have passed since Jan 1, 1970. Unfor-
tunately, many UNIX systems only use a 32-bit signed integer; therefore, those UNIX systems will experi-
ence their own “Y2.038K” problem in the year 2038 when these signed integers roll over from
2,147,483,637 seconds to -2,147,483,638 seconds. Although this format does maintain time down to sec-
onds, it does not handle fractions of a second very well. Most UNIX system include an extra field in their
date/time format to handle milliseconds, but this extra field is a kludge. One could just as easily add a time
field to an existing date format if you’re willing to kludge.

For those who want to be able to accurately measure dates and times, a good solution is to use a 64-bit
unsigned integer to count the number of microseconds since some epoch data. A 64-bit unsigned integer
will provide microsecond accuracy for a little better than 278,000 years. Probably sufficient for most needs.
If you need better than microsecond accuracy, you can get nanosecond accuracy that is good for about 275
years (beyond the epoch date) with a 64-bit integer. Of course, if you want to use such a date/time format,
you will have to write the routines that manipulate such dates yourself; the HLA Standard Library’s
Date/Time module doesn’t use that format.

6.3 A Brief History of the Calendar

Man has been interested in keeping track of time since the time man became interested in keeping track
of history. To understand why we need to perform various calculations, you’ll need to know a little bit about
the history of the calendar. So this section will digress a bit from computers and discuss that history.

What exactly is time? Time is a concept that we are all intuitively familiar with, but try and state a con-
crete definition that does not define time in terms of itself. Before you run off and grab a dictionary, you
should note that many of the definitions of time in a typical dictionary contain a circular reference (that is,
they define time in terms of itself). The American Heritage Dictionary of the English Language provides
the following definition:

A nonspatial continuum in which events occur in apparently irreversible succession
from the past through the present to the future.

As horrible as this definition sounds, it is one of the few that doesn’t define time by how we measure it or by
a sequence of observable events.
Page 482 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
Why are we so obsessed with keeping track of time? This question is much more easily answered. We
need to keep track of time so we can predict certain future events. Historically, important events the human
race has needed to predict include the arrival of spring (for planting), the observance of religious anniversa-
ries (e.g., Christmas, Passover), or the gestation period for livestock (or even humans). Of course, modern
life may seem much more complex and tracking time more important, but we track time for the same reasons
the human race always has, to predict the future. Today, we predict business meetings, when a department
store will open to the public, the start of a college lecture, periods of high traffic on the highways, and the
start of our favorite television shows by using time. The better we are able to measure time, the better we
will be able to predict when certain types of events will occur (e.g., the start of spring so we can begin plant-
ing).

To measure time, we need some predictable, periodic, event. Since ancient times, there have been three
celestial events that suit this purpose: the solar day, the lunar month, and the solar year. The solar day (or
tropical day) consists of one complete rotation of the Earth on its axis. The lunar month consists of one
complete set of moon phases. The solar year is one complete orbit of the Earth around the Sun. Since these
periodic events are easy to measure (crudely, at least), they have become the primary basis by which we
measure time.

Since these three celestial events were obvious even in prehistoric times, it should come as no surprise
that one society would base their measurement of time on one cyclic standard such as the lunar month while
another social group would base their time unit on a different cycle such as the solar year. Clearly, such fun-
damentally different time keeping schemes would complicate business transactions between the two societ-
ies effectively erecting an artificial barrier between them. Nevertheless, until about the year 46 BC (by our
modern calendar), most countries used their own system for time keeping.

One major problem with reconciling the different calendars is that the celestial cycles are not integral.
That is, there are not an even number of solar days in a lunar month, there are not an integral number of solar
days in a solar year, and there are not an integral number of lunar months in a solar year. Indeed, there are
approximately 365.2422 days in a solar year and approximately 29.5 days in a lunar month. Twelve lunar
months are 354 days, a little over a week short of a full year. Therefore, it is very difficult to reconcile these
three periodic events if you want to use two of them or all three of them in your calendar.

In 46 BC (or BCE, for Before Common Era, as it is more modernly written) Julius Caesar introduced
the calendar upon which our modern calendar is based. He decreed that each year would be exactly 365 1/4
days long by having three successive years having 365 days each and every fourth year having 366 days. He
also abolished reliance upon the lunar cycle from the calendar. However, 365 1/4 is just a little bit more than
365.2422, so Julius Caesar’s calendar lost a day every 128 years or so.

Around 700 AD (or CE, for Common Era, as it is more modernly written) it was common to use the
birth of Jesus Christ as the Epoch year. Unfortunately, the equinox kept losing a full day every 128 years
and by the year 1500 the equinoxes occurred on March 12th, and September 12th. This was of increasing
concern to the Church since it was using the Calendar to predict Easter, the most important Christian holi-
day3. In 1582 CE, Pope Gregory XIII dropped ten days from the Calendar so that the equinoxes would fall
on March 21st and September 21st, as before, and as advised by Christoph Clavius, he dropped three leap
years every 400 years. From that point forward, century years were leap years only if divisible by 400.
Hence 1700, 1800, 1900 are not leap years, but 2000 is a leap year. This new calendar is known as the Gre-
gorian Calendar (named after Pope Gregory XIII) and with the exception of the change from BC/AD to
BCE/CE is, essentially, the calendar in common use today4.

The Gregorian Calendar wasn’t accepted universally until well into the twentieth century. Largely
Roman Catholic countries (e.g., Spain and France) adopted the Gregorian Calendar the same year as Rome.
Other countries followed later. For example, portions of Germany did not adopt the Gregorian Calendar
until the year 1700 AD while England held out until 1750. For this reason, many of the American founding
fathers have two birthdates listed. The first date is the date in force at the time of their birth, the second date
is their birthdate using the Gregorian Calendar. For example, George Washington was actually born on Feb-

3. Easter is especially important since the Church computed all other holidays relative to Easter. If the date
of Easter was off, then all holidays would be off.

4. One can appreciate that non-Christian cultures might be offended at by the abbreviations BC (Before
Christ) and AD (Anno Domini [day of our Lord]).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 483

Chapter Six Volume Three
ruary 11th by the English Calendar, but after England adopted the Gregorian Calendar, this date changed to
February 22nd. Note that George Washington’s birthday didn’t actually change, only the calendar used to
measure dates at the time changed.

The Gregorian Calendar still isn’t correct, though the error is very small. After approximately 3323
years it will be off by a day. Although there has been some proposals thrown around to adjust for this in the
year 4000, that is such a long time off that it’s hardly worth contemporary concern (with any luck, mankind
will be a spacefaring race by then and the concept of a year, month, or day, may be a quaint anachronism).

There is one final problem with the calendar- the length of the solar day is constantly changing. Ocean
tidal forces, meteors burning up in our atmosphere, and other effects are slowing down the Earth’s rotation
resulting in longer days. The effect is small, but compared to the length of a day, but it amounts to a loss of
one to three milliseconds (that is, about 1/500th of a second) every 100 years since the defining Epoch (Jan 1,
1900). That means that Jan 1, 2000 is about two seconds longer than Jan 1, 1900. Since there are 86,400
seconds in a day, it will probably take on the order of 100,000 years before we lose a day due to the Earth’s
rotation slowing down. However, those who want to measure especially small time intervals have a prob-
lem: hours and seconds have been defined as submultiples of a single day. If the length of a day is constantly
changing, that means that the definition of a second is constantly changing as well. In other words, two very
precise measurements of equivalent events taken 10 years apart may show measurable differences.

To solve this problem scientists have developed the Cesium-155 Atomic Clock, the most accurate timing
device ever invented. The Cesium atom, under special conditions, vibrates at exactly 9,192,631,770 cycles
per second, for the year 1900. Because the clock is so accurate, it has to be adjusted periodically (about
every 500 days, currently) so that its time (known as Universal Coordinated Time or UTC) matches that of
the Earth (UT1). A high-quality Cesium Clock (like the one at the National Institute of Standards and Tech-
nology in Boulder, Colorado, USA) is very large (about the size of a large truck) and can keep accurate time
to about one second in a million and a half years. Commercial units (about the size of a large suitcase) are
available and they keep time accurate to about one second every 5-10,000 years.

The wall calendar you purchase each year is a device that is very similar to the Cesium Atomic Clock- it
lets you measure time. The Cesium clock, clearly, lets time two discrete events that are very close to one
another, but either device will probably let you predict that you start two week’s vacation in Mexico starting
next Monday (and the wall calendar does it for a whole lot less money). Most people don’t think of a calen-
dar as a time keeping device, but the only difference between it and a watch is the granularity, that is, the
finest amount of time one can measure with the device. With a typical electronic watch, you can probably
measure (accurately) to as little as 1/100 seconds. With a calendar, the minimum interval you can measure is
one day. While the watch is appropriate for measuring the 100 meter dash, it is inappropriate for measuring
the duration of the Second World War; the calendar, however, is perfect for this latter task.

Time measurement devices, be they a Cesium Clock, a wristwatch, or a Calendar, do not measure time
in an absolute sense. Instead, these devices measure time between two events. For the Gregorian Calendar,
the (intended) Epoch event that marks year one was the birth of Christ. Unfortunately in 1582, the use of
negative numbers was not widespread and even the use of zero was not common. Therefore, 1 AD was (sup-
posed to be) the first year of Christ’s life. The year prior to that point was considered 1BC. This unfortunate
choice created some mathematical problems that tend to bother people 2,000 years later. For example, the
first decade was the first 10 years of Christ’s life, that is, 1 AD through 10 AD. Likewise, the first century
was considered the first 100 years after Christ’s birth, that is, 1 AD through 100 AD. Likewise, the first mil-
lennium was the first 1,000 years after Christ’s birth, specifically 1 AD through 1000 AD. Similarly, the sec-
ond millennium is the next 1,000 years, specifically 1001 AD through 2000 AD. The third, millennium,
contrary to popular belief, began on January 1, 2001 (Hence the title of Clark’s book: “2001: A Space Odys-
sey”). It is an unfortunately accident of human psychology that people attach special significance to round
numbers; there were many people mistakenly celebrating the turn of the millennium on December 31st,
1999 when, in fact, the actual date was still a year away.

Now you’re probably wondering what this has to do with computers and the representation of dates in
the computer... The reason for taking a close look at the history of the Calendar is so that you don’t misuse
the date and time representations found in the HLA Standard Library. In particular, note that the HLA date
format is based on the Gregorian Calendar. Since the Gregorian Calendar was “born” in October of 1582, it
makes absolutely no sense to represent any date earlier than about Jan 1, 1583 using the HLA date format.
Granted, the data type can represent earlier dates numerically, but any date computations would be severely
Page 484 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
off if one or both of the dates in the computation are pre-1583 (remember, Pope Gregory droped 10 days
from the calendar; right off the bat your “days between two dates” computation would be off by 10 real days
if the two dates crossed the date that Rome adopted the Gregorian Calendar).

In fact, you should be wary of any dates prior to about January 1, 1800. Prior to this point there were a
couple of different (though similar) calendars in use in various countries. Unless you’re a historian and have
the appropriate tables to convert between these dates, you should not use dates prior to this point in calcula-
tions. Fortunately, by the year 1800, most countries that had a calendar based on Juilus Caesar’s calendar
fell into line and adopted the Gregorian Calendar. Some other calendars (most notably, the Chinese Calen-
dar) were in common use into the middle of the 20th century. However, it is unlikely you would ever confuse
a Chinese date with a Gregorian date.

6.4 HLA Date Functions

HLA provides a wide array of date functions you can use to manipulate date objects. The following
subsections describe many of these functions and how you use them.

6.4.1 date.IsValid and date.validate

When storing data directly into the fields of a date.daterec object, you must be careful to ensure that the
resulting date is correct. The HLA date procedures will raise an ex.InvalidDate exception if the date values
are out of range. The date.IsValid and date.validate procedures provide some handy code to check the valid-
ity of a date object. These two routines use either of the following calling seqeuences:

date.IsValid(dateVar); // dateVar is type date.daterec
date.IsValid(m, d, y); // m, d, y are uns8, uns8, uns16, respectively

date.validate(dateVar); // See comments above.
date.validate(m, d, y);

The date.IsValid procedure checks the date to see if it is a valid date. This procedure returns true or
false in the AL register to indicate whether the date is valid. The date.validate procedure also checks the
validity of the date; however, it raises the ex.InvalidDate exception if the date is invalid. The following sam-
ple program demonstrates the use of these two routines:

program DateTimeDemo;
#include(“stdlib.hhf”);

static
m: uns8;
d: uns8;
y: uns16;

theDate:date.daterec;

begin DateTimeDemo;

try

stdout.put(“Enter the month (1-12):”);
stdin.get(m);

stdin.flushInput();
stdout.put(“Enter the day (1-31):”);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 485

Chapter Six Volume Three
stdin.get(d);

stdin.flushInput();
stdout.put(“Enter the year (1583-9999): “);
stdin.get(y);

if(date.isValid(m, d, y)) then

stdout.put(m, “/”, d, “/”, y, “ is a valid date.” nl);

endif;

// Assign the fields to a date variable.

mov(m, al);
mov(al, theDate.month);
mov(d, al);
mov(al, theDate.day);
mov(y, ax);
mov(ax, theDate.year);

// Force an exception if the date is illegal.

date.validate(theDate);

 exception(ex.ConversionError)

 stdout.put

(
“One of the input values contained illegal characters” nl

);

 exception(ex.ValueOutOfRange)

 stdout.put

(
“One of the input values was too large” nl

);

 exception(ex.InvalidDate)

 stdout.put

(
“The input date (“, m, “/”, d, “/”, y, “) was invalid” nl

);

endtry;

end DateTimeDemo;

Program 6.1 Date Validation Example

6.4.2 Checking for Leap Years

Determining whether a given year is a leap year is somewhat complex. The exact algorithm is “any year
that is evenly divisible by four and is not evenly divisible by 100 or is evenly divisible by 400 is a leap
Page 486 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
year5.” The HLA “datetime.hhf” module provides a convenient function, date.IsLeapYear, that efficiently
determines whether a given year is a leap year. There are two different ways you can call this function;
either of the following will work:

date.IsLeapYear(dateVar); // dateVar is a date.dateRec variable.
date.IsLeapYear(y); // y is a word value.

The following code demonstrates the use of this routine.

program DemoIsLeapYear;
#include(“stdlib.hhf”);

static
m: uns8;
d: uns8;
y: uns16;

theDate:date.daterec;

begin DemoIsLeapYear;

try

stdout.put(“Enter the month (1-12):”);
stdin.get(m);

stdin.flushInput();
stdout.put(“Enter the day (1-31):”);
stdin.get(d);

stdin.flushInput();
stdout.put(“Enter the year (1583-9999): “);
stdin.get(y);

// Assign the fields to a date variable.

mov(m, al);
mov(al, theDate.month);
mov(d, al);
mov(al, theDate.day);
mov(y, ax);
mov(ax, theDate.year);

// Force an exception if the date is illegal.

date.validate(theDate);

// Okay, report whether this is a leap year:

if(date.isLeapYear(theDate)) then

5. The Gregorian Calendar does not account for the fact that sometime between the years 3,000 and 4,000 we will have to add
an extra leap day to keep the Calendar in sync with the Earth’s rotation around the Sun. The HLA date.IsLeapYear does not
handle this situation either. Keep this in mind if you are doing date calculations that involve dates after the year 3,000. This
is a defect in the current definition of the Gregorian Calendar, which HLA’s routines faithfully reproduce.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 487

Chapter Six Volume Three
stdout.put(“The year “, y, “ is a leap year.” nl);

else

stdout.put(“The year “, y, “ is not a leap year.” nl);

endif;

// Technically, the leap day is Feb 25, but most people don’t
// realize this, so use the following output to keep them happy:

if(date.isLeapYear(y)) then

if(m = 2) then

if(d = 29) then

stdout.put(m, “/”, d, “/”, y, “ is the leap day.” nl);

endif;

endif;

endif;

 exception(ex.ConversionError)

 stdout.put

(
“One of the input values contained illegal characters” nl

);

 exception(ex.ValueOutOfRange)

 stdout.put

(
“One of the input values was too large” nl

);

 exception(ex.InvalidDate)

 stdout.put

(
“The input date (“, m, “/”, d, “/”, y, “) was invalid” nl

);

endtry;

end DemoIsLeapYear;

Program 6.2 Calling the date.IsLeapYear Function
Page 488 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
6.4.3 Obtaining the System Date

The date.today function returns the current system date in the date.daterec variable you pass as a param-
eter. The following program demonstrates how to call this routine:

program DemoToday;
#include(“stdlib.hhf”);

static
TodaysDate:date.daterec;

begin DemoToday;

date.today(TodaysDate);

stdout.put
(

“Today is “,
(type uns8 TodaysDate.month), “/”,
(type uns8 TodaysDate.day), “/”,
(type uns16 TodaysDate.year),
nl

);

// Okay, report whether this is a leap year:

if(date.isLeapYear(TodaysDate)) then

stdout.put(“This is a leap year.” nl);

else

stdout.put(“This is not a leap year.” nl);

endif;

end DemoToday;

Program 6.3 Reading the System Date

6.4.4 Date to String Conversions and Date Output

The HLA date module provides a set of routines that will convert a date.daterec object to the string rep-
resentation of that date. HLA provides a mechanism that lets you select from one of several different con-
version formats when translating dates to strings. The date package defines an enumerated data type,
date.OutputFormat, that specifies the different conversion mechanisms. The possible conversions are (these
examples assume you are converting the date January 2, 2033):

date.mdyy - Outputs date as 1/2/33.
date.mdyyyy - Outputs date as 1/2/2033.
date.mmddyy - Outputs date as 01/02/33.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 489

Chapter Six Volume Three
date.mmddyyyy - Outputs date as 01/02/2033.
date.yymd - Outputs date as 33/1/2.
date.yyyymd - Outputs date as 2033/1/2.
date.yymmdd - Outputs date as 33/01/02.
date.yyyymmdd - Outputs date as 2033/01/02.
date.MONdyyyy - Outputs date as Jan 1, 2033.
date.MONTHdyyyy - Outputs date as January 1, 2033.

To set the conversion format, you must call the date.SetFormat procedure and pass one of the above val-
ues as the single parameter6. For all but the last two formats above, the default month/day/year separator is
the slash (“/”) character. You can call the date.SetSeparator procedure, passing it a single character parame-
ter, to change the separator character.

The date.toString and date.a_toString procedures convert a date to string data. Like the other string
routines this chapter discusses, the difference between the date.toString and date.a_toString procedures is
that date.a_toString automatically allocates storage for the string whereas you must supply a string with suf-
ficient storage to the date.toString procedure. Note that a string containing 20 characters is sufficient for all
the different date formats. The date.toString and date.a_toString procedures use the following calling
sequences:

date.toString(m, d, y, s);
date.toString(dateVar, s);

date.a_toString(m, d, y);
date.a_toString(dateVar);

Note that m and d are byte values, y is a word value, dateVar is a date.dateRec value, and s is a string vari-
able that must point at a string that holds at least 20 characters.

The date.Print procedure uses the date.toString function to print a date to the standard output device.
This is a convenient function to use to display a date after some date calculation.

The following program demonstrates the use of the procedures this section discusses:

program DemoStrConv;
#include(“stdlib.hhf”);

static
TodaysDate:date.daterec;
s: string;

begin DemoStrConv;

date.today(TodaysDate);
stdout.put(“Today’s date is “);
date.print(TodaysDate);
stdout.newln();

// Convert the date using various formats
// and display the results:

date.setFormat(date.mdyy);
date.a_toString(TodaysDate);
mov(eax, s);
stdout.put(“Date in mdyy format: ‘”, s, “‘” nl);

6. the date.SetFormat routine raises the ex.InvalidDateFormat exception if the parameter is not one of these values.
Page 490 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
strfree(s);

date.setFormat(date.mmddyy);
date.a_toString(TodaysDate);
mov(eax, s);
stdout.put(“Date in mmddyy format: ‘”, s, “‘” nl);
strfree(s);

date.setFormat(date.mdyyyy);
date.a_toString(TodaysDate);
mov(eax, s);
stdout.put(“Date in mdyyyy format: ‘”, s, “‘” nl);
strfree(s);

date.setFormat(date.mmddyyyy);
date.a_toString(TodaysDate);
mov(eax, s);
stdout.put(“Date in mmddyyyy format: ‘”, s, “‘” nl);
strfree(s);

date.setFormat(date.MONdyyyy);
date.a_toString(TodaysDate);
mov(eax, s);
stdout.put(“Date in MONdyyyy format: ‘”, s, “‘” nl);
strfree(s);

date.setFormat(date.MONTHdyyyy);
date.a_toString(TodaysDate);
mov(eax, s);
stdout.put(“Date in MONTHdyyyy format: ‘”, s, “‘” nl);
strfree(s);

end DemoStrConv;

Program 6.4 Date <-> String Conversion and Date Output Routines

6.4.5 date.unpack and data.pack

The date.pack and date.unpack functions pack and unpack date data. The calling syntax for these func-
tions is the following:

date.pack(y, m, d, dr);
date.unpack(dr, y, m, d);

Note: y, m, d must be uns32 or dword variables; dr must be a date.daterec object.

The date.pack function takes the y, m, and d values and packs them into a date.daterec format and stores
the result into dr. The date.unpack function does just the opposite. Neither of these routines check their
parameters for proper range. It is the caller’s resposibility to ensure that d’s value is in the range 1..31 (as
appropriate for the month and year), m’s value is in the range 1..12, and y’s value is in the range 1583..9999.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 491

Chapter Six Volume Three
6.4.6 date.Julian, date.fromJulian

These two functions convert a Gregorian date to and from a Julian day number7. Julian day numbers
specify January 1, 4713 BCE as day zero and number the days consecutively from that point8. One nice
thing about Julian day numbers is that date calculations are very easy. You can compute the number of days
between two dates by simply subtracting them, you can compute new dates by adding an integer number of
days to a Julian day number, etc. The biggest problem with Julian day numbers is converting them to and
from the Gregorian Calendar with which we’re familiar. Fortunately, these two functions handle that chore.
The syntax for calling these two functions is:

date.fromJulian(julian, dateRecVar);
date.Julian(m, d, y);
date.Julian(dateRecVar);

The first call above converts the Julian day number that you pass in the first parameter to a Gregorian
date and stores the result into the date.daterec variable you pass as the second parameter. Keep in mind that
Julian day numbers that correspond to dates before Jan 1, 1582, will not produce accurate calendar dates
since the Gregorian calendar did not exist prior to that point.

The second two calls above compute the Julian day number and return the value in the EAX register.
They differ only in the types of parameters they expect. The first call to date.Julian above expects three
parameters, m and b being byte values and y being a word value. The second call expects a date.daterec
parameter; it extracts those three fields and converts them to the Julian day number.

6.4.7 date.datePlusDays, date.datePlusMonths, and date.daysBetween

These two functions provide some simple date arithmetic.operations. The compute a new date by add-
ing some number of days or months to an existing date. The calling syntax for these functions is

date.datePlusDays(numDays, dateRecVar);
date.datePlusMonths(numMonths, dateRecVar);

Note: numDays and numMonths are uns32 values, dateRecVar must be a date.daterec variable.

The date.datePlusDays function computes a new date that is numDays days beyond the date that dateR-
ecVar specifies. This function leaves the resulting date in dateRecVar. This function automatically compen-
sates for the differing number of days in each month as well as the differing number of days in leap years.
The date.datePlusMonths function does a similar calculation except it adds numMonths months, rather than
days to dateRecVar.

The date.datePlusDays function is not particularly efficient if the numDays parameter is large. There is
a more efficient way to calculate a new date if numDays exceeds 1,000: convert the date to a Julian Day
Number, add the numDays value directly to the Julian Number, and then convert the result back to a date.

The date.daysBetween function computes the number of days between two dates. Like date.datePlus-
Days, this function is not particularly efficient if the two dates are more than about three years apart; it is
more efficient to compute the Julian day numbers of the two dates and subtract those values. For spans of
less than three years, this function is probably more efficient. The calling sequence for this function is the
following:

date.daysBetween(m1, d1, y1, m2, d2, y2);
date.daysBetween(m1, d1, y1, dateRecVar2);
date.daysBetween(dateRecVar1, m2, d2, y2);
date.daysBetween(dateRecVar1, dateRecVar2);

7. Note that a Julian date and a Julian day number are not the same thing. Julian dates are based on the Julian Calendar, com-
misioned by Julius Caesar, which is very similar to the Gregorian Calendar; Julian day numbers were invented in the 1800’s
and are primarily used by astronomers.
8. Jan 1, 4713 BCE was chosen as a date that predates recorded history.
Page 492 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
The four different calls allow you to specify either date as a m/d/y value or as a date.daterec value. The
m and d parameters in these calls must be byte values and the y parameter must be a word value. The
dateRecVar1 and dateRecVar2 parameters must, obviously, be date.daterec values. These functions return
the number of days between the two dates in the EAX register. Note that the dates must be valid, but there is
no requirement that the first date be less than the second date.

6.4.8 date.dayNumber, date.daysLeft, and date.dayOfWeek

The date.dayNumber function computes the day number into the current year (with Jan 1 being day
number one) and returns this value in EAX. This value is always in the range 1..365 (or 1..366 for leap
years). A call to this function uses the following syntax:

date.dayNumber(m, d, y);
date.dayNumber(dateRecVar);

The two forms differ only in the way you pass the date. The first call above expects two byte values (m and
d) and a word value (y). The second form above expects a date.daterec value.

The date.daysLeft function computes the number of days left in a year. This function returns the num-
ber of days left in a year counting the date you pass as a parameter. Therefore, this function returns one for
Dec 31st. Like date.dayNumber, this function always returns a value in the range 1..365/366 (regular/leap
year). The calling syntax for this function is similar to date.dayNumber, it is

date.daysLeft(m, d, y);
date.daysLeft(dateRecVar);

The parameters have the same meaning as for date.dayNumber.

The date.dayOfWeek function accepts a date and returns a day of week value in the EAX register. A call
to this function uses the following syntax:

date.dayOfWeek(m, d, y);
date.dayOfWeek(dateRecVar);

The parameters have their usual meanings.

These function calls return a value in the range 0..7 (in EAX) as follows:

0: Sunday

1: Monday

2: Tuesday

3: Wednesday

4: Thursday

5: Friday

6: Saturday

6.5 Times

The HLA Standard Library provides a simple time module that lets you manipulate times in an
HHMMSS (hours/minutes/seconds) format. The time namespace in the date/time module defines the time
data type as follows:

type
timerec:

record
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 493

Chapter Six Volume Three
secs:uns8;
mins:uns8;
hours:uns16;

endrecord;

This format easily handles 60 seconds per minute and 60 minutes per hour. It also handles up to 65,535
hours (just over 2730 days or about 7-1/2 years).

The advantages to this time format parallel the advantages of the date format: it is easy to convert the
time format to/from external representation (i.e., HH:MM:SS) and the storage format lets you compare
times by treating them as uns32 objects. Another advantage to this format is that it supports more than 24
hours, so you can use it to maintain timings for events that are not calendar based (up to seven years).

There are a couple of disadvantages to this format. The primary disadvantage is that the minimum gran-
ularity is one second; if you want to work with fractions of a second then you will need to use a different
format and you will have to write the functions for that format. Another disadvantage is that time calcula-
tions are somewhat inconvenient. It is difficult to add n seconds to a time variable.

Before discussing the HLA Standard Library Time functions, a quick discussion of other possible time
formats is probably wise. The only reasonable alternative to the HH:MM:SS format that the HLA Standard
Library Time module uses is to use an integer value to represent some number of time units. The only ques-
tion is “what time units do you want to use?” Whatever time format you use, you should be able to represent
at least 86,400 seconds (24 hours) with the format. Furthermore, the granularity should be one second or
less. This effectively means you will need at least 32 bits since 16 bits only provides for 65,536 seconds at
one second granularity (okay, 24 bits would work, but it’s much easier to work with four-byte objects than
three-byte objects).

With 32-bits, we can easily represent more than 24 hours’ worth of milliseconds (in fact, you can repre-
sent almost 50 days before the format rolls over). We could represent five days with a 1/10,000 second granu-
larity, but this is not a common timing to use (most people want microseconds if they need better than
millisecond granularity), so millisecond granularity is probably the best choice for a 32-bit format. If you
need better than millisecond granularity, you should use a combine date/time 64-bit format that measures
microseconds since Julian Day Number zero (Jan 1, 4713 BCE). That’s good for about a half million years.
If you need finer granularity than microseconds, well, you’re own your own! You’ll have to carefully weigh
the issues of granularity vs. years covered vs. the size of your data.

6.5.1 time.curTime

This function returns the current time as read from the system’s time of day clock. The calling syntax
for this function is the following:

time.curTime(timeRecVar);

This function call stores the current system time in the time.timerec variable you pass as a parameter.

6.5.2 time.hmsToSecs and time.secstoHMS

These two functions convert between the HLA internal time format and a pure seconds format. Gener-
ally, when doing time arithmetic (e.g., time plus seconds, minutes, or hours), it’s easiest to convert your
times to seconds, do the calculations with seconds, and then translate the time back to the HLA internal for-
mat. This lets you avoid the headaches of modulo-60 arithmetic.

The calling sequences for the time.hmsToSecs function are

time.hmsToSecs(timeRecValue);
time.hmsToSecs(h, m, s);

Both functions return the number of seconds in the EAX register. They differ only in the type of param-
eters they expect. The first form above expects an HLA time.timerec value. The second call above lets you
Page 494 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
directly specify the hours, minutes, and seconds as separate parameters. The h parameter must be a word
value, the m and s parameters must be byte values.

The time.secsToHMS function uses the following calling sequence:

time.secsToHMS(seconds, timeRecVar);

The first parameter must be an uns32 value specifying some number of seconds less than 235,939,600 sec-
onds (which corresponds to 65,536 hours). The second parameter in this call must be a time.timerec vari-
able. This function converts the seconds parameter to the HLA internal time format and stores the value into
the timeRecVar variable.

6.5.3 Time Input/Output

The HLA Standard Library doesn’t provide any specific I/O routines for time data. However, reading
and writing time data in ASCII form is a fairly trivial process. This section will provide some examples of
time I/O using the HLA Standard Input and Standard Output modules.

To output time in a standard HH:MM:SS format, just use the stdout.putisize routines with a width value
of two and a fill character of ‘0’ for the three fields of the HLA time.timerec data type. The following code
demonstrates this:

static
t:time.timerec;

.

.

.
stdout.putisize(t.h, 2, ‘0’);
stdout.put(‘:’);
stdout.putisize(t.m, 2, ‘0’);
stdout.put(‘:’);
stdout.putisize(t.s, 2, ‘0’);

If this seems like too much typing, well fear not; in the next chapter you will learn how to create your own
functions and you can put this code into a function that will print the time with a single function call.

Time input is a little more complicated. As it turns out, HLA accepts the colon (“:”) character as a
delimiter when reading numbers from the user. Therefore, reading a time value is no more difficult than
reading any other three integer values; you can do it with a single call like the following:

stdin.get(t.hours, t.mins, t.secs);

There is one remaining problem with the time input code: it does not validate the input. To do this, you
must manually check the seconds and minutes fields to ensure they are values in the range 0..59. If you wish
to enforce a limit on the hours field, you should check that value as well. The following code offers one pos-
sible solution:

stdin.get(t.hours, t.mins, t.secs);
if(t.m >= 60) then

raise(ex.ValueOutOfRange);

endif;
if(t.s >= 60) then

raise(ex.ValueOutOfRange);

endif;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 495

Chapter Six Volume Three
6.6 Putting It All Together

Date and time data types do not get anywhere near the consideration they deserve in modern programs.
To help ensure that you calculate dates properly in your HLA programs, the HLA Standard Library provides
a set of date and time functions that ease the use of dates and times in your programs.
Page 496 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O
Files Chapter Seven

7.1 Chapter Overview

In this chapter you will learn about the file persistent data type. In most assembly languages, file I/O is
a major headache. Not so in HLA with the HLA Standard Library. File I/O is no more difficult than writing
data to the standard output device or reading data from the standard input device. In this chapter you will
learn how to create and manipulate sequential and random-access files.

7.2 File Organization

A file is a collection of data that the system maintains in persistent storage. Persistent means that the
storage is non-volatile – that is, the system maintains the data even after the program terminates; indeed,
even if you shut off system power. For this reason, plus the fact that different programs can access the data
in a file, applications typically use files to maintain data across executions of the application and to share
data with other applications.

Windows typically saves file data on a disk drive or some other form of secondary storage device. As
you may recall from the chapter on the memory hierarchy (see “The Memory Hierarchy” on page 293), sec-
ondary storage (disk drives) is much slower than main memory. Therefore, you generally do not store data
that a programming commonly accesses in files during program execution unless that data is far too large to
fit into main memory (e.g., a large database).

Under Windows, a standard file is simply a stream of bytes that the operating system does not interpret
in any way. It is the responsibility of the application to interpret this information, much the same as it is your
application’s responsibility to interpret data in memory. The stream of bytes in a file could be a sequence of
ASCII characters (e.g., a text file) or they could be pixel values that form a 24-bit color photograph.

Files generally take one of two different forms: sequential files or random access files. Sequential files
are great for data you read or write all at once; random access files work best for data you read and write in
pieces (or rewrite, as the case may be). For example, a typical text file (like an HLA source file) is a good
example of a sequential file. Usually your text editor will read or write the entire file at once. Similarly, the
HLA compiler will read the data from the file in a sequential fashion without skipping around in the file. A
database file, on the other hand, requires random access since the application can read data from anywhere in
the file in response to a query.

7.2.1 Files as Lists of Records

A good view of a file is as a list of records. That is, the file is broken down into a sequential string of
records that share a common structure. A list is simply an open-ended single dimensional array of items, so
we can view a file as an array of records. As such, we can index into the file and select record number zero,
record number one, record number two, etc. Using common file access operations, it is quite possible to skip
around to different records in a file. Under Windows, the principle difference between a sequential file and a
random access file is the organization of the records and how easy it is to locate a specific record within the
file. In this section we’ll take a look at the issues that differentiate these two types of files.

The easiest file organization to understand is the random access file. A random access file is a list of
records whose lengths are all identical (i.e., random access files require fixed length records). If the record
length is n bytes, then the first record appears at byte offset zero in the file, the second record appears at byte
offset n in the file, the third record appears at byte offset n*2 in the file, etc. This organization is virtually
identical to that of an array of records in main memory; you use the same computation to locate an “ele-
ment” of this list in the file as you would use to locate an element of an array in memory; the only difference
is that a file doesn’t have a “base address” in memory, you simply compute the zero-based offset of the
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 497

Chapter Seven Volume Three
record in the file. This calculation is quite simple, and using some file I/O functions you learn about a little
later, you can quickly locate and manipulate any record in a random access file.

Sequential files also consist of a list of records. However, these records do not all have to be the same
length1. If a sequential file does not use fixed length records then we say that the file uses variable-length
records. If a sequential file uses variable-length records, then the file must contain some kind of marker or
other mechanism to separate the records in the file. Typical sequential files use one of two mechanisms: a
length prefix or some special terminating value. These two schemes should sound quite familiar to those
who have read the chapter on strings. Character strings use a similar scheme to determine the bounds of a
string in memory.

A text file is the best example of a sequential file that uses variable-length records. Text files use a spe-
cial marker at the end of each record to delineate the records. In a text file, a record corresponds to a single
line of text. Under Windows, the carriage return/line feed character sequence marks the end of each record.
Other operating systems may use a different sequence; e.g., Linux uses a single line feed character while the
Mac OS uses a single carriage return. Since we’re working with Windows here, we’ll adopt the carriage
return/line feed convention.

Accessing records in a file containing variable-length records is problematic. Unless you have an array
of offsets to each record in a variable-length file, the only practical way to locate record n in a file is to read
the first n-1 records. This is why variable-length files are sequential-access – you have the read the file
sequentially from the start in order to locate a specific record in the file. This will be much slower than
accessing the file in a random access fashion. Generally, you would not use a variable-length record organi-
zation for files you need to access in a random fashion.

At first blush it would seem that fixed-length random access files offer all the advantages here. After all,
you can access records in a file with fixed-length records much more rapidly than files using the vari-
able-length record organization. However, there is a cost to this: your fixed-length records have to be large
enough to hold the largest possible data object you want to store in a record. To store a sequence of lines in
a text file, for example, your record sizes would have to be large enough to hold the longest possible input
line. This could be quite large (for example, HLA allows lines up to 256 characters). Each record in the file
will consume this many bytes even if the record uses substantially less data. For example, an empty line
only requires two bytes (for the carriage return/line feed sequence). If your record size is 256 bytes, then
you’re wasting 254 bytes for that blank line in your file. If the average line length is around 60 characters,
then each line wastes an average of about 200 characters. This problem, known as internal fragmentation,
can waste a tremendous amount of space on your disk as your files get larger or you create lots of files. File
organizations that use variable-length records generally don’t suffer from this problem.

7.2.2 Binary vs. Text Files

Another important thing to realize about files is that they don’t all contain human readable text. OBJ
and EXE files are good examples of files that contain binary information rather than text. A text file is a very
special kind of variable-length sequential file that uses special end of line markers (carriage returns/line
feeds) at the end of each record (line) in the file. Binary files are everything else.

Binary files are often more compact than text files and they are usually more efficient to access. Con-
sider a text file that contains the following set of two-byte integer values:

1234
543
3645
32000
1
87
0

1. There is nothing preventing a sequential file from using fixed length records. However, they don’t require fixed length
records.
Page 498 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O
As a text file, this file consumes at least 34 bytes (assuming a two-byte end of line marker on each line).
However, were we to store the data in a fixed-record length binary file, with two bytes per integer value, this
file would only consume 14 bytes – less than half the space. Furthermore, since the file now uses
fixed-length records (two bytes per record) we can efficiently access it in a random fashion. Finally, there is
one additional, though hidden, efficiency aspect to the binary format: when a program reads and writes
binary data it doesn’t have to convert between the binary and string formats. This is an expensive process
(with respect to computer time). If a human being isn’t going to read this file with a separate program (like
a text editor) then converting to and from text format on every I/O operation is a wasted effort.

Consider the following HLA record type:

type
person:

record
name:string;
age:int16;
ssn:char[11];
salary:real64;

endrecord;

If we were to write this record as text to a text file, a typical record would take the following form (<nl> indi-
cates the end of line marker, a carriage return/line feed pair):

Hyde, Randall<nl>
45<nl>
555-55-5555<nl>
123456.78<nl>

Presumably, the next person record in the file would begin with the next line of text in the text file.

The binary version of this file (using a fixed length record, reserving 64 bytes for the name string) would
look, schematically, like the following:

Figure 4.1 Fixed-lengthFormat for Person Record

Don’t get the impression that binary files must use fixed length record sizes. We could create a vari-
able-length version of this record by using a zero byte to terminate the string, as follows:

64 bytes for the Name fieldHyde, Randall ...

Two bytes for the Age field

11 bytes for the SSN field

Eight bytes for the salary field
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 499

Chapter Seven Volume Three
Figure 4.2 Variable-length Format for Person Record

In this particular record format the age field starts at offset 14 in the record (since the name field and the
“end of field” marker [the zero byte] consume 14 bytes). If a different name were chosen, then the age field
would begin at a different offset in the record. In order to locate the age, ssn, and salary fields of this record,
the program would have to scan past the name and find the zero terminating byte. The remaining fields
would follow at fixed offsets from the zero terminating byte. As you can see, it’s a bit more work to process
this variable-length record than the fixed-length record. Once again, this demonstrates the performance dif-
ference between random access (fixed-length) and sequential access (variable length, in this case) files.

Although binary files are often more compact and more efficient to access, they do have their draw-
backs. In particular, only applications that are aware of the binary file’s record format can easily access the
file. If you’re handed an arbitrary binary file and asked to decipher its contents, this could be very difficult.
Text files, on the other hand, can be read by just about any text editor or filter program out there. Hence,
your data files will be more interchangeable with other programs if you use text files. Furthermore, it is eas-
ier to debug the output of your programs if they produce text files since you can load a text file into the same
editor you use to edit your source files.

7.3 Sequential Files

Sequential files are perfect for three types of persistent data: ASCII text files, “memory dumps”, and
stream data. Since you’re probably familiar with ASCII text files, we’ll skip their discussion. The other two
methods of writing sequential files deserve more explanation.

A “memory dump” is a file that consists of data you transfer from data structures in memory directly to
a file. Although the term “memory dump” suggests that you sequentially transfer data from consecutive
memory locations to the file, this isn’t necessarily the case. Memory access can, an often does, occur in a
random access fashion. However, once the application constructs a record to write to the file, it writes that
record in a sequential fashion (i.e., each record is written in order to the file). A “memory dump” is what
most applications do when you request that they save the program’s current data to a file or read data from a
file into application memory. When writing, they gather all the important data from memory and write it to
the file in a sequential fashion; when reading (loading) data from a file, they read the data from the file in a
sequential fashion and store the data into appropriate memory-based data structures. Generally, when load-
ing or saving file data in this manner, the program opens a file, reads/writes data from/to the file, and then it
closes the file. Very little processing takes place during the data transfer and the application does not leave
the file open for any length of time beyond what is necessary to read or write the file’s data.

Stream data on input is like data coming from a keyboard. The program reads the data at various points
in the application where it needs new input to continue. Similarly, stream data on output is like a write to the
console device. The application writes data to the file at various points in the program after important com-
putations have taken place and the program wishes to report the results of the calculation. Note that when
reading data from a sequential file, once the program reads a particular piece of data, that data is no longer
available in future reads (unless, of course, the program closes and reopens the file). When writing data to a
sequential file, once data is written, it becomes a permanent part of the output file. When processing this
kind of data the program typically opens a file and then continues execution. As program execution contin-

14 bytes for the Name fieldHyde, Randall0

Two bytes for the Age field

11 bytes for the SSN field

Eight bytes for the salary field
Page 500 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O
ues, the application can read or write data in the file. At some point, typically towards the end of the applica-
tion’s execution, the program closes the file and commits the data to disk.

Although disk drives are generally thought of as random access devices, the truth is that they are only
pseudo-random access; in fact, they perform much better when writing data sequentially on the disk surface.
Therefore, sequential access files tend to provide the highest performance (for sequential data) since they
match the highest performance access mode of the disk drive.

Working with sequential files in HLA is very easy. In fact, you already know most of the functions you
need in order to read or write sequential files. All that’s left to learn is how to open and close files and per-
form some simple tests (like “have we reached the end of a file when reading data from the file?”).

The file I/O functions are nearly identical to the stdin and stdout functions. Indeed, stdin and stdout are
really nothing more than special file I/O functions that read data from the standard input device (a file) or
write data to the standard output device (which is also a file). You use the file I/O functions in a manner anal-
ogous to stdin and stdout except you use the fileio prefix rather than stdin or stdout. For example, to write a
string to an output file, you could use the fileio.puts function almost the same way you use the stdout.puts
routine. Similarly, if you wanted to read a string from a file, you would use fileio.gets. The only real differ-
ence between these function calls and their stdin and stdout counterparts is that you must supply an extra
parameter to tell the function what file to use for the transfer. This is a double word value known as the file
handle. You’ll see how to initialize this file handle in a moment, but assuming you have a dword variable
that holds a file handle value, you can use calls like the following to read and write data to sequential files:

fileio.get(inputHandle, i, j, k); // Reads i, j, k, from file inputHandle.
fileio.put(outputHandle, “I = “, i, “J = “, j, “ K = “, k, nl);

Although this example only demonstrates the use of get and put, be aware that almost all of the stdin and std-
out functions are available as fileio functions, as well (in fact, most of the stdin and stdout functions simply
call the appropriate fileio function to do the real work).

There is, of course, the issue of this file handle variable. You’re probably wondering what a file handle
is and how you tell the fileio routines to work with data in a specific file on your disk. Well, the definition of
the file handle object is the easiest to explain – it’s just a dword variable that Windows initializes and uses to
keep track of your file. To declare a file handle, you’d just create a dword variable, e.g.,

static
myFileHandle:dword;

You should never explicitly manipulate the value of a file handle variable. Windows will initialize this vari-
able for you (via some calls you’ll see in a moment) and Windows expects you to leave this value alone as
long as your working with the file Windows associates with that handle. If you’re curious, Windows stores
small integer values into the handle variable. Internally, Windows uses this value as an index into an array
that contains pertinent information about open files. If you mess with the file handle’s value, you will con-
fuse Windows’ greatly the next time you attempt to access the file. Moral of the story – leave this value
alone while the file is open.

Before you can read or write a file you must open that file and associate a filename with it. The HLA
Standard Library provides a couple of functions that provide this service: fileio.open and fileio.openNew.
The fileio.open function opens an existing file for reading, writing, or both. Generally, you open sequential
files for reading or writing, but not both (though there are some special cases where you can open a sequen-
tial file for reading and writing). The syntax for the call to this function is

fileio.open(“filename”, access);

The first parameter is a string value that specifies the Windows filename of the file to open. This can be a
string constant, a register that contains the address of a string value, or a string variable. The second param-
eter is a constant that specifies how you want to open the file. You may use any of the three predefined con-
stants for the second parameter:

fileio.r
fileio.w
fileio.rw
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 501

Chapter Seven Volume Three
fileio.r obviously specifies that you want to open an existing file in order to read the data from that file;
likewise, fileio.w says that you want to open an existing file and overwrite the data in that file. The fileio.rw
option lets you open a file for both reading and writing.

The fileio.open routine, if successful, returns a Windows file handle in the EAX register. Generally, you
will want to save the return value into a double word variable for use by the other HLA fileio routines (i.e.,
the MyFileHandle variable in the earlier example).

If Windows cannot open the file, fileio.open will raise an ex.FileOpenFailure exception. This usually
means that it could not find the specified file on the disk.

The fileio.open routine requires that the file exist on the disk or it will raise an exception. If you want to
create a new file, that might not already exist, the fileio.openNew function will do the job for you. This func-
tion uses the following syntax:

fileio.openNew(“filename”);

Note that this call has only a single parameter, a string specifying the filename. When you open a file with
fileio.openNew, the file is always opened for writing. If a file by the specified filename already exists, then
this function will delete the existing file and the new data will be written over the top of the old file.

Like fileio.open, fileio.openNew returns a file handle in the EAX register if it successfully opens the file.
You should save this value in a file handle variable. This function raises the ex.FileOpenFailure exception if
it cannot open the file.

Once you open a sequential file with fileio.open or fileio.openNew and you save the file handle value
away, you can begin reading data from an input file (fileio.r) or writing data to an output file (fileio.w). To do
this, you would use functions like fileio.put as noted above.

When the file I/O is complete, you must close the file to commit the file data to the disk. You should
always close all files you open as soon as you are through with them so that the program doesn’t consume
excess system resources. The syntax for fileio.close is very simple, it takes a single parameter, the file han-
dle value returned by fileio.open or fileio.openNew:

fileio.close(file_handle);

If there is an error closing the file, fileio.close will raise the ex.FileCloseError exception. Note that Windows
automatically closes all open files when an application terminates; however, it is very bad programming
style to depend on this feature. If the system crashes (or the user turns off the power) before the application
terminates, file data may be lost. So you should always close your files as soon as you are done accessing
the data in that file.

The last function of interest to us right now is the fileio.eof function. This function returns true (1) or
false (0) in the AL register depending on whether the current file pointer is at the end of the file. Generally
you would use this function when reading data from an input file to determine if there is more data to read
from the file. You would not normally call this function for output files; it always returns true unless the
disk is full. Since the fileio routines will raise an exception if the disk is full, there is no need to waste time
checking for end of file (EOF) when writing data to a file. The syntax for fileio.eof is

fileio.eof(file_handle);

The following program example demonstrates a complete program that opens and writes a simple text
file:

program SimpleFileOutput;
#include(“stdlib.hhf”)

static
outputHandle:dword;

begin SimpleFileOutput;

fileio.openNew(“myfile.txt”);
Page 502 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O
mov(eax, outputHandle);

for(mov(0, ebx); ebx < 10; inc(ebx)) do

fileio.put(outputHandle, (type uns32 ebx), nl);

endfor;
fileio.close(outputHandle);

end SimpleFileOutput;

Program 7.1 A Simple File Output Program

The following sample program reads the data that Program 7.1 produces and writes the data to the stan-
dard output device:

program SimpleFileInput;
#include(“stdlib.hhf”)

static
inputHandle:dword;
u:uns32;

begin SimpleFileInput;

fileio.open(“myfile.txt”, win.GENERIC_READ);
mov(eax, inputHandle);

for(mov(0, ebx); ebx < 10; inc(ebx)) do

fileio.get(inputHandle, u);
stdout.put(“ebx=”, ebx, “ u=”, u, nl);

endfor;
fileio.close(inputHandle);

end SimpleFileInput;

Program 7.2 A Sample File Input Program

There are a couple of interesting functions that you can use when working with sequential files. They
are the following:

fileio.rewind(fileHandle);
fileio.append(fileHandle);

The fileio.rewind function resets the “file pointer” (the cursor into the file where the next read or write
will take place) back to the beginning of the file. This name is a carry-over from the days of files on tape
drives when the system would rewind the tape on the tape drive to move the read/write head back to the
beginning of the file.

If you’ve opened a file for reading, then fileio.rewind lets you begin reading the file from the start (i.e.,
make a second pass over the data). If you’ve opened the file for writing, then fileio.rewind will cause future
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 503

Chapter Seven Volume Three
writes to overwrite the data you’ve previously written; you won’t normally use this function with files
you’ve opened only for writing. If you’ve opened the file for reading and writing (using the “fileio.rw”
option) then you can write the data after you’ve first opened the file and then rewind the file and read the data
you’ve written. The following is a modification to Program 7.2 that reads the data file twice. This program
also demonstrates the use of fileio.eof to test for the end of the file (rather than just counting the records).

program SimpleFileInput2;
#include(“stdlib.hhf”)

static
inputHandle:dword;
u:uns32;

begin SimpleFileInput2;

fileio.open(“myfile.txt”, win.GENERIC_READ);
mov(eax, inputHandle);

for(mov(0, ebx); ebx < 10; inc(ebx)) do

fileio.get(inputHandle, u);
stdout.put(“ebx=”, ebx, “ u=”, u, nl);

endfor;
stdout.newln();

// Rewind the file and reread the data from the beginning.
// This time, use fileio.eof() to determine when we’ve
// reached the end of the file.

fileio.rewind(inputHandle);
while(fileio.eof(inputHandle) = false) do

// Read and display the next item from the file:

fileio.get(inputHandle, u);
stdout.put(“u=”, u, nl);

// Note: after we read the last numeric value, there is still
// a newline sequence left in the file, if we don’t read the
// newline sequence after each number then EOF will be false
// at the start of the loop and we’ll get an EOF exception
// when we try to read the next value. Calling fileio.ReadLn
// “eats” the newline after each number and solves this problem.

fileio.readLn(inputHandle);

endwhile;
fileio.close(inputHandle);

end SimpleFileInput2;

Program 7.3 Another Sample File Input Program
Page 504 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O
The fileio.append function moves the file pointer to the end of the file. This function is really only use-
ful for files you’ve opened for writing (or reading and writing). After executing fileio.append, all data you
write to the file will be written after the data that already exists in the file (i.e., you use this call to append
data to the end of a file you’ve opened). The following program demonstrates how to use this program to
append data to the file created by Program 7.1:

program AppendDemo;
#include(“stdlib.hhf”)

static
fileHandle:dword;
u:uns32;

begin AppendDemo;

fileio.open(“myfile.txt”, win.GENERIC_READ | win.GENERIC_WRITE);
mov(eax, fileHandle);
fileio.append(eax);

for(mov(10, ecx); ecx < 20; inc(ecx)) do

fileio.put(fileHandle, (type uns32 ecx), nl);

endfor;

// Okay, let’s rewind to the beginning of the file and
// display all the data from the file, including the
// new data we just wrote to it:

fileio.rewind(fileHandle);
while(!fileio.eof(fileHandle)) do

// Read and display the next item from the file:

fileio.get(fileHandle, u);
stdout.put(“u=”, u, nl);
fileio.readLn(fileHandle);

endwhile;
fileio.close(fileHandle);

end AppendDemo;

Program 7.4 Demonstration of the fileio.Append Routine

Another function, similar to fileio.eof, that will prove useful when reading data from a file is the
fileio.eoln function. This function returns true if the next characters to be read from the file are carriage
return, linefeed, or the sequence of these two characters. This function returns true or false in the EAX reg-
ister if it detects an end of line sequence. The calling sequence for this function is

fileio.eoln(fileHandle);

If fileio.eoln detects an end of line sequence, it will read those characters from the file (so the next read
from the file will not read the end of line characters). If fileio.eoln does not detect the end of line sequence,
it does not modify the file pointer position. The following sample program demonstrates the use of
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 505

Chapter Seven Volume Three
fileio.eoln in the AppendDemo program, replacing the call to fileio.readLn (since fileio.eoln reads the end of
line sequence, there is no need for the call to fileio.readLn):

program EolnDemo;
#include(“stdlib.hhf”)

static
 fileHandle:dword;
 u:uns32;

begin EolnDemo;

 fileio.open(“myfile.txt”, win.GENERIC_READ | win.GENERIC_WRITE);
 mov(eax, fileHandle);
 fileio.append(eax);

 for(mov(10, ecx); ecx < 20; inc(ecx)) do

 fileio.put(fileHandle, (type uns32 ecx), nl);

 endfor;

 // Okay, let’s rewind to the beginning of the file and
 // display all the data from the file, including the
 // new data we just wrote to it:

 fileio.rewind(fileHandle);
 while(!fileio.eof(fileHandle)) do

 // Read and display the next item from the file:

 fileio.get(fileHandle, u);
 stdout.put(“u=”, u, nl);
 if(!fileio.eoln(fileHandle)) then

 stdout.put(“Hmmm, expected the end of the line”, nl);

 endif;

 endwhile;
 fileio.close(fileHandle);

end EolnDemo;

Program 7.5 fileio.eoln Demonstration Program.

7.4 Random Access Files

The problem with sequential files is that they are, well, sequential. They are great for dumping and
retrieving large blocks of data all at once, but they are not suitable for applications that need to read, write,
and rewrite the same data in a file multiple times. In those situations random access files provide the only
reasonable alternative.

Windows doesn’t differentiate sequential and random access files anymore than the CPU differentiates
byte and character values in memory; it’s up to your application to treat the files as sequential or random
Page 506 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O
access. As such, you use many of the same functions to manipulate random access files as you use to manip-
ulate sequential access files; you just use them differently is all.

You still open files with fileio.open and fileio.openNew. Random access files are generally opened for
reading or reading and writing. You rarely open a random access file as write-only since a program typically
needs to read data if it’s jumping around in the file.

You still close the files with fileio.close.

You can read and write the files with fileio.get and fileio.put, although you would not normally use these
functions for random access file I/O because each record you read or write has to be exactly the same length
and these functions aren’t particularly suited for fixed-length record I/O. Most of the time you will use one
of the following functions to read and write fixed-length data:

fileio.write(fileHandle, buffer, count);
fileio.read(fileHandle, buffer, count);

The fileHandle parameter is the usual Windows file handle value (a dword variable). The count parameter is
an uns32 object that specifies how many bytes to read or write. The buffer parameter must be a byte array
variable (or a variable you coerce to type byte). This parameter supplies the address of the first byte in mem-
ory where the I/O transfer will take place. These functions return the number of bytes read or written in the
EAX register. For fileio.read, if the return value in EAX does not equal count’s value, then you’ve reached
the end of the file. For fileio.write, if EAX does not equal count then the disk is full.

Here is a typical call to the fileio.read function that will read a record from a file:

fileio.read(myHandle, myRecord, @size(myRecord));

If the return value in EAX does not equal @size(myRecord) and it does not equal zero (indicating end of
file) then there is something seriously wrong with the file since the file should contain an integral number of
records.

Writing data to a file with fileio.write uses a similar syntax to fileio.read.

You can use fileio.read and fileio.write to read and write data from/to a sequential file, just as you can
use routines like fileio.get and fileio.put to read/write data from/to a random access file. You’d typically use
these routines to read and write data from/to a binary sequential file.

The functions we’ve discussed to this point don’t let you randomly access records in a file. If you call
fileio.read several times in a row, the program will write those records sequentially to the text file. To do true
random access I/O we need the ability to jump around in the file. Fortunately, the HLA Standard Library’s
file module provides several functions you can use to accomplish this.

The fileio.position function returns the current offset into the file in the EAX register. If you call this
function immediately before reading or writing a record to a file, then this function will tell you the exact
position of that record. You can use this value to quickly locate that record for a future access. The calling
sequence for this function is

fileio.position(fileHandle); // Returns current file position in EAX.

The fileio.seek function repositions the file pointer to the offset you specify as a parameter. The follow-
ing is the calling sequence for this function:

fileio.seek(fileHandle, offset); // Repositions file to specified offset.

The function call above will reposition the file pointer to the byte offset specified by the offset parameter. If
you feed this function the value returned by fileio.position, then the next read or write operation will access
the record written (or read) immediately after the fileio.position call.

You can pass any arbitrary offset value as a parameter to the fileio.seek routine; this value does not have
to be one that the fileio.position function returns. For random access file I/O you would normally compute
this offset file by specifying the index of the record you wish to access multiplied by the size of the record.
For example, the following code computes the byte offset of record index in the file, repositions the file
pointer to that record, and then reads the record:

intmul(@size(myRecord), index, ebx);
fileio.seek(fileHandle, ebx);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 507

Chapter Seven Volume Three
fileio.read(fileHandle, (type byte myRecord), @size(myRecord));

You can use essentially this same code sequence to select a specific record in the file for writing.

Note that it is not an error to seek beyond the current end of file and then write data. If you do this, Win-
dows will automatically fill in the intervening records with uninitialized data. Generally, this isn’t a great
way to create files, but it is perfectly legal. On the other hand, be aware that if you do this by accident, you
may wind up with garbage in the file and no error to indicate that this has happened.

The fileio module provides another routine for repositioning the file pointer: fileio.rSeek. This func-
tion’s calling sequence is very similar to fileio.seek, it is

fileio.rSeek(fileHandle, offset);

The difference between this function and the regular fileio.seek function is that this function repositions the
file pointer offset bytes from the end of the file (rather than offset bytes from the start of the file). The “r” in
“rSeek” stands for “reverse” seek.

Repositioning the file pointer, especially if you reposition it a fair distance from its current location, can
be a time-consuming process. If you reposition the file pointer and then attempt to read a record from the
file, the system may need to reposition a disk arm (a very slow process) and wait for the data to rotate under-
neath the disk read/write head. This is why random access I/O is much less efficient than sequential I/O.

The following program demonstrates random access I/O by writing and reading a file of records:

program RandomAccessDemo;
#include(“stdlib.hhf”)

type
fileRec:

record
x:int16;
y:int16;
magnitude:uns8;

endrecord;

const

// Some arbitrary data we can use to initialize the file:

fileData:=
[

fileRec:[2000, 1, 1],
fileRec:[1000, 10, 2],
fileRec:[750, 100, 3],
fileRec:[500, 500, 4],
fileRec:[100, 1000, 5],
fileRec:[62, 2000, 6],
fileRec:[32, 2500, 7],
fileRec:[10, 3000, 8]

];

static
fileHandle:dword;
RecordFromFile:fileRec;
InitialFileData:fileRec[8] := fileData;

begin RandomAccessDemo;
Page 508 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O
fileio.openNew(“fileRec.bin”);
mov(eax, fileHandle);

// Okay, write the initial data to the file in a sequential fashion:

for(mov(0, ebx); ebx < 8; inc(ebx)) do

intmul(@size(fileRec), ebx, ecx);// Compute index into fileData
fileio.write
(

fileHandle,
(type byte InitialFileData[ecx]),
@size(fileRec)

);

endfor;

// Okay, now let’s demonstrate a random access of this file
// by reading the records from the file backwards.

stdout.put(“Reading the records, backwards:” nl);
for(mov(7, ebx); (type int32 ebx) >= 0; dec(ebx)) do

intmul(@size(fileRec), ebx, ecx);// Compute file offset
fileio.seek(fileHandle, ecx);
fileio.read
(

fileHandle,
(type byte RecordFromFile),
@size(fileRec)

);
if(eax = @size(fileRec)) then

stdout.put
(

“Read record #”,
(type uns32 ebx),
“, values:” nl
“ x: “, RecordFromFile.x, nl
“ y: “, RecordFromFile.y, nl
“ magnitude: “, RecordFromFile.magnitude, nl nl

);

else

stdout.put(“Error reading record number “, (type uns32 ebx), nl);

endif;

endfor;
fileio.close(fileHandle);

end RandomAccessDemo;

Program 7.6 Random Access File I/O Example
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 509

Chapter Seven Volume Three
7.5 ISAM (Indexed Sequential Access Method) Files

ISAM is a trick that attempts to allow random access to variable-length records in a sequential file. This
is a technique employed by IBM on their mainframe data bases in the 1960’s and 1970’s. Back then, disk
space was very precious (remember why we wound up with the Y2K problem?) and IBM’s engineers did
everything they could to save space. At that time disks held about five megabytes, or so, were the size of
washing machines, and cost tens of thousands of dollars. You can appreciate why they wanted to make every
byte count. Today, data base designers have disk drives with hundreds of gigabytes per drive and RAID2

devices with dozens of these drives installed. They don’t bother trying to conserve space at all (“Heck, I
don’t know how big the person’s name can get, so I’ll allocate 256 bytes for it!”). Nevertheless, even with
large disk arrays, saving space is often a wise idea. Not everyone has a terabyte (1,000 gigabytes) at their
disposal and a user of your application may not appreciate your decision to waste their disk space. There-
fore, techniques like ISAM that can reduce disk storage requirements are still important today.

ISAM is actually a very simple concept. Somewhere, the program saves the offset to the start of every
record in a file. Since offsets are four bytes long, an array of dwords will work quite nicely3. Generally, as
you construct the file you fill in the list (array) of offsets and keep track of the number of records in the file.
For example, if you were creating a text file and you wanted to be able to quickly locate any line in the file,
you would save the offset into the file of each line you wrote to the file. The following code fragment shows
how you could do this:

static
outputLine: string;
ISAMarray: dword[128*1024]; // allow up to 128K records.

.

.

.
mov(0, ecx); // Keep record count here.
forever

<< create a line of text in “outputLine” >>

fileio.position(fileHandle);
mov(eax, ISAMarray[ecx*4]); // Save away current record offset.
fileio.put(fileHandle, outputLine, nl); // Write the record.
inc(ecx); // Advance to next element of ISAMarray.

<< determine if we’re done and BREAK if we are >>

endfor;

<< At this point, ECX contains the number of records and >>
<< ISAMarray[0]..ISAMarray[ecx-1] contain the offsets to >>
<< each of the records in the file. >>

After building the file using the code above, you can quickly jump to an arbitrary line of text by fetching
the index for that line from the ISAMarray list. The following code demonstrates how you could read line
recordNumber from the file:

mov(recordNumber, ebx);
fileio.seek(fileHandle, ISAMarray[ebx*4]);
fileio.a_gets(fileHandle, inputString);

As long as you’ve precalculated the ISAMarray list, accessing an arbitrary line in this text file is a trivial
matter.

2. Redundant array of inexpensive disks. RAID is a mechanism for combining lots of cheap disk drives together to form the
equivalent of a really large disk drive.
3. This assumes, of course, that your files have a maximum size of four gigabytes.
Page 510 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O
Of course, back in the days when IBM programmers were trying to squeeze every byte from their data-
bases as possible so they would fit on a five megabyte disk drive, they didn’t have 512 kilobytes of RAM to
hold 128K entries in the ISAMarray list. Although a half a megabyte is no big deal today, there are a couple
of reasons why keeping the ISAMarray list in a memory-based array might not be such a good idea. First,
databases are much larger these days. Some databases have hundreds of millions of entries. While setting
aside a half a megabyte for an ISAM table might not be a bad thing, few people are willing to set aside a half
a gigabyte for this purpose. Even if your database isn’t amazingly big, there is another reason why you
might not want to keep your ISAMarray in main memory – it’s the same reason you don’t keep the file in
memory – memory is volatile and the data is lost whenever the application quits or the user removes power
from the system. The solution is exactly the same as for the file data: you store the ISAMarray data in its
own file. A program that builds the ISAM table while writing the file is a simple modification to the previ-
ous ISAM generation program. The trick is to open two files concurrently and write the ISAM data to one
file while you’re writing the text to the other file:

static
fileHandle: dword; // file handle for the text file.
outputLine: string; // file handle for the ISAM file.
CurrentOffset: dword; // Holds the current offset into the text file.

.

.

.
forever

<< create a line of text in “outputLine” >>

// Get the offset of the next record in the text file
// and write this offset (sequentially) to the ISAM file.

fileio.position(fileHandle);
mov(eax, CurrentOffset);
fileio.write(isamHandle, (type byte CurrentOffset), 4);

// Okay, write the actual text data to the text file:

fileio.put(fileHandle, outputLine, nl); // Write the record.

<< determine if we’re done and BREAK if we are >>

endfor;

If necessary, you can count the number of records as before. You might write this value to the first record of
the ISAM file (since you know the first record of the text file is always at offset zero, you can use the first
element of the ISAM list to hold the count of ISAM/text file records).

Since the ISAM file is just a sequence of four-byte integers, each record in the file (i.e., an integer) has
the same length. Therefore, we can easily access any value in the ISAM file using the random access file I/O
mechanism. In order to read a particular line of text from the text file, the first task is to read the offset from
the ISAM file and then use that offset to read the desired line from the text file. The code to accomplish this
is as follows:

// Assume we want to read the line specified by the “lineNumber” variable.

if(lineNumber <> 0) then

// If not record number zero, then fetch the offset to the desired
// line from the ISAM file:

intmul(4, lineNumber, eax); // Compute the index into the ISAM file.
fileio.seek(isamHandle, eax);
fileio.read(isamHandle, (type byte CurrentOffset), 4); // Read offset
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 511

Chapter Seven Volume Three
else

mov(0, eax); // Special case for record zero because the file
 // contains the record count in this position.

endif;
fileio.seek(fileHandle, CurrentOffset); // Set text file position.
fileio.a_gets(fileHandle, inputLine); // Read the line of text.

This operation runs at about half the speed of having the ISAM array in memory (since it takes four file
accesses rather than two to read the line of text from the file), but the data is non-volatile and is not limited
by the amount of available RAM.

If you decide to use a memory-based array for your ISAM table, it’s still a good idea to keep that data in
a file somewhere so you don’t have to recompute it (by reading the entire file) every time your application
starts. If the data is present in a file, all you’ve got to do is read that file data into your ISAMarray list.
Assuming you’ve stored the number of records in element number zero of the ISAM array, you could use the
following code to read your ISAM data into the ISAMarray variable:

static
isamSize: uns32;
isamHandle: dword;
fileHandle: dword;
ISAMarray: dword[128*1024];

.

.

.
// Read the first record of the ISAM file into the isamSize variable:

fileio.read(isamHandle, (type byte isamSize), 4);

// Now read the remaining data from the ISAM file into the ISAMarray
// variable:

if(isamSize >= 128*1024) then

raise(ex.ValueOutOfRange);

endif;
intmul(4, isamSize, ecx); // #records * 4 is number of bytes to read.
fileio.read(isamHandle, (type byte ISAMarray), ecx);

// At this point, ISAMarray[0]..ISAMarray[isamSize-1] contain the indexes
// into the text file for each line of text.

7.6 Truncating a File

If you open an existing file (using fileio.open) for output and write data to that file, it overwrites the
existing data from the start of the file. However, if the new data you write to the file is shorter than the data
originally appearing in the file, the excess data from the original file, beyond the end of the new data you’ve
written, will still appear at the end of the new data. Sometimes this might be desirable, but most of the time
you’ll want to delete the old data after writing the new data.

One way to delete the old data is to use the fileio.openNew function to open the file. The fileio.openNew
function automatically deletes any existing file so only the data you write to the file will be present in the
file. However, there may be times when you may want to read the old data first, rewind the file, and then
overwrite the data. In this situation, you’ll need a function that will truncate the old data at the end of the file
Page 512 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O
after you’ve written the new data. The fileio.truncate function accomplishes this task. This function uses the
following calling syntax:

fileio.truncate(fileHandle);

Note that this function does not close the file. You still have to call fileio.close to commit the data to the disk.

The following sample program demonstrates the use of the fileio.truncate function:

program TruncateDemo;
#include(“stdlib.hhf”)

static
fileHandle:dword;
u:uns32;

begin TruncateDemo;

fileio.openNew(“myfile.txt”);
mov(eax, fileHandle);
for(mov(0, ecx); ecx < 20; inc(ecx)) do

fileio.put(fileHandle, (type uns32 ecx), nl);

endfor;

// Okay, let’s rewind to the beginning of the file and
// rewrite the first ten lines and then truncate the
// file at that point.

fileio.rewind(fileHandle);
for(mov(0, ecx); ecx < 10; inc(ecx)) do

fileio.put(fileHandle, (type uns32 ecx), nl);

endfor;
fileio.truncate(fileHandle);

// Rewind and display the file contents to ensure that
// the file truncation has worked.

fileio.rewind(fileHandle);
while(!fileio.eof(fileHandle)) do

// Read and display the next item from the file:

fileio.get(fileHandle, u);
stdout.put(“u=”, u, nl);
fileio.readLn(fileHandle);

endwhile;
fileio.close(fileHandle);

end TruncateDemo;

Program 7.7 Using fileio.truncate to Eliminate Old Data From a File
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 513

Chapter Seven Volume Three
7.7 File Utility Routines

The following subsections describe fileio functions that manipulate files or return meta-information
about files (e.g., the file size and attributes).

7.7.1 Copying, Moving, and Renaming Files

Some very useful file utilities are copying, moving, and renaming files. For example, you might want to
copy a file an application has created in order to make a backup copy. Moving files from one subdirectory to
another, or even from one disk to another is another common operation. Likewise, the need to change the
name of a file arises all the time. In this section we’ll take a look at the HLA Standard Library routines that
accomplish these operations.

Copying a file is a nearly trivial process. All you’ve got to do is open a source file, open a destination
file, then read the bytes from the source file and write them to the destination file until you hit end of file.
Unfortunately, this simple approach to copying a file can suffer from performance problems. Windows pro-
vides an internal function to copy files using a high performance algorithm. The HLA Standard Library
fileio.copy function provides an interface to this copy operation. The copy a file using the fileio.copy proce-
dure, you’d use the following call sequence:

fileio.copy(sourcefileName, destFileName, failIfExists);

The sourceFileName and destFileName parameters are strings that specify the pathnames of the source and
destination files. These can be string constants or variables. The last parameter is a boolean variable that
specifies what should happen if the destination file exists. If this parameter contains true and the file already
exists, then the function will fail; if failIfExists is false, the fileio.copy routine will replace the existing desti-
nation file with a copy of the source file. In either case, of course, the source file must exist or this function
will fail. This function returns a boolean success/failure result in the EAX register. It returns true if the
function returns TRUE in EAX.

Program 7.8 demonstrates the use of this function to copy a file:

program CopyDemo;
#include(“stdlib.hhf”)

begin CopyDemo;

// Make a copy of myfile.txt to itself to demonstrate
// a true “failsIfExists” parameter.

if(!fileio.copy(“myfile.txt”, “myfile.txt”, true)) then

stdout.put(“Did not copy ‘myfile.txt’ over itself” nl);

else

stdout.put(“Whoa! The failsIfExists parameter didn’t work.” nl);

endif;

// Okay, make a copy of the file to a different file, to verify
// that this works properly:

if(fileio.copy(“myfile.txt”, “copyOfMyFile.txt”, false)) then

stdout.put(“Successfully copied the file” nl);
Page 514 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O
else

stdout.put(“Failed to copy the file (maybe it doesn’t exist?)” nl);

endif;

end CopyDemo;

Program 7.8 Demonstration of a fileio.copy Operation

To move a file from one location to another might seem like another trivial task – all you’ve got to do is
copy the file to the destination and then delete the original file. However, these scheme is quite inefficient in
most situations. Copying the file can be an expensive process if the file is large; Worse, the move operation
may fail if you’re moving the file to a new location on the same disk and there is insufficient space for a sec-
ond copy of the file. A much better solution is to simply move the file’s directory entry from one location to
another on the disk. Windows’ disk directory entries are quite small, so moving a file to a different location
on the same disk by simply moving its directory entry is very fast and efficient. Unfortunately, if you move
a file from one file system (disk) to another, you will have to first copy the file and then delete the original
file. Once again, you don’t have to bother with the complexities of this operation because Windows has a
built-in function that automatically moves files for you. The HLA Standard Library’s fileio.move procedure
provides a direct interface to this function. The calling sequence is

fileio.move(source, dest);

The two parameters are strings providing the source and destination filenames. This function returns true or
false in EAX to denote the success or failure of the operation.

Not only can the fileio.move procedure move a file around on the disk, it can also move subdirectories
around. The only catch is that you cannot move a subdirectory from one volume (file system/disk) to
another.

If both the destination and source filenames are simple filenames, not a pathnames, then the fileio.move
function moves the source file from the current directory back to the current directory. Although this seems
rather weird, this is a very common operation; this is how you rename a file. The HLA Standard Library
does not have a separate “fileio.rename” function. Instead, you use the fileio.move function to rename files
by moving them to the same directory but with a different filename. Program 7.9 demonstrates how to use
fileio.move in this capacity.

program FileMoveDemo;
#include(“stdlib.hhf”)

begin FileMoveDemo;

// Rename the “myfile.txt” file to the name “renamed.txt”.

if(!fileio.move(“myfile.txt”, “renamed.txt”)) then

stdout.put
(

“Could not rename ‘myfile.txt’ (maybe it doesn’t exist?)” nl
);

else

stdout.put(“Successfully renamed the file” nl);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 515

Chapter Seven Volume Three
endif;

end FileMoveDemo;

Program 7.9 Using fileio.move to Rename a File

7.7.2 Computing the File Size

Another useful function to have is one that computes the size of an existing file on the disk. The
fileio.size function provides this capability. The calling sequences for this function are

fileio.size(filenameString);
fileio.size(fileHandle);

The first form above expects you to pass the filename as a string parameter. The second form expects a han-
dle to a file you’ve opened with fileio.open or fileio.openNew. These two calls return the size of the file in
EAX. If an error occurs, these functions return -1 ($FFFF_FFFF) in EAX. Note that the files must be less
than four gigabytes in length when using this function (if you need to check the size of larger files, you will
have to call the appropriate Windows function rather than these functions; however, since files larger than
four gigabytes are rather rare, you probably won’t have to worry about this problem).

One interesting use for this function is to determine the number of records in a fixed-length-record ran-
dom access file. By getting the size of the file and dividing by the size of a record, you can determine the
number of records in the file.

Another use for this function is to allow you to determine the size of a (smaller) file, allocate sufficient
storage to hold the entire file in memory (by using malloc), and then read the entire file into memory using
the fileio.read function. This is generally the fastest way to read data from a file into memory.

Program 7.10 demonstrates the use of the two forms of the fileio.size function by displaying the size of
the “myfile.txt” file created by other sample programs in this chapter.

program FileSizeDemo;
#include(“stdlib.hhf”)

static
handle:dword;

begin FileSizeDemo;

// Display the size of the “myfile.txt” file:

fileio.size(“myfile.txt”);
if(eax <> -1) then

stdout.put(“Size of file: “, (type uns32 eax), nl);

else

stdout.put(“Error calculating file size” nl);

endif;

// Same thing, using the file handle as a parameter:
Page 516 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O
fileio.open(“myfile.txt”, win.GENERIC_READ);
mov(eax, handle);
fileio.size(handle);
if(eax <> -1) then

stdout.put(“Size of file(2): “, (type uns32 eax), nl);

else

stdout.put(“Error calculating file size” nl);

endif;
fileio.close(handle);

end FileSizeDemo;

Program 7.10 Sample Program That Demonstrates the fileio.size Function

7.7.3 Deleting Files

Another useful file utility function is the fileio.delete function. As its name suggests, this function
deletes a file that you specify as the function’s parameter. The calling sequence for this function is

fileio.delete(filenameToDelete);

The single parameter is a string containing the pathname of the file you wish to delete. This function returns
true/false in the EAX register to denote success/failure.

Program 7.11 provides an example of the use of the fileio.delete function.

program DeleteFileDemo;
#include(“stdlib.hhf”)

static
handle:dword;

begin DeleteFileDemo;

// Delete the “myfile.txt” file:

fileio.delete(“xyz”);
if(eax) then

stdout.put(“Deleted the file”, nl);

else

stdout.put(“Error deleting the file” nl);

endif;

end DeleteFileDemo;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 517

Chapter Seven Volume Three
Program 7.11 Example Usage of the fileio.delete Procedure

7.8 Directory Operations

In addition to manipulating files, you can also manipulate directories with some of the fileio functions.
You’ve already seen how to use the fileio.move function to move or rename a directory. The HLA Standard
Library also includes several functions that let you create and use subdirectories. These functions are
fileio.cd (change directory), fileio.gwd (get working directory), and fileio.mkdir (make directory). Their call-
ing sequences are

fileio.cd(pathnameString);
fileio.gwd(stringToHoldPathname);
fileio.mkdir(newDirectoryName);

The fileio.cd and fileio.mkdir functions return success or failure (true or false, respectively) in the EAX reg-
ister. For the fileio.gwd function, the string parameter is a destination string where the system will store the
pathname to the current directory. You must allocate sufficient storage for the string prior to passing the
string to this function (260 characters4 is a good default amount if you’re unsure how long the pathname
could be). If the actual pathname is too long to fit in the destination string you supply as a parameter, the
fileio.gwd function will raise the ex.StringOverflow exception.

The fileio.cd function sets the current working directory to the pathname you specify. After calling this
function, Windows will assume that all future “unadorned” file references (those without any “\” characters
in the pathname) will default to the directory you specify as the fileio.cd parameter. Proper use of this func-
tion can help make your program much more convenient to use by your program’s users since they won’t
have to enter full pathnames for every file they manipulate.

The fileio.gwd function lets you query the system to determine the current working directory. After a
call to fileio.cd, the string that fileio.gwd returns should be the same as fileio.cd’s parameter. Typically, you
would use this function to keep track of the default directory when your program first starts running. You
program will exhibit good manners by switching back to this default directory when your program termi-
nates.

The fileio.mkdir function lets your program create a new subdirectory. If your program creates data files
and stores them in a default directory somewhere, it’s good etiquette to let the user specify the subdirectory
where your program should put these files. If you do this, you should give your users the option to create a
new directory (in case they want the data placed in a brand-new directory). You can use fileio.mkdir for this
purpose.

7.9 Putting It All Together

This chapter began with a discussion of the basic file operations. That section was rather short because
you’ve already learned most of what you need to know about file I/O when learning the stdout and stdin
functions. So the introductory material concentrated on a file general file concepts (like the differences
between sequential and random access files and the differences between binary and text files). After teach-
ing you the few extra routines you need in order to open and close files, the remainder of this chapter simply
concentrated on providing a few examples (like ISAM) of file access and a discussion of the fileio routines
available in the HLA Standard Library.

4. This is the default MAX_PATH value in Windows.
Page 518 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O
While this chapter demonstrates the mechanics of file I/O, how you efficiently use files is well beyond
the scope of this chapter. In future volumes you will see how to search for data in files, sort data in files, and
even create databases. So keep on reading if you’re interested in more information about file operations.

The HLA Standard Library actually provides two file I/O modules. This chapter discusses the proce-
dure-oriented functions. The Standard Library also provides a set of object-oriented file I/O classes and
methods. Unfortunately, a discussion of those functions will have to wait until you’ve read the chapter on
classes and object-oriented programming in a later volume. Until then, the functions this chapter describes
are just fine (in fact, who’s to say they’re not better than the object-oriented file I/O functions?).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 519

Chapter Seven Volume Three
Page 520 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures
Introduction to Procedures Chapter Eight

8.1 Chapter Overview

In a procedural programming language the basic unit of code is the procedure. A procedure is a set of
instructions that compute some value or take some action (such as printing or reading a character value). The
definition of a procedure is very similar to the definition of an algorithm. A procedure is a set of rules to fol-
low which, if they conclude, produce some result. An algorithm is also such a sequence, but an algorithm is
guaranteed to terminate whereas a procedure offers no such guarantee.

This chapter discusses how HLA implements procedures. This is actually the first of three chapters on
this subject in this text. This chapter presents HLA procedures from a high level language perspective. A
later chapter, Intermediate Procedures, discusses procedures at the machine language level. A whole volume
in this sequence, Advanced Procedures, covers advanced programming topics of interest to the very serious
assembly language programmer. This chapter, however, provides the foundation for all that follows.

8.2 Procedures

Most procedural programming languages implement procedures using the call/return mechanism. That
is, some code calls a procedure, the procedure does its thing, and then the procedure returns to the caller. The
call and return instructions provide the 80x86’s procedure invocation mechanism. The calling code calls a
procedure with the CALL instruction, the procedure returns to the caller with the RET instruction. For
example, the following 80x86 instruction calls the HLA Standard Library stdout.newln routine1:

call stdout.newln;

The stdout.newln procedure prints a carriage return/line feed sequence to the video display and returns con-
trol to the instruction immediately following the “call stdout.newln;” instruction.

Alas, the HLA Standard Library does not supply all the routines you will need. Most of the time you’ll
have to write your own procedures. To do this, you will use HLA’s procedure declaration facilities. A basic
HLA procedure declaration takes the following form:

procedure ProcName;
<< Local declarations >>

begin ProcName;
<< procedure statements >>

end ProcName;

Procedure declarations appear in the declaration section of your program. That is, anywhere you can
put a STATIC, CONST, TYPE, or other declaration section, you may place a procedure declaration. In the
syntax example above, ProcName represents the name of the procedure you wish to define. This can be any
valid HLA identifier. Whatever identifier follows the PROCEDURE reserved word must also follow the
BEGIN and END reserved words in the procedure. As you’ve probably noticed, a procedure declaration
looks a whole lot like an HLA program. In fact, the only difference (so far) is the use of the PROCEDURE
reserved word rather than the PROGRAM reserved word.

Here is a concrete example of an HLA procedure declaration. This procedure stores zeros into the 256
double word objects that EBX points at upon entry into the procedure:

procedure zeroBytes;
begin zeroBytes;

mov(0, eax);
mov(256, ecx);

1. Normally you would call newln using the “newln();” statement, but the CALL instruction works as well.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 521

Chapter Eight Volume Three
repeat

mov(eax, [ebx]);
add(4, ebx);
dec(ecx);

until(ecx = 0);

end zeroBytes;

You can use the 80x86 CALL instruction to call this procedure. When, during program execution, the
code falls into the “end zeroBytes;” statement, the procedure returns to whomever called it and begins exe-
cuting the first instruction beyond the CALL instruction. The following program provides an example of a
call to the zeroBytes routine:

program zeroBytesDemo;
#include(“stdlib.hhf”);

procedure zeroBytes;
begin zeroBytes;

mov(0, eax);
mov(256, ecx);
repeat

mov(eax, [ebx]);// Zero out current dword.
add(4, ebx);// Point ebx at next dword.
dec(ecx);// Count off 256 dwords.

until(ecx = 0);// Repeat for 256 dwords.

end zeroBytes;

static
dwArray: dword[256];

begin zeroBytesDemo;

lea(ebx, dwArray);
call zeroBytes;

end zeroBytesDemo;

Program 8.1 Example of a Simple Procedure

As you may have noticed when calling HLA Standard Library procedures, you don’t always need to use
the CALL instruction to call HLA procedures. There is nothing special about the HLA Standard Library
procedures versus your own procedures. Although the formal 80x86 mechanism for calling procedures is to
use the CALL instruction, HLA provides a HLL extension that lets you call a procedure by simply specify-
ing that procedure’s name followed by an empty set of parentheses2. For example, either of the following
statements will call the HLA Standard Library stdout.newln procedure:

call stdout.newln;
stdout.newln();

2. This assumes that the procedure does not have any parameters.
Page 522 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures
Likewise, either of the following statements will call the zeroBytes procedure in Program 8.1:

call zeroBytes;
zeroBytes();

The choice of calling mechanism is strictly up to you. Most people, however, find the HLL syntax easier to
read.

8.3 Saving the State of the Machine

Take a look at the following program:

program nonWorkingProgram;
#include(“stdlib.hhf”);

procedure PrintSpaces;
begin PrintSpaces;

mov(40, ecx);
repeat

stdout.put(‘ ‘);// Print 1 of 40 spaces.
dec(ecx);// Count off 40 spaces.

until(ecx = 0);

end PrintSpaces;

begin nonWorkingProgram;

mov(20, ecx);
repeat

PrintSpaces();
stdout.put(‘*’, nl);
dec(ecx);

until(ecx = 0);

end nonWorkingProgram;

Program 8.2 Program with an Unintended Infinite Loop

This section of code attempts to print 20 lines of 40 spaces and an asterisk. Unfortunately, there is a sub-
tle bug that causes it to print 40 spaces per line and an asterisk in an infinite loop. The main program uses the
REPEAT..UNTIL loop to call PrintSpaces 20 times. PrintSpaces uses ECX to count off the 40 spaces it
prints. PrintSpaces returns with ECX containing zero. The main program then prints an asterisk, a newline,
decrements ECX, and then repeats because ECX isn’t zero (it will always contain $FFFF_FFFF at this
point).

The problem here is that the PrintSpaces subroutine doesn’t preserve the ECX register. Preserving a
register means you save it upon entry into the subroutine and restore it before leaving. Had the PrintSpaces
subroutine preserved the contents of the ECX register, the program above would have functioned properly.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 523

Chapter Eight Volume Three
Use the 80x86’s PUSH and POP instructions to preserve register values while you need to use them for
something else. Consider the following code for PrintSpaces:

 procedure PrintSpaces;
 begin PrintSpaces;

 push(eax);
 push(ecx);
 mov(40, ecx);
 repeat

 stdout.put(' '); // Print 1 of 40 spaces.
 dec(ecx); // Count off 40 spaces.

 until(ecx = 0);
 pop(ecx);
 pop(eax);

 end PrintSpaces;

Note that PrintSpaces saves and restores EAX and ECX (since this procedure modifies these registers).
Also, note that this code pops the registers off the stack in the reverse order that it pushed them. The opera-
tion of the stack imposes this ordering.

Either the caller (the code containing the CALL instruction) or the callee (the subroutine) can take
responsibility for preserving the registers. In the example above, the callee preserved the registers. The fol-
lowing example shows what this code might look like if the caller preserves the registers:

program callerPreservation;
#include(“stdlib.hhf”);

procedure PrintSpaces;
begin PrintSpaces;

mov(40, ecx);
repeat

stdout.put(‘ ‘);// Print 1 of 40 spaces.
dec(ecx);// Count off 40 spaces.

until(ecx = 0);

end PrintSpaces;

begin callerPreservation;

mov(20, ecx);
repeat

push(eax);
push(ecx);
PrintSpaces();
pop(ecx);
pop(eax);
stdout.put(‘*’, nl);
dec(ecx);

until(ecx = 0);
Page 524 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures
end callerPreservation;

Program 8.3 Demonstration of Caller Register Preservation

There are two advantages to callee preservation: space and maintainability. If the callee preserves all
affected registers, then there is only one copy of the PUSH and POP instructions, those the procedure con-
tains. If the caller saves the values in the registers, the program needs a set of PUSH and POP instructions
around every call. Not only does this make your programs longer, it also makes them harder to maintain.
Remembering which registers to push and pop on each procedure call is not something easily done.

On the other hand, a subroutine may unnecessarily preserve some registers if it preserves all the regis-
ters it modifies. In the examples above, the code needn’t save EAX. Although PrintSpaces changes AL, this
won’t affect the program’s operation. If the caller is preserving the registers, it doesn’t have to save registers
it doesn’t care about:

program callerPreservation2;
#include(“stdlib.hhf”);

procedure PrintSpaces;
begin PrintSpaces;

mov(40, ecx);
repeat

stdout.put(‘ ‘);// Print 1 of 40 spaces.
dec(ecx);// Count off 40 spaces.

until(ecx = 0);

end PrintSpaces;

begin callerPreservation2;

mov(10, ecx);
repeat

push(ecx);
PrintSpaces();
pop(ecx);
stdout.put(‘*’, nl);
dec(ecx);

until(ecx = 0);

mov(5, ebx);
while(ebx > 0) do

PrintSpaces();

stdout.put(ebx, nl);
dec(ebx);

endwhile;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 525

Chapter Eight Volume Three
mov(110, ecx);
for(mov(0, eax); eax < 7; inc(eax)) do

PrintSpaces();

stdout.put(eax, “ “, ecx, nl);
dec(ecx);

endfor;

end callerPreservation2;

Program 8.4 Demonstrating that Caller Preservation Need not Save All Registers

This example provides three different cases. The first loop (REPEAT..UNTIL) only preserves the ECX
register. Modifying the AL register won’t affect the operation of this loop. Immediately after the first loop,
this code calls PrintSpaces again in the WHILE loop. However, this code doesn’t save EAX or ECX because
it doesn’t care if PrintSpaces changes them. Since the final loop (FOR) uses EAX and ECX, it saves them
both.

One big problem with having the caller preserve registers is that your program may change. You may
modify the calling code or the procedure so that they use additional registers. Such changes, of course, may
change the set of registers that you must preserve. Worse still, if the modification is in the subroutine itself,
you will need to locate every call to the routine and verify that the subroutine does not change any registers
the calling code uses.

Preserving registers isn’t all there is to preserving the environment. You can also push and pop variables
and other values that a subroutine might change. Since the 80x86 allows you to push and pop memory loca-
tions, you can easily preserve these values as well.

8.4 Prematurely Returning from a Procedure

The HLA EXIT and EXITIF statements let you return from a procedure without having to fall into the
corresponding END statement in the procedure. These statements behave a whole lot like the BREAK and
BREAKIF statements for loops, except they transfer control to the bottom of the procedure rather than out of
the current loop. These statements are quite useful in many cases.

The syntax for these two statements is the following:

exit procedurename;
exitif(boolean_expression) procedurename;

The procedurename operand is the name of the procedure you wish to exit. If you specify the name of
your main program, the EXIT and EXITIF statements will terminate program execution (even if you’re cur-
rently inside a procedure rather than the body of the main program.

The EXIT statement immediately transfers control out of the specified procedure or program. The con-
ditional exit, EXITIF, statement first tests the boolean expression and exits if the result is true. It is semanti-
cally equivalent to the following:

if(boolean_expression) then

exit procedurename;

endif;

Although the EXIT and EXITIF statements are invaluable in many cases, you should try to avoid using
them without careful consideration. If a simple IF statement will let you skip the rest of the code in your
Page 526 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures
procedure, by all means use the IF statement. Procedures that contain lots of EXIT and EXITIF statements
will be harder to read, understand, and maintain that procedures without these statements (after all, the EXIT
and EXITIF statements are really nothing more than GOTO statements and you’ve probably heard already
about the problems with GOTOs). EXIT and EXITIF are convenient when you got to return from a proce-
dure inside a sequence of nested control structures and slapping an IF..ENDIF around the remaining code in
the procedure is not possible.

8.5 Local Variables

HLA procedures, like procedures and functions in most high level languages, let you declare local vari-
ables. Local variables are generally accessible only within the procedure, they are not accessible by the
code that calls the procedure. Local variable declarations are identical to variable declarations in your main
program except, of course, you declare the variables in the procedure’s declaration section rather than the
main program’s declaration section. Actually, you may declare anything in the procedure’s declaration sec-
tion that is legal in the main program’s declaration section, including constants, types, and even other proce-
dures3. In this section, however, we’ll concentrate on local variables.

Local variables have two important attributes that differentiate them from the variables in your main
program (i.e., global variables): lexical scope and lifetime. Lexical scope, or just scope, determines when an
identifier is usable in your program. Lifetime determines when a variable has memory associated with it and
is capable of storing data. Since these two concepts differentiate local and global variables, it is wise to
spend some time discussing these two attributes.

Perhaps the best place to start when discussing the scope and lifetimes of local variables is with the
scope of lifetimes of global variables -- those variables you declare in your main program. Until now, the
only rule you’ve had to follow concerning the declaration of your variables has been “you must declare all
variables that you use in your programs.” The position of the HLA declaration section with respect to the
program statements automatically enforces the other major rule which is “you must declare all variables
before their first use.” With the introduction of procedures, it is now possible to violate this rule since
(1) procedures may access global variables, and (2) procedure declarations may appear anywhere in a decla-
ration section including before some variable declarations. The following program demonstrates this source
code organization:

program demoGlobalScope;
#include(“stdlib.hhf”);

static
AccessibleInProc: char;

procedure aProc;
begin aProc;

mov(‘a’, AccessibleInProc);

end aProc;

static
InaccessibleInProc: char;

begin demoGlobalScope;

3. The chapter on Advanced Procedures discusses the concept of local procedures in greater detail.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 527

Chapter Eight Volume Three
mov(‘b’, InaccessibleInProc);
aProc();
stdout.put
(

“AccessibleInProc = ‘”, AccessibleInProc, “‘” nl
“InaccessibleInProc = ‘”, InaccessibleInProc, “‘” nl

);

end demoGlobalScope;

Program 8.5 Demonstration of Global Scope

This example demonstrates that a procedure can access global variables in the main program as long as
you declare those global variables before the procedure. In this example, the aProc procedure cannot access
the InaccessibleInProc variable because its declaration appears after the procedure declaration. However,
aProc may reference AccessibleInProc since it’s declaration appears before the aProc procedure in the
source code.

A procedure can access any STATIC, STORAGE, READONLY, or DATA object exactly the same way
the main program accesses such variables -- by simply referencing the name. Although a procedure may
access global VAR objects, a different syntax is necessary and you need to learn a little more before you will
understand the purpose of the additional syntax. Therefore, we’ll defer the discussion of accessing VAR
objects until the chapter on Advanced Procedures.

Accessing global objects is convenient and easy. Unfortunately, as you’ve probably learned when
studying high level language programming, accessing global objects makes your programs harder to read,
understand, and maintain. Like most introductory programming texts, this text will discourage the use of
global variables within procedures. Accessing global variables within a procedure is sometimes the best
solution to a given problem. However, such (legitimate) access typically occurs only in advanced programs
involving multiple threads of execution or in other complex systems. Since it is unlikely you would be writ-
ing such code at this point, it is equally unlikely that you will absolutely need to access global variables in
your procedures so you should carefully consider your options before accessing global variables within your
procedures4.

Declaring local variables in your procedures is very easy, you use the same declaration sections as the
main program: STATIC, READONLY, STORAGE, and VAR. The same rules and syntax for the declaration
sections and the access of variables you declare in these sections applies in your procedure. The following
example code demonstrates the declaration of a local variable.

program demoLocalVars;
#include(“stdlib.hhf”);

// Simple procedure that displays 0..9 using
// a local variable as a loop control variable.

procedure CntTo10;
var

i: int32;

begin CntTo10;

for(mov(0, i); i < 10; inc(i)) do

4. Note that this argument against accessing global variables does not apply to other global symbols. It is perfectly reasonable
to access global constants, types, procedures, and other objects in your programs.
Page 528 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures
stdout.put(“i=”, i, nl);

endfor;

end CntTo10;

begin demoLocalVars;

CntTo10();

end demoLocalVars;

Program 8.6 Example of a Local Variable in a Procedure

Local variables you declare in a procedure are accessible only within that procedure5. Therefore, the
variable i in procedure CntTo10 in Program 8.6 is not accessible in the main program.

HLA relaxes, somewhat, the rule that identifiers must be unique in a program for local variables. In an
HLA program, all identifiers must be unique within a given scope. Therefore, all global names must be
unique with respect to one another. Similarly, all local variables within a given procedure must have unique
names but only with respect to other local symbols in that procedure. In particular, a local name may be the
same as a global name. When this occurs, HLA creates two separate variables for the two objects. Within
the scope of the procedure any reference to the common name accesses the local variable; outside that pro-
cedure, any reference to the common name references the global identifier. Although the quality of the
resultant code is questionable, it is perfectly legal to have a global identifier named MyVar with the same
local name in two or more different procedures. The procedures each have their own local variant of the
object which is independent of MyVar in the main program. Program 8.7 provides an example of an HLA
program that demonstrates this feature.

program demoLocalVars2;
#include(“stdlib.hhf”);

static
i: uns32 := 10;
j: uns32 := 20;

// The following procedure declares “i” and “j”
// as local variables, so it does not have access
// to the global variables by the same name.

procedure First;
var

i: int32;
j:uns32;

begin First;

mov(10, j);
for(mov(0, i); i < 10; inc(i)) do

stdout.put(“i=”, i,” j=”, j, nl);
dec(j);

5. Strictly speaking, this is not true. The chapter on Advanced Procedures will present an exception.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 529

Chapter Eight Volume Three
endfor;

end First;

// This procedure declares only an “i” variable.
// It cannot access the value of the global “i”
// variable but it can access the value of the
// global “j” object since it does not provide
// a local variant of “j”.

procedure Second;
var

i:uns32;

begin Second;

mov(10, j);
for(mov(0, i); i < 10; inc(i)) do

stdout.put(“i=”, i,” j=”, j, nl);
dec(j);

endfor;

end Second;

begin demoLocalVars2;

First();
Second();

// Since the calls to First and Second have not
// modified variable “i”, the following statement
// should print “i=10”. However, since the Second
// procedure manipulated global variable “j”, this
// code will print “j=0” rather than “j=20”.

stdout.put(“i=”, i, “ j=”, j, nl);

end demoLocalVars2;

Program 8.7 Local Variables Need Not Have Globally Unique Names

There are good and bad points to be made about reusing global names within a procedure. On the one
hand, there is the potential for confusion. If you use a name like ProfitsThisYear as a global symbol and you
reuse that name within a procedure, someone reading the procedure might think that the procedure refers to
the global symbol rather than the local symbol. On the other hand, simple names like i, j, and k are nearly
meaningless (almost everyone expects the program to use them as loop control variables or for other local
uses), so reusing these names as local objects is probably a good idea. From a software engineering perspec-
tive, it is probably a good idea to keep all variables names that have a very specific meaning (like ProfitsThi-
sYear) unique throughout your program. General names, that have a nebulous meaning (like index, counter,
and names like i, j, or k) will probably be okay to reuse as global variables

There is one last point to make about the scope of identifiers in an HLA program: variables in separate
procedures (that is, two procedures where one procedure is not declared in the declaration section of the sec-
ond procedure) are separate, even if they have the same name. The First and Second procedures in Program
Page 530 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures
8.7, for example, share the same name (i) for a local variable. However, the i in First is a completely differ-
ent variable than the i in Second.

The second major attribute that differentiates (certain) local variables from global variables is lifetime.
The lifetime of a variable spans from the point the program first allocates storage for a variable to the point
the program deallocates the storage for that variable. Note that lifetime is a dynamic attribute (controlled at
run time) whereas scope is a static attribute (controlled at compile time). In particular, a variable can actu-
ally have several lifetimes if the program repeatedly allocates and then deallocates the storage for that vari-
able.

Global variables always have a single lifetime that spans from the moment the main program first begins
execution to the point the main program terminates. Likewise, all static objects have a single lifetime that
spans the execution of the program (remember, static objects are those you declare in the STATIC, REA-
DONLY, or STORAGE sections). This is true even for procedures. So there is no difference between the
lifetime of a local static object and the lifetime of a global static object. Variables you declare in the VAR
section, however, are a different matter. VAR objects use automatic storage allocation. Automatic storage
allocation means that the procedure automatically allocates storage for a local variable upon entry into a pro-
cedure. Similarly, the program deallocates storage for automatic objects when the procedure returns to its
caller. Therefore, the lifetime of an automatic object is from the point the procedure is first called to the
point it returns to its caller.

Perhaps the most important thing to note about automatic variables is that you cannot expect them to
maintain their values between calls to the procedure. Once the procedure returns to its caller, the storage for
the automatic variable is lost and, therefore, the value is lost as well. Therefore, you must always assume
that a local VAR object is uninitialized upon entry into a procedure; even if you know you’ve called the pro-
cedure before and the previous procedure invocation initialized that variable. Whatever value the last call
stored into the variable was lost when the procedure returned to its caller. If you need to maintain the value
of a variable between calls to a procedure, you should use one of the static variable declaration types.

Given that automatic variables cannot maintain their values across procedure calls, you might wonder
why you would want to use them at all. However, there are several benefits to automatic variables that static
variables do not have. The biggest disadvantage to static variables is that they consume memory even when
the (only) procedure that references them is not running. Automatic variables, on the other hand, only con-
sume storage while there associated procedure is executing. Upon return, the procedure returns any auto-
matic storage it allocated back to the system for reuse by other procedures. You’ll see some additional
advantages to automatic variables later in this chapter.

8.6 Other Local and Global Symbol Types

As mentioned in the previous section, HLA lets you declare constants, values, types, and anything else
legal in the main program’s declaration section within a procedure’s declaration section. The same rules for
scope apply to these identifiers. Therefore, you can reuse constant names, procedure names, type names,
etc. in local declarations (although this is almost always a bad idea).

Referencing global constants, values, and types, does not present the same software engineering prob-
lems that occur when you reference global variables. The problem with referencing global variable is that a
procedure can change the value of a global variable in a non-obvious way. This makes programs more diffi-
cult to read, understand, and maintain since you can’t often tell that a procedure is modifying memory by
looking only at the call to that procedure. Constants, values, types, and other non-variable objects, don’t suf-
fer from this problem because you cannot change them at run-time. Therefore, the pressure to avoid global
objects at nearly all costs doesn’t apply to non-variable objects.

Having said that it’s okay to access global constants, types, etc., it’s also worth pointing out that you
should declare these objects locally within a procedure if the only place your program references such
objects is within that procedure. Doing so will make your programs a little easier to read since the person
reading your code won’t have to search all over the place for the symbol’s definition.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 531

Chapter Eight Volume Three
8.7 Parameters

Although there is a large class of procedures that are totally self-contained, most procedures require
some input data and return some data to the caller. Parameters are values that you pass to and from a proce-
dure. In straight assembly language, passing parameters can be a real chore. Fortunately, HLA provides a
HLL-like syntax for procedure declarations and for procedure calls involving parameters. This chapter will
present HLA’s HLL parameter syntax. Later chapters on Intermediate Procedures and Advanced Procedures
will deal with the low-level mechanisms for passing parameters in pure assembly code.

The first thing to consider when discussing parameters is how we pass them to a procedure. If you are
familiar with Pascal or C/C++ you’ve probably seen two ways to pass parameters: pass by value and pass by
reference. HLA certainly supports these two parameter passing mechanisms. However, HLA also supports
pass by value/result, pass by result, pass by name, and pass by lazy evaluation. Of course, HLA is assembly
language so it is possible to pass parameters in HLA using any scheme you can dream up (at least, any
scheme that is possible at all on the CPU). However, HLA provides special HLL syntax for pass by value,
reference, value/result, result, name, and lazy evaluation.

Because pass by value/result, result, name, and lazy evaluation are somewhat advanced, this chapter will
not deal with those parameter passing mechanisms. If you’re interested in learning more about these param-
eter passing schemes, see the chapters on Intermediate and Advanced Procedures.

Another concern you will face when dealing with parameters is where you pass them. There are lots of
different places to pass parameters; the chapter on Intermediate Procedures will consider these places in
greater detail. In this chapter, since we’re using HLA’s HLL syntax for declaring and calling procedures,
we’ll wind up passing procedure parameters on the stack. You don’t really need to concern yourself with the
details since HLA abstracts them away for you; however, do keep in mind that procedure calls and proce-
dure parameters make use of the stack. Therefore, something you push on the stack immediately before a
procedure call is not going to be immediately on the top of the stack upon entry into the procedure.

8.7.1 Pass by Value

A parameter passed by value is just that – the caller passes a value to the procedure. Pass by value
parameters are input only parameters. That is, you can pass them to a procedure but the procedure cannot
return them. In HLA the idea of a pass by value parameter being an input only parameter makes a lot of
sense. Given the HLA procedure call:

CallProc(I);

If you pass I by value, then CallProc does not change the value of I, regardless of what happens to the
parameter inside CallProc.

Since you must pass a copy of the data to the procedure, you should only use this method for passing
small objects like bytes, words, and double words. Passing arrays and records by value is very inefficient
(since you must create and pass a copy of the object to the procedure).

HLA, like Pascal and C/C++, passes parameters by value unless you specify otherwise. Here’s what a
typical function looks like with a single pass by value parameter:

 procedure PrintNSpaces(N:uns32);
 begin PrintNSpaces;

 push(ecx);
 mov(N, ecx);
 repeat

 stdout.put(' '); // Print 1 of N spaces.
 dec(ecx); // Count off N spaces.

 until(ecx = 0);
 pop(ecx);
Page 532 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures
 end PrintNSpaces;

The parameter N in PrintNSpaces is known as a formal parameter. Anywhere the name N appears in the
body of the procedure the program references the value passed through N by the caller.

The calling sequence for PrintNSpaces can be any of the following:

PrintNSpaces(constant);
PrintNSpaces(reg32);

PrintNSpaces(uns32_variable);

Here are some concrete examples of calls to PrintNSpaces:

PrintNSpaces(40);
PrintNSpaces(EAX);
PrintNSpaces(SpacesToPrint);

The parameter in the calls to PrintNSpaces is known as an actual parameter. In the examples above, 40,
EAX, and SpacesToPrint are the actual parameters.

Note that pass by value parameters behave exactly like local variables you declare in the VAR section
with the single exception that the procedure’s caller initializes these local variables before it passes control
to the procedure.

HLA uses positional parameter notation just like most high level languages. Therefore, if you need to
pass more than one parameter, HLA will associate the actual parameters with the formal parameters by their
position in the parameter list. The following PrintNChars procedure demonstrates a simple procedure that
has two parameters.

 procedure PrintNChars(N:uns32; c:char);
 begin PrintNChars;

 push(ecx);
 mov(N, ecx);
 repeat

 stdout.put(c); // Print 1 of N characters.
 dec(ecx); // Count off N characters.

 until(ecx = 0);
 pop(ecx);

 end PrintNChars;

The following is an invocation of the PrintNChars procedure that will print 20 asterisk characters:

PrintNChars(20, ‘*’);

Note that HLA uses semicolons to separate the formal parameters in the procedure declaration and it
uses commas to separate the actual parameters in the procedure invocation (Pascal programmers should be
comfortable with this notation). Also note that each HLA formal parameter declaration takes the following
form:

parameter_identifier : type_identifier

In particular, note that the parameter type has to be an identifier. None of the following are legal parameter
declarations because the data type is not a single identifier:

PtrVar: pointer to uns32
ArrayVar: uns32[10]
recordVar: record i:int32; u:uns32; endrecord
DynArray: array.dArray(uns32, 2)
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 533

Chapter Eight Volume Three
However, don’t get the impression that you cannot pass pointer, array, record, or dynamic array variables as
parameters. The trick is to declare a data type for each of these types in the TYPE section. Then you can use
a single identifier as the type in the parameter declaration. The following code fragment demonstrates how
to do this with the four data types above:

type
uPtr: pointer to uns32;
uArray10: uns32[10];
recType: record i:int32; u:uns32; endrecord
dType: array.dArray(uns32, 2);

procedure FancyParms
(

PtrVar: uPtr;
ArrayVar:uArray10;
recordVar:recType;
DynArray: dtype

);
begin FancyParms;

.

.

.
end FancyParms;

By default, HLA assumes that you intend to pass a parameter by value. HLA also lets you explicitly
state that a parameter is a value parameter by prefacing the formal parameter declaration with the VAL key-
word. The following is a version of the PrintNSpaces procedure that explicitly states that N is a pass by
value parameter:

 procedure PrintNSpaces(val N:uns32);
 begin PrintNSpaces;

 push(ecx);
 mov(N, ecx);
 repeat

 stdout.put(' '); // Print 1 of N spaces.
 dec(ecx); // Count off N spaces.

 until(ecx = 0);
 pop(ecx);

 end PrintNSpaces;

Explicitly stating that a parameter is a pass by value parameter is a good idea if you have multiple
parameters in the same procedure declaration that use different passing mechanisms.

When you pass a parameter by value and call the procedure using the HLA high level language syntax,
HLA will automatically generate code that will make a copy of the actual parameter’s value and copy this
data into the local storage for that parameter (i.e., the formal parameter). For small objects pass by value is
probably the most efficient way to pass a parameter. For large objects, however, HLA must generate code
that copies each and every byte of the actual parameter into the formal parameter. For large arrays and
records this can be a very expensive operation6. Unless you have specific semantic concerns that require you
to pass an array or record by value, you should use pass by reference or some other parameter passing mech-
anism for arrays and records.

6. Note to C/C++ programmers: HLA does not automatically pass arrays by reference. If you specify an array type as a for-
mal parameter, HLA will emit code that makes a copy of each and every byte of that array when you call the associated pro-
cedure.
Page 534 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures
When passing parameters to a procedure, HLA checks the type of each actual parameter and compares
this type to the corresponding formal parameter. If the types do not agree, HLA then checks to see if either
the actual or formal parameter is a byte, word, or dword object and the other parameter is one, two, or four
bytes in length (respectively). If the actual parameter does not satisfy either of these conditions, HLA
reports a parameter type mismatch error. If, for some reason, you need to pass a parameter to a procedure
using a different type than the procedure calls for, you can always use the HLA type coercion operator to
override the type of the actual parameter.

8.7.2 Pass by Reference

To pass a parameter by reference, you must pass the address of a variable rather than its value. In other
words, you must pass a pointer to the data. The procedure must dereference this pointer to access the data.
Passing parameters by reference is useful when you must modify the actual parameter or when you pass
large data structures between procedures.

To declare a pass by reference parameter you must preface the formal parameter declaration with the
VAR keyword. The following code fragment demonstrates this:

procedure UsePassByReference(var PBRvar: int32);
begin UsePassByReference;

.

.

.
end UsePassByReference;

Calling a procedure with a pass by reference parameter uses the same syntax as pass by value except that the
parameter has to be a memory location; it cannot be a constant or a register. Furthermore, the type of the
memory location must exactly match the type of the formal parameter. The following are legal calls to the
procedure above (assuming i32 is an int32 variable):

UsePassByReference(i32);
UsePassByReference((type int32 [ebx]));

The following are all illegal UsePassbyReference invocations (assumption: charVar is of type char):

UsePassByReference(40); // Constants are illegal.
UsePassByReference(EAX); // Bare registers are illegal.
UsePassByReference(charVar); // Actual parameter type must match

// the formal parameter type.

Unlike the high level languages Pascal and C++, HLA does not completely hide the fact that you are
passing a pointer rather than a value. In a procedure invocation, HLA will automatically compute the
address of a variable and pass that address to the procedure. Within the procedure itself, however, you can-
not treat the variable like a value parameter (as you could in most HLLs). Instead, you treat the parameter as
a dword variable containing a pointer to the specified data. You must explicitly dereference this pointer
when accessing the parameter’s value. The following example provides a simple demonstration of this:

program PassByRefDemo;
#include(“stdlib.hhf”);

var
i: int32;
j: int32;

procedure pbr(var a:int32; var b:int32);
const

aa: text := “(type int32 [ebx])”;
bb: text := “(type int32 [ebx])”;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 535

Chapter Eight Volume Three
begin pbr;

push(eax);
push(ebx);// Need to use EBX to dereference a and b.

// a = -1;

mov(a, ebx);// Get ptr to the “a” variable.
mov(-1, aa);// Store -1 into the “a” parameter.

// b = -2;

mov(b, ebx);// Get ptr to the “b” variable.
mov(-2, bb);// Store -2 into the “b” parameter.

// Print the sum of a+b.
// Note that ebx currently contains a pointer to “b”.

mov(bb, eax);
mov(a, ebx);// Get ptr to “a” variable.
add(aa, eax);
stdout.put(“a+b=”, (type int32 eax), nl);

end pbr;

begin PassByRefDemo;

// Give i and j some initial values so
// we can see that pass by reference will
// overwrite these values.

mov(50, i);
mov(25, j);

// Call pbr passing i and j by reference

pbr(i, j);

// Display the results returned by pbr.

stdout.put
(

 “i= “, i, nl,
“j= “, j, nl

);

end PassByRefDemo;

Program 8.8 Accessing Pass by Reference Parameters

Passing parameters by reference can produce some peculiar results in some rare circumstances. Con-
sider the pbr procedure in Program 8.8. Were you to modify the call in the main program to be “pbr(i,i)”
rather than “pbr(i,j);” the program would produce the following non-intuitive output:

a+b=-4
i= -2;
j= 25;
Page 536 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures
The reason this code displays “a+b=-4” rather than the expected “a+b=-3” is because the “pbr(i,i);” call
passes the same actual parameter for a and b. As a result, the a and b reference parameters both contain a
pointer to the same memory location- that of the variable i. In this case, a and b are aliases of one another.
Therefore, when the code stores -2 at the location pointed at by b, it overwrites the -1 stored earlier at the
location pointed at by a. When the program fetches the value pointed at by a and b to compute their sum,
both a and b point at the same value, which is -2. Summing -2 + -2 produces the -4 result that the program
displays. This non-intuitive behavior is possible anytime you encounter aliases in a program. Passing the
same variable as two different parameters probably isn’t very common. But you could also create an alias if
a procedure references a global variable and you pass that same global variable by reference to the procedure
(this is a good example of yet one more reason why you should avoid referencing global variables in a pro-
cedure).

Pass by reference is usually less efficient than pass by value. You must dereference all pass by reference
parameters on each access; this is slower than simply using a value since it typically requires at least two
instructions. However, when passing a large data structure, pass by reference is faster because you do not
have to copy a large data structure before calling the procedure. Of course, you’d probably need to access
elements of that large data structure (e.g., an array) using a pointer, so very little efficiency is lost when you
pass large arrays by reference.

8.8 Functions and Function Results

Functions are procedures that return a result. In assembly language, there are very few syntactical differ-
ences between a procedure and a function which is why HLA doesn’t provide a specific declaration for a
function. Nevertheless, although there is very little syntactical difference between assembly procedures and
functions, there are considerable semantic differences. That is, although you can declare them the same way
in HLA, you use them differently.

Procedures are a sequence of machine instructions that fulfill some activity. The end result of the execu-
tion of a procedure is the accomplishment of that activity. Functions, on the other hand, execute a sequence
of machine instructions specifically to compute some value to return to the caller. Of course, a function can
perform some activity as well and procedures can undoubtedly compute some values, but the main differ-
ence is that the purpose of a function is to return some computed result; procedures don’t have this require-
ment.

A good example of a procedure is the stdout.puti32 procedure. This procedure requires a single int32
parameter. The purpose of this procedure is to print the decimal conversion of this integer value to the stan-
dard output device. Note that stdout.puti32 doesn’t return any kind of value that is usable by the calling pro-
gram.

A good example of a function is the cs.member function. This function expects two parameters: the first
is a character value and the second is a character set value. This function returns true (1) in EAX if the char-
acter is a member of the specified character set. It returns false if the character parameter is not a member of
the character set.

Logically, the fact that cs.member returns a usable value to the calling code (in EAX) while std-
out.puti32 does not is a good example of the main difference between a function and a procedure. So, in
general, a procedure becomes a function by virtue of the fact that you explicitly decide to return a value
somewhere upon procedure return. No special syntax is needed to declare and use a function. You still write
the code as a procedure.

8.8.1 Returning Function Results

The 80x86’s registers are the most popular place to return function results. The cs.member routine in the
HLA Standard Library is a good example of a function that returns a value in one of the CPU’s registers. It
returns true (1) or false (0) in the EAX register. By convention, programmers try to return eight, sixteen,
and thirty-two bit (non-real) results in the AL, AX, and EAX registers, respectively7. For example, this is
where most high level languages return these types of results.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 537

Chapter Eight Volume Three
Of course, there is nothing particularly sacred about the AL/AX/EAX register. You could return func-
tion results in any register if it is more convenient to do so. However, if you don’t have a good reason for not
using AL/AX/EAX, then you should follow the convention. Doing so will help others understand your code
better since they will generally assume that your functions return small results in the AL/AX/EAX register
set.

If you need to return a function result that is larger than 32 bits, you obviously must return it somewhere
besides in EAX (which can hold values 32 bits or less). For values slightly larger than 32 bits (e.g., 64 bits
or maybe even as many as 128 bits) you can split the result into pieces and return those parts in two or more
registers. For example, it is very common to see programs returning 64-bit values in the EDX:EAX register
pair. For example, the HLA Standard Library stdin.geti64 function returns a 64-bit integer in the EDX:EAX
register pair.

If you need to return a really large object as a function result, say an array of 1,000 elements, you obvi-
ously are not going to be able to return the function result in the registers. There are two common ways to
deal with really large function return results: either pass the return value as a reference parameter or allocate
storage on the heap (using malloc) for the object and return a pointer to it in a 32-bit register. Of course, if
you return a pointer to storage you’ve allocated on the heap, the calling program must free this storage when
it is done with it.

8.8.2 Instruction Composition in HLA

Several HLA Standard Library functions allow you to call them as operands of other instructions. For
example, consider the following code fragment:

if(cs.member(al, {‘a’..’z’})) then
.
.
.

endif;

As your high level language experience (and HLA experience) should suggest, this code calls the
cs.member function to check to see if the character in AL is a lower case alphabetic character. If the cs.mem-
ber function returns true then this code fragment executes the then section of the IF statement; however, if
cs.member returns false, this code fragment skips the IF..THEN body. There is nothing spectacular here
except for the fact that HLA doesn’t support function calls as boolean expressions in the IF statement (look
back at Chapter Two in Volume One to see the complete set of allowable expressions). How then, does this
program compile and run producing the intuitive results?

The very next section will describe how you can tell HLA that you want to use a function call in a bool-
ean expression. However, to understand how this works, you need to first learn about instruction composi-
tion in HLA.

Instruction composition lets you use one instruction as the operand of another. For example, consider
the MOV instruction. It has two operands, a source operand and a destination operand. Instruction compo-
sition lets you substitute a valid 80x86 machine instruction for either (or both) operands. The following is a
simple example:

mov(mov(0, eax), ebx);

Of course the immediate question is “what does this mean?” To understand what is going on, you must
first realize that most instructions “return” a value to the compiler while they are being compiled. For most
instructions, the value they “return” is their destination operand. Therefore, “mov(0, eax);” returns the
string “eax” to the compiler during compilation since EAX is the destination operand. Most of the time,
specifically when an instruction appears on a line by itself, the compiler ignores the string result the instruc-
tion returns. However, HLA uses this string result whenever you supply an instruction in place of some

7. In the next chapter you’ll see where most programmers return real results.
Page 538 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures
operand. Specifically, HLA uses that string in place of the instruction as the operand. Therefore, the MOV
instruction above is equivalent to the following two instruction sequence:

mov(0, eax); // HLA compiles interior instructions first.
mov(eax, ebx);

When processing composed instructions (that is, instruction sequences that have other instructions as
operands), HLA always works in an “ left-to-right then depth-first (inside-out)” manner. To make sense of
this, consider the following instructions:

add(sub(mov(i, eax), mov(j, ebx)), mov(k, ecx));

To interpret what is happening here, begin with the source operand. It consists of the following:

sub(mov(i, eax), mov(j, ebx))

The source operand for this instruction is “mov(i, eax)” and this instruction does not have any composition,
so HLA emits this instruction and returns its destination operand (EAX) for use as the source to the SUB
instruction. This effectively gives us the following:

sub(eax, mov(j, ebx))

Now HLA compiles the instruction that appears as the destination operand (“mov(j, ebx)”) and returns its
destination operand (EBX) to substitute for this MOV in the SUB instruction. This yields the following:

sub(eax, ebx)

This is a complete instruction, without composition, that HLA can compile. So it compiles this instruction
and returns its destination operand (EBX) as the string result to substitute for the SUB in the original ADD
instruction. So the original ADD instruction now becomes:

add(ebx, mov(i, ecx));

HLA next compiles the MOV instruction appearing in the destination operand. It returns its destination
operand as a string that HLA substitutes for the MOV, finally yielding the simple instruction:

add(ebx, ecx);

The compilation of the original ADD instruction, therefore, yields the following instruction sequence:

mov(i, eax);
mov(j, ebx);
sub(eax, ebx);
mov(k, ecx);
add(ebx, ecx);

Whew! It’s rather difficult to look at the original instruction and easily see that this sequence is the
result. As you can easily see in this example, overzealous use of instruction composition can produce nearly
unreadable programs. You should be very careful about using instruction composition in your programs.
With only a few exceptions, writing a composed instruction sequence makes your program harder to read.

Note that the excessive use of instruction composition may make errors in your program difficult to
decipher. Consider the following HLA statement:

add(mov(eax, i), mov(ebx, j));

This instruction composition yields the 80x86 instruction sequence:

mov(eax, i);
mov(ebx, j);
add(i, j);

Of course, the compiler will complain that you’re attempting to add one memory location to another. How-
ever, the instruction composition effectively masks this fact and makes it difficult to comprehend the cause
of the error message. Moral of the story: avoid using instruction composition unless it really makes your
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 539

Chapter Eight Volume Three
program easier to read. The few examples in this section demonstrate how not to use instruction composi-
tion.

There are two main areas where using instruction composition can help make your programs more read-
able. The first is in HLA’s high level language control structures. The other is in procedure parameters.
Although instruction composition is useful in these two cases (and probably a few others as well), this
doesn’t give you a license to use extremely convoluted instructions like the ADD instruction in this example.
Instead, most of the time you will use a single instruction or a function call in place of a single operand in a
high level language boolean expression or in a procedure/function parameter.

While we’re on the subject, exactly what does a procedure call return as the string that HLA substitutes
for the call in an instruction composition? For that matter, what do statements like IF..ENDIF return? How
about instructions that don’t have a destination operand? Well, function return results are the subject of the
very next section so you’ll read about that in a few moments. As for all the other statements and instructions,
you should check out the HLA reference manual. It lists each instruction and its “RETURNS” value. The
“RETURNS” value is the string that HLA will substitute for the instruction when it appears as the operand
to another instruction. Note that many HLA statements and instructions return the empty string as their
“RETURNS” value (by default, so do procedure calls). If an instruction returns the empty string as its com-
position value, then HLA will report an error if you attempt to use it as the operand of another instruction.
For example, the IF..ENDIF statement returns the empty string as its “RETURNS” value, so you may not
bury an IF..ENDIF inside another instruction.

8.8.3 The HLA RETURNS Option in Procedures

HLA procedure declarations allow a special option that specifies the string to use when a procedure
invocation appears as the operand of another instruction: the RETURNS option. The syntax for a procedure
declaration with the RETURNS option is as follows:

procedure ProcName (optional parameters); RETURNS(string_constant);
<< Local declarations >>

begin ProcName;
<< procedure statements >>

end ProcName;

If the RETURNS option is not present, HLA associates the empty string with the RETURNS value for
the procedure. This effectively makes it illegal to use that procedure invocation as the operand to another
instruction.

The RETURNS option requires a single string parameter surrounded by parentheses. This must be a
string constant8. HLA will substitute this string constant for the procedure call if it ever appears as the oper-
and of another instruction. Typically this string constant is a register name; however, any text that would be
legal as an instruction operand is okay here. For example, you could specify memory address or constants.
For purposes of clarity, you should always specify the location of a function’s return value in the RETURNS
parameter.

As an example, consider the following boolean function that returns true or false in the EAX register if
the single character parameter is an alphabetic character9:

8. Do note, however, that it doesn’t have to be a string literal constant. A CONST string identifier or even a constant string
expression is legal here.
9. Before you run off and actually use this function in your own programs, note that the HLA Standard Library provides the
char.isAlpha function that provides this test. See the HLA documentation for more details.
Page 540 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures
procedure IsAlphabeticChar(c:char); RETURNS(“EAX”);
begin IsAlphabeticChar;

// Note that cs.member returns true/false in EAX

cs.member(c, {‘a’..’z’, ‘A’..’Z’});

end IsAlphabeticChar;

Once you tack the RETURNS option on the end of this procedure declaration you can legally use a call
to IsAlphabeticChar as an operand to other HLA statements and instructions:

mov(IsAlphabeticChar(al), EBX);
.
.
.

if(IsAlphabeticChar(ch)) then
.
.
.

endif;

The last example above demonstrates that, via the RETURNS option, you can embed calls to your own func-
tions in the boolean expression field of various HLA statements. Note that the code above is equivalent to

IsAlphabeticChar(ch);
if(EAX) then

.

.

.
endif;

Not all HLA high level language statements expand composed instructions before the statement. For
example, consider the following WHILE statement:

while(IsAlphabeticChar(ch)) do
.
.
.

endwhile;

This code does not expand to the following:

IsAlphabeticChar(ch);
while(EAX) do

.

.

.
endwhile;

Instead, the call to IsAlphabeticChar expands inside the WHILE’s boolean expression so that the program
calls this function on each iteration of the loop.

You should exercise caution when entering the RETURNS parameter. HLA does not check the syntax
of the string parameter when it is compiling the procedure declaration (other than to verify that it is a string
constant). Instead, HLA checks the syntax when it replaces the function call with the RETURNS string. So
if you had specified “EAZ” instead of “EAX” as the RETURNS parameter for IsAlphabeticChar in the pre-
vious examples, HLA would not have reported an error until you actually used IsAlphabeticChar as an oper-
and. Then of course, HLA complains about the illegal operand and it’s not at all clear what the problem is
by looking at the IsAlphabeticChar invocation. So take special care not to introduce typographical errors in
the RETURNS string; figuring out such errors later can be very difficult.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 541

Chapter Eight Volume Three
8.9 Side Effects

A side effect is any computation or operation by a procedure that isn’t the primary purpose of that proce-
dure. For example, if you elect not to preserve all affected registers within a procedure, the modification of
those registers is a side effect of that procedure. Side effect programming, that is, the practice of using a pro-
cedure’s side effects, is very dangerous. All too often a programmer will rely on a side effect of a procedure.
Later modifications may change the side effect, invalidating all code relying on that side effect. This can
make your programs hard to debug and maintain. Therefore, you should avoid side effect programming.

Perhaps some examples of side effect programming will help enlighten you to the difficulties you may
encounter. The following procedure zeros out an array. For efficiency reasons, it makes the caller responsible
for preserving necessary registers. As a result, one side effect of this procedure is that the EBX and ECX reg-
isters are modified. In particular, the ECX register contains zero upon return.

procedure ClrArray;
begin ClrArray;

lea(ebx, array);
mov(32, ecx);
while(ecx > 0) do

mov(0, (type dword [ebx]));
add(4, ebx);
dec(ecx);

endwhile;

end ClrArray;

If your code expects ECX to contain zero after the execution of this subroutine, you would be relying on
a side effect of the ClrArray procedure. The main purpose behind this code is zeroing out an array, not set-
ting the ECX register to zero. Later, if you modify the ClrArray procedure to the following, your code that
depends upon ECX containing zero would no longer work properly:

procedure ClrArray;
begin ClrArray;

mov(0, ebx);
while(ebx < 32) do

mov(0, array[ebx*4]);
inc(ebx);

endwhile;

end ClrArray;

So how can you avoid the pitfalls of side effect programming in your procedures? By carefully structur-
ing your code and paying close attention to exactly how your calling code and the subservient procedures
interface with one another. These rules can help you avoid problems with side effect programming:

• Always properly document the input and output conditions of a procedure. Never rely on any
other entry or exit conditions other than these documented operations.

• Partition your procedures so that they compute a single value or execute a single operation.
Subroutines that do two or more tasks are, by definition, producing side effects unless every
invocation of that subroutine requires all the computations and operations.

• When updating the code in a procedure, make sure that it still obeys the entry and exit condi-
tions. If not, either modify the program so that it does or update the documentation for that pro-
cedure to reflect the new entry and exit conditions.
Page 542 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures
• Avoid passing information between routines in the CPU’s flag register. Passing an error status
in the carry flag is about as far as you should ever go. Too many instructions affect the flags and
it’s too easy to foul up a return sequence so that an important flag is modified on return.

• Always save and restore all registers a procedure modifies.
• Avoid passing parameters and function results in global variables.
• Avoid passing parameters by reference (with the intent of modifying them for use by the call-

ing code).

These rules, like all other rules, were meant to be broken. Good programming practices are often sacri-
ficed on the altar of efficiency. There is nothing wrong with breaking these rules as often as you feel neces-
sary. However, your code will be difficult to debug and maintain if you violate these rules often. But such is
the price of efficiency10. Until you gain enough experience to make a judicious choice about the use of side
effects in your programs, you should avoid them. More often than not, the use of a side effect will cause
more problems than it solves.

8.10 Recursion

Recursion occurs when a procedure calls itself. The following, for example, is a recursive procedure:

procedure Recursive;
begin Recursive;

Recursive();

end Recursive;

Of course, the CPU will never return from this procedure. Upon entry into Recursive, this procedure
will immediately call itself again and control will never pass to the end of the procedure. In this particular
case, run away recursion results in an infinite loop.

Like a looping structure, recursion requires a termination condition in order to stop infinite recursion.
Recursive could be rewritten with a termination condition as follows:

procedure Recursive;
begin Recursive;

dec(eax);
if(@nz) then

Recursive();

endif;

end Recursive;

This modification to the routine causes Recursive to call itself the number of times appearing in the
EAX register. On each call, Recursive decrements the EAX register by one and calls itself again. Eventually,
Recursive decrements EAX to zero and returns. Once this happens, each successive call returns back to
Recursive until control returns to the original call to Recursive.

So far, however, there hasn’t been a real need for recursion. After all, you could efficiently code this pro-
cedure as follows:

procedure Recursive;
begin Recursive;

10. This is not just a snide remark. Expert programmers who have to wring the last bit of performance out of a section of code
often resort to poor programming practices in order to achieve their goals. They are prepared, however, to deal with the prob-
lems that are often encountered in such situations and they are a lot more careful when dealing with such code.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 543

Chapter Eight Volume Three
repeat

dec(eax);

until(@z);

end Recursive;

Both examples would repeat the body of the procedure the number of times passed in the EAX regis-
ter11. As it turns out, there are only a few recursive algorithms that you cannot implement in an iterative
fashion. However, many recursively implemented algorithms are more efficient than their iterative counter-
parts and most of the time the recursive form of the algorithm is much easier to understand.

The quicksort algorithm is probably the most famous algorithm that almost always appears in recursive
form. An HLA implementation of this algorithm follows:

program QSDemo;
#include(“stdlib.hhf”);

type
ArrayType:uns32[10];

static
theArray:ArrayType := [1,10,2,9,3,8,4,7,5,6];

procedure quicksort(var a:ArrayType; Low:int32; High: int32);
const

i: text := “(type int32 edi)”;
j: text := “(type int32 esi)”;
Middle:text := “(type uns32 edx)”;
ary:text := “[ebx]”;

begin quicksort;

push(eax);
push(ebx);
push(ecx);
push(edx);
push(esi);
push(edi);

mov(a, ebx);// Load BASE address of “a” into EBX

mov(Low, edi);// i := Low;
mov(High, esi);// j := High;

// Compute a pivotal element by selecting the
// physical middle element of the array.

mov(i, eax);
add(j, eax);
shr(1, eax);
mov(ary[eax*4], Middle);// Put middle value in EDX

// Repeat until the EDI and ESI indicies cross one
// another (EDI works from the start towards the end

11. Although the latter version will do it considerably faster since it doesn’t have the overhead of the CALL/RET instructions.
Page 544 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures
// of the array, ESI works from the end towards the
// start of the array).

repeat

// Scan from the start of the array forward
// looking for the first element greater or equal
// to the middle element).

while(Middle > ary[i*4]) do

inc(i);

endwhile;

// Scan from the end of the array backwards looking
// for the first element that is less than or equal
// to the middle element.

while(Middle < ary[j*4]) do

dec(j);

endwhile;

// If we’ve stopped before the two pointers have
// passed over one another, then we’ve got two
// elements that are out of order with respect
// to the middle element. So swap these two elements.

if(i <= j) then

mov(ary[i*4], eax);
mov(ary[j*4], ecx);
mov(eax, ary[j*4]);
mov(ecx, ary[i*4]);
inc(i);
dec(j);

endif;

until(i > j);

// We have just placed all elements in the array in
// their correct positions with respect to the middle
// element of the array. So all elements at indicies
// greater than the middle element are also numerically
// greater than this element. Likewise, elements at
// indicies less than the middle (pivotal) element are
// now less than that element. Unfortunately, the
// two halves of the array on either side of the pivotal
// element are not yet sorted. Call quicksort recursively
// to sort these two halves if they have more than one
// element in them (if they have zero or one elements, then
// they are already sorted).

if(Low < j) then

quicksort(a, Low, j);

endif;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 545

Chapter Eight Volume Three
if(i < High) then

quicksort(a, i, High);

endif;

pop(edi);
pop(esi);
pop(edx);
pop(ecx);
pop(ebx);
pop(eax);

end quicksort;

begin QSDemo;

stdout.put(“Data before sorting: “ nl);
for(mov(0, ebx); ebx < 10; inc(ebx)) do

stdout.put(theArray[ebx*4]:5);

endfor;
stdout.newln();

quicksort(theArray, 0, 9);

stdout.put(“Data after sorting: “ nl);
for(mov(0, ebx); ebx < 10; inc(ebx)) do

stdout.put(theArray[ebx*4]:5);

endfor;
stdout.newln();

end QSDemo;

Program 8.9 Recursive Quicksort Program

Note that this quicksort procedure uses registers for all non-parameter local variables. Also note how
Quicksort uses TEXT constant definitions to provide more readable names for the registers. This technique
can often make an algorithm easier to read; however, one must take care when using this trick not to forget
that those registers are being used.

8.11 Forward Procedures

As a general rule HLA requires that you declare all symbols before their first use in a program12.
Therefore, you must define all procedures before their first call. There are two reasons this isn’t always prac-
tical: mutual recursion and source code organization. Fortunately, HLA lets you use a forward procedure
definition to declare a procedure prototype. Forward declarations let you define a procedure before you actu-
ally supply the code for that procedure.

12. There are a few minor exceptions to this rule, but it is certainly true for procedure calls.
Page 546 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures
A forward procedure declaration is a familiar procedure declaration that uses the reserved word FOR-
WARD in place of the procedure’s declaration section and body. The following is a forward declaration for
the quicksort procedure appearing in the last section:

procedure quicksort(var a:ArrayType; Low:int32; High: int32); forward;

A forward declaration in an HLA program is a promise to the compiler that the actual procedure decla-
ration will appear, exactly as stated in the forward declaration, at a later point in the source code. “Exactly
as stated” means exactly that. The forward declaration must have the same parameters, they must be passed
the same way, and they must all have the same type as the actual parameters in the procedure13.

Routines that are mutually recursive (that is, procedure A calls procedure B and procedure B calls pro-
cedure A) require at least one forward declaration since only one of procedure A or B can be declared before
the other. In practice, however, mutual recursion (direct or indirect) doesn’t occur very frequently, so the
need for forward declarations is not that great.

In the absence of mutual recursion, it is always possible to organize your source code so that each pro-
cedure declaration appears before its first invocation. What’s possible and what’s desired are two different
things, however. You might want to group a related set of procedures at the beginning of your source code
and a different set of procedures towards the end of your source code. This logical grouping, by function
rather than by invocation, may make your programs much easier to read and understand. However, this
organization may also yield code that attempts to call a procedure before its declaration. No sweat. Just use
a forward procedure definition to resolve the problem.

One major difference between the forward definition and the actual procedure declaration has to do with
the procedure options. Some options, like RETURNS may appear only in the forward declaration. Other
options may only appear in the actual procedure declaration (we haven’t covered any of the other procedure
options yet, so don’t worry about them just yet). If your procedure requires a RETURNS option, the
RETURNS option must appear before the FORWARD reserved word. E.g.,

procedure IsItReady(valueToTest: dword); returns(“EAX”); forward;

The RETURNS option must not also appear in the actual procedure declaration.

8.12 Putting It All Together

This chapter has filled in one of the critical elements missing from your assembly language knowledge:
how to create user-defined procedures in an HLA program. This chapter discussed HLA’s high level proce-
dure declaration and calling syntax. It also described how to pass parameters by value and by reference as
well as the use of local variables in HLA procedures. This chapter also provided information about instruc-
tion composition and the RETURNS option for procedures. Finally, this chapter explained recursion and the
use of forward procedure declarations (prototypes).

The one thing this chapter did not discuss was how procedures are written in “pure” assembly language.
This chapter presents just enough information to let you start using procedures in your HLA programs. The
“real stuff” will have to wait for a few chapters. Fear not, however; later chapters will teach you far more
than you probably care to know about procedures in assembly language programs.

13. Actually, “exactly” is too strong a word. You will see some exceptions in a moment.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 547

Chapter Eight Volume Three
Page 548 © 2001, By Randall Hyde Beta Draft - Do not distribute

Managing Large Programs
Managing Large Programs Chapter Nine

9.1 Chapter Overview

When writing larger HLA programs you do not typically write the whole program as a single source
file. This chapter discusses how to break up a large project into smaller pieces and assemble the pieces sep-
arately. This radically reduces development time on large projects.

9.2 Managing Large Programs

Most assembly language programs are not totally stand alone programs. In general, you will call various
standard library or other routines which are not defined in your main program. For example, you’ve probably
noticed by now that the 80x86 doesn’t provide any machine instructions like “read”, “write”, or “printf” for
doing I/O operations. Of course, you can write your own procedures to accomplish this. Unfortunately, writ-
ing such routines is a complex task, and beginning assembly language programmers are not ready for such
tasks. That’s where the HLA Standard Library comes in. This is a package of procedures you can call to per-
form simple I/O operations like stdout.put.

The HLA Standard Library contains tens of thousands of lines of source code. Imagine how difficult
programming would be if you had to merge these thousands of lines of code into your simple programs. For-
tunately, you don’t have to.

For small programs, working with a single source file is fine. For large programs this gets very cumber-
some (consider the example above of having to include the entire HLA Standard Library into each of your
programs). Furthermore, once you’ve debugged and tested a large section of your code, continuing to assem-
ble that same code when you make a small change to some other part of your program is a waste of time. The
HLA Standard Library, for example, takes several minutes to assemble, even on a fast machine. Imagine
having to wait five or ten minutes on a fast Pentium machine to assemble a program to which you’ve made a
one line change!

As with high level languages, the solution is separate compilation . First, you break up your large
source files into manageable chunks. Then you compile the separate files into object code modules. Finally,
you link the object modules together to form a complete program. If you need to make a small change to one
of the modules, you only need to reassemble that one module, you do not need to reassemble the entire pro-
gram.

The HLA Standard Library works in precisely this way. The Standard Library is already compiled and
ready to use. You simply call routines in the Standard Library and link your code with the Standard Library
using a linker program. This saves a tremendous amount of time when developing a program that uses the
Standard Library code. Of course, you can easily create your own object modules and link them together
with your code. You could even add new routines to the Standard Library so they will be available for use in
future programs you write.

“Programming in the large” is a term software engineers have coined to describe the processes, method-
ologies, and tools for handling the development of large software projects. While everyone has their own
idea of what “large” is, separate compilation, and some conventions for using separate compilation, are one
of the big techniques for “programming in the large.” The following sections describe the tools HLA pro-
vides for separate compilation and how to effectively employ these tools in your programs.

9.3 The #INCLUDE Directive

The #INCLUDE directive, when encountered in a source file, switches program input from the current
file to the file specified in the parameter list of the include directive. This allows you to construct text files
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 549

Chapter Nine Volume Three
containing common constants, types, source code, and other HLA items, and include such a file into the
assembly of several separate programs. The syntax for the include directive is

#include(“filename”)

Filename must be a valid Windows filename. HLA merges the specified file into the compilation at the point
of the #INCLUDE directive. Note that you can nest #INCLUDE statements inside files you include. That is,
a file being included into another file during assembly may itself include a third file. In fact, the “stdlib.hhf”
header file you see in most example programs in this text is really nothing more than the following1:

#include("hla.hhf")
#include("win32.hhf") // This statement depends on the OS.
#include("x86.hhf")
#include("misctypes.hhf")
#include("hll.hhf")

#include("excepts.hhf")
#include("memory.hhf")

#include("args.hhf")
#include("conv.hhf")
#include("strings.hhf")
#include("cset.hhf")
#include("patterns.hhf")
#include("tables.hhf")
#include("arrays.hhf")
#include("chars.hhf")

#include("math.hhf")
#include("rand.hhf")

#include("stdio.hhf")
#include("console.hhf")

Program 9.1 The stdlib.hhf Header File, as of 01/01/2000

By including “stdlib.hhf” in your source code, you automatically include all the HLA library modules. It’s
often more efficient (in terms of compile time and size of code generated) to provide only those #INCLUDE
statements for the modules you actually need in your program. However, including “stdlib.hhf” is extremely
convenient and takes up less space in this text, which is why most programs appearing in this text use
“stdlib.hhf”.

Note that the #INCLUDE directive does not need to end with a semicolon. If you put a semicolon after
the #INCLUDE, that semicolon becomes part of the source file and is the first character following the
included file during compilation. HLA generally allows spare semicolons in various parts of the program, so
you will often see a #INCLUDE statement ending with a semicolon that produces no harm. In general,
though, you should not get in the habit of putting semicolons after #INCLUDE statements because there is
the slight possibility this could create a syntax error in certain circumstances.

Using the #include directive by itself does not provide separate compilation. You could use the include
directive to break up a large source file into separate modules and join these modules together when you
assemble your file. The following example would include the PRINTF.HLA and PUTC.HLA files during the
assembly of your program:

1. Note that this file changes over time as new library modules appear in the HLA Standard Library, so this file is probably not
up to date.
Page 550 © 2001, By Randall Hyde Beta Draft - Do not distribute

Managing Large Programs
#include(“printf.hla”)
#include(“putc.hla”)

Now your program will benefit from the modularity gained by this approach. Alas, you will not save any
development time. The #INCLUDE directive inserts the source file at the point of the #INCLUDE during
compilation, exactly as though you had typed that code in yourself. HLA still has to compile the code and
that takes time. Were you to include all the files for the Standard Library routines in this manner, your
assemblies would take forever.

In general, you should not use the include directive to include source code as shown above2. Instead,
you should use the #INCLUDE directive to insert a common set of constants, types, external procedure dec-
larations, and other such items into a program. Typically an assembly language include file does not contain
any machine code (outside of a macro, see the chapter on Macros and the Compile-Time Language for
details). The purpose of using #INCLUDE files in this manner will become clearer after you see how the
external declarations work.

9.4 Ignoring Duplicate Include Operations

As you begin to develop sophisticated modules and libraries, you eventually discover a big program:
some header files will need to include other header files (e.g., the stdlib.hhf header file includes all the other
Standard Library Header files). Well, this isn’t actually a big problem, but a problem will occur when one
header file includes another, and that second header file includes another, and that third header file includes
another, and ..., and that last header file includes the first header file. Now this is a big problem.

There are two problems with a header file indirectly including itself. First, this creates an infinite loop
in the compiler. The compiler will happily go on about its business including all these files over and over
again until it runs out of memory or some other error occurs. Clearly this is not a good thing. The second
problem that occurs (usually before the problem above) is that the second time HLA includes a header file, it
starts complaining bitterly about duplicate symbol definitions. After all, the first time it reads the header file
it processes all the declarations in that file, the second time around it views all those symbols as duplicate
symbols.

HLA provides a special include directive that eliminates this problem: #INCLUDEONCE. You use this
directive exactly like you use the #include directive, e.g.,

#includeonce(“myHeaderFile.hhf”)

If myHeaderFile.hhf directly or indirectly includes itself (with a #INCLUDEONCE directive), then HLA
will ignore the new request to include the file. Note, however, that if you use the #INCLUDE directive,
rather than #INCLUDEONCE, HLA will include the file a second name. This was done in case you really
do need to include a header file twice, for some reason (though it is hard to imagine needing to do this).

The bottom line is this: you should always use the #INCLUDEONCE directive to include header files
you’ve created. In fact, you should get in the habit of always using #INCLUDEONCE, even for header files
created by others (the HLA Standard Library already has provisions to prevent recursive includes, so you
don’t have to worry about using #INCLUDEONCE with the Standard Library header files).

There is another technique you can use to prevent recursive includes – using conditional compilation.
For details on this technique, see the chapter on the HLA Compile-Time Language in a later volume.

9.5 UNITs and the EXTERNAL Directive

Technically, the #INCLUDE directive provides you with all the facilities you need to create modular
programs. You can create several modules, each containing some specific routine, and include those mod-
ules, as necessary, in your assembly language programs using #INCLUDE. However, HLA provides a better
way: external and public symbols.

2. There is nothing wrong with this, other than the fact that it does not take advantage of separate compilation.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 551

Chapter Nine Volume Three
One major problem with the include mechanism is that once you've debugged a routine, including it into
a compilation wastes a lot of time since HLA must recompile bug-free code every time you assemble the
main program. A much better solution would be to preassemble the debugged modules and link the object
code modules together rather than reassembling the entire program every time you change a single module.
This is what the EXTERNAL directive allows you to do.

To use the external facilities, you must create at least two source files. One file contains a set of vari-
ables and procedures used by the second. The second file uses those variables and procedures without
knowing how they're implemented. The only problem is that if you create two separate HLA programs, the
linker will get confused when you try to combine them. This is because both HLA programs have their own
main program. Which main program does Windows run when it loads the program into memory? To
resolve this problem, HLA uses a different type of compilation module, the UNIT, to compile programs
without a main program. The syntax for an HLA UNIT is actually simpler than that for an HLA program, it
takes the following form:

unit unitname;

<< declarations >>

end unitname;

With one exception, anything that can go in the declaration section of an HLA program can go into the dec-
laration section of an HLA unit. Notice that a unit does not have a BEGIN clause and there are no program
statements in the unit3; a unit only contains declarations.

In addition to the fact that a unit does not contain any executable statements, there is one other differ-
ence between units and programs. Units cannot have a VAR section. This is because the VAR section
declares variables that are local to the main program’s source code. Since there is no source code associated
with a unit, VAR sections are illegal4

To demonstrate, consider the following two modules:

unit Number1;

static
Var1:uns32;
Var2:uns32;

procedure Add1and2;
begin Add1and2;

push(eax);
mov(Var2, eax);
add(eax, Var1);

end Add1and2;

end Number1;

Program 9.2 Example of a Simple HLA Unit

3. Of course, units may contain procedures and those procedures may have statements, but the unit itself does not have any
executable instructions associated with it.
4. Of course, procedures in the unit may have their own VAR sections, but the procedure’s declaration section is separate from
the unit’s declaration section.
Page 552 © 2001, By Randall Hyde Beta Draft - Do not distribute

Managing Large Programs
program main;
#include(“stdlib.hhf”);

begin main;

mov(2, Var2);
mov(3, Var1);
Add1and2();
stdout.put(“Var1=”, Var1, nl);

end main;

Program 9.3 Main Program that References External Objects

The main program references Var1, Var2, and Add1and2, yet these symbols are external to this pro-
gram (they appear in unit Number1). If you attempt to compile the main program as it stands, HLA will
complain that these three symbols are undefined.

Therefore, you must declare them external with the EXTERNAL option. An external procedure decla-
ration looks just like a forward declaration except you use the reserved word EXTERNAL rather than FOR-
WARD. To declare external static variables, simply follow those variables’ declarations with the reserved
word EXTERNAL. The following is a modification to the previous main program that includes the external
declarations:

program main;
#include(“stdlib.hhf”);

procedure Add1and2; external;

static
Var1: uns32; external;
Var2: uns32; external;

begin main;

mov(2, Var2);
mov(3, Var1);
Add1and2();
stdout.put(“Var1=”, Var1, nl);

end main;

Program 9.4 Modified Main Program with EXTERNAL Declarations

If you attempt to compile this second version of main, using the typical HLA compilation command
“HLA main2.hla” you will be somewhat disappointed. This program will actually compile without error.
However, when HLA attempts to link this code it will report that the symbols Var1, Var2, and Add1and2 are
undefined. This happens because you haven’t compiled and linked in the associated unit with this main pro-
gram. Before you try that, and discover that it still doesn’t work, you should know that all symbols in a unit,
by default, are private to that unit. This means that those symbols are inaccessible in code outside that unit
unless you explicitly declare those symbols as public symbols. To declare symbols as public, you simply put
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 553

Chapter Nine Volume Three
external declarations for those symbols in the unit before the actual symbol declarations. If an external dec-
laration appears in the same source file as the actual declaration of a symbol, HLA assumes that the name is
needed externally and makes that symbol a public (rather than private) symbol. The following is a correc-
tion to the Number1 unit that properly declares the external objects:

unit Number1;

static
Var1:uns32; external;
Var2:uns32; external;

procedure Add1and2; external;

static
Var1:uns32;
Var2:uns32;

procedure Add1and2;
begin Add1and2;

push(eax);
mov(Var2, eax);
add(eax, Var1);

end Add1and2;

end Number1;

Program 9.5 Correct Number1 Unit with External Declarations

It may seem redundant declaring these symbols twice as occurs in Program 9.5, but you’ll soon seen that you
don’t normally write the code this way.

If you attempt to compile the main program or the Number1 unit using the typical HLA statement, i.e.,

HLA main2.hla
HLA unit2.hla

You’ll quickly discover that the linker still returns errors. It returns an error on the compilation of main2.hla
because you still haven’t told HLA to link in the object code associated with unit2.hla. Likewise, the linker
complains if you attempt to compile unit2.hla by itself because it can’t find a main program. The simple
solution is to compile both of these modules together with the following single command:

HLA main2.hla unit2.hla

This command will properly compile both modules and link together their object code.

Unfortunately, the command above defeats one of the major benefits of separate compilation. When
you issue this command it will compile both main2 and unit2 prior to linking them together. Remember, a
major reason for separate compilation is to reduce compilation time on large projects. While the above
command is convenient, it doesn’t achieve this goal.

To separately compile the two modules you must run HLA separately on them. Of course, we saw ear-
lier that attempting to compile these modules separately produced linker errors. To get around this problem,
you need to compile the modules without linking them. The “-c” (compile-only) HLA command line option
achieves this. To compile the two source files without running the linker, you would use the following com-
mands:
Page 554 © 2001, By Randall Hyde Beta Draft - Do not distribute

Managing Large Programs
HLA -c main2.hla
HLA -c unit2.hla

This produces two object code files, main2.obj and unit2.obj, that you can link together to produce a
single executable. You could run the Microsoft linker program directly, but an easier way is to use the HLA
compiler to link the object modules together for you:

HLA main2.obj unit2.obj

This command produces an executable file named main2.exe5. You could also type the following command
to compile the main program and link it with a previously compiled unit2 object module:

HLA main2.hla unit2.obj

In general, HLA looks at the suffixes of the filenames following the HLA commands. If the filename doesn’t
have a suffix, HLA assumes it to be “.HLA”. If the filename has a suffix, then HLA will do the following
with the file:

• If the suffix is “.HLA”, HLA will compile the file with the HLA compiler.
• If the suffix is “.ASM”, HLA will assemble the file with MASM.
• If the suffix is “.OBJ” or “.LIB” then HLA will link that module with the rest of the compila-

tion.

9.5.1 Behavior of the EXTERNAL Directive

Whenever you declare a symbol EXTERNAL using the external directive, keep in mind several limita-
tions of EXTERNAL objects:

• Only one EXTERNAL declaration of an object may appear in a given source file. That is, you
cannot define the same symbol twice as an EXTERNAL object.

• Only PROCEDURE, STATIC, READONLY, and STORAGE variable objects can be external.
VAR and parameter objects cannot be external.

• External objects must be at the global declaration level. You cannot declarare EXTERNAL
objects within a procedure or other nested structure.

• EXTERNAL objects publish their name globally. Therefore, you must carefully choose the
names of your EXTERNAL objects so they do not conflict with other symbols.

This last point is especially important to keep in mind. As this text is being written, the HLA compiler
translates your HLA source code into assembly code. HLA assembles the output by using MASM (the
Microsoft Macro Assembler). Finally, HLA links your modules using the Microsoft Linker. At each step in
this process, your choice of external names could create problems for you.

Consider the following HLA external/public declaration:

static
extObj: uns32; external;
extObj: uns32;
localObject: uns32;

When you compile a program containing these declarations, HLA automatically generates a “munged”
name for the localObject variable that probably isn’t ever going to have any conflicts with system-global
external symbols6. Whenever you declare an external symbol, however, HLA uses the object’s name as the
default external name. This can create some problems if you inadvertently use some global name as your
variable name. Worse still, MASM will not be able to properly assemble the HLA output if you happen to
choose an identifier that is legal in HLA but is a MASM reserved word. For example, if you attempt to com-

5. If you want to explicitly specify the name of the output file, HLA provides a command-line option to achieve this. You can
get a menu of all legal command line options by entering the command “HLA -?”.
6. Typically, HLA creates a name like ?001A_localObject out of localObject. This is a legal MASM identifier
but it is not likely it will conflict with any other global symbols when HLA compiles the program with MASM.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 555

Chapter Nine Volume Three
pile the following code fragment as part of an HLA program, it will compile properly but MASM will not be
able to assemble the code:

static
c: char; external;
c: char;

The reason MASM will have trouble with this is because HLA will write the identifier “c” to the assembly
language output file and it turns out that “c” is a MASM reserved word (MASM uses it to denote C-language
linkage).

To get around the problem of conflicting external names, HLA supports an additional syntax for the
EXTERNAL option that lets you explicitly specify the external name. The following example demonstrates
this extended syntax:

static
c: char; external(“var_c”);
c: char;

If you follow the EXTERNAL keyword with a string constant enclosed by parentheses, HLA will con-
tinue to use the declared name (c in this example) as the identifier within your HLA source code. Externally
(i.e., in the MASM assembly code) HLA will substitute the name var_c whenever you reference c. This fea-
tures helps you avoid problems with the misuse of MASM reserved words, or other global symbols, in your
HLA programs.

You should also note that this feature of the EXTERNAL option lets you create aliases. For example,
you may want to refer to an object by the name StudentCount in one module while refer to the object as Per-
sonCount in another module (you might do this because you have a general library module that deals with
counting people and you want to use the object in a program that deals only with students). Using a declara-
tion like the following lets you do this:

static
StudentCount: uns32; external(“PersonCount”);

Of course, you’ve already seen some of the problems you might encounter when you start creating aliases.
So you should use this capability sparingly in your programs. Perhaps a more reasonable use of this feature
is to simplify certain OS APIs. For example, Win32 uses some really long names for certain procedure calls.
You can use the EXTERNAL directive to provide a more meaningful name than the standard one supplied
by Windows.

9.5.2 Header Files in HLA

HLA’s technique of using the same EXTERNAL declaration to define public as well as external sym-
bols may seem somewhat counter-intuitive. Why not use a PUBLIC reserved word for public symbols and
the EXTERNAL keyword for external definitions? Well, as counter-intuitive as HLA’s external declarations
may seem, they are founded on decades of solid experience with the C/C++ programming language that uses
a similar approach to public and external symbols7. Combined with a header file, HLA’s external declara-
tions make large program maintenance a breeze.

An important benefit of the EXTERNAL directive (versus separate PUBLIC and EXTERNAL direc-
tives) is that it lets you minimize duplication of effort in your source files. Suppose, for example, you want to
create a module with a bunch of support routines and variables for use in several different programs (e.g., the
HLA Standard Library). In addition to sharing some routines and some variables, suppose you want to share
constants, types, and other items as well.

7. Actually, C/C++ is a little different. All global symbols in a module are assumed to be public unless explicitly declared pri-
vate. HLA’s approach (forcing the declaration of public items via EXTERNAL) is a little safer.
Page 556 © 2001, By Randall Hyde Beta Draft - Do not distribute

Managing Large Programs
The #INCLUDE file mechanism provides a perfect way to handle this. You simply create a #INCLUDE
file containing the constants, macros, and external definitions and include this file in the module that imple-
ments your routines and in the modules that use those routines (see Figure 9.1).

Figure 9.1 Using Header Files in HLA Programs

A typical header file contains only CONST, VAL, TYPE, STATIC, READONLY, STORAGE, and pro-
cedure objects (plus a few others we haven’t look at yet, like macros). Objects in the STATIC, READONLY,
and STORAGE sections, as well as all procedure declarations, are always EXTERNAL objects. In particu-
lar, you generally should not put any VAR objects in a header file, nor should you put any non-external vari-
ables or procedure bodies in a header file. If you do, HLA will make duplicate copies of these objects in the
different source files that include the header file. Not only will this make your programs larger, but it will
cause them to fail under certain circumstances. For example, you generally put a variable in a header file so
you can share the value of that variable amongst several different modules. However, if you fail to declare
that symbol as external in the header file and just put a standard variable declaration there, each module that
includes the source file will get its own separate variable - the modules will not share a common variable.

If you create a standard header file, containing CONST, VAL, and TYPE declarations, and external
objects, you should always be sure to include that file in the declaration section of all modules that need the
definitions in the header file. Generally, HLA programs include all their header files in the first few state-
ments after the PROGRAM or UNIT header.

This text adopts the HLA Standard Library convention of using an “.hhf” suffix for HLA header files
(“HHF” stands for HLA Header File).

9.6 Make Files

Although using separate compilation reduces assembly time and promotes code reuse and modularity, it
is not without its own drawbacks. Suppose you have a program that consists of two modules: pgma.hla and
pgmb.hla. Also suppose that you’ve already compiled both modules so that the files pgma.obj and pgmb.obj
exist. Finally, you make changes to pgma.hla and pgmb.hla and compile the pgma.hla file but forget to com-
pile the pgmb.hla file. Therefore, the pgmb.obj file will be out of date since this object file does not reflect the
changes made to the pgmb.hla file. If you link the program’s modules together, the resulting .exe file will
only contain the changes to the pgma.hla file, it will not have the updated object code associated with
pgmb.hla. As projects get larger they tend to have more modules associated with them, and as more pro-
grammers begin working on the project, it gets very difficult to keep track of which object modules are up to
date.

This complexity would normally cause someone to recompile all modules in a project, even if many of
the .obj files are up to date, simply because it might seem too difficult to keep track of which modules are up
to date and which are not. Doing so, of course, would eliminate many of the benefits that separate compila-
tion offers. Fortunately, there is a tool that can help you manage large projects: nmake. The nmake program,
with a little help from you, can figure out which files need to be reassemble and which files have up to date

Implementation Module Using Module

#INCLUDE ("Header.hhf")#INCLUDE ("Header.hhf")

Header.hhf
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 557

Chapter Nine Volume Three
.obj files. With a properly defined make file, you can easily assemble only those modules that absolutely
must be assembled to generate a consistent program.

A make file is a text file that lists compile-time dependencies between files. An .exe file, for example, is
dependent on the source code whose assembly produce the executable. If you make any changes to the
source code you will (probably) need to reassemble or recompile the source code to produce a new .exe file8.

Typical dependencies include the following:

• An executable file (.exe) generally depends only on the set of object files (.obj) that the linker
combines to form the executable.

• A given object code file (.obj) depends on the assembly language source files that were assem-
bled to produce that object file. This includes the assembly language source files (.hla) and any
files included during that assembly (generally .hhf files).

• The source files and include files generally don’t depend on anything.

A make file generally consists of a dependency statement followed by a set of commands to handle that
dependency. A dependency statement takes the following form:

dependent-file : list of files

Example:

pgm.exe: pgma.obj pgmb.obj

This statement says that “pgm.exe” is dependent upon pgma.obj and pgmb.obj. Any changes that occur to
pgma.obj or pgmb.obj will require the generation of a new pgm.exe file.

The nmake program uses a time/date stamp to determine if a dependent file is out of date with respect to
the files it depends upon. Any time you make a change to a file, Windows will update a modification time
and date associated with the file. The nmake program compares the modification date/time stamp of the
dependent file against the modification date/time stamp of the files it depends upon. If the dependent file’s
modification date/time is earlier than one or more of the files it depends upon, or one of the files it depends
upon is not present, then nmake assumes that some operation must be necessary to update the dependent file.

When an update is necessary, nmake executes the set of commands following the dependency statement.
Presumably, these commands would do whatever is necessary to produce the updated file.

The dependency statement must begin in column one. Any commands that must execute to resolve the
dependency must start on the line immediately following the dependency statement and each command must
be indented one tabstop. The pgm.exe statement above would probably look something like the following:

pgm.exe: pgma.obj pgmb.obj
hla -opgm.exe pgma.obj pgmb.obj

(The “-opgm.exe” option tells HLA to name the executable file “pgm.exe.”)

If you need to execute more than one command to resolve the dependencies, you can place several com-
mands after the dependency statement in the appropriate order. Note that you must indent all commands one
tab stop. The nmake program ignores any blank lines in a make file. Therefore, you can add blank lines, as
appropriate, to make the file easier to read and understand.

There can be more than a single dependency statement in a make file. In the example above, for exam-
ple, pgm.exe depends upon the pgma.obj and pgmb.obj files. Obviously, the .obj files depend upon the
source files that generated them. Therefore, before attempting to resolve the dependencies for pgm.exe,
nmake will first check out the rest of the make file to see if pgma.obj or pgmb.obj depends on anything. If
they do, nmake will resolve those dependencies first. Consider the following make file:

pgm.exe: pgma.obj pgmb.obj
hla -opgm.exe pgma.obj pgmb.obj

pgma.obj: pgma.hla
hla -c pgma.hla

8. Obviously, if you only change comments or other statements in the source file that do not affect the executable file, a
recompile or reassembly will not be necessary. To be safe, though, we will assume any change to the source file will require a
reassembly.
Page 558 © 2001, By Randall Hyde Beta Draft - Do not distribute

Managing Large Programs
pgmb.obj: pgmb.hla
hla -c pgmb.hla

The nmake program will process the first dependency line it finds in the file. However, the files pgm.exe
depends upon themselves have dependency lines. Therefore, nmake will first ensure that pgma.obj and
pgmb.obj are up to date before attempting to execute HLA to link these files together. Therefore, if the only
change you’ve made has been to pgmb.hla, nmake takes the following steps (assuming pgma.obj exists and
is up to date).

1. The nmake program processes the first dependency statement. It notices that dependency
lines for pgma.obj and pgmb.obj (the files on which pgm.exe depends) exist. So it pro-
cesses those statements first.

2. the nmake program processes the pgma.obj dependency line. It notices that the pgma.obj
file is newer than the pgma.hla file, so it does not execute the command following this
dependency statement.

3. The nmake program processes the pgmb.obj dependency line. It notes that pgmb.obj is
older than pgmb.hla (since we just changed the pgmb.hla source file). Therefore, nmake
executes the DOS command following on the next line. This generates a new pgmb.obj file
that is now up to date.

4. Having processed the pgma.obj and pgmb.obj dependencies, nmake now returns its atten-
tion to the first dependency line. Since nmake just created a new pgmb.obj file, its
date/time stamp will be newer than pgm.exe’s. Therefore, nmake will execute the HLA
command that links pgma.obj and pgmb.obj together to form the new pgm.exe file.

Note that a properly written make file will instruct the nmake program to assemble only those modules
absolutely necessary to produce a consistent executable file. In the example above, nmake did not bother to
assemble pgma.hla since its object file was already up to date.

There is one final thing to emphasize with respect to dependencies. Often, object files are dependent not
only on the source file that produces the object file, but any files that the source file includes as well. In the
previous example, there (apparently) were no such include files. Often, this is not the case. A more typical
make file might look like the following:

pgm.exe: pgma.obj pgmb.obj
hla -opgm.exe pgma.obj pgmb.obj

pgma.obj: pgma.hla pgm.hhf
hla -c pgma.hla

pgmb.obj: pgmb.hla pgm.hhf
hla -c pgmb.hla

Note that any changes to the pgm.hhf file will force nmake.exe to recompile both pgma.hla and pgmb.hla
since the pgma.obj and pgmb.obj files both depend upon the pgm.hhf include file. Leaving include files out
of a dependency list is a common mistake programmers make that can produce inconsistent .exe files.

Note that you would not normally need to specify the HLA Standard Library include files nor the Stan-
dard Library .lib files in the dependency list. True, your resulting .exe file does depend on this code, but the
Standard Library rarely changes, so you can safely leave it out of your dependency list. Should you make a
modification to the Standard Library, simply delete any old .exe and .obj files and force a reassembly of the
entire system.

The nmake program, by default, assumes that it will be processing a make file named “makefile”. When
you run nmake.exe, it looks for “makefile” in the current directory. If it doesn’t find this file, it complains
and terminates9. Therefore, it is a good idea to collect the files for each project you work on into their own
subdirectory and give each project its own makefile. Then to create an executable, you need only change into
the appropriate subdirectory and run the nmake program.

9. There is a command line option that lets you specify the name of the makefile. See the nmake documentation in the MASM
manuals for more details.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 559

Chapter Nine Volume Three
Although this section discusses the nmake program in sufficient detail to handle most projects you will
be working on, keep in mind that the nmake program provides considerable functionality that this chapter
does not discuss. To learn more about the nmake.exe program, consult the the appropriate documentation.
Note that several versions of MAKE exist. Microsoft produces nmake.exe, Borland has their own
MAKE.EXE program and various versions of MAKE have been ported to Windows from UNIX systems
(e.g., GMAKE). While these systems are not equivalent, they all do a pretty good job of handling the simple
make syntax that this chapter describes.

9.7 Code Reuse

One of the principle goals of Software Engineering is to reduce program development time. Although
the techniques we’ve studied in this chapter will certainly reduce development effort, there are bigger prizes
to be had here. Consider for a moment a simple program that reads an integer from the user and then dis-
plays the value of that integer on the standard output device. You can easily write a trivial version of this
program with about eight lines of HLA code. That’s not too difficult. However, suppose you did not have
the HLA Standard Library at your disposal. Now, instead of an eight line program, you’d be faced with writ-
ing a program that hundreds if not thousands of lines long. Obviously, this program will take a lot longer to
write than the original eight-line version. The difference between these two applications is the fact that in
the first version of this program you got to reuse some code that was already written; in the second version
of the program you had to write everything from scratch. This concept of code reuse is very important when
writing large programs – you can get large programs working much more quickly if you reuse code from
previous projects.

The idea behind code reuse is that many code sequences you write will be usable in future programs. As
time passes and you write more code, progress on your projects will be faster since you can reuse code
you’ve written (or others have written) on previous projects. The HLA Standard Library functions are the
classic example, somebody had to write those functions so you could use them. And use them you do. As of
this writing, the Standard Library represented about 50,000 lines of HLA source code. Imagine having to
write a fair portion of that everytime you wanted to write an HLA program!

Although the HLA Standard Library contains lots of very useful routines and functions, this code base
cannot possible predict the type of code you will need in every future project. The HLA Standard Library
provides some of the more common routines you’ll need when writing programs, but you’re certainly going
to have need for routines that the HLA Standard Library cannot satisfy. Unless you can find a source for the
code you need from some third party, you’re probably going to have to write the new routines yourself.

The trick when writing a program is to try and figure out which routines are general purpose and could
be used in future programs; once you make this determination, you should write such routines separately
from the rest of your application (i.e., put them in a separate source file for compilation). By keeping them
separate, you can use them in future projects. If “try and figure out which routines are general purpose...”
sounds a bit difficult, well, you’re right it is. Even after 30 years of Software Engineering research, no one
has really figured out how to effectively reuse code. There are some obvious routines we can reuse (that’s
why there are “standard libraries”) but it is quite difficult for the practicing engineer to successfully predict
which routines s/he will need in the future and write these as separate modules.

Attempting to teach you how to decide which routines are worthy of saving for future programs and
which are specific to your current application is well beyond the scope of this text. There are several Soft-
ware Engineering texts out there that try to explain how to do this, but keep in mind that even after the publi-
cation of these texts, practicing engineers still have problems picking the right routines to save. Hopefully,
as you gain experience, you will begin to recognize those routines that are worth keeping for future pro-
grams and those that aren’t worth bothering with. This text will take the easy way out and assume that you
know which routines you want to keep and which you don’t.
Page 560 © 2001, By Randall Hyde Beta Draft - Do not distribute

Managing Large Programs
9.8 Creating and Managing Libraries

Imagine that you’ve created a few hundred routines over the past couple of years and you would like to
have the object code ready to link with any new projects you begin. You could move all this code into a sin-
gle source file, stick in a bunch of EXTERNAL declarations, and then link the resulting object file with any
new programs you write that can use the routines in your “library”. Unfortunately, there are a couple of
problems with this approach. Let’s take a look at some of these problems.

Problem number one is that your library will grow to a fairly good size with time; if you put the source
code to every routine in a single source file, small additions or changes to the file will require a complete
recompilation of the whole library. That’s clearly not what we want to do, based on what you’ve learned
from this chapter.

Another problem with this “solution” is that whenever you link this object file to your new applications,
you link in the entire library, not just the routines you want to use. This makes your applications unnecessar-
ily large, especially if your library has grown. Were you to link your simple projects with the entire HLA
Standard library, for example, the result would be positively huge.

A solution to both of the above problems is to compile each routine in a separate file and produce a
unique OBJ file for it. Unfortunately, with hundreds of routines you’re going to wind up with hundreds of
OBJ files; any time you want to call a dozen or so library routines, you’d have to link your main application
with a dozen or so OBJ modules from your library. Clearly, this isn’t acceptable either.

You may have noticed by now that when you link your applications with the HLA Standard Library, you
only link with a single file: hlalib.lib. .LIB (library) files are a collection of OBJ files. When the linker pro-
cesses a LIB file, it pulls out only the OBJ files it needs, it does not link the entire LIB file with your applica-
tion. Hence you get to work with a single file and your applications don’t grow unnecessarily large.

To collect your library OBJ files into a single LIB file, you need to use a library manager program. This
is actually built into Microsoft’s linker program, although Microsoft provides a LIB.EXE program that acts
as a front end to LINK.EXE and processes command line parameter specifically for creating library files. In
this section we’ll discuss how to use LIB.EXE to construct library files.

Warning: section describes the use of Microsoft’s LIB program version 6.00.8168.
Microsoft has a history of changing the user (command line) interface to their tools
between even minor revisions of their products. Please be aware that the specific exam-
ples in this section may need to be modified for the version of LIB.EXE that you are actu-
ally using. The basic principles, however, will be the same. See the Microsoft manuals if
you have any questions about the use of the LIB.EXE program. You should also be able to
type “LIB /?” from the command line prompt to get an idea of the LIB.EXE invocation
syntax.

The LIB.EXE program uses the following general syntax (from a command window prompt):

lib {options} {files}

 options:

 /CONVERT
 /DEBUGTYPE:CV
 /DEF[:filename]
 /EXPORT:symbol
 /EXTRACT:membername
 /INCLUDE:symbol
 /LIBPATH:dir
 /LINK50COMPAT
 /LIST[:filename]
 /MACHINE:{ALPHA|ARM|IX86|MIPS|MIPS16|MIPSR41XX|PPC|SH3|SH4}
 /NAME:filename
 /NODEFAULTLIB[:library]
 /NOLOGO
 /OUT:filename
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 561

Chapter Nine Volume Three
 /REMOVE:membername
 /SUBSYSTEM:{NATIVE|WINDOWS|CONSOLE|WINDOWSCE|POSIX}[,#[.##]]
 /VERBOSE

Most of these options are not of interest to us, but there are a few important ones. First of all, you
should always use the “/out:filename” to specify the name of your library file. For example, you would often
begin a LIB.EXE command line with the following:

lib /out:mylib.lib (or whatever library name you want to use)

The second option you’re probably going to use all the time is the “/subsystem:xxxxx” option. For con-
sole mode (i.e., text-based command window) programs you would use “/subsystem:console”. For Win-
dows programs you write that use the graphical user interface, you’d probably use the
“/subsystem:windows” option. The HLA Standard Library, since it’s mostly intended for console applica-
tions, uses the “/subsystem:console” option. You probably won’t need to use most of the other options since
LIB.EXE uses appropriate default values for them. If you’re doing some advanced stuff, or if you’re just
curious, check out Microsoft’s documentation on the LIB.EXE program for more details.

Following any options on the command line come the OBJ filenames that you want to merge together
when creating the library file. A typical LIB.EXE command line might look something like the following:

lib /out:mylib.lib /subsystem:console file1.obj file2.obj file3.obj

If you want to merge dozens or hundreds of files into a single library, you’re going to run into a problem.
The command window command line doesn’t allow aribtrarily long lines. This will severely limit the num-
ber of files you can add to your library at one time. The easiest way to handle this problem is to create a text
file containing the commands and filenames for LIB.EXE. Here’s the file from HLA’s “bits.lib” library
module:

/out:..\bits.lib
/subsystem:console
cnt.obj
reverse.obj
merge.obj

(This file was chosen because it’s really short.)

The first line tells LIB.EXE to create a library module named “bits.lib” in the parent subdirectory. Like
most HLA Standard Library modules, this module is intended for use in console applications (not that it
makes any difference to this module), hence the “/subsystem:console” option. The next three lines of the file
contain the files to merge together when creating the bits.lib file. A separate call to LIB.EXE elsewhere
combines bits.lib, strings.lib, chars.lib, etc., into a single library module: hlalib.lib. To specify that LIB.EXE
should read this file instead of extracting this information from the command line, you use “@responsefile”
in place of the operands on the LIB.EXE command line. For example, if the file above is named “bits.txt”
(which it is, by the way), then you could tell LIB.EXE to read its commands from this file using the follow-
ing comand line:

lib @bits.txt

Once you’ve created a library file, you can tell HLA to automatically extract any important files from
the file by specifying its name on the HLA command line, e.g.,

hla mypgm.hla mylib.lib

Assuming all the necessary modules you need are present in mylib.lib, the command line above will
compile mypgm and link in the appropriate OBJ modules found in the mylib.lib library file. Note that HLA
automatically links in hlalib.lib, so you don’t have to specify this on the command line when compiling your
programs.

For more examples of using the LIB.EXE program, take a look at the makefiles in the HLA library
source file directories. These makefiles contain several calls to LIB.EXE that build the hlalib.lib file. Hope-
fully you can see how to use LIB.EXE by looking at these files.
Page 562 © 2001, By Randall Hyde Beta Draft - Do not distribute

Managing Large Programs
9.9 Name Space Pollution

One problem with creating libraries with lots of different modules is name space pollution. A typical
library module will have a #INCLUDE file associated with it that provides external definitions for all the
routines, constants, variables, and other symbols provided in the library. Whenever you want to use some
routines or other objects from the library, you would typically #INCLUDE the library’s header file in your
project. As your libraries get larger and you add more declarations in the header file, it becomes more and
more likely that the names you’ve chosen for your library’s identifiers will conflict with names you want to
use in your current project. This conflict is what is meant by name space pollution: library header files pol-
lute the name space with many names you typically don’t need in order to gain easy access to the few rou-
tines in the library you actually use. Most of the time those names don’t harm anything – unless you want to
use those names yourself in your program.

HLA requires that you declare all external symbols at the global (PROGRAM/UNIT) level. You cannot,
therefore, include a header file with external declarations within a procedure10. As such, there will be no
naming conflicts between external library symbols and symbols you declare locally within a procedure; the
conflicts will only occur between the external symbols and your global symbols. While this is a good argu-
ment for avoiding global symbols as much as possible in your program, the fact remains that most symbols
in an assembly language program will have global scope. So another solution is necessary.

HLA’s solution, which it certainly uses in the Standard Library, is to put most of the library names in a
NAMESPACE declaration section. A NAMESPACE declaration encapsulates all declarations and exposes
only a single name (the NAMESPACE identifier) at the global level. You access the names within the
NAMESPACE by using the familiar dot-notation (see “Namespaces” on page 477). This reduces the effect
of namespace pollution from many dozens or hundreds of names down to a single name.

Of course, one disadvantage of using a NAMESPACE declaration is that you have to type a longer name
in order to reference a particular identifier in that name space (i.e., you have to type the NAMESPACE iden-
tifier, a period, and then the specific identifier you wish to use). For a few identifiers you use frequently, you
might elect to leave those identifiers outside of any NAMESPACE declaration. For example, the HLA Stan-
dard Library does not define the symbols malloc, free, or nl (among others) within a NAMESPACE. How-
ever, you want to minimize such declarations in your libraries to avoid conflicts with names in your own
programs. Often, you can choose a NAMESPACE identifier to complement your routine names. For exam-
ple, the HLA Standard Libraries string copy routine was named after the equivalent C Standard Library
function, strcpy. HLA’s version is str.cpy. The actual function name is cpy; it happens to be a member of the
str NAMESPACE, hence the full name str.cpy which is very similar to the comparable C function. The HLA
Standard Library contains several examples of this convention. The arg.c and arg.v functions are another
pair of such identifiers (corresponding to the C identifiers argc and argv).

Using a NAMESPACE in a header file is no different than using a NAMESPACE in a PROGRAM or
UNIT. Here’s an example of a typical header file containing a NAMESPACE declaration:

// myHeader.hhf -
//
// Routines supported in the myLibrary.lib file.

namespace myLib;

procedure func1; external;
procedure func2; external;
procedure func3; external;

end myLib;

Typically, you would compile each of the functions (func1..func3) as separate units (so each has its own
OBJ file and linking in one function doesn’t link them all). Here’s what a sample UNIT declaration for one
of these functions:

10. Or within an Iterator or Method, as you will see in later chapters.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 563

Chapter Nine Volume Three
unit func1Unit;
#includeonce(“myHeader.hhf”)

procedure myLib.func1;
begin func1;

<< code for func1 >>

end func1;

end func1Unit;

You should notice two important things about this unit. First, you do not put the actual func1 procedure code
within a NAMESPACE declaration block. By using the identifier myLib.func1 as the procedure’s name,
HLA automatically realizes that this procedure declaration belongs in a name space. The second thing to
note is that you do not preface func1 with the “myLib.” prefix after the BEGIN and END clauses in the pro-
cedure. HLA automatically associates the BEGIN and END identifiers with the PROCEDURE declaration,
so it knows that these identifiers are part of the myLib name space and it doesn’t make you type the whole
name again.

Important note: when you declare external names within a name space, as was done in func1Unit above,
HLA uses only the function name (func1 in this example) as the external name. This creates a name space
pollution problem in the external name space. For example, if you have two different name spaces, myLib
and yourLib and they both define a func1 procedure, the linker will complain about a duplicate definition for
func1 if you attempt to use functions from both these library modules. There is an easy work-around to this
problem: use the extended form of the EXTERNAL directive to explicitly supply an external name for all
external identifiers appearing in a NAMESPACE declaration. For example, you could solve this problem
with the following simple modification to the myHeader.hhf file above:

// myHeader.hhf -
//
// Routines supported in the myLibrary.lib file.

namespace myLib;

procedure func1; external(“myLib_func1”);
procedure func2; external(“myLib_func2”);
procedure func3; external(“myLib_func3”);

end myLib;

This example demonstrates an excellent convention you should adopt: when exporting names from a name
space, always supply an explicit external name and construct that name by concatenating the NAMESPACE
identifier with an underscore and the object’s internal name.

The use of NAMESPACE declarations does not completely eliminate the problems of name space pol-
lution (after all, the name space identifier is still a global object, as anyone who has included stdlib.hhf and
attempted to define a “cs” variable can attest), but NAMESPACE declarations come pretty close to eliminat-
ing this problem. Therefore, you should use NAMESPACE everywhere practical when creating your own
libraries.

9.10 Putting It All Together

Managing large projects is considerably easier if you break your program up into separate modules and
work on them independently. In this chapter you learned about HLA’s UNITs, include files, and the
EXTERNAL directive. These provide the tools you need to break a program up into smaller modules. In
addition to HLA’s facilities, you’ll also use a separate tool, nmake.exe, to automatically compile and link
only those files that are necessary in a large project.
Page 564 © 2001, By Randall Hyde Beta Draft - Do not distribute

Managing Large Programs
This chapter provided a very basic introduction to the use of makefiles and the nmake utility. Note that
the MAKE programs are quite sophisticated. The presentation of the nmake program in this chapter barely
scratches the surface. If you’re interested in more information about MAKE facilities you should consult
one of the excellent texts available on this subject. Lots of good information is also available on the Internet
(just use the usual search tools).

This chapter also presented a brief introduction to the Microsoft Library Manager program (LIB.EXE)
that lets you combine several different OBJ files into a single LIB file. A single library file is much easier to
work with than dozens or hundreds of OBJ files. If you write lots of little subroutines and compile them as
separate modules for use with future projects, you will definitely want to create a library file from those OBJ
files.

In addition to breaking up large HLA projects, UNITs are also the basis for letting you write assembly
language functions that you can call from high level languages like C/C++ and Delphi. A later volume in
this text will describe how you can use UNITs for this purpose.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 565

Chapter Nine Volume Three
Page 566 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic
Integer Arithmetic Chapter Ten

10.1 Chapter Overview

This chapter discusses the implementation of arithmetic computation in assembly language. By the
conclusion of this chapter you should be able to translate arithmetic expressions and assignment statements
from high level languages like Pascal and C/C++ into 80x86 assembly language.

10.2 80x86 Integer Arithmetic Instructions

Before describing how to encode arithmetic expressions in assembly language, it would be a good idea
to first discuss the remaining arithmetic instructions in the 80x86 instruction set. Previous chapters have
covered most of the arithmetic and logical instructions, so this section will cover the few remaining instruc-
tions you’ll need.

10.2.1 The MUL and IMUL Instructions

The multiplication instructions provide you with your first taste of irregularity in the 80x86’s instruction
set. Instructions like ADD, SUB, and many others in the 80x86 instruction set support two operands. Unfor-
tunately, there weren’t enough bits in the 80x86’s opcode byte to support all instructions, so the 80x86 treats
the MUL (unsigned multiply) and IMUL (signed integer multiply) instructions as single operand instruc-
tions, like the INC, DEC, and NEG instructions.

Of course, multiplication is a two operand function. To work around this fact, the 80x86 always
assumes the accumulator (AL,AX, or EAX) is the destination operand. This irregularity makes using multi-
plication on the 80x86 a little more difficult than other instructions because one operand has to be in the
accumulator. Intel adopted this unorthogonal approach because they felt that programmers would use multi-
plication far less often than instructions like ADD and SUB.

Another problem with the MUL and IMUL instructions is that you cannot multiply the accumulator by
a constant using these instructions. Intel quickly discovered the need to support multiplication by a constant
and added the INTMUL instruction to overcome this problem. Nevertheless, you must be aware that the
basic MUL and IMUL instructions do not support the full range of operands that INTMUL does.

There are two forms of the multiply instruction: unsigned multiplication (MUL) and signed multiplica-
tion (IMUL). Unlike addition and subtraction, you need separate instructions for these two operations.

The multiply instructions take the following forms:

Unsigned Multiplication:

mul(reg8); // returns “ax”

mul(reg16); // returns “dx:ax”

mul(reg32); // returns “edx:eax”

mul(mem8); // returns “ax”

mul(mem16); // returns “dx:ax”

mul(mem32); // returns “edx:eax”

Signed (Integer) Multiplication:

imul(reg8); // returns “ax”

imul(reg16); // returns “dx:ax”

imul(reg32); // returns “edx:eax”
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 567

Chapter Ten Volume Three
imul(mem8); // returns “ax”

imul(mem16); // returns “dx:ax”

imul(mem32); // returns “edx:eax”

The “returns” values above are the strings these instructions return for use with instruction composition
in HLA (see “Instruction Composition in HLA” on page 538).

(I)MUL, available on all 80x86 processors, multiplies eight, sixteen, or thirty-two bit operands. Note
that when multiplying two n-bit values, the result may require as many as 2*n bits. Therefore, if the operand
is an eight bit quantity, the result could require sixteen bits. Likewise, a 16 bit operand produces a 32 bit
result and a 32 bit operand requires 64 bits for the result.

The (I)MUL instruction, with an eight bit operand, multiplies the AL register by the operand and leaves
the 16 bit product in AX. So

mul(operand8);

or imul(operand8);

computes:

AX := AL * operand8

“*” represents an unsigned multiplication for MUL and a signed multiplication for IMUL.

 If you specify a 16 bit operand, then MUL and IMUL compute:

DX:AX := AX * operand16

“*” has the same meanings as above and DX:AX means that DX contains the H.O. word of the 32 bit result
and AX contains the L.O. word of the 32 bit result. If you’re wondering why Intel didn’t put the 32-bit result
in EAX, just note that Intel introduced the MUL and IMUL instructions in the earliest 80x86 processors,
before the advent of 32-bit registers in the 80386 CPU.

 If you specify a 32 bit operand, then MUL and IMUL compute the following:

EDX:EAX := EAX * operand32

“*” has the same meanings as above and EDX:EAX means that EDX contains the H.O. double word of the
64 bit result and EAX contains the L.O. double word of the 64 bit result.

If an 8x8, 16x16, or 32x32 bit product requires more than eight, sixteen, or thirty-two bits (respec-
tively), the MUL and IMUL instructions set the carry and overflow flags. MUL and IMUL scramble the
sign, and zero flags. Especially note that the sign and zero flags do not contain meaningful values after the
execution of these two instructions.

To help reduce some of the problems with the use of the MUL and IMUL instructions, HLA provides an
extended syntax that allows the following two-operand forms:

Unsigned Multiplication:

mul(reg8, al);

mul(reg16, ax);

mul(reg32, eax);

mul(mem8, al);

mul(mem16, ax);

mul(mem32, eax);

mul(constant8, al);

mul(constant16, ax);

mul(constant32, eax);

Signed (Integer) Multiplication:

imul(reg8, al);

imul(reg16, ax);
Page 568 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic
imul(reg32, eax);

imul(mem8, al);

imul(mem16, ax);

imul(mem32, eax);

imul(constant8, al);

imul(constant16, ax);

imul(constant32, eax);

The two operand forms let you specify the (L.O.) destination register. The instructions whose first oper-
and is a register or memory location are completely identical to the instructions above. By specifying the
destination register, however, you can make your programs easier to read; therefore, it’s probably a good
idea to go ahead and specify the destination register. Note that just because HLA allows two operands here,
you can’t specify an arbitrary register. The destination operand must always be AL, AX, or EAX, depending
on the source operand.

Note that HLA allows a form that lets you specify a constant. The 80x86 doesn’t actually support a
MUL or IMUL instruction that has a constant operand. HLA will take the constant you specify and create a
“variable” in the special “const” segment in memory and initialize that variable with this value. Then HLA
converts the instruction to the “(I)MUL(memory);” instruction. Generally, you won’t need to use this spe-
cial form since the INTMUL instruction will multiply a register by a constant.

You’ll use the MUL and IMUL instructions quite a bit when you learn about extended precision arith-
metic in the chapter on Advanced Arithmetic. Until you get to that chapter, you’ll probably just want to use
the INTMUL instruction in place of the MUL or IMUL since it is more general. However, INTMUL is not a
complete replacement for these two instructions. Besides the number of operands, there are several differ-
ences between the INTMUL instruction you’ve learned about earlier and the MUL and IMUL instructions.
Specifically for the INTMUL instruction:

• There isn’t an 8x8 bit INTMUL instruction available (the immediate8 operands simply provide
a shorter form of the instruction. Internally, the CPU sign extends the operand to 16 or 32 bits
as necessary).

• The INTMUL instruction does not produce a 2*n bit result. That is, a 16x16 multiply produces
a 16 bit result. Likewise, a 32x32 bit multiply produces a 32 bit result. These instructions set
the carry and overflow flags if the result does not fit into the destination register.

10.2.2 The DIV and IDIV Instructions

The 80x86 divide instructions perform a 64/32 division, a 32/16 division or a 16/8 division. These
instructions take the form:

div(reg8); // returns “al”

div(reg16); // returns “ax”

div(reg32); // returns “eax”

div(reg8, AX); // returns “al”

div(reg16, DX:AX);

div(reg32, EDX:EAX);

div(mem8); // returns “al”

div(mem16); // returns “ax”

div(mem32); // returns “eax”

div(mem8, AX); // returns “al”

div(mem16, DX:AX); // returns “ax”

div(mem32, EDX:EAX); // returns “eax”
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 569

Chapter Ten Volume Three
div(constant8, AX); // returns “al”

div(constant16, DX:AX); // returns “ax”

div(constant32, EDX:EAX); // returns “eax”

idiv(reg8); // returns “al”

idiv(reg16); // returns “ax”

idiv(reg32); // returns “eax”

idiv(reg8, AX); // returns “al”

idiv(reg16, DX:AX); // returns “ax”

idiv(reg32, EDX:EAX); // returns “eax”

idiv(mem8); // returns “al”

idiv(mem16); // returns “ax”

idiv(mem32); // returns “eax”

idiv(mem8, AX); // returns “al”

idiv(mem16, DX:AX); // returns “ax”

idiv(mem32, EDX:EAX); // returns “eax”

idiv(constant8, AX); // returns “al”

idiv(constant16, DX:AX); // returns “ax”

idiv(constant32, EDX:EAX); // returns “eax”

The DIV instruction computes an unsigned division. If the operand is an eight bit operand, DIV divides
the AX register by the operand leaving the quotient in AL and the remainder (modulo) in AH. If the operand
is a 16 bit quantity, then the DIV instruction divides the 32 bit quantity in DX:AX by the operand leaving the
quotient in AX and the remainder in DX. With 32 bit operands DIV divides the 64 bit value in EDX:EAX by
the operand leaving the quotient in EAX and the remainder in EDX.

You cannot, on the 80x86, simply divide one eight bit value by another. If the denominator is an
eight bit value, the numerator must be a sixteen bit value. If you need to divide one unsigned eight bit value
by another, you must zero extend the numerator to sixteen bits. You can accomplish this by loading the
numerator into the AL register and then moving zero into the AH register. Then you can divide AX by the
denominator operand to produce the correct result. Failing to zero extend AL before executing DIV may
cause the 80x86 to produce incorrect results!

When you need to divide two 16 bit unsigned values, you must zero extend the AX register (which con-
tains the numerator) into the DX register. To do this, just load zero into the DX register. If you need to divide
one 32-bit value by another, you must zero extend the EAX register into EDX (by loading a zero into EDX)
before the division.

When dealing with signed integer values, you will need to sign extend AL into AX, AX into DX or
EAX into EDX before executing IDIV. To do so, use the CBW, CWD, CDQ, or MOVSX instructions. If the
H.O. byte or word does not already contain significant bits, then you must sign extend the value in the accu-
mulator (AL/AX/EAX) before doing the IDIV operation. Failure to do so may produce incorrect results.

There is one other catch to the 80x86’s divide instructions: you can get a fatal error when using this
instruction. First, of course, you can attempt to divide a value by zero. Second, the quotient may be too large
to fit into the EAX, AX, or AL register. For example, the 16/8 division “$8000 / 2” produces the quotient
$4000 with a remainder of zero. $4000 will not fit into eight bits. If this happens, or you attempt to divide by
zero, the 80x86 will generate an ex.DivisionError exception or integer overflow error (ex.IntoInstr). This
usually means your program will display the appropriate dialog box and abort your program. If this happens
to you, chances are you didn’t sign or zero extend your numerator before executing the division operation.
Since this error will cause your program to crash, you should be very careful about the values you select
when using division. Of course, you can use the TRY..ENDTRY block with the ex.DivisionError and
ex.IntoInstr to trap this problem in your program.
Page 570 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic
The carry, overflow, sign, and zero flags are undefined after a division operation. Like MUL and IMUL,
HLA provides special syntax to allow the use of constant operands even though these instructions don’t
really support them.

The 80x86 does not provide a separate instruction to compute the remainder of one number divided by
another. The DIV and IDIV instructions automatically compute the remainder at the same time they com-
pute the quotient. HLA, however, provide mnemonics (instructions) for the MOD and IMOD instructions.
These special HLA instructions compile into the exact same code as their DIV and IDIV counterparts. The
only difference is the “returns” value for the instruction (since these instructions return the remainder in a
different location than the quotient). The MOD and IMOD instructions that HLA supports are

mod(reg8); // returns “ah”

mod(reg16); // returns “dx”

mod(reg32); // returns “edx”

mod(reg8, AX); // returns “ah”

mod(reg16, DX:AX); // returns “dx”

mod(reg32, EDX:EAX); // returns “edx”

mod(mem8); // returns “ah”

mod(mem16); // returns “dx”

mod(mem32); // returns “edx”

mod(mem8, AX); // returns “ah”

mod(mem16, DX:AX); // returns “dx”

mod(mem32, EDX:EAX); // returns “edx”

mod(constant8, AX); // returns “ah”

mod(constant16, DX:AX); // returns “dx”

mod(constant32, EDX:EAX); // returns “edx”

imod(reg8); // returns “ah”

imod(reg16); // returns “dx”

imod(reg32); // returns “edx”

imod(reg8, AX); // returns “ah”

imod(reg16, DX:AX); // returns “dx”

imod(reg32, EDX:EAX); // returns “edx”

imod(mem8); // returns “ah”

imod(mem16); // returns “dx”

imod(mem32); // returns “edx”

imod(mem8, AX); // returns “ah”

imod(mem16, DX:AX); // returns “dx”

imod(mem32, EDX:EAX); // returns “edx”

imod(constant8, AX); // returns “ah”

imod(constant16, DX:AX); // returns “dx”

imod(constant32, EDX:EAX); // returns “edx”
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 571

Chapter Ten Volume Three
10.2.3 The CMP Instruction

The CMP (compare) instruction is identical to the SUB instruction with one crucial difference – it does
not store the difference back into the destination operand. The syntax for the CMP instruction is very similar
to SUB, the generic form is

cmp(LeftOperand, RightOperand);

The specific forms are

cmp(reg, reg); // Registers must be the same size (8, 16, or 32 bits)
cmp(reg, mem); // Sizes must match.
cmp(reg, constant);
cmp(mem, constant);

The CMP instruction updates the 80x86’s flags according to the result of the subtraction operation
(LeftOperand - RightOperand). The flags are generally set in an appropriate fashion so that we can read this
instruction as “compare LeftOperand to RightOperand”. You can test the result of the comparison by check-
ing the appropriate flags in the flags register using the conditional set instructions (see the next section) or
the conditional jump instructions (see the next chapter).

Probably the first place to start when exploring the CMP instruction is to take a look at exactly how the
CMP instruction affects the flags. Consider the following CMP instruction:

cmp(ax, bx);

This instruction performs the computation AX - BX and sets the flags depending upon the result of the
computation. The flags are set as follows:

Z: The zero flag is set if and only if AX = BX. This is the only time AX - BX produces a zero
result. Hence, you can use the zero flag to test for equality or inequality.

S: The sign flag is set to one if the result is negative. At first glance, you might think that this
flag would be set if AX is less than BX but this isn’t always the case. If AX=$7FFF and
BX= -1 ($FFFF) subtracting AX from BX produces $8000, which is negative (and so the
sign flag will be set). So, for signed comparisons anyway, the sign flag doesn’t contain the
proper status. For unsigned operands, consider AX=$FFFF and BX=1. AX is greater than
BX but their difference is $FFFE which is still negative. As it turns out, the sign flag and
the overflow flag, taken together, can be used for comparing two signed values.

O: The overflow flag is set after a CMP operation if the difference of AX and BX produced an
overflow or underflow. As mentioned above, the sign flag and the overflow flag are both
used when performing signed comparisons.

C: The carry flag is set after a CMP operation if subtracting BX from AX requires a borrow.
This occurs only when AX is less than BX where AX and BX are both unsigned values.

Given that the CMP instruction sets the flags in this fashion, you can test the comparison of the two
operands with the following flags:

cmp(Left, Right);
Page 572 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic
For signed comparisons, the S (sign) and O (overflow) flags, taken together, have the following meaning:

If ((S=0) and (O=1)) or ((S=1) and (O=0)) then Left < Right when using a signed comparison.

If ((S=0) and (O=0)) or ((S=1) and (O=1)) then Left >= Right when using a signed comparison.

Note that (S xor O) is one if the left operand is less than the right operand. Conversely, (S xor O) is zero if
the left operand is greater or equal to the right operand.

To understand why these flags are set in this manner, consider the following examples:

Left minus Right S O
------ ------ - -

$FFFF (-1) - $FFFE (-2) 0 0
$8000 - $0001 0 1
$FFFE (-2) - $FFFF (-1) 1 0
$7FFF (32767) - $FFFF (-1) 1 1

Remember, the CMP operation is really a subtraction, therefore, the first example above computes
(-1)-(-2) which is (+1). The result is positive and an overflow did not occur so both the S and O flags are
zero. Since (S xor O) is zero, Left is greater than or equal to Right.

In the second example, the CMP instruction would compute (-32768)-(+1) which is (-32769). Since a
16-bit signed integer cannot represent this value, the value wraps around to $7FFF (+32767) and sets the
overflow flag. The result is positive (at least as a 16 bit value) so the CPU clears the sign flag. (S xor O) is
one here, so Left is less than Right.

In the third example above, CMP computes (-2)-(-1) which produces (-1). No overflow occurred so the
O flag is zero, the result is negative so the sign flag is one. Since (S xor O) is one, Left is less than Right.

In the fourth (and final) example, CMP computes (+32767)-(-1). This produces (+32768), setting the
overflow flag. Furthermore, the value wraps around to $8000 (-32768) so the sign flag is set as well. Since (S
xor O) is zero, Left is greater than or equal to Right.

10.2.4 The SETcc Instructions

The set on condition (or SETcc) instructions set a single byte operand (register or memory location) to
zero or one depending on the values in the flags register. The general formats for the SETcc instructions are

setcc(reg8);

setcc(mem8);

SETcc represents a mnemonic appearing in the following tables. These instructions store a zero into the cor-
responding operand if the condition is false, they store a one into the eight bit operand if the condition is
true.

Table 1: Condition Code Settings After CMP

Unsigned operands: Signed operands:

Z: equality/inequality Z: equality/inequality

C: Left < Right (C=1)
 Left >= Right (C=0)

C: no meaning

S: no meaning S: see below

O: no meaning O: see below
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 573

Chapter Ten Volume Three
The SETcc instructions above simply test the flags without any other meaning attached to the operation.
You could, for example, use SETC to check the carry flag after a shift, rotate, bit test, or arithmetic opera-
tion. You might notice the SETP, SETPE, and SETNP instructions above. They check the parity flag. These
instructions appear here for completeness, but this text will not consider the uses of the parity flag.

The CMP instruction works synergistically with the SETcc instructions. Immediately after a CMP
operation the processor flags provide information concerning the relative values of those operands. They
allow you to see if one operand is less than, equal to, greater than, or any combination of these.

There are two additional groups of SETcc instructions that are very useful after a CMP operation. The
first group deals with the result of an unsigned comparison, the second group deals with the result of a
signed comparison.

Table 2: SETcc Instructions That Test Flags

Instruction Description Condition Comments

SETC Set if carry Carry = 1 Same as SETB, SETNAE

SETNC Set if no carry Carry = 0 Same as SETNB, SETAE

SETZ Set if zero Zero = 1 Same as SETE

SETNZ Set if not zero Zero = 0 Same as SETNE

SETS Set if sign Sign = 1

SETNS Set if no sign Sign = 0

SETO Set if overflow Ovrflw=1

SETNO Set if no overflow Ovrflw=0

SETP Set if parity Parity = 1 Same as SETPE

SETPE Set if parity even Parity = 1 Same as SETP

SETNP Set if no parity Parity = 0 Same as SETPO

SETPO Set if parity odd Parity = 0 Same as SETNP
Page 574 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic
The corresponding table for signed comparisons is

Table 3: SETcc Instructions for Unsigned Comparisons

Instruction Description Condition Comments

SETA Set if above (>) Carry=0, Zero=0 Same as SETNBE

SETNBE Set if not below or
equal (not <=)

Carry=0, Zero=0 Same as SETA

SETAE Set if above or equal
(>=)

Carry = 0 Same as SETNC, SETNB

SETNB Set if not below (not <) Carry = 0 Same as SETNC, SETAE

SETB Set if below (<) Carry = 1 Same as SETC, SETNAE

SETNAE Set if not above or
equal (not >=)

Carry = 1 Same as SETC, SETB

SETBE Set if below or equal
(<=)

Carry = 1 or Zero = 1 Same as SETNA

SETNA Set if not above (not >) Carry = 1 or Zero = 1 Same as SETBE

SETE Set if equal (=) Zero = 1 Same as SETZ

SETNE Set if not equal (≠) Zero = 0 Same as SETNZ

Table 4: SETcc Instructions for Signed Comparisons

Instruction Description Condition Comments

SETG Set if greater (>) Sign = Ovrflw and
Zero=0

Same as SETNLE

SETNLE Set if not less than or
equal (not <=)

Sign = Ovrflw or
Zero=0

Same as SETG

SETGE Set if greater than or
equal (>=)

Sign = Ovrflw Same as SETNL

SETNL Set if not less than (not
<)

Sign = Ovrflw Same as SETGE

SETL Set if less than (<) Sign ≠ Ovrflw Same as SETNGE

SETNGE Set if not greater or
equal (not >=)

Sign ≠ Ovrflw Same as SETL

SETLE Set if less than or equal
(<=)

Sign ≠ Ovrflw or
Zero = 1

Same as SETNG

SETNG Set if not greater than
(not >)

Sign ≠ Ovrflw or
Zero = 1

Same as SETLE
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 575

Chapter Ten Volume Three
The SETcc instructions are particularly valuable because they can convert the result of a comparison to
a boolean value (false/true or 0/1). This is especially important when translating statements from a high level
language like Pascal or C/C++ into assembly language. The following example shows how to use these
instructions in this manner:

// Bool := A <= B

mov(A, eax);
cmp(eax, B);
setle(bool); // bool is a boolean or byte variable.

Since the SETcc instructions always produce zero or one, you can use the results with the AND and OR
instructions to compute complex boolean values:

// Bool := ((A <= B) and (D = E))

mov(A, eax);
cmp(eax, B);
setle(bl);
mov(D, eax);
cmp(eax, E);
sete(bh);
and(bl, bh);
mov(bh, Bool);

For more examples, see “Logical (Boolean) Expressions” on page 584.

10.2.5 The TEST Instruction

The 80x86 TEST instruction is to the AND instruction what the CMP instruction is to SUB. That is, the
TEST instruction computes the logical AND of its two operands and sets the condition code flags based on
the result; it does not, however, store the result of the logical AND back into the destination operand. The
syntax for the TEST instruction is similar to AND, it is

test(operand1, operand2);

The TEST instruction sets the zero flag if the result of the logical AND operation is zero. It sets the sign
flag if the H.O. bit of the result contains a one. TEST always clears the carry and overflow flags.

The primary use of the TEST instruction is to check to see if an individual bit contains a zero or a one.
Consider the instruction “test(1, AL);” This instruction logically ANDs AL with the value one; if bit one of
AL contains zero, the result will be zero (setting the zero flag) since all the other bits in the constant one are
zero. Conversely, if bit one of AL contains one, then the result is not zero so TEST clears the zero flag.
Therefore, you can test the zero flag after this TEST instruction to see if bit zero contains a zero or a one.

The TEST instruction is also useful to see if all the bits in a specified set of bits contain zero. The
instruction “test($F, AL);” sets the zero flag if and only if the L.O. four bits of AL all contain zero.

One very important use of the TEST instruction is to check to see if a register contains zero. The
instruction “TEST(reg, reg);” where both operands are the same register will logically AND that register
with itself. If the register contains zero, then the result is zero and the CPU will set the zero flag. However,
if the register contains a non-zero value, logically ANDing that value with itself produces that same non-zero
value, so the CPU clears the zero flag. Therefore, you can test the zero flag immediately after the execution
of this instruction (e.g., using the SETZ or SETNZ instructions) to see if the register contains zero. E.g.,

SETE Set if equal (=) Zero = 1 Same as SETZ

SETNE Set if not equal (≠) Zero = 0 Same as SETNZ

Table 4: SETcc Instructions for Signed Comparisons

Instruction Description Condition Comments
Page 576 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic
test(eax, eax);
setz(bl); // BL is set to one if EAX contains zero.

10.3 Arithmetic Expressions

Probably the biggest shock to beginners facing assembly language for the very first time is the lack of
familiar arithmetic expressions. Arithmetic expressions, in most high level languages, look similar to their
algebraic equivalents, e.g.,

X:=Y*Z;

In assembly language, you’ll need several statements to accomplish this same task, e.g.,

mov(y, eax);
intmul(z, eax);
mov(eax, x);

Obviously the HLL version is much easier to type, read, and understand. This point, more than any other, is
responsible for scaring people away from assembly language.

Although there is a lot of typing involved, converting an arithmetic expression into assembly language
isn’t difficult at all. By attacking the problem in steps, the same way you would solve the problem by hand,
you can easily break down any arithmetic expression into an equivalent sequence of assembly language
statements. By learning how to convert such expressions to assembly language in three steps, you’ll discover
there is little difficulty to this task.

10.3.1 Simple Assignments

The easiest expressions to convert to assembly language are the simple assignments. Simple assign-
ments copy a single value into a variable and take one of two forms:

variable := constant
or

variable := variable

Converting the first form to assembly language is easy, just use the assembly language statement:

mov(constant, variable);

This MOV instruction copies the constant into the variable.

The second assignment above is somewhat complicated since the 80x86 doesn’t provide a mem-
ory–to-memory MOV instruction. Therefore, to copy one memory variable into another, you must move
the data through a register. By convention (and for slight efficiency reasons), most programmers tend to use
AL/AX/EAX for this purpose. If the AL, AX, or EAX register is available, you should use it for this opera-
tion. For example,

var1 := var2;

becomes

mov(var2, eax);
mov(eax, var1);

This is assuming, of course, that var1 and var2 are 32-bit variables. Use AL if they are eight bit variables,
use AX if they are 16-bit variables.

Of course, if you’re already using AL, AX, or EAX for something else, one of the other registers will
suffice. Regardless, you must use a register to transfer one memory location to another.

Although the 80x86 does not support a memory-to-memory move, HLA does provide an extended syn-
tax for the MOV instruction that allows two memory operands. However, both operands have to be 16-bit or
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 577

Chapter Ten Volume Three
32-bit values; eight-bit values won’t work. Assuming you want to copy the value of a word or dword object
to another variable, you can use the following syntax:

mov(var2, var1);

HLA translates this “instruction” into the following two instruction sequence:

push(var2);
pop(var1);

Although this is slightly slower than the two MOV instructions, it is convenient.

10.3.2 Simple Expressions

The next level of complexity up from a simple assignment is a simple expression. A simple expression
takes the form:

var1 := term1 op term2;

Var1 is a variable, term1 and term2 are variables or constants, and op is some arithmetic operator (addition,
subtraction, multiplication, etc.).

As simple as this expression appears, most expressions take this form. It should come as no surprise
then, that the 80x86 architecture was optimized for just this type of expression.

 A typical conversion for this type of expression takes the following form:

mov(term1, eax);

op(term2, eax);

mov(eax, var1)

Op is the mnemonic that corresponds to the specified operation (e.g., “+” = add, “-” = sub, etc.).

 There are a few inconsistencies you need to be aware of. Of course, when dealing with the multiply and
divide instructions on the 80x86, you must use the AL/AX/EAX and DX/EDX registers. You cannot use
arbitrary registers as you can with other operations. Also, don’t forget the sign extension instructions if
you’re performing a division operation and you’re dividing one 16/32 bit number by another. Finally, don’t
forget that some instructions may cause overflow. You may want to check for an overflow (or underflow)
condition after an arithmetic operation.

Examples of common simple expressions:

x := y + z;

mov(y, eax);
add(z, eax);
mov(eax, x);

x := y - z;

mov(y, eax);
sub(z, eax);
mov(eax, x);

x := y * z; {unsigned}

mov(y, eax);
mul(z, eax); // Don’t forget this wipes out EDX.
mov(eax, x);
Page 578 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic
x := y div z; {unsigned div}

mov(y, eax);
mov(0, edx); // Zero extend EAX into EDX.
div(z, edx:eax);
mov(eax, x);

x := y idiv z; {signed div}

mov(y, eax);
cdq(); // Sign extend EAX into EDX.
idiv(z, edx:eax);
mov(eax, z);

x := y mod z; {unsigned remainder}

mov(y, eax);
mov(0, edx); // Zero extend EAX into EDX.
mod(z, edx:eax);
mov(edx, x); // Note that remainder is in EDX.

x := y imod z; {signed remainder}

mov(y, eax);
cdq(); // Sign extend EAX into EDX.
imod(z, edx:eax);
mov(edx, x); // Remainder is in EDX.

Certain unary operations also qualify as simple expressions. A good example of a unary operation is
negation. In a high level language negation takes one of two possible forms:

var := -var or var1 := -var2

Note that var := -constant is really a simple assignment, not a simple expression. You can specify a negative
constant as an operand to the MOV instruction:

mov(-14, var);

 To handle “var = -var;” use the single assembly language statement:

// var = -var;

neg(var);

If two different variables are involved, then use the following:

// var1 = -var2;

mov(var2, eax);

neg(eax);
mov(eax, var1);

10.3.3 Complex Expressions

A complex expression is any arithmetic expression involving more than two terms and one operator.
Such expressions are commonly found in programs written in a high level language. Complex expressions
may include parentheses to override operator precedence, function calls, array accesses, etc. While the con-
version of some complex expressions to assembly language is fairly straight-forward, others require some
effort. This section outlines the rules you use to convert such expressions.

A complex expression that is easy to convert to assembly language is one that involves three terms and
two operators, for example:

w := w - y - z;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 579

Chapter Ten Volume Three
Clearly the straight-forward assembly language conversion of this statement will require two SUB instruc-
tions. However, even with an expression as simple as this one, the conversion is not trivial. There are actually
two ways to convert this from the statement above into assembly language:

mov(w, eax);
sub(y, eax);
sub(z, eax);
mov(eax, w);

and
mov(y, eax);
sub(z, eax);
sub(eax, w);

The second conversion, since it is shorter, looks better. However, it produces an incorrect result (assuming
Pascal-like semantics for the original statement). Associativity is the problem. The second sequence above
computes W := W - (Y - Z) which is not the same as W := (W - Y) - Z. How we place the parentheses around
the subexpressions can affect the result. Note that if you are interested in a shorter form, you can use the fol-
lowing sequence:

mov(y, eax);
add(z, eax);
sub(eax, w);

This computes W:=W-(Y+Z). This is equivalent to W := (W - Y) - Z.

Precedence is another issue. Consider the Pascal expression:

X := W * Y + Z;

Once again there are two ways we can evaluate this expression:

X := (W * Y) + Z;
or

X := W * (Y + Z);

By now, you’re probably thinking that this text is crazy. Everyone knows the correct way to evaluate these
expressions is the second form provided in these two examples. However, you’re wrong to think that way.
The APL programming language, for example, evaluates expressions solely from right to left and does not
give one operator precedence over another.

Most high level languages use a fixed set of precedence rules to describe the order of evaluation in an
expression involving two or more different operators. Such programming languages usually compute multi-
plication and division before addition and subtraction. Those that support exponentiation (e.g., FORTRAN
and BASIC) usually compute that before multiplication and division. These rules are intuitive since almost
everyone learns them before high school. Consider the expression:

X op1 Y op2 Z

If op1 takes precedence over op2 then this evaluates to (X op1 Y) op2 Z otherwise if op2 takes precedence
over op1 then this evaluates to X op1 (Y op2 Z). Depending upon the operators and operands involved, these
two computations could produce different results.

When converting an expression of this form into assembly language, you must be sure to compute the
subexpression with the highest precedence first. The following example demonstrates this technique:

// w := x + y * z;

mov(x, ebx);
mov(y, eax); // Must compute y*z first since “*”
intmul(z, eax); // has higher precedence than “+”.
add(ebx, eax);
mov(eax, w);

If two operators appearing within an expression have the same precedence, then you determine the order
of evaluation using associativity rules. Most operators are left associative meaning that they evaluate from
left to right. Addition, subtraction, multiplication, and division are all left associative. A right associative
Page 580 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic
operator evaluates from right to left. The exponentiation operator in FORTRAN and BASIC is a good exam-
ple of a right associative operator:

2^2^3 is equal to 2^(2^3) not (2^2)^3

The precedence and associativity rules determine the order of evaluation. Indirectly, these rules tell you
where to place parentheses in an expression to determine the order of evaluation. Of course, you can always
use parentheses to override the default precedence and associativity. However, the ultimate point is that your
assembly code must complete certain operations before others to correctly compute the value of a given
expression. The following examples demonstrate this principle:

// w := x - y - z

mov(x, eax); // All the same operator, so we need
sub(y, eax); // to evaluate from left to right
sub(z, eax); // because they all have the same
mov(eax, w); // precedence and are left associative.

// w := x + y * z

mov(y, eax); // Must compute Y * Z first since
intmul(z, eax); // multiplication has a higher
add(x, eax); // precedence than addition.
mov(eax, w);

// w := x / y - z

mov(x, eax); // Here we need to compute division
cdq(); // first since it has the highest
idiv(y, edx:eax); // precedence.
sub(z, eax);
mov(eax, w);

// w := x * y * z

mov(y, eax); // Addition and multiplication are
intmul(z, eax); // commutative, therefore the order
intmul(x, eax); // of evaluation does not matter
mov(eax, w);

There is one exception to the associativity rule. If an expression involves multiplication and division it is
generally better to perform the multiplication first. For example, given an expression of the form:

W := X/Y * Z // Note: this is not !

It is usually better to compute X*Z and then divide the result by Y rather than divide X by Y and multiply
the quotient by Z. There are two reasons this approach is better. First, remember that the IMUL instruction
always produces a 64 bit result (assuming 32 bit operands). By doing the multiplication first, you automati-
cally sign extend the product into the EDX register so you do not have to sign extend EAX prior to the divi-
sion. This saves the execution of the CDQ instruction. A second reason for doing the multiplication first is to
increase the accuracy of the computation. Remember, (integer) division often produces an inexact result. For
example, if you compute 5/2 you will get the value two, not 2.5. Computing (5/2)*3 produces six. However,
if you compute (5*3)/2 you get the value seven which is a little closer to the real quotient (7.5). Therefore, if
you encounter an expression of the form:

w := x/y*z;

You can usually convert this to assembly code:

mov(x, eax);
imul(z, eax); // Note the use of IMUL, not INTMUL!
idiv(y, edx:eax);
mov(eax, w);

x
y
-- z× x

y z×

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 581

Chapter Ten Volume Three
Of course, if the algorithm you’re encoding depends on the truncation effect of the division operation, you
cannot use this trick to improve the algorithm. Moral of the story: always make sure you fully understand
any expression you are converting to assembly language. Obviously if the semantics dictate that you must
perform the division first, do so.

Consider the following Pascal statement:

w := x - y * x;

This is similar to a previous example except it uses subtraction rather than addition. Since subtraction is not
commutative, you cannot compute y * z and then subtract x from this result. This tends to complicate the
conversion a tiny amount. Rather than a straight forward multiply and addition sequence, you’ll have to load
x into a register, multiply y and z leaving their product in a different register, and then subtract this product
from x, e.g.,

mov(x, ebx);
mov(y, eax);
intmul(x, eax);
sub(eax, ebx);
mov(ebx, w);

This is a trivial example that demonstrates the need for temporary variables in an expression. This code uses
the EBX register to temporarily hold a copy of x until it computes the product of y and z. As your expressions
increase in complexity, the need for temporaries grows. Consider the following Pascal statement:

w := (a + b) * (y + z);

Following the normal rules of algebraic evaluation, you compute the subexpressions inside the parentheses
(i.e., the two subexpressions with the highest precedence) first and set their values aside. When you com-
puted the values for both subexpressions you can compute their sum. One way to deal with complex expres-
sions like this one is to reduce it to a sequence of simple expressions whose results wind up in temporary
variables. For example, we can convert the single expression above into the following sequence:

Temp1 := a + b;

Temp2 := y + z;

w := Temp1 * Temp2;

Since converting simple expressions to assembly language is quite easy, it’s now a snap to compute the
former, complex, expression in assembly. The code is

mov(a, eax);
add(b, eax);
mov(eax, Temp1);
mov(y, eax);
add(z, eax);
mov(eax, Temp2);
mov(Temp1, eax);
intmul(Temp2, eax);
mov(eax, w);

Of course, this code is grossly inefficient and it requires that you declare a couple of temporary variables in
your data segment. However, it is very easy to optimize this code by keeping temporary variables, as much
as possible, in 80x86 registers. By using 80x86 registers to hold the temporary results this code becomes:

mov(a, eax);
add(b, eax);
mov(y, ebx);
add(z, ebx);
intmul(ebx, eax);
mov(eax, w);

Yet another example:

x := (y+z) * (a-b) / 10;
Page 582 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic
This can be converted to a set of four simple expressions:

Temp1 := (y+z)
Temp2 := (a-b)
Temp1 := Temp1 * Temp2
X := Temp1 / 10

You can convert these four simple expressions into the assembly language statements:

mov(y, eax); // Compute eax = y+z
add(z, eax);
mov(a, ebx); // Compute ebx = a-b
sub(b, ebx);
imul(ebx, eax); // This also sign extends eax into edx.
idiv(10, edx:eax);
mov(eax, x);

The most important thing to keep in mind is that temporary values, if possible, should be kept in regis-
ters. Remember, accessing an 80x86 register is much more efficient than accessing a memory location. Use
memory locations to hold temporaries only if you’ve run out of registers to use.

Ultimately, converting a complex expression to assembly language is little different than solving the
expression by hand. Instead of actually computing the result at each stage of the computation, you simply
write the assembly code that computes the results. Since you were probably taught to compute only one
operation at a time, this means that manual computation works on “simple expressions” that exist in a com-
plex expression. Of course, converting those simple expressions to assembly is fairly trivial. Therefore, any-
one who can solve a complex expression by hand can convert it to assembly language following the rules for
simple expressions.

10.3.4 Commutative Operators

If “@” represents some operator, that operator is commutative if the following relationship is always
true:

(A @ B) = (B @ A)

As you saw in the previous section, commutative operators are nice because the order of their operands
is immaterial and this lets you rearrange a computation, often making that computation easier or more effi-
cient. Often, rearranging a computation allows you to use fewer temporary variables. Whenever you encoun-
ter a commutative operator in an expression, you should always check to see if there is a better sequence you
can use to improve the size or speed of your code. The following tables list the commutative and non-com-
mutative operators you typically find in high level languages:

Table 5: Some Common Commutative Binary Operators

Pascal C/C++ Description

+ + Addition

* * Multiplication

AND && or & Logical or bitwise AND

OR || or | Logical or bitwise OR

XOR ^ (Logical or) Bitwise exclusive-OR

= == Equality

<> != Inequality
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 583

Chapter Ten Volume Three
10.4 Logical (Boolean) Expressions

Consider the following expression from a Pascal program:

B := ((X=Y) and (A <= C)) or ((Z-A) <> 5);

B is a boolean variable and the remaining variables are all integers.

How do we represent boolean variables in assembly language? Although it takes only a single bit to rep-
resent a boolean value, most assembly language programmers allocate a whole byte or word for this purpose
(as such, HLA also allocates a whole byte for a BOOLEAN variable). With a byte, there are 256 possible
values we can use to represent the two values true and false. So which two values (or which two sets of val-
ues) do we use to represent these boolean values? Because of the machine’s architecture, it’s much easier to
test for conditions like zero or not zero and positive or negative rather than to test for one of two particular
boolean values. Most programmers (and, indeed, some programming languages like “C”) choose zero to
represent false and anything else to represent true. Some people prefer to represent true and false with one
and zero (respectively) and not allow any other values. Others select all one bits ($FFFF_FFFF, $FFFF, or
$FF) for true and 0 for false. You could also use a positive value for true and a negative value for false. All
these mechanisms have their own advantages and drawbacks.

Using only zero and one to represent false and true offers two very big advantages: (1) The SETcc
instructions produce these results so this scheme is compatible with those instructions; (2) the 80x86 logical
instructions (AND, OR, XOR and, to a lesser extent, NOT) operate on these values exactly as you would
expect. That is, if you have two boolean variables A and B, then the following instructions perform the basic
logical operations on these two variables:

// c = a AND b;

mov(a, al);
and(b, al);
mov(al, c);

// c = a OR b;

mov(a, al);
or(b, al);
mov(al, c);

// c = a XOR b;

Table 6: Some Common Noncommutative Binary Operators

Pascal C/C++ Description

- - Subtraction

/ or DIV / Division

MOD % Modulo or remainder

< < Less than

<= <= Less than or equal

> > Greater than

>= >= Greater than or equal
Page 584 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic
mov(a, al);
xor(b, al);
mov(al, c);

// b = not a;

mov(a, al); // Note that the NOT instruction does not
not(al); // properly compute al = not al by itself.
and(1, al); // I.e., (not 0) does not equal one. The AND
mov(al, b); // instruction corrects this problem.

mov(a, al); // Another way to do b = not a;
xor(1, al); // Inverts bit zero.
mov(al, b);

Note, as pointed out above, that the NOT instruction will not properly compute logical negation. The bitwise
not of zero is $FF and the bitwise not of one is $FE. Neither result is zero or one. However, by ANDing the
result with one you get the proper result. Note that you can implement the NOT operation more efficiently
using the “xor(1, ax);” instruction since it only affects the L.O. bit.

As it turns out, using zero for false and anything else for true has a lot of subtle advantages. Specifically,
the test for true or false is often implicit in the execution of any logical instruction. However, this mechanism
suffers from a very big disadvantage: you cannot use the 80x86 AND, OR, XOR, and NOT instructions to
implement the boolean operations of the same name. Consider the two values $55 and $AA. They’re both
non-zero so they both represent the value true. However, if you logically and $55 and $AA together using
the 80x86 AND instruction, the result is zero. True AND true should produce true, not false. Although you
can account for situations like this, it usually requires a few extra instructions and is somewhat less efficient
when computing boolean operations.

A system that uses non-zero values to represent true and zero to represent false is an arithmetic logical
system. A system that uses the two distinct values like zero and one to represent false and true is called a
boolean logical system, or simply a boolean system. You can use either system, as convenient. Consider
again the boolean expression:

B := ((X=Y) and (A <= D)) or ((Z-A) <> 5);

The simple expressions resulting from this expression might be:

mov(x, eax);
cmp(y, eax);
sete(al); // AL := x = y;

mov(a, ebx);
cmp(ebx, d);
setle(bl); // BL := a <= d;
and(al, bl); // BL := (x=y) and (a <= d);

mov(z, eax);
sub(a, eax);
cmp(eax, 5);
setne(al);
or(bl, al); // AL := ((X=Y) and (A <= D)) or ((Z-A) <> 5);
mov(al, b);

When working with boolean expressions don’t forget the that you might be able to optimize your code
by simplifying those boolean expressions. You can use algebraic transformations (especially DeMorgan’s
theorems) to help reduce the complexity of an expression. In the next chapter you’ll also see how to use
control flow to calculate a boolean result. This is generally quite a bit more efficient than using complete
boolean evaluation as the examples in this section teach.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 585

Chapter Ten Volume Three
10.5 Machine and Arithmetic Idioms

An idiom is an idiosyncrasy. Several arithmetic operations and 80x86 instructions have idiosyncrasies
that you can take advantage of when writing assembly language code. Some people refer to the use of
machine and arithmetic idioms as “tricky programming” that you should always avoid in well written pro-
grams. While it is wise to avoid tricks just for the sake of tricks, many machine and arithmetic idioms are
well-known and commonly found in assembly language programs. Some of them can be really tricky, but a
good number of them are simply “tricks of the trade.” This text cannot even begin to present all of the idioms
in common use today; they are too numerous and the list is constantly changing. Nevertheless, there are
some very important idioms that you will see all the time, so it makes sense to discuss those.

10.5.1 Multiplying without MUL, IMUL, or INTMUL

If you take a quick look at the timing for the multiply instruction, you’ll notice that the execution time
for this instruction is often long1. When multiplying by a constant, you can sometimes avoid the perfor-
mance penalty of the MUL, IMUL, and INTMUL instructions by using shifts, additions, and subtractions to
perform the multiplication.

Remember, a SHL instruction computes the same result as multiplying the specified operand by two.
Shifting to the left two bit positions multiplies the operand by four. Shifting to the left three bit positions
multiplies the operand by eight. In general, shifting an operand to the left n bits multiplies it by 2n. Any
value can be multiplied by some constant using a series of shifts and adds or shifts and subtractions. For
example, to multiply the AX register by ten, you need only multiply it by eight and then add in two times the
original value. That is, 10*AX = 8*AX + 2*AX. The code to accomplish this is

shl(1, ax); // Multiply AX by two.
mov(ax, bx); // Save 2*AX for later.
shl(2, ax); // Multiply ax by eight (*4 really, but it contains *2).
add(bx, ax); // Add in AX*2 to AX*8 to get AX*10.

The AX register (or just about any register, for that matter) can often be multiplied by many constant
values much faster using SHL than by using the MUL instruction. This may seem hard to believe since it
only takes one instruction to compute this product:

intmul(10, ax);

However, if you look at the timings, the shift and add example above requires fewer clock cycles on many
processors in the 80x86 family than the MUL instruction. Of course, the code is somewhat larger (by a few
bytes), but the performance improvement is usually worth it. Of course, on the later 80x86 processors, the
multiply instructions are quite a bit faster than the earlier processors, but the shift and add scheme is often
faster on these processors as well.

You can also use subtraction with shifts to perform a multiplication operation. Consider the following
multiplication by seven:

mov(eax, ebx); // Save EAX * 1
shl(3, eax); // EAX = EAX * 8
sub(ebx, eax); // EAX*8 - EAX*1 is EAX*7

This follows directly from the fact that eax*7 = (eax*8)-eax.

A common error made by beginning assembly language students is subtracting or adding one or two
rather than EAX*1 or EAX*2. The following does not compute eax*7:

shl(3, eax);
sub(1, eax);

It computes (8*EAX)-1, something entirely different (unless, of course, EAX = 1). Beware of this pitfall
when using shifts, additions, and subtractions to perform multiplication operations.

1. Actually, this is specific to a given processor. Some processors execute the INTMUL instruction fairly fast.
Page 586 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic
You can also use the LEA instruction to compute certain products. The trick is to use the scaled index
addressing modes. The following examples demonstrate some simple cases:

lea(eax, [ecx][ecx]); // EAX := ECX * 2
lea(eax, [eax]eax*2]); // EAX := EAX * 3
lea(eax, [eax*4]); // EAX := EAX * 4
lea(eax, [ebx][ebx*4]); // EAX := EBX * 5
lea(eax, [eax*8]); // EAX := EAX * 8
lea(eax, [edx][edx*8]); // EAX := EDX * 9

10.5.2 Division Without DIV or IDIV

Much as the SHL instruction can be used for simulating a multiplication by some power of two, the
SHR and SAR instructions can be used to simulate a division by a power of two. Unfortunately, you cannot
use shifts, additions, and subtractions to perform a division by an arbitrary constant as easily as you can use
these instructions to perform a multiplication operation.

Another way to perform division is to use the multiply instructions. You can divide by some value by
multiplying by its reciprocal. Since the multiply instruction is faster than the divide instruction; multiplying
by a reciprocal is usually faster than division.

Now you’re probably wondering “how does one multiply by a reciprocal when the values we’re dealing
with are all integers?” The answer, of course, is that we must cheat to do this. If you want to multiply by one
tenth, there is no way you can load the value 1/10th into an 80x86 register prior to performing the multiplica-
tion. However, we could multiply 1/10th by 10, perform the multiplication, and then divide the result by ten
to get the final result. Of course, this wouldn’t buy you anything at all, in fact it would make things worse
since you’re now doing a multiplication by ten as well as a division by ten. However, suppose you multiply
1/10th by 65,536 (6553), perform the multiplication, and then divide by 65,536. This would still perform the
correct operation and, as it turns out, if you set up the problem correctly, you can get the division operation
for free. Consider the following code that divides AX by ten:

mov(6554, dx); // 6554 = round(65,536/10).
mul(dx, ax);

This code leaves AX/10 in the DX register.

To understand how this works, consider what happens when you multiply AX by 65,536 ($10000). This
simply moves AX into DX and sets AX to zero (a multiply by $10000 is equivalent to a shift left by sixteen
bits). Multiplying by 6,554 (65,536 divided by ten) puts AX divided by ten into the DX register. Since MUL
is faster than DIV , this technique runs a little faster than using a straight division.

Multiplying by the reciprocal works well when you need to divide by a constant. You could even use it
to divide by a variable, but the overhead to compute the reciprocal only pays off if you perform the division
many, many times (by the same value).

10.5.3 Implementing Modulo-N Counters with AND

If you want to implement a counter variable that counts up to 2n-1 and then resets to zero, simply using
the following code:

inc(CounterVar);
and(nBits, CounterVar);

where nBits is a binary value containing n one bits right justified in the number. For example, to create a
counter that cycles between zero and fifteen, you could use the following:

inc(CounterVar);
and(%00001111, CounterVar);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 587

Chapter Ten Volume Three
10.5.4 Careless Use of Machine Idioms

One problem with using machine idioms is that the machines change over time. The DOS/16-bit ver-
sion of this text recommends the use of several machine idioms in addition to those this chapter presents.
Unfortunately, as time passed Intel improved the processor and tricks that used to provide a performance
benefit are actually slower on the newer processors. Therefore, you should be careful about employing com-
mon “tricks” you pick up; they may not actually improve the code.

10.6 The HLA (Pseudo) Random Number Unit

The HLA rand.hhf module provides a set of pseudo-random generators that returns seemingly random
values on each call. These pseudo-random number generator functions are great for writing games and other
simulations that require a sequence of values that the user can not easily guess. These functions return a
32-bit value in the EAX register. You can treat the result as a signed or unsigned value as appropriate for
your application.

The rand.hhf library module includes the following functions:

procedure rand.random; returns(“eax”);
procedure rand.range(startRange:dword; endRange:dword); returns(“eax”);

procedure rand.uniform; returns(“eax”);
procedure rand.urange(startRange:dword; endRange:dword); returns(“eax”);

procedure rand.randomize;

The rand.random and rand.uniform procedures are both functions that return a 32-bit pseudo-random
number in the EAX register. They differ only in the algorithm they use to compute the random number
sequence (rand.random uses a standard linear congruential generator, rand.uniform uses an additive genera-
tor. See Knuth’s “The Art of Computer Programming” Volume Two for details on these two algorithms).

The rand.range and rand.urange functions return a pseudo-random number that falls between two val-
ues passed as parameters (inclusive). These routines use better algorithms than the typical “mod the result
by the range of values and add the starting value” algorithm that naive users often employ to limit random
numbers to a specific range (that naive algorithm generally produces a stream of numbers that is somewhat
less than random).

By default, the random number generators in the HLA Standard Library generate the same sequence of
numbers every time you run a program. While this may not seem random at all (and statistically, it certainly
is not random), this is generally what you want in a random number generator. The numbers should appear
to be random but you usually need to be able to generate the same sequence over and over again when test-
ing your program. After all, a defect you encounter with one random sequence may not be apparent when
using a different random number sequence. By emitting the same sequence over and over again, your pro-
grams become deterministic so you can properly test them across several runs of the program.

Once your program is tested and operational, you might want your random number generator to gener-
ate a different sequence every time you run the program. For example, if you write a game and that game
uses a pseudo-random sequence to control the action, the end user may detect a pattern and play the game
accordingly if the random number generator always returns the same sequence of numbers.

To alleviate this problem, the HLA Standard Library rand module provides the rand.randomize proce-
dure. This procedure reads the current date and time (in milliseconds) and, on processors that support it,
reads the CPU’s timestamp counter to generate an almost random set of bits as the starting random number
generator value. Calling the rand.randomize procedure at the beginning of your program essentially guaran-
tees that different executions of the program will produce a different sequence of random numbers.

Note that you cannot make the sequence “more random” by calling rand.randomize multiple times. In
fact, since rand.randomize generates a new seed based on the date and time, calling rand.randomize multiple
times in your program will actually generate a less random sequence (since time is an ever increasing value,
Page 588 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic
not a random value). So make at most one call to rand.randomize and leave it up to the random number gen-
erators to take it from there.

Note that rand.randomize will randomize both the rand.random and rand.uniform random number gen-
erators. You do not need separate calls for the two different generators nor can you randomize one without
randomizing the other.

One attribute of a random number generator is “how uniform are the results the generator returns.” A
uniform random number generator2 that produces a 32-bit result returns a sequence of values that are evenly
distributed throughout the 32-bit range of values. That is, any return result is as equally likely as any other
return result. Good random number generators don’t tend to bunch numbers up in groups.

The following program code provides a simple test of the random number generators by plotting aster-
isks at random positions on the screen. This program works by choosing two random numbers, one between
zero and 79, the other between zero and 23. Then the program uses the console.puts function to print a sin-
gle asterisk at the (X,Y) coordinate on the screen specified by these two random numbers. After 10,000 iter-
ations of this process the program stops and lets you observe the result. Note: since random number
generators generate random numbers, you should not expect this program to fill the entire screen with aster-
isks in only 10,000 iterations.

program testRandom;
#include("stdlib.hhf");

begin testRandom;

 console.cls();
 mov(10_000, ecx);
 repeat

 // Generate a random X-coordinate
 // using rand.range.

 rand.range(0, 79);
 mov(eax, ebx); // Save the X-coordinate for now.

 // Generate a random Y-coordinate
 // using rand.urange.

 rand.urange(0, 23);

 // Print an asterisk at
 // the specified coordinate on the screen.

 console.puts(ax, bx, "*");

 // Repeat this 10,000 times to get
 // a good distribution of values.

 dec(ecx);

 until(@z);

 // Position the cursor at the bottom of the
 // screen so we can observe the results.

 console.gotoxy(24, 0);

2. Despite their names, both rand.uniform and rand.random generate a uniformly distributed set of pseudo-random numbers.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 589

Chapter Ten Volume Three
end testRandom;

Program 10.1 Screen Plot Test of the HLA Random Number Generators

The rand.hhf module also provides an iterator that generates a random sequence of value in the range
0..n-1. However, a discussion of this function must wait until we cover iterators in a later chapter.

10.7 Putting It All Together

This chapter finished the presentation of the integer arithmetic instructions on the 80x86. Then it dem-
onstrated how to convert expressions from a high level language syntax into assembly language. This chap-
ter concluded by teaching you a few assembly language tricks you will commonly find in programs. By the
conclusion of this chapter you are (hopefully) in a position where you can easily evaluate arithmetic expres-
sions in your assembly language programs.
Page 590 © 2001, By Randall Hyde Beta Draft - Do not distribute

Real Arithmetic
Real Arithmetic Chapter Eleven

11.1 Chapter Overview

This chapter discusses the implementation of floating point arithmetic computation in assembly lan-
guage. By the conclusion of this chapter you should be able to translate arithmetic expressions and assign-
ment statements involving floating point operands from high level languages like Pascal and C/C++ into
80x86 assembly language.

11.2 Floating Point Arithmetic

When the 8086 CPU first appeared in the late 1970’s, semiconductor technology was not to the point
where Intel could put floating point instructions directly on the 8086 CPU. Therefore, they devised a scheme
whereby they could use a second chip to perform the floating point calculations – the floating point unit (or
FPU)1. They released their original floating point chip, the 8087, in 1980. This particular FPU worked with
the 8086, 8088, 80186, and 80188 CPUs. When Intel introduced the 80286 CPU, they released a redesigned
80287 FPU chip to accompany it. Although the 80287 was compatible with the 80386 CPU, Intel designed a
better FPU, the 80387, for use in 80386 systems. The 80486 CPU was the first Intel CPU to include an
on-chip floating point unit. Shortly after the release of the 80486, Intel introduced the 80486sx CPU that was
an 80486 without the built-in FPU. To get floating point capabilities on this chip, you had to add an 80487
chip, although the 80487 was really nothing more than a full-blown 80486 which took over for the “sx” chip
in the system. Intel’s Pentium chips provide a high-performance floating point unit directly on the CPU.
There is no floating point coprocessor available for the Pentium chip.

Collectively, we will refer to all these chips as the 80x87 FPU. Given the obsolescence of the 8086,
80286, 8087, 80287, 80387, and 80487 chips, this text will concentrate on the Pentium and later chips. There
are some differences between the Pentium floating point units and the earlier FPUs. If you need to write
code that will execute on those earlier machines, you should consult the appropriate Intel documentation for
those devices.

11.2.1 FPU Registers

The 80x86 FPUs add 13 registers to the 80x86 and later processors: eight floating point data registers, a
control register, a status register, a tag register, an instruction pointer, and a data pointer. The data registers
are similar to the 80x86’s general purpose register set insofar as all floating point calculations take place in
these registers. The control register contains bits that let you decide how the FPU handles certain degenerate
cases like rounding of inaccurate computations, it contains bits that control precision, and so on. The status
register is similar to the 80x86’s flags register; it contains the condition code bits and several other floating
point flags that describe the state of the FPU. The tag register contains several groups of bits that determine
the state of the value in each of the eight general purpose registers. The instruction and data pointer registers
contain certain state information about the last floating point instruction executed. We will not consider the
last three registers in this text, see the Intel documentation for more details.

1. Intel has also referred to this device as the Numeric Data Processor (NDP), Numeric Processor Extension (NPX), and math
coprocessor.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 591

Chapter Eleven Volume Three
11.2.1.1 FPU Data Registers

The FPUs provide eight 80 bit data registers organized as a stack. This is a significant departure from
the organization of the general purpose registers on the 80x86 CPU that comprise a standard general-pur-
pose register set. HLA refers to these registers as ST0, ST1, …, ST7.

The biggest difference between the FPU register set and the 80x86 register set is the stack organization.
On the 80x86 CPU, the AX register is always the AX register, no matter what happens. On the FPU, how-
ever, the register set is an eight element stack of 80 bit floating point values (see Figure 11.1).

Figure 11.1 FPU Floating Point Register Stack

ST0 refers to the item on the top of the stack, ST1 refers to the next item on the stack, and so on. Many
floating point instructions push and pop items on the stack; therefore, ST1 will refer to the previous contents
of ST0 after you push something onto the stack. It will take some thought and practice to get used to the fact
that the registers are changing under you, but this is an easy problem to overcome.

11.2.1.2 The FPU Control Register

When Intel designed the 80x87 (and, essentially, the IEEE floating point standard), there were no stan-
dards in floating point hardware. Different (mainframe and mini) computer manufacturers all had different
and incompatible floating point formats. Unfortunately, much application software had been written taking
into account the idiosyncrasies of these different floating point formats. Intel wanted to design an FPU that
could work with the majority of the software out there (keep in mind, the IBM PC was three to four years
away when Intel began designing the 8087, they couldn’t rely on that “mountain” of software available for
the PC to make their chip popular). Unfortunately, many of the features found in these older floating point
formats were mutually incompatible. For example, in some floating point systems rounding would occur
when there was insufficient precision; in others, truncation would occur. Some applications would work with
one floating point system but not with the other. Intel wanted as many applications as possible to work with
as few changes as possible on their 80x87 FPUs, so they added a special register, the FPU control register,
that lets the user choose one of several possible operating modes for their FPU.

The 80x87 control register contains 16 bits organized as shown in Figure 11.2.

79 64 0

ST1
ST2
ST3
ST4
ST5
ST6
ST7

ST0
Page 592 © 2001, By Randall Hyde Beta Draft - Do not distribute

Real Arithmetic
Figure 11.2 FPU Control Register

Bit 12 of the control register is only present on the 8087 and 80287 chips. It controls how the 80x87
responds to infinity. The 80387 and later chips always use a form of infinity known and affine closure
because this is the only form supported by the IEEE 754/854 standards. As such, we will ignore any further
use of this bit and assume that it is always programmed with a one.

Bits 10 and 11 provide rounding control according to the following values:

The “00” setting is the default. The FPU rounds values above one-half of the least significant bit up. It
rounds values below one-half of the least significant bit down. If the value below the least significant bit is
exactly one-half of the least significant bit, the FPU rounds the value towards the value whose least signifi-
cant bit is zero. For long strings of computations, this provides a reasonable, automatic, way to maintain
maximum precision.

The round up and round down options are present for those computations where it is important to keep
track of the accuracy during a computation. By setting the rounding control to round down and performing
the operation, then repeating the operation with the rounding control set to round up, you can determine the
minimum and maximum ranges between which the true result will fall.

The truncate option forces all computations to truncate any excess bits during the computation. You will
rarely use this option if accuracy is important to you. However, if you are porting older software to the FPU,

Table 1: Rounding Control

Bits 10 & 11 Function

00 To nearest or even

01 Round down

10 Round up

11 Truncate

Precision
Control

Round:
00 - To nearest or even
01 - Down
10 - Up
11 - Truncate result

00 - 24 bits
01 - reserved
10 - 53 bits
11 - 64 bits

Rounding
Control

Exception Masks

0891011 5

Precision
Underflow
Overflow
Zero Divide
Denormalized
Invalid Operation

Reserved
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 593

Chapter Eleven Volume Three
you might use this option to help when porting the software. One place where this option is extremely use-
ful is when converting a floating point value to an integer. Since most software expects floating point to inte-
ger conversions to truncate the result, you will need to use the truncation rounding mode to achieve this.

Bits eight and nine of the control register specify the precision during computation. This capability is
provided to allow compatibility with older software as required by the IEEE 754 standard. The precision
control bits use the following values:

Some CPUs may operate faster with floating point values whose precision is 53 bits (i.e., 64-bit floating
point format) rather than 64 bits (i.e., 80-bit floating point format). Please see the documentation for your
specific processor for details. Generally, the CPU defaults these bits to %11 to select the 64-bit mantissa
precision.

Bits zero through five are the exception masks. These are similar to the interrupt enable bit in the
80x86’s flags register. If these bits contain a one, the corresponding condition is ignored by the FPU. How-
ever, if any bit contains zero, and the corresponding condition occurs, then the FPU immediately generates
an interrupt so the program can handle the degenerate condition.

Bit zero corresponds to an invalid operation error. This generally occurs as the result of a programming
error. Problems which raise the invalid operation exception include pushing more than eight items onto the
stack or attempting to pop an item off an empty stack, taking the square root of a negative number, or loading
a non-empty register.

Bit one masks the denormalized interrupt that occurs whenever you try to manipulate denormalized
values. Denormalized exceptions occur when you load arbitrary extended precision values into the FPU or
work with very small numbers just beyond the range of the FPU’s capabilities. Normally, you would proba-
bly not enable this exception. If you enable this exception and the FPU generates this interrupt, the HLA
run-time system raises the ex.fDenormal exception.

Bit two masks the zero divide exception. If this bit contains zero, the FPU will generate an interrupt if
you attempt to divide a nonzero value by zero. If you do not enable the zero division exception, the FPU will
produce NaN (not a number) whenever you perform a zero division. It’s probably a good idea to enable this
exception by programming a zero into this bit. Note that if your program generates this interrupt, the HLA
run-time system will raise the ex.fDivByZero exception.

Bit three masks the overflow exception. The FPU will raise the overflow exception if a calculation over-
flows or if you attempt to store a value which is too large to fit into a destination operand (e.g., storing a large
extended precision value into a single precision variable). If you enable this exception and the FPU gener-
ates this interrupt, the HLA run-time system raises the ex.fOverflow exception.

Bit four, if set, masks the underflow exception. Underflow occurs when the result is too small to fit in
the destination operand. Like overflow, this exception can occur whenever you store a small extended preci-
sion value into a smaller variable (single or double precision) or when the result of a computation is too
small for extended precision. If you enable this exception and the FPU generates this interrupt, the HLA
run-time system raises the ex.fUnderflow exception.

Bit five controls whether the precision exception can occur. A precision exception occurs whenever the
FPU produces an imprecise result, generally the result of an internal rounding operation. Although many
operations will produce an exact result, many more will not. For example, dividing one by ten will produce
an inexact result. Therefore, this bit is usually one since inexact results are very common. If you enable this

Table 2: Mantissa Precision Control Bits

Bits 8 & 9 Precision Control

00 24 bits

01 Reserved

10 53 bits

11 64 bits
Page 594 © 2001, By Randall Hyde Beta Draft - Do not distribute

Real Arithmetic
exception and the FPU generates this interrupt, the HLA run-time system raises the ex.InexactResult excep-
tion.

Bits six and thirteen through fifteen in the control register are currently undefined and reserved for
future use. Bit seven is the interrupt enable mask, but it is only active on the 8087 FPU; a zero in this bit
enables 8087 interrupts and a one disables FPU interrupts.

The FPU provides two instructions, FLDCW (load control word) and FSTCW (store control word), that
let you load and store the contents of the control register. The single operand to these instructions must be a
16 bit memory location. The FLDCW instruction loads the control register from the specified memory loca-
tion, FSTCW stores the control register into the specified memory location. The syntax for these instruc-
tions is

fldcw(mem16);

fstcw(mem16);

Here’s some example code that sets the rounding control to “truncate result” and sets the rounding precision
to 24 bits:

static
fcw16: word;

.

.

.
fstcw(fcw16);
mov(fcw16, ax);
and($f0ff, ax); // Clears bits 8-11.
or($0c00, ax); // Rounding control=%11, Precision = %00.
mov(ax, fcw16);
fldcw(fcw16);

11.2.1.3 The FPU Status Register

The FPU status register provides the status of the coprocessor at the instant you read it. The FSTSW
instruction stores the16 bit floating point status register into a word variable. The status register is a 16 bit
register, its layout appears in Figure 11.3.

Figure 11.3 The FPU Status Register

0123456789101112131415

Exception Flags

Busy C3 Top of Stack
Pointer

C2 C1 C0

Condition Codes
Exception Flag
Stack Fault
Precision
Underflow
Overflow
Zero Divide
Denormalized
Invalid Operation
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 595

Chapter Eleven Volume Three
Bits zero through five are the exception flags. These bits are appear in the same order as the exception
masks in the control register. If the corresponding condition exists, then the bit is set. These bits are indepen-
dent of the exception masks in the control register. The FPU sets and clears these bits regardless of the corre-
sponding mask setting.

Bit six indicates a stack fault. A stack fault occurs whenever there is a stack overflow or underflow.
When this bit is set, the C1 condition code bit determines whether there was a stack overflow (C1=1) or stack
underflow (C1=0) condition.

Bit seven of the status register is set if any error condition bit is set. It is the logical OR of bits zero
through five. A program can test this bit to quickly determine if an error condition exists.

Bits eight, nine, ten, and fourteen are the coprocessor condition code bits. Various instructions set the
condition code bits as shown in the following table:

Table 3: FPU Condition Code Bits

Instruction Condition Code Bits Condition

C3 C2 C1 C0

fcom,

fcomp,

fcompp,

ficom,

ficomp

0

0

1

1

0

0

0

1

X

X

X

X

0

1

0

1

ST > source

ST < source

ST = source

ST or source undefined

ftst 0

0

1

1

0

0

0

1

X

X

X

X

0

1

0

1

ST is positive

ST is negative

ST is zero (+ or -)

ST is uncomparable

fxam 0

0

0

0

1

1

1

1

0

0

0

0

1

0

0

1

1

0

0

1

1

0

0

1

1

X

0

1

0

1

0

1

0

1

0

1

0

1

X

0

0

0

0

0

0

0

1

1

1

1

1

+ Unnormalized

-Unnormalized

+Normalized

-Normalized

+0

-0

+Denormalized

-Denormalized

+NaN

-NaN

+Infinity

-Infinity

Empty register

fucom,

fucomp,

fucompp

0

0

1

1

0

0

0

1

X

X

X

X

 0

 1

 0

 1

ST > source

ST < source

ST = source

Unordered

X = Don’t care
Page 596 © 2001, By Randall Hyde Beta Draft - Do not distribute

Real Arithmetic
Table 4: Condition Code Interpretations

Instruction(s)
Condition Code Bits

C0 C3 C2 C1

fcom, fcomp, fcmpp, ftst,
fucom, fucomp, fucompp,
ficom, ficomp

Result of com-
parison. See
previous table.

Result of com-
parison. See
previous table.

Operands are
not comparable

Result of comparison.
See previous table.
Also denotes stack
overflow/underflow if
stack exception bit is
set.

fxam See previous
table.

See previous
table.

See previous
table.

Sign of result, or
stack over-
flow/underflow (if
stack exception bit
is set).

fprem, fprem1 Bit 2 of
remainder

Bit 0 of
remainder

0- reduction
done.

1- reduction
incomplete.

Bit 1 of remainder
or stack over-
flow/underflow (if
stack exception bit
is set).

fist, fbstp, frndint, fst,
fstp, fadd, fmul, fdiv,
fdivr, fsub, fsubr, fscale,
fsqrt, fpatan, f2xm1,
fyl2x, fyl2xp1 Undefined Undefined Undefined

Round up occurred
or stack over-
flow/underflow (if
stack exception bit
is set).

fptan, fsin, fcos, fsincos

Undefined Undefined

0- reduction
done.

1- reduction
incomplete.

Round up occurred
or stack over-
flow/underflow (if
stack exception bit
is set).

fchs, fabs, fxch, fincstp,
fdecstp, constant loads,
fxtract, fld, fild, fbld,
fstp (80 bit)

Undefined Undefined Undefined

Zero result or stack
overflow/under-
flow (if stack
exception bit is
set).

fldenv, fstor Restored
from mem-
ory operand.

Restored
from mem-
ory operand.

Restored
from mem-
ory operand.

Restored from
memory operand.

fldcw, fstenv, fstcw, fstsw,
fclex Undefined Undefined Undefined Undefined

finit, fsave Cleared to
zero.

Cleared to
zero.

Cleared to
zero.

Cleared to zero.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 597

Chapter Eleven Volume Three
Bits 11-13 of the FPU status register provide the register number of the top of stack. During computa-
tions, the FPU adds (modulo eight) the logical register numbers supplied by the programmer to these three
bits to determine the physical register number at run time.

Bit 15 of the status register is the busy bit. It is set whenever the FPU is busy. Most programs will have
little reason to access this bit.

11.2.2 FPU Data Types

The FPU supports seven different data types: three integer types, a packed decimal type, and three float-
ing point types. The integer type provides for 64-bit integers, although it is often faster to do the 64-bit arith-
metic using the integer unit of the CPU (see the chapter on Advanced Arithmetic). Certainly it is often faster
to do 16-bit and 32-bit integer arithmetic using the standard integer registers. The packed decimal type pro-
vides a 17 digit signed decimal (BCD) integer. The primary purpose of the BCD format is to convert
between strings and floating point values. The remaining three data types are the 32 bit, 64 bit, and 80 bit
floating point data types we’ve looked at so far. The 80x87 data types appear in Figure 11.4, Figure 11.5, and
Figure 11.6.

Figure 11.4 FPU Floating Point Formats

Figure 11.5 FPU Integer Formats

32 bit Single Precision Floating Point Format

……

64 bit Double Precision Floating Point Format

……

80 bit Extended Precision Floating Point Format

31 23 0781516

0785263

0786479

16 Bit Two's Complement Integer

32 bit Two's Complement Integer

……

64 bit Two's Complement Integer

07815

078151631

07863
Page 598 © 2001, By Randall Hyde Beta Draft - Do not distribute

Real Arithmetic
Figure 11.6 FPU Packed Decimal Format

The FPU generally stores values in a normalized format. When a floating point number is normalized,
the H.O. bit of the mantissa is always one. In the 32 and 64 bit floating point formats, the FPU does not actu-
ally store this bit, the FPU always assumes that it is one. Therefore, 32 and 64 bit floating point numbers are
always normalized. In the extended precision 80 bit floating point format, the FPU does not assume that the
H.O. bit of the mantissa is one, the H.O. bit of the mantissa appears as part of the string of bits.

Normalized values provide the greatest precision for a given number of bits. However, there are a large
number of non-normalized values which we cannot represent with the 80-bit format. These values are very
close to zero and represent the set of values whose mantissa H.O. bit is not zero. The FPUs support a special
80-bit form known as denormalized values. Denormalized values allow the FPU to encode very small val-
ues it cannot encode using normalized values, but at a price. Denormalized values offer fewer bits of preci-
sion than normalized values. Therefore, using denormalized values in a computation may introduce some
slight inaccuracy into a computation. Of course, this is always better than underflowing the denormalized
value to zero (which could make the computation even less accurate), but you must keep in mind that if you
work with very small values you may lose some accuracy in your computations. Note that the FPU status
register contains a bit you can use to detect when the FPU uses a denormalized value in a computation.

11.2.3 The FPU Instruction Set

The FPU adds over 80 new instructions to the 80x86 instruction set. We can classify these instructions
as data movement instructions, conversions, arithmetic instructions, comparisons, constant instructions,
transcendental instructions, and miscellaneous instructions. The following sections describe each of the
instructions in these categories.

11.2.4 FPU Data Movement Instructions

The data movement instructions transfer data between the internal FPU registers and memory. The
instructions in this category are FLD, FST, FSTP, and FXCH. The FLD instruction always pushes its oper-
and onto the floating point stack. The FSTP instruction always pops the top of stack after storing the top of
stack (tos). The remaining instructions do not affect the number of items on the stack.

11.2.4.1 The FLD Instruction

The FLD instruction loads a 32 bit, 64 bit, or 80 bit floating point value onto the stack. This instruction
converts 32 and 64 bit operands to an 80 bit extended precision value before pushing the value onto the float-
ing point stack.

The FLD instruction first decrements the top of stack (TOS) pointer (bits 11-13 of the status register)
and then stores the 80 bit value in the physical register specified by the new TOS pointer. If the source oper-
and of the FLD instruction is a floating point data register, STi, then the actual register the FPU uses for the

…
04879 72 68 63 59

80 Bit Packed Decimal Integer (BCD)

Sign Unused D17 D16 D15 D14 D2 D1 D0
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 599

Chapter Eleven Volume Three
load operation is the register number before decrementing the tos pointer. Therefore, “fld(st0);” duplicates
the value on the top of the stack.

The FLD instruction sets the stack fault bit if stack overflow occurs. It sets the denormalized exception
bit if you load an 80-bit denormalized value. It sets the invalid operation bit if you attempt to load an empty
floating point register onto the stop of stack (or perform some other invalid operation).

Examples:

fld(st1);
fld(real32_variable);
fld(real64_variable);
fld(real80_variable);
fld(real_constant);

Note that there is no way to directly load a 32-bit integer register onto the floating point stack, even if that
register contains a REAL32 value. To accomplish this, you must first store the integer register into a mem-
ory location then you can push that memory location onto the FPU stack using the FLD instruction. E.g.,

mov(eax, tempReal32); // Save REAL32 value in EAX to memory.
fld(tempReal32); // Push that real value onto the FPU stack.

Note: loading a constant via FLD is actually an HLA extension. The FPU doesn’t support this instruction
type. HLA creates a REAL80 object in the “constants” segment and uses the address of this memory object
as the true operand for FLD.

11.2.4.2 The FST and FSTP Instructions

The FST and FSTP instructions copy the value on the top of the floating point register stack to another
floating point register or to a 32, 64, or 80 bit memory variable. When copying data to a 32 or 64 bit memory
variable, the 80 bit extended precision value on the top of stack is rounded to the smaller format as specified
by the rounding control bits in the FPU control register.

The FSTP instruction pops the value off the top of stack when moving it to the destination location. It
does this by incrementing the top of stack pointer in the status register after accessing the data in ST0. If the
destination operand is a floating point register, the FPU stores the value at the specified register number
before popping the data off the top of the stack.

Executing an “fstp(st0);” instruction effectively pops the data off the top of stack with no data transfer.
Examples:

fst(real32_variable);
fst(real64_variable);
fst(realArray[ebx*8]);
fst(real80_variable);
fst(st2);
fstp(st1);

The last example above effectively pops ST1 while leaving ST0 on the top of the stack.

The FST and FSTP instructions will set the stack exception bit if a stack underflow occurs (attempting
to store a value from an empty register stack). They will set the precision bit if there is a loss of precision
during the store operation (this will occur, for example, when storing an 80 bit extended precision value into
a 32 or 64 bit memory variable and there are some bits lost during conversion). They will set the underflow
exception bit when storing an 80 bit value into a 32 or 64 bit memory variable, but the value is too small to
fit into the destination operand. Likewise, these instructions will set the overflow exception bit if the value on
the top of stack is too big to fit into a 32 or 64 bit memory variable. The FST and FSTP instructions set the
denormalized flag when you try to store a denormalized value into an 80 bit register or variable2. They set
the invalid operation flag if an invalid operation (such as storing into an empty register) occurs. Finally, these

2. Storing a denormalized value into a 32 or 64 bit memory variable will always set the underflow exception bit.
Page 600 © 2001, By Randall Hyde Beta Draft - Do not distribute

Real Arithmetic
instructions set the C1 condition bit if rounding occurs during the store operation (this only occurs when
storing into a 32 or 64 bit memory variable and you have to round the mantissa to fit into the destination).

Note: Because of an idiosyncrasy in the FPU instruction set related to the encoding of the instructions, you
cannot use the FST instruction to store data into a real80 memory variable. You may, however, store 80-bit
data using the FSTP instruction.

11.2.4.3 The FXCH Instruction

The FXCH instruction exchanges the value on the top of stack with one of the other FPU registers. This
instruction takes two forms: one with a single FPU register as an operand, the second without any operands.
The first form exchanges the top of stack (tos) with the specified register. The second form of FXCH swaps
the top of stack with ST1.

Many FPU instructions, e.g., FSQRT, operate only on the top of the register stack. If you want to per-
form such an operation on a value that is not on the top of stack, you can use the FXCH instruction to swap
that register with tos, perform the desired operation, and then use the FXCH to swap the tos with the original
register. The following example takes the square root of ST2:

fxch(st2);
fsqrt();
fxch(st2);

The FXCH instruction sets the stack exception bit if the stack is empty. It sets the invalid operation bit if
you specify an empty register as the operand. This instruction always clears the C1 condition code bit.

11.2.5 Conversions

The FPU performs all arithmetic operations on 80 bit real quantities. In a sense, the FLD and FST/FSTP
instructions are conversion instructions as well as data movement instructions because they automatically
convert between the internal 80 bit real format and the 32 and 64 bit memory formats. Nonetheless, we’ll
simply classify them as data movement operations, rather than conversions, because they are moving real
values to and from memory. The FPU provides five other instructions that convert to or from integer or
binary coded decimal (BCD) format when moving data. These instructions are FILD, FIST, FISTP, FBLD,
and FBSTP.

11.2.5.1 The FILD Instruction

The FILD (integer load) instruction converts a 16, 32, or 64 bit two’s complement integer to the 80 bit
extended precision format and pushes the result onto the stack. This instruction always expects a single oper-
and. This operand must be the address of a word, double word, or quad word integer variable. You cannot
specify one of the 80x86’s 16 or 32 bit general purpose registers. If you want to push an 80x86 general pur-
pose register onto the FPU stack, you must first store it into a memory variable and then use FILD to push
that value of that memory variable.

The FILD instruction sets the stack exception bit and C1 (accordingly) if stack overflow occurs while
pushing the converted value. Examples:

fild(word_variable);
fild(dword_val[ecx*4]);
fild(qword_variable);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 601

Chapter Eleven Volume Three
11.2.5.2 The FIST and FISTP Instructions

The FIST and FISTP instructions convert the 80 bit extended precision variable on the top of stack to a
16, 32, or 64 bit integer and store the result away into the memory variable specified by the single operand.
These instructions convert the value on tos to an integer according to the rounding setting in the FPU control
register (bits 10 and 11). As for the FILD instruction, the FIST and FISTP instructions will not let you spec-
ify one of the 80x86’s general purpose 16 or 32 bit registers as the destination operand.

The FIST instruction converts the value on the top of stack to an integer and then stores the result; it
does not otherwise affect the floating point register stack. The FISTP instruction pops the value off the float-
ing point register stack after storing the converted value.

These instructions set the stack exception bit if the floating point register stack is empty (this will also
clear C1). They set the precision (imprecise operation) and C1 bits if rounding occurs (that is, if there is any
fractional component to the value in ST0). These instructions set the underflow exception bit if the result is
too small (i.e., less than one but greater than zero or less than zero but greater than -1). Examples:

fist(word_var[ebx*2]);
fist(qword_var);
fistp(dword_var);

Don’t forget that these instructions use the rounding control settings to determine how they will convert
the floating point data to an integer during the store operation. Be default, the rounding control is usually set
to “round” mode; yet most programmers expect FIST/FISTP to truncate the decimal portion during conver-
sion. If you want FIST/FISTP to truncate floating point values when converting them to an integer, you will
need to set the rounding control bits appropriately in the floating point control register, e.g.,

static
fcw16: word;
fcw16_2: word;
IntResult: int32;

.

.

.
fstcw(fcw16);
mov(fcw16, ax);
or($0c00, ax); // Rounding control=%11 (truncate).
mov(ax, fcw16_2); // Store into memory and reload the ctrl word.
fldcw(fcw16_2);

fistp(IntResult); // Truncate ST0 and store as int32 object.

fldcw(fcw16); // Restore original rounding control

11.2.5.3 The FBLD and FBSTP Instructions

The FBLD and FBSTP instructions load and store 80 bit BCD values. The FBLD instruction converts a
BCD value to its 80 bit extended precision equivalent and pushes the result onto the stack. The FBSTP
instruction pops the extended precision real value on TOS, converts it to an 80 bit BCD value (rounding
according to the bits in the floating point control register), and stores the converted result at the address spec-
ified by the destination memory operand. Note that there is no FBST instruction which stores the value on
tos without popping it.

The FBLD instruction sets the stack exception bit and C1 if stack overflow occurs. It sets the invalid
operation bit if you attempt to load an invalid BCD value. The FBSTP instruction sets the stack exception bit
and clears C1 if stack underflow occurs (the stack is empty). It sets the underflow flag under the same condi-
tions as FIST and FISTP. Examples:

// Assuming fewer than eight items on the stack, the following
Page 602 © 2001, By Randall Hyde Beta Draft - Do not distribute

Real Arithmetic
// code sequence is equivalent to an fbst instruction:

fld(st0);
fbstp(tbyte_var);

// The following example easily converts an 80 bit BCD value to
// a 64 bit integer:

fbld(tbyte_var);
fist(qword_var);

11.2.6 Arithmetic Instructions

The arithmetic instructions make up a small, but important, subset of the FPU’s instruction set. These
instructions fall into two general categories – those which operate on real values and those which operate on
a real and an integer value.

11.2.6.1 The FADD and FADDP Instructions

These two instructions take the following forms:

fadd()
faddp()
fadd(st0, sti);
fadd(sti, st0);
faddp(st0, sti);
fadd(mem_32_64);
fadd(real_constant);

The first two forms are equivalent. They pop the two values on the top of stack, add them, and push their
sum back onto the stack.

The next two forms of the FADD instruction, those with two FPU register operands, behave like the
80x86’s ADD instruction. They add the value in the source register operand to the value in the destination
register operand. Note that one of the register operands must be ST0.

The FADDP instruction with two operands adds ST0 (which must always be the source operand) to the
destination operand and then pops ST0. The destination operand must be one of the other FPU registers.

The last form above, FADD with a memory operand, adds a 32 or 64 bit floating point variable to the
value in ST0. This instruction will convert the 32 or 64 bit operands to an 80 bit extended precision value
before performing the addition. Note that this instruction does not allow an 80 bit memory operand.

These instructions can raise the stack, precision, underflow, overflow, denormalized, and illegal opera-
tion exceptions, as appropriate. If a stack fault exception occurs, C1 denotes stack overflow or underflow.

Like FLD(real_constant), the FADD(real_constant) instruction is an HLA extension. Note that it cre-
ates a 64-bit variable holding the constant value and emits the FADD(mem64) instruction, specifying the
read-only object it creates in the constants segment.

11.2.6.2 The FSUB, FSUBP, FSUBR, and FSUBRP Instructions

These four instructions take the following forms:

fsub()
fsubp()
fsubr()
fsubrp()

fsub(st0, sti)
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 603

Chapter Eleven Volume Three
fsub(sti, st0);
fsubp(st0, sti);
fsub(mem_32_64);
fsub(real_constant);

fsubr(st0, sti)
fsubr(sti, st0);
fsubrp(st0, sti);
fsubr(mem_32_64);
fsubr(real_constant);

With no operands, the FSUB and FSUBP instructions operate identically. They pop ST0 and ST1 from
the register stack, compute ST0-ST1, and the push the difference back onto the stack. The FSUBR and
FSUBRP instructions (reverse subtraction) operate in an almost identical fashion except they compute
ST1-ST0 and push that difference.

With two register operands (source, destination) the FSUB instruction computes destination := desti-
nation - source. One of the two registers must be ST0. With two registers as operands, the FSUBP also com-
putes destination := destination - source and then it pops ST0 off the stack after computing the difference.
For the FSUBP instruction, the source operand must be ST0.

With two register operands, the FSUBR and FSUBRP instruction work in a similar fashion to FSUB
and FSUBP, except they compute destination := source - destination.

The FSUB(mem) and FSUBR(mem) instructions accept a 32 or 64 bit memory operand. They convert
the memory operand to an 80 bit extended precision value and subtract this from ST0 (FSUB) or subtract
ST0 from this value (FSUBR) and store the result back into ST0.

These instructions can raise the stack, precision, underflow, overflow, denormalized, and illegal opera-
tion exceptions, as appropriate. If a stack fault exception occurs, C1 denotes stack overflow or underflow.

Note: the instructions that have real constants as operands aren’t true FPU instructions. These are
extensions provided by HLA. HLA generates a constant segment memory object initialized with the con-
stant’s value.

11.2.6.3 The FMUL and FMULP Instructions

The FMUL and FMULP instructions multiply two floating point values. These instructions allow the
following forms:

fmul()
fmulp()

fmul(sti, st0);
fmul(st0, sti);
fmul(mem_32_64);
fmul(real_constant);

fmulp(st0, sti);

With no operands, FMUL and FMULP both do the same thing – they pop ST0 and ST1, multiply these
values, and push their product back onto the stack. The FMUL instructions with two register operands com-
pute destination := destination * source. One of the registers (source or destination) must be ST0.

The FMULP(ST0, STi) instruction computes STi := STi * ST0 and then pops ST0. This instruction
uses the value for i before popping ST0. The FMUL(mem) instruction requires a 32 or 64 bit memory oper-
and. It converts the specified memory variable to an 80 bit extended precision value and the multiplies ST0
by this value.

These instructions can raise the stack, precision, underflow, overflow, denormalized, and illegal opera-
tion exceptions, as appropriate. If rounding occurs during the computation, these instructions set the C1 con-
dition code bit. If a stack fault exception occurs, C1 denotes stack overflow or underflow.
Page 604 © 2001, By Randall Hyde Beta Draft - Do not distribute

Real Arithmetic
Note: the instruction that has a real constant as its operand isn’t a true FPU instruction. It is an exten-
sion provided by HLA (see the note at the end of the previous section for details).

11.2.6.4 The FDIV, FDIVP, FDIVR, and FDIVRP Instructions

These four instructions allow the following forms:

fdiv()
fdivp()
fdivr()
fdivrp()

fdiv(sti, st0);
fdiv(st0, sti);
fdivp(st0, sti);

fdivr(sti, st0);
fdivr(st0, sti);
fdivrp(st0, sti);

fdiv(mem_32_64);
fdivr(mem_32_64);
fdiv(real_constant);
fdivr(real_constant);

With no operands, the FDIV and FDIVP instructions pop ST0 and ST1, compute ST0/ST1, and push the
result back onto the stack. The FDIVR and FDIVRP instructions also pop ST0 and ST1 but compute
ST1/ST0 before pushing the quotient onto the stack.

With two register operands, these instructions compute the following quotients:

fdiv(sti, st0); // ST0 := ST0/STi
fdiv(st0, sti); // STi := STi/ST0
fdivp(st0, sti); // STi := STi/ST0 then pop ST0
fdivr(st0, sti); // ST0 := ST0/STi
fdivrp(st0, sti); // STi := ST0/STi then pop ST0

The FDIVP and FDIVRP instructions also pop ST0 after performing the division operation. The value for i
in these two instructions is computed before popping ST0.

These instructions can raise the stack, precision, underflow, overflow, denormalized, zero divide, and
illegal operation exceptions, as appropriate. If rounding occurs during the computation, these instructions set
the C1 condition code bit. If a stack fault exception occurs, C1 denotes stack overflow or underflow.

Note: the instructions that have real constants as operands aren’t true FPU instructions. These are
extensions provided by HLA.

11.2.6.5 The FSQRT Instruction

The FSQRT routine does not allow any operands. It computes the square root of the value on top of
stack (TOS) and replaces ST0 with this result. The value on TOS must be zero or positive, otherwise FSQRT
will generate an invalid operation exception.

This instruction can raise the stack, precision, denormalized, and invalid operation exceptions, as appro-
priate. If rounding occurs during the computation, FSQRT sets the C1 condition code bit. If a stack fault
exception occurs, C1 denotes stack overflow or underflow.

Example:

// Compute Z := sqrt(x**2 + y**2);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 605

Chapter Eleven Volume Three
fld(x); // Load X.
fld(st0); // Duplicate X on TOS.
fmul(); // Compute X**2.

fld(y); // Load Y
fld(st0); // Duplicate Y.
fmul(); // Compute Y**2.

fadd(); // Compute X**2 + Y**2.
fsqrt(); // Compute sqrt(X**2 + Y**2).
fstp(z); // Store result away into Z.

11.2.6.6 The FPREM and FPREM1 Instructions

The FPREM and FPREM1 instructions compute a partial remainder. Intel designed the FPREM
instruction before the IEEE finalized their floating point standard. In the final draft of the IEEE floating point
standard, the definition of FPREM was a little different than Intel’s original design. Unfortunately, Intel
needed to maintain compatibility with the existing software that used the FPREM instruction, so they
designed a new version to handle the IEEE partial remainder operation, FPREM1. You should always use
FPREM1 in new software you write, therefore we will only discuss FPREM1 here, although you use
FPREM in an identical fashion.

FPREM1 computes the partial remainder of ST0/ST1. If the difference between the exponents of ST0
and ST1 is less than 64, FPREM1 can compute the exact remainder in one operation. Otherwise you will
have to execute the FPREM1 two or more times to get the correct remainder value. The C2 condition code
bit determines when the computation is complete. Note that FPREM1 does not pop the two operands off the
stack; it leaves the partial remainder in ST0 and the original divisor in ST1 in case you need to compute
another partial product to complete the result.

The FPREM1 instruction sets the stack exception flag if there aren’t two values on the top of stack. It
sets the underflow and denormal exception bits if the result is too small. It sets the invalid operation bit if the
values on tos are inappropriate for this operation. It sets the C2 condition code bit if the partial remainder
operation is not complete. Finally, it loads C3, C1, and C0 with bits zero, one, and two of the quotient,
respectively.

Example:

// Compute Z := X mod Y

fld(y);
fld(x);
repeat

fprem1();
fstsw(ax); // Get condition code bits into AX.
and(1, ah); // See if C2 is set.

until(@z); // Repeat until C2 is clear.

fstp(z); // Store away the remainder.
fstp(st0); // Pop old Y value.

11.2.6.7 The FRNDINT Instruction

The FRNDINT instruction rounds the value on the top of stack (TOS) to the nearest integer using the
rounding algorithm specified in the control register.

This instruction sets the stack exception flag if there is no value on the TOS (it will also clear C1 in this
case). It sets the precision and denormal exception bits if there was a loss of precision. It sets the invalid
Page 606 © 2001, By Randall Hyde Beta Draft - Do not distribute

Real Arithmetic
operation flag if the value on the tos is not a valid number. Note that the result on tos is still a floating point
value, it simply does not have a fractional component.

11.2.6.8 The FABS Instruction

FABS computes the absolute value of ST0 by clearing the mantissa sign bit of ST0. It sets the stack
exception bit and invalid operation bits if the stack is empty.

Example:

// Compute X := sqrt(abs(x));

fld(x);
fabs();
fsqrt();
fstp(x);

11.2.6.9 The FCHS Instruction

FCHS changes the sign of ST0’s value by inverting the mantissa sign bit (that is, this is the floating point
negation instruction). It sets the stack exception bit and invalid operation bits if the stack is empty. Example:

// Compute X := -X if X is positive, X := X if X is negative.

fld(x);
fabs();
fchs();
fstp(x);

11.2.7 Comparison Instructions

The FPU provides several instructions for comparing real values. The FCOM, FCOMP, and FCOMPP
instructions compare the two values on the top of stack and set the condition codes appropriately. The FTST
instruction compares the value on the top of stack with zero.

Generally, most programs test the condition code bits immediately after a comparison. Unfortunately,
there are no conditional jump instructions that branch based on the FPU condition codes. Instead, you can
use the FSTSW instruction to copy the floating point status register (see “The FPU Status Register” on
page 595) into the AX register; then you can use the SAHF instruction to copy the AH register into the
80x86’s condition code bits. After doing this, you can use the conditional jump instructions to test some con-
dition. This technique copies C0 into the carry flag, C2 into the parity flag, and C3 into the zero flag. The
SAHF instruction does not copy C1 into any of the 80x86’s flag bits.

Since the SAHF instruction does not copy any FPU status bits into the sign or overflow flags, you can-
not use signed comparison instructions. Instead, use unsigned operations (e.g., SETA, SETB) when testing
the results of a floating point comparison. Yes, these instructions normally test unsigned values and floating
point numbers are signed values. However, use the unsigned operations anyway; the FSTSW and SAHF
instructions set the 80x86 flags register as though you had compared unsigned values with the CMP instruc-
tion.

The Pentium II and (upwards) compatible processors provide an extra set of floating point comparison
instructions that directly affect the 80x86 condition code flags. These instructions circumvent having to use
FSTSW and SAHF to copy the FPU status into the 80x86 condition codes. These instructions include
FCOMI and FCOMIP. You use them just like the FCOM and FCOMP instructions except, of course, you do
not have to manually copy the status bits to the FLAGS register. Do be aware that these instructions are not
available on many processors in common use today (as of 1/1/2000). However, as time passes it may be safe
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 607

Chapter Eleven Volume Three
to begin assuming that everyone’s CPU supports these instructions. Since this text assumes a minimum Pen-
tium CPU, it will not discuss these two instructions any further.

11.2.7.1 The FCOM, FCOMP, and FCOMPP Instructions

The FCOM, FCOMP, and FCOMPP instructions compare ST0 to the specified operand and set the cor-
responding FPU condition code bits based on the result of the comparison. The legal forms for these instruc-
tions are

fcom()
fcomp()
fcompp()

fcom(sti)
fcomp(sti)

fcom(mem_32_64)
fcomp(mem_32_64)
fcom(real_constant)
fcomp(real_constant)

With no operands, FCOM, FCOMP, and FCOMPP compare ST0 against ST1 and set the processor flags
accordingly. In addition, FCOMP pops ST0 off the stack and FCOMPP pops both ST0 and ST1 off the stack.

With a single register operand, FCOM and FCOMP compare ST0 against the specified register. FCOMP
also pops ST0 after the comparison.

With a 32 or 64 bit memory operand, the FCOM and FCOMP instructions convert the memory variable
to an 80 bit extended precision value and then compare ST0 against this value, setting the condition code
bits accordingly. FCOMP also pops ST0 after the comparison.

These instructions set C2 (which winds up in the parity flag) if the two operands are not comparable
(e.g., NaN). If it is possible for an illegal floating point value to wind up in a comparison, you should check
the parity flag for an error before checking the desired condition.

These instructions set the stack fault bit if there aren’t two items on the top of the register stack. They set
the denormalized exception bit if either or both operands are denormalized. They set the invalid operation
flag if either or both operands are quite NaNs. These instructions always clear the C1 condition code.

Note: the instructions that have real constants as operands aren’t true FPU instructions. These are
extensions provided by HLA. When HLA encounters such an instruction, it creates a real64 read-only vari-
able in the constants segment and initializes this variable with the specified constant. Then HLA translates
the instruction to one that specifies a real64 memory operand. Note that because of the precision differences
(64 bits vs. 80 bits), if you use a constant operand in a floating point instruction you may not get results that
are as precise as you would expect.

Example of a floating point comparison:

fcompp();
fstsw(ax);
sahf();
setb(al); // AL = true if ST1 < ST0.

.

.

.

Note that you cannot compare floating point values in an HLA run-time boolean expression (e.g., within an
IF statement).
Page 608 © 2001, By Randall Hyde Beta Draft - Do not distribute

Real Arithmetic
11.2.7.2 The FTST Instruction

The FTST instruction compares the value in ST0 against 0.0. It behaves just like the FCOM instruction
would if ST1 contained 0.0. Note that this instruction does not differentiate -0.0 from +0.0. If the value in
ST0 is either of these values, ftst will set C3 to denote equality. Note that this instruction does not pop st(0)
off the stack. Example:

ftst();
fstsw(ax);
sahf();
sete(al); // Set AL to 1 if TOS = 0.0

11.2.8 Constant Instructions

The FPU provides several instructions that let you load commonly used constants onto the FPU’s regis-
ter stack. These instructions set the stack fault, invalid operation, and C1 flags if a stack overflow occurs;
they do not otherwise affect the FPU flags. The specific instructions in this category include:

fldz() ;Pushes +0.0.
fld1() ;Pushes +1.0.
fldpi() ;Pushes π.
fldl2t() ;Pushes log2(10).

fldl2e() ;Pushes log2(e).

fldlg2() ;Pushes log10(2).

fldln2() ;Pushes ln(2).

11.2.9 Transcendental Instructions

The FPU provides eight transcendental (log and trigonometric) instructions to compute sin, cos, partial
tangent, partial arctangent, 2x-1, y * log2(x), and y * log2(x+1). Using various algebraic identities, it is easy
to compute most of the other common transcendental functions using these instructions.

11.2.9.1 The F2XM1 Instruction

F2XM1 computes 2st0-1. The value in ST0 must be in the range -1.0 ≤ ST0 ≤ +1.0. If ST0 is out of
range F2XM1 generates an undefined result but raises no exceptions. The computed value replaces the value
in ST0. Example:

; Compute 10x using the identity: 10x = 2x*lg(10) (lg = log2).

fld(x);
fldl2t();
fmul();
f2xm1();
fld1();
fadd();

Note that F2XM1 computes 2x-1, which is why the code above adds 1.0 to the result at the end of the com-
putation.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 609

Chapter Eleven Volume Three
11.2.9.2 The FSIN, FCOS, and FSINCOS Instructions

These instructions pop the value off the top of the register stack and compute the sine, cosine, or both,
and push the result(s) back onto the stack. The FSINCOS pushes the sine followed by the cosine of the orig-
inal operand, hence it leaves cos(ST0) in ST0 and sin(ST0) in ST1.

These instructions assume ST0 specifies an angle in radians and this angle must be in the range
-263 < ST0 < +263. If the original operand is out of range, these instructions set the C2 flag and leave ST0
unchanged. You can use the FPREM1 instruction, with a divisor of 2π, to reduce the operand to a reasonable
range.

These instructions set the stack fault/C1, precision, underflow, denormalized, and invalid operation flags
according to the result of the computation.

11.2.9.3 The FPTAN Instruction

FPTAN computes the tangent of ST0 and pushes this value and then it pushes 1.0 onto the stack. Like
the FSIN and FCOS instructions, the value of ST0 is assumed to be in radians and must be in the range
-263<ST0<+263. If the value is outside this range, FPTAN sets C2 to indicate that the conversion did not take
place. As with the FSIN, FCOS, and FSINCOS instructions, you can use the FPREM1 instruction to reduce
this operand to a reasonable range using a divisor of 2π.

If the argument is invalid (i.e., zero or π radians, which causes a division by zero) the result is undefined
and this instruction raises no exceptions. FPTAN will set the stack fault, precision, underflow, denormal,
invalid operation, C2, and C1 bits as required by the operation.

11.2.9.4 The FPATAN Instruction

This instruction expects two values on the top of stack. It pops them and computes the following:

ST0 = tan-1(ST1 / ST0)

The resulting value is the arctangent of the ratio on the stack expressed in radians. If you have a value
you wish to compute the tangent of, use FLD1 to create the appropriate ratio and then execute the FPATAN
instruction.

This instruction affects the stack fault/C1, precision, underflow, denormal, and invalid operation bits if
an problem occurs during the computation. It sets the C1 condition code bit if it has to round the result.

11.2.9.5 The FYL2X Instruction

This instruction expects two operands on the FPU stack: y is found in ST1 and x is found in ST0. This
function computes:

ST0 = ST1 * log2(ST0)

This instruction has no operands (to the instruction itself). The instruction uses the following syntax:

fyl2x();

Note that this instruction computes the base two logarithm. Of course, it is a trivial matter to compute
the log of any other base by multiplying by the appropriate constant.

11.2.9.6 The FYL2XP1 Instruction

This instruction expects two operands on the FPU stack: y is found in ST1 and x is found in ST0. This
function computes:
Page 610 © 2001, By Randall Hyde Beta Draft - Do not distribute

Real Arithmetic
ST0 = ST1 * log2(ST0 + 1.0)

The syntax for this instruction is

fyl2xp1();

Otherwise, the instruction is identical to FYL2X.

11.2.10Miscellaneous instructions

The FPU includes several additional instructions which control the FPU, synchronize operations, and let
you test or set various status bits. These instructions include FINIT/FNINIT, FLDCW, FSTCW,
FCLEX/FNCLEX, and FSTSW.

11.2.10.1 The FINIT and FNINIT Instructions

The FINIT instruction initializes the FPU for proper operation. Your applications should execute this
instruction before executing any other FPU instructions. This instruction initializes the control register to
37Fh (see “The FPU Control Register” on page 592), the status register to zero (see “The FPU Status Regis-
ter” on page 595) and the tag word to 0FFFFh. The other registers are unaffected. Examples:

FINIT();
FNINIT();

The difference between FINIT and FNINIT is that FINIT first checks for any pending floating point
exceptions before initializing the FPU; FNINIT does not.

11.2.10.2 The FLDCW and FSTCW Instructions

The FLDCW and FSTCW instructions require a single 16 bit memory operand:

fldcw(mem_16);
fstcw(mem_16);

These two instructions load the control register (see “The FPU Control Register” on page 592) from a
memory location (FLDCW) or store the control word to a 16 bit memory location (FSTCW).

When using the FLDCW instruction to turn on one of the exceptions, if the corresponding exception
flag is set when you enable that exception, the FPU will generate an immediate interrupt before the CPU
executes the next instruction. Therefore, you should use the FCLEX instruction to clear any pending inter-
rupts before changing the FPU exception enable bits.

11.2.10.3 The FCLEX and FNCLEX Instructions

The FCLEX and FNCLEX instructions clear all exception bits the stack fault bit, and the busy flag in
the FPU status register (see “The FPU Status Register” on page 595). Examples:

fclex();
fnclex();

The difference between these instructions is the same as FINIT and FNINIT.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 611

Chapter Eleven Volume Three
11.2.10.4 The FSTSW and FNSTSW Instructions

fstsw(ax)
fnstsw(ax)
fstsw(mem_16)
fnstsw(mem_16)

These instructions store the FPU status register (see “The FPU Status Register” on page 595) into a 16
bit memory location or the AX register. These instructions are unusual in the sense that they can copy an
FPU value into one of the 80x86 general purpose registers (specifically, AX). Of course, the whole purpose
behind allowing the transfer of the status register into AX is to allow the CPU to easily test the condition
code register with the SAHF instruction. The difference between FSTSW and FNSTSW is the same as for
FCLEX and FNCLEX.

11.2.11Integer Operations

The 80x87 FPUs provide special instructions that combine integer to extended precision conversion
along with various arithmetic and comparison operations. These instructions are the following:

fiadd(int_16_32)
fisub(int_16_32)
fisubr(int_16_32)
fimul(int_16_32)
fidiv(int_16_32)
fidivr(int_16_32)

ficom(int_16_32)
ficomp(int_16_32)

These instructions convert their 16 or 32 bit integer operands to an 80 bit extended precision floating
point value and then use this value as the source operand for the specified operation. These instructions use
ST0 as the destination operand.

11.3 Converting Floating Point Expressions to Assembly Language

Because the FPU register organization is different than the 80x86 integer register set, translating arith-
metic expressions involving floating point operands is a little different than the techniques for translating
integer expressions. Therefore, it makes sense to spend some time discussing how to manually translate
floating point expressions into assembly language.

In one respect, it’s actually easier to translate floating point expressions into assembly language. The
stack architecture of the Intel FPU eases the translation of arithmetic expressions into assembly language. If
you’ve ever used a Hewlett-Packard calculator, you’ll be right at home on the FPU because, like the HP cal-
culator, the FPU uses reverse polish notation, or RPN, for arithmetic calculations. Once you get used to
using RPN, it’s actually a bit more convenient for translating expressions because you don’t have to worry
about allocating temporary variables - they always wind up on the FPU stack.

RPN, as opposed to standard infix notation, places the operands before the operator. The following
examples give some simple examples of infix notation and the corresponding RPN notation:

infix notation RPN notation
5 + 6 5 6 +
7 - 2 7 2 -
x * y x y *
a / b a b /
Page 612 © 2001, By Randall Hyde Beta Draft - Do not distribute

Real Arithmetic
An RPN expression like “5 6 +” says “push five onto the stack, push six onto the stack, then pop the
value off the top of stack (six) and add it to the new top of stack.” Sound familiar? This is exactly what the
FLD and FADD instructions do. In fact, you can calculate this using the following code:

fld(5.0);
fld(6.0);
fadd(); // 11.0 is now on the top of the FPU stack.

As you can see, RPN is a convenient notation because it’s very easy to translate this code into FPU instruc-
tions.

One advantage to RPN (or postfix notation) is that it doesn’t require any parentheses. The following
examples demonstrate some slightly more complex infix to postfix conversions:

infix notation postfix notation
(x + y) * 2 x y + 2 *
x * 2 - (a + b) x 2 * a b + -
(a + b) * (c + d) a b + c d + *

The postfix expression “x y + 2 *” says “push x, then push y; next, add those values on the stack (producing
X+Y on the stack). Next, push 2 and then multiply the two values (two and X+Y) on the stack to produce
two times the quantity X+Y.” Once again, we can translate these postfix expressions directly into assembly
language. The following code demonstrates the conversion for each of the above expressions:

// x y + 2 *

fld(x);
fld(y);
fadd();
fld(2.0);
fmul();

// x 2 * a b + -

fld(x);
fld(2.0);
fmul();
fld(a);
fld(b);
fadd();
fsub();

// a b + c d + *

fld(a);
fld(b);
fadd();
fld(c);
fld(d);
fadd();
fmul();

11.3.1 Converting Arithmetic Expressions to Postfix Notation

Since the process of translating arithmetic expressions into assembly language involves postfix (RPN)
notation, converting arithmetic expressions into postfix notation seems like the right place to start. This sec-
tion will concentrate on that conversion.

For simple expressions, those involving two operands and a single expression, the translation is trivial.
Simply move the operator from the infix position to the postfix position (that is, move the operator from
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 613

Chapter Eleven Volume Three
inbetween the operands to after the second operand). For example, “5 + 6” becomes “5 6 +”. Other than
separating your operands so you don’t confuse them (i.e., is it “5” and “6” or “56”?) there isn’t much to con-
verting simple infix expressions into postfix notation.

For complex expressions, the idea is to convert the simple sub-expressions into postfix notation and then
treat each converted subexpression as a single operand in the remaining expression. The following discus-
sion will surround completed conversions in square brackets so it is easy to see which text needs to be
treated as a single operand in the conversion.

As for integer expression conversion, the best place to start is in the inner-most parenthetical
sub-expression and then work your way outward considering precedence, associativity, and other parenthet-
ical sub-expressions. As a concrete working example, consider the following expression:

x = ((y-z)*a) - (a + b * c)/3.14159

A possible first translation is to convert the subexpression “(y-z)” into postfix notation. This is accom-
plished as follows:

x = ([y z -] * a) - (a + b * c)/3.14159

Square brackets surround the converted postfix code just to separate it from the infix code. These exist only
to make the partial translations more readable. Remember, for the purposes of conversion we will treat the
text inside the square brackets as a single operand. Therefore, you would treat “[y z -]” as though it were a
single variable name or constant.

The next step is to translate the subexpression “([y z -] * a)” into postfix form. This yields the follow-
ing:

x = [y z - a *] - (a + b * c)/3.14159

Next, we work on the parenthetical expression “(a + b * c).” Since multiplication has higher prece-
dence than addition, we convert “b*c” first:

x = [y z - a *] - (a + [b c *])/3.14159

After converting “b*c” we finish the parenthetical expression:

x = [y z - a *] - [a b c * +]/3.14159

This leaves only two infix operators: subtraction and division. Since division has the higher precedence,
we’ll convert that first:

x = [y z - a *] - [a b c * + 3.14159 /]

Finally, we convert the entire expression into postfix notation by dealing with the last infix operation,
subtraction:

x = [y z - a *] [a b c * + 3.14159 /] -

Removing the square brackets to give us true postfix notation yields the following RPN expression:

x = y z - a * a b c * + 3.14159 / -

Here is another example of an infix to postfix conversion:

a = (x * y - z + t)/2.0

Step 1: Work inside the parentheses. Since multiplication has the highest precedence, convert that first:

a = ([x y *] - z + t)/2.0
Page 614 © 2001, By Randall Hyde Beta Draft - Do not distribute

Real Arithmetic
Step 2: Still working inside the parentheses, we note that addition and subtraction have the same prece-
dence, so we rely upon associativity to determine what to do next. These operators are left associative, so we
must translate the expressions in a left to right order. This means translate the subtraction operator first:

a = ([x y * z -] + t)/2.0

Step 3: Now translate the addition operator inside the parentheses. Since this finishes the parenthetical
operators, we can drop the parentheses:

a = [x y * z - t +]/2.0

Step 4: Translate the final infix operator (division). This yields the following:

a = [x y * z - t + 2.0 /]

Step 5: Drop the square brackets and we’re done:

a = x y * z - t + 2.0 /

11.3.2 Converting Postfix Notation to Assembly Language

Once you’ve translated an arithmetic expression into postfix notation, finishing the conversion to assem-
bly language is especially easy. All you have to do is issue an FLD instruction whenever you encounter an
operand and issue an appropriate arithmetic instruction when you encounter an operator. This section will
use the completed examples from the previous section to demonstrate how little there is to this process.

x = y z - a * a b c * + 3.14159 / -

• Step 1: Convert y to FLD(y);
• Step 2: Convert z to FLD(z);
• Step 3: Convert “-” to FSUB();
• Step 4: Convert a to FLD(a);
• Step 5: Convert “*” to FMUL();
• Steps 6-n: Continuing in a left-to-right fashion, generate the following code for the expression:

fld(y);
fld(z);
fsub();
fld(a);
fmul();
fld(a);
fld(b);
fld(c);
fmul();
fadd();
fldpi(); // Loads pi (3.14159)
fdiv();
fsub();

fstp(x); // Store result away into x.

Here’s the translation for the second example in the previous section:

a = x y * z - t + 2.0 /

fld(x);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 615

Chapter Eleven Volume Three
fld(y);
fmul();
fld(z);
fsub();
fld(t);
fadd();
fld(2.0);
fdiv();

fstp(a); // Store result away into a.

As you can see, the translation is fairly trivial once you’ve converted the infix notation to postfix nota-
tion. Also note that, unlike integer expression conversion, you don’t need any explicit temporaries. It turns
out that the FPU stack provides the temporaries for you3. For these reasons, conversion of floating point
expressions into assembly language is actually easier than converting integer expressions.

11.3.3 Mixed Integer and Floating Point Arithmetic

Throughout the previous sections on floating point arithmetic an unstated assumption was made: all
operands in the expressions were floating point variables or constants. In the real world, you’ll often need to
mix integer and floating point operands in the same expression. Thanks to the FILD instruction, this is a
trivial exercise.

Of course, the FPU cannot operate on integer operands. That is, you cannot push an integer operand (in
integer format) onto the FPU stack and add this integer to a floating point value that is also on the stack.
Instead, you use the FILD instruction to load and translate the integer value; this winds up pushing the float-
ing point equivalent of the integer onto the FPU stack. Once the value is converted to a floating point num-
ber, you continue the calculation using the standard real arithmetic operations.

Embedding a floating point value in an integer expression is a little more problematic. In this case you
must convert the floating point value to an integer value for use in the integer expression. To do this, you
must use the FIST instruction. FIST converts the floating point value on the top of stack into an integer
value according to the setting of the rounding bits in the floating point control register (See “The FPU Con-
trol Register” on page 592). By default, FIST will round the floating point value to the nearest integer before
storing the value into memory; if you want to use the more common fraction truncation mode, you will need
to change the value in the FPU control register. You compute the integer expression using the techniques
from the previous chapter (see “Complex Expressions” on page 579). The FPU participates only to the point
of converting the floating point value to an integer.

static
intVal1 : uns32 := 1;
intVal2 : uns32 := 2;
realVal : real64;

.

.

.
fild(intVal1);
fild(intVal2);
fadd();
fstp(realVal);
stdout.put(“realVal = “, realVal, nl);

3. Assuming, of course, that your calculations aren’t so complex that you exceed the eight-element limitation of the FPU
stack.
Page 616 © 2001, By Randall Hyde Beta Draft - Do not distribute

Real Arithmetic
11.4 HLA Standard Library Support for Floating Point Arithmetic

The HLA Standard Library provides several routines that support the use of real number on the FPU. In
Volume One you saw, with one exception, how the standard input and output routines operate. This section
will not repeat that discussion, see “HLA Support for Floating Point Values” on page 83 for more details.
One input function that Volume One only mentioned briefly was the stdin.getf function. This section will
elaborate on that function. The HLA Standard Library also includes the “math.hhf” module that provides
several mathematical functions that the FPU doesn’t directly support. This section will discuss those func-
tions, as well.

11.4.1 The stdin.getf and fileio.getf Functions

The stdin.getf function reads a floating point value from the standard input device. It leaves the con-
verted value in ST0 (i.e., on the top of the floating point stack). The only reason Chapter Two did not discuss
this function thoroughly was because you hadn’t seen the FPU and FPU registers at that point.

The stdin.getf function accepts the same inputs that “stdin.get(fp_variable);” would except. The only
difference between the two is where these functions store the floating point value.

As you’d probably surmise, there is a corresponding fileio.getf function as well. This function reads the
floating point value from the file whose file handle is the single parameter in this function call. It, too, leaves
the converted result on the top of the FPU stack.

11.4.2 Trigonometric Functions in the HLA Math Library

The FPU provides a small handful of trigonometric functions. It does not, however, support the full
range of trig functions. The HLA MATH.HHF module fills in most of the missing functions. The trigono-
metric functions that HLA provides include

• ACOS(arc cosine)
• ACOT (arc cotangent)
• ACSC(arc cosecant)
• ASEC (arc secant)
• ASIN (arc sin)
• COT (cotangent)
• CSC (cosecant)
• SEC (secant)

The HLA Standard Library actually provides five different routines you can call for each of these func-
tions. For example, the prototypes for the first four COT (cotangent) routines are:

procedure cot32(r32: real32);
procedure cot64(r64: real64);
procedure cot80(r80: real80);
procedure _cot();

The first three routines push their parameter onto the FPU stack and compute the cotangent of the result.
The fourth routine above (_cot) computes the cotangent of the value in ST0.

The fifth routine is actually an overloaded procedure that calls one of the four routines above depending
on the parameter. This call uses the following syntax:

cot(); // Calls _cot() to compute cot(ST0).
cot(r32); // Calls cot32 to compute the cotangent of r32.
cot(r64); // Calls cot64 to compute the cotangent of r64.
cot(r80); // Calls cot80 to compute the cotangent of r80.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 617

Chapter Eleven Volume Three
Using this fifth form is probably preferable since it is much more convenient. Note that there is no effi-
ciency loss when you used cot rather than one of the other cotangent routines. HLA actually translates this
statement directly into one of the other calls.

The HLA trigonometric functions that require an angle as a parameter expect that angle to be expressed
in radians, not degrees. Keep in mind that some of these functions produce undefined results for certain
input values. If you’ve enabled exceptions on the FPU, these functions will raise the appropriate FPU excep-
tion if an error occurs.

11.4.3 Exponential and Logarithmic Functions in the HLA Math Library

The HLA MATH.HHF module provides several exponential and logarithmic functions in addition to the
trigonometric functions. Like the trig functions, the exponential and logarithmic functions provide five dif-
ferent interfaces to each function depending on the size and location of the parameter. The functions that
MATH.HHF supports are

• TwoToX (raise 2.0 to the specified power).
• TenToX (raise 10.0 to the specified power).
• exp (raises e [2.718281828...] to the specified power).
• YtoX (raises first parameter to the power specified by the second parameter).
• log (computes base 10 logarithm).
• ln (computes base e logarithm).

Except for the YtoX function, all these functions provide the same sort of interface as the cot function
mentioned in the previous section. For example, the exp function provides the following prototypes:

procedure exp32(r32: real32);
procedure exp64(r64: real64);
procedure exp80(r80: real80);
procedure _exp();

The exp function, by itself, automatically calls one of the above functions depending on the parameter
type (and presence of a parameter):

exp(); // Calls _exp() to compute exp(ST0).
exp(r32); // Calls exp32 to compute the e**r32.
exp(r64); // Calls exp64 to compute the e**r64.
exp(r80); // Calls exp80 to compute the e**r80.

The lone exception to the above is the YtoX function. YtoX has its own rules because it has two parame-
ters rather than one (Y and X). YtoX provides the following function prototypes:

procedure YtoX32(y: real32; x: real32);
procedure YtoX64(y: real64; x: real64);
procedure YtoX80(y: real80; x: real80);
procedure _YtoX();

The _YtoX function computes ST1**ST0 (i.e., ST1 raised to the ST0 power).

The YtoX function provides the following interface:

YtoX(); // Calls _YtoX() to compute exp(ST0).
YtoX(y32, x32); // Calls YtoX32 to compute y32**x32.
YtoX(y64, x64); // Calls YtoX64 to compute y64**x64.
YtoX(y80, x80); // Calls YtoX80 to compute y80**x80.
Page 618 © 2001, By Randall Hyde Beta Draft - Do not distribute

Real Arithmetic
11.5 Sample Program

This chapter presents a simple “Reverse Polish Notation” calculator that demonstrates the use of the
80x86 FPU. In addition to demonstrating the use of the FPU, this sample program also introduces a few new
routines from the HLA Standard Library, specifically the arg.c, arg.v, and conv.strToFlt routines.

The HLA Standard Library conversions module (“conv.hhf”) contains dozens of procedures that trans-
late data between various formats. A large percentage of these routines convert data between some internal
numeric form and a corresponding string format. The conv.strToFlt routine, as its name suggests, converts
string data to a floating point value. The prototype for this function is the following:

procedure conv.strToFlt(s:string; index:dword);

The first parameter is the string containing the textual representation of the floating point value. The second
parameter contains an index into the string where the floating point text actually begins (usually the index
parameter is zero if the string contains nothing but the floating point text). The conv.strToFlt procedure will
attempt to convert the specified string to a floating point number. If there is a problem, this function will
raise an appropriate exception (e.g., ex.ConversionError). In fact, the HLA stdin routines that read floating
point values from the user actually read string data and call this same procedure to convert that data to a
floating point value; hence, you should protect this procedure call with a TRY..ENDTRY statement exactly
the same way you protect a call to stdin.get or stdin.getf. If this routine is successful, it leaves the converted
floating point value on the top of the FPU stack.

The HLA Standard Library contains numerous other procedures that convert textual data to the corre-
sponding internal format. Examples include conv.strToi8, conv.strToi16, conv.strToi32, conv.strToi64, and
more. See the HLA Standard Library documentation for more details.

This sample program also uses the arg.c and arg.v routines from the HLA Standard Library’s command
line arguments module (“args.hhf”). These functions provide access to the text following the program name
when you run a program from the Windows command line prompt. This calculator program, for example,
expects the user to supply the desired calculation on the command line immediately after the program name.
For example to add the two values 18 and 22 together, you’d specify the following Windows command line:

rpncalc 18 22 +

The text “18 22 +” is an example of three command line parameters. Programs often use command line
parameters to communicate filenames and other data to the application. For example, the HLA compiler
uses command line parameters to pass the names of the source files to the compiler. The rpncalc program
uses the command line to pass the RPN expression to the calculator.

The arg.c function (“argument count”) returns the number of parameters on the command line. This
function returns the count in the EAX register. It does not have any parameters. In general, you can proba-
bly assume that the maximum possible number of command line arguments is between 64 and 128. Note
that Windows counts the program’s name on the command line in this argument count. Therefore, this value
will always be one or greater. If arg.c returns one, then there are no extra command line parameters; the sin-
gle item is the program’s name.

A program that expects at least one command line parameter should always call arg.c and verify that it
returns the value two or greater. Programs that process command line parameters typically execute a loop of
some sort that executes the number of times specified by arg.c’s return value. Of course, when you use
arg.c’s return value for this purpose, don’t forget to subtract one from the return result to account for the pro-
gram’s name (unless you are treating the program name as one more parameter).

The arg.v function returns a string containing one of the program’s command line arguments. This
function has the following prototype:

procedure arg.v(index:uns32);

The index parameter specifies which command line parameter you wish to retrieve. The value zero
returns a string containing the program’s name. The value one returns the first command line parameter fol-
lowing the program’s name. The value two returns a string containing the second command line parameter
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 619

Chapter Eleven Volume Three
following the program’s name. Etc. The value you provide as a parameter to this function must fall in the
range 0..arg.c()-1 or arg.v will raise an exception.

The arg.v procedure allocates storage for the string it returns on the heap by calling stralloc. It returns a
pointer to the allocated string in the EAX register. Don’t forget to call strfree to return the storage to the sys-
tem after you are done processing the command line parameter.

Well, without further ado, here is the RPN calculator program that uses the aforementioned functions.

// This sample program demonstrates how to use
// the FPU to create a simple RPN calculator.
// This program reads a string from the user
// and “parses” that string to figure out the
// calculation the user is requesting. This
// program assumes that any item beginning
// with a numeric digit is a numeric operand
// to push onto the FPU stack and all other
// items are operators.
//
// Example of typical user input:
//
// calc 123.45 67.89 +
//
// The program responds by printing
//
// Result = 1.91340000000000000e+2
//
//
// Current operators supported:
//
// + - * /
//
// Current functions supported:
//
// sin sqrt

program RPNcalculator;
#include(“stdlib.hhf”)

static
 argc: uns32;
 curOperand: string;
 ItemsOnStk: uns32;
 realRslt: real80;

 // The following function converts an
 // angle (in ST0) from degrees to radians.
 // It leaves the result in ST0.

 procedure DegreesToRadians; nodisplay;
 begin DegreesToRadians;

 fld(2.0); // Radians = degrees*2*pi/360.0
 fmul();
 fldpi();
 fmul();
 fld(360.0);
Page 620 © 2001, By Randall Hyde Beta Draft - Do not distribute

Real Arithmetic
 fdiv();

 end DegreesToRadians;

begin RPNcalculator;

 // Initialize the FPU.

 finit();

 // Okay, extract the items from the Windows
 // CMD.EXE command line and process them.

 arg.c();
 if(eax <= 1) then

 stdout.put(“Usage: ‘rpnCalc <rpn expression>’” nl);
 exit RPNcalculator;

 endif;

 // ECX holds the index of the current operand.
 // ItemsOnStk keeps track of the number of numeric operands
 // pushed onto the FPU stack so we can ensure that each
 // operation has the appropriate number of operands.

 mov(eax, argc);
 mov(1, ecx);
 mov(0, ItemsOnStk);

 // The following loop repeats once for each item on the
 // command line:

 while(ecx < argc) do

 // Get the string associated with the current item:

 arg.v(ecx); // Note that this malloc’s storage!
 mov(eax, curOperand);

 // If the operand begins with a numeric digit, assume
 // that it’s a floating point number.

 if((type char [eax]) in ‘0’..’9’) then

 try

 // Convert this string representation of a numeric
 // value to the equivalent real value. Leave the
 // result on the top of the FPU stack. Also, bump
 // ItemsOnStk up by one since we’re pushing a new
 // item onto the FPU stack.

 conv.strToFlt(curOperand, 0);
 inc(ItemsOnStk);

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 621

Chapter Eleven Volume Three
 exception(ex.ConversionError)

 stdout.put(“Illegal floating point constant” nl);
 exit RPNcalculator;

 anyexception

 stdout.put
 (
 “Exception “,
 (type uns32 eax),
 “ while converting real constant”
 nl
);
 exit RPNcalculator;

 endtry;

 // Handle the addition operation here.

 elseif(str.eq(curOperand, “+”)) then

 // The addition operation requires two
 // operands on the stack. Ensure we have
 // two operands before proceeding.

 if(ItemsOnStk >= 2) then

 fadd();
 dec(ItemsOnStk); // fadd() removes one operand.

 else

 stdout.put(“‘+’ operation requires two operands.” nl);
 exit RPNcalculator;

 endif;

 // Handle the subtraction operation here. See the comments
 // for FADD for more details.

 elseif(str.eq(curOperand, “-”)) then

 if(ItemsOnStk >= 2) then

 fsub();
 dec(ItemsOnStk);

 else

 stdout.put(“‘-’ operation requires two operands.” nl);
 exit RPNcalculator;

 endif;

 // Handle the multiplication operation here. See the comments
 // for FADD for more details.
Page 622 © 2001, By Randall Hyde Beta Draft - Do not distribute

Real Arithmetic

 elseif(str.eq(curOperand, “*”)) then

 if(ItemsOnStk >= 2) then

 fmul();
 dec(ItemsOnStk);

 else

 stdout.put(“‘*’ operation requires two operands.” nl);
 exit RPNcalculator;

 endif;

 // Handle the division operation here. See the comments
 // for FADD for more details.

 elseif(str.eq(curOperand, “/”)) then

 if(ItemsOnStk >= 2) then

 fdiv();
 dec(ItemsOnStk);

 else

 stdout.put(“‘/’ operation requires two operands.” nl);
 exit RPNcalculator;

 endif;

 // Provide a square root operation here.

 elseif(str.eq(curOperand, “sqrt”)) then

 // Sqrt is a monadic (unary) function. Therefore
 // we only require a single item on the stack.

 if(ItemsOnStk >= 1) then

 fsqrt();

 else

 stdout.put
 (
 “SQRT function requires at least one operand.”
 nl
);
 exit RPNcalculator;

 endif;

 // Provide the SINE function here. See SQRT comments for details.

 elseif(str.eq(curOperand, “sin”)) then
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 623

Chapter Eleven Volume Three

 if(ItemsOnStk >= 1) then

 DegreesToRadians();
 fsin();

 else

 stdout.put(“SIN function requires at least one operand.” nl);
 exit RPNcalculator;

 endif;

 else

 stdout.put(“‘”, curOperand, “‘ is an unknown operation.” nl);
 exit RPNcalculator;

 endif;

 // Free the storage associated with the current item.

 strfree(curOperand);

 // Move on to the next item on the command line:

 inc(ecx);

 endwhile;
 if(ItemsOnStk = 1) then

 fstp(realRslt);
 stdout.put(“Result = “, realRslt, nl);

 else

 stdout.put(“Syntax error in expression. ItemsOnStk=”, ItemsOnStk, nl);

 endif;

end RPNcalculator;

Program 11.1 A Floating Point Calculator Program

11.6 Putting It All Together

Between the FPU and the HLA Standard Library, floating point arithmetic is actually quite simple. In
this chapter you learned about the floating point instruction set and you learned how to convert arithmetic
expressions involving real arithmetic into a sequence of floating point instructions. This chapter also pre-
sented several transcendental functions that the HLA Standard Library provides. Armed with the informa-
tion from this chapter, you should be able to deal with floating point expressions just as easily as integer
expressions.
Page 624 © 2001, By Randall Hyde Beta Draft - Do not distribute

Calculation Via Table Lookups
Calculation Via Table Lookups Chapter Twelve

12.1 Chapter Overview

This chapter discusses arithmetic computation via table lookup. By the conclusion of this chapter you
should be able to use table lookups to quickly compute complex functions. You will also learn how to con-
struct these table programmatically.

12.2 Tables

The term “table” has different meanings to different programmers. To most assembly language pro-
grammers, a table is nothing more than an array that is initialized with some data. The assembly language
programmer often uses tables to compute complex or otherwise slow functions. Many very high level lan-
guages (e.g., SNOBOL4 and Icon) directly support a table data type. Tables in these languages are essen-
tially arrays whose elements you can access with a non-integer index (e.g., floating point, string, or any other
data type). HLA provides a table module that lets you index an array using a string. However, in this chapter
we will adopt the assembly language programmer’s view of tables.

A table is an array containing preinitialized values that do not change during the execution of the pro-
gram. A table can be compared to an array in the same way an integer constant can be compared to an integer
variable. In assembly language, you can use tables for a variety of purposes: computing functions, control-
ling program flow, or simply “looking things up”. In general, tables provide a fast mechanism for performing
some operation at the expense of some space in your program (the extra space holds the tabular data). In the
following sections we’ll explore some of the many possible uses of tables in an assembly language program.

Note: since tables typically contain preinitialized data that does not change during program execution,
the READONLY section is a good place to declare your table objects.

12.2.1 Function Computation via Table Look-up

Tables can do all kinds of things in assembly language. In HLLs, like Pascal, it’s real easy to create a
formula which computes some value. A simple looking arithmetic expression is equivalent to a considerable
amount of 80x86 assembly language code. Assembly language programmers tend to compute many values
via table look up rather than through the execution of some function. This has the advantage of being easier,
and often more efficient as well. Consider the following Pascal statement:

if (character >= ‘a’) and (character <= ‘z’) then character := chr(ord(character) - 32);

This Pascal if statement converts the character variable character from lower case to upper case if char-
acter is in the range ‘a’..’z’. The HLA code that does the same thing is

mov(character, al);
if(al in ‘a’..’z’) then

and($5f, al); // Same as SUB(32, al) in this code.

endif;
mov(al, character);

Note that HLA’s high level IF statement translates into four machine instructions in this particular example.
Hence, this code requires a total of seven machine instructions.

Had you buried this code in a nested loop, you’d be hard pressed to improve the speed of this code with-
out using a table look up. Using a table look up, however, allows you to reduce this sequence of instructions
to just four instructions:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 625

Chapter Twelve Volume Three
mov(character, al);
lea(ebx, CnvrtLower);
xlat
mov(al, character);

 You’re probably wondering how this code works and what is this new instruction, XLAT? The XLAT,
or translate, instruction does the following:

mov([ebx+al*1], al);

That is, it uses the current value of the AL register as an index into the array whose base address is contained
in EBX. It fetches the byte at that index in the array and copies that byte into the AL register. Intel calls this
the translate instruction because programmers typically use it to translate characters from one form to
another using a lookup table. That’s exactly how we are using it here.

In the previous example, CnvrtLower is a 256-byte table which contains the values 0..$60 at indices
0..$60, $41..$5A at indices $61..$7A, and $7B..$FF at indices $7Bh..0FF. Therefore, if AL contains a value
in the range $0..$60, the XLAT instruction returns the value $0..$60, effectively leaving AL unchanged.
However, if AL contains a value in the range $61..$7A (the ASCII codes for ‘a’..’z’) then the XLAT instruc-
tion replaces the value in AL with a value in the range $41..$5A. $41..$5A just happen to be the ASCII
codes for ‘A’..’Z’. Therefore, if AL originally contains an lower case character ($61..$7A), the XLAT
instruction replaces the value in AL with a corresponding value in the range $61..$7A, effectively converting
the original lower case character ($61..$7A) to an upper case character ($41..$5A). The remaining entries in
the table, like entries $0..$60, simply contain the index into the table of their particular element. Therefore,
if AL originally contains a value in the range $7A..$FF, the XLAT instruction will return the corresponding
table entry that also contains $7A..$FF.

As the complexity of the function increases, the performance benefits of the table look up method
increase dramatically. While you would almost never use a look up table to convert lower case to upper case,
consider what happens if you want to swap cases:

Via computation:

mov(character, al);
if(al in ‘a’..’z’) then

and($5f, al);

elseif(al in ‘A’..’Z’) then

or($20, al);

endif;
mov(al, character):

The IF and ELSEIF statements generate four and five actual machine instructions, respectively, so this code
is equivalent to 13 actual machine instructions.

The table look up code to compute this same function is:

mov(character, al);
lea(ebx, SwapUL);
xlat();
mov(al, character);

As you can see, when using a table look up to compute a function only the table changes, the code
remains the same.

Table look ups suffer from one major problem – functions computed via table look up have a limited
domain. The domain of a function is the set of possible input values (parameters) it will accept. For example,
the upper/lower case conversion functions above have the 256-character ASCII character set as their domain.

A function such as SIN or COS accepts the set of real numbers as possible input values. Clearly the
domain for SIN and COS is much larger than for the upper/lower case conversion function. If you are going
Page 626 © 2001, By Randall Hyde Beta Draft - Do not distribute

Calculation Via Table Lookups
to do computations via table look up, you must limit the domain of a function to a small set. This is because
each element in the domain of a function requires an entry in the look up table. You won’t find it very practi-
cal to implement a function via table look up whose domain the set of real numbers.

 Most look up tables are quite small, usually 10 to 128 entries. Rarely do look up tables grow beyond
1,000 entries. Most programmers don’t have the patience to create (and verify the correctness) of a 1,000
entry table.

Another limitation of functions based on look up tables is that the elements in the domain of the func-
tion must be fairly contiguous. Table look ups take the input value for a function, use this input value as an
index into the table, and return the value at that entry in the table. If you do not pass a function any values
other than 0, 100, 1,000, and 10,000 it would seem an ideal candidate for implementation via table look up,
its domain consists of only four items. However, the table would actually require 10,001 different elements
due to the range of the input values. Therefore, you cannot efficiently create such a function via a table look
up. Throughout this section on tables, we’ll assume that the domain of the function is a fairly contiguous set
of values.

The best functions you can implement via table look ups are those whose domain and range is always
0..255 (or some subset of this range). You can efficiently implement such functions on the 80x86 via the
XLAT instruction. The upper/lower case conversion routines presented earlier are good examples of such a
function. Any function in this class (those whose domain and range take on the values 0..255) can be com-
puted using the same two instructions: “lea(table, ebx);” and “xlat();” The only thing that ever changes is
the look up table.

The XLAT instruction cannot be (conveniently) used to compute a function value once the range or
domain of the function takes on values outside 0..255. There are three situations to consider:

• The domain is outside 0..255 but the range is within 0..255,
• The domain is inside 0..255 but the range is outside 0..255, and
• Both the domain and range of the function take on values outside 0..255.

We will consider each of these cases separately.

If the domain of a function is outside 0..255 but the range of the function falls within this set of values,
our look up table will require more than 256 entries but we can represent each entry with a single byte.
Therefore, the look up table can be an array of bytes. Next to look ups involving the XLAT instruction, func-
tions falling into this class are the most efficient. The following Pascal function invocation,

B := Func(X);

where Func is

function Func(X:dword):byte;

consists of the following HLA code:

mov(X, ebx);
mov(FuncTable[ebx], al);
mov(al, B);

This code loads the function parameter into EBX, uses this value (in the range 0..??) as an index into the
FuncTable table, fetches the byte at that location, and stores the result into B. Obviously, the table must con-
tain a valid entry for each possible value of X. For example, suppose you wanted to map a cursor position on
the video screen in the range 0..1999 (there are 2,000 character positions on an 80x25 video display) to its X
or Y coordinate on the screen. You could easily compute the X coordinate via the function:

X:=Posn mod 80

and the Y coordinate with the formula

Y:=Posn div 80

(where Posn is the cursor position on the screen). This can be easily computed using the 80x86 code:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 627

Chapter Twelve Volume Three
mov(Posn, ax);
div(80, ax);

// X is now in AH, Y is now in AL

However, the DIV instruction on the 80x86 is very slow. If you need to do this computation for every
character you write to the screen, you will seriously degrade the speed of your video display code. The fol-
lowing code, which realizes these two functions via table look up, would improve the performance of your
code considerably:

movzx(Posn, ebx); // Use a plain MOV instr if Posn is uns32
mov(YCoord[ebx], al); // rather than an uns16 value.
mov(XCoord[ebx], ah);

If the domain of a function is within 0..255 but the range is outside this set, the look up table will con-
tain 256 or fewer entries but each entry will require two or more bytes. If both the range and domains of the
function are outside 0..255, each entry will require two or more bytes and the table will contain more than
256 entries.

Recall from the chapter on arrays that the formula for indexing into a single dimensional array (of
which a table is a special case) is

Address := Base + index * size

 If elements in the range of the function require two bytes, then the index must be multiplied by two
before indexing into the table. Likewise, if each entry requires three, four, or more bytes, the index must be
multiplied by the size of each table entry before being used as an index into the table. For example, suppose
you have a function, F(x), defined by the following (pseudo) Pascal declaration:

function F(x:dword):word;

You can easily create this function using the following 80x86 code (and, of course, the appropriate table
named F):

mov(X, ebx);
mov(F[ebx*2], ax);

Any function whose domain is small and mostly contiguous is a good candidate for computation via
table look up. In some cases, non-contiguous domains are acceptable as well, as long as the domain can be
coerced into an appropriate set of values. Such operations are called conditioning and are the subject of the
next section.

12.2.2 Domain Conditioning

Domain conditioning is taking a set of values in the domain of a function and massaging them so that
they are more acceptable as inputs to that function. Consider the following function:

This says that the (computer) function SIN(x) is equivalent to the (mathematical) function sin x where

-2π ≤ x ≤ 2π
As we all know, sine is a circular function which will accept any real valued input. The formula used to

compute sine, however, only accept a small set of these values.

This range limitation doesn’t present any real problems, by simply computing SIN(X mod (2*pi)) we
can compute the sine of any input value. Modifying an input value so that we can easily compute a function
is called conditioning the input. In the example above we computed “X mod 2*pi” and used the result as the
input to the sin function. This truncates X to the domain sin needs without affecting the result. We can apply
input conditioning to table look ups as well. In fact, scaling the index to handle word entries is a form of
input conditioning. Consider the following Pascal function:

xsin xsin x 2– π 2π,[]∈〈 | 〉=
Page 628 © 2001, By Randall Hyde Beta Draft - Do not distribute

Calculation Via Table Lookups
function val(x:word):word; begin
case x of

0: val := 1;
 1: val := 1;

2: val := 4;
3: val := 27;
4: val := 256;
otherwise val := 0;

end;
end;

This function computes some value for x in the range 0..4 and it returns zero if x is outside this range.
Since x can take on 65,536 different values (being a 16 bit word), creating a table containing 65,536 words
where only the first five entries are non-zero seems to be quite wasteful. However, we can still compute this
function using a table look up if we use input conditioning. The following assembly language code presents
this principle:

mov(0, ax); // AX = 0, assume X > 4.
movzx(x, ebx); // Note that H.O. bits of EBX must be zero!
if(bx <= 4) then

mov(val[ebx*2], ax);

endif;

This code checks to see if x is outside the range 0..4. If so, it manually sets AX to zero, otherwise it
looks up the function value through the val table. With input conditioning, you can implement several func-
tions that would otherwise be impractical to do via table look up.

12.2.3 Generating Tables

One big problem with using table look ups is creating the table in the first place. This is particularly true
if there are a large number of entries in the table. Figuring out the data to place in the table, then laboriously
entering the data, and, finally, checking that data to make sure it is valid, is a very time-staking and boring
process. For many tables, there is no way around this process. For other tables there is a better way – use the
computer to generate the table for you. An example is probably the best way to describe this. Consider the
following modification to the sine function:

This states that x is an integer in the range 0..359 and r must be an integer. The computer can easily
compute this with the following code:

movzx(x, ebx);
mov(Sines[ebx*2], eax); // Get SIN(X) * 1000
imul(r, eax); // Note that this extends EAX into EDX.
idiv(1000, edx:eax); // Compute (R*(SIN(X)*1000)) / 1000

Note that integer multiplication and division are not associative. You cannot remove the multiplication
by 1000 and the division by 1000 because they seem to cancel one another out. Furthermore, this code must
compute this function in exactly this order. All that we need to complete this function is a table containing
360 different values corresponding to the sine of the angle (in degrees) times 1,000. Entering such a table
into an assembly language program containing such values is extremely boring and you’d probably make
several mistakes entering and verifying this data. However, you can have the program generate this table for
you. Consider the following HLA program:

xsin() r× r 1000 xsin×()×()
1000

--- x 0 359,[]∈〈 | 〉=
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 629

Chapter Twelve Volume Three
program GenerateSines;
#include(“stdlib.hhf”);

var
 outFile: dword;
 angle: int32;
 r: int32;

readonly
 RoundMode: uns16 := $23f;

begin GenerateSines;

 // Open the file:

 mov(fileio.openNew(“sines.hla”), outFile);

 // Emit the initial part of the declaration to the output file:

 fileio.put
 (
 outFile,
 stdio.tab,
 “sines: int32[360] := “ nl,
 stdio.tab, stdio.tab, stdio.tab, “[“ nl);

 // Enable rounding control (round to the nearest integer).

 fldcw(RoundMode);

 // Emit the sines table:

 for(mov(0, angle); angle < 359; inc(angle)) do

 // Convert angle in degrees to an angle in radians
 // using “radians := angle * 2.0 * pi / 360.0;”

 fild(angle);
 fld(2.0);
 fmul();
 fldpi();
 fmul();
 fld(360.0);
 fdiv();

 // Okay, compute the sine of ST0

 fsin();

 // Multiply by 1000 and store the rounded result into
 // the integer variable r.

 fld(1000.0);
 fmul();
 fistp(r);

 // Write out the integers eight per line to the source file:
Page 630 © 2001, By Randall Hyde Beta Draft - Do not distribute

Calculation Via Table Lookups
 // Note: if (angle AND %111) is zero, then angle is evenly
 // divisible by eight and we should output a newline first.

 test(%111, angle);
 if(@z) then

 fileio.put
 (
 outFile,
 nl,
 stdio.tab,
 stdio.tab,
 stdio.tab,
 stdio.tab,
 r:5,
 ‘,’
);

 else

 fileio.put(outFile, r:5, ‘,’);

 endif;

 endfor;

 // Output sine(359) as a special case (no comma following it).
 // Note: this value was computed manually with a calculator.

 fileio.put
 (
 outFile,
 “ -17”,
 nl,
 stdio.tab,
 stdio.tab,
 stdio.tab,
 “];”,
 nl
);
 fileio.close(outFile);

end GenerateSines;

Program 12.1 An HLA Program that Generates a Table of Sines

 The program above produces the following output:

 sines: int32[360] :=
 [

 0, 17, 35, 52, 70, 87, 105, 122,
 139, 156, 174, 191, 208, 225, 242, 259,
 276, 292, 309, 326, 342, 358, 375, 391,
 407, 423, 438, 454, 469, 485, 500, 515,
 530, 545, 559, 574, 588, 602, 616, 629,
 643, 656, 669, 682, 695, 707, 719, 731,
 743, 755, 766, 777, 788, 799, 809, 819,
 829, 839, 848, 857, 866, 875, 883, 891,
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 631

Chapter Twelve Volume Three
 899, 906, 914, 921, 927, 934, 940, 946,
 951, 956, 961, 966, 970, 974, 978, 982,
 985, 988, 990, 993, 995, 996, 998, 999,
 999, 1000, 1000, 1000, 999, 999, 998, 996,
 995, 993, 990, 988, 985, 982, 978, 974,
 970, 966, 961, 956, 951, 946, 940, 934,
 927, 921, 914, 906, 899, 891, 883, 875,
 866, 857, 848, 839, 829, 819, 809, 799,
 788, 777, 766, 755, 743, 731, 719, 707,
 695, 682, 669, 656, 643, 629, 616, 602,
 588, 574, 559, 545, 530, 515, 500, 485,
 469, 454, 438, 423, 407, 391, 375, 358,
 342, 326, 309, 292, 276, 259, 242, 225,
 208, 191, 174, 156, 139, 122, 105, 87,
 70, 52, 35, 17, 0, -17, -35, -52,
 -70, -87, -105, -122, -139, -156, -174, -191,
 -208, -225, -242, -259, -276, -292, -309, -326,
 -342, -358, -375, -391, -407, -423, -438, -454,
 -469, -485, -500, -515, -530, -545, -559, -574,
 -588, -602, -616, -629, -643, -656, -669, -682,
 -695, -707, -719, -731, -743, -755, -766, -777,
 -788, -799, -809, -819, -829, -839, -848, -857,
 -866, -875, -883, -891, -899, -906, -914, -921,
 -927, -934, -940, -946, -951, -956, -961, -966,
 -970, -974, -978, -982, -985, -988, -990, -993,
 -995, -996, -998, -999, -999,-1000,-1000,-1000,
 -999, -999, -998, -996, -995, -993, -990, -988,
 -985, -982, -978, -974, -970, -966, -961, -956,
 -951, -946, -940, -934, -927, -921, -914, -906,
 -899, -891, -883, -875, -866, -857, -848, -839,
 -829, -819, -809, -799, -788, -777, -766, -755,
 -743, -731, -719, -707, -695, -682, -669, -656,
 -643, -629, -616, -602, -588, -574, -559, -545,
 -530, -515, -500, -485, -469, -454, -438, -423,
 -407, -391, -375, -358, -342, -326, -309, -292,
 -276, -259, -242, -225, -208, -191, -174, -156,
 -139, -122, -105, -87, -70, -52, -35, -17
];

 Obviously it’s much easier to write the HLA program that generated this data than to enter (and verify)
this data by hand. Of course, you don’t even have to write the table generation program in HLA. If you pre-
fer, you might find it easier to write the program in Pascal/Delphi, C/C++, or some other high level language.
Obviously, the program will only execute once, so the performance of the table generation program is not an
issue. If it’s easier to write the table generation program in a high level language, by all means do so. Note,
also, that HLA has a built-in interpreter that allows you to easily create tables without having to use an exter-
nal program. For more details, see the chapter on macros and the HLA compile-time language.

Once you run your table generation program, all that remains to be done is to cut and paste the table
from the file (sines.hla in this example) into the program that will actually use the table.

12.3 High Performance Implementation of cs.rangeChar

Way back in Chapter Three this volume made the comment that the implementation of the cs.rangeChar
was not very efficient when generating large character sets (see “Character Set Functions That Build Sets”
on page 431). That chapter also mentioned that a table lookup would be a better solution for this function if
you generate large character sets. That chapter also promised an table lookup implementation of cs.range-
Char. This section fulfills that promise.
Page 632 © 2001, By Randall Hyde Beta Draft - Do not distribute

Calculation Via Table Lookups
Program 12.2 provides a table lookup implementation of this function. To understand how this function
works, consider the two tables (StartRange and EndRange) appearing in this program.

Each element in the StartRange table is a character set whose binary representation contains all one bits
from bit position zero through the index into the table. That is, element zero contains a single ‘1’ bit in bit
position zero; element one contains one bits in bit positions zero and one; element two contains one bits in
bit positions zero, one, and two; etc.

Each element of the EndRange table contains one bits from the bit position specified by the index into
the table through to bit position 127. Therefore, element zero of this array contains all one bits from posi-
tions zero through 127; element one of this array contains a zero in bit position zero and ones in bit posi-
tions one through 127; element two of this array contains zeros in bit positions zero and one and it contains
ones in bit positions two through 127; etc.

The fastRangeChar function builds a character set containing all the characters between two characters
specified as parameters. The calling sequence for this function is

fastRangeChar(LowBoundChar, HighBoundChar, CsetVariable);

This function constructs the character set “{ LowBoundChar..HighBoundChar }” and stores this character
set into CsetVariable.

As you may recall from the discussion of cs.rangeChar’s low-level implementation, it constructed the
character set by running a FOR loop from the LowBoundChar through to the HighBoundChar and set the
corresponding bit in the character set on each iteration of the loop. So to build the character set {‘a’..’z’} the
loop would have to execute 26 times. The fastRangeChar function avoids this iteration by construction a set
containing all elements from #0 to HighBoundChar and intersecting this set with a second character set con-
taining all the characters from LowBoundChar to #127. The fastRangeChar function doesn’t actually build
these two sets, of course, it uses HighBoundChar and LowBoundChar as indices into the StartRange and
EndRange tables, respectively. The intersection of these two table elements computes the desired result set.
As you’ll see by looking at fastRangeChar, this function computes the intersection of these two sets on the
fly by using the AND instruction. Without further ado, here’s the program:

program csRangeChar;
#include(“stdlib.hhf”)

static

 // Note: the following tables were generated
 // by the genRangeChar program:

 StartRange: cset[128] :=
 [
 {#0},
 {#0..#1},
 {#0..#2},
 {#0..#3},
 {#0..#4},
 {#0..#5},
 {#0..#6},
 {#0..#7},
 {#0..#8},
 {#0..#9},
 {#0..#10},
 {#0..#11},
 {#0..#12},
 {#0..#13},
 {#0..#14},
 {#0..#15},
 {#0..#16},
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 633

Chapter Twelve Volume Three
 {#0..#17},
 {#0..#18},
 {#0..#19},
 {#0..#20},
 {#0..#21},
 {#0..#22},
 {#0..#23},
 {#0..#24},
 {#0..#25},
 {#0..#26},
 {#0..#27},
 {#0..#28},
 {#0..#29},
 {#0..#30},
 {#0..#31},
 {#0..#32},
 {#0..#33},
 {#0..#34},
 {#0..#35},
 {#0..#36},
 {#0..#37},
 {#0..#38},
 {#0..#39},
 {#0..#40},
 {#0..#41},
 {#0..#42},
 {#0..#43},
 {#0..#44},
 {#0..#45},
 {#0..#46},
 {#0..#47},
 {#0..#48},
 {#0..#49},
 {#0..#50},
 {#0..#51},
 {#0..#52},
 {#0..#53},
 {#0..#54},
 {#0..#55},
 {#0..#56},
 {#0..#57},
 {#0..#58},
 {#0..#59},
 {#0..#60},
 {#0..#61},
 {#0..#62},
 {#0..#63},
 {#0..#64},
 {#0..#65},
 {#0..#66},
 {#0..#67},
 {#0..#68},
 {#0..#69},
 {#0..#70},
 {#0..#71},
 {#0..#72},
 {#0..#73},
 {#0..#74},
 {#0..#75},
 {#0..#76},
 {#0..#77},
Page 634 © 2001, By Randall Hyde Beta Draft - Do not distribute

Calculation Via Table Lookups
 {#0..#78},
 {#0..#79},
 {#0..#80},
 {#0..#81},
 {#0..#82},
 {#0..#83},
 {#0..#84},
 {#0..#85},
 {#0..#86},
 {#0..#87},
 {#0..#88},
 {#0..#89},
 {#0..#90},
 {#0..#91},
 {#0..#92},
 {#0..#93},
 {#0..#94},
 {#0..#95},
 {#0..#96},
 {#0..#97},
 {#0..#98},
 {#0..#99},
 {#0..#100},
 {#0..#101},
 {#0..#102},
 {#0..#103},
 {#0..#104},
 {#0..#105},
 {#0..#106},
 {#0..#107},
 {#0..#108},
 {#0..#109},
 {#0..#110},
 {#0..#111},
 {#0..#112},
 {#0..#113},
 {#0..#114},
 {#0..#115},
 {#0..#116},
 {#0..#117},
 {#0..#118},
 {#0..#119},
 {#0..#120},
 {#0..#121},
 {#0..#122},
 {#0..#123},
 {#0..#124},
 {#0..#125},
 {#0..#126},
 {#0..#127}
];

 EndRange: cset[128] :=
 [
 {#0..#127},
 {#1..#127},
 {#2..#127},
 {#3..#127},
 {#4..#127},
 {#5..#127},
 {#6..#127},
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 635

Chapter Twelve Volume Three
 {#7..#127},
 {#8..#127},
 {#9..#127},
 {#10..#127},
 {#11..#127},
 {#12..#127},
 {#13..#127},
 {#14..#127},
 {#15..#127},
 {#16..#127},
 {#17..#127},
 {#18..#127},
 {#19..#127},
 {#20..#127},
 {#21..#127},
 {#22..#127},
 {#23..#127},
 {#24..#127},
 {#25..#127},
 {#26..#127},
 {#27..#127},
 {#28..#127},
 {#29..#127},
 {#30..#127},
 {#31..#127},
 {#32..#127},
 {#33..#127},
 {#34..#127},
 {#35..#127},
 {#36..#127},
 {#37..#127},
 {#38..#127},
 {#39..#127},
 {#40..#127},
 {#41..#127},
 {#42..#127},
 {#43..#127},
 {#44..#127},
 {#45..#127},
 {#46..#127},
 {#47..#127},
 {#48..#127},
 {#49..#127},
 {#50..#127},
 {#51..#127},
 {#52..#127},
 {#53..#127},
 {#54..#127},
 {#55..#127},
 {#56..#127},
 {#57..#127},
 {#58..#127},
 {#59..#127},
 {#60..#127},
 {#61..#127},
 {#62..#127},
 {#63..#127},
 {#64..#127},
 {#65..#127},
 {#66..#127},
 {#67..#127},
Page 636 © 2001, By Randall Hyde Beta Draft - Do not distribute

Calculation Via Table Lookups
 {#68..#127},
 {#69..#127},
 {#70..#127},
 {#71..#127},
 {#72..#127},
 {#73..#127},
 {#74..#127},
 {#75..#127},
 {#76..#127},
 {#77..#127},
 {#78..#127},
 {#79..#127},
 {#80..#127},
 {#81..#127},
 {#82..#127},
 {#83..#127},
 {#84..#127},
 {#85..#127},
 {#86..#127},
 {#87..#127},
 {#88..#127},
 {#89..#127},
 {#90..#127},
 {#91..#127},
 {#92..#127},
 {#93..#127},
 {#94..#127},
 {#95..#127},
 {#96..#127},
 {#97..#127},
 {#98..#127},
 {#99..#127},
 {#100..#127},
 {#101..#127},
 {#102..#127},
 {#103..#127},
 {#104..#127},
 {#105..#127},
 {#106..#127},
 {#107..#127},
 {#108..#127},
 {#109..#127},
 {#110..#127},
 {#111..#127},
 {#112..#127},
 {#113..#127},
 {#114..#127},
 {#115..#127},
 {#116..#127},
 {#117..#127},
 {#118..#127},
 {#119..#127},
 {#120..#127},
 {#121..#127},
 {#122..#127},
 {#123..#127},
 {#124..#127},
 {#125..#127},
 {#126..#127},
 {#127}
];
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 637

Chapter Twelve Volume Three
/**/
/* */
/* fastRangeChar- */
/* */
/* A fast implementation of cs.rangeChar that uses a table lookup */
/* to speed up the generation of the character set for really large */
/* sets (note: because of memory latencies, this function is probably */
/* slower than cs.rangeChar for small character sets). */
/* */
/**/

procedure fastRangeChar(LowBound:char; HighBound:char; var csDest:cset);
begin fastRangeChar;

 push(eax);
 push(ebx);
 push(esi);
 push(edi);
 mov(csDest, ebx); // Get pointer to destination character set.

 // Copy EndRange[LowBound] into csDest. This adds all the
 // characters from LowBound to #127 into csDest. Then intersect
 // this set with StartRange[HighBound] to trim off all the
 // characters after HighBound.

 movzx(LowBound, esi);
 shl(4, esi); // *16 ‘cause each element is 16 bytes.
 movzx(HighBound, edi);
 shl(4, edi);

 mov((type dword EndRange[esi + 0]), eax);
 and((type dword StartRange[edi + 0]), eax); // Does the intersection.
 mov(eax, (type dword [ebx+0]));

 mov((type dword EndRange[esi + 4]), eax);
 and((type dword StartRange[edi + 4]), eax);
 mov(eax, (type dword [ebx+4]));

 mov((type dword EndRange[esi + 8]), eax);
 and((type dword StartRange[edi + 8]), eax);
 mov(eax, (type dword [ebx+8]));

 mov((type dword EndRange[esi + 12]), eax);
 and((type dword StartRange[edi + 12]), eax);
 mov(eax, (type dword [ebx+12]));

 pop(edi);
 pop(esi);
 pop(ebx);
 pop(eax);

end fastRangeChar;

static
 TestCset: cset := {};

begin csRangeChar;
Page 638 © 2001, By Randall Hyde Beta Draft - Do not distribute

Calculation Via Table Lookups
 fastRangeChar(‘a’, ‘z’, TestCset);
 stdout.put(“Result from fastRangeChar: {“, TestCset, “}” nl);

end csRangeChar;

Program 12.2 Table Lookup Implementation of cs.rangeChar

Naturally, the StartRange and EndRange tables were not hand-generated. An HLA program generated
these two tables (with a combined 512 elements). Program 12.3 is the program that generated these tables.

program GenerateRangeChar;
#include(“stdlib.hhf”);

var
 outFile: dword;

begin GenerateRangeChar;

 // Open the file:

 mov(fileio.openNew(“rangeCharCset.hla”), outFile);

 // Emit the initial part of the declaration to the output file:

 fileio.put
 (
 outFile,
 stdio.tab,
 “StartRange: cset[128] := “ nl,
 stdio.tab, stdio.tab, stdio.tab, “[“ nl,
 stdio.tab, stdio.tab, stdio.tab, stdio.tab, “{#0},” nl // element zero

);
 for(mov(1, ecx); ecx < 127; inc(ecx)) do

 fileio.put
 (
 outFile,
 stdio.tab, stdio.tab, stdio.tab, stdio.tab,
 “{#0..#”,
 (type uns32 ecx),
 “},” nl
);

 endfor;
 fileio.put
 (
 outFile,
 stdio.tab, stdio.tab, stdio.tab, stdio.tab,
 “{#0..#127}” nl,
 stdio.tab, stdio.tab, stdio.tab, “];” nl
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 639

Chapter Twelve Volume Three
);

 // Now emit the second table to the file:

 fileio.put
 (
 outFile,
 nl,
 stdio.tab,
 “EndRange: cset[128] := “ nl,
 stdio.tab, stdio.tab, stdio.tab, “[“ nl
);
 for(mov(0, ecx); ecx < 127; inc(ecx)) do

 fileio.put
 (
 outFile,
 stdio.tab, stdio.tab, stdio.tab, stdio.tab,
 “{#”,
 (type uns32 ecx),
 “..#127},” nl
);

 endfor;
 fileio.put
 (
 outFile,
 stdio.tab, stdio.tab, stdio.tab, stdio.tab, “{#127}” nl,
 stdio.tab, stdio.tab, stdio.tab, “];” nl nl
);
 fileio.close(outFile);

end GenerateRangeChar;

Program 12.3 Table Generation Program for the csRangeChar Program
Page 640 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
Questions, Projects, and Labs Chapter Thirteen

13.1 Questions

1) What is the purpose of the INTO instruction?

2) What was the main purpose for the INTMUL instruction in this volume? What was it introduced before
the chapter on integer arithmetic?

3) Describe how to declare byte variables. Give several examples. What would you normally use byte vari-
ables for in a program?

4) Describe how to declare word variables. Give several examples. Describe what you would use them for in
a program.

5) Repeat question 4 for double word variables.

6) What are qword and tbyte objects?

7) How does HLA differentiate string and character constants?

8) Explain the purpose of the TYPE section. Give several examples of its use.

9) What is a pointer variable?

10) How do you declare pointer variables in a program?

11) How do you access the object pointed at by a pointer. Give an example using 80x86 instructions.

12) What is the difference between a CONST object and a VAL object?

13) What is the “?” statement used for?

14) What is an enumerated data type?

15) Given the two literal string constants “Hello “ and “World”, provide two fundamentally different ways to
concatenate these string literal constants into a single string within an HLA source file.

16) What is the difference between a STRING constant and a TEXT constant?

17) What is a pointer constant? What is the limitation on a pointer constant?

18) What is a pointer expression? What are the limitations on pointer expressions?

19) What is a dangling pointer? How do you avoid the problem of dangling pointers in your programs?

20) What is a memory leak? What causes it? How can you avoid memory leaks in y our programs?

21) What is likely to happen if you use an uninitialized pointer?

22) What is a composite data type?

23) If you have a variable of type STRING, how many bytes in memory does this variable consume? What
value(s) appear in this variable?

24) What is the data format for HLA string data?

25) What is the difference between a length-prefixed and a zero terminated string? What are the advantages
and disadvantages of each?

26) Are HLA string zero terminated or length prefixed?

27) How do you directly obtain the length of an HLA string (i.e., w/o using the str.length function)?

28) What are the two pieces of length data maintained for each HLA string? What is the difference between
them?

29) Why would you want to use the str.cpy routine (which is slow) rather than simply copying the pointer data
from one string to another (which is fast)?
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 641

V3Questions
30) Many string functions contain the prefix “a_” in their name (e.g., str.cpy vs. str.a_cpy). What is the differ-
ence between the functions containing the “a_” prefix and those that do not contain this prefix?

31) Explain how to access the individual characters in an HLA string variable.

32) What is the purpose of string concatenation?

33) What is the difference between the str.cat and str.insert? Which is the more general of the two routines?
How could you use the more general routine to simulate the other?

34) How can you perform a case-insensitive string comparison using the HLA Standard Library Strings mod-
ule?

35) Explain how to convert an integer to its string representation using functions from the HLA Standard
Library’s String module.

36) How does HLA implement character sets? How many bytes does a character set variable consume?

37) If CST is a character set constant, what does “-CST” produce?

38) Explain the purpose of the character classification routines in the HLA Standard Library chars.hhf mod-
ule.

39) How do you compute the intersection, union, and difference of two character set constants in an HLA
constant expression?

40) How do you compute the interesection, union, and difference of two character set variables in an HLA
program at run-time?

41) What is the difference between a subset and a proper subset?

42) Explain how you can use a character set to validate user input to a program.

43) How do you declare arrays in assembly language? Give the code for the following arrays:

a) A two dimensional 4x4 array of bytes b) An array containing 128 double words

c) An array containing 16 words d) A 4x5x6 three dimensional array of words

44) Describe how you would access a single element of each of the above arrays. Provide the necessary for-
mulae and 80x86 code to access said element (assume variable I is the index into single dimension arrays,
I & J provide the index into two dimension arrays, and I, J, & K provide the index into the three dimen-
sional array). Assume row major ordering, where appropriate.

45) Repeat question (44) using column major ordering.

46) Explain the difference between row major and column major array ordering.

47) Suppose you have a two-dimensional array of bytes whose values you want to initialize as follows:

Provide the variable declaration to accomplish this. Note: Do not use 80x86 machine instructions to ini-
tialize the array. Initialize the array in your STATIC section.

Questions (48)-(52) use these HLA declarations:

type

Date: Record
Month:int8;
Day:int8;
Year:int8;

endrecord;

0 1 2

3 4 5

6 7 8
Page 642 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
Time= record
Hours:int8;
Minutes:int8;
Seconds:int8;

endrecord;

VideoTape: record
Title:string;
ReleaseDate:Date;
Price:Real32;
Length: Time;
Rating:char;

endrecord;

var

TapeLibrary : VideoTape[128];

48) Suppose EBX points at an object of type VideoTape. What is the instruction that properly loads the Rating
field into AL?

49) Provide an example of a STATIC VideoTape variable initialized with an appropriate constant (should be
legal in the HLA STATIC section).

50) This data structure (Date) suffers from the good old “Y2K” bug. Provide a correction for this problem
(See Chapter Six in this volume if you have any questions about “Y2K” or the solution to this problem).

51) A one-character rating is probably not sufficient since there are ratings like “PG” and “PG-13” on movies.
On the other hand, the longest rating string is five characters, so a string variable (minimum of 16 charac-
ters between the pointer and the resident string data) is probably overkill. Describe a better way to handle
this using a one-byte variable/data type.

52) Provide a variable declaration for a pointer to a VideoTape object.

53) Provide an example of an HLA array constant containing eight uns8 values.

54) How many bytes of memory does a 4x5 array of dwords require?

55) What is the difference between an array of characters and a string?

56) What is the difference between the indexes you would use to access an HLA array constant and the
indexes you would use to access an array element in memory at run-time?

57) Why is the bubble sort generally a poor choice of algorithm when sorting data? Under what circum-
stances is the bubble sort a good choice?

58) What is a dynamically allocated array? How do you create one?

59) Explain the use of the @size compile-time function when indexing into an array at run-time.

60)

61) How does HLA store the fields of a record in memory?

62) Provide an example of a student record constant (see “Records” on page 465 for a description of the stu-
dent record).

63) If you have an array of records and you want to compute an index into the array, describe how HLA can
compute the size of each element of the array (i.e., the record size) for you.

64) Given the following declaration, provide the code to access element a[i].b[j] of this array:

type
bType: uns32[16];
rType:

record
i:int32;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 643

V3Questions
u:uns32;
b:bType;

endrecord;

pType:pointer to rType

static
a:rType[32];

65) Given the definitions in question (64), explain how you would access the object the jth element of the b
field of the record where p points in assembly language (“p->b[j]” using C syntax, “p^.b[j]” for Pascal
programmers).

66) Explain how to set the offset of the first field in a record. Give an example of why you would want to do
this.

67) Explain how to align a particular field in a record to a given boundary.

68) Describe how to pad a record so that its size is an even multiple of some number of bytes.

69) What is the difference between a record and a union?

70) What is an anonymous union? What would you use it for?

71) What is a variant type? What data structure(s) would you use to create a variant object?

72) What is a namespace? What is its purpose?

73) What is the difference between a namespace and a record?

74) What type of declaration may not appear in a namespace?

75) What is namespace pollution? How do namespaces solve this problem?

76) What is the data structure for an HLA Standard Library DATE data type?

77) What is the data structure for an HLA Standard Library TIME data type?

78) What is the rule for computing whether a given year is a leap year?

79) What Standard Library routines would you call to get the current date and current time?

80) What is a Julian Day Number? Why are such dates interesting to us?

81) What routines does the HLA Standard Library provide to perform date arithmetic?

82) What is the difference between a random access file and a sequential file?

83) What is the difference between a binary and a text file?

84) What is the difference between a variable-length record and a fixed length record? Which would you use
in a random access file? Why?

85) What is an ISAM file? What is the purpose of an ISAM list?

86) Explain how to copy one file to another using the HLA fileio routines.

87) How does computing the file size help you determine the number of records in a random access file?

88) What is the syntax for an HLA procedure declaration?

89) What is the syntax for an HLA procedure invocation (call)?

90) Why is it important to save the machine state in a procedure?

91) What is lexical scope?

92) What is the lifetime of a variable?

93) What types of variables use automatic storage allocation?

94) What types of variables maintain their values across a procedure call (i.e., still have the value from the last
call during the current call)?
Page 644 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
95) What is the lifetime of a global variable?

96) What is the lifetime of a local variable?

97) What are the six different ways HLA lets you pass parameters?

98) What are two different ways to declare pass by value parameters in an HLA procedure?

99) How do you declare pass by reference parameters in an HLA procedure?

100) What are the advantages and disadvantages of callee-preservation and caller-preservation when saving
registers inside a procedure?

101) How do pass by value parameters work?

102) How do pass by reference parameters work?

103) How would you load the value associated with a pass by value parameter, V, into the EAX register?

104) How would you load the value associated with a pass by reference parameter, R, into the EAX register?

105) What is the difference between a function and a procedure?

106) What is the syntactical difference between a function and a procedure in HLA?

107) Where do you typically return function results?

108) What is instruction composition?

109) What is the purpose of the RETURNS option in a procedure declaration?

110) What is a side effect?

111) What is wrong with side effects in your programs?

112) What is recursion?

113) What is the FORWARD procedure option used for?

114) What is the one time that a forward procedure declaration is absolutely necessary?

115) Give an example of when it would be convenient to use a forward declaration even if it was specifically
required.

116) Explain how to return from a procedure in the middle of that procedure (i.e., without “running off the
end” of the procedure).

117) What does the #INCLUDE directive do?

118) What do you normally use the #INCLUDE directive for?

119) What is the difference between the #INCLUDE and the #INCLUDEONCE directives?

120) What is the syntax for an HLA unit?

121) What is the purpose of an HLA unit?

122) What is the purpose of separate compilation?

123) How do you declare EXTERNAL procedures? Variables?

124) What variable types cannot be EXTERNAL?

125) How do you declare a public symbol in HLA?

126) What is a header file?

127) What is a file dependency?

128) What is the basic syntax for a makefile?

129) What is a recursive file inclusion? How can you prevent this?

130) What are the benefits of code reuse?

131) What is a library?

132) Why would you not want to compile all your library routines into a single OBJ file?
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 645

V3Questions
133) What types of files are merged together to form a .LIB file?

134) What program would you use to create a library file?

135) How does a library contribute to name space pollution? How can you solve this problem?

136) What are the differences between the INTMUL and the IMUL instruction?

137) What must you do before executing the DIV and IDIV instructions?

138) How do you compute the remainder after the division of two operands?

139) Assume that VAR1 and VAR2 are 32 bit variables declared with the DWORD type. Write code sequences
that will compute the boolean result (true/false) of each of these, leaving the result in BL:

a) VAR1 = VAR2

b) VAR1 <> VAR2

c) VAR1 < VAR2 (Unsigned and signed versions

d) VAR1 <= VAR2 for each of these)

e) VAR1 > VAR2

f) VAR1 >= VAR2

140) Provide the code sequence that will compute the result of the following expressions. Assume all variables
are UNS32 values and you are computing unsigned results:

a) A = (X-2) * (Y + 3);

b) B = (A+2)/(A - B);

c) C = A/X * B - C - D;

d) D = (A + B)/12 * D;

e) E = (X * Y) / (X-Y) / C+D;

f) F = (A <= B) && (C != D) || (E > F);

(note to Pascal users, the above is “F := (A <= B) and (C <> D) or (E > F);”)

141) Repeat question (140) assuming all variables are INT32 objects and you are using signed integer arith-
metic.

142) Repeat question (140) assuming all variables are REAL64 objects and you are using floating point arith-
metic. Also assume that an acceptable error value for floating point comparisons is 1.0e-100.

143) Convert the following expressions into assembly language code employing shifts, additions, and subtrac-
tions in place of the multiplication:

a) EAX*15

b) EAX*129

c) EAX*1024

d) EAX*20000

144) How could you use the TEST instruction (or a sequence of TEST instructions) to see if bits zero and four
in the AL register are both set to one? How would the TEST instruction be used to see if either bit is set?
How could the TEST instruction be used to see if neither bit is set?

145) Why are commutative operators easier to work with when converting expressions to assembly language
(as opposed to non-commutative operators)?

146) Provide a single LEA instruction that will multiply the value in EAX by five.

147) What happens if INTMUL produces a result that is too large for the destination register?

148) What happens if IMUL or MUL produces a result that is too large for EAX?

149) Besides divide by zero, what is the other division error that can occur when executing IDIV or DIV?
Page 646 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
150) What is the difference between the MOD instruction and the DIV instruction?

151) After a CMP instruction, how do the condition code bits indicate that one signed operand is less than
another signed operand?

152) What instruction is CMP most similar to?

153) What instruction is TEST most similar to?

154) How can you compute a pseudo-random number between 1 and 10 using the HLA Standard Library
rand.hhf module?

155) Explain how to copy the floating point status register bits into the 80x86 FLAGs register so you can use
the SETcc instructions after a floating point comparison.

156) Why is it not a good idea to compare two floating point values for equality?

157) Explain how to activate floating point exceptions on the FPU.

158) What are the purpose of the rounding control bits in the FPU control register?

159) Besides where they leave their results, what is the difference between the FIST instruction and the FRND-
INT instruction?

160) Where does stdin.getf() leave the input value?

161) What is a mantissa?

162) Why does the IEEE floating point format mantissa represent values between 1.0 and 2.0?

163) How can you control the precision of floating point calculations on the FPU? Provide an example that
shows how to set the precision to real32.

164) When performing floating point comparisons, you use unsigned comparisons rather than signed compari-
sons, even though floating point values are signed. Explain.

165) What is postfix notation?

166) Convert the expression in question (140) to postfix notation.

167) Why is postfix notation convenient when working with the FPU?

168) Explain how the XLAT instruction operates.

169) Suppose you had a cipher (code) that swaps various characters in the alphabet. Explain how you could
use the XLAT instruction to decode a message encoded with this cipher. Explain how you could encode
the message.

170) What is the purpose of domain conditioning?

171) What is the maximum set of values for the domain and range when using the XLAT instruction?

172) Explain the benefits of using one program to generate the lookup tables for another program.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 647

V3Questions
13.2 Programming Projects

1) Write a procedure, PrintArray(var ary:int32; NumRows:uns32; NumCols:uns32), that will print a
two-dimensional array in matrix form. Note that calls to the PrintArray function will need to coerce the
actual array to an int32. Assume that the array is always an array of int32 values. Write the procedure as
part of a UNIT with an appropriate header file. Also write a sample main program to test the PrintArray
function. Include a makefile that will compile and run the program. Here is an example of a typical call to
PrintArray:

static
MyArray: int32[4, 5];

.

.

.
PrintArray((type int32 MyArray), 4, 5);

2) Write a procedure that reads an unsigned integer value from the user and reprompts for the input if there is
any type of error. The procedure should return the result in the EAX register. It shouldn’t require any
parameters. Compile this procedure in a UNIT. Provide an appropriate header file and a main program
that will test the function. Include a makefile that will compile and run the program.

3) Extend the previous project (2) by writing a second routine for the UNIT that has two parameters: a mini-
mum value and a maximum value. Not only should this routine handle all input problems, but it should
also require that the input value fall between the two values passed as parameters.

4) Extend the unit in (3) by writing two addition procedures that provide the same facilities for signed inte-
ger values.

5) Write a program that reads a filename from the user and then counts the number of lines in the text file
specified by the filename.

6) Write a program that reads a filename from the user and then counts the number of words in the specified
text file. The program should display an accurate count of words. For our purposes, a “word” is defined
as any sequence of non-whitespace characters. A whitespace character is the space (#$20), tab (#$9), car-
riage return (#$d), and the line feed (#$a). Read the text file a line at a time using fileio.gets or
fileio.a_gets. Also remember that a zero byte (#0) marks the end of a string, so this clearly terminates a
word as well.

7) Modify the CD database program in Laboratory Exercise 13.3.10 so that it reads the CD database from a
text file. Your program should make two passes through the text file. On the first pass it should count the
number of lines in the text file and divide this value by four (four lines per record) to determine how many
records are in the database. Then it should dynamically allocate an array of CDs of the specified size. On
the second pass, it should read the data from the text file into dynamically allocated array. Obviously, you
must also modify the program so that it works with a variable number of CDs in the list rather than the
fixed number currently specified by the NumCDs constant.

8) Modify program (7) to give the user the option of displaying all the records in the database sorted by title,
artist, publisher, or date. Use the QuickSort algorithm appearing in this volume to do the sorting (note:
the solution requiring the least amount of thought will require four different sort routines; a more intelli-
gent version can get by with two versions of quicksort).

9) Write a “CD Database Input” program that reads the textfile database for program (7) into a fixed array in
memory. Allow enough space for up to 500 records in the database (display an error and stop if the input
exceeds this amount). Of course, the value 500 should be a symbolic constant that can easily be changed
if you need a larger or smaller database. After reading the records into memory, the program should
prompt the user to enter additional CDs for the database. When the user is through entering data, the pro-
gram should write all the records back to the database file (including the new records).

10) Modify program (9) so that the user is given the option of deleting existing records (perhaps by specifying
the index into the array) in addition to entering new entries into the database.
Page 648 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
11) Write a MsgBoxInput procedure that has the following parameters:

procedure MsgBoxInput(prompt:string; row:word; col:word; result:string);

The procedure should do the following:

1) Save the rectangular region of the screen specified by (row, col) as the upper left hand corner and
(row+4, col+length(prompt) +2) as the lower right hand corner. Stop the program with an error if this
rectangle is outside the bounds (0,0) <-> (24,79). Use the console.a_getRect function to save this portion
of the screen.

2) Fill the rectangular region saved above with spaces and a dark blue background. Set the foreground
attribute to yellow. (console.fillRect).

3) Print the prompt message starting at position (row+1, col+1).

4) Position the cursor at (row+2, col+1).

5) Read a string from the user with no more than length(prompt) characters (see below).

7) Restore the attributes in the rectangular region to black and white. (console.fillRectAttr)

8) Redraw the text saved in step one above.

Note that you cannot use stdin.gets or stdin.a_gets to read the string from the user since these functions
won’t limit the number of input characters. Instead, you will have to write your own input routine using
stdin.getc to read the data a character at a time. Don’t forget to properly handle the backspace character.
Also, stdin.getc does not echo the character, so you will have to handle this yourself.

Put these procedures in a unit and write a companion main program that you can use to test your dialog
box input routine.

12) The Windows console device is a memory mapped I/O device. That is, the display adapter maps each
character on the text display to a character in memory. The display is an 80x25 array of characters
declared as follows:

display:char[25,80];

Display[0,0] corresponds to the upper left hand corner of the screen, display[0,79] is the upper right hand
corner, display[24,0] is the lower left hand corner, and display[24,79] is the lower right hand corner of the
display. Each array element contains the ASCII code of the character to appear on the screen.

The lab4_10_7.hla program demonstrates how to copy a matrix to a portion of the screen (or to the entire
console, if you so desire). Currently, this program draws and erases a single asterisk over and over again
on the screen to give the illusion of animation. Modify this program so that it draws a rectangular or tri-
angular shape, based at the row/column address specified by the for-loops. Be sure you don’t “draw” out-
side the bounds of the character array (playingField).

13) Create a program with a single dimension array of records. Place at least four fields (your choice) in the
record. Write a code segment to access element i (i being a DWORD variable) in the array.

14) Modify the program above so that it contains two identical arrays of records. Have the program copy the
data from the first array to the second array and then print the values in the second array to verify the copy
operation.

15) Modify the program in (14) above to use a dynamically allocated array, rather than a statically allocated
array, as the destination array.

16) Write a program which copies the data from a 4x4 array and stores the data into a second 4x4 array. For
the first 4x4 array, store the data in row major order. For the second 4x4 array, store the data in column
major order. Write the for loops to do this “transposition” yourself. Do not use the array.transpose rou-
tine in the HLA Standard library.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 649

V3Questions
17) Modify program (16) so that a single constant controls the size of the matrices (they will always be
square, having the same number of rows as columns, so a single constant will suffice).

18) Write a program that reads two lines of text from the user and displays all characters that appear on both
lines, but does not display any characters that appear on only one of the two lines of text. (hint: use the
character set functions.)

19) Modify program (18) so that it prints the characters common to both lines, the characters appearing only
in the first string, and the characters appearing only in the second string. Print these three sets of charac-
ters on different lines with an appropriate message explaining their content.

20) Write a program that reads a line of text from the user and counts the number of occurrences of each char-
acter on the line. The program should display the character and count for each unique character found in
the input line whose count is not zero (hint: create an array of 256 integers and use the ASCII code as an
index into this array).

21) Modify program (20) so that it also displays the number of numeric characters, the number of alphabetic
characters (upper and lower case), the number of uppercase alphabetic characters, the number of lower
case alphabetic characters, the number of control characters (ASCII code <= $1f and $7f), and the number
of punctuation characters (this is all characters other than the previously mentioned sets). Display these
counts one per line before the output of the count for each character from problem (20).

22) Write a program that reads a line of text from the user and counts the number of words on that line. For
our purposes, a “word” is defined as any sequence of non-whitespace characters. A whitespace character
is the space (#$20), tab (#$9), carriage return (#$d), and the line feed (#$a). Do not use the str.tokenize or
str.tokenize2 routines to implement this program.

23) Look up the str.tokenize2 routine in the HLA Standard Library strings module. Implement problem (22)
using this procedure.

24) Write a program that reads a string from the user and checks the string to see if it takes the form
“mm/dd/yy”, or “mm-dd-yy” where mm, dd, and yy are all exactly two decimal digits. If the input string
matches either of these patterns, extract these substrings into separate string variables and print them on
separate lines with an appropriate description (i.e., month, day, and year).

25) Modify program (24) to verify that mm is in the range 01-12, dd is in the range 01-31, and yy is in the
range 00-99. Report match/no match on the input depending upon whether the input string matches this
format. Note: you will probably find this problem to be a whole lot less work if you look up the
conv.strTou8 procedure in the conversions module of the HLA Standard Library and do numeric compari-
sons rather than string comparisons).

26) Modify program (25) to allow single digit values for the month and day components when they fall in the
range 1-10 (the year component, yy, still requires exactly two digits). Also allow leading or trailing
whitespace in the string (hint: use the char.ispace function or the str.trim function). Display match/no
match as before depending upon the validity of the string.

27) Modify program (26) so that it checks the validity of the date subject to the Gregorian Calendar. That is,
the day value should not exceed the maximum number of days for each month. Note: you may use the
date.IsLeapYear function but you may not use date.IsValid or date.validate for this project. Assume that
the centuries portion of the date is in the range 2000..2099 (that is, add 2000 to the year value to obtain the
correct year).

28) The Y2K problem): Modify program (27) as follows: (1) it reads a string from the user. (2) it searches for
the pattern “mm/dd/yy” or “mm-dd-yy” anywhere in the string (there may be other text in the string in
this program). If the program finds a string of the form “mm/dd/yy” or “mm-dd-yy” then it will replace
that string with a string of the form “mm/dd/19yy” or “mm-dd-19yy” to make the string Y2K compatible
(of course, a good programmer would use a string constant for “19” so it could be easily changed to “20”
or any other two digits). If there is more than one date in the string that matches a valid Y2K date, you
will need to find and convert that date as well (i.e., convert all possible dates found in the string). After the
conversion process is complete, display the string which should be the original text typed by the user with
these Y2K modifications. Do not translate any dates that don’t exactly match one of these two patterns:

Examples of strings containing good dates (ones you should translate):
Page 650 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
01-01-01
02-29-96
End of the 1900s: 12/31/99
Today is ‘3/17/90’
Start of the 20th century: 1/1/01, end of the 20th century: 12/31/2000
(note: program must not convert 12/31/2000 above to 12/31/192000)
Yesterday was 7/4/76, tomorrow is 7/6/96.
(must convert both dates above.)

Examples of bad dates that your program must ignore:

01-01/01
02/29-96
End of the 1900s: 12/31/1999
Today is ‘123/17/90’
01/32/00
02/29/99

29) Write a program that reads a string of characters from the user and verifies that these characters are all
decimal digits in the range ‘0’..’7’. Treat this string as an octal (base eight) number. Convert the string to
an integer value. Note: values in the range 0..7 consume exactly three bits. You can easily construct the
octal number using the SHL instruction; you will not need to use the INTMUL instruction for this assign-
ment. Write a loop that reads the octal string from the user and, if the string is valid, converts the number
to an integer and displays that integer value in decimal.

30) Modify the student database program in the laboratory exercises (see “Records, Arrays, and Pointers Lab-
oratory Exercise” on page 676) to sort the students by their name prior to printing the result. Since the
name field is a string, you will want to use the string comparison routines to compare them. You should
also use the case insensitive string comparisons (e.g., str.ile) since upper and lower case are irrelevant to
most people when viewing sorted lists of names.

31) Modify program (30) so that it uses two fields for the name (last name and first name). The user should
still enter the full name. Under program control, extract the first and last names from the single input
string and store these two name components into their respective fields in the record.

32) Write a program that computes the two solutions to the quadratic equation.

The program should verify that a is non-zero and that the value b2-4ac is positive or zero before attempt-
ing to compute these roots.

x1

b– b
2

4ac––
2a

----------------------------------=

x2

b– b
2

4ac–+
2a

--------------------------------------=
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 651

V3Questions
33) Suppose you are given a line and two points on that line. Compute the point that is midway between the
two points via the equations Xmid = (x1 + x2)/2 and Ymid = (y1 + y2)/2. Read the X and Y coordinates for
the two points from the user. Use a RECORD containing two fields, X and Y, to denote a single point in
your program. Note: X and Y are real64 variables.

34) Write a program that computes the amount of interest earned on a savings account. The formula for com-
puting interest is

Hint: you will need to use routines from the “math.hhf” library module for this assignment.

35) Write a program that inputs a temperature in Celsius and converts it to degrees Fahrenheit. The transla-
tion is given by the following formula:

36) Solve the equation above (35) for c and write a program that also solves for Celsius given a temperature in
Fahrenheit.

37) Write a program that inputs a set of grades for courses a student takes in a given quarter. The program
should then compute the GPA for that student for the quarter. Assume the following grade points for each
of the following possible letter grades:

• A+ 4.0
• A 4.0
• A- 3.7
• B+ 3.3
• B 3.0
• B- 2.7
• C+ 2.3
• C 2.0
• C- 1.7
• D+ 1.3
• D 1.0
• D- 0.7
• F 0

Display the GPA using the format X.XX.

38) Modify program (37) to handle courses where each course may have a different (integral) number of
units. Multiply the grade points by the number of units for a given grade and then divide by the total
number of units.

39) Write a program that accepts a dollars and cents amount as a floating point value and converts this to an
integer representing the number of pennies in the entered amount (round the input to the nearest penny if

DollarsEarned InitialDeposit 1.0
InterestRate

100.0
---------------------------------+

 Years
×=

f 9 5⁄() c 32+×=
Page 652 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
it is off a little bit). Translate this value into the minimum number of pennies, nickels, dimes, quarters,
one dollar bills, five dollar bills, ten dollar bills, twenty dollar bills, and one hundred dollar bills that
would be necessary to represent this result. Display your answer as follows:

The amount $xxx.xx requires no more than
p pennies,
n nickels,
d dimes,
q quarters,
d $1 bills,
f $5 bills,
t $10 bills,

and h $100 bills.

The italicized letters represent small integer constants (except h which can be a large integer constant).
Do not display an entry if the count is zero (e.g., if there are zero $100 bills required, do not display the
line “0 $100 bills.”)

40) Modify program (39) so that it displays a singular noun if there is only one of a given item (e.g., display
“1 nickel,” rather than “1 nickels,”)

41) Write a program that plots a sine curve on the console (see “Bonus Section: The HLA Standard Library
CONSOLE Module” on page 184 for a discussion of the console support routines). Begin by clearing the
screen with console.cls(). Then draw a row of dashes along line 12 on the screen to form the X-axis.
Draw a column of vertical bars in column 0 to denote the Y-axis. Finally, plot the sine curve by using con-
sole.gotoxy to position the cursor prior to printing an asterisk (“*”) to represent one point on the screen.
Plot the curve between 0 and 4π radians. Each column on the screen should correspond to 4π/80 radians.
Since the FSIN instruction only returns values between -1 and +1, you will need to scale the result by add-
ing one to the value and multiplying it by 12. This will give the Y-coordinate of the point to plot. Incre-
ment through each of the X-coordinate positions on the screen when plotting the points (remember, each
X-coordinate is 4π/80 radians greater than the previous X-coordinate).

42) Modify program (41) to simultaneously plot the COS curve at the same time you plot the SIN curve. Use
at signs (“@”) to plot the cosine points.

43) Write a program that accepts an integer value as a decimal (base 10) number and outputs the value in a
user specified base between two and ten.

44) Modify program (43) so that it accepts an integer in one user-specified base and outputs the number in a
second user-specified base (bases 2-10).

45) The factorial of a non-negative integer, n!, is the product of all integers between one and n. For example,
3! is 3*2*1 = 6. Write a function that computes n! using integer arithmetic. What is the largest value of n
for which you can compute n! without overflow using 32-bit integers?

46) Since n! overflows so rapidly when using 32-bit integers, use the 64-bit integer capabilities of the FPU to
compute n! (see problem 45). What is the maximum value of n for which you can compute n! when using
64-bit numbers?

47) You can estimate the value of the constant e using the following equation:

Obviously, you cannot carry this out to an infinite number of terms, but the more terms you use the better
the approximation. Write a program that will calculate e using this approximation that is accurate to at
least 12 decimal places (e=2.71828182846).

e 1

1!
----- 1

2!
----- 1

3!
----- 1

4!
----- …+ + + +=
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 653

V3Questions
48) You can compute the value of ex using the following mathematical series:

Using the same number of terms required by problem (47), compute ex with 12 digits of accuracy.

49) Write a program that reads the data from a text file and swaps the case of the alphabetic letters and writes
the result to the console. Use a lookup table to perform the case swap (hint: it’s probably easiest to have
the program fill in the table using the first few instructions of the program rather than by typing the table
by hand or write a separate program to generate the table). The program should prompt the user for the
file name to translate.

50) Genokey Technologies manufactures portable keypads for laptop computers. They have boxes that will
hold one, five, ten, twenty-five, and one hundred keypads. Write a program for the Genokey shipping
clerk that will automatically choose the minimum number of boxes (and tell how many of each is
required) that are necessary to ship n keypads to a distributor whenever that distributor orders n keypads.

51) Write a program that reads two eight-bit unsigned integer values from the user, zero-extends these inte-
gers to 16-bits, and then computes and prints their product as follows:

 123
 x 241

 123
 492
 246

 29643

52) Extend the RPNcalculator program (found in the sample program section of the chapter on Real Arith-
metic, see “Sample Program” on page 619) to add all the function which there are FPU instructions (e.g.,
COS, CHS, ABS, FPREM1, etc.).

53) Extend the calculator program above (52) to support the functions provided in the HLA “math.hhf” mod-
ule.

54) Modify the RPN calculator program above (53) to support infix notation rather than postfix notation. For
this assignment, remove the unary functions and operators.

e
x x

1!
----- x

2

2!
----- x

3

3!
----- x

4

4!
----- …+ + + +=
Page 654 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
13.3 Laboratory Exercises

Note: since this volume is rather long you should allow about twice as much time as nor-
mal to complete the following laboratory exercises.

Accompanying this text is a significant amount of software. The software can be found in the
AoA_Software directory. Inside this directory is a set of directories with names like Volume2 and Volume3,
with the names obviously corresponding to the volumes in this textbook. All the source code to the example
programs in this volume can be found in the subdirectories found in the Volume3 subdirectory. The
Volume3\Ch13 subdirectory also contains the programs for this chapter’s laboratory exercises. Please see
this directory for more details.

13.3.1 Using the BOUND Instruction to Check Array Indices

The following program (Program 13.1) demonstrates how to use the BOUND instruction to check array
indices at run time. This simple program reads an unsigned integer from the user and uses that value as an
index into an array containing 10 characters then displays the character at the specified index. However, if
the array index is out of bounds, this triggers an ex.BoundInstr exception and prints an error message (this
program also handles a couple of other exceptions that stdin.get can raise).

// Program to demonstrate BOUND instruction.

program BoundLab;
#include(“stdlib.hhf”);

static

 index: uns32;
 arrayBounds: dword[2] := [0, 9];
 arrayOfChars: char[10] :=
 [‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’];

 answer: char;

begin BoundLab;

 repeat

 try

 // Read an integer index into “arrayOfChars” from the user:

 stdout.put(“Enter an integer index between 0 and 9: “);
 stdin.flushInput();
 stdin.get(index);

 // Verify that the input is in the range 0..9:

 mov(index, eax);
 bound(eax, arrayBounds);

 // If it was a good index, display the character at that
 // index:

 mov(arrayOfChars[eax], al);
 stdout.put
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 655

V3Questions
 (
 “The character at that index is ‘”,
 (type char al),
 “‘”
 nl
);

 // Handle the exceptions possible in the stdin.get call as well
 // as the BOUND instruction exception.

 exception(ex.BoundInstr)

 stdout.put(“The index you entered is not in the range 0..9” nl);

 exception(ex.ConversionError)

 stdout.put(“You did not enter a valid unsigned integer” nl);

 exception(ex.ValueOutOfRange)

 stdout.put(“That integer value is way out of range!” nl);

 endtry;

 // Ask the user if they want to try again. Force the user to
 // enter only a “Y” or an “N”:
 repeat

 stdout.put(“Do you wish to try another index (Y/N)? “);
 stdin.flushInput();
 stdin.getc();

 // If the user enters a lower case character, convert it
 // to upper case.

 if(al in ‘a’..’z’) then

 and($5f, al);

 endif;
 mov(al, bl); // Because cs.member wipes out AL.

 until(cs.member(al, {‘Y’, ‘N’}));

 until(bl = ‘N’);

end BoundLab;

Program 13.1 Using the BOUND Instruction to Check Array Indicies

Exercise A: Run this program and verify that it works in an acceptable fashion when the input is a legal
integer in the range 0..9. Next, try entering a value greater than 10. Report the results of these experiments
in your lab report.
Page 656 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
Exercise B: At the end of the program, it asks you whether you want to rerun the program. The program
uses the cs.member function to allow only a yes or no (“Y” or “N”) response. Verify that this program will
not accept any data other than “Y” or “N” when asking the user if they want to retry the operation.

Exercise C: As you can see, there is code that converts the character in the AL register to an upper case
character if it is a lower case character. After the conversion, the character set membership test only checks
for upper case characters. Verify that you can enter upper or lower case “Y” or “N” characters and the pro-
gram still works.

Exercise D: The HLA Standard Library includes the CHARS module that supplies various character
classification routines including functions like chars.isLower and chars.isUpper. These functions take a sin-
gle character parameter and return true or false in the EAX register if the parameter is a lower case alpha-
betic or upper case alphabetic character (respectively). Modify the code in this sample program to test for
lower case by making a call to the chars.isLower routine rather than using the boolean expression “(al in
‘a’..’z’)”. Rerun the program and verify that it is still working correctly.1 Include a copy of this converted
program with your lab report.

Exercise E: In addition to character classification routines, the CHARS module also includes a couple of
character conversion routines. The chars.toUpper routine will convert its single character parameter to
upper case if it is lower case (it returns all other characters unchanged). Likewise, the chars.toLower routine
converts the input parameter to a lower case character (if it was upper case to begin with). Both routines
return the character in the AL register. They both return the original character if it was not alphabetic. Mod-
ify this program to use the chars.toUpper routine to do the upper case conversion rather than the IF state-
ment it currently uses. Test the resulting program. Include a copy of this converted program with your lab
report.

Exercise F: HLA supports a special, extended, syntax for the BOUND instruction that has three param-
eters. The second and third parameters of BOUND are integer constants specifying the lower and upper
bounds to check. This form is often more convenient than the BOUND instruction appearing in Program
13.1 because you don’t have to declare a two-element initialized array for use as the BOUND parameter.
Modify your current program by eliminating the arrayBounds variable and using this form of the BOUND
instruction. Verify that your program still allows indices in the range 0..9. Include the program listing of
your modified program in your lab report.

Exercise G: Program 13.1 uses the literal constants nine and ten to denote the upper bounds on the array
as well as the number of elements in the array. Using literal constants like this makes programs much more
difficult to read and maintain. A better solution is to use a symbolic constant that you define once at the top
of the program and reference throughout the code. By doing so, you can change the size of the array by
changing only one or two statements in your program2. Modify this program so that it contains a single con-
stant specifying the number of array elements. Use this constant wherever the number of array elements or
the array’s upper bound appears in the program (hint: use constant expressions to compute the value nine
from this constant). Verify that the program still works correctly and include the source code with your lab
report.

Exercise H: HLA predefines a special boolean VAL constant, @bound, that controls the compilation of
the BOUND instruction. If @bound is true (the default) then HLA will compile BOUND instructions found
in your program. If @bound is false, then HLA ignores all BOUND instructions it encounters. You can
change the value of the @bound constant by using a statement of the form:

?@bound := false;

Modify Program 13.1 (the original version) and set the arrayBounds value so that it only allows array indi-
ces in the range 0..5. Run the program and verify this new operation. Next, insert “?@bound:=false;”
immediately after the “begin pgm4_17;” statement in the program. Recompile and run the program and ver-

1. Note that using the IN operator is much more efficient than calling the chars.isLower function. Don’t get the impression
from this exercise that chars.isLower is the best way to check for a lower case character. The chars.isLower routine is appro-
priate in many cases, but this probably isn’t a good example of where you would want to use this function. The only reason
this exercise uses this function is to introduce it to you.
2. Don’t forget, if you change the size of the character array in Program 13.1 then you will need to change the number of array
elements in the initializer for that array as well.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 657

V3Questions
ify that the BOUND instruction is no longer active by entering an index in the range 6..9. Describe the
results in your laboratory report.

13.3.2 Using TEXT Constants in Your Programs

HLA’s TEXT constants let you replace long repetitive sequences in your program with a single identi-
fier, similar to the #define statement in C/C++3. This laboratory exercise demonstrates how you can use
TEXT constants to save considerable typing in your programs.

Consider Program 13.2. This program uses TEXT constants to compress often-used text in three main
areas: first, it reduces the strings “stdout.put” and “stdin.get” to the single identifiers put and get saving a bit
of typing (since these calls occur frequently in HLA programs). Second, it replaces the string
“(type uns32 i)” with the single identifier ui. Although this program only uses ui once, in a real program you
might wind up using a single string like “(type uns32 i)” on several occasions. Finally, this program uses
TEXT constants to combine several common exceptions into the endOfTry constant, saving considerable
typing in each TRY..ENDTRY block.

// Demonstration of TEXT constants in a program.

program TextLab;
#include(“stdlib.hhf”);

const
 put: text := “stdout.put”;
 get: text := “stdin.get”;
 ui: text := “(type uns32 i)”;

 VOR: string := “Value out of range”;
 CE: string := “Conversion error”;

 exRange: text :=
 “exception(ex.ValueOutOfRange); “
 “put(VOR, nl);”;

 exConv: text :=
 “exception(ex.ConversionError); “
 “put(CE, nl);”;

 endOfTry:text :=
 “exRange; exConv; endtry”;

static

 i: int32;
 range: dword[2] := [1,10];

begin TextLab;

 try

 put(“Enter an integer value: “);

3. HLA’s TEXT constants don’t support parameters making them weaker than C/C++’s #define macro capability. Fear not,
however, HLA has it’s own macro facility that is much more powerful than C/C++’s. You will learn about HLA’s macro facil-
ities in the chapter on macros and the compile-time language.
Page 658 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
 get(i);
 put(“The value you entered was “, i, nl);

 endOfTry;

 try

 repeat

 put(“Now enter a negative integer: “);
 get(i);

 until(i < 0);
 put(“As an unsigned integer, ‘i’ is “, ui, nl);

 endOfTry;

 try

 repeat

 put(“Now enter an integer between one and ten: “);
 get(i);
 mov(i, eax);
 bound(eax, range);

 until(i < 0);
 put(“The value you entered was “, i, nl);

 exception(ex.BoundInstr);

 put(“The value was not in the range 1..10”, nl);

 endOfTry;

end TextLab;

Program 13.2 TEXT Constant Laboratory Exercise Code

Exercise A: Compile and run this program. For each TRY..ENDTRY block, enter values that raise the
conversion error exception and the value out of range exception4. For the last TRY..ENDTRY block, enter a
value outside the range 1..10 to raise an ex.BoundsInstr exception. Describe what happens in your lab
report.

Exercise B: Add a TEXT constant declaration for the exBound symbol. Set the value of the TEXT
object equal to the string associated with the BOUND instruction exception (see the examples for ex.Conver-
sionError and ex.ValueOutOfRange to figure out how to do this). Modify the last TRY..ENDTRY statement
to use this TEXT constant in place of the associated exception handling section. Run the program to verify
its operation. Include the modified program with your laboratory report.

Exercise C: Modify the first TRY..ENDTRY block above to read and display an unsigned integer value
using the ui TEXT constant in place of the i variable. Verify, by running the program, that it will no longer
let you enter negative values. Include the modified program with your lab report.

4. Entering a 12-digit integer value will raise the ex.ValueOutOfRange exception. Typing non-numeric characters will raise
the ex.ConversionError exception.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 659

V3Questions
Exercise D: In the exRange and exConv constants, the put statement uses the symbolic string constants
CE and VOR to display the error message. Replace these symbolic identifiers with their corresponding lit-
eral string constants (Hint: you need to remember how to embed quotation marks inside a string). Run and
test the program. Include the source code to this modification in your lab report and comment on the wis-
dom of using string constants rather than string literals in your programs.

13.3.3 Constant Expressions Lab Exercise

This laboratory exercise demonstrates the use of constant expressions in an HLA program. As you are
reading through the following program, keep in mind that many of the constant expressions were added to
this program simply to demonstrate various operators; you wouldn’t normally use these operators in a trivial
program such as this one. However, to write a complex program that fully uses constant expressions is
beyond the scope of this laboratory exercise. Part of this laboratory exercise is to undo some of the excessive
use of constant expressions in the program. So bear with this example.

// Demonstration of constant expressions in a program.

program ConstExprLab;
#include(“stdlib.hhf”);

const
 ElementsInArray := 10;

 sin: string := “stdin.”;
 sout: string := “stdout.”;

 put: text := sout + “put”;
 get: text := sin + “get”;
 flush: text := sin + “flushInput”;

var
 input: uns32;
 GoodInput: boolean;
 InputValues: int32[ElementsInArray];

readonly

 IV_bounds: dword[2] := [0, ElementsInArray-1];

begin ConstExprLab;

 for(mov(0, ebx); ebx < ElementsInArray; inc(ebx)) do

 repeat

 mov(false, GoodInput);
 try

 put(“Enter integer #”, (type uns32 ebx), “: “);
 flush();
 get(input);

 bound(ebx, IV_bounds);
 mov(input, InputValues[ebx*4]);
 mov(true, GoodInput);
Page 660 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times

 exception(ex.ConversionError)

 put(“Number contains illegal characters”, nl);

 exception(ex.ValueOutOfRange)

 put(“The number is way too large”, nl);

 exception(ex.BoundInstr)

 put(“Array index is out of bounds”, nl);

 endtry;

 until(GoodInput);

 endfor;

 // Now print the values entered by the user in the reverse order
 // they were entered. Note: this code doesn’t use the scaled (*4)
 // indexed addressing mode. So it initializes EBX with four times
 // the index of the last element in the array.

 mov((ElementsInArray - 1) * 4, ebx);
 while((type int32 ebx) >= 0) do

 put
 (
 “Value at offset “,
 (type uns32 ebx):2,
 “ was “,
 InputValues[ebx],
 nl
);

 // Since we’re not using the scaled (*4) index addressing mode,
 // drop the count by four for each array element since it’s an
 // array of dwords.

 sub(4, ebx);

 endwhile;

end ConstExprLab;

Program 13.3 Constant Expressions Laboratory Exercise

Exercise A: Compile this program and run it. Describe the operation of the program in your laboratory
report.

Exercise B: One extreme use of constant expressions in this program appears in the following code:

 sin: string := "stdin.";
 sout: string := "stdout.";

 put: text := sout + "put";
 get: text := sin + "get";
 flush: text := sin + "FlushInput";
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 661

V3Questions
Modify the program to eliminate the sin and sout constants from the code. The program should be easier to
read once you have completed this task. Compile and run the program and verify that it produces the same
results as before the change. Include the source code to the modified program with your lab report. Briefly
explain why you think that the use of the string concatenation operator wasn’t worth much in this code.

Exercise C: This program provides the ElementsInArray constant that lets you easily change the size of
the array that this program works with. Change the value of this constant to five and recompile and run the
program. Verify that it works correctly for five array elements (versus ten in the previous version). Identify
all locations in the program that modifying the ElementsInArray constant affects (use a hi-liter or other such
tool to make these points visible in the listing appearing in your lab report). Describe in the lab report
write-up the effort that would be needed to change the size of the array had this program not used the Ele-
mentsInArray constant.

Exercise D: The get and put constants save considerable typing in this program. Can you think of a rea-
son why it might not be such a good idea to use TEXT constants like these to save typing in your program?
Justify your answer in your laboratory report.

13.3.4 Pointers and Pointer Constants Exercises

Pointers are especially important in assembly language programs. This laboratory exercise demon-
strates that HLA programs often use pointers to access elements of an array. This program also demon-
strates how to use the BOUND instruction to check to see if a pointer contains an address between two
extremes.

Conceptually, this program is very simple. It asks the user for an integer and then prints that many char-
acters out of an array (checking, of course, to verify that the program doesn’t exceed array bounds). To print
those characters, this program loads the base address of an array into a register and then increments that reg-
ister to step through the array. Contrast this with examples appearing later in these lab exercises where the
program leaves the register containing the base address unmodified and increments a separate index register.

// Demonstration of pointers and pointer constants in a program.

program PointerLab;
#include(“stdlib.hhf”);

const
 NumberOfChars := 8;

type
 CharPtr: pointer to char;

static

 CharArray: char[NumberOfChars] :=
 [‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’];

 CA_bounds: CharPtr[2] := [&CharArray, &CharArray + (NumberOfChars-1)];

begin PointerLab;

 // Get the number of characters to print into EAX:

 stdout.put(“How many characters would you like to print? “);
 stdin.getu32();

 // Get address of CharArray into EBX:

Page 662 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
 lea(ebx, CharArray);

 // Print the specified number of characters:

 while(eax > 0) do

 bound(ebx, CA_bounds);
 stdout.putc([ebx]);
 inc(ebx);
 dec(eax);

 endwhile;
 stdout.newln();

end PointerLab;

Program 13.4 Pointers and Pointer Constants Laboratory Exercise Code

Exercise A: Compile and run this program. Describe its operation in your laboratory report.

Exercise B: This program contains a constant NumberOfChars. Change this constant from eight to ten
and recompile the program. Explain why this one change is not sufficient to change the size of the array
from eight to ten elements. Make an appropriate change to this program so that it will compile and run cor-
rectly. Compare the number of changes needed in the program to get it to compile and run with the number
of changes that would be necessary had this program not used the NumberOfChars constant. Describe the
benefits to this program of using the NumberOfChars constant.

Exercise C: This program does not contain a TRY..ENDTRY block to handle the BOUND instruction
exception. Add such a statement to the program that will print a nice error message. If the exception occurs,
the program should quit.

13.3.5 String Exercises

In this laboratory exercise you will work with statically and dynamically allocated strings. The first new
feature found in this program is the str.strvar declaration. The str.strvar data type lets you statically allocate
storage for a string variable in the STATIC section of your program5. This data type takes a single parameter
that specifies the maximum number of legal characters in the string variable. This data type sets aside the
appropriate amount of storage for the string, initializes the maximum length field to the value passed as a
parameter, and then initializes the string variable (s1 in the example below) with the address of this newly
allocated string. The str.strvar data type is very useful for declaring small strings in your STATIC section
because it provides both declaration and allocation in a single statement.

This program uses str.strvar to allocate storage for a ten character string. When the program starts run-
ning, it requests that the user enter a string longer than ten characters to demonstrate the ex.StringOverflow
exception. Finally, this program concludes by demonstrating how to access the individual characters in a
string.

// Demonstration of strings in a program.

program StringLab;
#include(“stdlib.hhf”);

5. Note that str.strvar is legal only in the STATIC section. You can not use it in any of the other HLA variable declaration sec-
tions.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 663

V3Questions
static

 s1: str.strvar(10);
 s2: string;

begin StringLab;

 try

 stdout.put(“Enter a string longer than 10 characters: “);
 stdin.gets(s1);
 str.length(s1);
 stdout.put
 (
 “The string you entered was only “,
 (type uns32 eax),
 “ characters long, “
 nl
 “try a longer string next time”
 nl
);

 exception(ex.StringOverflow)

 stdout.put(“stdin.gets raised the ex.StringOverflow exception” nl);

 endtry;

 // Use stdin.a_gets to read a string and allocate storage for it.
 // Print the characters in the string one at a time after reading
 // the string.
 //
 // There is something wrong with this code, can you fix it?

 stdout.put(nl “Enter a string of any length: “);
 stdin.a_gets();
 mov(eax, s2);
 mov(eax, ebx);
 str.length(eax);
 stdout.put
 (
 “The string length was “,
 (type uns32 eax),
 nl,
 “The string you entered was”,
 nl
);

 while(eax > 0) do

 stdout.put((type char [ebx]), nl);
 dec(eax);
 inc(ebx);

 endwhile;
 stdout.newln();
Page 664 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
end StringLab;

Program 13.5 String Exercises Code

Exercise A: Compile this program and run it. Be sure to follow all directions provided in the program.
Describe what the program does in your lab report.

Exercise B: There is a defect in the way this program handles dynamically allocated strings. Locate the
defect and correct it. Include a copy of the corrected program with your lab report. Note that this program
runs correctly; you will have to analyze the source code to find the defect.

13.3.6 String and Character Set Exercises

In this laboratory exercise you’ll be working with a program that disassembles an input string. The pro-
gram begins by reading the user’s full name (first and last name). It then extracts the first and last names into
separate strings. Although this is a relatively simple program, it demonstrates a very important concept in
string manipulation. Most complex programs that manipulate strings need to break those strings down into
their constituent parts. The techniques this program uses are the basis for much larger and more complex
programs.

This program also demonstrates the use of character sets and character set expressions. In particular,
note the following constant declaration in the program:

NonAlphaChars: cset := -AlphabeticChars - {#0};

The “-” operator, prefacing a character set, takes the complement of that set. The complement of a set
contains all the characters that are not in that set. So “-AlphabeticChars” returns the set of all characters that
are not alphabetic. The “- {#0}” component of the expression above removes the NUL character from the
set of nonalphabetic characters. (Note that in this case the “-” operator is a binary operator denoting set dif-
ference.) This operation removes the NUL character from the set, not because it’s an alphabetic character,
but because the program uses the NonAlphaChars set to skip over characters while looking for the last name.
If a last name is not present, this code needs to stop scanning once it encounters the end of the string. The #0
character always marks the end of an HLA string. By removing #0 from the NonAlphaChars set, the code
that skips non-alphabetic characters will automatically stop if it encounters the end of the string.

// Demonstration of strings and character setsin a program.

program strcsetLab;
#include(“stdlib.hhf”);

const
 AlphabeticChars: cset := {‘a’..’z’, ‘A’..’Z’ };
 NonAlphaChars: cset := -AlphabeticChars - {#0};

var
 StartOfFirstName: uns32;
 LengthOfFirstName: uns32;
 StartOfLastName: uns32;
 LengthOfLastName: uns32;

 FullName: string;
 FirstName: string;
 LastName: string;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 665

V3Questions
begin strcsetLab;

 // Read the full name from the user:

 stralloc(256); // Allocate storage for the string.
 mov(eax, FullName);

 stdout.put(“Enter your full name (first, then last): “);
 stdin.get(FullName);

 // Skip over any leading spaces in the name:

 mov(FullName, ebx);
 mov(0, esi);
 while((type char [ebx+esi]) = ‘ ‘) do

 inc(esi);

 endwhile;

 // Okay, presumably we’re at the beginning of the first
 // name. Find the end of it here:

 mov(esi, StartOfFirstName);
 mov(esi, LengthOfFirstName);
 while(cs.member((type char [ebx+esi]), AlphabeticChars)) do

 inc(esi);

 endwhile;
 sub(esi, LengthOfFirstName);
 neg(LengthOfFirstName);

 // Skip over any non-alphabetic characters

 while(cs.member((type char [ebx+esi]), NonAlphaChars)) do

 inc(esi);

 endwhile;

 // Okay, find the end of the last name:

 mov(esi, StartOfLastName);
 while(cs.member((type char [ebx+esi]), AlphabeticChars)) do

 inc(esi);

 endwhile;
 sub(StartOfLastName, esi);
 mov(esi, LengthOfLastName);

 // Extract the first and last names from the string:

 str.a_substr(FullName, StartOfFirstName, LengthOfFirstName);
 mov(eax, FirstName);

 str.a_substr(FullName, StartOfLastName, LengthOfLastName);
 mov(eax, LastName);

Page 666 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
 // Display the results:

 stdout.put(“First: “, FirstName, nl);
 stdout.put(“Last: “, LastName, nl);

 // Clean up the allocated storage:

 strfree(FullName);
 strfree(FirstName);
 strfree(LastName);

end strcsetLab;

Program 13.6 String and Character Set Exercises Code

Exercise A: Compile and run this program. Describe the operation of the program and its output in
your laboratory report.

Exercise B: This program uses statements like “while(cs.member((type char [ebx+esi]), Alphabetic-
Chars)) do” to loop while the current character in the string is a member of some character set. Explain why
you cannot use the “IN” operator described in this chapter in place of the cs.member function. (Hint: if the
reason isn’t obvious, trying changing the program and compiling it.)

The following sample program also demonstrates the synergy between strings and character sets in a
program. This program reads a string from the user and converts that string into a character set (effectively
removing duplicate characters from the string). It then displays the character set, the vowels, the consonants,
and non-alphabetic characters found in the string. This program demonstrates some run-time character set
functions (like intersection) as well as compile-time constant expressions. This program also demonstrates
the new form of the IN operator in boolean expressions that this chapter introduces.

// Demonstration of character sets and strings in a program.

program strcsetLab2;
#include(“stdlib.hhf”);

const

 AlphabeticChars: cset := {‘a’..’z’, ‘A’..’Z’ };

 Vowels: cset := {
 ‘a’, ‘e’, ‘i’, ‘o’, ‘u’, ‘y’, ‘w’,
 ‘A’, ‘E’, ‘I’, ‘O’, ‘U’, ‘Y’, ‘W’
 };

 Consonants: cset := AlphabeticChars - Vowels;

var

 InputLine: string;
 InputSet: cset;
 VowelSet: cset;
 ConsonantSet: cset;
 NonAlphaSet: cset;

begin strcsetLab2;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 667

V3Questions
 repeat

 stdout.put(“Enter a line of text: “);
 stdin.flushInput();
 stdin.a_gets();
 mov(eax, InputLine);
 stdout.put(nl, “The input line: ‘”, InputLine, “‘” nl nl);

 cs.strToCset(InputLine, InputSet);
 stdout.put(“Characters on this line: ‘”, InputSet, “‘” nl);

 cs.cpy(InputSet, VowelSet);
 cs.intersection(Vowels, VowelSet);
 stdout.put(“Vowels on this line: ‘”, VowelSet, “‘” nl);

 cs.cpy(InputSet, ConsonantSet);
 cs.intersection(Consonants, ConsonantSet);
 stdout.put(“Consonants on this line: ‘”, ConsonantSet, “‘” nl);

 cs.cpy(InputSet, NonAlphaSet);
 cs.intersection(-AlphabeticChars, NonAlphaSet);
 stdout.put
 (
 “Nonalphabetic characters on this line: ‘”,
 NonAlphaSet,
 “‘”
 nl
);

 repeat

 stdout.put
 (
 “Would you like to try another line of text? (Y/N): “
);
 stdin.flushInput();
 stdin.getc();

 until(al in {‘Y’, ‘y’, ‘N’, ‘n’});

 until(al in {‘n’, ‘N’});

end strcsetLab2;

Program 13.7 Character Classification Program

Exercise A: Compile and run this program. Describe its output and operation in your laboratory report.

Exercise B: Modify this program to display any decimal digit characters appearing in the input string.
Compile and run the program to test its operation. Include the program listing in your laboratory report.
Page 668 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
13.3.7 Console Array Exercise

Perhaps the most commonly encountered two-dimensional object a programmer encounters is the video
display. The Windows console window, for example, is typically an 80x25 array of characters6. The HLA
Standard Library console module provides various routines that let you manipulate the matrix of characters
on the screen. In the previous chapter, for example, you saw how to use the console.fillRect routine to fill a
rectangular region of the screen with a given character and attribute. This laboratory exercise demonstrates
how to extract a rectangular region from the screen and how to redraw that text taken from the screen. This
sample program also demonstrates how to write an arbitrary matrix of text to the screen.

This program calls the HLA Standard Library console.getRect routine to read the data from a rectangu-
lar portion of the screen into a local array of characters. This program uses console.getRect to save the
screen display upon entry into the program. In addition to console.getRect, this program uses con-
sole.putRect to rapidly write the contents of a two-dimensional array of characters to the console display.
For example, this program calls console.putRect to restore the original screen display when this program
quits.

Between saving and restoring the original screen contents, this program moves a sequence of asterisks
around in a local 80x25 array of characters and (after each movement) copies the characters to the video dis-
play. This is an extremely slow way to redraw the screen; however, today’s machines are so fast that this
inefficiency works to this program’s advantage - it’s a built-in governor that slows down the program so you
can see it work.

// Demonstration of arrays in a program.
//
// This code demonstrates how to access elements of
// a two-dimensional array. It also demonstrates how to
// use the console.getRect and console.putRect routines.

program consoleArrayLab;
#include(“stdlib.hhf”);

const
 NumCols := 80;
 NumRows := 25;

type
 screen: char[NumRows, NumCols];

var

 column: uns32;
 row: uns32;
 SnapShot: screen;

static

 playingField: screen := [NumRows dup [NumCols dup [‘ ‘]]];

begin consoleArrayLab;

 console.getRect(0, 0, NumRows-1, NumCols-1, (type char SnapShot));
 console.cls();

 // Fill an 80x24 region of the screen with a blue background.

6. Actually, under Windows the console window can be made various different sizes. 80x25, however, is the default size.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 669

V3Questions
 // Set the foreground attribute to yellow:

 console.fillRect
 (
 0,
 0,
 NumRows-1,
 NumCols-1,
 ‘ ‘,
 win.bgnd_Blue | win.fgnd_Yellow
);

 // Play the “game”. Repeat the nested loops once for each
 // row on the screen.

 for(mov(0, row); row < NumRows; inc(row)) do

 // For each row, draw a row of asterisks across the screen
 // one character at a time by storing the asterisk into
 // the “playingField” array and then copying this array to
 // the screen.

 for(mov(0, column); column < NumCols; inc(column)) do

 intmul(NumCols, row, ebx);
 add(column, ebx);
 mov(‘*’, playingField[ebx]);
 console.putRect
 (
 0,
 0,
 NumRows-1,
 NumCols-1,
 (type byte playingField)
);

 endfor;

 // Now erase the row of asterisks one character at a time
 // by overwriting the asterisks in “playingField” and drawing
 // the matrix to the screen after blotting out each character.

 for(mov(0, column); column < NumCols; inc(column)) do

 intmul(NumCols, row, ebx);
 add(column, ebx);
 mov(‘ ‘, playingField[ebx]);
 console.putRect
 (
 0,
 0,
 NumRows-1,
 NumCols-1,
 (type byte playingField)
);

 endfor;

 endfor;

 stdout.put(“Press Enter to continue: “);
Page 670 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
 stdin.readLn();
 console.cls();
 console.putRect
 (
 0,
 0,
 NumRows-1,
 NumCols-1, (type byte SnapShot)
);
 console.gotoxy(NumRows-1, 0);

end consoleArrayLab;

Program 13.8 Console Matrix Program

Exercise A: Compile and run this program. Describe it’s operation and output in your laboratory
report.

Exercise B: Change the NumCols and NumRows constants so that the program operates in a 40x20
window rather than an 80x25 window. Compile and rerun the program and verify that it still works properly.
Include the source code for the modified program in your lab report.

Exercise C: Modify the program so that it draws the string of asterisks from top to bottom, then left to
right rather than from left to right, then top to bottom. Include the source code to the modified program in
your lab report.

13.3.8 Multidimensional Array Exercises

The program for this exercise demonstrates an outer product computation. An outer product is an oper-
ation that takes an N-element array and an M-element array and produces an NxM matrix with cell [i,j] con-
taining the value specified by some function f(Narray[i], Marray[j]) for all values 0 <= i < N and
0 <= j < M. The classic example of an outer product is the multiplication table you learned in elementary
school (where the function is the multiplication operation). The program in this example computes an addi-
tion table by summing the elements of the two arrays together.

// Demonstration of multidimensional arrays in a program.

program multidimArrayLab;
#include(“stdlib.hhf”);

const
 NumRows := 10;
 NumCols := 10;

static

 RowStart: uns32;
 ColStart: uns32;

 SumArray: uns32[NumRows, NumCols];
 ColVals: uns32[NumCols];
 RowVals: uns32[NumRows];

 GoodInput: boolean;

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 671

V3Questions
begin multidimArrayLab;

 stdout.put
 (
 “Addition table generator” nl
 “------------------------” nl
 nl
);

 // Get the starting value for the rows from the user:

 repeat

 try

 mov(false, GoodInput);
 stdout.put(“Enter a starting value for the rows: “);
 stdin.get(RowStart);
 mov(true, GoodInput);

 exception(ex.ConversionError)

 stdout.put(“Bad characters in number, please re-enter”, nl);

 exception(ex.ValueOutOfRange)

 stdout.put(“The value is out of range, please re-enter”, nl);

 endtry;

 until(GoodInput);

 // Fill in the RowVals array:

 mov(RowStart, eax);
 for(mov(0, ebx); ebx < NumRows; inc(ebx)) do

 mov(eax, RowVals[ebx*4]);
 inc(eax);

 endfor;

 // Get the starting value for the columns from the user:

 repeat

 try

 mov(false, GoodInput);
 stdout.put(“Enter a starting value for the columns: “);
 stdin.get(ColStart);
 mov(true, GoodInput);

 exception(ex.ConversionError)

 stdout.put(“Bad characters in number, please re-enter”, nl);

Page 672 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
 exception(ex.ValueOutOfRange)

 stdout.put(“The value is out of range, please re-enter”, nl);

 endtry;

 until(GoodInput);

 // Fill in the ColVals array:

 mov(ColStart, eax);
 for(mov(0, ebx); ebx < NumCols; inc(ebx)) do

 mov(eax, ColVals[ebx*4]);
 inc(eax);

 endfor;

 // Now generate the addition table:

 for(mov(0, ebx); ebx < NumRows; inc(ebx)) do

 for(mov(0, ecx); ecx < NumCols; inc(ecx)) do

 intmul(NumCols, ebx, edx); // Compute index into
 add(ecx, edx); // array as ebx*NumCols+ecx.
 mov(ColVals[ecx*4], eax); // Compute sum for this cell.
 add(RowVals[ebx*4], eax);
 mov(eax, SumArray[edx*4]);

 endfor;

 endfor;

 // Now print the addition table.
 //
 // Begin by printing the Column values above the matrix

 stdout.put(nl “ add |”);
 for(mov(0, ebx); ebx < NumCols; inc(ebx)) do

 stdout.put(ColVals[ebx*4]:4, “ | “);

 endfor;

 // Print a line below the column values.

 stdout.put(nl “-----+”);
 for(mov(0, ebx); ebx < NumCols-1; inc(ebx)) do

 stdout.put(“-----+-”);

 endfor;
 stdout.put(“-----|” nl);

 // Now print the body of the matrix. This also prints Row
 // values in the left hand column of the matrix.

 for(mov(0, ebx); ebx < NumRows; inc(ebx)) do
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 673

V3Questions

 // Print the current row value.

 stdout.put(RowVals[ebx*4]:4, “ :”);

 // Now print the values for this row.

 for(mov(0, ecx); ecx < NumCols; inc(ecx)) do

 intmul(NumCols, ebx, edx); // Compute index into
 add(ecx, edx); // array as ebx*NumCols+ecx.
 stdout.put(SumArray[edx*4]:4, “ | “);

 endfor;

 // Print a line below each row of numbers

 stdout.put(nl “-----+”);
 for(mov(0, ecx); ecx < NumCols-1; inc(ecx)) do

 stdout.put(“-----+-”);

 endfor;
 stdout.put(“-----|” nl);

 endfor;

end multidimArrayLab;

Program 13.9 Addition Table Generator

Exercise A: Compile and run this program. Describe its output in your lab report.

Exercise B: Modify the NumRows and NumCols constants in this program to generate a 5x6 array
rather than a 10x10 array. Recompile and run the program. Describe the output in your lab report.

Exercise C: (optional) Modify the program to use the line drawing graphic characters (see appendix B)
rather than the ASCII dash, vertical bar, and hyphen characters.

13.3.9 Console Attributes Laboratory Exercise

The program in this laboratory exercise demonstrates the console.info call that returns various bits of
interesting information about the Windows console device. This information comes in handy when writing
console applications that work regardless of the size of the console window. For more information about the
information that console.info returns, please see the definition of the windows console screen buffer info
record in the “WIN32.HHF” header file.

// Demonstration of records and the console.info routine
// (and the win.CONSOLE_SCREEN_BUFFER_INFO data type).

program ConsoleAttrLab;
#include(“stdlib.hhf”);

static
Page 674 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
 csbi: win.CONSOLE_SCREEN_BUFFER_INFO;

begin ConsoleAttrLab;

 // Grab the screen metric information:

 console.info(csbi);

 // Clear the screen.

 console.cls();

 // Set the whole screen to blue:

 movzx(csbi.dwSize.Y, eax);
 movzx(csbi.dwSize.X, ebx);
 dec(eax);
 dec(ebx);
 console.fillRectAttr(0, 0, ax, bx, win.bgnd_Blue);
 console.setOutputAttr(win.bgnd_Blue | win.fgnd_Yellow);

 // Read and display the current console window title:

 console.a_getTitle();
 stdout.put
 (
 “Previous console window title was: ‘”,
 (type string eax),
 “‘” nl
);
 strfree(eax);

 // Set the console window title:

 console.setTitle(“Art of Assembly Program 4.26”);

 // Display the screen metric information:

 stdout.put
 (
 “Size X=”, csbi.dwSize.X, nl,
 “Size Y=”, csbi.dwSize.Y, nl,
 “Cursor X=”, csbi.dwCursorPosition.X, nl,
 “Cursor Y=”, csbi.dwCursorPosition.Y, nl,
 “Window Position Left=”, csbi.srWindow.left, nl,
 “Window Position Right=”, csbi.srWindow.right, nl,
 “Window Position Top=”, csbi.srWindow.top, nl,
 “Window Position Bottom=”, csbi.srWindow.bottom, nl,
 “Character display attribute=$”, csbi.wAttributes, nl,
 nl
 “Maximum window height=”, csbi.dwMaximumWindowSize.Y, nl,
 “Maximum window width =”, csbi.dwMaximumWindowSize.X, nl,
 nl
);

 // Let the user see everything before we clean up and quit.

 stdout.put(“Press ENTER to continue: “);
 stdin.readLn();
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 675

V3Questions

 // Be nice and set the console window back to black & white:

 console.setOutputAttr(csbi.wAttributes);
 console.cls();

end ConsoleAttrLab;

Program 13.10 Displaying Console Attributes

Exercise A: Compile and run this program. Describe the console metrics for your particular system in
your laboratory report.

Exercise B: Modify this program to save the screen text upon entry into the program and restore the
screen when this program exits. Use the cursor position in the csbi record to restore the cursor to its original
position upon program exit. Include the modified source code with your lab report.

13.3.10 Records, Arrays, and Pointers Laboratory Exercise

The following program demonstrates dynamic allocation of an array of records. It also demonstrates
enumerated data types and record constants. This program asks the user to specify some number of students
and then it inputs the data for the specified students and stores the data into the dynamic array it creates.

// Demonstration of a pointer to an array of records.
// This is a small student database program the lets the
// user input a bunch of student names and it prints a report
// after the data is entered.

program StudentDatabase;
#include(“stdlib.hhf”);

const

 // The following text string appears frequently in this code.

 CurStudent: text := “(type EngStudent [edi+ecx])”;

type
 EngMajor: enum{ ElecEng, CompSci, MechEng, BioChemEng };
 Standing: enum{ Freshman, Sophomore, Junior, Senior, Grad };

 // Here’s the basic data type for our student database:

 EngStudent:
 record

 StudentName: string;
 ID: string;
 major: EngMajor;
 Year: Standing;

 endrecord;

Page 676 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
 ESPtr: pointer to EngStudent;

readonly

 // The following string make it easy to output
 // the EngMajor and Standing enumerated data types.

 MajorStrs: string[4] :=
 [
 “Electrical Engineering “,
 “Computer Science “,
 “Mechanical Engineering “,
 “Biochemical Engineering”
];

 YearStrs: string[4] :=
 [
 “Freshman “,
 “Sophomore”,
 “Junior “,
 “Senior “
];

 // An extra student to copy into the list.
 // This exists here mainly to demonstrate record constants.

 JohnSmith: EngStudent :=
 EngStudent:
 [
 “John Smith”,
 “555-55-5555”,
 CompSci,
 Junior
];

static

 NumStudents: uns32;
 StudentArray: ESPtr;
 GoodInput: boolean;

begin StudentDatabase;

 stdout.put(“Engineering Student Database Program” nl nl);

 // Get the number of students the user wants to enter into
 // the database. Because this is just a demo, ask them if
 // they really want to enter more than 10 students if they
 // enter a large number.

 repeat

 try

 mov(false, GoodInput);
 stdout.put
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 677

V3Questions
 (
 nl
 “How many students would you like to enter? “
);
 stdin.get(NumStudents);
 mov(true, GoodInput);

 // Allow 0..10 students with no questions asked.
 // But if they specify more than 10...

 if(NumStudents > 10) then

 stdout.put
 (
 “Are you sure you want to enter “,
 NumStudents,
 “ students into the database? (Y/N):”
);
 stdin.flushInput();
 stdin.getc();

 // Set GoodInput to true if they answer yes.

 cs.member(al, {‘y’, ‘Y’});
 mov(al, GoodInput);

 endif;

 exception(ex.ConversionError)

 stdout.put(“Illegal characters in number, please re-enter” nl);

 exception(ex.ValueOutOfRange)

 stdout.put(“Value is too big, please re-enter” nl);

 endtry;

 until(GoodInput);

 // Okay, we’ve got the number of students. Bump in by one so we
 // can sneak John Smith’s record into the data base. Then allocate
 // storage for a dynamic array of records.

 mov(NumStudents, eax); // Get the user-specified count.
 inc(eax); // Make room for John Smith.

 // Since each student consumes “@size(EngStudent)” bytes, we need
 // to multiply our student count by this value to compute the number
 // of bytes we will need.

 intmul(@size(EngStudent), eax);

 // Allocate storage for the array of students.

 malloc(eax);
 mov(eax, StudentArray);

 // Copy the data for John Smith to the first element of
Page 678 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
 // our array. Note: This code just copies the pointers
 // to the StudentName and ID fields because no modifications
 // are ever made to the JohnSmith record in this program.

 mov(JohnSmith.StudentName, ecx);
 mov(ecx, (type EngStudent [eax]).StudentName);

 mov(JohnSmith.ID, ecx);
 mov(ecx, (type EngStudent [eax]).ID);

 mov(JohnSmith.major, cl);
 mov(cl, (type EngStudent [eax]).major);

 mov(JohnSmith.Year, cl);
 mov(cl, (type EngStudent [eax]).Year);

 // Okay, now input each of the remaining students from the user:

 mov(StudentArray, edi); // Get base address of array.

 for(mov(1, ebx); ebx <= NumStudents; inc(ebx)) do

 intmul(@size(EngStudent), ebx, ecx); // Index into array.

 stdout.put(“Enter student’s name: “);
 stdin.flushInput();
 stdin.a_gets();
 mov(eax, CurStudent.StudentName);

 stdout.put(“Enter the student ID: “);
 stdin.a_gets();
 mov(eax, CurStudent.ID);

 // Get (and verify) F, S, J, or N from the user to select
 // this student’s standing in the college.

 repeat

 stdout.put
 (
 “Is this student a “
 “F)reshman, S)ophomore, J)unior, or seN)ior? “
);
 stdin.flushInput();
 stdin.getc();
 chars.toUpper(al);

 until(al in {‘F’, ‘S’, ‘J’, ‘N’});
 if(al = ‘F’) then

 mov(Freshman, CurStudent.Year);

 elseif(al = ‘S’) then

 mov(Sophomore, CurStudent.Year);

 elseif(al = ‘J’) then

 mov(Junior, CurStudent.Year);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 679

V3Questions
 else

 mov(Senior, CurStudent.Year);

 endif;

 // Get the student’s major from the user. Again,
 // verify that the input is correct before proceeding.

 repeat

 stdout.put
 (
 “What is this student’s major?” nl
 “ B)iochemical Engineering” nl
 “ C)omputer Science” nl
 “ E)lectrical Engineering” nl
 “ M)echanical Engineering” nl
 nl
 “(B,C,E,M)? “
);
 stdin.flushInput();
 stdin.getc();
 chars.toLower(al);

 until(al in {‘b’, ‘c’, ‘e’, ‘m’});
 if(al = ‘b’) then

 mov(BioChemEng, CurStudent.major);

 elseif(al = ‘c’) then

 mov(CompSci, CurStudent.major);

 elseif(al = ‘e’) then

 mov(ElecEng, CurStudent.major);

 else

 mov(MechEng, CurStudent.Year);

 endif;

 // Okay, store away the CurStudent variable data into
 // the next available slot in the ESPtr array.

 mov(StudentArray, eax);

 // Compute index into array:

 intmul(@size(EngStudent), ebx, ecx);

 mov(CurStudent.StudentName, edx);
 mov(edx, (type EngStudent [eax+ecx]).StudentName);

 mov(CurStudent.ID, edx);
 mov(edx, (type EngStudent [eax+ecx]).ID);

 mov(CurStudent.major, dl);
Page 680 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
 mov(dl, (type EngStudent [eax+ecx]).major);

 mov(CurStudent.Year, dl);
 mov(dl, (type EngStudent [eax+ecx]).Year);

 endfor;

 // Okay, now that we’ve got all the students into the system,
 // print a brief report.

 stdout.put
 (
 “-----Name----------- “
 “-----ID----- “
 “-------Major----------- “
 “--Year---”
 nl
 nl
);

 mov(StudentArray, edi); // Not really needed, but just to be sure.

 for(mov(0, ebx); ebx <= NumStudents; inc(ebx)) do

 intmul(@size(EngStudent), ebx, ecx); // Index into array.
 movzx(CurStudent.major, edx);
 movzx(CurStudent.Year, esi);
 stdout.put
 (
 CurStudent.StudentName:-20, “ “,
 CurStudent.ID:-12, “ “,
 MajorStrs[edx*4]:-23, “ “,
 YearStrs[esi*4],
 nl
);

 endfor;
 stdout.newln();

end StudentDatabase;

Program 13.11 Student Database Program

Exercise A: Compile and run this program. Describe its output in your lab report.

Exercise B: Modify this program to let the user specify that only those students in a single major be
printed (by specifying a single letter to select the major- see the body of the code for details on this). Pro-
vide an “A)ll” option that prints the full report as the program currently does.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 681

V3Questions
13.3.11Separate Compilation Exercises

In this laboratory exercise you will compile a multipart program and link it into a single executable file.
You will also construct a makefile for the project and test the workings of the makefile by making minor
modifications to the program. Finally, you will split the main program into two pieces and move one section
into its own module.

The following listings provide the necessary source code for this program. Note that these modules can
be found in the CH05 subdirectory of the accompanying CD. The main program is lab5_1.hla; the header
file is lab5_1.hhf; the first unit can be found in lab5_1db.hla; the second unit is in the file lab5_1unita.hla.

program cor_mainPgm;
#include(“stdlib.hhf”);
#include(“sepCompDemo.hhf”);

 // GetYorN-
 //
 // This procedure prints a prompt that requires a yes/no
 // answer. It continually prompts the user to input Y or N
 // until they enter one of these characters. It returns
 // true in AL if the user entered “Y” or “y”. It returns
 // false if the user entered “n” or “N”.

 procedure GetYorN(Prompt:string); returns(“AL”);
 begin GetYorN;

 repeat

 stdout.put(Prompt, “ (Y/N):”);
 stdin.flushInput();
 stdin.getc();

 until(al in {‘y’, ‘n’, ‘Y’, ‘N’ });
 if(al in {‘y’, ‘Y’}) then

 mov(true, al);

 else

 mov(false, al);

 endif;

 end GetYorN;

 // GetCinSet-
 //
 // This is another procedure, similar to the above, that
 // repeatedly requests input from the user until the user
 // enters a valid character. This procedure returns once
 // the user enters a character that is a member of the
 // cset passed as a parameter.

 procedure GetCinSet(legalInput:cset); returns(“AL”);
 begin GetCinSet;

Page 682 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
 repeat

 stdout.put(“ {“, legalInput, “}:”);
 stdin.FlushInput();
 stdin.getc();

 until(al in legalInput);

 end GetCinSet;

var
 artist: string;
 title: string;

begin cor_mainPgm;

 stdout.put
 (
 “Welcome to the CD database program” nl
 “----------------------------------” nl
 nl
);
 repeat

 stdout.put(“Select CD by A)rtist or by T)itle? “);
 GetCinSet({‘a’, ‘A’, ‘t’, ‘T’});
 chars.toUpper(al);
 if(al = ‘A’) then

 stdout.put(“Input artist’s name: “);
 stdin.flushInput();
 stdin.a_gets();
 mov(eax, artist);
 SearchByArtist(artist, MyCDCollection);
 strfree(artist);

 else

 stdout.put(“Input CD’s title: “);
 stdin.flushInput();
 stdin.a_gets();
 mov(eax, title);
 SearchByTitle(title, MyCDCollection);
 strfree(title);

 endif;

 stdout.newln();
 GetYorN(“Would you like to search for another CD?”);

 until(!al);

end cor_mainPgm;

Program 13.12 The MAIN Program for this Laboratory Exercise (mainPgm.hla)
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 683

V3Questions
const
 NumCDs := 10;

type
 CD: record

 Title: string;
 Artist: string;
 Publisher: string;
 CopyrightYear: uns32;

 endrecord;

 CDs: CD[NumCDs];

static
 MyCDCollection: CDs; external;

 procedure SearchByTitle(Title:string; var CDList:CDs); external;
 procedure SearchByArtist(Artist:string; var CDList:CDs); external;

Program 13.13 The sepCompDemo.hhf Header File for this Laboratory Exercise

unit Unitdb;
#include(“stdlib.hhf”);
#include(“sepCompDemo.hhf”);

static
 MyCDCollection: CDs :=
 [
 CD:[“The Cars Greatest Hits”, “The Cars”, “Elektra”, 1985],
 CD:[“Boston”, “Boston”, “Epic”, 1976],
 CD:[“Imaginos”, “Blue Oyster Cult”, “Columbia”, 1988],
 CD:[“Greatest Hits”, “Dan Fogelberg”, “Epic”, 1982],
 CD:[“Walk On”, “Boston”, “MCA”, 1994],
 CD:[“Big Ones”, “Loverboy”, “Columbia”, 1989],
 CD:[“James Bond 30th Anniversary”, “various”, “EMI”, 1992],
 CD:[“Give Thanks”, “Don Moen”, “Hosanna! Music”, 1991],
 CD:[“Star Tracks”, “Erich Kunzel”, “Telarc”, 1984],
 CD:[“Tones”, “Eric Johnson”, “Warner Bros”, 1986]
];

end Unitdb;
Page 684 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
Program 13.14 The First UNIT Associated with this Lab (the Database File)

unit DBunit;
#include(“stdlib.hhf”);
#include(“sepCompDemo.hhf”);

// PrintInfo
//
// This is a private procedure (local to this unit)
// that displays the information about the CD passed
// as a parameter.

procedure PrintInfo(var theCD:CD);
const
 cdt: text := “(type CDs [ebx])”;

begin PrintInfo;

 push(ebx);
 mov(theCD, ebx);
 stdout.put(“Title: “, cdt.Title, nl);
 stdout.put(“Artist: “, cdt.Artist, nl);
 stdout.put(“Publisher:”, cdt.Publisher, nl);
 stdout.put(“Year: “, cdt.CopyrightYear, nl nl);
 pop(ebx);

end PrintInfo;

// SearchByTitle
//
// This procedure searches through a CD database for
// all CDs with a given title. The title of the CD
// to search for and the CD database array are the
// parameters for this procedure.

procedure SearchByTitle(Title:string; var CDList:CDs);
const

 // Because CDList is passed by reference, we access
 // it indirectly using a 32-bit register. The
 // following text equate lets us use a more meaningful
 // name for this pointer than “[ebx]”.

 cdArray: text := “(type CDs [ebx])”;

var
 FoundCD: boolean; // Set to true if we find at least
 // one CD with the given title.

begin SearchByTitle;

 push(ebx);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 685

V3Questions
 push(esi);

 mov(CDList, ebx); // Put address of array in EBX so we can
 // use the “cdArray” symbol to reference
 // the array passed by reference

 mov(false, FoundCD); // Assume we didn’t find a CD.
 mov(0, esi); // Index into cdArray.
 repeat

 // See if the parameter Title matches the current
 // title in cdArray. Note that str.ieq does as
 // case insenstive comparison.

 if(str.ieq(Title, cdArray.Title[esi])) then

 // If we found it, print the information
 // associated with this CD.

 PrintInfo((type CD cdArray[esi]));
 mov(true, FoundCD);

 endif;

 // Move on to the next element of the CDList array.
 // Note that rather than multiplying the index into
 // cdArray by @size(CD) on each access, this code
 // simply bumps ESI by the size of a cdArray element
 // each time through the loop. Therefore, ESI will
 // contain the index of each successive array element
 // on each pass through the loop.

 add(@size(CD), esi);

 // We’re done when ESI moves off the end of the array.
 // The constant “@size(CD)*NumCDs” is the index of
 // the first memory location beyond the end of the array.

 until(esi >= @size(CD) * NumCDs);

 // Print an appropriate message if the lookup operation did
 // not find a CD with the specified title.

 if(!FoundCD) then

 stdout.put(“That title does not exist in the database” nl);

 endif;
 pop(esi);
 pop(ebx);

end SearchByTitle;

// SearchByArtist-
//
// Searches for all CDs by a given artist name.
// This code is nearly identical to SearchByTitle.
// See the comments in SearchByTitle for additional
Page 686 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
// comments on the operation of this code.

procedure SearchByArtist(Artist:string; var CDList:CDs);
const
 cdArray: text := “(type CDs [ebx])”;

var
 FoundCD: boolean;

begin SearchByArtist;

 push(ebx);
 push(esi);

 mov(CDList, ebx); // Put address of array in EBX so we can
 // use the “cdArray” symbol to reference
 // the array passed by reference

 mov(false, FoundCD); // Assume we didn’t find a CD.
 mov(0, esi);
 repeat

 if(str.ieq(Artist, cdArray.Artist[esi])) then

 PrintInfo((type CD cdArray[esi]));
 mov(true, FoundCD);

 endif;

 // Move on to the next element of the CDList array.

 add(@size(CD), esi);

 until(esi >= @size(CD) * NumCDs);
 if(!FoundCD) then

 stdout.put(“That artist does not exist in the database” nl);

 endif;
 pop(esi);
 pop(ebx);

end SearchByArtist;

end DBunit;

Program 13.15 The Second Unit Need by this Lab Exercise (DBunit.hla)

Exercise A: Compile this program with the following HLA command.

hla mainPgm lnitb DBunit

Run the program a few times and learn how to use it. This is a small (trivial) little database program that
stores information about a private CD collection (for brevity, it only has 10 CDs in the database). When the
user runs the program it will ask if they want to look up a CD by artist or by title. As you can see in the sam-
ple database, “Boston” is both a title and an artist. “Imaginos” is an example of a title. Run the program and
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 687

V3Questions
specify these values for artist and title to familiarize yourself with this code. If possible, include a printout
of the program’s operation with your lab report, otherwise describe the output in your lab report.

Exercise B: Determine the dependencies between these files. Write a makefile for this code. Include
the makefile with your lab report. Verify that the makefile works properly by changing each of the files and
then running the make program after each modification.

Exercise C: The GetYorN and GetCinSet procedures in the main program really belong in their own
unit. Move these subroutines to the unit InputUnit in the file inputunit.hla. Create a header file named Inpu-
tUnit.hhf to contain the external declarations. Modify your makefile to accommodate these changes.
Recompile the system and verify that it still works. Include the modified source code and makefile in your
lab report.

13.3.12The HLA (Pseudo) Random Number Unit

In this laboratory exercise, you will test the quality of the two HLA random number generators. The
following program code provides a simple test by plotting asterisks at random positions on the screen. This
program works by choosing two random numbers, one between zero and 79, the other between zero and 23.
Then the program uses the console.puts function to print a single asterisk at the (X,Y) coordinate on the
screen specified by these two random numbers. After 10,000 iterations of this process the program stops and
lets you observe the result. Note: since random number generators generate random numbers, you should
not expect this program to fill the entire screen with asterisks in only 10,000 iterations.

program testRandom;
#include(“stdlib.hhf”);

begin testRandom;

 console.cls();
 mov(10_000, ecx);
 repeat

 // Generate a random X-coordinate
 // using rand.range.

 rand.range(0, 79);
 mov(eax, ebx); // Save the X-coordinate for now.

 // Generate a random Y-coordinate
 // using rand.urange.

 rand.urange(0, 23);

 // Print an asterisk at
 // the specified coordinate on the screen.

 console.puts(ax, bx, “*”);

 // Repeat this 10,000 times to get
 // a good distribution of values.

 dec(ecx);

 until(@z);

 // Position the cursor at the bottom of the
 // screen so we can observe the results.
Page 688 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
 console.gotoxy(24, 0);

end testRandom;

Program 13.16 Screen Plot Test of the HLA Random Number Generators

Exercise A: Run this program and note how many “holes” are left unfilled on the screen. If possible,
make a print-out of the screen to include with your lab manual. Compare the result of your output with
another student’s output for this exercise. Did they get the same output as you? Explain why or why not in
your lab report.

Exercise B: Add the statement “rand.randomize()” as the first statement in this program. Recompile and
run the program. Compare this output to the output from Exercise A. Compare this output to that of another
student in your class for this exercise. Did they get the same output as you? Explain why or why not in your
lab report.

Exercise C: Remove the call to rand.randomize that you inserted in Exercise B. Bump up the number
of iterations to 25,000. Does the program fill the screen with asterisks? Determine to the nearest 100, the
minimum number of iterations it takes to completely fill the screen with asterisks.

13.3.13File I/O in HLA

The HLA Standard Library provides a file input/output module that makes writing data to a file and
reading data from a file almost as easy as working with the standard output and standard input devices. In
this laboratory exercise you will discover how easy it is to read and write file data in HLA.

The following program code opens a new file, writes some data to it, closes that file, reopens it for read-
ing, reads the data from the file, displays the data to the standard output, and finally closes the file.

program fileDemo;
#include(“stdlib.hhf”);

var
 fileHandle: dword;
 s: string;

begin fileDemo;

 // Note the use of instruction composition to
 // store the return value from stralloc (which
 // is in EAX) directly into s.

 mov(stralloc(256), s);

 // Open a brand new file and write some
 // data to it. Note that the filename “x.txt”
 // must not already exist or the fileio.OpenNew
 // call will raise an exception.

 mov(fileio.openNew(“x.txt”), fileHandle);

 fileio.put
 (
 fileHandle,
 “Data Written to a text file” nl
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 689

V3Questions
 “---------------------------” nl
 nl
);

 for(mov(-5, ebx); (type int32 ebx) <= 5; inc(ebx)) do

 fileio.put(fileHandle, “ebx=”, (type int32 ebx), nl);

 endfor;

 // Done writing the data to the file, close it.

 fileio.close(fileHandle);

 // Reopen the file, this time for reading:

 mov(fileio.open(“x.txt”, win.GENERIC_READ), fileHandle);

 // Read the data from the file and write it to the
 // standard output device:

 while(!fileio.eof(fileHandle)) do

 fileio.gets(fileHandle, s);
 stdout.put(s, nl);

 endwhile;
 fileio.close(fileHandle);
 strfree(s);

end fileDemo;

Program 13.17 HLA File I/O Demonstration

Exercise A: Compile and run this program. Note that this program creates a text file “x.txt” on your
disk. Include a printout of this file with your laboratory report.

Exercise B: Modify this program so that it reads the filename from the user and opens the specified file.
Compile and test the modified program. Include a printout of the program with your laboratory report.
Warning: when running this program, be careful not to specify the name of an existing file on your
disk. Remember, this program will delete any pre-existing data in the file you specify.

Exercise C: Split this program into two separate programs. The first program should write the data to
the text file, the second program should read and display the data in the text file. Compile and run the pro-
grams to verify proper operation. Include the source listings of these two programs with your lab reports.

13.3.14Timing Various Arithmetic Instructions

In this laboratory exercise you will run several sections of code that execute various arithmetic instruc-
tions one billion times. Using a stopwatch, you will measure the time required by each computation and
compare the execution times of these various instructions.

program TimeArithmetic;
#include(“stdlib.hhf”);
Page 690 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
begin TimeArithmetic;

 // The following code does one billion additions to
 // provide a baseline for further instruction timing
 // comparisons.

 stdout.put
 (
 “Multiplication timing test:” nl
 nl
 “This program will compute EAX+12 1,000,000,000 times” nl
 “using the ADD instruction.” nl
 nl
 “You should time this with a stop watch” nl
 nl
 “Press ENTER to begin the additions:”
);
 stdin.readLn();
 for(mov(1_000_000_000, ecx); ecx > 0; dec(ecx)) do

 mov(123_456_789, eax);
 add(12, eax);

 endfor;
 stdout.put(stdio.bell, “Okay, stop timing the code” nl);

 // The following code demonstrates the expense of
 // the INTMUL instruction relative to addition:

 stdout.put
 (
 “Multiplication timing test:” nl
 nl
 “This program will compute EAX*12 1,000,000,000 times” nl
 “using the INTMUL instruction.” nl
 nl
 “You should time this with a stop watch” nl
 nl
 “Press ENTER to begin the multiplications:”
);
 stdin.readLn();
 for(mov(1_000_000_000, ecx); ecx > 0; dec(ecx)) do

 mov(123_456_789, eax);
 intmul(12, eax);

 endfor;
 stdout.put(stdio.bell, “Okay, stop timing the code” nl);

 // The following code demonstrates the expense of IMUL
 // relative to addition:

 stdout.put
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 691

V3Questions
 (
 “Now this program will compute EAX*12 1,000,000,000 times” nl
 “using the IMUL instruction.” nl
 nl
 “You should time this with a stop watch” nl
 nl
 “Press ENTER to begin the multiplications:”
);
 stdin.readLn();
 for(mov(1_000_000_000, ecx); ecx > 0; dec(ecx)) do

 mov(123_456_789, eax);
 imul(12, eax);

 endfor;
 stdout.put(stdio.bell, “Okay, stop timing the code” nl);

 // The following code demonstrates the cost of multiplication
 // via shifts and adds:

 stdout.put
 (
 “Now this program will compute EAX*12 1,000,000,000 times” nl
 “using the shifts and adds instruction.” nl
 nl
 “You should time this with a stop watch” nl
 nl
 “Press ENTER to begin the multiplications:”
);
 stdin.readLn();
 for(mov(1_000_000_000, ecx); ecx > 0; dec(ecx)) do

 mov(123_456_789, eax);
 mov(123_456_789, ebx);
 shl(1, ebx);
 shl(3, eax);
 add(ebx, eax);

 endfor;
 stdout.put(stdio.bell, “Okay, stop timing the code” nl);

 // The following code demonstrates the cost of the IDIV
 // instruction relative to addition (warning: IDIV is slow!):

 stdout.put
 (
 “Now this program will compute EAX/12 1,000,000,000 times” nl
 “using the IDIV instruction.” nl
 nl
 “You should time this with a stop watch” nl
 nl
 “Press ENTER to begin the divisions:”
);
 stdin.readLn();
 for(mov(1_000_000_000, ecx); ecx > 0; dec(ecx)) do

 mov(123_456_789, eax);
 cdq();
Page 692 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
 idiv(12, edx:eax);

 endfor;
 stdout.put(stdio.bell, “Okay, stop timing the code” nl);

end TimeArithmetic;

Program 13.18 Instruction Timing Code (TimeArithmetic.hla)

Exercise A: Compile and run this program. Measure the times required by each instruction sequence in
the program. Describe the differences in timing in your laboratory report.

Exercise B: Simply dividing the time measured for each section doesn’t accurately compute the time for
each instruction because you’re also measuring the time required by the FOR loop as well as the MOV
instruction and any other instructions appearing in the loop (that aren’t the ADD, INTMUL, IMUL, IDIV, or
SHL instructions). To get a better result, you should time an empty loop and subtract the time for a loop
without the specified instruction (i.e., remove the ADD instruction from the first code section in Program
13.18 above and use the resulting code as your base code).

Exercise C: Modify the program so that it computes the time required by an empty loop. Run this pro-
gram and report the results in your lab report. Subtract this time from your other results to get results that
are closer to reality.

13.3.15Using the RDTSC Instruction to Time a Code Sequence

One problem with timing statements as done in the previous section is that the time you obtain is
extremely inaccurate. This is because Windows periodically interrupts the code, effectively freezing it in its
tracks for a few moments, while other activities take place. Since your stopwatch is still running while the
program is frozen, your timings will not accurate reflect the time it takes to execute these instructions.

On Pentium and later processors, Intel added the RDTSC (ReaD Time Stamp Counter) instruction to
help software engineers better time certain instruction sequences. The Time Stamp Counter is a 64-bit inter-
nal register that the CPU increments by one on each clock cycle. Executing the RDTSC instruction copies
this 64-bit value into the EDX:EAX register pair. By reading the value of the Time Stamp Counter before
and after an instruction sequence, then computing the difference between these two values, you can effec-
tively measure the time of some instructions in clock cycles.

There is one major problem with the RDTSC instruction: not all CPUs support this instruction. Intel
CPUs earlier than the Pentium do not support this instruction. Furthermore, certain non-Intel CPUs do not
support this instruction either. If you happen to have such a CPU, executing the RDTSC instruction will
raise an “invalid instruction” exception. If this is the case for your machine, then simply skip this lab exer-
cise.

There are two additional, but minor, problems with the RDTSC instruction. First, it produces a 64-bit
result. Since we’ve only seen how to do 32-bit arithmetic on the 80x86, computing the difference of the two
64-bit values will prove to be difficult7. We can solve this problem by simply ignoring the H.O. DWORD of
the 64-bit result that RDTSC returns. Once in a while we will get a nonsensical result (generally negative),
but as long as we’re willing to ignore such results and re-run the program to get correct results, we’ll do fine.
Note that the chapter on Advanced Arithmetic discusses extended precision arithmetic, for those who want
to learn how to manipulate 64-bit (or larger) integer values.

The second problem with using RDTSC is that it is still possible for an interrupt to occur in the middle
of the instruction sequence we’re timing. This will produce inaccurate results. Fortunately, it is very rare for

7. Actually, we could use the FILD and FIST instructions on the FPU, but that won’t prove to be necessary.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 693

V3Questions
an interrupt to occur in the middle of a short instruction sequence, so it is unlikely that this will affect the
results you get. To be sure this problem doesn’t occur, all you’ve got to do is execute your program twice
and verify that the results you obtain are similar; if one value is off by an order of magnitude, or more, then
you should re-run the program a few more times.

program RDTSCdemo;
#include(“stdlib.hhf”);

begin RDTSCdemo;

 stdout.put
 (
 “Instruction timing test:” nl
 nl
);

 // Note: repeat the following code twice in order
 // to ensure that all code comes out of the cache.
 // Compute the timings on the second execution of the loop.

 for(mov(2, edi); edi > 0; dec(edi)) do

 rdtsc();
 mov(eax, ecx); // Save L.O. word in ECX

 // Do the instruction over 8 times to eliminate
 // certain problems inherent in RDTSC.

 mov(123_456_789, ebx);
 add(12, eax);
 mov(123_456_789, ebx);
 add(12, eax);
 mov(123_456_789, ebx);
 add(12, eax);
 mov(123_456_789, ebx);
 add(12, eax);
 mov(123_456_789, ebx);
 add(12, eax);
 mov(123_456_789, ebx);
 add(12, eax);
 mov(123_456_789, ebx);
 add(12, eax);
 mov(123_456_789, ebx);
 add(12, eax);

 rdtsc(); // Read time stamp counter after computations.

 endfor;
 sub(ecx, eax); // Computer timer difference.
 stdout.put(“Cycles for ADD sequence: “, (type uns32 eax), nl);

 // Time the INTMUL instruction:

 for(mov(2, edi); edi > 0; dec(edi)) do

Page 694 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
 rdtsc();
 mov(eax, ecx); // Save L.O. word in ECX

 // Do the instruction over 8 times to eliminate
 // certain problems inherent in RDTSC.

 mov(123_456_789, ebx);
 intmul(12, eax);
 mov(123_456_789, ebx);
 intmul(12, eax);
 mov(123_456_789, ebx);
 intmul(12, eax);
 mov(123_456_789, ebx);
 intmul(12, eax);
 mov(123_456_789, ebx);
 intmul(12, eax);
 mov(123_456_789, ebx);
 intmul(12, eax);
 mov(123_456_789, ebx);
 intmul(12, eax);
 mov(123_456_789, ebx);
 intmul(12, eax);

 rdtsc(); // Read time stamp counter after computations.

 endfor;
 sub(ecx, eax); // Computer timer difference.
 stdout.put(“Cycles for INTMUL sequence: “, (type uns32 eax), nl);

 // Time the IMUL instruction:

 for(mov(2, edi); edi > 0; dec(edi)) do

 rdtsc();
 mov(eax, ecx); // Save L.O. word in ECX

 // Do the instruction over 8 times to eliminate
 // certain problems inherent in RDTSC.

 mov(123_456_789, ebx);
 imul(12, eax);
 mov(123_456_789, ebx);
 imul(12, eax);
 mov(123_456_789, ebx);
 imul(12, eax);
 mov(123_456_789, ebx);
 imul(12, eax);
 mov(123_456_789, ebx);
 imul(12, eax);
 mov(123_456_789, ebx);
 imul(12, eax);
 mov(123_456_789, ebx);
 imul(12, eax);
 mov(123_456_789, ebx);
 imul(12, eax);

 rdtsc(); // Read time stamp counter after computations.

 endfor;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 695

V3Questions
 sub(ecx, eax); // Computer timer difference.
 stdout.put(“Cycles for IMUL sequence: “, (type uns32 eax), nl);

 // Time the IDIV instruction:

 for(mov(2, edi); edi > 0; dec(edi)) do

 rdtsc();
 mov(eax, ecx); // Save L.O. word in ECX

 // Do the instruction over 8 times to eliminate
 // certain problems inherent in RDTSC.

 mov(123_456_789, ebx);
 cdq();
 idiv(12, edx:eax);
 mov(123_456_789, ebx);
 cdq();
 idiv(12, edx:eax);
 mov(123_456_789, ebx);
 cdq();
 idiv(12, edx:eax);
 mov(123_456_789, ebx);
 cdq();
 idiv(12, edx:eax);
 mov(123_456_789, ebx);
 cdq();
 idiv(12, edx:eax);
 mov(123_456_789, ebx);
 cdq();
 idiv(12, edx:eax);
 mov(123_456_789, ebx);
 cdq();
 idiv(12, edx:eax);
 mov(123_456_789, ebx);
 cdq();
 idiv(12, edx:eax);

 rdtsc(); // Read time stamp counter after computations.

 endfor;
 sub(ecx, eax); // Computer timer difference.
 stdout.put(“Cycles for IDIV sequence: “, (type uns32 eax), nl);

end RDTSCdemo;

Program 13.19 Timing Code Using RDTSC

Exercise A: Compile and run this program. Compare the times produced by this program against the
previous exercise (to compute time from clock cycles, multiply by one billion and divide by the clock fre-
quency of your system). Describe the differences in timing in your laboratory report.

Exercise B: The RDTSC instruction is quite slow compared to many other instructions. Devise a short
program to test the execution time of the RDTSC instruction. Report the result of this timing in your lab
report.
Page 696 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
13.3.16Timing Floating Point Instructions

Floating point instructions tend to execute more slowly than their integer counterparts. In this labora-
tory exercise you will compute the running time of the FADD, FSUB, FMUL, and FDIV instructions. This
code uses the RDTSC instruction. If your CPU does not support this instruction, modify the code to use the
timing loops in the first lab exercise in this chapter and time your code that way.

program FPTiming;
#include(“stdlib.hhf”);

begin FPTiming;

 stdout.put
 (
 “Instruction timing test:” nl
 nl
);

 // Note: repeat the following code twice in order
 // to ensure that all code comes out of the cache.
 // Compute the timings on the second execution of the loop.

 for(mov(2, edi); edi > 0; dec(edi)) do

 rdtsc();
 mov(eax, ecx); // Save L.O. word in ECX

 // Do the instruction over 8 times to eliminate
 // certain problems inherent in RDTSC.

 fld(123_456_789e0);
 fld(12.0);
 fadd();
 fld(12.0);
 fadd();
 fld(12.0);
 fadd();
 fld(12.0);
 fadd();
 fld(12.0);
 fadd();
 fld(12.0);
 fadd();
 fld(12.0);
 fadd();
 fld(12.0);
 fadd();

 rdtsc(); // Read time stamp counter after computations.

 endfor;
 sub(ecx, eax); // Computer timer difference.
 stdout.put(“Cycles for FADD sequence: “, (type uns32 eax), nl);

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 697

V3Questions
 // Time the FSUB instruction:

 for(mov(2, edi); edi > 0; dec(edi)) do

 rdtsc();
 mov(eax, ecx); // Save L.O. word in ECX

 // Do the instruction over 8 times to eliminate
 // certain problems inherent in RDTSC.

 fld(123_456_789e0);
 fld(12.0);
 fsub();
 fld(12.0);
 fsub();
 fld(12.0);
 fsub();
 fld(12.0);
 fsub();
 fld(12.0);
 fsub();
 fld(12.0);
 fsub();
 fld(12.0);
 fsub();
 fld(12.0);
 fsub();

 rdtsc(); // Read time stamp counter after computations.

 endfor;
 sub(ecx, eax); // Computer timer difference.
 stdout.put(“Cycles for FSUB sequence: “, (type uns32 eax), nl);

 // Time the FMUL instruction:

 for(mov(2, edi); edi > 0; dec(edi)) do

 rdtsc();
 mov(eax, ecx); // Save L.O. word in ECX

 // Do the instruction over 8 times to eliminate
 // certain problems inherent in RDTSC.

 fld(123_456_789e0);
 fld(12.0);
 fmul();
 fld(12.0);
 fmul();
 fld(12.0);
 fmul();
 fld(12.0);
 fmul();
 fld(12.0);
 fmul();
 fld(12.0);
Page 698 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
 fmul();
 fld(12.0);
 fmul();
 fld(12.0);
 fmul();

 rdtsc(); // Read time stamp counter after computations.

 endfor;
 sub(ecx, eax); // Computer timer difference.
 stdout.put(“Cycles for FMUL sequence: “, (type uns32 eax), nl);

 // Time the FDIV instruction:

 for(mov(2, edi); edi > 0; dec(edi)) do

 rdtsc();
 mov(eax, ecx); // Save L.O. word in ECX

 // Do the instruction over 8 times to eliminate
 // certain problems inherent in RDTSC.

 fld(123_456_789e0);
 fld(12.0);
 fdiv();
 fld(12.0);
 fdiv();
 fld(12.0);
 fdiv();
 fld(12.0);
 fdiv();
 fld(12.0);
 fdiv();
 fld(12.0);
 fdiv();
 fld(12.0);
 fdiv();
 fld(12.0);
 fdiv();

 rdtsc(); // Read time stamp counter after computations.

 endfor;
 sub(ecx, eax); // Computer timer difference.
 stdout.put(“Cycles for FDIV sequence: “, (type uns32 eax), nl);

end FPTiming;

Program 13.20 Timing FADD, FSUB, FMUL, and FDIV

Exercise A: Compile and run this program. Compare the cycles counts (or times) produced by this pro-
gram against the previous exercise. Describe the differences in timing in your laboratory report.

Exercise B: Floating point timings are very data dependent. Modify the program by changing the con-
stants around. Retry the computations with constants that are close to one another and more widely sepa-
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 699

V3Questions
rated than in this example. (Hint: create a CONST definition for the two constants this program uses in
order to facilitate the changes; can you see the benefit of using CONST here?)

Exercise C: Modify the program so that the floating point control register specifies the 64-bit rounding
mode (vs. 53 bits or 24 bits). Re-run the program and check the timings. Then set the round to 53 bits and
24 bits. Compare the results.

Exercise D: Modify the prorgram to factor out the time required by the RDTSC instruction. Report
your results in your lab report.

13.3.17Table Lookup Exercise

The following laboratory exercise computes a sequence of sine values using table lookup and using the
FPU FSIN instruction so you can see the difference in timing between the two techniques. Like the previous
two exercises, this code uses the RDTSC instruction to time the sequences. If your CPU does not support
the RDTSC instruction, rewrite the code to use surrounding loops as used in the first laboratory exercise of
this chapter.

program TableLookup;
#include(“stdlib.hhf”);

static
 angle: uns32;
 theSIN: uns32;

readonly
 sines: int32[360] :=
 [

 0, 17, 35, 52, 70, 87, 105, 122,
 139, 156, 174, 191, 208, 225, 242, 259,
 276, 292, 309, 326, 342, 358, 375, 391,
 407, 423, 438, 454, 469, 485, 500, 515,
 530, 545, 559, 574, 588, 602, 616, 629,
 643, 656, 669, 682, 695, 707, 719, 731,
 743, 755, 766, 777, 788, 799, 809, 819,
 829, 839, 848, 857, 866, 875, 883, 891,
 899, 906, 914, 921, 927, 934, 940, 946,
 951, 956, 961, 966, 970, 974, 978, 982,
 985, 988, 990, 993, 995, 996, 998, 999,
 999, 1000, 1000, 1000, 999, 999, 998, 996,
 995, 993, 990, 988, 985, 982, 978, 974,
 970, 966, 961, 956, 951, 946, 940, 934,
 927, 921, 914, 906, 899, 891, 883, 875,
 866, 857, 848, 839, 829, 819, 809, 799,
 788, 777, 766, 755, 743, 731, 719, 707,
 695, 682, 669, 656, 643, 629, 616, 602,
 588, 574, 559, 545, 530, 515, 500, 485,
 469, 454, 438, 423, 407, 391, 375, 358,
 342, 326, 309, 292, 276, 259, 242, 225,
 208, 191, 174, 156, 139, 122, 105, 87,
 70, 52, 35, 17, 0, -17, -35, -52,
 -70, -87, -105, -122, -139, -156, -174, -191,
 -208, -225, -242, -259, -276, -292, -309, -326,
 -342, -358, -375, -391, -407, -423, -438, -454,
 -469, -485, -500, -515, -530, -545, -559, -574,
 -588, -602, -616, -629, -643, -656, -669, -682,
 -695, -707, -719, -731, -743, -755, -766, -777,
Page 700 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times
 -788, -799, -809, -819, -829, -839, -848, -857,
 -866, -875, -883, -891, -899, -906, -914, -921,
 -927, -934, -940, -946, -951, -956, -961, -966,
 -970, -974, -978, -982, -985, -988, -990, -993,
 -995, -996, -998, -999, -999,-1000,-1000,-1000,
 -999, -999, -998, -996, -995, -993, -990, -988,
 -985, -982, -978, -974, -970, -966, -961, -956,
 -951, -946, -940, -934, -927, -921, -914, -906,
 -899, -891, -883, -875, -866, -857, -848, -839,
 -829, -819, -809, -799, -788, -777, -766, -755,
 -743, -731, -719, -707, -695, -682, -669, -656,
 -643, -629, -616, -602, -588, -574, -559, -545,
 -530, -515, -500, -485, -469, -454, -438, -423,
 -407, -391, -375, -358, -342, -326, -309, -292,
 -276, -259, -242, -225, -208, -191, -174, -156,
 -139, -122, -105, -87, -70, -52, -35, -17
];

begin TableLookup;

 // The following touches all the items in
 // the sines array so that it is all in the cache.

 for(mov(0, angle); angle < 360; inc(angle)) do

 mov(angle, ebx);
 mov(sines[ebx*4], eax);
 mov(eax, theSIN);

 endfor;

 // Compute the time required to look up the sines of the
 // angles 0..359:

 rdtsc();
 mov(eax, ecx);
 for(mov(0, angle); angle < 360; inc(angle)) do

 mov(angle, ebx);
 mov(sines[ebx*4], eax);
 mov(eax, theSIN);

 endfor;
 rdtsc();
 sub(ecx, eax);
 stdout.put
 (
 “Time required to compute 360 sines via lookup:”,
 (type uns32 eax),
 nl
);

 // Compute the time required to compute 360 sines using FSIN:

 rdtsc();
 mov(eax, ecx);
 for(mov(0, angle); angle < 360; inc(angle)) do

 fild(angle);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 701

V3Questions
 fldpi();
 fmul();
 fld(2.0);
 fmul();
 fld(180.0);
 fdiv();
 fsin();
 fld(1000.0);
 fmul();
 fistp(theSIN);

 endfor;
 rdtsc();
 sub(ecx, eax);
 stdout.put
 (
 “Time required to compute 360 sines via FSIN:”,
 (type uns32 eax),
 nl
);

end TableLookup;

Program 13.21 FSIN vs. Table Lookup

Exercise A: Compile and run this program. Compare the cycles counts between the two methods for
computing SIN. Describe the differences in timing and comment on these differences in your laboratory
report.

Exercise B: In one respect, this program cheats. The first look in the program “touches” all the memory
locations in the sines table so that they are all loaded into the cache before the code actually times the execu-
tion of the lookup table code. Remove this initial loop and rerun the program. Comment on the difference
in timing. Comment on the effectiveness of the cache. Is it worthwhile to use a lookup table if you rarely
access that table (and it’s data is not in cache)? Justify your answer.
Page 702 © 2001, By Randall Hyde Beta Draft - Do not distribute

V
o
lu

m
e
 F

o
u
r:

II nn
tt ee

rr mm
ee
dd

ii aa
tt ee

 AA
ss
ss
ee
mm

bb
ll yy

 LL
aa

nn
gg

uu
aa

gg
ee
Volume Four: Intermediate Assembly Language

This volume completes the material traditionally taught in a 10 or 15
week course on assembly language programming (the difference
between such courses is how many chapters they’ve skipped up to this
point). This volume also completes this text’s discussion of the essen-
tial material you need to know to start using assembly language effec-
tively. Although there is still much for you to learn, after you
complete this chapter any further study of assembly language tends to
be more specialized. In any case, mastery of the material up to the
end of this volume is an important milestone. Once you absorb and
are able to apply this material, you can start calling yourself an
"Assembly Language Programmer."

Chapter One: Advanced High Level Control Structures I

This chapter completes the discussion of
HLA’s high level control structures. It com-
pletely discusses TRY..ENDTRY and intro-
duces several new high level control structures.

Chapter Two: Low Level Control Structures

This chapter discusses the "real" way to do
control structures, using "pure" assembly lan-
guage. This is a very important chapter; you
cannot call yourself an assembly language pro-
grammer if you haven’t mastered the low-level
control structures.

Chapter Three: Intermediate Procedures

This chapter extends the information on proce-
dures found in the previous volume. This
chapter discusses some of the low-level imple-
mentation details of procedures and describes
how to call procedures and pass parameters
using "pure" assembly language.

Chapter Four: Advanced Arithmetic

This chapter discusses multiprecision and
binary coded decimal arithmetic. It also
describes how to input and output very large
values (code included!).

Chapter Five: Bit Manipulation

This chapter discusses bit operations in assem-
bly language. You’ll learn how to deal with
packed data, insert and extract bit strings, count
bits in an operand, and do all other sorts of
bit-related stuff.

Chapter Six: The String Instructions

This chapter discusses the 80x86 string instructions
which are convenient for manipulating large blocks of
memory.

Volume4
Chapter Seven: The HLA Compile-Time Language

This chapter begins the discussion of one of HLA’s most powerful features - the HLA
compile time language. In this chapter you’ll learn about conditional compilation, com-
pile-time loops, compile-time functions, generating tables, and lots of other features that
make assembly language programming easier.

Chapter Eight: Macros

This chapter continues the discussion of the HLA compile-time language with a discus-
sion of one of HLA’s most powerful features – the HLA macro processor. In this chapter
you’ll learn how to extend the HLA language and do all those neat things that the HLA
Standard Library provides.

Chapter Nine: Domain Specific Languages

This chapter describes how to design and implement your own programming language inside HLA.

Chapter Ten: Classes

This chapter describes classes and object-oriented programming in HLA.

Chapter Eleven: The MMX Instruction Set

This chapter describes the special MMX multimedia extensions on the Pentium and later chips.

Chapter Twelve Mixed Language Programming

This chapter describes how to call HLA procedures and access HLA data from other languages.

Chapter Thirteen: Questions, Projects, and Laboratory Exercises

Test your knowledge and see how well you’ve learned the material in this chapter!
Page 704 © 2000, By Randall Hyde Beta Draft - Do not distribute

Advanced High Level Control Structures
Advanced High Level Control Structures Chapter One

1.1 Chapter Overview

Volume One introduced some basic HLA control structures like the IF and WHILE statements (see
“Some Basic HLA Control Structures” on page 21.). This section elaborates on some of those control struc-
tures (discussing features that were a little too advanced to present in Volume One) and it introduces the
remaining high level language control structures that HLA provides.

This includes a full discussion of HLA’s boolean expressions, the TRY..ENDTRY statement, the RAISE
statement, the BEGIN..END/EXIT/EXITIF statements, and the SWITCH/CASE/ENDSWITCH statement
the HLA Standard Library provides.

1.2 Conjunction, Disjunction, and Negation in Boolean Expressions

One obvious omission in HLA’s high level control structures is the ability to use conjunction (logical
AND), disjunction (logical OR), and negation (logical NOT) in run-time boolean expressions. This omis-
sion, however, has been in this text, not in the HLA language. HLA does provide these facilities, this section
will describe their use.

HLA uses the “&&” operator to denote logical AND in a run-time boolean expression. This is a dyadic
(two-operand) operator and the two operands must be legal run-time boolean expressions. This operator
evaluates true if both operands evaluate to true. Example:

if(eax > 0 && ch = ‘a’) then

mov(eax, ebx);
mov(‘ ‘, ch);

endif;

The two MOV statements above execute only if EAX is greater than zero and CH is equal to the character
‘a’. If either of these conditions is false, then program execution skips over the two MOV instructions.

Note that the expressions on either side of the “&&” operator may be any expression that is legal in an
IF statement, these expressions don’t have to be comparisons using one of the relational operators. For
example, the following are all legal expressions:

@z && al in 5..10
al in {‘a’..’z’} && ebx
boolVar && !eax
!fileio.eof(fileHandle) && fileio.getc(fileHandle) <> ‘ ‘

HLA uses short circuit evaluation when compiling the “&&” operator. If the left-most operand evalu-
ates false, then the code that HLA generates does not bother evaluating the second operand (since the whole
expression must be false at that point). Therefore, in the last expression above, the code will not execute the
call to fileio.getc if the file pointer is currently pointing at the end of the file.

Note that an expression like “eax < 0 && ebx <> eax” is itself a legal boolean expression and, therefore,
may appear as the left or right operand of the “&&” operator. Therefore, expressions like the following are
perfectly legal:

eax < 0 && ebx <> eax && !ecx

The “&&” operator is left associative, so the code that HLA generates evaluates the expression above in a
left-to-right fashion. Note that if EAX is less than zero, the code will not test either of the remaining expres-
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 705

Chapter One Volume Four
sions. Likewise, if EAX is not less than zero but EBX is equal to EAX, this code will not evaluate the third
expression since the whole expression is false regardless of ECX’s value.

HLA uses the “||” operator to denote disjunction (logical OR) in a run-time boolean expression. Like
the “&&” operator, this operator expects two otherwise legal run-time boolean expressions as operands.
This operator evaluates true if either (or both) operands evaluate true. Like the “&&” operator, the disjunc-
tion operator uses short-circuit evaluation. If the left operand evaluates true, then the code that HLA gener-
ates doesn’t bother to test the value of the second operand. Instead, the code will transfer to the location that
handles the situation when the boolean expression evaluates true. Examples of legal expressions using the
“||” operator:

@z || al = 10
al in {‘a’..’z’} || ebx
!boolVar || eax

As for the “&&” operator, the disjunction operator is left associative so multiple instances of the “||”
operator may appear within the same expression. Should this be the case, the code that HLA generates will
evaluate the expressions from left to right, e.g.,

eax < 0 || ebx <> eax || !ecx

The code above executes if either EAX is less than zero, EBX does not equal EAX, or ECX is zero. Note
that if the first comparison is true, the code doesn’t bother testing the other conditions. Likewise, if the first
comparison is false and the second is true, the code doesn’t bother checking to see if ECX is zero. The
check for ECX equal to zero only occurs if the first two comparisons are false.

If both the conjunction and disjunction operators appear in the same expression then the “&&” operator
takes precedence over the “||” operator. Consider the following expression:

eax < 0 || ebx <> eax && !ecx

The code HLA generates evaluates this as

eax < 0 || (ebx <> eax && !ecx)

If EAX is less than zero, then the code HLA generates does not bother to check the remainder of the expres-
sion, the entire expression evaluates true. However, if EAX is not less than zero, then both of the following
conditions must evaluate true in order for the overall expression to evaluate true.

HLA allows you to use parentheses to surround subexpressions involving “&&” and “||” if you need to
adjust the precedence of the operators. Consider the following expression:

(eax < 0 || ebx <> eax) && !ecx

For this expression to evaluate true, ECX must contain zero and either EAX must be less than zero or EBX
must not equal EAX. Contrast this to the result obtained without the parentheses.

As you saw in Volume One (as well as in examples in this chapter), HLA uses the “!” operator to denote
logical negation. However, the “!” operator may only prefix a register or boolean variable; you may not use
it as part of a larger expression (e.g., “!eax < 0”). To achieve logical negative of an existing boolean expres-
sion you must surround that expression with parentheses and prefix the parentheses with the “!” operator,
e.g.,

!(eax < 0)

This expression evaluates true if EAX is not less than zero.

The logical not operator is primarily useful for surrounding complex expressions involving the conjunc-
tion and disjunction operators. While it is occasionally useful for short expressions like the one above, it’s
usually easier (and more readable) to simply state the logic directly rather than convolute it with the logical
not operator.

Note that HLA’s “|” and “&” operators are distinct from “||” and “&&” and have completely different
meanings. See the chapter on the HLA Run-Time Language in this volume for details.
Page 706 © 2001, By Randall Hyde Beta Draft - Do not distribute

Advanced High Level Control Structures
1.3 TRY..ENDTRY

Volume One discusses the TRY..ENDTRY statement, but does not fully discuss all of the features avail-
able. This section will complete the discussion of TRY..ENDTRY and discuss some problems that could
occur when you use this statement.

As you may recall, the TRY..ENDTRY statement surrounds a block of statements in order to capture
any exceptions that occur during the execution of those statements. The system raises exceptions in one of
three ways: through a hardware fault (such as a divide by zero error), through an operating system generated
exception (e.g., the ex.InvalidHandle exception that Windows raises), or through the execution of the HLA
RAISE statement. You can write an exception handler to intercept specific exceptions using the EXCEP-
TION clause. The following program provides a typical example of the use of this statement:

program testBadInput;
#include(“stdlib.hhf”);

static
 u: uns16;

begin testBadInput;

 try

 stdout.put(“Enter an unsigned integer:”);
 stdin.get(u);
 stdout.put(“You entered: “, u, nl);

 exception(ex.ConversionError)

 stdout.put(“Your input contained illegal characters” nl);

 exception(ex.ValueOutOfRange)

 stdout.put(“The value was too large” nl);

 endtry;

end testBadInput;

Program 1.1 TRY..ENDTRY Example

HLA calls the statements between the TRY clause and the first EXCEPTION clause the protected state-
ments. If an exception occurs within the protected statements, then the program will scan through each of
the exceptions and compare the value of the current exception against the value in the parentheses after each
of the EXCEPTION clauses1. This exception value is simply an uns32 value. The value in the parentheses
after each EXCEPTION clause, therefore, must be an unsigned 32-bit value. The HLA “excepts.hhf” header
file predefines several exception constants; for example, ex.ConversionError is equal to five and ex.Value-
OutOfRange is equal to three. Other than it would be an incredibly bad style violation, you could substitute
“exception(5)” and “exception(3)” for the two EXCEPTION clauses above.

1. Note that HLA loads this value into the EAX register. So upon entry into an EXCEPTION clause, EAX contains the
exception number.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 707

Chapter One Volume Four
1.3.1 Nesting TRY..ENDTRY Statements

If the program scans through all the exception clauses in a TRY..ENDTRY statement and does match
the current exception value, then the program searches through the EXCEPTION clauses of a dynamically
nested TRY..ENDTRY block in an attempt to find an appropriate exception handler. For example, consider
the following code:

program testBadInput2;
#include(“stdlib.hhf”);

static
 u: uns16;

begin testBadInput2;

 try

 try

 stdout.put(“Enter an unsigned integer:”);
 stdin.get(u);
 stdout.put(“You entered: “, u, nl);

 exception(ex.ConversionError)

 stdout.put(“Your input contained illegal characters” nl);

 endtry;

 stdout.put(“Input did not fail due to a value out of range” nl);

 exception(ex.ValueOutOfRange)

 stdout.put(“The value was too large” nl);

 endtry;

end testBadInput2;

Program 1.2 Nested TRY..ENDTRY Statements

In this example one TRY statement is nested inside another. During the execution of the stdin.get state-
ment, if the user enters a value greater than four billion and some change, then stdin.get will raise the ex.Val-
ueOutOfRange exception. When the HLA run-time system receives this exception, it first searches through
all the EXCEPTION clauses in the TRY..ENDTRY statement immediately surrounding the statement that
raised the exception (this would be the nested TRY..ENDTRY in the example above). If the HLA run-time
system fails to locate an exception handler for ex.ValueOutOfRange then it checks to see if the current
TRY..ENDTRY is nested inside another TRY..ENDTRY (as is the case in Program 1.2). If so, the HLA
run-time system searches for the appropriate EXCEPTION clause in that TRY..ENDTRY statement. Within
this TRY..ENDTRY block the program finds an appropriate exception handler, so control transfers to the
statements after the “exception(ex.ValueOutOfRange)” clause.
Page 708 © 2001, By Randall Hyde Beta Draft - Do not distribute

Advanced High Level Control Structures
After leaving a TRY..ENDTRY block, the HLA run-time system no longer considers that block active
and will not search through its list of exceptions when the program raises an exception2. This allows you to
handle the same exception differently in different parts of the program.

If two nested TRY..ENDTRY statements handle the same exception, and the program raises an excep-
tion while executing in the nested TRY..ENDTRY seqeuence, then HLA transfers control directly to the
exception handler provided by the innermost TRY..ENDTRY block. HLA does not automatically transfer
control to the exception handler provided by the outer TRY..ENDTRY sequence.

If the program raises an exception for which there is no appropriate EXCEPTION clause active, control
transfers to the HLA run-time system. It will stop the program and print an appropriate error message.

In the previous example (Program 1.2) the second TRY..ENDTRY statement was statically nested
inside the enclosing TRY..ENDTRY statement3. As mentioned without comment earlier, if the most recently
activated TRY..ENDTRY statement does not handle a specific exception, the program will search through
the EXCEPTION clauses of any dynamically nesting TRY..ENDTRY blocks. Dynamic nesting does not
require the nested TRY..ENDTRY block to physically appear within the enclosing TRY..ENDTRY state-
ment. Instead, control could transfer from inside the enclosing TRY..ENDTRY protected block to some
other point in the program. Execution of a TRY..ENDTRY statement at that other point dynamically nests
the two TRY statements. Although you will see lots of ways to dynamically nest code a little later in this
chapter, there is one method you are familiar with that will let you dynamically nest these statements: the
procedure call. The following program provides yet another example of the sample programs in this section,
this example demonstrates dynamic nesting via a procedure call:

program testBadInput3;
#include(“stdlib.hhf”);

 procedure getUns;
 static
 u: uns16;

 begin getUns;

 try

 stdout.put(“Enter an unsigned integer:”);
 stdin.get(u);
 stdout.put(“You entered: “, u, nl);

 exception(ex.ConversionError)

 stdout.put(“Your input contained illegal characters” nl);

 endtry;

 end getUns;

begin testBadInput3;

 try

 getUns();
 stdout.put(“Input did not fail due to a value out of range” nl);

2. Unless, of course, the program re-enters the TRY..ENDTRY block via a loop or other control structure.
3. Statically nested means that one statement is physically nested within another in the source code. When we say one state-
ment is nested within another, this typically means that the statement is statically nested within the other statement.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 709

Chapter One Volume Four
 exception(ex.ValueOutOfRange)

 stdout.put(“The value was too large” nl);

 endtry;

end testBadInput3;

Program 1.3 Dynamic Nesting of TRY..ENDTRY Statements

In Program 1.3 the main program executes the TRY statement that activates a value out of range excep-
tion handler, then it calls the getUns procedure. Inside the getUns procedure, the program executes a second
TRY statement. This dynamically nests the TRY inside the TRY of the main program. Because the main
program has not yet encountered its ENDTRY, the TRY..ENDTRY block in the main program is still active.
However, upon execution of the TRY statement in getUns, the nested TRY..ENDTRY block takes prece-
dence. If an exception occurs inside the stdin.get procedure, control transfers to the most recently activated
TRY..ENDTRY block of statements and the program scans through the EXCEPTION clauses looking for a
match to the current exception value. In the program above, if the exception is a conversion error exception,
then the exception handler inside getUns will handle the error and print an appropriate message. After the
execution of the exception handler, the program falls through to the bottom of getUns and it returns to the
main program and prints the message “Input did not fail due to a value out of range”. Note that if a nested
exception handler processes an exception, the program does not automatically reraise this exception in other
active TRY..ENDTRY blocks, even if they handle that same exception (ex.ConversionError, in this case).

Suppose, however, that stdin.get raises the ex.ValueOutOfRange exception rather than the ex.Conver-
sionError exception. Since the TRY..ENDTRY statement inside getUns does not handle this exception, the
program will search through the exception list of the enclosing TRY..ENDTRY statement. Since this state-
ment is in the main program, the exception will cause the program to automatically return from the getUns
procedure. Since the program will find the value out of range exception handler in the main program, it
transfers control directly to the exception handler. Note that the program will not print the string “Input did
not fail due to a value out of range” since control transfers directly from stdin.get to the exception handler.

1.3.2 The UNPROTECTED Clause in a TRY..ENDTRY Statement

Whenever a program executes the TRY clause, it preserves the current exception environment and sets
up the system to transfer control to the EXCEPTION clauses within that TRY..ENDTRY statement should
an exception occur. If the program successfully completes the execution of a TRY..ENDTRY protected
block, the program restores the original exception environment and control transfers to the first statement
beyond the ENDTRY clause. This last step, restoring the execution environment, is very important. If the
program skips this step, any future exceptions will transfer control to this TRY..ENDTRY statement even
though the program has already left the TRY..ENDTRY block. The following program demonstrates this
problem:

program testBadInput4;
#include(“stdlib.hhf”);

static
 input: uns32;

begin testBadInput4;

 // This forever loop repeats until the user enters
 // a good integer and the BREAK statement below
 // exits the loop.
Page 710 © 2001, By Randall Hyde Beta Draft - Do not distribute

Advanced High Level Control Structures

 forever

 try

 stdout.put(“Enter an integer value: “);
 stdin.get(input);
 stdout.put(“The first input value was: “, input, nl);
 break;

 exception(ex.ValueOutOfRange)

 stdout.put(“The value was too large, reenter.” nl);

 exception(ex.ConversionError)

 stdout.put(“The input contained illegal characters, reenter.” nl);

 endtry;

 endfor;

 // Note that the following code is outside the loop and there
 // is no TRY..ENDTRY statement protecting this code.

 stdout.put(“Enter another number: “);
 stdin.get(input);
 stdout.put(“The new number is: “, input, nl);

end testBadInput4;

Program 1.4 Improperly Exiting a TRY..ENDTRY Statement

This example attempts to create a robust input system by putting a loop around the TRY..ENDTRY
statement and forcing the user to reenter the data if the stdin.get routine raises an exception (because of bad
input data). While this is a good idea, there is a big problem with this implementation: the BREAK state-
ment immediately exits the FOREVER..ENDFOR loop without first restoring the exception environment.
Therefore, when the program executes the second stdin.get statement, at the bottom of the program, the
HLA exception handling code still thinks that it’s inside the TRY..ENDTRY block. If an exception occurs,
HLA transfers control back into the TRY..ENDTRY statement looking for an appropriate exception handler.
Assuming the exception was ex.ValueOutOfRange or ex.ConversionError, Program 1.4 will print an appro-
priate error message and then force the user to reenter the first value. This isn’t desirable.

Transferring control to the wrong TRY..ENDTRY exception handlers is only part of the problem.
Another big problem with the code in Program 1.4 has to do with the way HLA preserves and restores the
exception environment: specifically, HLA saves the old execution environment information on the stack. If
you exit a TRY..ENDTRY without restoring the exception environment, this leaves garbage on the stack (the
old execution environment information) and this extra data on the stack could cause your program to mal-
function.

Although it is quite clear that a program should not exit from a TRY..ENDTRY statement in the manner
that Program 1.4 uses, it would be nice if you could use a loop around a TRY..ENDTRY block to force the
re-entry of bad data as this program attempts to do. To allow for this, HLA’s TRY..ENDTRY provides an
UNPROTECTED section. Consider the following program code:

program testBadInput5;
#include(“stdlib.hhf”);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 711

Chapter One Volume Four
static
 input: uns32;

begin testBadInput5;

 // This forever loop repeats until the user enters
 // a good integer and the BREAK statement below
 // exits the loop. Note that the BREAK statement
 // appears in an UNPROTECTED section of the TRY..ENDTRY
 // statement.

 forever

 try

 stdout.put(“Enter an integer value: “);
 stdin.get(input);
 stdout.put(“The first input value was: “, input, nl);

 unprotected

 break;

 exception(ex.ValueOutOfRange)

 stdout.put(“The value was too large, reenter.” nl);

 exception(ex.ConversionError)

 stdout.put(“The input contained illegal characters, reenter.” nl);

 endtry;

 endfor;

 // Note that the following code is outside the loop and there
 // is no TRY..ENDTRY statement protecting this code.

 stdout.put(“Enter another number: “);
 stdin.get(input);
 stdout.put(“The new number is: “, input, nl);

end testBadInput5;

Program 1.5 The TRY..ENDTRY UNPROTECTED Section

Whenever the TRY..ENDTRY statement hits the UNPROTECTED clause, it immediate restores the
exception environment from the stack. As the phrase suggests, the execution of statements in the UNPRO-
TECTED section is no longer protected by the enclosing TRY..ENDTRY block (note, however, that any
dynamically nesting TRY..ENDTRY statements will still be active, UNPROTECTED only turns off the
exception handling of the TRY..ENDTRY statement that immediately contains the UNPROTECTED
clause). Since the BREAK statement in Program 1.5 appears inside the UNPROTECTED section, it can
safely transfer control out of the TRY..ENDTRY block without “executing” the ENDTRY since the program
has already restored the former exception environment.

Note that the UNPROTECTED keyword must appear in the TRY..ENDTRY statement immediately
after the protected block. I.e., it must precede all EXCEPTION keywords.
Page 712 © 2001, By Randall Hyde Beta Draft - Do not distribute

Advanced High Level Control Structures
If an exception occurs during the execution of a TRY..ENDTRY sequence, HLA automatically restores
the execution environment. Therefore, you may execute a BREAK statement (or any other instruction that
transfers control out of the TRY..ENDTRY block) within an EXCEPTION clause without having to do any-
thing special.

Since the program restores the exception environment upon encountering an UNPROTECTED block or
an EXCEPTION block, an exception that occurs within one of these areas immediately transfers control to
the previous (dynamically nesting) active TRY..ENDTRY sequence. If there is no nesting TRY..ENDTRY
sequence, the program aborts with an appropriate error message.

1.3.3 The ANYEXCEPTION Clause in a TRY..ENDTRY Statement

In a typical situation, you will use a TRY..ENDTRY statement with a set of EXCEPTION clauses that
will handle all possible exceptions that can occur in the protected section of the TRY..ENDTRY sequence.
Often, it is important to ensure that a TRY..ENDTRY statement handles all possible exceptions to prevent
the program from prematurely aborting due to an unhandled exception. If you have written all the code in
the protected section, you will know the exceptions it can raise so you can handle all possible exceptions.
However, if you are calling a library routine (especially a third-party library routine), making a Win32 API
call, or otherwise executing code that you have no control over, it may not be possible for you to anticipate
all possible exceptions this code could raise (especially when considering past, present, and future versions
of this code). If that code raises an exception for which you do not have an EXCEPTION clause, this could
cause your program to fail. Fortunately, HLA’s TRY..ENDTRY statement provides the ANYEXCEPTION
clause that will automatically trap any exception the existing EXCEPTION clauses do not handle.

The ANYEXCEPTION clause is similar to the EXCEPTION clause except it does not require an excep-
tion number parameter (since it handles any exception number). If the ANYEXCEPTION clause appears in
a TRY..ENDTRY statement with other EXCEPTION sections, the ANYEXCEPTION section must be the
last exception handler in the TRY..ENDTRY statement. An ANYEXCEPTION section may be the only
exception handler in a TRY..ENDTRY statement.

If an otherwise unhandled exception transfers control to an ANYEXCEPTION section, the EAX regis-
ter will contain the exception number. Your code in the ANYEXCEPTION block can test this value to deter-
mine the cause of the exception.

1.3.4 Raising User-Defined Exceptions

Although you typically use the TRY..ENDTRY statement to catch exceptions that Windows or the HLA
Standard Library raises, it is also possible to create your own exceptions and process them via the
TRY..ENDTRY statement. You accomplish this by assigning an unused exception number to your exception
and raising this exception with the HLA RAISE statement.

The parameter you supply to the EXCEPTION statement is really nothing more than an unsigned inte-
ger constant. The HLA “excepts.hhf” header file provides definitions for the standard HLA Standard
Library and Windows exception types. These names are nothing more than dword constants that have been
given a descriptive name. HLA reserves the values zero through 1023 for HLA and HLA Standard Library
exceptions; it also reserves all exception values greater than $FFFF (65,535) for use by Windows. The val-
ues in the range 1024 through 65,535 are available for user-defined exceptions.

To create a user-defined exception, you would generally begin by defining a descriptive symbolic name
for the exception4. Then within your code you can use the RAISE statement to raise that exception. The fol-
lowing program provides a short example of some code that uses a user-defined exception to trap empty
strings:

4. Technically, you could use a literal numeric constant, e.g., EXCEPTION(1024), but this is extremely poor programming
style.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 713

Chapter One Volume Four
program userDefinedExceptions;
#include(“stdlib.hhf”);

 // Provide a descriptive name for the
 // user-defined exception.

const EmptyString:dword := 1024;

 // readAString-
 //
 // This procedure reads a string from the user
 // and returns a pointer to that string in the
 // EAX register. It raises the “EmptyString”
 // exception if the string is empty.

 procedure readAString;
 begin readAString;

 stdin.a_gets();
 if((type str.strRec [eax]).length == 0) then

 strfree(eax);
 raise(EmptyString);

 endif;

 end readAString;

begin userDefinedExceptions;

 try

 stdout.put(“Enter a non-empty string: “);
 readAString();
 stdout.put
 (
 “You entered the string ‘”,
 (type string eax),
 “‘”
 nl
);
 strfree(eax);

 exception(EmptyString)

 stdout.put(“You entered an empty string”, nl);

 endtry;

end userDefinedExceptions;

Program 1.6 User-Defined Exceptions and the RAISE Statement

One important thing to notice in this example: the readAString procedure frees the string storage before
raising the exception. It has to do this because the RAISE statement loads the EAX register with the excep-
tion number (1024 in this case), effectively obliterating the pointer to the string. Therefore, this code frees
the storage before the exception and assumes that EAX does not contain a valid string pointer if an exception
occurs.
Page 714 © 2001, By Randall Hyde Beta Draft - Do not distribute

Advanced High Level Control Structures
In addition to raising exceptions you’ve defined, you can also use the RAISE statement to raise any
exception. Therefore, if your code encounters an error converting some data, you could raise the ex.Conver-
sionError exception to denote this condition. There is nothing sacred about the predefined exception values.
Feel free to use their values as exceptions if they are descriptive of the error you need to handle.

1.3.5 Reraising Exceptions in a TRY..ENDTRY Statement

Once a program transfers control to an exception handling section, the exception is effectively dead.
That is, after executing the associated EXCEPTION block, control transfers to the first statement after the
ENDTRY and program execution continues as though an exception had not occurred. HLA assumes that the
exception handler has taken care of the problem and it is okay to continue program execution after the
ENDTRY statement. In some instances, this isn’t an appropriate response.

Although falling through and executing the statements after the ENDTRY when an exception handler
finishes is probably the most common response, another possibility is to reraise the exception at the end of
the EXCEPTION sequence. This lets the current TRY..ENDTRY block accommodate the exception as best
it can and then pass control to a dynamically nesting TRY..ENDTRY statement to complete the exception
handling process. To reraise an exception all you need do is execute a RAISE statement at the end of the
exception handler. Although you would typically reraise the same exception, there is nothing preventing you
from raising a different exception at the end of your exception handler. For example, after handling a
user-defined exception you’ve defined, you might want to raise a different exception (e.g., ex.MemoryAllo-
cationFailure) and let an enclosing TRY..ENDTRY statement finish handling your exception.

1.3.6 A List of the Predefined HLA Exceptions

Appendix G in this text provides a listing of the HLA exceptions and the situations in which Windows
or the HLA Standard Library raises these exceptions. The HLA Standard Library reference in Appendix F
also lists the exceptions that each HLA Standard Library routine raises. You should skim over these appen-
dices to familiarize yourself with the types of exceptions HLA raises and refer to these sections when calling
Standard Library routines to ensure that you handle all the possible exceptions.

1.3.7 How to Handle Exceptions in Your Programs

When an exception occurs in a program there are four general ways to handle the exception: (1) correct
the problem in the exception handler and restart the offending instruction (if this is possible), (2) report an
error message and loop back to the offending code and re-execute the entire sequence, preferably with better
input data that won’t cause an exception, (3) report an error and reraise the exception (or raise a different
exception) and leave it up to a dynamically nesting exception handler to deal with the problem, or (4) clean
up the program’s data as much as possible and abort program execution. The HLA run-time system only
supports the last three options (i.e., it does not allow you to restart the offending instruction after some sort
of correction), so we will ignore the first option in this text.

Reporting an error and looping back to repeat the offending code is an extremely common solution
when then program raises an exception because of bad user input. The following program provides a typical
example of this solution that forces a user to enter a valid unsigned integer value:

program repeatingBadCode;
#include(“stdlib.hhf”);

static
 u: uns16;

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 715

Chapter One Volume Four
begin repeatingBadCode;

 forever

 try
 // Protected block. Read an unsigned integer
 // from the user and display that value if
 // there wasn’t an error.

 stdout.put(“Enter an unsigned integer:”);
 stdin.get(u);

 // Clean up the exception and break out of
 // the forever loop if all went well.

 unprotected

 break;

 // If the user entered an illegal character,
 // print an appropriate error message.

 exception(ex.ConversionError)

 stdout.put(“Your input contained illegal characters” nl);

 // If the user entered a value outside the range
 // 0..65535 then print an error message.

 exception(ex.ValueOutOfRange)

 stdout.put(“The value was too large” nl);

 endtry;

 // If we get down here, it’s because there was an exception.
 // Loop back and make the user reenter the value.

 endfor;

 // Only by executed the BREAK statement do we wind up down here.
 // That occurs if the user entered a value unsigned integer value.

 stdout.put(“You entered: “, u, nl);

end repeatingBadCode;

Program 1.7 Repeating Code via a Loop to Handle an Exception

Another way to handle an exception is to print an appropriate message (or take other corrective action)
and then re-raise the exception or raise a different exception. This allows an enclosing exception handler to
handle the exception. The big advantage to this scheme is that it minimizes the code you have to write to
handle a given exception throughout your code (i.e., passing an exception on to a different handler that con-
tains some complex code is much easier than replicating that complex code everywhere the exception can
occur). However, this approach has its own problems. Primary among the problems is ensuring that there is
some enclosing TRY..ENDTRY statement that will handle the exception for you. Of course, HLA automati-
Page 716 © 2001, By Randall Hyde Beta Draft - Do not distribute

Advanced High Level Control Structures
cally encloses your entire program in one big TRY..ENDTRY statement, but the default handler simply
prints a short message and then stops your program. This is unacceptable behavior in a robust program. At
the very least, you should supply your own exception handler that surrounds the code in your main program
that attempts to clean up the system before shutting it down if an otherwise unhandled exception comes
along. Generally, however, you would like to handle the exception without shutting down the program.
Ensuring that this always occurs if you reraise an exception can be difficult.

The last alternative, and certainly the least desirable of the four, is to clean up the system as much as
possible and terminate program execution. Cleaning up the system includes writing transient data in mem-
ory to files, closing the files, releasing system resources (i.e., peripheral devices and memory), and, in gen-
eral, preserving as much of the user’s work as possible before quitting the program. Although you would
like to continue program execution whenever an exception occurs, sometimes it is impossible to recover
from an invalid operation (either on the part of the user or because of an error in your program) and continue
execution. In such a situation you want to shut the program down as gracefully as possible so the user can
restart the program and continue where they left off.

Of course, the absolute worst thing you can do is allow the program to terminate without attempting to
save user data or release system resources. The user of your application will not have kind things to say
about your program if they use it for three or four hours and the program aborts and loses all the data they’ve
entered (requiring them to spend another three or four hours entering that data). Telling the user to “save
your data often” is not a good substitute for automatically saving their data when an exception occurs.

The easiest way to handle an arbitrary (and unexpected) exception is to place a TRY..ANYEXCEP-
TION..ENDTRY statement around your main program. If the program raises an exception, you should save
the value in EAX upon entry into the ANYEXCEPTION section (this contains the exception number) and
then save any important data and release any resources your program is using. After this, you can re-raise
the exception and let the default handler print the error message and terminate your program.

1.3.8 Registers and the TRY..ENDTRY Statement

The TRY..ENDTRY statement preserves about 16 bytes of data on the stack whenever you enter a
TRY..ENDTRY statement. Upon leaving the TRY..ENDTRY block (or hitting the UNPROTECTED clause),
the program restores the exception environment by popping this data off the stack. As long as no exception
occurs, the TRY..ENDTRY statement does not affect the values of any registers upon entry to or upon exit
from the TRY..ENDTRY statement. However, this claim is not true if an exception occurs during the execu-
tion of the protected statements.

Upon entry into an EXCEPTION clause the EAX register contains the exception number and the state
of all other general purpose registers is undefined. Since Windows may have raised the exception in
response to a hardware error (and, therefore, has played around with the registers), you can’t even assume
that the general purpose registers contain whatever values they happened to contain at the point of the excep-
tion. Since the underlying code that HLA generates for exceptions is subject to change in different versions
of the compiler, it is never a good idea to experimentally determine what values registers contain in an
exception handler and depend upon those values in your code.

Since entry into an exception handler can scramble all the register values, you must ensure that you
reload important registers if the code following your ENDTRY clause assumes that the registers contain
valid values (i.e., set in the protected section or set prior to executing the TRY..ENDTRY statement). Failure
to do so will introduce some nasty defects into your program (and these defects may be very intermittent and
difficult to detect since exceptions rarely occur and may not always destroy the value in a particular register).
The following code fragment provides a typical example of this problem and its solution:

static
array: uns32[8];

.

.

.
for(mov(0, ebx); ebx < 8; inc(ebx)) do

push(ebx); // Must preserve EBX in case there is an exception.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 717

Chapter One Volume Four
forever
try

stdin.geti32();
unprotected break;

 exception(ex.ConversionError)

stdout.put(“Illegal input, please reenter value: “);

endtry;
endfor;
pop(ebx); // Restore EBX’s value.
mov(eax, array[ebx*4]);

endfor;

Because the HLA exception handling mechanism messes with the registers, and because exception han-
dling is a relatively inefficient process, you should never use the TRY..ENDTRY statement as a generic con-
trol structure (e.g., using it to simulate a SWITCH/CASE statement by raising an integer selector and using
the EXCEPTION clauses as the cases to process). Doing so will have a very negative impact on the perfor-
mance of your program and may introduce subtle defects because exceptions scramble the registers.

For proper operation, the TRY..ENDTRY statement assumes that you only use the EBP register to point
at activation records (the chapter on intermediate procedures discusses activation records). By default, HLA
programs automatically use EBP for this purpose; as long as you do not modify the value in EBP, your pro-
grams will automatically use EBP to maintain a pointer to the current activation record. If you attempt to
use the EBP register as a general purpose register to hold values and compute arithmetic results, HLA’s
exception handling capabilities will no longer function properly (not to mention you will lose access to pro-
cedure parameters and variables in the VAR section). Therefore, you should never use the EBP register as a
general purpose register. Of course, this same discussion applies to the ESP register.

1.4 BEGIN..EXIT..EXITIF..END

HLA provides a structured GOTO via the EXIT and EXITIF statements. The EXIT and EXITIF state-
ments let you exit a block of statements surrounded by a BEGIN..END pair. These statements behave much
like the BREAK and BREAKIF statements (that let you exit from an enclosing loop) except, of course, they
jump out of a BEGIN..END block rather than a loop. The EXIT and EXITIF statements are structured gotos
because they do not let you jump to an arbitrary point in the code, they only let you exit from a block delim-
ited by the BEGIN..END pair.

The EXIT and EXITIF statements take the following forms:

exit identifier;
exitif(boolean_expression) identifier;

The identifier component at the end of these two statements must match the identifier following the
BEGIN and END keywords (e.g., a procedure or program name). The EXIT statement immediately trans-
fers control to the “end identifier;” clause. The EXITIF statement evaluates the boolean expression immedi-
ately following the EXITIF reserved word and transfer control to the specified END clause only if the
expression evaluates true. If the boolean expression evaluates false, the control transfers to the first state-
ment following the EXITIF statement.

If you specify the name of a procedure as the identifier for an EXIT statement, the program will return
from the procedure upon encountering the EXIT statement5. Note that the EXIT statement does not auto-

5. This is true for the EXITIF statement as well, though, of course, the program will only exit the procedure if the boolean
expression in the EXITIF statement evaluates true.
Page 718 © 2001, By Randall Hyde Beta Draft - Do not distribute

Advanced High Level Control Structures
matically restore any registers you pushed on the stack upon entry into the procedure. If you need to pop
data off the stack, you must do this before executing the EXIT statement.

If you specify the name of your main program as the identifier following the EXIT (or EXITIF) state-
ment, your program will terminate upon encountering the EXIT statement. With EXITIF, your program will
only terminate if the boolean expression evaluates true. Note that your program will still terminate even if
you execute the “exit MainPgmName;” statement within a procedure nested inside your main program. You
do not have to execute the EXIT statement in the main program to terminate the main program.

HLA lets you place arbitrary BEGIN..END blocks within your program, they are not limited to sur-
rounding your procedures or main program. The syntax for an arbitrary BEGIN..END block is

begin identifier;

<statements>

end identifier;

The identifier following the END clause must match the identifier following the corresponding BEGIN state-
ment. Naturally, you can nest BEGIN..END blocks, but the identifier following an END clause must match
the identifier following the previous unmatched (by an END) BEGIN clause.

One interesting use of the BEGIN..END block is that it lets you easily escape a deeply nested control
structure without having to completely restructure the program. Typically, you would use this technique to
exit a block of code on some special condition and the TRY..ENDTRY statement would be inappropriate
(e.g., you might need to pass values in registers to the outside code, an EXCEPTION clause can’t guarantee
register status). The following program demonstrates the use of the BEGIN..EXIT..END sequence to bail
out of some deeply nested code.

program beginEndDemo;
#include(“stdlib.hhf”);

static
 m:uns8;
 d:uns8;
 y:uns16;

readonly
 DaysInMonth: uns8[13] :=
 [
 0, // No month zero.
 31, // Jan
 28, // Feb is a special case, see the code.
 31, // Mar
 30, // Apr
 31, // May
 30, // Jun
 31, // Jul
 31, // Aug
 30, // Sep
 31, // Oct
 30, // Nov
 31 // Dec
];

begin beginEndDemo;

 forever

 try

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 719

Chapter One Volume Four
 stdout.put(“Enter month, day, year: “);
 stdin.get(m, d, y);

 unprotected

 break;

 exception(ex.ValueOutOfRange)

 stdout.put(“Value out of range, please reenter”, nl);

 exception(ex.ConversionError)

 stdout.put(“Illegal character in value, please reenter”, nl);

 endtry;

 endfor;
 begin goodDate;

 mov(y, bx);
 movzx(m, eax);
 mov(d, dl);

 // Verify that the year is legal
 // (this program allows years 2000..2099.)

 if(bx in 2000..2099) then

 // Verify that the month is legal

 if(al in 1..12) then

 // Quick check to make sure the
 // day is half-way reasonable.

 if(dl <> 0) then

 // To verify that the day is legal,
 // we have to handle Feb specially
 // since this could be a leap year.

 if(al = 2) then

 // If this is a leap year, subtract
 // one from the day value (to convert
 // Feb 29 to Feb 28) so that the
 // last day of Feb in a leap year
 // will pass muster. (This could
 // set dl to zero if the date is
 // Feb 1 in a leap year, but we’ve
 // already handled dl=0 above, so
 // we don’t have to worry about this
 // anymore.)

 date.isLeapYear(bx);
 sub(al, dl);

 endif;

 // Verify that the number of days in the month
Page 720 © 2001, By Randall Hyde Beta Draft - Do not distribute

Advanced High Level Control Structures
 // is valid.

 exitif(dl <= DaysInMonth[eax]) goodDate;

 endif;

 endif;

 endif;
 stdout.put(“You did not enter a valid date!”, nl);

 end goodDate;

end beginEndDemo;

Program 1.8 Demonstration of BEGIN..EXIT..END Sequence

In this program, the “begin goodDate;” statement surrounds a section of code that checks to see if the
date entered by a user is a valid date in the 100 years from 2000..2099. If the user enters an invalid date, it
prints an appropriate error message, otherwise the program quits without further user interaction. While you
could restructure this code to avoid the use of the EXITIF statement, the resulting code would probably be
more difficult to understand. The nice thing about the design of the code is that it uses refinement to test for
a legal date. That is, it tests to see if one component is legal, then tests to see if the next component of the
date is legal, and works downward in this fashion. In the middle of the tests, this code determines that the
date is legal. To restructure this code to work without the EXITIF (or other GOTO type instruction) would
require using negative logic at each step (asking is this component not a legal date). That logic would be
quite a bit more complex and much more difficult to read, understand, and verify. Hence, this example is
preferable even if it contains a structured form of the GOTO statement.

Because the BEGIN..END statement uses a label, that the EXIT and EXITIF statements specify, you
can nest BEGIN..END blocks and break out of several nested blocks with a single EXIT/EXITIF statement.
Figure 1.1 provides a schematic of this capability.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 721

Chapter One Volume Four
Figure 1.1 Nesting BEGIN..END Blocks

This ability to break out of nested BEGIN..END blocks is very powerful. Contrast this with the
BREAK and BREAKIF statements that only let you exit the loop that immediately contains the BREAK or
BREAKIF. Of course, if you need to exit out of multiple nested loops you won’t be able to use the
BREAK/BREAKIF statement to achieve this, but you can surround your loops with a BEGIN..END
sequence and use the EXIT/EXITIF statement to leave those loops. The following program demonstrates
how this could work, using the EXITIF statement to break out of two nested loops.

program brkNestedLoops;
#include(“stdlib.hhf”)

static
 i:int32;

begin brkNestedLoops;

begin outerBlock;

<< Statements >>

exit outerBlock;

<< Statements >>

begin innerBlock;

<< Statements >>

exit outerBlock;

<< Statements >>

exit innerBlock;

<< Statements >>

end innerBlock;

<< Statements >>

exit outerBlock;

<< Statements >>

end outerBlock;
Page 722 © 2001, By Randall Hyde Beta Draft - Do not distribute

Advanced High Level Control Structures
 // DL contains the last value to print on each line.

 for(mov(0, dl); dl <= 7; inc(dl)) do

 begin middleLoop;

 // DH ranges over the values to print.

 for(mov(0, dh); dh <= 7; inc(dh)) do

 // “i” specifies the field width
 // when printing DH, it also specifies
 // the maximum number of times to print DH.

 for(mov(2, i); i <= 4; inc(i)) do

 // Break out of both inner loops
 // when DH becomes equal to DL.

 exitif(dh >= dl) middleLoop;

 // The following statement prints
 // a triangular shaped object composed
 // of the values that DH goes through.

 stdout.puti8Size(dh, i, ‘.’);

 endfor;

 endfor;

 end middleLoop;
 stdout.newln();

 endfor;

end brkNestedLoops;

Program 1.9 Breaking Out of Nested Loops Using EXIT/EXITIF

1.5 CONTINUE..CONTINUEIF

The CONTINUE and CONTINUEIF statements are very similar to the BREAK and BREAKIF state-
ments insofar as they affect control flow within a loop. The CONTINUE statement immediately transfers
control to the point in the loop where the current iteration completes and the next iteration begins. The
CONTINUEIF statement first checks a boolean expression and transfers control if the expression evaluates
false.

The phrase “where the current iteration completes and the next iteration begins” has a different meaning
for nearly every loop in HLA. For the WHILE..ENDWHILE loop, control transfers to the top of the loop at
the start of the test for loop termination. For the FOREVER..ENDFOR loop, control transfers to the top of
the loop (no test for loop termination). For the FOR..ENDFOR loop, control transfers to the bottom of the
loop where the increment operation occurs (i.e., to execute the third component of the FOR loop). For the
REPEAT..UNTIL loop, control transfers to the bottom of the loop, just before the test for loop termination.
The following diagrams show how the CONTINUE statement behaves.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 723

Chapter One Volume Four
Figure 1.2 Behavior of CONTINUE in a WHILE Loop

Figure 1.3 Behavior of CONTINUE in a FOREVER Loop

Figure 1.4 Behavior of CONTINUE in a FOR Loop

while(expression) do

<< Statements >>

continue;

<< Statements >>

endwhile;

forever

<< Statements >>

continue;

<< Statements >>

endfor;

for(mov(0,ecx); ecx<10; inc(ecx)) do

<< Statements >>

continue;

<< Statements >>

endfor;

// Note that CONTINUE will cause
// the execution of the inc(ecx)
// instruction.
Page 724 © 2001, By Randall Hyde Beta Draft - Do not distribute

Advanced High Level Control Structures
Figure 1.5 Behavior of CONTINUE in a REPEAT..UNTIL Loop

It turns out that CONTINUE is rarely needed in common programs. Most of the time an IF..ENDIF
statement provides the same functionality as CONTINUE (or CONTINUEIF) while being much more read-
able. Nevertheless, there are a few instances you will encounter where the CONTINUE or CONTINUEIF
statements provide exactly what you need. However, if you find yourself using the CONTINUE or CON-
TINUEIF statements on a frequent basis, you should probably reconsider the logic in your programs.

1.6 SWITCH..CASE..DEFAULT..ENDSWITCH

The HLA language does not provide a selection statement similar to SWITCH in C/C++ or CASE in
Pascal/Delphi. This omission was intentional; by leaving the SWITCH statement out of the language it is
possible to demonstrate how to extend the HLA language by adding new control structures. In the chapters
on Macros and the HLA Compile-time Language, this text will demonstrate how you can add your own
statements, like SWITCH, to the HLA language. In the meantime, although HLA does not provide a
SWITCH statement, the HLA Standard Library provides a macro that provides this capability for you. If
you include the “hll.hhf” header file (which “stdlib.hhf” automatically includes for you), then you can use
the SWITCH statement exactly as though it were a part of the HLA language.

The HLA Standard Library SWITCH statement has the following syntax:

repeat

<< Statements >>

continue;

<< Statements >>

until(expression);

// Note that CONTINUE will transfer
// control to the test for loop
// termination.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 725

Chapter One Volume Four
Figure 1.6 Syntax for the SWITCH..CASE..DEFAULT..ENDSWITCH Statement

Like most HLA high level language statements, there are several restrictions on the SWITCH statement.
First of all, the SWITCH clause does not allow a general expression as the selection value. The SWITCH
clause will only allow a value in a 32-bit general purpose register. In general you should only use EAX,
EBX, ECX, EDX, ESI, and EDI since EBP and ESP are reserved for special purposes.

The second restriction is that the HLA SWITCH statement supports a maximum of 256 different case
values. Few SWITCH statements use anywhere near this number, so this shouldn’t prove to be a problem.
Note that each CASE in Figure 1.6 allows a constant list. This could be a single unsigned integer value or a
comma separated list of values, e.g.,

case(10)
-or-

case(5, 6, 8)

Each value in the list of constants counts as one case constant towards the maximum of 256 possible con-
stants. So the second CASE clause above contributes three constants towards the total maximum of 256
constants.

Another restriction on the HLA SWITCH statement is that the difference between the largest and small-
est values in the case list must be 1,024. Therefore, you cannot have CASEs (in the same SWITCH state-
ment) with values like 1, 10, 100, 1,000, and 10,000 since the difference between the smallest and largest
values, 9999, exceeds 1,024.

The DEFAULT section, if it appears in a SWITCH statement, must be the last section in the SWITCH
statement. If no DEFAULT section is present and the value in the 32-bit register does not match one of the
CASE constants, then control transfers to the first statement following the ENDSWITCH clause.

Here is a typical example of a SWITCH..ENDSWITCH statement:

switch(eax)

case(1)

stdout.put(“Selection #1:” nl);
<< Code for case #1 >>

switch(reg32)

case(constant_list)

<< statements >>

case(constant_list)

<< statements >>

default

<< statements >>

endswitch;

At least one CASE must be present.

Zero or more statements associated
with the CASE constants.

Optional set of zero or more CASE
sections to handle additional cases.

Optional DEFAULT section spec-
ifies statements to execute if none
of the CASE constants match the
register's value.
Page 726 © 2001, By Randall Hyde Beta Draft - Do not distribute

Advanced High Level Control Structures
case(2, 3)

stdout.put(“Selections (2) and (3):” nl);
<< code for cases 2 & 3 >>

case(5,6,7,8,9)

stdout.put(“Selections (5)..(9)” nl);
<< code for cases 5..9 >

default

stdout.put(“Selection outside range 1..9” nl);
<< default case code >>

endswitch;

The SWITCH statement in a program lets your code choose one of several different code paths depend-
ing upon the value of the case selection variable. Among other things, the SWITCH statement is ideal for
processing user input that selects a menu item and executes different code depending on the user’s selection.

Later in this volume you will see how to implement a SWITCH statement using low-level machine
instructions. Once you see the implementation you will understand the reasons behind these limitations in
the SWITCH statement. You will also see why the CASE constants must be constants and not variables or
registers.

1.7 Putting It All Together

This chapter completes the discussion of the high level control structures built into the HLA language or
provided by the HLA Standard Library (i.e., SWITCH). First, this chapter gave a complete discussion of the
TRY..ENDTRY and RAISE statements. Although Volume One provided a brief discussion of exception han-
dling and the TRY..ENDTRY statement, this particular statement is too complex to fully describe earlier in
this text. This chapter completes the discussions of this important statement and suggests ways to use it in
your programs that will help make them more robust.

After discussing TRY..ENDTRY and RAISE, this chapter discusses the EXIT and EXITIF statements
and describes how to use them to prematurely exit a procedure or the program. This chapter also discusses
the BEGIN..END block and describes how to use the EXIT and EXITIF statements to exit such a block.
These statements provide a structured GOTO (JMP) in the HLA language.

Although you will not use them as frequently as the BREAK and BREAKIF statements, the CON-
TINUE and CONTINUEIF statements are helpful once in a while for jumping over the remainder of a loop
body and starting the next loop iteration. This chapter discusses the syntax of these statements and warns
against overusing them.

This chapter concludes with a discussion of the SWITCH/CASE/DEFAULT/ENDCASE statement.
This statement isn’t actually a part of the HLA language - instead it is provided by the HLA Standard
Library as an example of how you can extend the language. If you would like details on extending the HLA
language yourself, see the chapter on “Domain Specific Languages.”
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 727

Chapter One Volume Four
Page 728 © 2001, By Randall Hyde Beta Draft - Do not distribute

Low Level Control Structures
Low-Level Control Structures Chapter Two

2.1 Chapter Overview

This chapter discusses “pure” assembly language control statements. The last section of this chapter
discusses hybrid control structures that combine the features of HLA’s high level control statements with the
80x86 control instructions.

2.2 Low Level Control Structures

Until now, most of the control structures you’ve seen and have used in your programs have been very
similar to the control structures found in high level languages like Pascal, C++, and Ada. While these con-
trol structures make learning assembly language easy they are not true assembly language statements.
Instead, the HLA compiler translates these control structures into a sequence of “pure” machine instructions
that achieve the same result as the high level control structures. This text uses the high level control struc-
tures to avoid your having to learn too much all at once. Now, however, it’s time to put aside these high level
language control structures and learn how to write your programs in real assembly language, using low-level
control structures.

2.3 Statement Labels

HLA low level control structures make extensive use of labels within your code. A low level control
structure usually transfers control from one point in your program to another point in your program. You
typically specify the destination of such a transfer using a statement label. A statement label consists of a
valid (unique) HLA identifier and a colon, e.g.,

label:

Of course, like procedure, variable, and constant identifiers, you should attempt to choose descriptive and
meaningful names for your labels. The identifier “label” is hardly descriptive or meaningful.

Statement labels have one important attribute that differentiates them from most other identifiers in
HLA: you don’t have to declare a label before you use it. This is important, because low-level control struc-
tures must often transfer control to a label at some point later in the code, therefore the label may not be
defined at the point you reference it.

You can do two things with labels: transfer control to a label via a jump (goto) instruction and you can
take the address of a label. There is very little else you can directly do with a label (of course, there is very
little else you would want to do with a label, so this is hardly a restriction). The following program demon-
strates two ways to take the address of a label in your program and print out the address (using the LEA
instruction and using the “&” address-of operator):

program labelDemo;
#include(“stdlib.hhf”);

begin labelDemo;

 lbl1:

 lea(ebx, lbl1);
 lea(eax, lbl2);
 stdout.put(“&lbl1=$”, ebx, “ &lbl2=”, eax, nl);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 729

LLCS

 lbl2:

end labelDemo;

Program 2.1 Displaying the Address of Statement Labels in a Program

HLA also allows you to initialize dword variables with the addresses of statement labels. However,
there are some restrictions on labels that appear in the initialization portions of variable declarations. The
most important restriction is that you must define the statement label at the same lex level as the variable
declaration. That is, if you reference a statement label in the initialization section of a variable declaration
appearing in the main program, the statement label must also be in the main program. Conversely, if you
take the address of a statement label in a local variable declaration, that symbol must appear in the same pro-
cedure as the local variable. The following program demonstrates the use of statement labels in variable ini-
tialization:

program labelArrays;
#include(“stdlib.hhf”);

static
 labels:dword[2] := [&lbl1, &lbl2];

 procedure hasLabels;
 static
 stmtLbls: dword[2] := [&label1, &label2];

 begin hasLabels;

 label1:

 stdout.put
 (
 “stmtLbls[0]= $”, stmtLbls[0], nl,
 “stmtLbls[1]= $”, stmtLbls[4], nl
);

 label2:

 end hasLabels;

begin labelArrays;

 hasLabels();
 lbl1:

 stdout.put(“labels[0]= $”, labels[0], “ labels[1]=”, labels[4], nl);

 lbl2:

end labelArrays;

Program 2.2 Initializing DWORD Variables with the Address of Statement Labels
Page 730 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
2.4 Unconditional Transfer of Control (JMP)

 The JMP (jump) instruction unconditionally transfers control to another point in the program. There are
three forms of this instruction: a direct jump, and two indirect jumps. These instructions take one of the fol-
lowing three forms:

jmp label;
jmp(reg32);

jmp(mem32);

For the first (direct) jump above, you normally specify the target address using a statement label (see the
previous section for a discussion of statement labels). The statement label is usually on the same line as an
executable machine instruction or appears by itself on a line preceding an executable machine instruction.
The direct jump instruction is the most commonly used of these three forms. It is completely equivalent to a
GOTO statement in a high level language1. Example:

<< statements >>
jmp laterInPgm;

.

.

.
laterInPgm:

<< statements >>

The second form of the JMP instruction above, “jmp(reg32);”, is a register indirect jump instruction.
This instruction transfers control to the instruction whose address appears in the specified 32-bit general pur-
pose register. To use this form of the JMP instruction you must load the specified register with the address of
some machine instruction prior to the execution of the JMP. You could use this instruction to implement a
state machine (see “State Machines and Indirect Jumps” on page 761) by loading a register with the address
of some label at various points throughout your program; then, arriving along different paths, a point in the
program can determine what path it arrived upon by executing the indirect jump. The following short sam-
ple program demonstrates how you could use the JMP in this manner:

program regIndJmp;
#include(“stdlib.hhf”);

static
 i:int32;

begin regIndJmp;

 // Read an integer from the user and set EBX to
 // denote the success or failure of the input.

 try

 stdout.put(“Enter an integer value between 1 and 10: “);
 stdin.get(i);
 mov(i, eax);
 if(eax in 1..10) then

 mov(&GoodInput, ebx);

 else

1. Unlike high level languages, where your instructors usually forbid you to use GOTO statements, you will find that the use
of the JMP instruction in assembly language is absolutely essential.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 731

LLCS
 mov(&valRange, ebx);

 endif;

 exception(ex.ConversionError)

 mov(&convError, ebx);

 exception(ex.ValueOutOfRange)

 mov(&valRange, ebx);

 endtry;

 // Okay, transfer control to the appropriate
 // section of the program that deals with
 // the input.

 jmp(ebx);

 valRange:
 stdout.put(“You entered a value outside the range 1..10” nl);
 jmp Done;

 convError:
 stdout.put(“Your input contained illegal characters” nl);
 jmp Done;

 GoodInput:
 stdout.put(“You entered the value “, i, nl);

 Done:

end regIndJmp;

Program 2.3 Using Register Indirect JMP Instructions

The third form of the JMP instruction is a memory indirect JMP. This form of the JMP instruction
fetches a dword value from the specified memory location and transfers control to the instruction at the
address specified by the contents of the memory location. This is similar to the register indirect JMP except
the address appears in a memory location rather than in a register. The following program demonstrates a
rather trivial use of this form of the JMP instruction:

program memIndJmp;
#include(“stdlib.hhf”);

static
 LabelPtr:dword := &stmtLabel;

begin memIndJmp;

 stdout.put(“Before the JMP instruction” nl);
 jmp(LabelPtr);

 stdout.put(“This should not execute” nl);

Page 732 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
 stmtLabel:

 stdout.put(“After the LabelPtr label in the program” nl);

end memIndJmp;

Program 2.4 Using Memory Indirect JMP Instructions

Warning: unlike the HLA high level control structures, the low-level JMP instructions can get you into
a lot of trouble. In particular, if you do not initialize a register with the address of a valid instruction and you
jump indirect through that register, the results are undefined (though this will usually cause a Windows gen-
eral protection fault). Similarly, if you do not initialize a dword variable with the address of a legal instruc-
tion, jumping indirect through that memory location will probably crash your program.

2.5 The Conditional Jump Instructions

Although the JMP instruction provides transfer of control, it does not allow you to make any serious
decisions. The 80x86’s conditional jump instructions handle this task. The conditional jump instructions are
the basic tool for creating loops and other conditionally executable statements like the IF..ENDIF statement.

The conditional jumps test one or more flags in the flags register to see if they match some particular
pattern (just like the SETcc instructions). If the flag settings match a particular pattern control transfers to
the target location. If the match fails, the CPU ignores the conditional jump and execution continues with the
next instruction. Some conditional jump instructions simply test the setting of the sign, carry, overflow, and
zero flags. For example, after the execution of a SHL instruction, you could test the carry flag to determine if
the SHL shifted a one out of the H.O. bit of its operand. Likewise, you could test the zero flag after a TEST
instruction to see if any specified bits were one. Most of the time, however, you will probably execute a con-
ditional jump after a CMP instruction. The CMP instruction sets the flags so that you can test for less than,
greater than, equality, etc.

The conditional JMP instructions take the following form:

Jcc label;

The “cc” in Jcc indicates that you must substitute some character sequence that specifies the type of condi-
tion to test. These are the same characters the SETcc instruction uses. For example, “JS” stands for jump if
the sign flag is set.” A typical JS instruction looks like this

js ValueIsNegative;

In this example, the JS instruction transfers control to the ValueIsNegative statement label if the sign flag is
currently set; control falls through to the next instruction following the JS instruction if the sign flag is clear.

Unlike the unconditional JMP instruction, the conditional jump instructions do not provide an indirect
form. The only form they allow is a branch to a statement label in your program. Conditional jump instruc-
tions have a restriction that the target label must be within 32,768 bytes of the jump instruction. However,
since this generally corresponds to somewhere between 8,000 and 32,000 machine instructions, it is unlikely
you will ever encounter this restriction.

Note: Intel’s documentation defines various synonyms or instruction aliases for many conditional jump
instructions. The following tables list all the aliases for a particular instruction. These tables also list out the
opposite branches. You’ll soon see the purpose of the opposite branches.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 733

LLCS
Table 1: Jcc Instructions That Test Flags

Instruction Description Condition Aliases Opposite

JC Jump if carry Carry = 1 JB, JNAE JNC

JNC Jump if no carry Carry = 0 JNB, JAE JC

JZ Jump if zero Zero = 1 JE JNZ

JNZ Jump if not zero Zero = 0 JNE JZ

JS Jump if sign Sign = 1 JNS

JNS Jump if no sign Sign = 0 JS

JO Jump if overflow Ovrflw=1 JNO

JNO Jump if no Ovrflw Ovrflw=0 JO

JP Jump if parity Parity = 1 JPE JNP

JPE Jump if parity even Parity = 1 JP JPO

JNP Jump if no parity Parity = 0 JPO JP

JPO Jump if parity odd Parity = 0 JNP JPE

Table 2: Jcc Instructions for Unsigned Comparisons

Instruction Description Condition Aliases Opposites

JA Jump if above (>) Carry=0,
Zero=0

JNBE JNA

JNBE Jump if not below or equal (not
<=)

Carry=0,
Zero=0

JA JBE

JAE Jump if above or equal (>=) Carry = 0 JNC, JNB JNAE

JNB Jump if not below (not <) Carry = 0 JNC, JAE JB

JB Jump if below (<) Carry = 1 JC, JNAE JNB

JNAE Jump if not above or equal (not
>=)

Carry = 1 JC, JB JAE

JBE Jump if below or equal (<=) Carry = 1 or
Zero = 1

JNA JNBE

JNA Jump if not above
(not >)

Carry = 1 or
Zero = 1

JBE JA

JE Jump if equal (=) Zero = 1 JZ JNE

JNE Jump if not equal (≠) Zero = 0 JNZ JE
Page 734 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
One brief comment about the “opposites” column is in order. In many instances you will need to be
able to generate the opposite of a specific branch instructions (lots of examples of this appear throughout the
remainder of this chapter). With only two exceptions, a very simple rule completely describes how to gener-
ate an opposite branch:

• If the second letter of the Jcc instruction is not an “n”, insert an “n” after the “j”. E.g., JE
becomes JNE and JL becomes JNL.

• If the second letter of the Jcc instruction is an “n”, then remove that “n” from the instruction.
E.g., JNG becomes JG and JNE becomes JE.

The two exceptions to this rule are JPE (jump if parity is even) and JPO (jump if parity is odd). These excep-
tions cause few problems because (a) you’ll hardly ever need to test the parity flag, and (b) you can use the
aliases JP and JNP synonyms for JPE and JPO. The “N/No N” rule applies to JP and JNP.

Though you know that JGE is the opposite of JL, get in the habit of using JNL rather than JGE as the
opposite jump instruction for JL. It’s too easy in an important situation to start thinking “greater is the oppo-
site of less” and substitute JG instead. You can avoid this confusion by always using the “N/No N” rule.

The 80x86 conditional jump instruction give you the ability to split program flow into one of two paths
depending upon some logical condition. Suppose you want to increment the AX register if BX is equal to
CX. You can accomplish this with the following code:

cmp(bx, cx);
jne SkipStmts;
inc(ax);

SkipStmts:

The trick is to use the opposite branch to skip over the instructions you want to execute if the condition is
true. Always use the “opposite branch (N/no N)” rule given earlier to select the opposite branch.

You can also use the conditional jump instructions to synthesize loops. For example, the following code
sequence reads a sequence of characters from the user and stores each character in successive elements of an
array until the user presses the Enter key (carriage return):

Table 3: Jcc Instructions for Signed Comparisons

Instruction Description Condition Aliases Opposite

JG Jump if greater (>) Sign = Ovrflw or Zero=0 JNLE JNG

JNLE Jump if not less than or equal
(not <=)

Sign = Ovrflw or Zero=0 JG JLE

JGE Jump if greater than or equal
(>=)

Sign = Ovrflw JNL JGE

JNL Jump if not less than (not <) Sign = Ovrflw JGE JL

JL Jump if less than (<) Sign ≠ Ovrflw JNGE JNL

JNGE Jump if not greater or equal
(not >=)

Sign ≠ Ovrflw JL JGE

JLE Jump if less than or equal (<=) Sign ≠ Ovrflw or
Zero = 1

JNG JNLE

JNG Jump if not greater than (not >) Sign ≠ Ovrflw or
Zero = 1

JLE JG

JE Jump if equal (=) Zero = 1 JZ JNE

JNE Jump if not equal (≠) Zero = 0 JNZ JE
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 735

LLCS
mov(0, edi);
RdLnLoop:

stdin.getc(); // Read a character into the AL register.
mov(al, Input[edi]); // Store away the character
inc(edi); // Move on to the next character
cmp(al, stdio.cr); // See if the user pressed Enter
jne RdLnLoop;

For more information concerning the use of the conditional jumps to synthesize IF statements, loops, and
other control structures, see “Implementing Common Control Structures in Assembly Language” on
page 736.

Like the SETcc instructions, the conditional jump instructions come in two basic categories – those that
test specific processor flags (e.g., JZ, JC, JNO) and those that test some condition (less than, greater than,
etc.). When testing a condition, the conditional jump instructions almost always follow a CMP instruction.
The CMP instruction sets the flags so you can use a JA, JAE, JB, JBE, JE, or JNE instruction to test for
unsigned less than, less than or equal, equality, inequality, greater than, or greater than or equal. Simulta-
neously, the CMP instruction sets the flags so you can also do a signed comparison using the JL, JLE, JE,
JNE, JG, and JGE instructions.

The conditional jump instructions only test flags, they do not affect any of the 80x86 flags.

2.6 “Medium-Level” Control Structures: JT and JF

HLA provides two special conditional jump instructions: JT (jump if true) and JF (jump if false). These
instructions take the following syntax:

jt(boolean_expression) target_label;
jf(boolean_expression) target_label;

The boolean_expression is the standard HLA boolean expression allowed by IF..ENDIF and other HLA high
level language statements. These instructions evaluate the boolean expression and jump to the specified
label if the expression evaluates true (JT) or false (JF).

These are not real 80x86 instructions. HLA compiles them into a sequence of one or more 80x86
machine instructions that achieve the same result. In general, you should not use these two instructions in
your main code; they offer few benefits over using an IF..ENDIF statement and they are no more readable
than the pure assembly language sequences they compile into. HLA provides these “medium-level” instruc-
tions so that you may create your own high level control structures using macros (see the chapters on Mac-
ros, the HLA Run-Time Language, and Domain Specific Languages for more details).

2.7 Implementing Common Control Structures in Assembly Language

Since a primary goal of this chapter is to teach you how to use the low-level machine instructions to
implement decisions, loops, and other control constructs, it would be wise to show you how to simulate
these high level statements using “pure” assembly language. The following sections provide this informa-
tion.

2.8 Introduction to Decisions

In its most basic form, a decision is some sort of branch within the code that switches between two pos-
sible execution paths based on some condition. Normally (though not always), conditional instruction
sequences are implemented with the conditional jump instructions. Conditional instructions correspond to
the IF..THEN..ENDIF statement in HLA:

 if(expression) then
<< statements >>
Page 736 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
endif;

Assembly language, as usual, offers much more flexibility when dealing with conditional statements. Con-
sider the following C/C++ statement:

 if(((x < y) && (z > t)) || (a != b))
stmt1;

A “brute force” approach to converting this statement into assembly language might produce:

mov(x, eax);
cmp(eax, y);
setl(bl); // Store X<Y in bl.
mov(z, eax);
cmp(eax, t);
setg(bh); // Store Z > T in bh.
and(bh, bl); // Put (X<Y) && (Z>T) into bl.
mov(a, eax);
cmp(eax, b);
setne(bh); // Store A != B into bh.
or(bh, bl); // Put (X<Y) && (Z>T) || (A!=B) into bl
je SkipStmt1; // Branch if result is false (OR sets Z-Flag if false).

<Code for stmt1 goes here>

SkipStmt1:

As you can see, it takes a considerable number of conditional statements just to process the expression in the
example above. This roughly corresponds to the (equivalent) C/C++ statements:

bl = x < y;
bh = z > t;
bl = bl && bh;
bh = a != b;
bl = bl || bh;
if(bl)

stmt1;

Now compare this with the following “improved” code:

mov(a, eax);
cmp(eax, b);
jne DoStmt;
mov(x, eax);
cmp(eax, y);
jnl SkipStmt;
mov(z, eax);
cmp(eax, t);
jng SkipStmt;

DoStmt:
<< Place code for Stmt1 here >>

SkipStmt:

Two things should be apparent from the code sequences above: first, a single conditional statement in
C/C++ (or some other HLL) may require several conditional jumps in assembly language; second, organiza-
tion of complex expressions in a conditional sequence can affect the efficiency of the code. Therefore, care
should be exercised when dealing with conditional sequences in assembly language.

Conditional statements may be broken down into three basic categories: IF statements, SWITCH/CASE
statements, and indirect jumps. The following sections will describe these program structures, how to use
them, and how to write them in assembly language.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 737

LLCS
2.8.1 IF..THEN..ELSE Sequences

The most commonly used conditional statement is the IF..THEN or IF..THEN..ELSE statement. These
two statements take the form shown in Figure 2.1:

Figure 2.1 IF..THEN..ELSE..ENDIF and IF..ENDIF Statement Flow

The IF..ENDIF statement is just a special case of the IF..ELSE..ENDIF statement (with an empty ELSE
block). Therefore, we’ll only consider the more general IF..ELSE..ENDIF form. The basic implementation
of an IF..THEN..ELSE statement in 80x86 assembly language looks something like this:

 {Sequence of statements to test some condition}
 Jcc ElseCode
 {Sequence of statements corresponding to the THEN block}

jmp EndOfIF

ElseCode:
{Sequence of statements corresponding to the ELSE block}

EndOfIF:

 Note: Jcc represents some conditional jump instruction.

For example, to convert the C/C++ statement:

if(a == b)
c = d;

else
b = b + 1;

Continue execution
down here after the
completion of the
THEN or if skipping the
THEN block.

Test for some condition

Execute this block of
statements if the
condition is true.

IF..THEN..ENDIF

Test for some condition

Execute this block of
statements if the
condition is true.

Execute this block of
statements if the
condition is false

Continue execution
down here after the
completion of the
THEN or ELSE blocks

IF..THEN..ELSE..ENDIF
Page 738 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
to assembly language, you could use the following 80x86 code:

mov(a, eax);
cmp(eax, b);
jne ElsePart;
mov(d, c);
jmp EndOfIf;

ElseBlk:
inc(b);

EndOfIf:

For simple expressions like “(a == b)” generating the proper code for an IF..ELSE..ENDIF statement is
almost trivial. Should the expression become more complex, the associated assembly language code com-
plexity increases as well. Consider the following C/C++ IF statement presented earlier:

if(((x > y) && (z < t)) || (a != b))
c = d;

When processing complex IF statements such as this one, you’ll find the conversion task easier if you
break this IF statement into a sequence of three different IF statements as follows:

if(a != b) C = D;
else if(x > y)

if(z < t)
C = D;

This conversion comes from the following C/C++ equivalences:

if(expr1 && expr2) stmt;

is equivalent to

if(expr1) if(expr2) stmt;

and

if(expr1 || expr2) stmt;

is equivalent to

if(expr1) stmt;
else if(expr2) stmt;

In assembly language, the former IF statement becomes:

// if(((x > y) && (z < t)) || (a != b))
// c = d;

mov(a, eax);
cmp(eax, b);
jne DoIF;
mov(x, eax);
cmp(eax, y);
jng EndOfIF;
mov(z, eax);
cmp(eax, t);
jnl EndOfIf;

DoIf:
mov(d, c);

EndOfIF:

 As you can probably tell, the code necessary to test a condition can easily become more complex than
the statements appearing in the ELSE and THEN blocks. Although it seems somewhat paradoxical that it
may take more effort to test a condition than to act upon the results of that condition, it happens all the time.
Therefore, you should be prepared for this situation.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 739

LLCS
Probably the biggest problem with the implementation of complex conditional statements in assembly
language is trying to figure out what you’ve done after you’ve written the code. Probably the biggest advan-
tage high level languages offer over assembly language is that expressions are much easier to read and com-
prehend in a high level language. This is one of the primary reasons HLA supports high level language
control structures. The high level language version is self-documenting whereas assembly language tends to
hide the true nature of the code. Therefore, well-written comments are an essential ingredient to assembly
language implementations of if..then..else statements. An elegant implementation of the example above is:

// IF ((X > Y) && (Z < T)) OR (A != B) C = D;
// Implemented as:
// IF (A != B) THEN GOTO DoIF;

mov(a, eax);
cmp(eax, b);
jne DoIF;

// if NOT (X > Y) THEN GOTO EndOfIF;

mov(x, eax);
cmp(eax, y);
jng EndOfIF;

// IF NOT (Z < T) THEN GOTO EndOfIF ;

mov(z, eax);
cmp(eax, t);
jnl EndOfIf;

// THEN Block:

DoIf:
mov(d, c);

// End of IF statement

EndOfIF:

Admittedly, this appears to be going overboard for such a simple example. The following would proba-
bly suffice:

// if(((x > y) && (z < t)) || (a != b)) c = d;
// Test the boolean expression:

mov(a, eax);
cmp(eax, b);
jne DoIF;
mov(x, eax);
cmp(eax, y);
jng EndOfIF;
mov(z, eax);
cmp(eax, t);
jnl EndOfIf;

; THEN Block:

DoIf:
mov(d, c);

; End of IF statement

EndOfIF:

However, as your IF statements become complex, the density (and quality) of your comments become more
and more important.
Page 740 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
2.8.2 Translating HLA IF Statements into Pure Assembly Language

Translating HLA IF statements into pure assembly language is very easy. The boolean expressions that
the HLA IF supports were specifically chosen to expand into a few simple machine instructions. The follow-
ing paragraphs discuss the conversion of each supported boolean expression into pure machine code.

if(flag_specification) then <<stmts>> endif;

This form is, perhaps, the easiest HLA IF statement to convert. To execute the code immediately fol-
lowing the THEN keyword if a particular flag is set (or clear), all you need do is skip over the code if the flag
is clear (set). This requires only a single conditional jump instruction for implementation as the following
examples demonstrate:

// if(@c) then inc(eax); endif;

jnc SkipTheInc;

inc(eax);

SkipTheInc:

// if(@ns) then neg(eax); endif;

js SkipTheNeg;

neg(eax);

SkipTheNeg:

if(register) then <<stmts>> endif;

This form of the IF statement uses the TEST instruction to check the specified register for zero. If the
register contains zero (false), then the program jumps around the statements after the THEN clause with a JZ
instruction. Converting this statement to assembly language requires a TEST instruction and a JZ instruc-
tion as the following examples demonstrate:

// if(eax) then mov(false, eax); endif;

test(eax, eax);
jz DontSetFalse;

mov(false, eax);

DontSetFalse:

// if(al) then mov(bl, cl); endif;

test(al, al);
jz noMove;

mov(bl, cl);

noMove:

if(!register) then <<stmts>> endif;

This form of the IF statement uses the TEST instruction to check the specified register to see if it is zero.
If the register is not zero (true), then the program jumps around the statements after the THEN clause with a
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 741

LLCS
JNZ instruction. Converting this statement to assembly language requires a TEST instruction and a JNZ
instruction in a manner identical to the previous examples.

if(boolean_variable) then <<stmts>> endif;

This form of the IF statement compares the boolean variable against zero (false) and branches around
the statements if the variable does contain false. HLA implements this statement by using the CMP instruc-
tion to compare the boolean variable to zero and then it uses a JZ (JE) instruction to jump around the state-
ments if the variable is false. The following example demonstrates the conversion:

// if(bool) then mov(0, al); endif;

cmp(bool, false);
je SkipZeroAL;

mov(0, al);

SkipZeroAL:

if(!boolean_variable) then <<stmts>> endif;

This form of the IF statement compares the boolean variable against zero (false) and branches around
the statements if the variable contains true (i.e., the opposite condition of the previous example). HLA
implements this statement by using the CMP instruction to compare the boolean variable to zero and then it
uses a JNZ (JNE) instruction to jump around the statements if the variable contains true. The following
example demonstrates the conversion:

// if(!bool) then mov(0, al); endif;

cmp(bool, false);
jne SkipZeroAL;

mov(0, al);

SkipZeroAL:

if(mem_reg relop mem_reg_const) then <<stmts>> endif;

HLA translates this form of the IF statement into a CMP instruction and a conditional jump that skips
over the statements on the opposite condition specified by the relop operator. The following table lists the
correspondence between operators and condition jump instructions:

Table 4: IF Statement Conditional Jump Instructions

Relop
Conditional jump
instruction if both

operands are unsigned

Conditional jump
instruction if either
operand is signed

= or == JNE JNE

<> or != JE JE

< JNB JNL

<= JNBE JNLE

> JNA JNG

>= JNAE JNGE
Page 742 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
Here are a few examples of IF statements translated into pure assembly language that use expressions
involving relational operators:

// if(al == ch) then inc(cl); endif;

cmp(al, ch);
jne SkipIncCL;

inc(cl);

SkipIncCL:

// if(ch >= ‘a’) then and($5f, ch); endif;

cmp(ch, ‘a’);
jnae NotLowerCase

and($5f, ch);

NotLowerCase:

// if((type int32 eax) < -5) then mov(-5, eax); endif;

cmp(eax, -5);
jnl DontClipEAX;

mov(-5, eax);

DontClipEAX:

// if(si <> di) then inc(si); endif;

cmp(si, di);
je DontIncSI;

inc(si);

DontIncSI:

if(reg/mem in LowConst..HiConst) then <<stmts>> endif;

HLA translates this IF statement into a pair of CMP instructions and a pair of conditional jump instructions.
It compares the register or memory location against the lower valued constant and jumps if less than (below)
past the statements after the THEN clause. If the register or memory location’s value is greater than or equal
to LowConst, the code falls through to the second CMP/conditional jump pair that compares the register or
memory location against the higher constant. If the value is greater than (above) this constant, a conditional
jump instruction skips the statements in the THEN clause. Example:

// if(eax in 1000..125_000) then sub(1000, eax); endif;

cmp(eax, 1000);
jb DontSub1000;
cmp(eax, 125_000);
ja DontSub1000;

sub(1000, eax);

DontSub1000:

// if(i32 in -5..5) then add(5, i32); endif;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 743

LLCS
cmp(i32, -5);
jl NoAdd5;
cmp(i32, 5);
jg NoAdd5;

add(5, i32);

NoAdd5:

if(reg/mem not in LowConst..HiConst) then <<stmts>> endif;

This form of the HLA IF statement tests a register or memory location to see if its value is outside a
specified range. The implementation is very similar to the code above exception you branch to the THEN
clause if the value is less than the LowConst value or greater than the HiConst value and you branch over the
code in the THEN clause if the value is within the range specified by the two constants. The following
examples demonstrate how to do this conversion:

// if(eax not in 1000..125_000) then add(1000, eax); endif;

cmp(eax, 1000);
jb Add1000;
cmp(eax, 125_000);
jbe SkipAdd1000;

Add1000:
add(1000, eax);

SkipAdd1000:

// if(i32 not in -5..5) theen mov(0, i32); endif;

cmp(i32, -5);
jl Zeroi32;
cmp(i32, 5);
jle SkipZero;

Zeroi32:
mov(0, i32);

SkipZero:

if(reg8 in CSetVar/CSetConst) then <<stmts>> endif;

This statement checks to see if the character in the specified eight-bit register is a member of the speci-
fied character set. HLA emits code that is similar to the following for instructions of this form:

movzx(reg8, eax);

bt(eax, CsetVar/CsetConst);
jnc SkipPastStmts;

<< stmts >>

SkipPastStmts:

This example modifies the EAX register (the code HLA generates does not, because it pushes and pops the
register it uses). You can easily swap another register for EAX if you’ve got a value in EAX you need to pre-
serve. In the worst case, if no registers are available, you can push EAX, execute the MOVZX and BT
instructions, and then pop EAX’s value from the stack. The following are some actual examples:
Page 744 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
// if(al in {‘a’..’z’}) then or($20, al); endif;

movzx(al, eax);
bt(eax, {‘a’..’z’}); // See if we’ve got a lower case char.
jnc DontConvertCase;

or($20, al); // Convert to uppercase.

DontConvertCase:

// if(ch in {‘0’..’9’}) then and($f, ch); endif;

push(eax);
movzx(ch, eax);
bt(eax, {‘a’..’z’}); // See if we’ve got a lower case char.
pop(eax);
jnc DontConvertNum;

and($f, ch); // Convert to binary form.

DontConvertNum:

2.8.3 Implementing Complex IF Statements Using Complete Boolean Evaluation

The previous section did not discuss how to translate boolean expressions involving conjunction (AND)
or disjunction (OR) into assembly language. This section will begin that discussion. There are two different
ways to convert complex boolean expressions involving conjunction and disjunction into assembly lan-
guage: using complete boolean evaluation or short circuit evaluation. This section discusses complete bool-
ean evaluation. The next section discusses short circuit boolean evaluation, which is the scheme that HLA
uses when converting complex boolean expressions to assembly language.

Using complete boolean evaluation to evaluate a boolean expression for an IF statement is almost iden-
tical to converting arithmetic expressions into assembly language. Indeed, the previous volume covers this
conversion process (see “Logical (Boolean) Expressions” on page 584). About the only thing worth noting
about that process is that you do not need to store the ultimate boolean result in some variable; once the
evaluation of the expression is complete you check to see if you have a false (zero) or true (one, or non-zero)
result to determine whether to branch around the THEN portion of the IF statement. As you can see in the
examples in the preceding sections, you can often use the fact that the last boolean instruction (AND/OR)
sets the zero flag if the result is false and clears the zero flag if the result is true. This lets you avoid explic-
itly testing the result. Consider the following IF statement and its conversion to assembly language using
complete boolean evaluation:

if(((x < y) && (z > t)) || (a != b))
Stmt1;

mov(x, eax);
cmp(eax, y);
setl(bl); // Store x<y in bl.
mov(z, eax);
cmp(eax, t);
setg(bh); // Store z > t in bh.
and(bh, bl); // Put (x<y) && (z>t) into bl.
mov(a, eax);
cmp(eax, b);
setne(bh); // Store a != b into bh.
or(bh, bl); // Put (x<y) && (z>t) || (a != b) into bl
je SkipStmt1; // Branch if result is false (OR sets Z-Flag if false).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 745

LLCS
<< Code for Stmt1 goes here >>

SkipStmt1:

This code computes a boolean value in the BL register and then, at the end of the computation, tests this
resulting value to see if it contains true or false. If the result is false, this sequence skips over the code asso-
ciated with Stmt1. The important thing to note in this example is that the program will execute each and
every instruction that computes this boolean result (up to the JE instruction).

For more details on complete boolean evaluation, see “Logical (Boolean) Expressions” on page 584.

2.8.4 Short Circuit Boolean Evaluation

If you are willing to spend a little more effort studying a complex boolean expression, you can usually
convert it to a much shorter and faster sequence of assembly language instructions using short-circuit bool-
ean evaluation. Short-circuit boolean evaluation attempts to determine whether an expression is true or false
by executing only a portion of the instructions that compute the complete expression. By executing only a
portion of the instructions, the evaluation is often much faster. For this reason, plus the fact that short circuit
boolean evaluation generally doesn’t require the use of any temporary registers, HLA uses short circuit eval-
uation when translating complex boolean expressions into assembly language.

To understand how short-circuit boolean evaluation works, consider the expression “A && B”. Once
we determine that A is false, there is no need to evaluate B since there is no way the expression can be true.
If A and B represent sub-expressions rather than simple variables, you can begin to see the savings that are
possible with short-circuit boolean evaluation. As a concrete example, consider the sub-expression “((x<y)
&& (z>t))” from the previous section. Once you determine that x is not less than y, there is no need to check
to see if z is greater than t since the expression will be false regardless of z and t’s values. The following
code fragment shows how you can implement short-circuit boolean evaluation for this expression:

// if((x<y) && (z>t)) then ...

mov(x, eax);
cmp(eax, y);
jnl TestFails;
mov(z, eax);
cmp(eax, t);
jng TestFails;

<< Code for THEN clause of IF statement >>

TestFails:

Notice how the code skips any further testing once it determines that x is not less than y. Of course, if x is
less than y, then the program has to test z to see if it is greater than t; if not, the program skips over the
THEN clause. Only if the program satisfies both conditions does the code fall through to the THEN clause.

For the logical OR operation the technique is similar. If the first sub-expression evaluates to true, then
there is no need to test the second operand. Whatever the second operand’s value is at that point, the full
expression still evaluates to true. The following example demonstrates the use of short-circuit evaluation
with disjunction (OR):

// if(ch < ‘A’ || ch > ‘Z’) then stdout.put(“Not an upper case char”); endif;

cmp(ch, ‘A’);
jb ItsNotUC
cmp(ch, ‘Z’);
jna ItWasUC;

ItsNotUC:
stdout.put(“Not an upper case char”);
Page 746 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
ItWasUC:

Since the conjunction and disjunction operators are commutative, you can evaluate the left or right oper-
and first if it is more convenient to do so. As one last example in this section, consider the full boolean
expression from the previous section:

// if(((x < y) && (z > t)) || (a != b)) Stmt1;

mov(a, eax);
cmp(eax, b);
jne DoStmt1;
mov(x, eax);
cmp(eax, y);
jnl SkipStmt1;
mov(z, eax);
cmp(eax, t);
jng SkipStmt1;

DoStmt1:
<< Code for Stmt1 goes here >>

SkipStmt1:

Notice how the code in this example chose to evaluate “a != b” first and the remaining sub-expression last.
This is a common technique assembly language programmers use to write better code.

2.8.5 Short Circuit vs. Complete Boolean Evaluation

One fact about complete boolean evaluation is that every statement in the sequence will execute when
evaluating the expression. Short-circuit boolean evaluation may not require the execution of every statement
associated with the boolean expression. As you’ve seen in the previous two sections above, code based on
short-circuit evaluation is probably faster2. So it would seem that short-circuit evaluation is the technique of
choice when converting complex boolean expressions to assembly language.

Sometimes, unfortunately, short-circuit boolean evaluation may not produce the correct result. In the
presence of side-effects in an expression, short-circuit boolean evaluation will produce a different result than
complete boolean evaluation. Consider the following C/C++ example:

if((x == y) && (++z != 0)) stmt;

Using complete boolean evaluation, you might generate the following code:

mov(x, eax); // See if x == y
cmp(eax, y);
sete(bl);
inc(z); // ++z
cmp(z, 0); // See if incremented z is zero.
setne(bh);
and(bh, bl); // Test x == y && ++z != 0
jz SkipStmt;

<< code for stmt goes here >>

SkipStmt:

Using short-circuit boolean evaluation, you might generate the following code:

2. Note that this does not always mean that the program will run faster. Jumps (conditional or otherwise) are often very slow
executing instructions. Sometimes it’s faster to execute several instructions in a row rather than execute a few instructions
that include a conditional jump.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 747

LLCS
mov(x, eax); // See if x == y
cmp(eax, y);
jne SkipStmt;
inc(z); // ++z
cmp(z, 0); // See if incremented z is zero.
je SkipStmt;

<< code for stmt goes here >>

SkipStmt:

Notice a very subtle, but important difference between these two conversions: if it turns out that x is
equal to y, then the first version above still increments z and compares it to zero before it executes the code
associated with stmt; the short-circuit version, on the other hand skips over the code that increments z if it
turns out that x is equal to y. Therefore, the behavior of these two code fragments is different with respect to
what happens to z if x is equal to y. Neither implementation is particularly wrong, depending on the circum-
stances you may or may not want the code to increment z if x is equal to y. However, it is important that you
realize that these two conversion methods produce different results so you can choose an appropriate imple-
mentation if the effect of this code on z matters to your program.

Many programs take advantage of short-circuit boolean evaluation and rely upon the fact that the pro-
gram may not evaluate certain components of the expression. The following C/C++ code fragment demon-
strates what is probably the most common example that requires short-circuit boolean evaluation:

if(Ptr != NULL && *Ptr == ‘a’) stmt;

If it turns out that Ptr is NULL in this IF statement, then the expression is false and there is no need to eval-
uate the remainder of the expression (and, therefore, code that uses short-circuit boolean evaluation will not
evaluate the remainder of this expression). This statement relies upon the semantics of short-circuit boolean
evaluation for correct operation. Were C/C++ to use complete boolean evaluation, and the variable Ptr con-
tained NULL, then the second half of the expression would attempt to dereference a NULL pointer (which
tends to crash most programs). Consider the translation of this statement using complete and short-circuit
boolean evaluation:

// Complete boolean evaluation:

mov(Ptr, eax);
test(eax, eax); // Check to see if EAX is zero (NULL is zero).
setne(bl);
mov([eax], al); // Get *Ptr into AL.
cmp(al, ‘a’);
sete(bh);
and(bh, bl);
jz SkipStmt;

<< code for stmt goes here >>

SkipStmt:

Notice in this example that if Ptr contains NULL (zero), then this program will attempt to access the
data at location zero in memory via the “mov([eax], al);” instruction. Under Win32 this will cause a mem-
ory access fault (general protection fault). Now consider the short-circuit boolean conversion:

// Short-circuit boolean evaluation

mov(Ptr, eax); // See if Ptr contains NULL (zero) and
test(eax, eax); // immediately skip past Stmt if this
jz SkipStmt; // is the case

mov([eax], al); // If we get to this point, Ptr contains
cmp(al, ‘a’); // a non-NULL value, so see if it points
jne SkipStmt; // at the character ‘a’.
Page 748 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
<< code for stmt goes here >>

SkipStmt:

As you can see in this example, the problem with dereferencing the NULL pointer doesn’t exist. If Ptr con-
tains NULL, this code skips over the statements that attempt to access the memory address Ptr contains.

2.8.6 Efficient Implementation of IF Statements in Assembly Language

Encoding IF statements efficiently in assembly language takes a bit more thought than simply choosing
short-circuit evaluation over complete boolean evaluation. To write code that executes as quickly as possible
in assembly language you must carefully analyze the situation and generate the code appropriately. The fol-
lowing paragraphs provide some suggestions you can apply to your programs to improve their performance.

Know your data!

A mistake programmers often make is the assumption that data is random. In reality, data is rarely ran-
dom and if you know the types of values that your program commonly uses, you can use this knowledge to
write better code. To see how, consider the following C/C++ statement:

if((a == b) && (c < d)) ++i;

Since C/C++ uses short-circuit evaluation, this code will test to see if a is equal to b. If so, then it will
test to see if c is less than d. If you expect a to be equal to b most of the time but don’t expect c to be less
than d most of the time, this statement will execute slower than it should. Consider the following HLA
implementation of this code:

mov(a, eax);
cmp(eax, b);
jne DontIncI;

mov(c, eax);
cmp(eax, d);
jnl DontIncI;

inc(i);

DontIncI:

As you can see in this code, if a is equal to b most of the time and c is not less than d most of the time, you
will have to execute the first three instructions nearly every time in order to determine that the expression is
false. Now consider the following implementation of the above C/C++ statement that takes advantage of
this knowledge and the fact that the “&&” operator is commutative:

mov(c, eax);
cmp(eax, d);
jnl DontIncI;

mov(a, eax);
cmp(eax, b);
jne DontIncI;

inc(i);

DontIncI:

In this example the code first checks to see if c is less than d. If most of the time c is less than d, then
this code determines that it has to skip to the label DontIncI after executing only three instructions in the typ-
ical case (compared with six instructions in the previous example). This fact is much more obvious in
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 749

LLCS
assembly language than in a high level language; this is one of the main reasons that assembly programs are
often faster than their high level language counterparts: optimizations are more obvious in assembly lan-
guage than in a high level language. Of course, the key here is to understand the behavior of your data so
you can make intelligent decisions such as the one above.

Rearranging Expressions

Even if your data is random (or you can’t determine how the input values will affect your decisions),
there may still be some benefit to rearranging the terms in your expressions. Some calculations take far
longer to compute than others. For example, the DIV instruction is much slower than a simple CMP instruc-
tion. Therefore, if you have a statement like the following you may want to rearrange the expression so that
the CMP comes first:

if((x % 10 = 0) && (x != y) ++x;

Converted to assembly code, this IF statement becomes:

mov(x, eax); // Compute X % 10
cdq(); // Must sign extend EAX -> EDX:EAX
imod(10, edx:eax); // Remember, remainder goes into EDX
test(edx, edx); // See if EDX is zero.
jnz SkipIF

mov(x, eax);
cmp(eax, y);
je SkipIF

inc(x);

SkipIF:

The IMOD instruction is very expensive (often 50-100 times slower than most of the other instructions
in this example). Unless it is 50-100 times more likely than the remainder is zero rather than x is equal to y,
it would be better to do the comparison first and the remainder calculation afterwards:

mov(x, eax);
cmp(eax, y);
je SkipIF

mov(x, eax); // Compute X % 10
cdq(); // Must sign extend EAX -> EDX:EAX
imod(10, edx:eax); // Remember, remainder goes into EDX
test(edx, edx); // See if EDX is zero.
jnz SkipIF

inc(x);

SkipIF:

Of course, in order to rearrange the expression in this manner, the code must not assume the use of
short-circuit evaluation semantics (since the && and || operators are not commutative if the code must com-
pute one subexpression before another).

Destructuring Your Code

Although there is a lot of good things to be said about structured programming techniques, there are
some drawbacks to writing structured code. Specifically, structured code is sometimes less efficient than
unstructured code. Most of the time this is tolerable because unstructured code is difficult to read and main-
tain; it is often acceptable to sacrifice some performance in exchange for maintainable code. In certain
Page 750 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
instances, however, you may need all the performance you can get. In those rare instances you might choose
to compromise the readability of you code in order to gain some additional performance.

One classic way to do this is to use code movement to move code your program rarely uses out of the
way of code that executes most of the time. For example, consider the following pseudo C/C++ statement:

if(See_If_an_Error_Has_Ocurred)
{

<< Statements to execute if no error >>
}
else
{

<< Error handling statements >>
}

In normal code, one does not expect errors to be frequent. Therefore, you would normally expect the
THEN section of the above IF to execute far more often than the ELSE clause. The code above could trans-
late into the following assembly code:

cmp(See_If_an_Error_Has_Ocurred, true);
je HandleTheError

<< Statements to execute if no error >>
jmp EndOfIF;

HandleTheError:
<< Error handling statements >>

EndOfIf:

Notice that if the expression is false this code falls through to the normal statements and then jumps
over the error handling statements. Instructions that transfer control from one point in your program to
another (e.g., JMP instructions) tend to be slow. It is much faster to execute a sequential set of instructions
rather than jump all over the place in your program. Unfortunately, the code above doesn’t allow this. One
way to rectify this problem is to move the ELSE clause of the code somewhere else in your program. That
is, you could rewrite the code as follows:

cmp(See_If_an_Error_Has_Ocurred, true);
je HandleTheError

<< Statements to execute if no error >>

EndOfIf:

At some other point in your program (typically after a JMP instruction) you would insert the following code:

HandleTheError:
<< Error handling statements >>
jmp EndOfIf;

Note that the program isn’t any shorter. The JMP you removed from the original sequence winds up at
the end of the ELSE clause. However, since the ELSE clause rarely executes, moving the JMP instruction
from the THEN clause (which executes frequently) to the ELSE clause is a big performance win because the
THEN clause executes using only straight-line code. This technique is surprisingly effective in many
time-critical code segments.

There is a difference between writing destructured code and writing unstructured code. Unstructured
code is written in an unstructured way to begin with. It is generally hard to read, difficult to maintain, and it
often contains defects. Destructured code, on the other hand, starts out as structured code and you make a
conscious decision to eliminate the structure in order to gain a small performance boost. Generally, you’ve
already tested the code in its structured form before destructuring it. Therefore, destructured code is often
easier to work with than unstructured code.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 751

LLCS
Calculation Rather than Branching

On many processors in the 80x86 family, branches are very expensive compared to many other instruc-
tions (perhaps not as bad as IMOD or IDIV, but typically an order of magnitude worse than instructions like
ADD and SUB). For this reason it is sometimes better to execute more instructions in a sequence rather than
fewer instructions that involve branching. For example, consider the simple assignment “EAX =
abs(EAX);” Unfortunately, there is no 80x86 instruction that computes the absolute value of an integer
value. The obvious way to handle this is with an instruction sequence like the following:

test(eax, eax);
jns ItsPositive;

neg(eax);

ItsPositive:

However, as you can plainly see in this example, it uses a conditional jump to skip over the NEG
instruction (that creates a positive value in EAX if EAX was negative). Now consider the following
sequence that will also do the job:

// Set EDX to $FFFF_FFFF if EAX is negative, $0000_0000 if EAX is
// zero or positive:

cdq();

// If EAX was negative, the following code inverts all the bits in EAX,
// otherwise it has no effect on EAX.

xor(edx, edx);

// If EAX was negative, the following code adds one to EAX, otherwise
// it doesn’t modify EAX’s value.

and(1, edx); // EDX = 0 or 1 (1 if EAX was negative).
add(edx, eax);

This code will invert all the bits in EAX and then add one to EAX if EAX was negative prior to the
sequence (i.e., it takes the two’s complement [negates] the value in EAX). If EAX was zero or positive, then
this code does not change the value in EAX.

Note that this sequence takes four instructions rather than the three the previous example requires.
However, since there are no transfer of control instructions in this sequence, it may execute faster on many
CPUs in the 80x86 family.

2.8.7 SWITCH/CASE Statements

The HLA SWITCH statement takes the following form :
Page 752 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
 switch(reg32)

case(const1)

<<stmts1>>

 case(const2)

<<stmts2>>

 .
 .
 .
case(constn)

<<stmtsn >>

default // Note that the default section is optional
<<stmtsdefault >>

endswitch;

When this statement executes, it checks the value of register against the constants const1 … constn. If a
match is found then the corresponding statements execute. HLA places a few restrictions on the SWITCH
statement. First, the HLA SWITCH statement only allows a 32-bit register as the SWITCH expression. Sec-
ond, all the constants appearing as CASE clauses must be unique. The reason for these restrictions will
become clear in a moment.

Most introductory programming texts introduce the SWITCH/CASE statement by explaining it as a
sequence of IF..THEN..ELSEIF statements. They might claim that the following two pieces of HLA code
are equivalent:

switch(eax)
case(0) stdout.put(“I=0”);
case(1) stdout.put(“I=1”);
case(2) stdout.put(“I=2”);

endswitch;

if(eax = 0) then stdout.put(“I=0”)
elseif(eax = 1) then stdout.put(“I=1”)
elseif(eax = 2) then stdout.put(“I=2”);

While semantically these two code segments may be the same, their implementation is usually different.
Whereas the IF..THEN..ELSEIF chain does a comparison for each conditional statement in the sequence, the
SWITCH statement normally uses an indirect jump to transfer control to any one of several statements with
a single computation. Consider the two examples presented above, they could be written in assembly lan-
guage with the following code:

// IF..THEN..ELSE form:

mov(i, eax);
test(eax, eax); // Check for zero.
jnz Not0;

stdout.put(“I=0”);
jmp EndCase;

Not0:
cmp(eax, 1);
jne Not1;

stdou.put(“I=1”);
jmp EndCase;

Not1:
cmp(eax, 2);
jne EndCase;

stdout.put(“I=2”);
EndCase:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 753

LLCS
// Indirect Jump Version

readonly
JmpTbl:dword[3] := [&Stmt0, &Stmt1, &Stmt2];

 .
 .
 .

mov(i, eax);
jmp(JmpTbl[eax*4]);

Stmt0:
stdout.put(“I=0”);
jmp EndCase;

Stmt1:
stdout.put(“I=1”);
jmp EndCase;

Stmt2:
stdout.put(“I=2”);

EndCase:

The implementation of the IF..THEN..ELSEIF version is fairly obvious and doesn’t need much in the
way of explanation. The indirect jump version, however, is probably quite mysterious to you; so let’s con-
sider how this particular implementation of the SWITCH statement works.

Remember that there are three common forms of the JMP instruction (see “Unconditional Transfer of
Control (JMP)” on page 731). The standard unconditional JMP instruction, like the “jmp EndCase;” instruc-
tions in the previous examples, transfer control directly to the statement label specified as the JMP operand.
The second form of the JMP instruction (i.e., “jmp Reg32;”) transfers control to the memory location speci-
fied by the address found in a 32-bit register. The third form of the JMP instruction, the one the example
above uses, transfers control to the instruction specified by the contents of dword memory location. As this
example clearly illustrates, that memory location can use any addressing mode. You are not limited to the
displacement-only addressing mode. Now let’s consider exactly how this second implementation of the
SWITCH statement works.

To begin with, a SWITCH statement requires that you create an array of pointers with each element
containing the address of a statement label in your code (those labels must be attached to the sequence of
instructions to execute for each case in the SWITCH statement). In the example above, the JmpTbl array
serves this purpose. Note that this code initializes JmpTbl with the address of the statement labels Stmt0,
Stmt1, and Stmt2. The program places this array in the READONLY section because the program should
never change these values during execution.

Warning: whenever you initialize an array with a set of address of statement labels as
in this example, the declaration section in which you declare the array (e.g., REA-
DONLY in this case) must be in the same procedure that contains the statement
labels3.

During the execution of this code sequence, the program loads the EAX register with I’s value. Then
the program uses this value as an index into the JmpTbl array and transfers control to the four-byte address
found at the specified location. For example, if EAX contains zero, the “jmp(JmpTbl[eax*4]);” instruction
will fetch the dword at address JmpTbl+0 (eax*4=0). Since the first double word in the table contains the
address of Stmt0, the JMP instruction will transfer control to the first instruction following the Stmt0 label.
Likewise, if I (and therefore, EAX) contains one, then the indirect JMP instruction fetches the double word
at offset four from the table and transfers control to the first instruction following the Stmt1 label (since the
address of Stmt1 appears at offset four in the table). Finally, if I/EAX contains two, then this code fragment

3. If the SWITCH statement appears in your main program, you must declare the array in the declaration section of your main
program.
Page 754 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
transfers control to the statements following the Stmt2 label since it appears at offset eight in the JmpTbl
table.

Two things should become readily apparent: the more (consecutive) cases you have, the more efficient
the jump table implementation becomes (both in terms of space and speed) over the IF/ELSEIF form. Except
for trivial cases, the SWITCH statement is almost always faster and usually by a large margin. As long as the
CASE values are consecutive, the SWTICH statement version is usually smaller as well.

What happens if you need to include non-consecutive CASE labels or you cannot be sure that the
SWITCH value doesn’t go out of range? In HLA, such an occurrence will transfer control to the first state-
ment after the ENDSWITCH clause. However, this doesn’t happen in the example above. If variable I does
not contain zero, one, or two, the result of executing the code above is undefined. For example, if I contains
five when you execute the code in the previous example, the indirect JMP instruction will fetch the dword at
offset 20 (5*4) in JmpTbl and transfer control to that address. Unfortunately, JmpTbl doesn’t have six
entries; so the program will wind up fetching the value of the third double word following JmpTbl and using
that as the target address. This will often crash your program or transfer control to an unexpected location.
Clearly this code does not behave like the HLA SWITCH statement, nor does it have desirable behavior.

The solution is to place a few instructions before the indirect JMP to verify that the SWITCH selection
value is within some reasonable range. In the previous example, we’d probably want to verify that I’s value
is in the range 0..2 before executing the JMP instruction. If I’s value is outside this range, the program
should simply jump to the EndCase label (this corresponds to dropping down to the first statement after the
ENDSWITCH clause). The following code provides this modification to the previous example:

readonly
JmpTbl:dword[3] := [&Stmt0, &Stmt1, &Stmt2];
 .
 .
 .
mov(i, eax);
cmp(eax, 2); // Verify that I is in the range
ja EndCase; // 0..2 before the indirect JMP.
jmp(JmpTbl[eax*4]);

Stmt0:
stdout.put(“I=0”);
jmp EndCase;

Stmt1:
stdout.put(“I=1”);
jmp EndCase;

Stmt2:
stdout.put(“I=2”);

EndCase:

Although the example above handles the problem of selection values being outside the range zero
through two, it still suffers from a couple of severe restrictions:

• The cases must start with the value zero. That is, the minimum CASE constant has to be zero
in this example.

• The case values must be contiguous; there cannot be any gaps between any two case values.

Solving the first problem is easy and you deal with it in two steps. First, you must compare the case
selection value against a lower and upper bounds before determining if the case value is legal, e.g.,

// SWITCH statement specifying cases 5, 6, and 7:
// WARNING: this code does *NOT* work. Keep reading to find out why.

mov(i, eax);
cmp(eax, 5);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 755

LLCS
jb EndCase
cmp(eax, 7); // Verify that I is in the range
ja EndCase; // 5..7 before the indirect JMP.
jmp(JmpTbl[eax*4]);

Stmt5:
stdout.put(“I=5”);
jmp EndCase;

Stmt6:
stdout.put(“I=6”);
jmp EndCase;

Stmt7:
stdout.put(“I=7”);

EndCase:

As you can see, this code adds a pair of extra instructions, CMP and JB, to test the selection value to
ensure it is in the range five through seven. If not, control drops down to the EndCase label, otherwise con-
trol transfers via the indirect JMP instruction. Unfortunately, as the comments point out, this code is broken.
Consider what happens if variable i contains the value five: The code will verify that five is in the range five
through seven and then it will fetch the dword at offset 20 (5*@size(dword)) and jump to that address. As
before, however, this loads four bytes outside the bounds of the table and does not transfer control to a
defined location. One solution is to subtract the smallest case selection value from EAX before executing
the JMP instruction. E.g.,

// SWITCH statement specifying cases 5, 6, and 7:
// WARNING: there is a better way to do this. Keep reading.

readonly
JmpTbl:dword[3] := [&Stmt5, &Stmt6, &Stmt7];

 .
 .
 .

mov(i, eax);
cmp(eax, 5);
jb EndCase
cmp(eax, 7); // Verify that I is in the range
ja EndCase; // 5..7 before the indirect JMP.
sub(5, eax); // 5->0, 6->1, 7->2.
jmp(JmpTbl[eax*4]);

Stmt5:
stdout.put(“I=5”);
jmp EndCase;

Stmt6:
stdout.put(“I=6”);
jmp EndCase;

Stmt7:
stdout.put(“I=7”);

EndCase:

By subtracting five from the value in EAX this code forces EAX to take on the values zero, one, or two prior
to the JMP instruction. Therefore, case selection value five jumps to Stmt5, case selection value six trans-
fers control to Stmt6, and case selection value seven jumps to Stmt7.
Page 756 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
There is a sneaky way to slightly improve the code above. You can eliminate the SUB instruction by
merging this subtraction into the JMP instruction’s address expression. Consider the following code that
does this:

// SWITCH statement specifying cases 5, 6, and 7:

readonly
JmpTbl:dword[3] := [&Stmt5, &Stmt6, &Stmt7];

 .
 .
 .

mov(i, eax);
cmp(eax, 5);
jb EndCase
cmp(eax, 7); // Verify that I is in the range
ja EndCase; // 5..7 before the indirect JMP.
jmp(JmpTbl[eax*4 - 5*@size(dword)]);

Stmt5:
stdout.put(“I=5”);
jmp EndCase;

Stmt6:
stdout.put(“I=6”);
jmp EndCase;

Stmt7:
stdout.put(“I=7”);

EndCase:

The HLA SWITCH statement provides a DEFAULT clause that executes if the case selection value
doesn’t match any of the case values. E.g.,

switch(ebx)

case(5) stdout.put(“ebx=5”);
case(6) stdout.put(“ebx=6”);
case(7) stdout.put(“ebx=7”);
default

stdout.put(“ebx does not equal 5, 6, or 7”);

endswitch;

Implementing the equivalent of the DEFAULT clause in pure assembly language is very easy. Just use a
different target label in the JB and JA instructions at the beginning of the code. The following example
implements an HLA SWITCH statement similar to the one immediately above:

// SWITCH statement specifying cases 5, 6, and 7 with a DEFAULT clause:

readonly
JmpTbl:dword[3] := [&Stmt5, &Stmt6, &Stmt7];

 .
 .
 .

mov(i, eax);
cmp(eax, 5);
jb DefaultCase;
cmp(eax, 7); // Verify that I is in the range
ja DefaultCase; // 5..7 before the indirect JMP.
jmp(JmpTbl[eax*4 - 5*@size(dword)]);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 757

LLCS
Stmt5:
stdout.put(“I=5”);
jmp EndCase;

Stmt6:
stdout.put(“I=6”);
jmp EndCase;

Stmt7:
stdout.put(“I=7”);
jmp EndCase;

DefaultCase:
stdout.put(“I does not equal 5, 6, or 7”);

EndCase:

The second restriction noted earlier, that the case values need to be contiguous, is easy to handle by
inserting extra entries into the jump table. Consider the following HLA SWITCH statement:

switch(ebx)

case(1) stdout.put(“ebx = 1”);
case(2) stdout.put(“ebx = 2”);
case(4) stdout.put(“ebx = 4”);
case(8) stdout.put(“ebx = 8”);
default

stdout.put(“ebx is not 1, 2, 4, or 8”);

endswitch;

The minimum switch value is one and the maximum value is eight. Therefore, the code before the indi-
rect JMP instruction needs to compare the value in EBX against one and eight. If the value is between one
and eight, it’s still possible that EBX might not contain a legal case selection value. However, since the JMP
instruction indexes into a table of dwords using the case selection table, the table must have eight dword
entries. To handle the values between one and eight that are not case selection values, simply put the state-
ment label of the default clause (or the label specifying the first instruction after the ENDSWITCH if there is
no DEFAULT clause) in each of the jump table entries that don’t have a corresponding CASE clause. The
following code demonstrates this technique for the above HLA SWITCH statement:

readonly
JmpTbl2: dword :=

[
&Case1, &Case2, &dfltCase, &Case4,
&dfltCase, &dfltCase, &dfltCase, &Case8

];
.
.
.

cmp(ebx, 1);
jb dfltCase;
cmp(ebx, 8);
ja dfltCase;
jmp(JmpTbl2[ebx*4 - 1*@size(dword)]);

Case1:
stdout.put(“ebx = 1”);
jmp EndOfSwitch;

Case2:
Page 758 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
stdout.put(“ebx = 2”);
jmp EndOfSwitch;

Case4:
stdout.put(“ebx = 4”);
jmp EndOfSwitch;

Case8:
stdout.put(“ebx = 8”);
jmp EndOfSwitch;

dfltCase:
stdout.put(“ebx is not 1, 2, 4, or 8”);

EndOfSwitch:

There is a problem with this implementation of the SWITCH statement. If the CASE values contain
non-consecutive entries that are widely spaced the jump table could become exceedingly large. The follow-
ing SWITCH statement would generate an extremely large code file:

switch(ebx)

case(1) stmt1;
case(100) stmt2;

 case(1_000) stmt3;
 case(10_000) stmt4;

default stmt5;

endswitch;

 In this situation, your program will be much smaller if you implement the SWITCH statement with a
sequence of IF statements rather than using an indirect jump statement. However, keep one thing in mind-
the size of the jump table does not normally affect the execution speed of the program. If the jump table con-
tains two entries or two thousand, the SWITCH statement will execute the multi-way branch in a constant
amount of time. The IF statement implementation requires a linearly increasing amount of time for each
case label appearing in the case statement.

Probably the biggest advantage to using assembly language over a HLL like Pascal or C/C++ is that you
get to choose the actual implementation. In some instances you can implement a SWITCH statement as a
sequence of IF..THEN..ELSEIF statements, or you can implement it as a jump table, or you can use a hybrid
of the two:

switch(eax)

case(0) stmt0;
case(1) stmt1;
case(2) stmt2;
case(100) stmt3;
default stmt4;

endswitch;

could become:

cmp(eax, 100);
je DoStmt3;
cmp(eax, 2);
ja TheDefaultCase;
jmp(JmpTbl[eax*4]);
etc.

Of course, you could do this in HLA using the following code high-level control structures:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 759

LLCS
 if(ebx = 100) then stmt3
else

switch(eax)
case(0) stmt0;

 case(1) stmt1;
 case(2) stmt2;

Otherwise stmt4
endswitch;

endif;

 But this tends to destroy the readability of the program. On the other hand, the extra code to test for 100 in
the assembly language code doesn’t adversely affect the readability of the program (perhaps because it’s so
hard to read already). Therefore, most people will add the extra code to make their program more efficient.

The C/C++ SWITCH statement is very similar to the HLA SWITCH statement. There is only one major
semantic difference: the programmer must explicitly place a BREAK statement in each CASE clause to
transfer control to the first statement beyond the SWITCH. This BREAK corresponds to the JMP instruction
at the end of each CASE sequence in the assembly code above. If the corresponding BREAK is not present,
C/C++ transfers control into the code of the following CASE. This is equivalent to leaving off the JMP at the
end of the CASE’S sequence:

switch (i)
{

case 0: stmt1;
case 1: stmt2;
case 2: stmt3;

break;
case 3: stmt4;

break;
default: stmt5;

}

This translates into the following 80x86 code:

readonly
JmpTbl: dword[4] := [&case0, &case1, &case2, &case3];

.

.

.
mov(i, ebx);
cmp(ebx, 3);
ja DefaultCase;
jmp(JmpTbl[ebx*4]);

case0:
stmt1;

case1:
stmt2;

case2:
stmt3;
jmp EndCase; // Emitted for the break stmt.

case3:
stmt4;
jmp EndCase; // Emitted for the break stmt.

DefaultCase:
stmt5;

EndCase:
Page 760 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
2.9 State Machines and Indirect Jumps

Another control structure commonly found in assembly language programs is the state machine. A state
machine uses a state variable to control program flow. The FORTRAN programming language provides this
capability with the assigned GOTO statement. Certain variants of C (e.g., GNU’s GCC from the Free Soft-
ware Foundation) provide similar features. In assembly language, the indirect jump provides a mechanism to
easily implement state machines.

So what is a state machine? In very basic terms, it is a piece of code4 which keeps track of its execution
history by entering and leaving certain “states”. For the purposes of this chapter, we’ll not use a very formal
definition of a state machine. We’ll just assume that a state machine is a piece of code which (somehow)
remembers the history of its execution (its state) and executes sections of code based upon that history.

In a very real sense, all programs are state machines. The CPU registers and values in memory consti-
tute the “state” of that machine. However, we’ll use a much more constrained view. Indeed, for most pur-
poses only a single variable (or the value in the EIP register) will denote the current state.

Now let’s consider a concrete example. Suppose you have a procedure which you want to perform one
operation the first time you call it, a different operation the second time you call it, yet something else the
third time you call it, and then something new again on the fourth call. After the fourth call it repeats these
four different operations in order. For example, suppose you want the procedure to ADD EAX and EBX the
first time, subtract them on the second call, multiply them on the third, and divide them on the fourth. You
could implement this procedure as follows:

procedure StateMachine;
static

State:byte := 0;
begin StateMachine;

cmp(State, 0);
jne TryState1;

// State 0: Add EBX to EAX and switch to state 1:

add(ebx, eax);
inc(State);
exit StateMachine;

TryState1:
cmp(State, 1);
jne TryState2;

// State 1: subtract ebx from EAX and switch to state 2:

sub(ebx, eax);
inc(State); // State 1 becomes State 2.
exit StateMachine;

TryState2:
cmp(State, 2);
jne MustBeState3;

// If this is state 2, multiply EAX by EAX and switch to state 3:

intmul(ebx, eax);
inc(State); // State 2 becomes State 3.
exit StateMachine;

// If it isn’t one of the above states, we must be in state 3

4. Note that state machines need not be software based. Many state machines’ implementation are hardware based.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 761

LLCS
// So divide eax by ebx and switch back to state zero.

MustBeState3:
push(edx); // Preserve this ‘cause it gets whacked by DIV.
xor(edx, edx); // Zero extend EAX into EDX.
div(ebx, edx:eax);
pop(edx); // Restore EDX’s value preserved above.
mov(0, State); // Reset the state back to zero.

end StateMachine;

Technically, this procedure is not the state machine. Instead, it is the variable State and the CMP/JNE
instructions which constitute the state machine.

There is nothing particularly special about this code. It’s little more than a SWITCH statement imple-
mented via the IF..THEN..ELSEIF construct. The only thing special about this procedure is that it remem-
bers how many times it has been called5 and behaves differently depending upon the number of calls. While
this is a correct implementation of the desired state machine, it is not particularly efficient. The astute
reader, of course, would recognize that this code could be made a little faster using an actual SWITCH state-
ment rather than the IF..THEN..ELSEIF implementation. However, there is a better way...

The more common implementation of a state machine in assembly language is to use an indirect jump.
Rather than having a state variable which contains a value like zero, one, two, or three, we could load the
state variable with the address of the code to execute upon entry into the procedure. By simply jumping to
that address, the state machine could save the tests above needed to execute the proper code fragment. Con-
sider the following implementation using the indirect jump:

procedure StateMachine;
static

State:dword := &State0;
begin StateMachine;

jmp(State);

// State 0: Add EBX to EAX and switch to state 1:

State0:
add(ebx, eax);
mov(&State1, State);
exit StateMachine;

State1:

// State 1: subtract ebx from EAX and switch to state 2:

sub(ebx, eax);
mov(&State2, State); // State 1 becomes State 2.
exit StateMachine;

State2:

// If this is state 2, multiply EAX by EAX and switch to state 3:

intmul(ebx, eax);
mov(&State3, State); // State 2 becomes State 3.
exit StateMachine;

// State 3: divide eax by ebx and switch back to state zero.

5. Actually, it remembers how many times, MOD 4, that it has been called.
Page 762 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
State3:
push(edx); // Preserve this ‘cause it gets whacked by DIV.
xor(edx, edx); // Zero extend EAX into EDX.
div(ebx, edx:eax);
pop(edx); // Restore EDX’s value preserved above.
mov(&State0, State); // Reset the state back to zero.

end StateMachine;

The JMP instruction at the beginning of the StateMachine procedure transfers control to the location
pointed at by the State variable. The first time you call StateMachine it points at the State0 label. Thereafter,
each subsection of code sets the State variable to point at the appropriate successor code.

2.10 Spaghetti Code

One major problem with assembly language is that it takes several statements to realize a simple idea
encapsulated by a single HLL statement. All too often an assembly language programmer will notice that
s/he can save a few bytes or cycles by jumping into the middle of some programming structure. After a few
such observations (and corresponding modifications) the code contains a whole sequence of jumps in and
out of portions of the code. If you were to draw a line from each jump to its destination, the resulting listing
would end up looking like someone dumped a bowl of spaghetti on your code, hence the term “spaghetti
code”.

Spaghetti code suffers from one major drawback- it’s difficult (at best) to read such a program and fig-
ure out what it does. Most programs start out in a “structured” form only to become spaghetti code at the
altar of efficiency. Alas, spaghetti code is rarely efficient. Since it’s difficult to figure out exactly what’s
going on, it’s very difficult to determine if you can use a better algorithm to improve the system. Hence, spa-
ghetti code may wind up less efficient than structured code.

While it’s true that producing some spaghetti code in your programs may improve its efficiency (e.g.,
destructuring your code, see “Efficient Implementation of IF Statements in Assembly Language” on
page 749), doing so should always be a last resort after you’ve tried everything else and you still haven’t
achieved what you need. Always start out writing your programs with straight-forward IFs and SWITCH
statements. Start combining sections of code (via JMP instructions) once everything is working and well
understood. Of course, you should never obliterate the structure of your code unless the gains are worth it.

A famous saying in structured programming circles is “After GOTOs, pointers are the next most danger-
ous element in a programming language.” A similar saying is “Pointers are to data structures what GOTOs
are to control structures.” In other words, avoid excessive use of pointers. If pointers and gotos are bad, then
the indirect jump must be the worst construct of all since it involves both GOTOs and pointers! Seriously
though, the indirect jump instructions should be avoided for casual use. They tend to make a program harder
to read. After all, an indirect jump can (theoretically) transfer control to any label within a program. Imagine
how hard it would be to follow the flow through a program if you have no idea what a pointer contains and
you come across an indirect jump using that pointer. Therefore, you should always exercise care when using
jump indirect instructions.

2.11 Loops

Loops represent the final basic control structure (sequences, decisions, and loops) that make up a typical
program. Like so many other structures in assembly language, you’ll find yourself using loops in places
you’ve never dreamed of using loops. Most HLLs have implied loop structures hidden away. For example,
consider the BASIC statement “IF A$ = B$ THEN 100”. This IF statement compares two strings and jumps
to statement 100 if they are equal. In assembly language, you would need to write a loop to compare each
character in A$ to the corresponding character in B$ and then jump to statement 100 if and only if all the
characters matched. In BASIC, there is no loop to be seen in the program. In assembly language, this very
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 763

LLCS
simple IF statement requires a loop to compare the individual characters in the string6. This is but a small
example which shows how loops seem to pop up everywhere.

Program loops consist of three components: an optional initialization component, a loop termination
test, and the body of the loop. The order with which these components are assembled can dramatically
change the way the loop operates. Three permutations of these components appear over and over again.
Because of their frequency, these loop structures are given special names in high-level languages: WHILE
loops, REPEAT..UNTIL loops (do..while in C/C++), and infinite loops (e.g., FOREVER..ENDFOR in
HLA).

2.11.1 While Loops

The most general loop is the WHILE loop. In HLA it takes the following form:

while(expression) do <<statements>> endwhile;

There are two important points to note about the WHILE loop. First, the test for termination appears at
the beginning of the loop. Second as a direct consequence of the position of the termination test, the body of
the loop may never execute. If the termination condition always exists, the loop body will always be skipped
over.

Consider the following HLA WHILE loop:

mov(0, I);
while(I < 100) do

inc(I);

endwhile;

The “mov(0, I);” instruction is the initialization code for this loop. I is a loop control variable, because
it controls the execution of the body of the loop. “I<100” is the loop termination condition. That is, the loop
will not terminate as long as I is less than 100. The single instruction “inc(I);” is the loop body. This is the
code that executes on each pass of the loop.

Note that an HLA WHILE loop can be easily synthesized using IF and JMP statements. For example,
the HLA WHILE loop presented above can be replaced by:

mov(0, I);
WhileLp:
if(I < 100) then

inc(i);
jmp WhileLp;

endif;

More generally, any WHILE loop can be built up from the following:

<< optional initialization code>>

UniqueLabel:
if(not_termination_condition) then

<<loop body>>
jmp UniqueLabel;

endif;

6. Of course, the HLA Standard Library provides the str.eq routine that compares the strings for you, effectively hiding the
loop even in an assembly language program.
Page 764 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
Therefore, you can use the techniques from earlier in this chapter to convert IF statements to assembly lan-
guage along with a single JMP instruction to produce a WHILE loop. The example we’ve been looking at in
this section translates to the following “pure” 80x86 assembly code7:

mov(0, i);
WhileLp:

cmp(i, 100);
jnl WhileDone;
inc(i);
jmp WhileLp;

WhileDone:

2.11.2 Repeat..Until Loops

The REPEAT..UNTIL (do..while) loop tests for the termination condition at the end of the loop rather
than at the beginning. In HLA, the REPEAT..UNTIL loop takes the following form:

<< optional initialization code >>
repeat

<<loop body>>

until(termination_condition);

This sequence executes the initialization code, the loop body, then tests some condition to see if the loop
should repeat. If the boolean expression evaluates to false, the loop repeats; otherwise the loop terminates.
The two things to note about the REPEAT..UNTIL loop are that the termination test appears at the end of the
loop and, as a direct consequence of this, the loop body always executes at least once.

Like the WHILE loop, the REPEAT..UNTIL loop can be synthesized with an IF statement and a JMP .
You could use the following:

<< initialization code >>
SomeUniqueLabel:

<< loop body >>

if(not_the_termination_condition) then jmp SomeUniqueLabel; endif;

Based on the material presented in the previous sections, you can easily synthesize REPEAT..UNTIL
loops in assembly language. The following is a simple example:

repeat

stdout.put(“Enter a number greater than 100: “);
stdin.get(i);

until(i > 100);

// This translates to the following IF/JMP code:

RepeatLbl:

stdout.put(“Enter a number greater than 100: “);
stdin.get(i);

7. Note that HLA will actually convert most WHILE statements to different 80x86 code than this section presents. The rea-
son for the difference appears a little later in this text when we explore how to write more efficient loop code.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 765

LLCS
if(i <= 100) then jmp RepeatLbl; endif;

// It also translates into the following “pure” assembly code:

RepeatLabel:

stdout.put(“Enter a number greater than 100: “);
stdin.get(i);

cmp(i, 100);
jng RepeatLbl;

2.11.3 FOREVER..ENDFOR Loops

If WHILE loops test for termination at the beginning of the loop and REPEAT..UNTIL loops check for
termination at the end of the loop, the only place left to test for termination is in the middle of the loop. The
HLA FOREVER..ENDFOR loop, combined with the BREAK and BREAKIF statements, provide this capa-
bility. The FOREVER..ENDFOR loop takes the following form:

forever

<< loop body >>

endfor;

Note that there is no explicit termination condition. Unless otherwise provided for, the FOR-
EVER..ENDFOR construct simply forms an infinite loop. Loop termination is typically handled by a
BREAKIF statement. Consider the following HLA code that employs a FOREVER..ENDFOR construct:

forever

stdin.get(character);
breakif(character = ‘.’);
stdout.put(character);

endfor;

Converting a FOREVER loop to pure assembly language is trivial. All you need is a label and a JMP
instruction. The BREAKIF statement in this example is really nothing more than an IF and a JMP instruc-
tion. The “pure” assembly language version of the code above looks something like the following:

foreverLabel:

stdin.get(character);
cmp(character, ‘.’);
je ForIsDone;
stdout.put(character);
jmp foreverLabel;

ForIsDone:

2.11.4 FOR Loops

The FOR loop is a special form of the WHILE loop that repeats the loop body a specific number of
times. In HLA, the FOR loop takes the following form:
Page 766 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
for(<<Initialization Stmt>>; <<Termination Expression>>; <<inc_Stmt>>) do

<< statements >>

endfor;

This is completely equivalent to the following:

<< Initialization Stmt>>;
while(<<Termination Expression>>) do

<< statements >>

<<inc_Stmt>>

endwhile;

Traditionally, the FOR loop has been used to process arrays and other objects accessed in sequential
numeric order. One normally initializes a loop control variable with the initialization statement and then
uses the loop control variable as an index into the array (or other data type), e.g.,

for(mov(0, esi); esi < 7; inc(esi)) do

stdout.put(“Array Element = “, SomeArray[esi*4], nl);

endfor;

To convert this to “pure” assembly language, begin by translating the FOR loop into an equivalent
WHILE loop:

mov(0, esi);
while(esi < 7) do

stdout.put(“Array Element = “, SomeArray[esi*4], nl);

inc(esi);
endwhile;

Now, using the techniques from the section on WHILE loops (see “While Loops” on page 764), trans-
late the code into pure assembly language:

mov(0, esi);
WhileLp:
cmp(esi, 7);
jnl EndWhileLp;

stdout.put(“Array Element = “, SomeArray[esi*4], nl);

inc(esi);
jmp WhileLp;

EndWhileLp:

2.11.5 The BREAK and CONTINUE Statements

The HLA BREAK and CONTINUE statements both translate into a single JMP instruction. The
BREAK instruction exits the loop that immediately contains the BREAK statement; the CONTINUE state-
ment restarts the loop that immediately contains the CONTINUE statement.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 767

LLCS
Converting a BREAK statement to “pure” assembly language is very easy. Just emit a JMP instruction
that transfers control to the first statement following the ENDxxxx clause of the loop to exit. This is easily
accomplished by placing a label after the associated END clause and jumping to that label. The following
code fragments demonstrate this technique for the various loops:

// Breaking out of a forever loop:

forever
<<stmts>>

//break;
jmp BreakFromForever;

<<stmts>>
endfor;
BreakFromForever:

// Breaking out of a FOR loop;
for(<<initStmt>>; <<expr>>; <<incStmt>>) do

<<stmts>>
//break;
jmp BrkFromFor;

<<stmts>>
endfor;
BrkFromFor:

// Breaking out of a WHILE loop:

while(<<expr>>) do
<<stmts>>

//break;
jmp BrkFromWhile;

<<stmts>>
endwhile;
BrkFromWhile:

// Breaking out of a REPEAT..UNTIL loop:

repeat
<<stmts>>

//break;
jmp BrkFromRpt;

<<stmts>>
until(<<expr>>);
BrkFromRpt:

The CONTINUE statement is slightly more difficult to implement that the BREAK statement. The
implementation still consists of a single JMP instruction, however the target label doesn’t wind up going in
the same spot for each of the different loops. The following figures show where the CONTINUE statement
transfers control for each of the HLA loops:
Page 768 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
Figure 2.2 CONTINUE Destination for the FOREVER Loop

Figure 2.3 CONTINUE Destination and the WHILE Loop

Figure 2.4 CONTINUE Destination and the FOR Loop

forever

<<stmts>>
continue;
<<stmts>>

endfor;

while(<<expr>>) do

<<stmts>>
continue;
<<stmts>>

endwhile;

for(<<initStmt>>; <<expr>>; <<incStmt>>) do

<<stmts>>
continue;
<<stmts>>

endfor;

Note: CONTINUE forces the execution of the
<<incStmt>> clause and then transfers control
to the test for loop termination.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 769

LLCS
Figure 2.5 CONTINUE Destination and the REPEAT..UNTIL Loop

The following code fragments demonstrate how to convert the CONTINUE statement into an appropri-
ate JMP instruction for each of these loop types.

forever..continue..endfor

// Conversion of forever loop w/continue
// to pure assembly:
forever

<<stmts>>
continue;
<<stmts>>

endfor;

// Converted code:

foreverLbl:
<<stmts>>
jmp foreverLbl;
<<stmts>>

while..continue..endwhile

// Conversion of while loop w/continue
// into pure assembly:

while(<<expr>>) do
<<stmts>>
continue;
<<stmts>>

endwhile;

// Converted code:

whlLabel:
<<Code to evaluate expr>>
Jcc EndOfWhile; // Skip loop on expr failure.

<<stmts>
jmp whlLabel; // Jump to start of loop on continue.
<<stmts>>
jmp whlLabel; // Repeat the code.

EndOfwhile:

for..continue..endfor

// Conversion for a for loop w/continue

repeat

<<stmts>>
continue;
<<stmts>>

until(<<expr>>);
Page 770 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
// into pure assembly:

for(<<initStmt>>; <<expr>>; <<incStmt>>) do
<<stmts>>
continue;
<<stmts>>

endfor;

// Converted code

<<initStmt>>
ForLpLbl:
<<Code to evaluate expr>>
Jcc EndOfFor; // Branch if expression fails.

<<stmts>>
jmp ContFor; // Branch to <<incStmt>> on continue.
<<stmts>>

ContFor:
<<incStmt>>
jmp ForLpLbl;

EndOfFor:

repeat..continue..until

repeat
<<stmts>>
continue;
<<stmts>>

until(<<expr>>);

// Converted Code:

RptLpLbl:
<<stmts>>
jmp ContRpt; // Continue branches to loop termination test.

<<stmts>>
ContRpt:
<<code to test expr>>
Jcc RptLpLbl; // Jumps if expression evaluates false.

2.11.6 Register Usage and Loops

Given that the 80x86 accesses registers much faster than memory locations, registers are the ideal spot
to place loop control variables (especially for small loops). However, there are some problems associated
with using registers within a loop. The primary problem with using registers as loop control variables is that
registers are a limited resource. Therefore, the following will not work properly:

mov(8, cx);
loop1:

mov(4, cx);
loop2:

<<stmts>>
dec(cx);
jnz loop2;

dec(cx);
jnz loop1;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 771

LLCS
The intent here, of course, was to create a set of nested loops, that is, one loop inside another. The inner
loop (Loop2) should repeat four times for each of the eight executions of the outer loop (Loop1). Unfortu-
nately, both loops use the same register as a loop control variable.. Therefore, this will form an infinite loop
since CX will be set to zero at the end of the first loop. Since CX is always zero upon encountering the sec-
ond DEC instruction, control will always transfer to the LOOP1 label (since decrementing zero produces a
non-zero result). The solution here is to save and restore the CX register or to use a different register in place
of CX for the outer loop:

mov(8, cx);
loop1:

push(cx);
mov(4, cx);
loop2:

<<stmts>>
dec(cx);
jnz loop2;

pop(cx);
dec(cx);
jnz loop1;

or:

mov(8, dx);
loop1:

mov(4, cx);
loop2:

<<stmts>>
dec(cx);
jnz loop2;

dec(dx);
jnz loop1;

Register corruption is one of the primary sources of bugs in loops in assembly language programs,
always keep an eye out for this problem.

2.12 Performance Improvements

The 80x86 microprocessors execute sequences of instructions at blinding speeds. Therefore, you’ll
rarely encounter a program that is slow which doesn’t contain any loops. Since loops are the primary source
of performance problems within a program, they are the place to look when attempting to speed up your
software. While a treatise on how to write efficient programs is beyond the scope of this chapter, there are
some things you should be aware of when designing loops in your programs. They’re all aimed at removing
unnecessary instructions from your loops in order to reduce the time it takes to execute one iteration of the
loop.

2.12.1 Moving the Termination Condition to the End of a Loop

Consider the following flow graphs for the three types of loops presented earlier:

REPEAT..UNTIL loop:

Initialization code
Loop body

Test for termination
Code following the loop

WHILE loop:
Page 772 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
Initialization code
Loop termination test

Loop body
Jump back to test

Code following the loop

FOREVER..ENDFOR loop:

Initialization code
Loop body, part one
Loop termination test
Loop body, part two
Jump back to loop body part 1

Code following the loop

As you can see, the REPEAT..UNTIL loop is the simplest of the bunch. This is reflected in the assembly
language code required to implement these loops. Consider the following REPEAT..UNTIL and WHILE
loops that are identical:

// Example involving a WHILE loop:

mov(edi, esi);
sub(20, esi);
while(esi <= edi) do

<<stmts>>
inc(esi);

endwhile;

// Conversion of the code above into pure assembly language:

mov(edi, esi);
sub(20, esi);
whlLbl:
cmp(esi, edi);
jnle EndOfWhile;

<<stmts>>
inc(esi);
<<stmts>>
jmp whlLbl;

EndOfWhile:

//Example involving a REPEAT..UNTIL loop:

mov(edi, esi);
sub(20, esi);
repeat

<<stmts>>
inc(esi);

until(esi > edi);

// Conversion of the REPEAT..UNTIL loop into pure assembly:

rptLabel:
<<stmts>>
inc(esi);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 773

LLCS
cmp(esi, edi);
jng rptLabel;

As you can see by carefully studying the conversion to pure assembly language, testing for the termina-
tion condition at the end of the loop allowed us to remove a JMP instruction from the loop. This can be sig-
nificant if this loop is nested inside other loops. In the preceding example there wasn’t a problem with
executing the body at least once. Given the definition of the loop, you can easily see that the loop will be
executed exactly 20 times. This suggests that the conversion to a REPEAT..UNTIL loop is trivial and always
possible. Unfortunately, it’s not always quite this easy. Consider the following HLA code:

while(esi <= edi) do
<<stmts>>
inc(esi);

endwhile;

In this particular example, we haven’t the slightest idea what ESI contains upon entry into the loop.
Therefore, we cannot assume that the loop body will execute at least once. So we must test for loop termina-
tion before executing the body of the loop. The test can be placed at the end of the loop with the inclusion of
a single JMP instruction:

jmp WhlTest;
TopOfLoop:

<<stmts>>
inc(esi);
WhlTest:
cmp(esi, edi);
jle TopOfLoop;

Although the code is as long as the original WHILE loop, the JMP instruction executes only once rather than
on each repetition of the loop. Note that this slight gain in efficiency is obtained via a slight loss in readabil-
ity. The second code sequence above is closer to spaghetti code that the original implementation. Such is
often the price of a small performance gain. Therefore, you should carefully analyze your code to ensure that
the performance boost is worth the loss of clarity. More often than not, assembly language programmers sac-
rifice clarity for dubious gains in performance, producing impossible to understand programs.

Note, by the way, that HLA translates its WHILE statement into a sequence of instructions that test the
loop termination condition at the bottom of the loop using exactly the technique this section describes.
Therefore, you do not have to worry about the HLA WHILE statement introducing slower code into your
programs.

2.12.2 Executing the Loop Backwards

Because of the nature of the flags on the 80x86, loops which range from some number down to (or up
to) zero are more efficient than any other. Compare the following HLA FOR loop and the code it generates:

for(mov(1, J); J <= 8; inc(J)) do
<<stmts>>

endfor;

// Conversion to pure assembly (as well as using a repeat..until form):

mov(1, J);
ForLp:

<<stmts>>
inc(J);
cmp(J, 8);
jnge ForLp;
Page 774 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
Now consider another loop that also has eight iterations, but runs its loop control variable from eight
down to one rather than one up to eight:

mov(8, J);
LoopLbl:

<<stmts>>
dec(J);
jnz LoopLbl;

Note that by running the loop from eight down to one we saved a comparison on each repetition of the loop.

Unfortunately, you cannot force all loops to run backwards. However, with a little effort and some coer-
cion you should be able to work most FOR loops so they operate backwards. By saving the execution time
of the CMP instruction on each iteration of the loop the code may run faster.

The example above worked out well because the loop ran from eight down to one. The loop terminated
when the loop control variable became zero. What happens if you need to execute the loop when the loop
control variable goes to zero? For example, suppose that the loop above needed to range from seven down to
zero. As long as the upper bound is positive, you can substitute the JNS instruction in place of the JNZ
instruction above to repeat the loop some specific number of times:

mov(7, J);
LoopLbl:

<<stmts>>
dec(J);
jns LoopLbl;

This loop will repeat eight times with J taking on the values seven down to zero on each execution of the
loop. When it decrements zero to minus one, it sets the sign flag and the loop terminates.

Keep in mind that some values may look positive but they are negative. If the loop control variable is a
byte, then values in the range 128..255 are negative. Likewise, 16-bit values in the range 32768..65535 are
negative. Therefore, initializing the loop control variable with any value in the range 129..255 or
32769..65535 (or, of course, zero) will cause the loop to terminate after a single execution. This can get you
into a lot of trouble if you’re not careful.

2.12.3 Loop Invariant Computations

A loop invariant computation is some calculation that appears within a loop that always yields the same
result. You needn’t do such computations inside the loop. You can compute them outside the loop and refer-
ence the value of the computation inside the loop. The following HLA code demonstrates a loop which con-
tains an invariant computation:

for(mov(0, eax); eax < n; inc(eax)) do

mov(eax, edx);
add(j, edx);
sub(2, edx);
add(edx, k);

endfor;

Since j never changes throughout the execution of this loop, the sub-expression “j-2” can be computed
outside the loop and its value used in the expression inside the loop:

mov(j, ecx);
sub(2, ecx);
for(mov(0, eax); eax < n; inc(eax)) do

mov(eax, edx);
add(ecx, edx);
add(edx, k);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 775

LLCS
endfor;

Still, the value in ECX never changes inside this loop, so although we’ve eliminated a single instruction
by computing the subexpression “j-2” outside the loop, there is still an invariant component to this calcula-
tion. Since we note that this invariant component executes n times in the loop, we can translate the code
above to the following:

mov(j, ecx);
sub(2, ecx);
intmul(n, ecx); // Compute n*(j-2) and add this into k outside
add(ecx, k); // the loop.
for(mov(0, eax); eax < n; inc(eax)) do

add(eax, k);

endfor;

As you can see, we’ve shrunk the loop body from four instructions down to one. Of course, if you’re really
interested in improving the efficiency of this particular loop, you’d be much better off (most of the time)
computing k using the formula:

This computation for k is based on the formula:

 However, simple computations such as this one aren’t always possible. Still, this demonstrates that a better
algorithm is almost always better than the trickiest code you can come up with.

Removing invariant computations and unnecessary memory accesses from a loop (particularly an inner
loop in a set of nested loops) can produce dramatic performance improvements in a program.

2.12.4 Unraveling Loops

For small loops, that is, those whose body is only a few statements, the overhead required to process a
loop may constitute a significant percentage of the total processing time. For example, look at the following
Pascal code and its associated 80x86 assembly language code:

FOR I := 3 DOWNTO 0 DO A [I] := 0;

mov(3, I);
LoopLbl:

mov(I, ebx);
mov(0, A[ebx*4]);
dec(I);
jns LoopLbl;

Each iteration of the loop requires four instructions. Only one instruction is performing the desired
operation (moving a zero into an element of A). The remaining three instructions control the repetition of the
loop. Therefore, it takes 16 instructions to do the operation logically required by four.

While there are many improvements we could make to this loop based on the information presented
thus far, consider carefully exactly what it is that this loop is doing-- it’s simply storing four zeros into A[0]
through A[3]. A more efficient approach is to use four MOV instructions to accomplish the same task. For
example, if A is an array of dwords, then the following code initializes A much faster than the code above:

mov(0, A[0]);
mov(0, A[4]);

k k n 1+() temp×() n 2+() n 2+()×
2

--+ +=

i
i 0=

n

∑ n 1+() n()×
2

-------------------------------=
Page 776 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
mov(0, A[8]);
mov(0, A[12]);

Although this is a trivial example, it shows the benefit of loop unraveling. If this simple loop appeared
buried inside a set of nested loops, the 4:1 instruction reduction could possibly double the performance of
that section of your program.

Of course, you cannot unravel all loops. Loops that execute a variable number of times cannot be unrav-
eled because there is rarely a way to determine (at assembly time) the number of times the loop will execute.
Therefore, unraveling a loop is a process best applied to loops that execute a known number of times (and
the number of times is known at assembly time.

Even if you repeat a loop some fixed number of iterations, it may not be a good candidate for loop
unraveling. Loop unraveling produces impressive performance improvements when the number of instruc-
tions required to control the loop (and handle other overhead operations) represent a significant percentage
of the total number of instructions in the loop. Had the loop above contained 36 instructions in the body of
the loop (exclusive of the four overhead instructions), then the performance improvement would be, at best,
only 10% (compared with the 300-400% it now enjoys). Therefore, the costs of unraveling a loop, i.e., all the
extra code which must be inserted into your program, quickly reaches a point of diminishing returns as the
body of the loop grows larger or as the number of iterations increases. Furthermore, entering that code into
your program can become quite a chore. Therefore, loop unraveling is a technique best applied to small
loops.

Note that the superscalar x86 chips (Pentium and later) have branch prediction hardware and use other
techniques to improve performance. Loop unrolling on such systems many actually slow down the code
since these processors are optimized to execute short loops.

2.12.5 Induction Variables

Consider the following modification of the loop presented in the previous section:

FOR I := 0 TO 255 DO csetVar[I] := {};

Here the program is initializing each element of an array of character sets to the empty set. The straight-for-
ward code to achieve this is the following:

mov(0, i);
FLp:

// Compute the index into the array (note that each element
// of a CSET array contains 16 bytes).

mov(i, ebx);
shl(4, ebx);

// Set this element to the empty set (all zero bits).

mov(0, csetVar[ebx]);
mov(0, csetVar[ebx+4]);
mov(0, csetVar[ebx+8]);
mov(0, csetVar[ebx+12]);

inc(i);
cmp(i, 256);
jb FLp;

Although unraveling this code will still produce a performance improvement, it will take 1024 instruc-
tions to accomplish this task, too many for all but the most time-critical applications. However, you can
reduce the execution time of the body of the loop using induction variables. An induction variable is one
whose value depends entirely on the value of some other variable. In the example above, the index into the
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 777

LLCS
array csetVar tracks the loop control variable (it’s always equal to the value of the loop control variable times
16). Since i doesn’t appear anywhere else in the loop, there is no sense in performing all the computations on
i. Why not operate directly on the array index value? The following code demonstrates this technique:

mov(0, ebx);
FLp:

mov(0, csetVar[ebx]);
mov(0, csetVar[ebx+4]);
mov(0, csetVar[ebx+8]);
mov(0, csetVar[ebx+12]);

add(16, ebx);
cmp(ebx, 256*16);
jb FLp;

The induction that takes place in this example occurs when the code increments the loop control vari-
able (moved into EBX for efficiency reasons) by 16 on each iteration of the loop rather than by one. Multi-
plying the loop control variable by 16 allows the code to eliminate multiplying the loop control variable by
16 on each iteration of the loop (i.e., this allows us to remove the SHL instruction from the previous code).
Further, since this code no longer refers to the original loop control variable (i), the code can maintain the
loop control variable strictly in the EBX register.

2.13 Hybrid Control Structures in HLA

The HLA high level language control structures have a few drawbacks: (1) they’re not true assembly
language instructions, (2) complex boolean expressions only support short circuit evaluation, and (3) they
often introduce inefficient coding practices into a language that most people only use when they need to
write high-performance code. On the other hand, while the 80x86 low level control structures let you write
efficient code, the resulting code is very difficult to read and maintain. HLA provides a set of hybrid control
structures that allow you to use pure assembly language statements to evaluate boolean expressions while
using the high level control structures to delineate the statements controlled by the boolean expressions. The
result is code that is much more readable than pure assembly language without being a whole lot less effi-
cient.

HLA provides hybrid forms of the IF..ELSEIF..ELSE..ENDIF, WHILE..ENDWHILE,
REPEAT..UNTIL, BREAKIF, EXITIF, and CONTINUEIF statements (i.e., those that involve a boolean
expression). For example, a hybrid IF statement takes the following form:

if(#{ <<statements>> }#) then <<statements>> endif;

Note the use of #{ and }# quotes to surround a sequence of instructions within this statement. This is what
differentiates the hybrid control structures from the standard high level language control structures. The
remaining hybrid control structures take the following forms:

while(#{ <<statements>> }#) <<statements>> endwhile;
repeat <<statements>> until(#{ <<statements>> }#);
breakif(#{ <<statements>> }#);
exitif(#{ <<statements>> }#);
continueif(#{ <<statements>> }#);

The statements within the curly braces replace the normal boolean expression in an HLA high level con-
trol structure. These particular statements are special insofar as HLA defines two labels, true and false,
within their context. HLA associates the label true with the code that would normally execute if a boolean
expression were present and that expression’s result was true. Similarly, HLA associates the label false with
the code that would execute if a boolean expression in one of these statements evaluated false. As a simple
example, consider the following two (equivalent) IF statements:

if(eax < ebx) then inc(eax); endif;

if
Page 778 © 2001, By Randall Hyde Version: 7/4/01

Low Level Control Structures
(#{
cmp(eax, ebx);
jnl false;

}#) then
inc(eax);

endif;

The JNL that transfers control to the false label in this latter example will skip over the INC instruction
if EAX is not less than EBX. Note that if EAX is less than EBX then control falls through to the INC
instruction. This is roughly equivalent to the following pure assembly code:

cmp(eax, ebx);
jnl falseLabel;

inc(eax);
falseLabel:

As a slightly more complex example, consider the statement

if(eax >= J && eax <= K) then sub(J, eax); endif;

The following hybrid IF statement accomplishes the above:

if
(#{

cmp(eax, J);
jnge false;
cmp(eax, K);
jnle false;

}#) then
sub(J, eax);

endif;

As one final example of the hybrid IF statement, consider the following:

// if(((eax > ebx) && (eax < ecx)) || (eax = edx)) then mov(ebx, eax); endif;

if
(#{

cmp(eax, edx);
je true;
cmp(eax, ebx);
jng false;
cmp(eax, ecx);
jnl false;

}#) then
mov(ebx, eax);

endif;

Since these examples are rather trivial, they don’t really demonstrate how much more readable the code
can be when using hybrid statements rather than pure assembly code. However, one thing you notice is that
the use of hybrid statements eliminate the need to insert labels throughout your code. This is what makes
your programs easier to read and understand.

For the IF statement, the true label corresponds to the THEN clause of the statement; the false label cor-
responds to the ELSEIF, ELSE, or ENDIF clause (whichever follows the THEN clause). For the WHILE
loop, the true label corresponds to the body of the loop while the false label is attached to the first statement
following the corresponding ENDWHILE. For the REPEAT..UNTIL statement, the true label is attached to
the code following the UNTIL clause while the false label is attached to the first statement of the body of the
loop. The BREAKIF, EXITIF, and CONTINUEIF statements associate the false label with the statement
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 779

LLCS
immediately following one of these statements, they associate the true label with the code normally associ-
ated with a BREAK, EXIT, or CONTINUE statement.

2.14 Putting It All Together

In this chapter we’ve taken a look at the low-level, or “pure” assembly language, implementation of sev-
eral common control structures. Although HLA’s high level control structures are easy to use and quite a bit
more readable than their low-level equivalents, sometimes efficiency demands a low-level implementation.
This chapter presents the blueprints for such transformations.

While this chapter covers the principle high level control structures and their translation to assembly
language, there are some additional control structures that this chapter does not consider. Iterators and the
TRY..ENDTRY statement are two good examples. Fear not, however, the volume on Advanced Assembly
Language Programming will tidy up those loose ends.
Page 780 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
Intermediate Procedures Chapter Three

3.1 Chapter Overview

This chapter picks up where the chapter “Introduction to Procedures” in Volume Three leaves off. That
chapter presented a high level view of procedures, parameters, and local variables; this chapter takes a look
at some of the low-level implementation details. This chapter begins by discussing the CALL instruction
and how it affects the stack. Then it discusses activation records and how a program passes parameters to a
procedure and how that procedure maintains local (automatic) variables. Next, this chapter presents an
in-depth discussion of pass by value and pass by reference parameters. This chapter concludes by discussing
procedure variables, procedural parameters, iterators, and the FOREACH..ENDFOR loop.

3.2 Procedures and the CALL Instruction

Most procedural programming languages implement procedures using the call/return mechanism. That
is, some code calls a procedure, the procedure does its thing, and then the procedure returns to the caller. The
call and return instructions provide the 80x86’s procedure invocation mechanism. The calling code calls a
procedure with the CALL instruction, the procedure returns to the caller with the RET instruction. For
example, the following 80x86 instruction calls the HLA Standard Library stdout.newln routine:

call stdout.newln;

stdout.newln prints a carriage return/line feed sequence to the video display and returns control to the
instruction immediately following the “call stdout.newln;” instruction.

The HLA language lets you call procedures using a high level language syntax. Specifically, you may
call a procedure by simply specifying the procedure’s name and (in the case of stdout.newln) an empty
parameter list. That is, the following is completely equivalent to “call stdout.newln”:

stdout.newln();

The 80x86 CALL instruction does two things. First, it pushes the address of the instruction immedi-
ately following the CALL onto the stack; then it transfers control to the address of the specified procedure.
The value that CALL pushes onto the stack is known as the return address. When the procedure wants to
return to the caller and continue execution with the first statement following the CALL instruction, the pro-
cedure simply pops the return address off the stack and jumps (indirectly) to that address. Most procedures
return to their caller by executing a RET (return) instruction. The RET instruction pops a return address off
the stack and transfers control indirectly to the address it pops off the stack.

By default, the HLA compiler automatically places a RET instruction (along with a few other instruc-
tions) at the end of each HLA procedure you write. This is why you haven’t had to explicitly use the RET
instruction up to this point. To disable the default code generation in an HLA procedure, specify the follow-
ing options when declaring your procedures:

procedure ProcName; noframe; nodisplay;
begin ProcName;

.

.

.
end ProcName;

The NOFRAME and NODISPLAY clauses are examples of procedure options. HLA procedures sup-
port four such options, specifically RETURNS (See “The HLA RETURNS Option in Procedures” on
page 540.), the NOFRAME, NODISPLAY, and NOALIGNSTK. You’ll see the purpose of NOALIGNSTK
a little later in this chapter. These procedure options may appear in any order following the procedure name
(and parameters, if any). Note that NOFRAME and NODISPLAY (as well as NOALIGNSTK) may only
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 781

Chapter Three Volume Four
appear in an actual procedure declaration. You cannot specify these options in an external procedure proto-
type.

The NOFRAME option tells HLA that you don’t want the compiler to automatically generate entry and
exit code for the procedure. This tells HLA not to automatically generate the RET instruction (along with
several other instructions).

The NODISPLAY option tells HLA that it should not allocate storage in procedure’s local variable area
for a display. The display is a mechanism you use to access non-local VAR objects in a procedure. There-
fore, a display is only necessary if you nest procedures in your programs. This chapter will not consider the
display or nested procedures; for more details on the display and nested procedures see the appropriate
chapter in Volume Five. Until then, you can safely specify the NODISPLAY option on all your procedures.
Note that you may specify the NODISPLAY option independently of the NOFRAME option. Indeed, for all
of the procedures appearing in this text up to this point specifying the NODISPLAY option makes a lot of
sense because none of those procedures have actually used the display. Procedures that have the NODIS-
PLAY option are a tiny bit faster and a tiny bit shorter than those procedures that do not specify this option.

The following is an example of the minimal procedure:

procedure minimal; nodisplay; noframe; noalignstk;
begin minimal;

ret();

end minimal;

If you call this procedure with the CALL instruction, minimal will simply pop the return address off the
stack and return back to the caller. You should note that a RET instruction is absolutely necessary when you
specify the NOFRAME procedure option1. If you fail to put the RET instruction in the procedure, the pro-
gram will not return to the caller upon encountering the “end minimal;” statement. Instead, the program will
fall through to whatever code happens to follow the procedure in memory. The following example program
demonstrates this problem:

program missingRET;
#include(“stdlib.hhf”);

 // This first procedure has the NOFRAME
 // option but does not have a RET instruction.

 procedure firstProc; noframe; nodisplay;
 begin firstProc;

 stdout.put(“Inside firstProc” nl);

 end firstProc;

 // Because the procedure above does not have a
 // RET instruction, it will “fall through” to
 // the following instruction. Note that there
 // is no call to this procedure anywhere in
 // this program.

 procedure secondProc; noframe; nodisplay;
 begin secondProc;

 stdout.put(“Inside secondProc” nl);

1. Strictly speaking, this isn’t true. But some mechanism that pops the return address off the stack and jumps to the return
address is necessary in the procedure’s body.
Page 782 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
 ret();

 end secondProc;

begin missingRET;

 // Call the procedure that doesn’t have
 // a RET instruction.

 call firstProc;

end missingRET;

Program 3.1 Effect of Missing RET Instruction in a Procedure

Although this behavior might be desirable in certain rare circumstances, it usually represents a defect in
most programs. Therefore, if you specify the NOFRAME option, always remember to explicitly return from
the procedure using the RET instruction.

3.3 Procedures and the Stack

Since procedures use the stack to hold the return address, you must exercise caution when pushing and
popping data within a procedure. Consider the following simple (and defective) procedure:

procedure MessedUp; noframe; nodisplay;
begin MessedUp;

push(eax);
ret();

end MessedUp;

At the point the program encounters the RET instruction, the 80x86 stack takes the form shown in Fig-
ure 3.1:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 783

Chapter Three Volume Four
Figure 3.1 Stack Contents Before RET in “MessedUp” Procedure

The RET instruction isn’t aware that the value on the top of stack is not a valid address. It simply pops
whatever value is on the top of the stack and jumps to that location. In this example, the top of stack con-
tains the saved EAX value. Since it is very unlikely that EAX contains the proper return address (indeed,
there is about a one in four billion chance it is correct), this program will probably crash or exhibit some
other undefined behavior. Therefore, you must take care when pushing data onto the stack within a proce-
dure that you properly pop that data prior to returning from the procedure.

Note: if you do not specify the NOFRAME option when writing a procedure, HLA auto-
matically generates code at the beginning of the procedure that pushes some data onto the
stack. Therefore, unless you understand exactly what is going on and you’ve taken care of
this data HLA pushes on the stack, you should never execute the bare RET instruction
inside a procedure that does not have the NOFRAME option. Doing so will attempt to
return to the location specified by this data (which is not a return address) rather than prop-
erly returning to the caller. In procedures that do not have the NOFRAME option, use the
EXIT or EXITIF statements to return from the procedure (See “BEGIN..EXIT..EXI-
TIF..END” on page 718.).

Popping extra data off the stack prior to executing the RET statement can also create havoc in your pro-
grams. Consider the following defective procedure:

procedure MessedUpToo; noframe; nodisplay;
begin MessedUpToo;

pop(eax);
ret();

end MessedUpToo;

Upon reaching the RET instruction in this procedure, the 80x86 stack looks something like that shown
in Figure 3.2:

Previous
Stack

Contents

Return Address

Saved EAX
Value

ESP
Page 784 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
Figure 3.2 Stack Contents Before RET in MessedUpToo

Once again, the RET instruction blindly pops whatever data happens to be on the top of the stack and
attempts to return to that address. Unlike the previous example, where it was very unlikely that the top of
stack contained a valid return address (since it contained the value in EAX), there is a small possibility that
the top of stack in this example actually does contain a return address. However, this will not be the proper
return address for the MessedUpToo procedure; instead, it will be the return address for the procedure that
called MessUpToo. To understand the effect of this code, consider the following program:

program extraPop;
#include(“stdlib.hhf”);

 // Note that the following procedure pops
 // excess data off the stack (in this case,
 // it pops messedUpToo’s return address).

 procedure messedUpToo; noframe; nodisplay;
 begin messedUpToo;

 stdout.put(“Entered messedUpToo” nl);
 pop(eax);
 ret();

 end messedUpToo;

 procedure callsMU2; noframe; nodisplay;
 begin callsMU2;

 stdout.put(“calling messedUpToo” nl);
 messedUpToo();

 // Because messedUpToo pops extra data
 // off the stack, the following code
 // never executes (since the data popped
 // off the stack is the return address that
 // points at the following code.

 stdout.put(“Returned from messedUpToo” nl);

Return Address

Previous
Stack

Contents

Return Address

ESP
EAX
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 785

Chapter Three Volume Four
 ret();

 end callsMU2;

begin extraPop;

 stdout.put(“Calling callsMU2” nl);
 callsMU2();
 stdout.put(“Returned from callsMU2” nl);

end extraPop;

Program 3.2 Effect of Popping Too Much Data Off the Stack

Since a valid return address is sitting on the top of the stack, you might think that this program will actu-
ally work (properly). However, note that when returning from the MessedUpToo procedure, this code
returns directly to the main program rather than to the proper return address in the EndSkipped procedure.
Therefore, all code in the callsMU2 procedure that follows the call to MessedUpToo does not execute. When
reading the source code, it may be very difficult to figure out why those statements are not executing since
they immediately follow the call to the MessUpToo procedure. It isn’t clear, unless you look very closely,
that the program is popping an extra return address off the stack and, therefore, doesn’t return back to
callsMU2 but, rather, returns directly to whomever calls callsMU2. Of course, in this example it’s fairly
easy to see what is going on (because this example is a demonstration of this problem). In real programs,
however, determining that a procedure has accidentally popped too much data off the stack can be much
more difficult. Therefore, you should always be careful about pushing and popping data in a procedure. You
should always verify that there is a one-to-one relationship between the pushes in your procedures and the
corresponding pops.

3.4 Activation Records

Whenever you call a procedure there is certain information the program associates with that procedure
call. The return address is a good example of some information the program maintains for a specific proce-
dure call. Parameters and automatic local variables (i.e., those you declare in the VAR section) are addi-
tional examples of information the program maintains for each procedure call. Activation record is the term
we’ll use to describe the information the program associates with a specific call to a procedure2.

Activation record is an appropriate name for this data structure. The program creates an activation
record when calling (activating) a procedure and the data in the structure is organized in a manner identical
to records (see “Records” on page 465). Perhaps the only thing unusual about an activation record (when
comparing it to a standard record) is that the base address of the record is in the middle of the data structure,
so you must access fields of the record at positive and negative offsets.

Construction of an activation record begins in the code that calls a procedure. The caller pushes the
parameter data (if any) onto the stack. Then the execution of the CALL instruction pushes the return address
onto the stack. At this point, construction of the activation record continues in the procedure itself. The pro-
cedure pushes registers and other important state information and then makes room in the activation record
for local variables. The procedure must also update the EBP register so that it points at the base address of
the activation record.

To see what a typical activation record looks like, consider the following HLA procedure declaration:

procedure ARDemo(i:uns32; j:int32; k:dword); nodisplay;
var

a:int32;

2. Stack frame is another term many people use to describe the activation record.
Page 786 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
r:real32;
c:char;
b:boolean;
w:word;

begin ARDemo;
.
.
.

end ARDemo;

Whenever an HLA program calls this ARDemo procedure, it begins by pushing the data for the parame-
ters onto the stack. The calling code will push the parameters onto the stack in the order they appear in the
parameter list, from left to right. Therefore, the calling code first pushes the value for the i parameter, then it
pushes the value for the j parameter, and it finally pushes the data for the k parameter. After pushing the
parameters, the program calls the ARDemo procedure. Immediately upon entry into the ARDemo procedure,
the stack contains these four items arranged as shown in Figure 3.3

Figure 3.3 Stack Organization Immediately Upon Entry into ARDemo

The first few instructions in ARDemo (note that it does not have the NOFRAME option) will push the
current value of EBP onto the stack and then copy the value of ESP into EBP. Next, the code drops the stack
pointer down in memory to make room for the local variables. This produces the stack organization shown
in Figure 3.4

Previous
Stack

Contents

ESPReturn Address

k's value

j's value

i's value
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 787

Chapter Three Volume Four
Figure 3.4 Activation Record for ARDemo

To access objects in the activation record you must use offsets from the EBP register to the desired
object. The two items of immediate interest to you are the parameters and the local variables. You can
access the parameters at positive offsets from the EBP register, you can access the local variables at negative
offsets from the EBP register as Figure 3.5 shows:

Figure 3.5 Offsets of Objects in the ARDemo Activation Record

Intel specifically reserves the EBP (extended base pointer) for use as a pointer to the base of the activa-
tion record. This is why you should never use the EBP register for general calculations. If you arbitrarily

Previous
Stack

Contents

ESP

i's value

j's value

k's value

Return Address

Old EBP value EBP

a

r
c
b
w

Previous
Stack

Contents

i's value

j's value

k's value

Return Address

Old EBP value EBP

a

r
c
b
w

+0

-4

-8
-9
-10
-12

+4

+8

+12

+16

Offset from EBP
Page 788 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
change the value in the EBP register you will lose access to the current procedure’s parameters and local
variables.

3.5 The Standard Entry Sequence

The caller of a procedure is responsible for pushing the parameters onto the stack. Of course, the CALL
instruction pushes the return address onto the stack. It is the procedure’s responsibility to construct the rest
of the activation record. This is typically accomplished by the following “standard entry sequence” code:

push(ebp); // Save a copy of the old EBP value
mov(esp, ebp); // Get ptr to base of activation record into EBP
sub(NumVars, esp); // Allocate storage for local variables.

If the procedure doesn’t have any local variables, the third instruction above, “sub(NumVars, esp);”
isn’t needed. NumVars represents the number of bytes of local variables needed by the procedure. This is a
constant that should be an even multiple of four (so the ESP register remains aligned on a double word
boundary). If the number of bytes of local variables in the procedure is not an even multiple of four, you
should round the value up to the next higher multiple of four before subtracting this constant from ESP.
Doing so will slightly increase the amount of storage the procedure uses for local variables but will not oth-
erwise affect the operation of the procedure.

Warning: if the NumVars constant is not an even multiple of four, subtracting this value
from ESP (which, presumably, contains a dword-aligned pointer) will virtually guarantee
that all future stack accesses are misaligned since the program almost always pushes and
pops dword values. This will have a very negative performance impact on the program.
Worse still, many Windows API calls will fail if the stack is not dword-aligned upon entry
into the Windows subsystem. Therefore, you must always ensure that your local variable
allocation value is an even multiple of four.

Because of the problems with a misaligned stack, by default HLA will also emit a fourth instruction as
part of the standard entry sequence. The HLA compiler actually emits the following standard entry
sequence for the ARDemo procedure defined earlier:

push(ebp);
mov(esp, ebp);
sub(12, esp); // Make room for ARDemo’s local variables.
and($FFFF_FFFC, esp); // Force dword stack alignment.

The AND instruction at the end of this sequence forces the stack to be aligned on a four-byte boundary (it
reduces the value in the stack pointer by one, two, or three if the value in ESP is not an even multiple of
four). Although the ARDemo entry code correctly subtracts 12 from ESP for the local variables (12 is both
an even multiple of four and the number of bytes of local variables), this only leaves ESP double word
aligned if it was double word aligned immediately upon entry into the procedure. Had the caller messed
with the stack and left ESP containing a value that was not an even multiple of four, subtracting 12 from ESP
would leave ESP containing an unaligned value. The AND instruction in the sequence above, however,
guarantees that ESP is dword aligned regardless of ESP’s value upon entry into the procedure. The few
bytes and CPU cycles needed to execute this instruction pay off handsomely if ESP is not double word
aligned.

Although it is always safe to execute the AND instruction in the standard entry sequence, it might not be
necessary. If you always ensure that ESP contains a double word aligned value, the AND instruction in the
standard entry sequence above is unnecessary. Therefore, if you’ve specified the NOFRAME procedure
option, you don’t have to include that instruction as part of the entry sequence.

If you haven’t specified the NOFRAME option (i.e., you’re letting HLA emit the instructions to con-
struct the standard entry sequence for you), you can still tell HLA not to emit the extra AND instruction if
you’re sure the stack will be dword aligned whenever someone calls the procedure. To do this, use the
NOALIGNSTK procedure option, e.g.,

procedure NASDemo(i:uns32; j:int32; k:dword); noalignstk;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 789

Chapter Three Volume Four
var
LocalVar:int32;

begin NASDemo;
.
.
.

end NASDemo;

HLA emits the following entry sequence for the procedure above:

push(ebp);
mov(esp, ebp);
sub(4, esp);

3.6 The Standard Exit Sequence

Before a procedure returns to its caller, it needs to clean up the activation record. Although it is possible
to share the clean-up duties between the procedure and the procedure’s caller, Intel has included some fea-
tures in the instruction set that allows the procedure to efficiently handle all the clean up chores itself. Stan-
dard HLA procedures and procedure calls, therefore, assume that it is the procedure’s responsibility to clean
up the activation record (including the parameters) when the procedure returns to its caller.

If a procedure does not have any parameters, the calling sequence is very simple. It requires only three
instructions:

mov(ebp, esp); // Deallocate locals and clean up stack.
pop(ebp); // Restore pointer to caller’s activation record.
ret(); // Return to the caller.

If the procedure has some parameters, then a slight modification to the standard exit sequence is neces-
sary in order to remove the parameter data from the stack. Procedures with parameters use the following
standard exit sequence:

mov(ebp, esp); // Deallocate locals and clean up stack.
pop(ebp); // Restore pointer to caller’s activation record.
ret(ParmBytes); // Return to the caller and pop the parameters.

The ParmBytes operand of the RET instruction is a constant that specifies the number of bytes of param-
eter data to remove from the stack after the return instruction pops the return address. For example, the
ARDemo example code in the previous sections has three double word parameters. Therefore, the standard
exit sequence would take the following form:

mov(ebp, esp);
pop(ebp);
ret(12);

If you’ve declared your parameters using HLA syntax (i.e., a parameter list follows the procedure decla-
ration), then HLA automatically creates a local constant in the procedure, _parms_, that is equal to the num-
ber of bytes of parameters in that procedure. Therefore, rather than worrying about having to count the
number of parameter bytes yourself, you can use the following standard exit sequence for any procedure that
has parameters:

mov(ebp, esp);
pop(ebp);
ret(_parms_);

Note that if you do not specify a byte constant operand to the RET instruction, the 80x86 will not pop
the parameters off the stack upon return. Those parameters will still be sitting on the stack when you exe-
cute the first instruction following the CALL to the procedure. Similarly, if you specify a value that is too
Page 790 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
small, some of the parameters will be left on the stack upon return from the procedure. If the RET operand
you specify is too large, the RET instruction will actually pop some of the caller’s data off the stack, usually
with disastrous consequences.

Note that if you wish to return early from a procedure that doesn’t have the NOFRAME option, and you
don’t particularly want to use the EXIT or EXITIF statement, you must execute the standard exit sequence to
return to the caller. A simple RET instruction is insufficient since local variables and the old EBP value are
probably sitting on the top of the stack.

3.7 HLA Local Variables

Your program accesses local variables in a procedure by using negative offsets from the activation
record base address (EBP). For example, consider the following HLA procedure (which admittedly, doesn’t
do much other than demonstrate the use of local variables):

procedure LocalVars; nodisplay;
var

a:int32;
b:int32;

begin LocalVars;

mov(0, a);
mov(a, eax);
mov(eax, b);

end LocalVars;

The activation record for LocalVars looks like

Figure 3.6 Activation Record for LocalVars Procedure

The HLA compiler emits code that is roughly equivalent to the following for the body of this proce-
dure3:

mov(0, (type dword [ebp-4]));
mov([ebp-4], eax);
mov(eax, [ebp-8]);

3. Ignoring the code associated with the standard entry and exit sequences.

Previous
Stack

Contents

Return Address

Old EBP value EBP

a

b

+0

-4

-8

+4

+8

Offset from EBP
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 791

Chapter Three Volume Four
You could actually type these statements into the procedure yourself and they would work. Of course,
using memory references like “[ebp-4]” and “[ebp-8]” rather than a or b makes your programs very difficult
to read and understand. Therefore, you should always declare and use HLA symbolic names rather than off-
sets from EBP.

The standard entry sequence for this LocalVars procedure will be4

push(ebp);
mov(esp, ebp);
sub(8, esp);

This code subtracts eight from the stack pointer because there are eight bytes of local variables (two
dword objects) in this procedure. Unfortunately, as the number of local variables increases, especially if
those variables have different types, computing the number of bytes of local variables becomes rather
tedious. Fortunately, for those who wish to write the standard entry sequence themselves, HLA automati-
cally computes this value for you can creates a constant, _vars_, that specifies the number of bytes of local
variables for you5. Therefore, if you intend to write the standard entry sequence yourself, you should use the
vars constant in the SUB instruction when allocating storage for the local variables:

push(ebp);
mov(esp, ebp);
sub(_vars_, esp);

Now that you’ve seen how assembly language (and, indeed, most languages) allocate and deallocate
storage for local variables, it’s easy to understand why automatic (local VAR) variables do not maintain their
values between two calls to the same procedure. Since the memory associated with these automatic vari-
ables is on the stack, when a procedure returns to its caller the caller can push other data onto the stack oblit-
erating the values of the local variable values previously held on the stack. Furthermore, intervening calls to
other procedures (with their own local variables) may wipe out the values on the stack. Also, upon reentry
into a procedure, the procedure’s local variables may correspond to different physical memory locations,
hence the values of the local variables would not be in their proper locations.

One big advantage to automatic storage is that it efficiently shares a fixed pool of memory among sev-
eral procedures. For example, if you call three procedures in a row,

ProcA();
ProcB();
ProcC();

The first procedure (ProcA in the code above) allocates its local variables on the stack. Upon return,
ProcA deallocates that stack storage. Upon entry into ProcB, the program allocates storage for ProcB’s local
variables using the same memory locations just freed by ProcA. Likewise, when ProcB returns and the pro-
gram calls ProcC, ProcC uses the same stack space for its local variables that ProcB recently freed up. This
memory reuse makes efficient use of the system resources and is probably the greatest advantage to using
automatic (VAR) variables.

3.8 Parameters

Although there is a large class of procedures that are totally self-contained, most procedures require
some input data and return some data to the caller. Parameters are values that you pass to and from a proce-
dure. There are many facets to parameters. Questions concerning parameters include:

• where is the data coming from?
• what mechanism do you use to pass and return data?
• how much data are you passing?

4. This code assumes that ESP is dword aligned upon entry so the “AND($FFFF_FFFC, ESP);” instruction is unnecessary.
5. HLA even rounds this constant up to the next even multiple of four so you don’t have to worry about stack alignment.
Page 792 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
In this chapter we will look at the two most common parameter passing mechanisms: pass by value and pass
by reference. We will also discuss three popular places to pass parameters: in the registers, on the stack, and
in the code stream. The amount of parameter data has a direct bearing on where and how to pass it. The fol-
lowing sections take up these issues.

3.8.1 Pass by Value

A parameter passed by value is just that – the caller passes a value to the procedure. Pass by value
parameters are input only parameters. That is, you can pass them to a procedure but the procedure cannot
return values through them. In high level languages the idea of a pass by value parameter being an input only
parameter makes a lot of sense. Given the procedure call:

CallProc(I);

If you pass I by value, CallProc does not change the value of I, regardless of what happens to the parameter
inside CallProc.

Since you must pass a copy of the data to the procedure, you should only use this method for passing
small objects like bytes, words, and double words. Passing arrays and strings by value is very inefficient
(since you must create and pass a copy of the structure to the procedure).

3.8.2 Pass by Reference

To pass a parameter by reference you must pass the address of a variable rather than its value. In other
words, you must pass a pointer to the data. The procedure must dereference this pointer to access the data.
Passing parameters by reference is useful when you must modify the actual parameter or when you pass
large data structures between procedures.

Passing parameters by reference can produce some peculiar results. The following Pascal procedure
provides an example of one problem you might encounter:

program main(input,output);
var m:integer;

(*
** Note: this procedure passes i and j by reference.
*)

procedure bletch(var i,j:integer);
begin

i := i+2;
j := j-i;
writeln(i,’ ‘,j);

end;

 .
 .
 .

begin {main}

m := 5;
bletch(m,m);

end.

This particular code sequence will print “00” regardless of m’s value. This is because the parameters i
and j are pointers to the actual data and they both point at the same object (that is, they are aliases). There-
fore, the statement “j:=j-i;” always produces zero since i and j refer to the same variable.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 793

Chapter Three Volume Four
Pass by reference is usually less efficient than pass by value. You must dereference all pass by reference
parameters on each access; this is slower than simply using a value. However, when passing a large data
structure, pass by reference is faster because you do not have to copy a large data structure before calling the
procedure.

3.8.3 Passing Parameters in Registers

Having touched on how to pass parameters to a procedure, the next thing to discuss is where to pass
parameters. Where you pass parameters depends on the size and number of those parameters. If you are
passing a small number of bytes to a procedure, then the registers are an excellent place to pass parameters to
a procedure. If you are passing a single parameter to a procedure you should use the following registers for
the accompanying data types:

Data Size Pass in this Register

Byte: al

Word: ax

Double Word: eax

Quad Word: edx:eax

This is not a hard and fast rule. If you find it more convenient to pass 16 bit values in the SI or BX reg-
ister, do so. However, most programmers use the registers above to pass parameters.

If you are passing several parameters to a procedure in the 80x86’s registers, you should probably use
up the registers in the following order:

First Last

 eax, edx, esi, edi, ebx, ecx

In general, you should avoid using EBP register. If you need more than six double words, perhaps you
should pass your values elsewhere.

As an example, consider the following “strfill(str,c);” that copies the character c (passed by value in
AL) to each character position in s (passed by reference in EDI) up to a zero terminating byte:

// strfill- Overwrites the data in a string with a character.
//
// EDI- pointer to zero terminated string (e.g., an HLA string)
// AL- character to store into the string.

procedure strfill; nodisplay;
begin strfill;

push(edi); // Preserve this because it will be modified.
while((type char [edi] <> #0) do

mov(al, [edi]);
inc(edi);

endwhile;
pop(edi);

end strfill;

To call the strfill procedure you would load the address of the string data into EDI and the character
value into AL prior to the call. The following code fragment demonstrates a typical call to strfill:

mov(s, edi); // Get ptr to string data into edi (assumes s:string).
mov(‘ ‘, al);
strfill();
Page 794 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
Don’t forget that HLA string variables are pointers. This example assumes that s is a HLA string vari-
able and, therefore, contains a pointer to a zero-terminated string. Therefore, the “mov(s, edi);” instruction
loads the address of the zero terminated string into the EDI register (hence this code passes the address of the
string data to strfill, that is, it passes the string by reference).

One way to pass parameters in the registers is to simply load the registers with the appropriate values
prior to a call and then reference the values in those registers within the procedure. This is the traditional
mechanism for passing parameters in registers in an assembly language program. HLA, being somewhat
more high level than traditional assembly language, provides a formal parameter declaration syntax that lets
you tell HLA you’re passing certain parameters in the general purpose registers. This declaration syntax is
the following:

parmName: parmType in reg

Where parmName is the parameter’s name, parmType is the type of the object, and reg is one of the 80x86’s
general purpose eight, sixteen, or thirty-two bit registers. The size of the parameter’s type must be equal to
the size of the register or HLA will generate an error. Here is a concrete example:

procedure HasRegParms(count: uns32 in ecx; charVal:char in al);

One nice feature to this syntax is that you can call a procedure that has register parameters exactly like
any other procedure in HLA using the high level syntax, e.g.,

HasRegParms(ecx, bl);

If you specify the same register as an actual parameter that you’ve declared for the formal parameter, HLA
does not emit any extra code; it assumes that the parameter is already in the appropriate register. For exam-
ple, in the call above the first actual parameter is the value in ECX; since the procedure’s declaration speci-
fies that that first parameter is in ECX HLA will not emit any code. On the other hand, the second actual
parameter is in BL while the procedure will expect this parameter value in AL. Therefore, HLA will emit a
“mov(bl, al);” instruction prior to calling the procedure so that the value is in the proper register upon entry
to the procedure.

You can also pass parameters by reference in a register. Consider the following declaration:

procedure HasRefRegParm(var myPtr:uns32 in edi);

A call to this procedure always requires some memory operand as the actual parameter. HLA will emit the
code to load the address of that memory object into the parameter’s register (EDI in this case). Note that
when passing reference parameters, the register must be a 32-bit general purpose register since addresses are
32-bits long. Here’s an example of a call to HasRefRegParm:

HasRefRegParm(x);

HLA will emit either a “mov(&x, edi);” or “lea(edi, x);” instruction to load the address of x into the EDI
registers prior to the CALL instruction6.

If you pass an anonymous memory object (e.g., “[edi]” or “[ecx]”) as a parameter to HasRefRegParm,
HLA will not emit any code if the memory reference uses the same register that you declare for the parame-
ter (i.e., “[edi]”). It will use a simple MOV instruction to copy the actual address into EDI if you specify an
indirect addressing mode using a register other than EDI (e.g., “[ecx]”). It will use an LEA instruction to
compute the effective address of the anonymous memory operand if you use a more complex addressing
mode like “[edi+ecx*4+2]”.

Within the procedure’s code, HLA creates text equates for these register parameters that map their
names to the appropriate register. In the HasRegParms example, any time you reference the count parame-
ter, HLA substitutes “ecx” for count. Likewise, HLA substitutes “al” for charVal throughout the procedure’s
body. Since these names are aliases for the registers, you should take care to always remember that you can-
not use ECX and AL independently of these parameters. It would be a good idea to place a comment next to

6. The choice of instructions is dictated by whether x is a static variable (MOV for static objects, LEA for other objects).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 795

Chapter Three Volume Four
each use of these parameters to remind the reader that count is equivalent to ECX and charVal is equivalent
to AL.

3.8.4 Passing Parameters in the Code Stream

Another place where you can pass parameters is in the code stream immediately after the CALL instruc-
tion. Consider the following print routine that prints a literal string constant to the standard output device:

call print;
byte “This parameter is in the code stream.”,0;

Normally, a subroutine returns control to the first instruction immediately following the CALL instruc-
tion. Were that to happen here, the 80x86 would attempt to interpret the ASCII code for “This...” as an
instruction. This would produce undesirable results. Fortunately, you can skip over this string when return-
ing from the subroutine.

So how do you gain access to these parameters? Easy. The return address on the stack points at them.
Consider the following implementation of print:

program printDemo;
#include(“stdlib.hhf”);

 // print-
 //
 // This procedure writes the literal string
 // immediately following the call to the
 // standard output device. The literal string
 // must be a sequence of characters ending with
 // a zero byte (i.e., a C string, not an HLA
 // string).

 procedure print; noframe; nodisplay;
 const

 // RtnAdrs is the offset of this procedure’s
 // return address in the activation record.

 RtnAdrs:text := “(type dword [ebp+4])”;

 begin print;

 // Build the activation record (note the
 // “noframe” option above).

 push(ebp);
 mov(esp, ebp);

 // Preserve the registers this function uses.

 push(eax);
 push(ebx);

 // Copy the return address into the EBX
 // register. Since the return address points
 // at the start of the string to print, this
 // instruction loads EBX with the address of
 // the string to print.

 mov(RtnAdrs, ebx);
Page 796 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures

 // Until we encounter a zero byte, print the
 // characters in the string.

 forever

 mov([ebx], al); // Get the next character.
 breakif(!al); // Quit if it’s zero.
 stdout.putc(al); // Print it.
 inc(ebx); // Move on to the next char.

 endfor;

 // Skip past the zero byte and store the resulting
 // address over the top of the return address so
 // we’ll return to the location that is one byte
 // beyond the zero terminating byte of the string.

 inc(ebx);
 mov(ebx, RtnAdrs);

 // Restore EAX and EBX.

 pop(ebx);
 pop(eax);

 // Clean up the activation record and return.

 pop(ebp);
 ret();

 end print;

begin printDemo;

 // Simple test of the print procedure.

 call print;
 byte “Hello World!”, 13, 10, 0 ;

end printDemo;

Program 3.3 Print Procedure Implementation (Using Code Stream Parameters)

Besides showing how to pass parameters in the code stream, the print routine also exhibits another con-
cept: variable length parameters. The string following the CALL can be any practical length. The zero ter-
minating byte marks the end of the parameter list. There are two easy ways to handle variable length
parameters. Either use some special terminating value (like zero) or you can pass a special length value that
tells the subroutine how many parameters you are passing. Both methods have their advantages and disad-
vantages. Using a special value to terminate a parameter list requires that you choose a value that never
appears in the list. For example, print uses zero as the terminating value, so it cannot print the NUL character
(whose ASCII code is zero). Sometimes this isn’t a limitation. Specifying a special length parameter is
another mechanism you can use to pass a variable length parameter list. While this doesn’t require any spe-
cial codes or limit the range of possible values that can be passed to a subroutine, setting up the length
parameter and maintaining the resulting code can be a real nightmare7.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 797

Chapter Three Volume Four
Despite the convenience afforded by passing parameters in the code stream, there are some disadvan-
tages to passing parameters there. First, if you fail to provide the exact number of parameters the procedure
requires, the subroutine will get very confused. Consider the print example. It prints a string of characters up
to a zero terminating byte and then returns control to the first instruction following the zero terminating byte.
If you leave off the zero terminating byte, the print routine happily prints the following opcode bytes as
ASCII characters until it finds a zero byte. Since zero bytes often appear in the middle of an instruction, the
print routine might return control into the middle of some other instruction. This will probably crash the
machine. Inserting an extra zero, which occurs more often than you might think, is another problem pro-
grammers have with the print routine. In such a case, the print routine would return upon encountering the
first zero byte and attempt to execute the following ASCII characters as machine code. Once again, this usu-
ally crashes the machine. These are the some of the reasons why the HLA stdout.put code does not pass its
parameters in the code stream. Problems notwithstanding, however, the code stream is an efficient place to
pass parameters whose values do not change.

3.8.5 Passing Parameters on the Stack

Most high level languages use the stack to pass parameters because this method is fairly efficient. By
default, HLA also passes parameters on the stack. Although passing parameters on the stack is slightly less
efficient than passing those parameters in registers, the register set is very limited and you can only pass a
few value or reference parameters through registers. The stack, on the other hand, allows you to pass a large
amount of parameter data without any difficulty. This is the principal reason that most programs pass their
parameters on the stack.

HLA passes parameters you specify in a high-level language form on the stack. For example, suppose
you define strfill from the previous section as follows:

procedure strfill(s:string; chr:char);

Calls of the form “strfill(s, ‘ ‘);” will pass the value of s (which is an address) and a space character on the
80x86 stack. When you specify a call to strfill in this manner, HLA automatically pushes the parameters for
you, so you don’t have to push them onto the stack yourself. Of course, if you choose to do so, HLA will let
you manually push the parameters onto the stack prior to the call.

To manually pass parameters on the stack, push them immediately before calling the subroutine. The
subroutine then reads this data from the stack memory and operates on it appropriately. Consider the follow-
ing HLA procedure call:

CallProc(i,j,k);

HLA pushes parameters onto the stack in the order that they appear in the parameter list8. Therefore, the
80x86 code HLA emits for this subroutine call (assuming you’re passing the parameters by value) is

push(i);
push(j);
push(k);
call CallProc;

Upon entry into CallProc, the 80x86’s stack looks like that shown in Figure 3.7:

7. Especially if the parameter list changes frequently.
8. Assuming, of course, that you don’t instruct HLA otherwise. It is possible to tell HLA to reverse the order of the parame-
ters on the stack. See the chapter on “Mixed Language Programming” for more details.
Page 798 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
Figure 3.7 Stack Layout Upon Entry into CallProc

You could gain access to the parameters passed on the stack by removing the data from the stack as the
following code fragment demonstrates:

// Note: to extract parameters off the stack by popping it is very important
// to specify both the nodisplay and noframe procedure options.

static
RtnAdrs: dword;
p1Parm: dword;
p2Parm: dword;
p3Parm: dword;

procedure CallProc(p1:dword; p2:dword; p3:dword); nodisplay; noframe;
begin CallProc;

pop(RtnAdrs);
pop(p3Parm);
pop(p2Parm);
pop(p1Parm);
push(RtnAdrs);

.

.

.
ret();

end CallProc;

As you can see from this code, it first pops the return address off the stack and into the RtnAdrs variable;
then it pops (in reverse order) the values of the p1, p2, and p3 parameters; finally, it pushes the return
address back onto the stack (so the RET instruction will operate properly). Within the CallProc procedure,
you may access the p1Parm, p2Parm, and p3Parm variables to use the p1, p2, and p3 parameter values.

There is, however, a better way to access procedure parameters. If your procedure includes the standard
entry and exit sequences (see “The Standard Entry Sequence” on page 789 and “The Standard Exit
Sequence” on page 790), then you may directly access the parameter values in the activation record by
indexing off the EBP register. Consider the layout of the activation record for CallProc that uses the follow-
ing declaration:

procedure CallProc(p1:dword; p2:dword; p3:dword); nodisplay; noframe;
begin CallProc;

push(ebp); // This is the standard entry sequence.
mov(esp, ebp); // Get base address of A.R. into EBP.

Previous Stack Contents

i's current value

j's current value

k's current value

Return address ESP
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 799

Chapter Three Volume Four
.

.

.

Take a look at the stack immediately after the execution of “mov(esp, ebp);” in CallProc. Assuming
you’ve pushed three double word parameters onto the stack, it should look something like shown in Figure
3.8:

Figure 3.8 Activation Record for CallProc After Standard Entry Sequence Execution

.Now you can access the parameters by indexing off the EBP register:

mov([ebp+16], eax); // Accesses the first parameter.
mov([ebp+12], ebx); // Accesses the second parameter.
mov([ebp+8], ecx); // Accesses the third parameter.

Of course, like local variables, you’d never really access the parameters in this way. You can use the for-
mal parameter names (p1, p2, and p3) and HLA will substitute a suitable “[ebp+displacement]” memory
address. Even though you shouldn’t actually access parameters using address expressions like “[ebp+12]”
it’s important to understand their relationship to the parameters in your procedures.

Other items that often appear in the activation record are register values your procedure preserves. The
most rational place to preserve registers in a procedure is in the code immediately following the standard
entry sequence. In a standard HLA procedure (one where you do not specify the NOFRAME option), this
simply means that the code that preserves the registers should appear first in the procedure’s body. Likewise,
the code to restore those register values should appear immediately before the END clause for the proce-
dure9.

3.8.5.1 Accessing Value Parameters on the Stack

Accessing parameters passed by value is no different than accessing a local VAR object. As long as
you’ve declared the parameter in a formal parameter list and the procedure executes the standard entry
sequence upon entry into the program, all you need do is specify the parameter’s name to reference the value
of that parameter. The following is an example program whose procedure accesses a parameter the main
program passes to it by value:

program AccessingValueParameters;

9. Note that if you use the EXIT statement to exit a procedure, you must duplicate the code to pop the register values and
place this code immediately before the EXIT clause. This is a good example of a maintenance nightmare and is also a good
reason why you should only have one exit point in your program.

Previous Stack Contents

i's current value

j's current value

k's current value

Return address

ESP/ EBPOld EBP Value

 EBP+4

 EBP+8

 EBP+12

 EBP+16

 EBP+20
Page 800 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
#include(“stdlib.hhf”)

 procedure ValueParm(theParameter: uns32); nodisplay;
 begin ValueParm;

 mov(theParameter, eax);
 add(2, eax);
 stdout.put
 (
 “theParameter + 2 = “,
 (type uns32 eax),
 nl
);

 end ValueParm;

begin AccessingValueParameters;

 ValueParm(10);
 ValueParm(135);

end AccessingValueParameters;

Program 3.4 Demonstration of Value Parameters

Although you may access the value of theParameter using the anonymous address “[EBP+8]” within
your code, there is absolutely no good reason for doing so. If you declare the parameter list using the HLA
high level language syntax, you can access the value parameter by specifying its name within the procedure.

3.8.5.2 Passing Value Parameters on the Stack

As Program 3.4 demonstrates, passing a value parameter to a procedure is very easy. Just specify the
value in the actual parameter list as you would for a high level language call. Actually, the situation is a little
more complicated than this. Passing value parameters is easy if you’re passing constant, register, or variable
values. It gets a little more complex if you need to pass the result of some expression. This section deals
with the different ways you can pass a parameter by value to a procedure.

Of course, you do not have to use the HLA high level language syntax to pass value parameters to a pro-
cedure. You can push these values on the stack yourself. Since there are many times it is more convenient or
more efficient to manually pass the parameters, describing how to do this is a good place to start.

As noted earlier in this chapter, when passing parameters on the stack you push the objects in the order
they appear in the formal parameter list (from left to right). When passing parameters by value, you should
push the values of the actual parameters onto the stack. The following program demonstrates how to do this:

program ManuallyPassingValueParameters;
#include(“stdlib.hhf”)

 procedure ThreeValueParms(p1:uns32; p2:uns32; p3:uns32); nodisplay;
 begin ThreeValueParms;

 mov(p1, eax);
 add(p2, eax);
 add(p3, eax);
 stdout.put
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 801

Chapter Three Volume Four
 (
 “p1 + p2 + p3 = “,
 (type uns32 eax),
 nl
);

 end ThreeValueParms;

static
 SecondParmValue:uns32 := 25;

begin ManuallyPassingValueParameters;

 pushd(10); // Value associated with p1.
 pushd(SecondParmValue); // Value associated with p2.
 pushd(15); // Value associated with p3.
 call ThreeValueParms;

end ManuallyPassingValueParameters;

Program 3.5 Manually Passing Parameters on the Stack

Note that if you manually push the parameters onto the stack as this example does, you must use the
CALL instruction to call the procedure. If you attempt to use a procedure invocation of the form “ThreeVal-
ueParms();” then HLA will complain about a mismatched parameter list. HLA won’t realize that you’ve
manually pushed the parameters (as far as HLA is concerned, those pushes appear to preserve some other
data).

Generally, there is little reason to manually push a parameter onto the stack if the actual parameter is a
constant, a register value, or a variable. HLA’s high level syntax handles most such parameters for you.
There are several instances, however, where HLA’s high level syntax won’t work. The first such example is
passing the result of an arithmetic expression as a value parameter. Since arithmetic expressions don’t exist
in HLA, you will have to manually compute the result of the expression and pass that value yourself. There
are two possible ways to do this: calculate the result of the expression and manually push that result onto the
stack, or compute the result of the expression into a register and pass the register as a parameter to the proce-
dure. Program 3.6 demonstrates these two mechanisms.

program PassingExpressions;
#include(“stdlib.hhf”)

 procedure ExprParm(exprValue:uns32); nodisplay;
 begin ExprParm;

 stdout.put(“exprValue = “, exprValue, nl);

 end ExprParm;

static
 Operand1: uns32 := 5;
 Operand2: uns32 := 20;

begin PassingExpressions;

 // ExprParm(Operand1 + Operand2);
 //
Page 802 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
 // Method one: Compute the sum and manually
 // push the sum onto the stack.

 mov(Operand1, eax);
 add(Operand2, eax);
 push(eax);
 call ExprParm;

 // Method two: Compute the sum in a register and
 // pass the register using the HLA high level
 // language syntax.

 mov(Operand1, eax);
 add(Operand2, eax);
 ExprParm(eax);

end PassingExpressions;

Program 3.6 Passing the Result of Some Arithmetic Expression as a Parameter

The examples up to this point in this section have made an important assumption: that the parameter you
are passing is a double word value. The calling sequence changes somewhat if you’re passing parameters
that are not four-byte objects. Because HLA can generate relatively inefficient code when passing objects
that are not four-bytes long, manually passing such objects is a good idea if you want to have the fastest pos-
sible code.

HLA requires that all value parameters be an even multiple of four bytes long10. If you pass an object
that is less than four bytes long, HLA requires that you pad the parameter data with extra bytes so that you
always pass an object that is at least four bytes in length. For parameters that are larger than four bytes, you
must ensure that you pass an even multiple of four bytes as the parameter value, adding extra bytes at the
high-order end of the object to pad it, as necessary.

Consider the following procedure prototype:

procedure OneByteParm(b:byte);

The activation record for this procedure looks like the following:

10. This only applies if you use the HLA high level language syntax to declare and access parameters in your procedures. Of
course, if you manually push the parameters yourself and you access the parameters inside the procedure using an addressing
mode like “[ebp+8]” then you can pass any sized object you choose.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 803

Chapter Three Volume Four
Figure 3.9 OneByteParm Activation Record

As you can see, there are four bytes on the stack associated with the b parameter, but only one of the
four bytes contains valid data (the L.O. byte). The remaining three bytes are just padding and the procedure
should ignore these bytes. In particular, you should never assume that these extra bytes contain zeros or
some other consistent value. Depending on the type of parameter you pass, HLA’s automatic code genera-
tion may or may not push zero bytes as the extra data on the stack.

When passing a byte parameter to a procedure, HLA will automatically emit code that pushes four bytes
on the stack. Because HLA’s parameter passing mechanism guarantees not to disturb any register or other
values, HLA often generates more code than is actually needed to pass a byte parameter. For example, if
you decide to pass the AL register as the byte parameter, HLA will emit code that pushes the EAX register
onto the stack. This single push instruction is a very efficient way to pass AL as a four-byte parameter
object. On the other hand, if you decide to pass the AH register as the byte parameter, pushing EAX won’t
work because this would leave the value in AH at offset EBP+9 in the activation record shown in Figure 3.9.
Unfortunately, the procedure expects this value at offset EBP+8 so simply pushing EAX won’t do the job. If
you pass AH, BH, CH, or DH as a byte parameter, HLA emits code like the following:

sub(4, esp); // Make room for the parameter on the stack.
mov(ah, [esp]); // Store AH into the L.O. byte of the parameter.

As you can clearly see, passing one of the “H” registers as a byte parameter is less efficient (two instruc-
tions) than passing one of the “L” registers. So you should attempt to use the “L” registers whenever possi-
ble if passing an eight-bit register as a parameter11. Note, by the way, that there is very little you can do
about the difference in efficiency, even if you manually pass the parameters yourself.

If the byte parameter you decide to pass is a variable rather than a register, HLA generates decidedly
worse code. For example, suppose you call OneByteParm as follows:

OneByteParm(uns8Var);

For this call, HLA will emit code similar to the following to push this single byte parameter:

push(eax);
push(eax);
mov(uns8Var, al);
mov(al, [esp+4]);
pop(eax);

11. Or better yet, pass the parameter directly in the register if you are writing the procedure yourself.

Previous Stack Contents

Return address

ESP

EBP
Old EBP Value

Local Variables

b's current value EBP + 8
EBP + 9
EBP + 10
EBP + 11

Unused bytes
Page 804 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
As you can plainly see, this is a lot of code to pass a single byte on the stack! HLA emits this much code
because (1) it guarantees not to disturb any registers, and (2) it doesn’t know whether uns8Var is the last
variable in allocated memory. You can generate much better code if you don’t have to enforce either of these
two constraints.

If you’ve got a spare 32-bit register laying around (especially one of EAX, EBX, ECX or EDX) then
you can pass a byte parameter on the stack using only two instructions. Move (or move with zero/sign
extension) the byte value into the register and then push the register onto the stack. For the current call to
OneByteParm, the calling sequence would look like the following:

mov(uns8Var, al);
push(eax);
call OneByteParm;

If only ESI or EDI were available, you could use code like this:

movzx(uns8Var, esi);
push(esi);
call OneByteParm;

Another trick you can use to pass the parameter with only a single push instruction is to coerce the byte
variable to a double word object, i.e.,

push((type dword uns8Var));
call OneByteParm;

This last example is very efficient. Note that it pushes the first three bytes of whatever value happens to
follow uns8Var in memory as the padding bytes. HLA doesn’t use this technique because there is a (very
tiny) chance that using this scheme will cause the program to fail. If it turns out that the uns8Var object is
the last byte of a given page in memory and the next page of memory is unreadable, the PUSH instruction
will cause a memory access exception. To be on the safe side, the HLA compiler does not use this scheme.
However, if you always ensure that the actual parameter you pass in this fashion is not the last variable you
declare in a static section, then you can get away with code that uses this technique. Since it is nearly impos-
sible for the byte object to appear at the last accessible address on the stack, it is probably safe to use this
technique with VAR objects.

When passing word parameters on the stack you must also ensure that you include padding bytes so that
each parameter consumes an even multiple of four bytes. You can use the same techniques we use to pass
bytes except, of course, there are two valid bytes of data to pass instead of one. For example, you could use
either of the following two schemes to pass a word object w to a OneWordParm procedure:

mov(w, ax);
push(eax);
call OneWordParm;

push((type dword w));
call OneWordParm;

When passing large objects by value on the stack (e.g., records and arrays), you do not have to ensure
that each element or field of the object consumes an even multiple of four bytes; all you need to do is ensure
that the entire data structure consumes an even number of bytes on the stack. For example, if you have an
array of 10 three-byte elements, the entire array will need two bytes of padding (10*3 is 30 bytes which is
not evenly divisible by four, but 10*3 + 2 is 32 which is divisible by four). HLA does a fairly good job of
passing large data objects by value to a procedure. For larger objects, you should use the HLA high level
language procedure invocation syntax unless you have some special requirements. Of course, if you want
efficient operation, you should try to avoid passing large data structures by value.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 805

Chapter Three Volume Four
3.8.5.3 Accessing Reference Parameters on the Stack

Since HLA passes the address of the actual parameters for reference parameters, accessing the reference
parameters within a procedure is slightly more difficult than accessing value parameters because you have to
dereference the pointers to the reference parameters. Unfortunately, HLA’s high level syntax for procedure
declarations and invocations does not (and cannot) abstract this detail away for you. You will have to manu-
ally dereference these pointers yourself. This section describes how you do this.

Consider the following program:

program AccessingReferenceParameters;
#include(“stdlib.hhf”)

 procedure RefParm(var theParameter: uns32); nodisplay;
 begin RefParm;

 // Add two directly to the parameter passed by
 // reference to this procedure.

 mov(theParameter, eax);
 add(2, (type uns32 [eax]));

 // Fetch the value of the reference parameter
 // and print it’s value.

 mov([eax], eax);
 stdout.put
 (
 “theParameter now equals “,
 (type uns32 eax),
 nl
);

 end RefParm;

static
 p1: uns32 := 10;
 p2: uns32 := 15;

begin AccessingReferenceParameters;

 RefParm(p1);
 RefParm(p2);

 stdout.put(“On return, p1=”, p1, “ and p2=”, p2, nl);

end AccessingReferenceParameters;

Program 3.7 Accessing a Reference Parameter

In this example the RefParm procedure has a single pass by reference parameter. Pass by reference
parameters are always a pointer to the type specified by the parameter’s declaration. Therefore, theParame-
ter is actual an object of type “pointer to uns32” rather than an uns32 value. In order to access the value
associated with theParameter, this code has to load that double word address into a 32-bit register and access
the data indirectly. The “mov(theParameter, eax);” instruction in the code above fetches this pointer into the
Page 806 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
EAX register and then the procedure uses the “[eax]” addressing mode to access the actual value of thePa-
rameter.

Since this procedure accesses the data of the actual parameter, adding two to this data affects the values
of the variables passed to the RefParm procedure from the main program. Of course, this should come as no
surprise since this is the standard semantics for pass by reference parameters.

As you can see, accessing (small) pass by reference parameters is a little less efficient than accessing
value parameters because you need extra instructions to load the address into a 32-bit pointer register. If you
access reference parameters frequently, these extra instructions can really begin to add up, reducing the effi-
ciency of your program. Furthermore, it’s easy to forget to dereference a reference parameter and use the
address of the value instead of the value in your calculations (this is especially true when passing dou-
ble-word parameters, like the uns32 parameter in the example above, to your procedures). Therefore, unless
you really need to affect the value of the actual parameter, you should use pass by value to pass small objects
to a procedure.

Passing large objects, like arrays and records, is where reference parameters become very efficient.
When passing these objects by value, the calling code has to make a copy of the actual parameter; if the
actual parameter is a large object, the copy process can be very inefficient. Since computing the address of a
large object is just as efficient as computing the address of a small scalar object, there is no efficiency loss
when passing large objects by reference. Within the procedure you must still dereference the pointer to
access the object but the efficiency loss due to indirection is minimal when you contrast this with the cost of
copying that large object. The following program demonstrates how to use pass by reference to initialize an
array of records:

program accessingRefArrayParameters;
#include(“stdlib.hhf”)

const
 NumElements := 64;

type
 Pt: record

 x:uns8;
 y:uns8;

 endrecord;

 Pts: Pt[NumElements];

 procedure RefArrayParm(var ptArray: Pts); nodisplay;
 begin RefArrayParm;

 push(eax);
 push(ecx);
 push(edx);

 mov(ptArray, edx); // Get address of parameter into EDX.

 for(mov(0, ecx); ecx < NumElements; inc(ecx)) do

 // For each element of the array, set the “x” field
 // to (ecx div 8) and set the “y” field to (ecx mod 8).

 mov(cl, al);
 shr(3, al); // ECX div 8.
 mov(al, (type Pt [edx+ecx*2]).x);

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 807

Chapter Three Volume Four
 mov(cl, al);
 and(%111, al); // ECX mod 8.
 mov(al, (type Pt [edx+ecx*2]).y);

 endfor;
 pop(edx);
 pop(ecx);
 pop(eax);

 end RefArrayParm;

static
 MyPts: Pts;

begin accessingRefArrayParameters;

 // Initialize the elements of the array.

 RefArrayParm(MyPts);

 // Display the elements of the array.

 for(mov(0, ebx); ebx < NumElements; inc(ebx)) do

 stdout.put
 (
 “RefArrayParm[“,
 (type uns32 ebx):2,
 “].x=”,
 MyPts.x[ebx*2],

 “ RefArrayParm[“,
 (type uns32 ebx):2,
 “].y=”,
 MyPts.y[ebx*2],
 nl
);

 endfor;

end accessingRefArrayParameters;

Program 3.8 Passing an Array of Records by Referencing

As you can see from this example, passing large objects by reference isn’t particularly inefficient. Other
than tying up the EDX register throughout the RefArrayParm procedure plus a single instruction to load
EDX with the address of the reference parameter, the RefArrayParm procedure doesn’t require many more
instructions than the same procedure where you would pass the parameter by value.

3.8.5.4 Passing Reference Parameters on the Stack

HLA’s high level syntax often makes passing reference parameters a breeze. All you need to do is spec-
ify the name of the actual parameter you wish to pass in the procedure’s parameter list. HLA will automati-
cally emit some code that will compute the address of the specified actual parameter and push this address
Page 808 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
onto the stack. However, like the code HLA emits for value parameters, the code HLA generates to pass the
address of the actual parameter on the stack may not be the most efficient that is possible. Therefore, if you
want to write fast code, you may want to manually write the code to pass reference parameters to a proce-
dure. This section discusses how to do exactly that.

Whenever you pass a static object as a reference parameter, HLA generates very efficient code to pass
the address of that parameter to the procedure. As an example, consider the following code fragment:

procedure HasRefParm(var d:dword);
.
.
.

static
FourBytes:dword;

var
v: dword;
.
.
.

HasRefParm(FourBytes);
.
.
.

For the call to the HasRefParm procedure, HLA emits the following instruction sequence:

pushd(&FourBytes);
call HasRefParm;

You really aren’t going to be able to do substantially better than this if you are passing your reference param-
eters on the stack. So if you’re passing static objects as reference parameters, HLA generates fairly good
code and you should stick with the high level syntax for the procedure call.

Unfortunately, when passing automatic (VAR) objects or indexed variables as reference parameters,
HLA needs to compute the address of the object at run-time. This generally requires the use of the LEA
instruction. Unfortunately, the LEA instruction requires the use of a 32-bit register and HLA promises not to
disturb the values in any registers when it automatically generates code for you12. Therefore, HLA needs to
preserve the value in whatever register it uses when it computes an address via LEA to pass a parameter by
reference. The following example shows you the code that HLA actually emits:

// Call to the HasRefParm procedure:

HasRefParm(v);

// HLA actually emits the following code for the above call:

push(eax);
push(eax);
lea(eax, v);
mov(eax, [esp+4]);
pop(eax);
call HasRefParm;

As you can see, this is quite a bit of code, especially if you have a 32-bit register available and you don’t
need to preserve that register’s value. Here’s a better code sequence given the availability of EAX:

lea(eax, v);
push(eax);
call HasRefParm;

12. This isn’t entirely true. You’ll see the exception in the chapter on Classes and Objects.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 809

Chapter Three Volume Four
Remember, when passing an actual parameter by reference, you must compute the address of that object
and push the address onto the stack. For simple static objects you can use the address-of operator (“&”) to
easily compute the address of the object and push it onto the stack; however, for indexed and automatic
objects, you will probably need to use the LEA instruction to compute the address of the object. Here are
some examples that demonstrate this using the HasRefParm procedure from the previous examples:

static
i: int32;
Ary: int32[16];
iptr: pointer to int32 := &i;

var
v: int32;
AV: int32[10];
vptr: pointer to int32;
 .
 .
 .
lea(eax, v);
mov(eax, vptr);
 .
 .
 .

// HasRefParm(i);

push(&i); // Simple static object, so just use “&”.
call HasRefParm;

// HasRefParm(Ary[ebx]); // Pass element of Ary by reference.

lea(eax, Ary[ebx*4]); // Must use LEA for indexed addresses.
push(eax);
call HasRefParm;

// HasRefParm(*iptr); -- Pass object pointed at by iptr

push(iptr); // Pass address (iptr’s value) on stack.
call HasRefParm;

// HasRefParm(v);

lea(eax, v); // Must use LEA to compute the address
push(eax); // of automatic vars passed on stack.
call HasRefParm;

// HasRefParm(AV[esi]); -- Pass element of AV by reference.

lea(eax, AV[esi*4]); // Must use LEA to compute address of the
push(eax); // desired element.
call HasRefParm;

// HasRefParm(*vptr); -- Pass address held by vptr...

push(vptr); // Just pass vptr’s value as the specified
call HasRefParm; // address.
Page 810 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
3.8.5.5 Passing Formal Parameters as Actual Parameters

The examples in the previous two sections show how to pass static and automatic variables as parame-
ters to a procedure, either by value or by reference. There is one situation that these sections don’t handle
properly: the case when you are passing a formal parameter in one procedure as an actual parameter to
another procedure. The following simple example demonstrates the different cases that can occur for pass
by value and pass by reference parameters:

procedure p1(val v:dword; var r:dword);
begin p1;

 .
 .
 .

end p1;

procedure p2(val v2:dword; var r2:dword);
begin p2;

p1(v2, r2); // (1) First call to p1.
p1(r2, v2); // (2) Second call to p1.

end p2;

In the statement labelled (1) above, procedure p2 calls procedure p1 and passes its two formal parame-
ters as parameters to p1. Note that this code passes the first parameter of both procedures by value and it
passes the second parameter of both procedures by reference. Therefore, in statement (1), the program
passes the parameter into p2 by value and passes it on to p1 by value; likewise, the program passes r2 in by
reference and it passes the value onto p2 by reference.

Since p2’s caller passes v2 in by value and p2 passes this parameter to p1 by value, all the code needs to
do is make a copy of v2’s value and pass this on to p1. The code to do this is nothing more than a single push
instruction, e.g.,

push(v2);
<< code to handle r2 >>
call p1;

As you can see, this code is identical to passing an automatic variable by value. Indeed, it turns out that the
code you need to write to pass a value parameter to another procedure is identical to the code you would
write to pass a local, automatic, variable to that other procedure.

Passing r2 in statement (1) above requires a little more thought. You do not take the address of r2 using
the LEA instruction as you would a value parameter or an automatic variable. When passing r2 on through
to p1, the author of this code probably expects the r formal parameter to contain the address of the variable
whose address p2’s caller passed into p2. In plain English, this means that p2 must pass the address of r2’s
actual parameter on through to p1. Since the r2 parameter is actually a double word value containing the
address of the corresponding actual parameter, this means that the code must pass the dword value of r2 on
to p1. The complete code for statement (1) above looks like the following:

push(v2); // Pass the value passed in through v2 to p1.
push(r2); // Pass the address passed in through r2 to p1.
call p1;

The important thing to note in this example is that passing a formal reference parameter (r2) as an actual
reference parameter (r) does not involve taking the address of the formal parameter (r2). P2’s caller has
already done this; p2 need only pass this address on through to p1.

In the second call to p1 in the example above (2), the code swaps the actual parameters so that the call to
p1 passes r2 by value and v2 by reference. Specifically, p1 expects p2 to pass it the value of the dword
object associated with r2; likewise, it expects p2 to pass it the address of the value associated with v2.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 811

Chapter Three Volume Four
To pass the value of the object associated with r2, your code must dereference the pointer associated
with r2 and directly pass the value. Here is the code HLA automatically generates to pass r2 as the first
parameter to p1 in statement (2):

sub(4, esp); // Make room on stack for parameter.
push(eax); // Preserve EAX’s value.
mov(r2, eax); // Get address of object passed in to p2.
mov([eax], eax); // Dereference to get the value of this object.
mov(eax, [esp+4]);// Put value of parameter into its location on stack.
pop(eax); // Restore original EAX value.

As usual, HLA generates a little more code than may be necessary because it won’t destroy the value in
the EAX register. You can write more efficient code if a register is available to use in this sequence. If EAX
is unused, you could trim this down to the following:

mov(r2, eax); // Get the pointer to the actual object.
pushd([eax]); // Push the value of the object onto the stack.

Since you can treat value parameters exactly like local (automatic) variables, you use the same code to
pass v2 by reference to p1 as you would to pass a local variable in p2 to p1. Specifically, you use the LEA
instruction to compute the address of the value in the v2. The code HLA automatically emits for statement
(2) above preserves all registers and takes the following form (same as passing an automatic variable by ref-
erence):

push(eax); // Make room for the parameter.
push(eax); // Preserve EAX’s value.
lea(eax, v2); // Compute address of v2’s value.
mov(eax, [esp+4]);// Store away address as parameter value.
pop(eax); // Restore EAX’s value

Of course, if you have a register available, you can improve on this code. Here’s the complete code that
corresponds to statement (2) above:

mov(r2, eax); // Get the pointer to the actual object.
pushd([eax]); // Push the value of the object onto the stack.
lea(eax, v2); // Push the address of V2 onto the stack.
push(eax);
call p1;

3.8.5.6 HLA Hybrid Parameter Passing Facilities

Like control structures, HLA provides a high level language syntax for procedure calls that is conve-
nient to use and easy to read. However, this high level language syntax is sometimes inefficient and may not
provide the capabilities you need (for example, you cannot specify an arithmetic expression as a value
parameter as you can in high level languages). HLA lets you overcome these limitations by writing
low-level (“pure”) assembly language code. Unfortunately, the low-level code is harder to read and maintain
than procedure calls that use the high level syntax. Furthermore, it’s quite possible that HLA generates per-
fectly fine code for certain parameters and only one or two parameters present a problem. Fortunately, HLA
provides a hybrid syntax for procedure calls that allows you to use both high-level and low-level syntax as
appropriate for a given actual parameter. This lets you use the high level syntax where appropriate and then
drop down into pure assembly language to pass those special parameters that HLA’s high level language syn-
tax cannot handle efficiently (if at all).

Within an actual parameter list (using the high level language syntax), if HLA encounters “#{“ followed
by a sequence of statements and a closing “}#”, HLA will substitute the instructions between the braces in
place of the code it would normally generate for that parameter. For example, consider the following code
fragment:
Page 812 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
procedure HybridCall(i:uns32; j:uns32);
begin HybridCall;

.

.

.
end HybridCall;

 .
 .
 .
HybridCall
(

5,
#{

mov(i, eax);
add(j, eax);
push(eax);

}#
);

The call to HybridCall immediately above is equivalent to the following “pure” assembly language code:

pushd(5);
mov(i, eax);
add(j, eax);
push(eax);
call HybridCall;

As a second example, consider the example from the previous section:

procedure p2(val v2:dword; var r2:dword);
begin p2;

p1(v2, r2); // (1) First call to p1.
p1(r2, v2); // (2) Second call to p1.

end p2;

HLA generates exceedingly mediocre code for the second call to p1 in this example. If efficiency is
important in the context of this procedure call, and you have a free register available, you might want to
rewrite this code as follows:

procedure p2(val v2:dword; var r2:dword);
begin p2;

p1(v2, r2); // (1) First call to p1.
p1 // (2) Second call to p1.
(// This code assumes EAX is free.

#{
mov(r2, eax);
pushd([eax]);

}#,

#{
lea(eax, v2);
push(eax);

}#
);

end p2;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 813

Chapter Three Volume Four
3.8.5.7 Mixing Register and Stack Based Parameters

You can mix register parameters and standard (stack-based) parameters in the same high level procedure
declaration, e.g.,

procedure HasBothRegAndStack(var dest:dword in edi; count:un32);

When constructing the activation record, HLA ignores the parameters you pass in registers and only pro-
cesses those parameters you pass on the stack. Therefore, a call to the HasBothRegAndStack procedure will
push only a single parameter onto the stack (count). It will pass the dest parameter in the EDI register.
When this procedure returns to its caller, it will only remove four bytes of parameter data from the stack.

3.9 Procedure Pointers

The x86 CALL instruction is very similar to the JMP instruction. In particular, it allows the same three
basic forms as the JMP instruction: direct calls (to a procedure name), indirect calls through a 32-bit general
purpose register, and indirect calls through a double word pointer variable. The CALL instruction allows the
following (low-level) syntax supporting these three types of procedure invocations:

call Procname; // Direct call to procedure “Procname”.
call(Reg32); // Indirect call to procedure whose address appears

 // in the Reg32 general-purpose 32-bit register.

call(dwordVar); // Indirect call to the procedure whose address appears
 // in the dwordVar double word variable.

HLA treats procedure names like static objects. Therefore, you can compute the address of a procedure
by using the address-of (“&”) operator along with the procedure’s name or by using the LEA instruction.
For example, “&Procname” is the address of the very first instruction of the Procname procedure. There-
fore, all three of the following code sequences wind up calling the Procname procedure:

call Procname;
 .
 .
 .
mov(&Procname, eax);
call(eax);
 .
 .
 .
lea(eax, Procname);
call(eax);

Since the address of a procedure fits in a 32-bit object, you can store such an address into a dword vari-
able; in fact, you can initialize a dword variable with the address of a procedure using code like the follow-
ing:

procedure p;
begin p;
end p;
 .
 .
 .

static
ptrToP: dword := &p;
 .
 .
Page 814 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
 .
call(ptrToP); // Calls the “p” procedure if ptrToP has not changed.

Because the use of procedure pointers occurs frequently in assembly language programs, HLA provides
a special syntax for declaring procedure pointer variables and for calling procedures indirectly through such
pointer variables. To declare a procedure pointer in an HLA program, you can use a variable declaration like
the following:

static
procPtr: procedure;

Note that this syntax uses the keyword PROCEDURE as a data type. It follows the variable name and a
colon in one of the variable declaration sections (STATIC, READONLY, STORAGE, or VAR). This sets
aside exactly four bytes of storage for the procPtr variable. To call the procedure whose address is held by
procPtr, you can use either of the following two forms:

call(procPtr); // Low-level syntax.
procPtr(); // High-level language syntax.

Note that the high level syntax for an indirect procedure call is identical to the high level syntax for a direct
procedure call. HLA can figure out whether to use a direct call or an indirect call by the type of the identi-
fier. If you’ve specified a variable name, HLA assumes it needs to use an indirect call; if you specify a pro-
cedure name, HLA uses a direct call.

Like all pointer objects, you should not attempt to indirectly call a procedure through a pointer variable
unless you’ve initialized that variable with the address appropriately. There are two ways to initialize a pro-
cedure pointer variable: STATIC and READONLY objects allow an initializer, or you can compute the
address of a routine (as a 32-bit value) and store that 32-bit address directly into the procedure pointer at
run-time. The following code fragment demonstrates both ways you can initialize a procedure pointer.

static
ProcPtr: procedure := &p; // Initialize ProcPtr with the address of p.
 .
 .
 .
ProcPtr(); // First invocation calls p.

mov(&q, ProcPtr); // Reload ProcPtr with the address of q.
 .
 .
 .
ProcPtr(); // This invocation calls the “q” procedure.

Procedure pointer variable declarations also allow the declaration of parameters. To declare a procedure
pointer with parameters, you must use a declaration like the following:

static
p:procedure(i:int32; c:char);

This declaration states that p is a 32-bit pointer that contains the address of a procedure having two parame-
ters. If desired, you could also initialize this variable p with the address of some procedure by using a static
initializer, e.g.,

static
p:procedure(i:int32; c:char) := &SomeProcedure;

Note that SomeProcedure must be a procedure whose parameter list exactly matches p’s parameter list (i.e.,
two value parameters, the first is an int32 parameter and the second is a char parameter). To indirectly call
this procedure, you could use either of the following sequences:

push(<< Value for i >>);
push(<< Value for c >>);
call(p);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 815

Chapter Three Volume Four
-or-
p(<<Value for i>>, <<Value for c>>);

The high level language syntax has the same features and restrictions as the high level syntax for a direct
procedure call. The only difference is the actual CALL instruction HLA emits at the end of the calling
sequence.

Although all of the examples in this section have used STATIC variable declarations, don’t get the idea
that you can only declare simple procedure pointers in the STATIC or other variable declaration sections.
You can declare procedure pointer types in the TYPE section. You can declare procedure pointers as fields
of a RECORD. Assuming you create a type name for a procedure pointer in the TYPE section, you can even
create arrays of procedure pointers. The following code fragments demonstrate some of the possibilities:

type
pptr: procedure;
prec: record

p:pptr;
// other fields...

endrecord;
static

p1:pptr;
p2:pptr[2]
p3:prec;
 .
 .
 .
p1();
p2[ebx*4]();
p3.p();

One very important thing to keep in mind when using procedure pointers is that HLA does not (and can-
not) enforce strict type checking on the pointer values you assign to a procedure pointer variable. In partic-
ular, if the parameter lists do not agree between the declarations of the pointer variable and the procedure
whose address you assign to the pointer variable, the program will probably crash if you attempt to call the
mismatched procedure indirectly through the pointer using the high level syntax. Like the low-level “pure”
procedure calls, it is your responsibility to ensure that the proper number and types of parameters are on the
stack prior to the call.

3.10 Procedural Parameters

One place where procedure pointers are quite invaluable is in parameter lists. Selecting one of several
procedures to call by passing the address of some procedure, selected from a set of procedures, is not an
uncommon operation. Therefore, HLA lets you declare procedure pointers as parameters.

There is nothing special about a procedure parameter declaration. It looks exactly like a procedure vari-
able declaration except it appears within a parameter list rather than within a variable declaration section.
The following are some typical procedure prototypes that demonstrate how to declare such parameters:

procedure p1(procparm: procedure); forward;
procedure p2(procparm: procedure(i:int32)); forward;
procedure p3(val procparm: procedure); forward;

The last example above is identical to the first. It does point out, though, that you generally pass proce-
dural parameters by value. This may seem counter-intuitive since procedure pointers are addresses and you
will need to pass an address as the actual parameter; however, a pass by reference procedure parameter
means something else entirely. consider the following (legal!) declaration:

procedure p4(var procPtr:procedure); forward;
Page 816 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
This declaration tells HLA that you are passing a procedure variable by reference to p4. The address HLA
expects must be the address of a procedure pointer variable, not a procedure.

When passing a procedure pointer by value, you may specify either a procedure variable (whose value
HLA passes to the actual procedure) or a procedure pointer constant. A procedure pointer constant consists
of the address-of operator (“&”) immediately followed by a procedure name. Passing procedure constants is
probably the most convenient way to pass procedural parameters. For example, the following calls to the
Plot routine might plot out the function passed as a parameter from -2π to +2π.

Plot(&sineFunc);
Plot(&cosFunc);
Plot(&tanFunc);

Note that you cannot pass a procedure as a parameter by simply specifying the procedure’s name. I.e.,
“Plot(sineFunc);” will not work. Simply specifying the procedure name doesn’t work because HLA will
attempt to directly call the procedure whose name you specify (remember, a procedure name inside a param-
eter list invokes instruction composition). However, since you don’t specify a parameter list, or at least an
empty pair of parentheses, after the parameter/procedure’s name, HLA generates a syntax error message.
Moral of the story: don’t forget to preface procedure parameter constant names with the address-of operator.

3.11 Untyped Reference Parameters

Sometimes you will want to write a procedure to which you pass a generic memory object by reference
without regard to the type of that memory object. A classic example is a procedure that zeros out some data
structure. Such a procedure might have the following prototype:

procedure ZeroMem(var mem:byte; count:uns32);

This procedure would zero out count bytes starting at the address the first parameter specifies. The problem
with this procedure prototype is that HLA will complain if you attempt to pass anything other than a byte
object as the first parameter. Of course, you can overcome this problem using type coercion like the follow-
ing, but if you call this procedure several times with lots of different data types, then the following coercion
operator is rather tedious to use:

ZeroMem((type byte MyDataObject), @size(MyDataObject));

Of course, you can always use hybrid parameter passing or manually push the parameters yourself, but these
solutions are even more work than using the type coercion operation. Fortunately, HLA provides a far more
convenient solution: untyped reference parameters.

Untyped reference parameters are exactly that – pass by reference parameters on which HLA doesn’t
bother to compare the type of the actual parameter against the type of the formal parameter. With an
untyped reference parameter, the call to ZeroMem above would take the following form:

ZeroMem(MyDataObject, @size(MyDataObject));

MyDataObject could be any type and multiple calls to ZeroMem could pass different typed objects without
any objections from HLA.

To declare an untyped reference parameter, you specify the parameter using the normal syntax except
that you use the reserved word VAR in place of the parameter’s type. This VAR keyword tells HLA that any
variable object is legal for that parameter. Note that you must pass untyped reference parameters by refer-
ence, so the VAR keyword must precede the parameter’s declaration as well. Here’s the correct declaration
for the ZeroMem procedure using an untyped reference parameter:

procedure ZeroMem(var mem:var; count:uns32);

With this declaration, HLA will compute the address of whatever memory object you pass as an actual
parameter to ZeroMem and pass this on the stack.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 817

Chapter Three Volume Four
3.12 Iterators and the FOREACH Loop

One nifty feature HLA provides is support for true iterators13. An iterator is a special type of procedure
or function that you use in conjunction with the HLA FOREACH..ENDFOR loop. Combined, these two
language features (iterators and the FOREACH..ENDFOR loop) provide a very powerful user-defined loop-
ing construct.

The HLA FOREACH..ENDFOR statement uses the following basic syntax:

foreach iteratorID(optional_parameters) do

<< loop body >>

endfor;

The FOREACH statement calls the specified iterator. If the iterator succeeds, then the FOREACH state-
ment executes the loop body; if the iterator fails, then control transfers to the first statement following the
ENDFOR clause. On each iteration of the loop body, the program re-enters the iterator code and, once
again, the iterator returns success or failure to determine whether to repeat the loop body.

At first glance, you might get the impression that the FOREACH loop is nothing more than a WHILE
loop and an iterator is a function that returns true (success) or false (failure). However, this is not an accurate
picture of how the FOREACH loop operates. First of all, the FOREACH loop does not CALL the iterator on
each iteration of the loop; it re-enters the iterator. Specifically, control does not (necessarily) begin with the
first statement of the iterator whenever control returns to the top of the FOREACH loop. The second big dif-
ference between a FOREACH/iterator loop and a WHILE/function loop is that the iterator procedure main-
tains its activation record in memory for the duration of the FOREACH loop. A function you would call
from a WHILE loop, by contrast, builds and destroys the function’s activation record on each iteration of the
loop. This means that the iterator’s local (automatic) variables maintain their values until the FOREACH
loop terminates. This has important ramifications, especially for recursive iterator functions.

An iterator declaration looks very similar to a procedure declaration. Indeed, about the only syntactical
difference is the use of the reserved word ITERATOR rather than PROCEDURE. The following is an exam-
ple of a simple iterator:

iterator range(start:uns32; last:uns32); nodisplay;
begin range;

mov(start, eax);
while(eax <= last) do

push(eax);
yield();
pop(eax);
inc(eax);

endwhile;

end range;

The only thing special about this iterator declaration, other than the use of the ITERATOR reserved
word, is that it calls a special procedure named yield. In a few paragraphs you’ll see the purpose of the call
to the yield procedure.

A typical FOREACH loop that calls the range iterator might look like the following:

13. HLA’s iterators are based on the control structure by the same name from the CLU programming language. Those things
that C/C++ programmers refer to as iterators are more properly called cursors. While it is certainly possible to write cursors
in HLA, it is important to note that HLA’s iterators are quite a bit more powerful than C/C++’s iterators.
Page 818 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
foreach range(1, 10) do

stdout.put(“Iteration = “, (type uns32 eax), nl);

endfor;

Here’s how the iterator and the FOREACH loop work together. Upon first encountering the FOREACH
statement, the program makes an initial call to the range iterator. Except for a few extra parameters HLA
pushes on the stack, this call is exactly like a standard procedure call. Upon entry into the iterator, the start
parameter has the initial value one and the last parameter has the initial value ten. The iterator loads start
into EAX and compares this against the value in last (ten). Since EAX’s value is less than or equal to ten,
the program enters the loop’s body. The loop body pushes EAX’s value onto the stack and then calls the
yield procedure. The yield procedure transfers control to the body of the FOREACH loop that called the
range iterator in the first place. Calling yield is how the iterator returns success to the FOREACH loop.
Within the body of the FOREACH loop, above, the code prints out the value of the EAX register as an
unsigned integer. During the first iteration of the loop, EAX contains one so the loop body prints this value.

At the bottom of the FOREACH loop, the program re-enters the iterator. When the FOREACH loop
re-enters the iterator, it transfers control to the first statement following the call to the yield function. Intu-
itively, you can view the FOREACH loop body as a procedure that the iterator calls whenever you call the
yield function14. Whenever the program encounters the ENDFOR clause, it returns to the iterator, executing
the first statement beyond the yield call. In the current example, this pops the value of EAX off the stack
(preserved before the call to yield), the loop increments EAX and repeats as long as EAX is less than ten.

When the range iterator increments EAX to 11, the WHILE loop in the iterator terminates and control
falls off the bottom of the iterator. This is how an iterator returns failure to the calling FOREACH loop. At
that point control transfers to the first statement following the ENDFOR in the FOREACH..ENDFOR loop.

By the way, the range iterator, combined with the FOREACH loop above, creates a relatively inefficient
implementation of the following loop:

for(mov(1, eax); eax < 10; inc(eax)) do

stdout.put(“Iteration = “, (type uns32 eax), nl);

endfor;

However, don’t get the impression from this example that iterators are particularly inefficient. Iterators are
not a good choice for something like range. However, there are many iterators you can write that are just as
efficient as other means of loop control and computation.

An important point to remember when using iterators is that the iterator’s activation record remains on
the stack as long as the iterator returns success. The program only removes the activation record when the
iterator fails. For example, the range iterator takes advantage of this fact since it refers to the value of its last
parameter on each re-entry from the FOREACH loop. The fact that parameters and local (automatic) vari-
ables maintain their values for the duration of the FOREACH loop is very important to many algorithms that
use iterators, especially recursive algorithms.

One side effect of having an iterator maintain its activation record until it fails is that the value of ESP
changes considerably between the statement immediately before the FOREACH statement and the first
statement in the body of the FOREACH loop. This is because the program “pushes” the activation record
onto the stack upon encountering the FOREACH loop and doesn’t “pop” this activation record off the stack
until the FOREACH loop fails. Therefore, code like the following will not work as expected:

pushd(10);
foreach range(1, 25) do

pop(ebx);
push(ebx);
stdout.put(“eax=”, eax, “ ebx=”, ebx, nl);

14. In fact, this is exactly how HLA implements iterators and the FOREACH loop. See the chapter on Advanced Procedures
for more details.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 819

Chapter Three Volume Four
endfor;
pop(ebx);

The problem with this code is that the FOREACH loop pushes a whole lot of data onto the stack after
the PUSHD instruction pushes the value 10 onto the stack. Therefore, the POP instruction inside the loop
does not pop the value 10 from the stack. Instead, it pops some data pushed on the stack by the iterator (spe-
cifically, it pops the return address that transfers control to the first instruction following the yield call).
Therefore, you cannot use the stack to transfer data into or out of a FOREACH loop15.

Another problem with the stack and the FOREACH loop occurs if you try to prematurely exit a
FOREACH loop before the iterator returns failure. Whenever an iterator fails, it cleans up the stack and
restores ESP to the value it had upon encountering the FOREACH statement. However, statements like
BREAK, BREAKIF, EXIT, EXITIF, JMP and any other flow of control transfer instructions will not clean
up the stack if they transfer control out of a FOREACH loop. For example, the following code will leave the
activation record for the range iterator sitting on the stack:

foreach range(2, 5) do

jmp ExitFor;

endfor;
ExitFor:

Depending on the iterator and the code that calls the iterator, prematurely exiting a FOREACH loop
without having the iterator return failure and leaving this junk sitting on the stack may have an adverse effect
on the operation of your program. Clearly if you’ve pushed data onto the stack prior to the FOREACH loop,
you will not be able to pop that data off unless you manually clean up the stack yourself (this involves saving
the value of ESP prior to the FOREACH statement and restoring this value at the ExitFor label, above).
Also, don’t forget that prematurely exiting a FOREACH loop without letting the iterator finish may wind up
grabbing some system resources that the iterator would normally free just before returning failure (e.g., call-
ing free and closing files).

The Volume on Advanced Procedures will go into the details concerning the low-level implementation
of iterators. Until then, keep in mind that iterators build their activation records differently than standard
procedures. Until you read that chapter, you should not attempt to call an iterator directly (i.e., outside a
FOREACH loop) nor should you use the “noframe” option with an iterator. See the chapter on Advanced
Procedures for more details on the implementation of iterators.

3.13 Sample Programs

This section presents two sample programs. The first demonstrates the use of iterators using a fibonacci
number iterator. The second demonstrates the use of procedural parameters.

3.13.1 Generating the Fibonacci Sequence Using an Iterator

The following program generates the Fibonacci sequence f1, f2, f3, ..., fcount where count is a parameter.
This simple example displays all the fibonacci numbers the iterator generates.

program iterDemo;
#include("stdlib.hhf")

 // Basic (recursive version) algorithm for
 // the fibonacci sequence.

15. Not that it’s a good idea to transfer data into or out of any loop using the stack. Such code tends to have lots of errors due
to extra pushes or pops appearing in the program.
Page 820 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
 //
 // int fib(int N)
 // {
 // if(N<=2)
 // return 1;
 // else
 // return fib(N-1) + fib(N-2)
 // }
 //
 // Iterator (iterative) that computes all the fibonacci
 // numbers between fib(1) and fib(count).

 iterator fib(count:uns32); nodisplay;
 var
 lastVal: uns32;
 BeforeLastVal: uns32;

 begin fib;

 if(count > 0) then

 mov(0, BeforeLastVal);
 mov(1, eax);
 mov(eax, lastVal);

 // Handle fib(1) as a special case.

 yield();
 dec(count);

 // Okay, handle fib(2)..fib(count) here.

 while(@nz) do

 // Compute fib(n) = fib(n-1) + fib(n-2).
 // and then copy fib(n-1) {lastVal} to
 // fib(n-2) {BeforeLastVal} and store the
 // current result into lastVal so we'll
 // have the n-1 and n-2 values on the next
 // call.

 mov(lastVal, eax);
 add(BeforeLastVal, eax);
 mov(lastVal, BeforeLastVal);
 mov(eax, lastVal);

 // Yield fib(n) to the FOREACH loop.

 yield();

 // Repeat this iterator the specified number
 // of times.

 dec(count);

 endwhile;

 endif;

 end fib;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 821

Chapter Three Volume Four

static
 iteration:uns32;

begin iterDemo;

 // Display the fibonacci sequence for the first
 // ten fibonacci numbers.

 mov(1, iteration);
 foreach fib(10) do

 stdout.put("fib(", iteration, ") = ", (type uns32 eax), nl);
 inc(iteration);

 endfor;

end iterDemo;

3.13.2 Outer Product Computation with Procedural Parameters

The following program generates an addition table, a subtraction table, or a multiplication table based
on user inputs. These tables are computed using an outer product calculation and procedural parameters.
An outer product is simply the process of computing all the values for the elements of a matrix by using the
row and column indices as inputs to some function (e.g., addition, subtraction, or multiplication).

program funcTable;
#include("stdlib.hhf")

static
 size: uns32;
 ftbl: array.dArray(uns32, 2);

 // GenerateTable-
 //
 // This function computes the "Outer Product". That is,
 // take the cartesian product of the indices into
 // the rows and columns of this array [(0,0), (0,1), ... (0,size-1),
 // (1,0), (1,1), ..., (size-1,size-1)], then feed the left and
 // right values of each coordinate to the "func" procedure passed
 // as a parameter. Whatever result the function returns, store that
 // into element (l,r) of the ftbl array.

 procedure GenerateTable(func:procedure(l:uns32; r:uns32)); nodisplay;
 begin GenerateTable;

 push(eax);
 push(ebx);
 push(ecx);
 push(edi);

 for(mov(0, ebx); ebx < size; inc(ebx)) do

 for(mov(0, ecx); ecx < size; inc(ecx)) do

 array.index(edi, ftbl, ebx, ecx);
 func(ebx, ecx);
Page 822 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
 mov(eax, [edi]);

 endfor;

 endfor;

 pop(edi);
 pop(ecx);
 pop(ebx);
 pop(eax);

 end GenerateTable;

 // The following functions compute the various
 // values used to fill the table (obviously,
 // "+" = addFunc, "-" = subFunc, and "*" = mulFunc).

 procedure addFunc(left:uns32; right:uns32); nodisplay;
 begin addFunc;

 mov(left, eax);
 add(right, eax);

 end addFunc;

 procedure subFunc(left:uns32; right:uns32); nodisplay;
 begin subFunc;

 mov(left, eax);
 sub(right, eax);

 end subFunc;

 procedure mulFunc(left:uns32; right:uns32); nodisplay;
 begin mulFunc;

 mov(left, eax);
 intmul(right, eax);

 end mulFunc;

begin funcTable;

 stdout.put("Function table generator: " nl);
 stdout.put("------------------------- " nl nl);

 // Get the size of the function table from the user:

 forever

 try

 stdout.put("Enter the size of the matrix: ");
 stdin.getu32();
 bound(eax, 1, 20);
 unprotected break;

 exception(ex.ConversionError)
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 823

Chapter Three Volume Four

 stdout.put("Illegal character, re-enter" nl);

 exception(ex.ValueOutOfRange)

 stdout.put("Value out of range (1..20), please re-enter" nl);

 exception(ex.BoundInstr)

 stdout.put("Value out of range (1..20), please re-enter" nl);

 endtry;

 endfor;

 // Allocate storage for the function table:

 mov(eax, size);
 array.daAlloc(ftbl, size, size);

 // Get the function from the user:

 stdout.put("What type of table do you want to generate?" nl nl);
 stdout.put("+) Addition" nl);
 stdout.put("-) Subtraction" nl);
 stdout.put("*) Multiplication" nl);
 stdout.newln();
 repeat

 stdout.put("Choice? (+, -, *): ");
 stdin.FlushInput();
 stdin.getc();

 until(al in {'+', '-', '*'});

 // Fill in the entries in the table:

 if(al = '+') then

 GenerateTable(&addFunc);

 elseif(al = '-') then

 GenerateTable(&subFunc);

 elseif(al = '*') then

 GenerateTable(&mulFunc);

 endif;

 // Display the column labels across the top:

 stdout.put(nl nl " ");
 for(mov(0, ebx); ebx < size; inc(ebx)) do

 stdout.put((type uns32 ebx):5);

 endfor;
Page 824 © 2001, By Randall Hyde Version: 7/4/01

Intermediate Procedures
 stdout.newln();
 stdout.put(" ");
 for(mov(0, ebx); ebx < size; inc(ebx)) do

 stdout.put("-----");

 endfor;
 stdout.newln();

 // Display the row labels and fill in the table.
 // Note that this code prints the result as int32
 // rather than uns32 because the subFunc function
 // returns negative values.

 for(mov(0, ebx); ebx < size; inc(ebx)) do

 stdout.put((type uns32 ebx):4, ": ");
 for(mov(0, ecx); ecx < size; inc(ecx)) do

 array.index(edi, ftbl, ebx, ecx);
 stdout.puti32size([edi], 5, ' ');

 endfor;
 stdout.newln();

 endfor;

end funcTable;

3.14 Putting It All Together

In this chapter you saw the low level implementation of procedures and calls to procedures. You learned
more about passing parameters by value and reference and you also learned a little more about local vari-
ables. This chapter discussed activations records and HLA procedure options. Finally, this chapter wraps up
with a discussion of iterators and the FOREACH loop

Your journey through procedures is hardly complete, however. The next volume presents new ways to
pass parameters, discusses nested procedures, and explains the low-level implementation of iterators. For
more details, see the next volume in this series.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 825

Chapter Three Volume Four
Page 826 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
Advanced Arithmetic Chapter Four

4.1 Chapter Overview

This chapter deals with those arithmetic operations for which assembly language is especially well
suited and high level languages are, in general, poorly suited. It covers three main topics: extended precision
arithmetic, arithmetic on operands who sizes are different, and decimal arithmetic.

By far, the most extensive subject this chapter covers is multi-precision arithmetic. By the conclusion of
this chapter you will know how to apply arithmetic and logical operations to integer operands of any size. If
you need to work with integer values outside the range ±2 billion (or with unsigned values beyond four bil-
lion), no sweat; this chapter will show you how to get the job done.

Operands whose sizes are not the same also present some special problems in arithmetic operations.
For example, you may want to add a 128-bit unsigned integer to a 256-bit signed integer value. This chapter
discusses how to convert these two operands to a compatible format so the operation may proceed.

Finally, this chapter discusses decimal arithmetic using the BCD (binary coded decimal) features of the
80x86 instruction set and the FPU. This lets you use decimal arithmetic in those few applications that abso-
lutely require base 10 operations (rather than binary).

4.2 Multiprecision Operations

One big advantage of assembly language over high level languages is that assembly language does not
limit the size of integer operations. For example, the C programming language defines a maximum of three
different integer sizes: short int, int, and long int. On the PC, these are often 16 or 32 bit integers. Although
the 80x86 machine instructions limit you to processing eight, sixteen, or thirty-two bit integers with a single
instruction, you can always use more than one instruction to process integers of any size you desire. If you
want to add 256 bit integer values together, no problem, it’s relatively easy to accomplish this in assembly
language. The following sections describe how extended various arithmetic and logical operations from 16
or 32 bits to as many bits as you please.

4.2.1 Multiprecision Addition Operations

The 80x86 ADD instruction adds two eight, sixteen, or thirty-two bit numbers1. After the execution of
the add instruction, the 80x86 carry flag is set if there is an overflow out of the H.O. bit of the sum. You can
use this information to do multiprecision addition operations. Consider the way you manually perform a
multidigit (multiprecision) addition operation:

Step 1: Add the least significant digits together:

 289 289
+456 produces +456
---- ----

 5 with carry 1.

Step 2: Add the next significant digits plus the carry:

 1 (previous carry)
 289 289
+456 produces +456
---- ----

1. As usual, 32 bit arithmetic is available only on the 80386 and later processors.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 827

Chapter Four Volume Four
 5 45 with carry 1.

Step 3: Add the most significant digits plus the carry:

 1 (previous carry)
 289 289
+456 produces +456
---- ----
 45 745

 The 80x86 handles extended precision arithmetic in an identical fashion, except instead of adding the
numbers a digit at a time, it adds them together a byte, word, or dword at a time. Consider the three double
word (96 bit) addition operation in Figure 4.1.

Figure 4.1 Adding Two 96-bit Objects Together

As you can see from this figure, the idea is to break up a larger operation into a sequence of smaller
operations. Since the x86 processor family is capable of adding together, at most, 32 bits at a time, the oper-
ation must proceed in blocks of 32-bits or less. So the first step is to add the two L.O. double words together
much as we would add the two L.O. digits of a decimal number together in the manual algorithm. There is
nothing special about this operation, you can use the ADD instruction to achieve this.

The second step involves adding together the second pair of double words in the two 96-bit values.
Note that in step two, the calculation must also add in the carry out of the previous addition (if any). If there
was a carry out of the L.O. addition, the ADD instruction sets the carry flag to one; conversely, if there was
no carry out of the L.O. addition, the earlier ADD instruction clears the carry flag. Therefore, in this second

Step 1: Add the least significant words together:

Step 2: Add the middle words together:

(plus carry, if any)

C

Step 3: Add the most significant words together:

(plus carry, if any)

C

Page 828 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
addition, we really need to compute the sum of the two double words plus the carry out of the first instruc-
tion. Fortunately, the x86 chips provide an instruction that does exactly this: the ADC (add with carry)
instruction. The ADC instruction uses the same syntax as the ADD instruction and performs almost the
same operation:

adc(source, dest); // dest := dest + source + C

As you can see, the only difference between the ADD and ADC instruction is that the ADC instruction adds
in the value of the carry flag along with the source and destination operands. It also sets the flags the same
way the ADD instruction does (including setting the carry flag if there is an unsigned overflow). This is
exactly what we need to add together the middle two double words of our 96-bit sum.

In step three of Figure 4.1, the algorithm adds together the H.O. double words of the 96-bit value. Once
again, this addition operation also requires the addition of the carry out of the sum of the middle two double
words; hence the ADC instruction is needed here, as well. To sum it up, the ADD instruction adds the L.O.
double words together. The ADC (add with carry) instruction adds all other double word pairs together. At
the end of the extended precision addition sequence, the carry flag indicates unsigned overflow (if set), a set
overflow flag indicates signed overflow, and the sign flag indicates the sign of the result. The zero flag
doesn’t have any real meaning at the end of the extended precision addition (it simply means that the sum of
the H.O. two double words is zero, this does not indicate that the whole result is zero).

For example, suppose that you have two 64-bit values you wish to add together, defined as follows:

static
X: qword;
Y: qword;

Suppose, also, that you want to store the sum in a third variable, Z, that is likewise defined with the qword
directive. The following x86 code will accomplish this task:

mov((type dword X), eax); // Add together the L.O. 32 bits
add((type dword Y), eax); // of the numbers and store the
mov(eax, (type dword Z)); // result into the L.O. dword of Z.

mov((type dword X[4]), eax); // Add together (with carry) the
adc((type dword Y[4]), eax); // H.O. 32 bits and store the result
mov(eax, (type dword Z[4])); // into the H.O. dword of Z.

Remember, these variables are declared with the qword directive. Therefore the compiler will not accept
an instruction of the form "mov(X, eax);" because this instruction would attempt to load a 64 bit value into
a 32 bit register. Therefore this code uses the coercion operator to coerce symbols X, Y, and Z to 32 bits. The
first three instructions add the L.O. double words of X and Y together and store the result at the L.O. double
word of Z. The last three instructions add the H.O. double words of X and Y together, along with the carry out
of the L.O. word, and store the result in the H.O. double word of Z. Remember, address expressions of the
form “X[4]” access the H.O. double word of a 64 bit entity. This is due to the fact that the x86 address space
addresses bytes and it takes four consecutive bytes to form a double word.

You can extend this to any number of bits by using the ADC instruction to add in the higher order words
in the values. For example, to add together two 128 bit values, you could use code that looks something like
the following:

type
tBig: dword[4]; // Storage for four dwords is 128 bits.

static
BigVal1: tBig;
BigVal2: tBig;
BigVal3: tBig;
 .
 .
 .
mov(BigVal1[0], eax); // Note there is no need for (type dword BigValx)
add(BigVal2[0], eax); // because the base type of BitValx is dword.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 829

Chapter Four Volume Four
mov(eax, BigVal3[0]);

mov(BigVal1[4], eax);
adc(BigVal2[4], eax);
mov(eax, BigVal3[4]);

mov(BigVal1[8], eax);
adc(BigVal2[8], eax);
mov(eax, BigVal3[8]);

mov(BigVal1[12], eax);
adc(BigVal2[12], eax);
mov(eax, BigVal3[12]);

4.2.2 Multiprecision Subtraction Operations

Like addition, the 80x86 performs multi-byte subtraction the same way you would manually, except it
subtracts whole bytes, words, or double words at a time rather than decimal digits. The mechanism is similar
to that for the ADD operation, You use the SUB instruction on the L.O. byte/word/double word and the SBB
(subtract with borrow) instruction on the high order values. The following example demonstrates a 64 bit
subtraction using the 32 bit registers on the x86:

static
Left: qword;
Right: qword;
Diff: qword;

 .
 .
 .

mov((type dword Left), eax);
sub((type dword Right), eax);
mov(eax, (type dword Diff));

mov((type dword Left[4]), eax);
sbb((type dword Right[4]), eax);
mov((type dword Diff[4]), eax);

The following example demonstrates a 128-bit subtraction:

type
tBig: dword[4]; // Storage for four dwords is 128 bits.

static
BigVal1: tBig;
BigVal2: tBig;
BigVal3: tBig;
 .
 .
 .

// Compute BigVal3 := BigVal1 - BigVal2

mov(BigVal1[0], eax); // Note there is no need for (type dword BigValx)
sub(BigVal2[0], eax); // because the base type of BitValx is dword.
mov(eax, BigVal3[0]);

mov(BigVal1[4], eax);
sbb(BigVal2[4], eax);
mov(eax, BigVal3[4]);
Page 830 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
mov(BigVal1[8], eax);
sbb(BigVal2[8], eax);
mov(eax, BigVal3[8]);

mov(BigVal1[12], eax);
sbb(BigVal2[12], eax);
mov(eax, BigVal3[12]);

4.2.3 Extended Precision Comparisons

Unfortunately, there isn’t a “compare with borrow” instruction that can be used to perform extended
precision comparisons. Since the CMP and SUB instructions perform the same operation, at least as far as
the flags are concerned, you’d probably guess that you could use the SBB instruction to synthesize an
extended precision comparison; however, you’d only be partly right. There is, however, a better way.

Consider the two unsigned values $2157 and $1293. The L.O. bytes of these two values do not affect the
outcome of the comparison. Simply comparing $21 with $12 tells us that the first value is greater than the
second. In fact, the only time you ever need to look at both bytes of these values is if the H.O. bytes are
equal. In all other cases comparing the H.O. bytes tells you everything you need to know about the values.
Of course, this is true for any number of bytes, not just two. The following code compares two signed 64 bit
integers:

// This sequence transfers control to location “IsGreater” if
// QwordValue > QwordValue2. It transfers control to “IsLess” if
// QwordValue < QwordValue2. It falls though to the instruction
// following this sequence if QwordValue = QwordValue2. To test for
// inequality, change the “IsGreater” and “IsLess” operands to “NotEqual”
// in this code.

mov((type dword QWordValue[4]), eax); // Get H.O. dword
cmp(eax, (type dword QWordValue2[4]));
jg IsGreater;
jl IsLess;

mov((type dword QWordValue[0]), eax); // If H.O. dwords were equal,
cmp(eax, (type dword QWordValue2[0])); // then we must compare the
jg IsGreater; // L.O. dwords.
jl IsLess;

// Fall through to this point if the two values were equal.

To compare unsigned values, simply use the JA and JB instructions in place of JG and JL.

You can easily synthesize any possible comparison from the sequence above, the following examples
show how to do this. These examples demonstrate signed comparisons, substitute JA, JAE, JB, and JBE for
JG, JGE, JL, and JLE (respectively) if you want unsigned comparisons.

static
QW1: qword;
QW2: qword;

const
QW1d: text := "(type dword QW1)";
QW2d: text := "(type dword QW2)";

// 64 bit test to see if QW1 < QW2 (signed).
// Control transfers to “IsLess” label if QW1 < QW2. Control falls
// through to the next statement if this is not true.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 831

Chapter Four Volume Four
mov(QW1d[4], eax); // Get H.O. dword
cmp(eax, QW2d[4]);
jg NotLess;
jl IsLess;

mov(QW1d[0], eax); // Fall through to here if the H.O. dwords are equal.
cmp(eax, QW2d[0]);
jl IsLess;

NotLess:

// 64 bit test to see if QW1 <= QW2 (signed). Jumps to "IsLessEq" if the
// condition is true.

mov(QW1d[4], eax); // Get H.O. dword
cmp(eax, QW2d[4]);
jg NotLessEQ;
jl IsLessEQ;

mov(QW1d[0], eax); // Fall through to here if the H.O. dwords are equal.
cmp(eax, QW2d[0]);
jle IsLessEQ;

NotLessEQ:

// 64 bit test to see if QW1 > QW2 (signed). Jumps to "IsGtr" if this condition
// is true.

mov(QW1d[4], eax); // Get H.O. dword
cmp(eax, QW2d[4]);
jg IsGtr;
jl NotGtr;

mov(QW1d[0], eax); // Fall through to here if the H.O. dwords are equal.
cmp(eax, QW2d[0]);
jg IsGtr;

NotGtr:

// 64 bit test to see if QW1 >= QW2 (signed). Jumps to "IsGtrEQ" if this
// is the case.

mov(QW1d[4], eax); // Get H.O. dword
cmp(eax, QW2d[4]);
jg IsGtrEQ;
jl NotGtrEQ;

mov(QW1d[0], eax); // Fall through to here if the H.O. dwords are equal.
cmp(eax, QW2d[0]);
jge IsGtrEQ;

NotGtrEQ:

// 64 bit test to see if QW1 = QW2 (signed or unsigned). This code branches
// to the label “IsEqual” if QW1 = QW2. It falls through to the next instruction
// if they are not equal.

mov(QW1d[4], eax); // Get H.O. dword
cmp(eax, QW2d[4]);
jne NotEqual;

mov(QW1d[0], eax); // Fall through to here if the H.O. dwords are equal.
Page 832 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
cmp(eax, QW2d[0]);
je IsEqual;

NotEqual:

// 64 bit test to see if QW1 <> QW2 (signed or unsigned). This code branches
// to the label “NotEqual” if QW1 <> QW2. It falls through to the next
// instruction if they are equal.

mov(QW1d[4], eax); // Get H.O. dword
cmp(eax, QW2d[4]);
jne NotEqual;

mov(QW1d[0], eax); // Fall through to here if the H.O. dwords are equal.
cmp(eax, QW2d[0]);
jne NotEqual;

// Fall through to this point if they are equal.

You cannot directly use the HLA high level control structures if you need to perform an extended preci-
sion comparison. However, you may use the HLA hybrid control structures and bury the appropriate com-
parison into this statements. Doing so will probably make your code easier to read. For example, the
following if..then..else..endif statement checks to see if QW1 > QW2 using a 64-bit extended precision
unsigned comparison:

if
(#{

mov(QW1d[4], eax);
cmp(eax, QW2d[4]);
jg true;

mov(QW1d[0], eax);
cmp(eax, QW2d[0]);
jng false;

}#) then

<< code to execute if QW1 > QW2 >>

else

<< code to execute if QW1 <= QW2 >>

endif;

If you need to compare objects that are larger than 64 bits, it is very easy to generalize the code above.
Always start the comparison with the H.O. double words of the objects and work you way down towards the
L.O. double words of the objects as long as the corresponding double words are equal The following exam-
ple compares two 128-bit values to see if the first is less than or equal (unsigned) to the second:

type
t128: dword[4];

static
Big1: t128;
Big2: t128;
 .
 .
 .
if
(#{

mov(Big1[12], eax);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 833

Chapter Four Volume Four
cmp(eax, Big2[12]);
jb true;
mov(Big1[8], eax);
cmp(eax, Big2[8]);
jb true;
mov(Big1[4], eax);
cmp(eax, Big2[4]);
jb true;
mov(Big1[0], eax);
cmp(eax, Big2[0]);
jnbe false;

}#) then

<< Code to execute if Big1 <= Big2 >>

else

<< Code to execute if Big1 > Big2 >>

endif;

4.2.4 Extended Precision Multiplication

Although a 16x16 or 32x32 multiply is usually sufficient, there are times when you may want to multi-
ply larger values together. You will use the x86 single operand MUL and IMUL instructions for extended
precision multiplication.

Not surprisingly (in view of how we achieved extended precision addition using ADC and SBB), you
use the same techniques to perform extended precision multiplication on the x86 that you employ when
manually multiplying two values. Consider a simplified form of the way you perform multi-digit multiplica-
tion by hand:

 1) Multiply the first two 2) Multiply 5*2:
 digits together (5*3):

 123 123
 45 45
 --- ---
 15 15
 10

 3) Multiply 5*1: 4) Multiply 4*3:

 123 123
 45 45
 --- ---
 15 15
 10 10
 5 5
 12
Page 834 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
 5) Multiply 4*2: 6) Multiply 4*1:

 123 123
 45 45
 --- ---
 15 15
 10 10
 5 5
 12 12
 8 8
 4

 7) Add all the partial products together:

 123
 45

 15
 10
 5
 12
 8
 4

 5535

 The 80x86 does extended precision multiplication in the same manner except that it works
with bytes, words, and double words rather than digits. Figure 4.2 shows how this works

A B
C D

D * B

1) Multiply the L.O. words 2) Multiply D * A

A B
C D

D * B
D * A

A B

D * B
D * A
C * B

3) Multiply C times B 4) Multiply C * A

C D
A B
C DC D

D * B
D * A
C * B

C * A
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 835

Chapter Four Volume Four
Figure 4.2 Extended Precision Multiplication

Probably the most important thing to remember when performing an extended precision multiplication
is that you must also perform a multiple precision addition at the same time. Adding up all the partial prod-
ucts requires several additions that will produce the result. The following listing demonstrates the proper
way to multiply two 64 bit values on a 32 bit processor:

Note: Multiplier and Multiplicand are 64 bit variables declared in the data segment via the qword type.
Product is a 128 bit variable declared in the data segment via the qword[2] type.

program testMUL64;
#include("stdlib.hhf")

type
 t128:dword[4];

procedure MUL64(Multiplier:qword; Multiplicand:qword; var Product:t128);
const
 mp: text := "(type dword Multiplier)";
 mc: text := "(type dword Multiplicand)";
 prd:text := "(type dword [edi])";

begin MUL64;

 mov(Product, edi);

 // Multiply the L.O. dword of Multiplier times Multiplicand.

 mov(mp, eax);
 mul(mc, eax); // Multiply L.O. dwords.
 mov(eax, prd); // Save L.O. dword of product.
 mov(edx, ecx); // Save H.O. dword of partial product result.

 mov(mp, eax);
 mul(mc[4], eax); // Multiply mp(L.O.) * mc(H.O.)
 add(ecx, eax); // Add to the partial product.
 adc(0, edx); // Don't forget the carry!
 mov(eax, ebx); // Save partial product for now.

A B
C DC D

D * B
D * A
C * B

C * A

5) Compute sum of partial products

AB * CB
Page 836 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
 mov(edx, ecx);

 // Multiply the H.O. word of Multiplier with Multiplicand.

 mov(mp[4], eax); // Get H.O. dword of Multiplier.
 mul(mc, eax); // Multiply by L.O. word of Multiplicand.
 add(ebx, eax); // Add to the partial product.
 mov(eax, prd[4]); // Save the partial product.
 adc(edx, ecx); // Add in the carry!

 mov(mp[4], eax); // Multiply the two H.O. dwords together.
 mul(mc[4], eax);
 add(ecx, eax); // Add in partial product.
 adc(0, edx); // Don't forget the carry!
 mov(eax, prd[8]); // Save the partial product.
 mov(edx, prd[12]);

end MUL64;

static
 op1: qword;
 op2: qword;
 rslt: t128;

begin testMUL64;

 // Initialize the qword values (note that static objects
 // are initialized with zero bits).

 mov(1234, (type dword op1));
 mov(5678, (type dword op2));
 MUL64(op1, op2, rslt);

 // The following only prints the L.O. qword, but
 // we know the H.O. qword is zero so this is okay.

 stdout.put("rslt=");
 stdout.putu64((type qword rslt));

end testMUL64;

Program 4.1 Extended Precision Multiplication

 One thing you must keep in mind concerning this code, it only works for unsigned operands. To multi-
ply two signed values you must note the signs of the operands before the multiplication, take the absolute
value of the two operands, do an unsigned multiplication, and then adjust the sign of the resulting product
based on the signs of the original operands. Multiplication of signed operands appears in the exercises.

This example was fairly straight-forward since it was possible to keep the partial products in various
registers. If you need to multiply larger values together, you will need to maintain the partial products in
temporary (memory) variables. Other than that, the algorithm that Program 4.1 uses generalizes to any num-
ber of double words.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 837

Chapter Four Volume Four
4.2.5 Extended Precision Division

You cannot synthesize a general n-bit/m-bit division operation using the DIV and IDIV instructions.
Such an operation must be performed using a sequence of shift and subtract instructions and is extremely
messy. However, a less general operation, dividing an n-bit quantity by a 32 bit quantity is easily synthesized
using the DIV instruction. This section presents both methods for extended precision division.

Before describing how to perform a multi-precision division operation, you should note that some oper-
ations require an extended precision division even though they may look calculable with a single DIV or
IDIV instruction. Dividing a 64-bit quantity by a 32-bit quantity is easy, as long as the resulting quotient fits
into 32 bits. The DIV and IDIV instructions will handle this directly. However, if the quotient does not fit
into 32 bits then you have to handle this problem as an extended precision division. The following sequence
will accomplish this for you:

static
dividend: dword[2] := [$1234, 4]; // = $4_0000_1234.
divisor: dword := 2; // dividend/divisor = $2_0000_091A
quotient: dword[2];
remainder:dword;
 .
 .
 .
mov(divisor, ebx);
mov(dividend[4], eax);
xor(edx, edx); // Zero extend for unsigned division.
div(ebx, edx:eax);
mov(eax, quotient[4]); // Save H.O. dword of the quotient (2).
mov(dividend[0], eax); // Note that this code does *NOT* zero extend
div(ebx, edx:eax); // EAX into EDX before this DIV instr.
mov(eax, quotient[0]); // Save L.O. dword of the quotient ($91a).
mov(edx, remainder); // Save away the remainder.

Since it is perfectly legal to divide a value by one, it is certainly possible that the resulting quotient after
a division could require as many bits as the dividend. That is why the quotient variable in this example is the
same size (64 bits) as the dividend variable. Regardless of the size of the dividend and divisor operands, the
remainder is always no larger than the size of the division operation (32 bits in this case). Hence the remain-
der variable in this example is just a double word.

Before analyzing this code to see how it works, let’s take a brief look at why a single 64/32 division will
not work for this particular example even though the DIV instruction does indeed calculate the result for a
64/32 division. The naive approach, assuming that the x86 is capable of this operation, would look some-
thing like the following:

// This code does *NOT* work!

mov(dividend[0], eax); // Get dividend into edx:eax
mov(divident[4], edx);
div(divisor, edx:eax); // Divide edx:eax by divisor.

Although this code is syntactically correct and will compile, if you attempt to run this code it will raise
an ex.DivideError2 exception. The reason, if you’ll remember how the DIV instruction works, is that the
quotient must fit into 32 bits; since the quotient turns out to be $2_0000_091A, it will not fit into the EAX
register, hence the resulting exception.

Now let’s take another look at the former code that correctly computes the 64/32 quotient. This code
begins by computing the 32/32 quotient of dividend[4]/divisor. The quotient from this division (2) becomes
the H.O. double word of the final quotient. The remainder from this division (0) becomes the extension in
EDX for the second half of the division operation. The second half divides edx:dividend[0] by divisor to

2. Windows may translate this to an ex.IntoInstr exception.
Page 838 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
produce the L.O. double word of the quotient and the remainder from the division. Note that the code does
not zero extend EAX into EDX prior to the second DIV instruction. EDX already contains valid bits and
this code must not disturb them.

The 64/32 division operation above is actually just a special case of the more general division operation
that lets you divide an arbitrary sized value by a 32-bit divisor. To achieve this, you begin by moving the
H.O. double word of the dividend into EAX and zero extending this into EDX. Next, you divide this value
by the divisor. Then, without modifying EDX along the way, you store away the partial quotients, load EAX
with the next lower double word in the dividend, and divide it by the divisor. You repeat this operation until
you’ve processed all the double words in the dividend. At that time the EDX register will contain the
remainder. The following program demonstrates how to divide a 128 bit quantity by a 32 bit divisor, produc-
ing a 128 bit quotient and a 32 bit remainder:

program testDiv128;
#include("stdlib.hhf")

type
 t128:dword[4];

procedure div128
(
 Dividend: t128;
 Divisor: dword;
 var QuotAdrs: t128;
 var Remainder: dword
); nodisplay;

const
 Quotient: text := "(type dword [edi])";

begin div128;

 push(eax);
 push(edx);
 push(edi);

 mov(QuotAdrs, edi); // Pointer to quotient storage.

 mov(Dividend[12], eax); // Begin division with the H.O. dword.
 xor(edx, edx); // Zero extend into EDX.
 div(Divisor, edx:eax); // Divide H.O. dword.
 mov(eax, Quotient[12]); // Store away H.O. dword of quotient.

 mov(Dividend[8], eax); // Get dword #2 from the dividend
 div(Divisor, edx:eax); // Continue the division.
 mov(eax, Quotient[8]); // Store away dword #2 of the quotient.

 mov(Dividend[4], eax); // Get dword #1 from the dividend.
 div(Divisor, edx:eax); // Continue the division.
 mov(eax, Quotient[4]); // Store away dword #1 of the quotient.

 mov(Dividend[0], eax); // Get the L.O. dword of the dividend.
 div(Divisor, edx:eax); // Finish the division.
 mov(eax, Quotient[0]); // Store away the L.O. dword of the quotient.

 mov(Remainder, edi); // Get the pointer to the remainder's value.
 mov(edx, [edi]); // Store away the remainder value.

 pop(edi);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 839

Chapter Four Volume Four
 pop(edx);
 pop(eax);

end div128;

static
 op1: t128 := [$2222_2221, $4444_4444, $6666_6666, $8888_8888];
 op2: dword := 2;
 quo: t128;
 rmndr: dword;

begin testDiv128;

 div128(op1, op2, quo, rmndr);

 stdout.put
 (
 nl
 nl
 "After the division: " nl
 nl
 "Quotient = $",
 quo[12], "_",
 quo[8], "_",
 quo[4], "_",
 quo[0], nl

 "Remainder = ", (type uns32 rmndr)
);

end testDiv128;

Program 4.2 Unsigned 128/32 Bit Extended Precision Division

You can extend this code to any number of bits by simply adding additional MOV / DIV / MOV
instructions to the sequence. Like the extended multiplication the previous section presents, this extended
precision division algorithm works only for unsigned operands. If you need to divide two signed quantities,
you must note their signs, take their absolute values, do the unsigned division, and then set the sign of the
result based on the signs of the operands.

If you need to use a divisor larger than 32 bits you’re going to have to implement the division using a
shift and subtract strategy. Unfortunately, such algorithms are very slow. In this section we’ll develop two
division algorithms that operate on an arbitrary number of bits. The first is slow but easier to understand, the
second is quite a bit faster (in general).

As for multiplication, the best way to understand how the computer performs division is to study how
you were taught to perform long division by hand. Consider the operation 3456/12 and the steps you would
take to manually perform this operation:
Page 840 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
Figure 4.3 Manual Digit-by-digit Division Operation

This algorithm is actually easier in binary since at each step you do not have to guess how
many times 12 goes into the remainder nor do you have to multiply 12 by your guess to obtain the
amount to subtract. At each step in the binary algorithm the divisor goes into the remainder exactly
zero or one times. As an example, consider the division of 27 (11011) by three (11):

 2
12 3456
 24
 105

(2) Subtract 24 from 35
and drop down the
105.

12 3456
 24

(1) 12 goes into 34 two times.

 28
12 3456
 24
 105
 96
 96

(4) Subtract 96 from 105
and drop down the 96.

(3) 12 goes into 105
 eight times.

 2
12 3456
 24
 105
 96

 288
12 3456
 24
 105
 96
 96
 96

(6) Therefore, 12
goes into 3456
exactly 288 times.

(5) 12 goes into 96
 exactly eight times.

 28
12 3456
 24
 105
 96
 96
 96

11 11011
 11

11 goes into 11 one time.

11 11011
 11
 00

Subtract out the 11 and bring down the zero.

1

11 11011
 11
 00
 00

11 goes into 00 zero times.

1

11 11011
 11
 00
 00
 01

Subtract out the zero and bring down the one.

10
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 841

Chapter Four Volume Four
Figure 4.4 Longhand Division in Binary

There is a novel way to implement this binary division algorithm that computes the quotient and the
remainder at the same time. The algorithm is the following:

Quotient := Dividend;
Remainder := 0;
for i:= 1 to NumberBits do

Remainder:Quotient := Remainder:Quotient SHL 1;
if Remainder >= Divisor then

Remainder := Remainder - Divisor;
Quotient := Quotient + 1;

endif

11 11011
 11
 00
 00
 01
 00

11 goes into 01 zero times.

10

11 11011
 11
 00
 00
 01
 00
 11

Subtract out the zero and bring down the one.

100

11 11011
 11
 00
 00
 01
 00
 11
 11

11 goes into 11 one time.

100

11 11011
 11
 00
 00
 01
 00
 11
 11
 00

This produces the final result
of 1001.

1001
Page 842 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
endfor

NumberBits is the number of bits in the Remainder, Quotient, Divisor, and Dividend variables. Note that
the "Quotient := Quotient + 1;" statement sets the L.O. bit of Quotient to one since this algorithm previously
shifts Quotient one bit to the left. The following program implements this algorithm

program testDiv128b;
#include("stdlib.hhf")

type
 t128:dword[4];

// div128-
//
// This procedure does a general 128/128 division operation
// using the following algorithm:
// (all variables are assumed to be 128 bit objects)
//
// Quotient := Dividend;
// Remainder := 0;
// for i:= 1 to NumberBits do
//
// Remainder:Quotient := Remainder:Quotient SHL 1;
// if Remainder >= Divisor then
//
// Remainder := Remainder - Divisor;
// Quotient := Quotient + 1;
//
// endif
// endfor
//

procedure div128
(
 Dividend: t128;
 Divisor: t128;
 var QuotAdrs: t128;
 var RmndrAdrs: t128
); nodisplay;

const
 Quotient: text := "Dividend"; // Use the Dividend as the Quotient.

var
 Remainder: t128;

begin div128;

 push(eax);
 push(ecx);
 push(edi);

 mov(0, eax); // Set the remainder to zero.
 mov(eax, Remainder[0]);
 mov(eax, Remainder[4]);
 mov(eax, Remainder[8]);
 mov(eax, Remainder[12]);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 843

Chapter Four Volume Four
 mov(128, ecx); // Count off 128 bits in ECX.
 repeat

 // Compute Remainder:Quotient := Remainder:Quotient SHL 1:

 shl(1, Dividend[0]); // See the section on extended
 rcl(1, Dividend[4]); // precision shifts to see how
 rcl(1, Dividend[8]); // this code shifts 256 bits to
 rcl(1, Dividend[12]); // the left by one bit.
 rcl(1, Remainder[0]);
 rcl(1, Remainder[4]);
 rcl(1, Remainder[8]);
 rcl(1, Remainder[12]);

 // Do a 128-bit comparison to see if the remainder
 // is greater than or equal to the divisor.

 if
 (#{
 mov(Remainder[12], eax);
 cmp(eax, Divisor[12]);
 ja true;
 jb false;

 mov(Remainder[8], eax);
 cmp(eax, Divisor[8]);
 ja true;
 jb false;

 mov(Remainder[4], eax);
 cmp(eax, Divisor[4]);
 ja true;
 jb false;

 mov(Remainder[0], eax);
 cmp(eax, Divisor[0]);
 jb false;
 }#) then

 // Remainder := Remainder - Divisor

 mov(Divisor[0], eax);
 sub(eax, Remainder[0]);

 mov(Divisor[4], eax);
 sbb(eax, Remainder[4]);

 mov(Divisor[8], eax);
 sbb(eax, Remainder[8]);

 mov(Divisor[12], eax);
 sbb(eax, Remainder[12]);

 // Quotient := Quotient + 1;

 add(1, Quotient[0]);
 adc(0, Quotient[4]);
 adc(0, Quotient[8]);
 adc(0, Quotient[12]);

 endif;
Page 844 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
 dec(ecx);

 until(@z);

 // Okay, copy the quotient (left in the Dividend variable)
 // and the remainder to their return locations.

 mov(QuotAdrs, edi);
 mov(Quotient[0], eax);
 mov(eax, [edi]);
 mov(Quotient[4], eax);
 mov(eax, [edi+4]);
 mov(Quotient[8], eax);
 mov(eax, [edi+8]);
 mov(Quotient[12], eax);
 mov(eax, [edi+12]);

 mov(RmndrAdrs, edi);
 mov(Remainder[0], eax);
 mov(eax, [edi]);
 mov(Remainder[4], eax);
 mov(eax, [edi+4]);
 mov(Remainder[8], eax);
 mov(eax, [edi+8]);
 mov(Remainder[12], eax);
 mov(eax, [edi+12]);

 pop(edi);
 pop(ecx);
 pop(eax);

end div128;

// Some simple code to test out the division operation:

static
 op1: t128 := [$2222_2221, $4444_4444, $6666_6666, $8888_8888];
 op2: t128 := [2, 0, 0, 0];
 quo: t128;
 rmndr: t128;

begin testDiv128b;

 div128(op1, op2, quo, rmndr);

 stdout.put
 (
 nl
 nl
 "After the division: " nl
 nl
 "Quotient = $",
 quo[12], "_",
 quo[8], "_",
 quo[4], "_",
 quo[0], nl
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 845

Chapter Four Volume Four

 "Remainder = ", (type uns32 rmndr)
);

end testDiv128b;

Program 4.3 Extended Precision Division

This code looks simple but there are a few problems with it. First, it does not check for division by zero
(it will produce the value $FFFF_FFFF_FFFF_FFFF if you attempt to divide by zero), it only handles
unsigned values, and it is very slow. Handling division by zero is very simple, just check the divisor against
zero prior to running this code and return an appropriate error code if the divisor is zero. Dealing with signed
values is the same as the earlier division algorithm, this problem appears as a programming exercise. The
performance of this algorithm, however, leaves a lot to be desired. It’s around an order of magnitude or two
worse than the DIV/IDIV instructions on the x86 and they are among the slowest instructions on the CPU.

There is a technique you can use to boost the performance of this division by a fair amount: check to see
if the divisor variable uses only 32 bits. Often, even though the divisor is a 128 bit variable, the value itself
fits just fine into 32 bits (i.e., the H.O. double words of Divisor are zero). In this special case, that occurs fre-
quently, you can use the DIV instruction which is much faster.

4.2.6 Extended Precision NEG Operations

Although there are several ways to negate an extended precision value, the shortest way for smaller val-
ues (96 bits or less) is to use a combination of NEG and SBB instructions. This technique uses the fact that
NEG subtracts its operand from zero. In particular, it sets the flags the same way the SUB instruction would
if you subtracted the destination value from zero. This code takes the following form (assuming you want to
negate the 64-bit value in EDX:EAX):

neg(edx);
neg(eax);
sbb(0, edx);

The SBB instruction decrements EDX if there is a borrow out of the L.O. word of the negation opera-
tion (which always occurs unless EAX is zero).

To extend this operation to additional bytes, words, or double words is easy; all you have to do is start
with the H.O. memory location of the object you want to negate and work towards the L.O. byte. The follow-
ing code computes a 128 bit negation:

static
Value: dword[4];
 .
 .
 .
neg(Value[12]); // Negate the H.O. double word.
neg(Value[8]); // Neg previous dword in memory.
sbb(0, Value[12]); // Adjust H.O. dword.

neg(Value[4]); // Negate the second dword in the object.
sbb(0, Value[8]); // Adjust third dword in object.
sbb(0, Value[12]); // Adjust the H.O. dword.

neg(Value); // Negate the L.O. dword.
sbb(0, Value[4]); // Adjust second dword in object.
Page 846 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
sbb(0, Value[8]); // Adjust third dword in object.
sbb(0, Value[12]); // Adjust the H.O. dword.

Unfortunately, this code tends to get really large and slow since you need to propagate the carry through
all the H.O. words after each negate operation. A simpler way to negate larger values is to simply subtract
that value from zero:

static
Value: dword[5]; // 160-bit value.
 .
 .
 .
mov(0, eax);
sub(Value, eax);
mov(eax, Value);

mov(0, eax);
sbb(Value[4], eax);
mov(eax, Value[4]);

mov(0, eax);
sbb(Value[8], eax);
mov(eax, Value[8]);

mov(0, eax);
sbb(Value[12], eax);
mov(eax, Value[12]);

mov(0, eax);
sbb(Value[16], eax);
mov(eax, Value[16]);

4.2.7 Extended Precision AND Operations

Performing an n-byte AND operation is very easy – simply AND the corresponding bytes between the
two operands, saving the result. For example, to perform the AND operation where all three operands are 64
bits long, you could use the following code:

mov((type dword source1), eax);
and((type dword source2), eax);
mov(eax, (type dword dest));

mov((type dword source1[4]), eax);
and((type dword source2[4]), eax);
mov(eax, (type dword dest[4]));

This technique easily extends to any number of words, all you need to is logically AND the correspond-
ing bytes, words, or double words together in the operands. Note that this sequence sets the flags according
to the value of the last AND operation. If you AND the H.O. double words last, this sets all but the zero flag
correctly. If you need to test the zero flag after this sequence, you will need to logically OR the two resulting
double words together (or otherwise compare them both against zero).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 847

Chapter Four Volume Four
4.2.8 Extended Precision OR Operations

Multi-byte logical OR operations are performed in the same way as multi-byte AND operations. You
simply OR the corresponding bytes in the two operand together. For example, to logically OR two 96 bit val-
ues, use the following code:

mov((type dword source1), eax);
or((type dword source2), eax);
mov(eax, (type dword dest));

mov((type dword source1[4]), eax);
or((type dword source2[4]), eax);
mov(eax, (type dword dest[4]));

mov((type dword source1[8]), eax);
or((type dword source2[8]), eax);
mov(eax, (type dword dest[8]));

As for the previous example, this does not set the zero flag properly for the entire operation. If you need to
test the zero flag after a multiprecision OR, you must logically OR the resulting double words together.

4.2.9 Extended Precision XOR Operations

Extended precision XOR operations are performed in a manner identical to AND/OR – simply XOR the
corresponding bytes in the two operands to obtain the extended precision result. The following code
sequence operates on two 64 bit operands, computes their exclusive-or, and stores the result into a 64 bit
variable.

mov((type dword source1), eax);
xor((type dword source2), eax);
mov(eax, (type dword dest));

mov((type dword source1[4]), eax);
xor((type dword source2[4]), eax);
mov(eax, (type dword dest[4]));

The comment about the zero flag in the previous two sections applies here.

4.2.10 Extended Precision NOT Operations

The NOT instruction inverts all the bits in the specified operand. An extended precision NOT is per-
formed by simply executing the NOT instruction on all the affected operands. For example, to perform a 64
bit NOT operation on the value in (edx:eax), all you need to do is execute the instructions:

not(eax);
not(edx);

Keep in mind that if you execute the NOT instruction twice, you wind up with the original value. Also
note that exclusive-ORing a value with all ones ($FF, $FFFF, or $FFFF_FFFF) performs the same operation
as the NOT instruction.

4.2.11 Extended Precision Shift Operations

Extended precision shift operations require a shift and a rotate instruction. Consider what must happen
to implement a 64 bit SHL using 32 bit operations:
Page 848 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
1) A zero must be shifted into bit zero.

2) Bits zero through 30 are shifted into the next higher bit.

3) Bit 31 is shifted into bit 32.

4) Bits 32 through 62 must be shifted into the next higher bit.

5) Bit 63 is shifted into the carry flag.

Figure 4.5 64-bit Shift Left Operation

The two instructions you can use to implement this 32 bit shift are SHL and RCL. For example, to shift
the 64 bit quantity in (EDX:EAX) one position to the left, you’d use the instructions:

shl(1, eax);
rcl(1, eax);

Note that you can only shift an extended precision value one bit at a time. You cannot shift an extended
precision operand several bits using the CL register. Nor can you specify a constant value greater than one
using this technique.

To understand how this instruction sequence works, consider the operation of these instructions on an
individual basis. The SHL instruction shifts a zero into bit zero of the 64 bit operand and shifts bit 31 into the
carry flag. The RCL instruction then shifts the carry flag into bit 32 and then shifts bit 63 into the carry flag.
The result is exactly what we want.

 To perform a shift left on an operand larger than 64 bits you simply add additional RCL instructions. An
extended precision shift left operation always starts with the least significant word and each succeeding RCL
instruction operates on the next most significant word. For example, to perform a 96 bit shift left operation
on a memory location you could use the following instructions:

shl(1, (type dword Operand[0]));
rcl(1, (type dword Operand[4]));
rcl(1, (type dword Operand[8]));

If you need to shift your data by two or more bits, you can either repeat the above sequence the desired
number of times (for a constant number of shifts) or you can place the instructions in a loop to repeat them
some number of times. For example, the following code shifts the 96 bit value Operand to the left the num-
ber of bits specified in ECX:

ShiftLoop:
shl(1, (type dword Operand[0]));
rcl(1, (type dword Operand[4]));
rcl(1, (type dword Operand[8]));
dec(ecx);
jnz ShiftLoop;

You implement SHR and SAR in a similar way, except you must start at the H.O. word of the operand
and work your way down to the L.O. word:

63 36 35 34 33 32

...C

31 4 3 2 1 0

...
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 849

Chapter Four Volume Four
// Double precision SAR:

sar(1, (type dword Operand[8]));
rcr(1, (type dword Operand[4]));
rcr(1, (type dword Operand[0]));

// Double precision SHR:

shr(1, (type dword Operand[8]));
rcr(1, (type dword Operand[4]));
rcr(1, (type dword Operand[0]));

There is one major difference between the extended precision shifts described here and their 8/16/32 bit
counterparts – the extended precision shifts set the flags differently than the single precision operations.
This is because the rotate instructions affect the flags differently than the shift instructions. Fortunately, the
carry is the flag most often tested after a shift operation and the extended precision shift operations (i.e.,
rotate instructions) properly set this flag.

The SHLD and SHRD instructions let you efficiently implement multiprecision shifts of several bits.
These instructions have the following syntax:

shld(constant, Operand1, Operand2);

shld(cl, Operand1, Operand2);

shrd(constant, Operand1, Operand2);

shrd(cl, Operand1, Operand2);

The SHLD instruction does the following:

Figure 4.6 SHLD Operation

Operand1 must be a 16 or 32 bit register. Operand2 can be a register or a memory location. Both oper-
ands must be the same size. The immediate operand can be a value in the range zero through n-1, where n is
the number of bits in the two operands; it specifies the number of bits to shift.

The SHLD instruction shifts bits in Operand2 to the left. The H.O. bits shift into the carry flag and the
H.O. bits of Operand1 shift into the L.O. bits of Operand2. Note that this instruction does not modify the
value of Operand1, it uses a temporary copy of Operand1 during the shift. The immediate operand specifies
the number of bits to shift. If the count is n, then SHLD shifts bit n-1 into the carry flag. It also shifts the
H.O. n bits of Operand1 into the L.O. n bits of Operand2. The SHLD instruction sets the flag bits as fol-
lows:

• If the shift count is zero, the SHLD instruction doesn’t affect any flags.
• The carry flag contains the last bit shifted out of the H.O. bit of the Operand2.
• If the shift count is one, the overflow flag will contain one if the sign bit of Operand2 changes

during the shift. If the count is not one, the overflow flag is undefined.
• The zero flag will be one if the shift produces a zero result.

Operand2
H.O Bit 4 3 2 1 0

...C

Temporary copy of Operand1
H.O Bit 4 3 2 1 0

...
Page 850 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
• The sign flag will contain the H.O. bit of the result.

The SHRD instruction is similar to SHLD except, of course, it shifts its bits right rather than left. To get
a clear picture of the SHRD instruction, consider Figure 4.7

Figure 4.7 SHRD Operation

The SHRD instruction sets the flag bits as follows:

• If the shift count is zero, the SHRD instruction doesn’t affect any flags.
• The carry flag contains the last bit shifted out of the L.O. bit of the Operand2.
• If the shift count is one, the overflow flag will contain one if the H.O. bit of Operand2 changes.

If the count is not one, the overflow flag is undefined.
• The zero flag will be one if the shift produces a zero result.
• The sign flag will contain the H.O. bit of the result.

 Consider the following code sequence:

static
ShiftMe: dword[3] := [$1234, $5678, $9012];
 .
 .
 .
mov(ShiftMe[4], eax)
shld(6, eax, ShiftMe[8]);
mov(ShiftMe[0], eax);
shld(6, eax, ShiftMe[4]);
shl(6, ShiftMe[0]);

The first SHLD instruction above shifts the bits from ShiftMe+4 into ShiftMe+8 without affecting the
value in ShiftMe+4. The second SHLD instruction shifts the bits from SHIFTME into SHIFTME+4. Finally,
the SHL instruction shifts the L.O. double word the appropriate amount. There are two important things to
note about this code. First, unlike the other extended precision shift left operations, this sequence works
from the H.O. double word down to the L.O. double word. Second, the carry flag does not contain the carry
out of the H.O. shift operation. If you need to preserve the carry flag at that point, you will need to push the
flags after the first SHLD instruction and pop the flags after the SHL instruction.

You can do an extended precision shift right operation using the SHRD instruction. It works almost the
same way as the code sequence above except you work from the L.O. double word to the H.O. double word.
The solution is left as an exercise at the end of this chapter.

...

Operand2
H.O Bit 5 4 3 2 1 0

...

Temporary Copy of Operand1
H.O Bit 5 4 3 2 1 0

C

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 851

Chapter Four Volume Four
4.2.12 Extended Precision Rotate Operations

The RCL and RCR operations extend in a manner almost identical to that for SHL and SHR . For exam-
ple, to perform 96 bit RCL and RCR operations, use the following instructions:

rcl(1, (type dword Operand[0]));
rcl(1, (type dword Operand[4]));
rcl(1, (type dword Operand[8]));

rcr(1, (type dword Operand[8]));
rcr(1, (type dword Operand[4]));
rcr(1, (type dword Operand[0]));

The only difference between this code and the code for the extended precision shift operations is that the
first instruction is a RCL or RCR rather than a SHL or SHR instruction.

Performing an extended precision ROL or ROR instruction isn’t quite as simple an operation. You can
use the BT, SHLD, and SHRD instructions to implement an extended precision ROL or ROR instruction.
The following code shows how to use the SHLD instruction to do an extended precision ROL:

// Compute ROL(4, EDX:EAX);

mov(edx, ebx);
shld, 4, eax, edx);
shld(4, ebx, eax);
bt(0, eax); // Set carry flag, if desired.

An extended precision ROR instruction is similar; just keep in mind that you work on the L.O. end of
the object first and the H.O. end last.

4.2.13 Extended Precision I/O

Once you have the ability to compute using extended precision arithmetic, the next problem is how do
you get those extended precision values into your program and how do you display those extended precision
values to the user? HLA’s Standard Library provides routines for unsigned decimal, signed decimal, and
hexadecimal I/O for values that are eight, 16, 32, or 64 bits in length. So as long as you’re working with val-
ues whose size is less than or equal to 64 bits in length, you can use the Standard Library code. If you need
to input or output values that are greater than 64 bits in length, you will need to write your own procedures to
handle the operation. This section discusses the strategies you will need to write such routines.

The examples in this section work specifically with 128-bit values. The algorithms are perfectly general
and extend to any number of bits (indeed, the 128-bit algorithms in this section are really nothing more than
an extension of the algorithms the HLA Standard Library uses for 64-bit values). If you need a set of 128-bit
unsigned I/O routines, you will probably be able to use the following code as-is. If you need to handle larger
values, simple modifications to the following code is all that should be necessary.

The following examples all assume a common data type for 128-bit values. The HLA type declaration
for this data type is one of the following depending on the type of value

type
bits128: dword[4];
uns128: bits128;
int128: bits128;
Page 852 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
4.2.13.1 Extended Precision Hexadecimal Output

Extended precision hexadecimal output is very easy. All you have to do is output each double word
component of the extended precision value from the H.O. double word to the L.O. double word using a call
to the stdout.putd routine. The following procedure does exactly this to output a bits128 value:

procedure putb128(b128: bits128); nodisplay;
begin putb128;

stdout.putd(b128[12]);
stdout.putd(b128[8]);
stdout.putd(b128[4]);
stdout.putd(b128[0]);

end putb128;

Since HLA provides the stdout.putq procedure, you can shorten the code above by calling stdout.putq
just twice:

procedure putb128(b128: bits128); nodisplay;
begin putb128;

stdout.putq((type qword b128[8]));
stdout.putq((type qword b128[0]));

end putb128;

Note that this code outputs the two quad words with the H.O. quad word output first and L.O. quad word
output second.

4.2.13.2 Extended Precision Unsigned Decimal Output

Decimal output is a little more complicated than hexadecimal output because the H.O. bits of a binary
number affect the L.O. digits of the decimal representation (this was not true for hexadecimal values which
is why hexadecimal output is so easy). Therefore, we will have to create the decimal representation for a
binary number by extracting one decimal digit at a time from the number.

The most commonly employed solution for unsigned decimal output is to successively divide the value
by ten until the result becomes zero. The remainder after the first division is a value in the range 0..9 and this
value corresponds to the L.O. digit of the decimal number. Successive divisions by ten (and their corre-
sponding remainder) extract successive digits to the left in the number.

Iterative solutions to this problem generally allocate storage for a string of characters large enough to
hold the entire number. Then the code extracts the decimal digits in a loop and places them in the string one
by one. At the end of the conversion process, the routine prints the characters in the string in reverse order
(remember, the divide algorithm extracts the L.O. digits first and the H.O. digits last, the opposite of the way
you need to print them).

In this section, we will employ a recursive solution because it is a little more elegant. The recursive
solution begins by dividing the value by 10 and saving the remainder in a local variable. If the quotient was
not zero, the routine recursively calls itself to print any leading digits first. On return from the recursive call
(which prints all the leading digits), the recursive algorithm prints the digit associated with the remainder to
complete the operation. Here’s how the operation works when printing the decimal value "123":

• (1) Divide 123 by 10. Quotient is 12, remainder is 3.
• (2) Save the remainder (3) in a local variable and recursively call the routine with the quotient.
• (3) [Recursive Entry 1] Divide 12 by 10. Quotient is 1, remainder is 2.
• (4) Save the remainder (2) in a local variable and recursively call the routine with the quotient.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 853

Chapter Four Volume Four
• (5) [Recursive Entry 2] Divide 1 by 10. Quotient is 0, remainder is 1.
• (6) Save the remainder (1) in a local variable. Since the Quotient is zero, don’t call the routine

recursively.
• (7) Output the remainder value saved in the local variable (1). Return to the caller (Recursive

Entry 1).
• (8) [Return to Recursive Entry 1] Output the remainder value saved in the local variable in

recursive entry 1 (2). Return to the caller (original invocation of the procedure).
• (9) [Original invocation] Output the remainder value saved in the local variable in the original

call (3). Return to the original caller of the output routine.

The only operation that requires extended precision calculation through this entire algorithm is the
"divide by 10" requirement. Everything else is simple and straight-forward. We are in luck with this algo-
rithm, since we are dividing an extended precision value by a value that easily fits into a double word, we
can use the fast (and easy) extended precision division algorithm that uses the DIV instruction (see
“Extended Precision Division” on page 838). The following program implements a 128-bit decimal output
routine utilizing this technique.

program out128;

#include("stdlib.hhf");

// 128-bit unsigned integer data type:

type
 uns128: dword[4];

// DivideBy10-
//
// Divides "divisor" by 10 using fast
// extended precision division algorithm
// that employs the DIV instruction.
//
// Returns quotient in "quotient"
// Returns remainder in eax.
// Trashes EBX, EDX, and EDI.

procedure DivideBy10(dividend:uns128; var quotient:uns128); nodisplay;
begin DivideBy10;

 mov(quotient, edi);
 xor(edx, edx);
 mov(dividend[12], eax);
 mov(10, ebx);
 div(ebx, edx:eax);
 mov(eax, [edi+12]);

 mov(dividend[8], eax);
 div(ebx, edx:eax);
 mov(eax, [edi+8]);

 mov(dividend[4], eax);
 div(ebx, edx:eax);
 mov(eax, [edi+4]);

 mov(dividend[0], eax);
 div(ebx, edx:eax);
 mov(eax, [edi+0]);
Page 854 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
 mov(edx, eax);

end DivideBy10;

// Recursive version of putu128.
// A separate "shell" procedure calls this so that
// this code does not have to preserve all the registers
// it uses (and DivideBy10 uses) on each recursive call.

procedure recursivePutu128(b128:uns128); nodisplay;
var
 remainder: byte;

begin recursivePutu128;

 // Divide by ten and get the remainder (the char to print).

 DivideBy10(b128, b128);
 mov(al, remainder); // Save away the remainder (0..9).

 // If the quotient (left in b128) is not zero, recursively
 // call this routine to print the H.O. digits.

 mov(b128[0], eax); // If we logically OR all the dwords
 or(b128[4], eax); // together, the result is zero if and
 or(b128[8], eax); // only if the entire number is zero.
 or(b128[12], eax);
 if(@nz) then

 recursivePutu128(b128);

 endif;

 // Okay, now print the current digit.

 mov(remainder, al);
 or('0', al); // Converts 0..9 -> '0..'9'.
 stdout.putc(al);

end recursivePutu128;

// Non-recursive shell to the above routine so we don't bother
// saving all the registers on each recursive call.

procedure putu128(b128:uns128); nodisplay;
begin putu128;

 push(eax);
 push(ebx);
 push(edx);
 push(edi);

 recursivePutu128(b128);

 pop(edi);
 pop(edx);
 pop(ebx);
 pop(eax);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 855

Chapter Four Volume Four

end putu128;

// Code to test the routines above:

static
 b0: uns128 := [0, 0, 0, 0]; // decimal = 0
 b1: uns128 := [1234567890, 0, 0, 0]; // decimal = 1234567890
 b2: uns128 := [$8000_0000, 0, 0, 0]; // decimal = 2147483648
 b3: uns128 := [0, 1, 0, 0]; // decimal = 4294967296

 // Largest uns128 value
 // (decimal=340,282,366,920,938,463,463,374,607,431,768,211,455):

 b4: uns128 := [$FFFF_FFFF, $FFFF_FFFF, $FFFF_FFFF, $FFFF_FFFF];

begin out128;

 stdout.put("b0 = ");
 putu128(b0);
 stdout.newln();

 stdout.put("b1 = ");
 putu128(b1);
 stdout.newln();

 stdout.put("b2 = ");
 putu128(b2);
 stdout.newln();

 stdout.put("b3 = ");
 putu128(b3);
 stdout.newln();

 stdout.put("b4 = ");
 putu128(b4);
 stdout.newln();

end out128;

Program 4.4 128-bit Extended Precision Decimal Output Routine

4.2.13.3 Extended Precision Signed Decimal Output

Once you have an extended precision unsigned decimal output routine, writing an extended precision
signed decimal output routine is very easy. The basic algorithm takes the following form:

• Check the sign of the number. If it is positive, call the unsigned output routine to print it.
• If the number is negative, print a minus sign. Then negate the number and call the unsigned

output routine to print it.

To check the sign of an extended precision integer, of course, you simply test the H.O. bit of the number.
To negate a large value, the best solution is to probably subtract that value from zero. Here’s a quick version
of puti128 that uses the putu128 routine from the previous section.
Page 856 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
procedure puti128(i128: int128); nodisplay;
begin puti128;

if((type int32 i128[12]) < 0) then

stdout.put(’-’);

// Extended Precision Negation:

push(eax);
mov(0, eax);
sub(i128[0], eax);
mov(eax, i128[0]);

mov(0, eax);
sbb(i128[4], eax);
mov(eax, i128[4]);

mov(0, eax);
sbb(i128[8], eax);
mov(eax, i128[8]);

mov(0, eax);
sbb(i128[12], eax);
mov(eax, i128[12]);
pop(eax);

endif;
putu128((type uns128 i128));

end puti128;

4.2.13.4 Extended Precision Formatted I/O

The code in the previous two sections prints signed and unsigned integers using the minimum number
of necessary print positions. To create nicely formatted tables of values you will need the equivalent of a
puti128Size or putu128Size routine. Once you have the "unformatted" versions of these routines, imple-
menting the formatted versions is very easy.

The first step is to write an "i128Size" and a "u128Size" routine that computes the minimum number of
digits needed to display the value. The algorithm to accomplish this is very similar to the numeric output
routines. In fact, the only difference is that you initialize a counter to zero upon entry into the routine (e.g.,
the non-recursive shell routine) and you increment this counter rather than outputting a digit on each recur-
sive call. (Don’t forget to increment the counter inside "i128Size" if the number is negative; you must
allow for the output of the minus sign.) After the calculation is complete, these routines should return the
size of the operand in the EAX register.

Once you have the "i128Size" and "u128Size" routines, writing the formatted output routines is very
easy. Upon initial entry into puti128Size or putu128Size, these routines call the corresponding "size" routine
to determine the number of print positions for the number to display. If the value that the "size" routine
returns is greater than the absolute value of the minimum size parameter (passed into puti128Size or
putu128Size) all you need to do is call the put routine to print the value, no other formatting is necessary. If
the absolute value of the parameter size is greater than the value i128Size or u128Size returns, then the pro-
gram must compute the difference between these two values and print that many spaces (or other filler char-
acter) before printing the number (if the parameter size value is positive) or after printing the number (if the
parameter size value is negative). The actual implementation of these two routines is left as an exercise at
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 857

Chapter Four Volume Four
the end of the volume. If you have any further questions about how to do this, you can take a look at the
HLA Standard Library code for routines like stdout.putu32Size.

4.2.13.5 Extended Precision Input Routines

There are a couple of fundamental differences between the extended precision output routines and the
extended precision input routines. First of all, numeric output generally occurs without possibility of error3;
numeric input, on the other hand, must handle the very real possibility of an input error such as illegal char-
acters and numeric overflow. Also, HLA’s Standard Library and run-time system encourages a slightly dif-
ferent approach to input conversion. This section discusses those issues that differentiate input conversion
from output conversion.

Perhaps the biggest difference between input and output conversion is the fact that output conversion is
unbracketed. That is, when converting a numeric value to a string of characters for output, the output routine
does not concern itself with character preceding the output string nor does it concerning itself with the char-
acters following the numeric value in the output stream. Numeric output routines convert their data to a
string and print that string without considering the context (i.e., the characters before and after the string rep-
resentation of the numeric value). Numeric input routines cannot be so cavalier; the contextual information
surrounding the numeric string is very important.

A typical numeric input operation consists of reading a string of characters from the user and then trans-
lating this string of characters into an internal numeric representation. For example, a statement like
"stdin.get(i32);" typically reads a line of text from the user and converts a sequence of digits appearing at the
beginning of that line of text into a 32-bit signed integer (assuming i32 is an int32 object). Note, however,
that the stdin.get routine skips over certain characters in the string that may appear before the actual numeric
characters. For example, stdin.get automatically skips any leading spaces in the string. Likewise, the input
string may contain additional data beyond the end of the numeric input (for example, it is possible to read
two integer values from the same input line), therefore the input conversion routine must somehow deter-
mine where the numeric data ends in the input stream. Fortunately, HLA provides a simple mechanism that
lets you easily determine the start and end of the input data: the Delimiters character set.

The Delimiters character set is a variable, internal to HLA, that contains the set of legal characters that
may precede or follow a legal numeric value. By default, this character set includes the end of string marker
(a zero byte), a tab character, a line feed character, a carriage return character, a space, a comma, a colon,
and a semicolon. Therefore, HLA’s numeric input routines will automatically ignore any characters in this
set that occur on input before a numeric string. Likewise, characters from this set may legally follow a
numeric string on input (conversely, if any non-delimiter character follows the numeric string, HLA will
raise an ex.ConversionError exception).

The Delimiters character set is a private variable inside the HLA Standard Library. Although you do not
have direct access to this object, the HLA Standard Library does provide two accessor functions, conv.setDe-
limiters and conv.getDelimiters that let you access and modify the value of this character set. These two
functions have the following prototypes (found in the "conv.hhf" header file):

procedure conv.setDelimiters(Delims:cset);
procedure conv.getDelimiters(var Delims:cset);

The conv.SetDelimiters procedure will copy the value of the Delims parameter into the internal Delimit-
ers character set. Therefore, you can use this procedure to change the character set if you want to use a dif-
ferent set of delimiters for numeric input. The conv.getDelimiters call returns a copy of the internal
Delimiters character set in the variable you pass as a parameter to the conv.getDelimiters procedure. We will
use the value returned by conv.getDelimiters to determine the end of numeric input when writing our own
extended precision numeric input routines.

When reading a numeric value from the user, the first step will be to get a copy of the Delimiters charac-
ter set. The second step is to read and discard input characters from the user as long as those characters are

3. Technically speaking, this isn’t entirely true. It is possible for a device error (e.g., disk full) to occur. The likelihood of this
is so low that we can effectively ignore this possibility.
Page 858 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
members of the Delimiters character set. Once a character is found that is not in the Delimiters set, the input
routine must check this character and verify that it is a legal numeric character. If not, the program should
raise an ex.IllegalChar exception if the character’s value is outside the range $00..$7f or it should raise the
ex.ConversionError exception if the character is not a legal numeric character. Once the routine encounters
a numeric character, it should continue reading characters as long as they valid numeric characters; while
reading the characters the conversion routine should be translating them to the internal representation of the
numeric data. If, during conversion, an overflow occurs, the procedure should raise the ex.ValueOutOfRange
exception.

Conversion to numeric representation should end when the procedure encounters the first delimiter
character at the end of the string of digits. However, it is very important that the procedure does not con-
sume the delimiter character that ends the string. That is, the following is incorrect:

static
Delimiters: cset;

 .
 .
 .

conv.getDelimiters(Delimiters);

// Skip over leading delimiters in the string:

while(stdin.getc() in Delimiters) do /* getc did the work */ endwhile;
while(al in {’0’..’9’}) do

// Convert character in AL to numeric representation and
// accumulate result...

stdin.getc();

endwhile;
if(al not in Delimiters) then

raise(ex.ConversionError);

endif;

The first WHILE loop reads a sequence of delimiter characters. When this first WHILE loop ends, the
character in AL is not a delimiter character. So far, so good. The second WHILE loop processes a sequence
of decimal digits. First, it checks the character read in the previous WHILE loop to see if it is a decimal
digit; if so, it processes that digit and reads the next character. This process continues until the call to
stdin.getc (at the bottom of the loop) reads a non-digit character. After the second WHILE loop, the program
checks the last character read to ensure that it is a legal delimiter character for a numeric input value.

The problem with this algorithm is that it consumes the delimiter character after the numeric string. For
example, the colon symbol is a legal delimiter in the default Delimiters character set. If the user types the
input "123:456" and executes the code above, this code will properly convert "123" to the numeric value one
hundred twenty-three. However, the very next character read from the input stream will be the character "4"
not the colon character (":"). While this may be acceptable in certain circumstances, Most programmers
expect numeric input routines to consume only leading delimiter characters and the numeric digit characters.
They do not expect the input routine to consume any trailing delimiter characters (e.g., many programs will
read the next character and expect a colon as input if presented with the string "123:456"). Since stdin.getc
consumes an input character, and there is no way to "put the character back" onto the input stream, some
other way of reading input characters from the user, that doesn’t consume those characters, is needed4.

The HLA Standard Library comes to the rescue by providing the stdin.peekc function. Like stdin.getc,
the stdin.peekc routine reads the next input character from HLA’s internal buffer. There are two major differ-

4. The HLA Standard Library routines actually buffer up input lines in a string and process characters out of the string. This
makes it easy to "peek" ahead one character when looking for a delimiter to end the input value. Your code can also do this,
however, the code in this chapter will use a different approach.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 859

Chapter Four Volume Four
ences between stdin.peekc and stdin.getc. First, stdin.peekc will not force the input of a new line of text
from the user if the current input line is empty (or you’ve already read all the text from the input line).
Instead, stdin.peekc simply returns zero in the AL register to indicate that there are no more characters on the
input line. Since #0 is (by default) a legal delimiter character for numeric values, and the end of line is cer-
tainly a legal way to terminate numeric input, this works out rather well. The second difference between
stdin.getc and stdin.peekc is that stdin.peekc does not consume the character read from the input buffer. If
you call stdin.peekc several times in a row, it will always return the same character; likewise, if you call
stdin.getc immediately after stdin.peekc, the call to stdin.getc will generally return the same character as
returned by stdin.peekc (the only exception being the end of line condition). So although we cannot put
characters back onto the input stream after we’ve read them with stdin.getc, we can peek ahead at the next
character on the input stream and base our logic on that character’s value. A corrected version of the previ-
ous algorithm might be the following:

static
Delimiters: cset;

 .
 .
 .

conv.getDelimiters(Delimiters);

// Skip over leading delimiters in the string:

while(stdin.peekc() in Delimiters) do

// If at the end of the input buffer, we must explicitly read a
// new line of text from the user. stdin.peekc does not do this
// for us.

if(al = #0) then

stdin.ReadLn();

else

stdin.getc(); // Remove delimiter from the input stream.

endif;

endwhile;
while(stdin.peekc in {’0’..’9’}) do

stdin.getc(); // Remove the input character from the input stream.

// Convert character in AL to numeric representation and
// accumulate result...

endwhile;
if(al not in Delimiters) then

raise(ex.ConversionError);

endif;

Note that the call to stdin.peekc in the second WHILE does not consume the delimiter character when
the expression evaluates false. Hence, the delimiter character will be the next character read after this algo-
rithm finishes.

The only remaining comment to make about numeric input is to point out that the HLA Standard
Library input routines allow arbitrary underscores to appear within a numeric string. The input routines
ignore these underscore characters. This allows the user to input strings like "FFFF_F012" and
"1_023_596" which are a little more readable than "FFFFF012" or "1023596". To allow underscores (or any
Page 860 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
other symbol you choose) within a numeric input routine is quite simple; just modify the second WHILE
loop above as follows:

while(stdin.peekc in {’0’..’9’, ’_’}) do

stdin.getc(); // Read the character from the input stream.

// Ignore underscores while processing numeric input.

if(al <> ’_’) then

// Convert character in AL to numeric representation and
// accumulate result...

endif;

endwhile;

4.2.13.6 Extended Precision Hexadecimal Input

 As was the case for numeric output, hexadecimal input is the easiest numeric input routine to write.
The basic algorithm for hexadecimal string to numeric conversion is the following:

• Initialize the extended precision value to zero.
• For each input character that is a valid hexadecimal digit, do the following:
• Convert the hexadecimal character to a value in the range 0..15 ($0..$F).
• If the H.O. four bits of the extended precision value are non-zero, raise an exception.
• Multiply the current extended precision value by 16 (i.e., shift left four bits).
• Add the converted hexadecimal digit value to the accumulator.
• Check the last input character to ensure it is a valid delimiter. Raise an exception if it is not.

The following program implements this extended precision hexadecimal input routine for 128-bit val-
ues.

program Xin128;

#include("stdlib.hhf");

// 128-bit unsigned integer data type:

type
 b128: dword[4];

procedure getb128(var inValue:b128); nodisplay;
const
 HexChars := {'0'..'9', 'a'..'f', 'A'..'F', '_'};
var
 Delimiters: cset;
 LocalValue: b128;

begin getb128;

 push(eax);
 push(ebx);

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 861

Chapter Four Volume Four
 // Get a copy of the HLA standard numeric input delimiters:

 conv.getDelimiters(Delimiters);

 // Initialize the numeric input value to zero:

 xor(eax, eax);
 mov(eax, LocalValue[0]);
 mov(eax, LocalValue[4]);
 mov(eax, LocalValue[8]);
 mov(eax, LocalValue[12]);

 // By default, #0 is a member of the HLA Delimiters
 // character set. However, someone may have called
 // conv.setDelimiters and removed this character
 // from the internal Delimiters character set. This
 // algorithm depends upon #0 being in the Delimiters
 // character set, so let's add that character in
 // at this point just to be sure.

 cs.unionChar(#0, Delimiters);

 // If we're at the end of the current input
 // line (or the program has yet to read any input),
 // for the input of an actual character.

 if(stdin.peekc() = #0) then

 stdin.ReadLn();

 endif;

 // Skip the delimiters found on input. This code is
 // somewhat convoluted because stdin.peekc does not
 // force the input of a new line of text if the current
 // input buffer is empty. We have to force that input
 // ourselves in the event the input buffer is empty.

 while(stdin.peekc() in Delimiters) do

 // If we're at the end of the line, read a new line
 // of text from the user; otherwise, remove the
 // delimiter character from the input stream.

 if(al = #0) then

 stdin.ReadLn(); // Force a new input line.

 else

 stdin.getc(); // Remove the delimiter from the input buffer.

 endif;

 endwhile;

 // Read the hexadecimal input characters and convert
 // them to the internal representation:
Page 862 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic

 while(stdin.peekc() in HexChars) do

 // Actually read the character to remove it from the
 // input buffer.

 stdin.getc();

 // Ignore underscores, process everything else.

 if(al <> '_') then

 if(al in '0'..'9') then

 and($f, al); // '0'..'9' -> 0..9

 else

 and($f, al); // 'a'/'A'..'f'/'F' -> 1..6
 add(9, al); // 1..6 -> 10..15

 endif;

 // Conversion algorithm is the following:
 //
 // (1) LocalValue := LocalValue * 16.
 // (2) LocalValue := LocalValue + al
 //
 // Note that "* 16" is easily accomplished by
 // shifting LocalValue to the left four bits.
 //
 // Overflow occurs if the H.O. four bits of LocalValue
 // contain a non-zero value prior to this operation.

 // First, check for overflow:

 test($F0, (type byte LocalValue[15]));
 if(@nz) then

 raise(ex.ValueOutOfRange);

 endif;

 // Now multiply LocalValue by 16 and add in
 // the current hexadecimal digit (in EAX).

 mov(LocalValue[8], ebx);
 shld(4, ebx, LocalValue[12]);
 mov(LocalValue[4], ebx);
 shld(4, ebx, LocalValue[8]);
 mov(LocalValue[0], ebx);
 shld(4, ebx, LocalValue[4]);
 shl(4, ebx);
 add(eax, ebx);
 mov(ebx, LocalValue[0]);

 endif;

 endwhile;

 // Okay, we've encountered a non-hexadecimal character.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 863

Chapter Four Volume Four
 // Let's make sure it's a valid delimiter character.
 // Raise the ex.ConversionError exception if it's invalid.

 if(al not in Delimiters) then

 raise(ex.ConversionError);

 endif;

 // Okay, this conversion has been a success. Let's store
 // away the converted value into the output parameter.

 mov(inValue, ebx);
 mov(LocalValue[0], eax);
 mov(eax, [ebx]);

 mov(LocalValue[4], eax);
 mov(eax, [ebx+4]);

 mov(LocalValue[8], eax);
 mov(eax, [ebx+8]);

 mov(LocalValue[12], eax);
 mov(eax, [ebx+12]);

 pop(ebx);
 pop(eax);

end getb128;

// Code to test the routines above:

static
 b1:b128;

begin Xin128;

 stdout.put("Input a 128-bit hexadecimal value: ");
 getb128(b1);
 stdout.put
 (
 "The value is: $",
 b1[12], '_',
 b1[8], '_',
 b1[4], '_',
 b1[0],
 nl
);

end Xin128;

Program 4.5 Extended Precision Hexadecimal Input

Extending this code to handle objects that are not 128 bits long is very easy. There are only three
changes necessary: you must zero out the whole object at the beginning of the getb128 routine; when check-
Page 864 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
ing for overflow (the "test($F, (type byte LocalValue[15]));" instruction) you must test the H.O. four bits of
the new object you’re processing; and you must modify the code that multiplies LocalValue by 16 (via
SHLD) so that it multiplies your object by 16 (i.e., shifts it to the left four bits).

4.2.13.7 Extended Precision Unsigned Decimal Input

The algorithm for extended precision unsigned decimal input is nearly identical to that for hexadecimal
input. In fact, the only difference (beyond only accepting decimal digits) is that you multiply the extended
precision value by 10 rather than 16 for each input character (in general, the algorithm is the same for any
base; just multiply the accumulating value by the input base). The following code demonstrates how to write
a 128-bit unsigned decimal input routine.

program Uin128;

#include("stdlib.hhf");

// 128-bit unsigned integer data type:

type
 u128: dword[4];

procedure getu128(var inValue:u128); nodisplay;
var
 Delimiters: cset;
 LocalValue: u128;
 PartialSum: u128;

begin getu128;

 push(eax);
 push(ebx);
 push(ecx);
 push(edx);

 // Get a copy of the HLA standard numeric input delimiters:

 conv.getDelimiters(Delimiters);

 // Initialize the numeric input value to zero:

 xor(eax, eax);
 mov(eax, LocalValue[0]);
 mov(eax, LocalValue[4]);
 mov(eax, LocalValue[8]);
 mov(eax, LocalValue[12]);

 // By default, #0 is a member of the HLA Delimiters
 // character set. However, someone may have called
 // conv.setDelimiters and removed this character
 // from the internal Delimiters character set. This
 // algorithm depends upon #0 being in the Delimiters
 // character set, so let's add that character in
 // at this point just to be sure.

 cs.unionChar(#0, Delimiters);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 865

Chapter Four Volume Four
 // If we're at the end of the current input
 // line (or the program has yet to read any input),
 // for the input of an actual character.

 if(stdin.peekc() = #0) then

 stdin.ReadLn();

 endif;

 // Skip the delimiters found on input. This code is
 // somewhat convoluted because stdin.peekc does not
 // force the input of a new line of text if the current
 // input buffer is empty. We have to force that input
 // ourselves in the event the input buffer is empty.

 while(stdin.peekc() in Delimiters) do

 // If we're at the end of the line, read a new line
 // of text from the user; otherwise, remove the
 // delimiter character from the input stream.

 if(al = #0) then

 stdin.ReadLn(); // Force a new input line.

 else

 stdin.getc(); // Remove the delimiter from the input buffer.

 endif;

 endwhile;

 // Read the decimal input characters and convert
 // them to the internal representation:

 while(stdin.peekc() in '0'..'9') do

 // Actually read the character to remove it from the
 // input buffer.

 stdin.getc();

 // Ignore underscores, process everything else.

 if(al <> '_') then

 and($f, al); // '0'..'9' -> 0..9
 mov(eax, PartialSum[0]); // Save to add in later.

 // Conversion algorithm is the following:
 //
 // (1) LocalValue := LocalValue * 10.
 // (2) LocalValue := LocalValue + al
 //
 // First, multiply LocalValue by 10:
Page 866 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic

 mov(10, eax);
 mul(LocalValue[0], eax);
 mov(eax, LocalValue[0]);
 mov(edx, PartialSum[4]);

 mov(10, eax);
 mul(LocalValue[4], eax);
 mov(eax, LocalValue[4]);
 mov(edx, PartialSum[8]);

 mov(10, eax);
 mul(LocalValue[8], eax);
 mov(eax, LocalValue[8]);
 mov(edx, PartialSum[12]);

 mov(10, eax);
 mul(LocalValue[12], eax);
 mov(eax, LocalValue[12]);

 // Check for overflow. This occurs if EDX
 // contains a none zero value.

 if(edx /* <> 0 */) then

 raise(ex.ValueOutOfRange);

 endif;

 // Add in the partial sums (including the
 // most recently converted character).

 mov(PartialSum[0], eax);
 add(eax, LocalValue[0]);

 mov(PartialSum[4], eax);
 adc(eax, LocalValue[4]);

 mov(PartialSum[8], eax);
 adc(eax, LocalValue[8]);

 mov(PartialSum[12], eax);
 adc(eax, LocalValue[12]);

 // Another check for overflow. If there
 // was a carry out of the extended precision
 // addition above, we've got overflow.

 if(@c) then

 raise(ex.ValueOutOfRange);

 endif;

 endif;

 endwhile;

 // Okay, we've encountered a non-decimal character.
 // Let's make sure it's a valid delimiter character.
 // Raise the ex.ConversionError exception if it's invalid.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 867

Chapter Four Volume Four

 if(al not in Delimiters) then

 raise(ex.ConversionError);

 endif;

 // Okay, this conversion has been a success. Let's store
 // away the converted value into the output parameter.

 mov(inValue, ebx);
 mov(LocalValue[0], eax);
 mov(eax, [ebx]);

 mov(LocalValue[4], eax);
 mov(eax, [ebx+4]);

 mov(LocalValue[8], eax);
 mov(eax, [ebx+8]);

 mov(LocalValue[12], eax);
 mov(eax, [ebx+12]);

 pop(edx);
 pop(ecx);
 pop(ebx);
 pop(eax);

end getu128;

// Code to test the routines above:

static
 b1:u128;

begin Uin128;

 stdout.put("Input a 128-bit decimal value: ");
 getu128(b1);
 stdout.put
 (
 "The value is: $",
 b1[12], '_',
 b1[8], '_',
 b1[4], '_',
 b1[0],
 nl
);

end Uin128;

Program 4.6 Extended Precision Unsigned Decimal Input

As for hexadecimal input, extending this decimal input to some number of bits beyond 128 is fairly
easy. All you need do is modify the code that zeros out the LocalValue variable and the code that multiplies
Page 868 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
LocalValue by ten (overflow checking is done in this same code, so there are only two spots in this code that
require modification).

4.2.13.8 Extended Precision Signed Decimal Input

Once you have an unsigned decimal input routine, writing a signed decimal input routine is easy. The
following algorithm describes how to accomplish this:

• Consume any delimiter characters at the beginning of the input stream.
• If the next input character is a minus sign, consume this character and set a flag noting that the

number is negative.
• Call the unsigned decimal input routine to convert the rest of the string to an integer.
• Check the return result to make sure it’s H.O. bit is clear. Raise the ex.ValueOutOfRange

exception if the H.O. bit of the result is set.
• If the sign flag was set in step two above, negate the result.

The actual code is left as a programming exercise at the end of this volume.

4.3 Operating on Different Sized Operands

Occasionally you may need to compute some value on a pair of operands that are not the same size. For
example, you may need to add a word and a double word together or subtract a byte value from a word
value. The solution is simple: just extend the smaller operand to the size of the larger operand and then do
the operation on two similarly sized operands. For signed operands, you would sign extend the smaller oper-
and to the same size as the larger operand; for unsigned values, you zero extend the smaller operand. This
works for any operation, although the following examples demonstrate this for the addition operation.

To extend the smaller operand to the size of the larger operand, use a sign extension or zero extension
operation (depending upon whether you’re adding signed or unsigned values). Once you’ve extended the
smaller value to the size of the larger, the addition can proceed. Consider the following code that adds a byte
value to a word value:

static
var1: byte;
var2: word;

 .
 .
 .

// Unsigned addition:

movzx(var1, ax);
add(var2, ax);

// Signed addition:

movsx(var1, ax);
add(var2, ax);

 In both cases, the byte variable was loaded into the AL register, extended to 16 bits, and then added to
the word operand. This code works out really well if you can choose the order of the operations (e.g., adding
the eight bit value to the sixteen bit value). Sometimes, you cannot specify the order of the operations. Per-
haps the sixteen bit value is already in the AX register and you want to add an eight bit value to it. For
unsigned addition, you could use the following code:

mov(var2, ax); // Load 16 bit value into AX
 . // Do some other operations leaving
 . // a 16-bit quantity in AX.
add(var1, al); // Add in the eight-bit value
adc(0, ah); // Add carry into the H.O. word.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 869

Chapter Four Volume Four
 The first ADD instruction in this example adds the byte at var1 to the L.O. byte of the value in the accu-
mulator. The ADC instruction above adds the carry out of the L.O. byte into the H.O. byte of the accumula-
tor. Care must be taken to ensure that this ADC instruction is present. If you leave it out, you may not get the
correct result.

Adding an eight bit signed operand to a sixteen bit signed value is a little more difficult. Unfortunately,
you cannot add an immediate value (as above) to the H.O. word of AX. This is because the H.O. extension
byte can be either $00 or $FF. If a register is available, the best thing to do is the following:

mov(ax, bx); // BX is the available register.
movsx(var1, ax);
add(bx, ax);

If an extra register is not available, you might try the following code:

push(ax); // Save word value.
movsx(var1, ax); // Sign extend 8-bit operand to 16 bits.
add([esp], ax); // Add in previous word value
add(2, esp); // Pop junk from stack

 Another alternative is to store the 16 bit value in the accumulator into a memory location and then pro-
ceed as before:

mov(ax, temp);
movsx(var1, ax);
add(temp, ax);

All the examples above added a byte value to a word value. By zero or sign extending the smaller oper-
and to the size of the larger operand, you can easily add any two different sized variables together.

As a last example, consider adding an eight bit signed value to a quadword (64 bit) value:

static
QVal:qword;
BVal:int8;
 .
 .
 .
movsx(BVal, eax);
cdq();
add((type dword QVal), eax);
adc((type dword QVal[4]), edx);

4.4 Decimal Arithmetic

The 80x86 CPUs use the binary numbering system for their native internal representation. The binary
numbering system is, by far, the most common numbering system in use in computer systems today. In days
long since past, however, there were computer systems that were based on the decimal (base 10) numbering
system rather than the binary numbering system. Consequently, their arithmetic system was decimal based
rather than binary. Such computer systems were very popular in systems targeted for business/commercial
systems5. Although systems designers have discovered that binary arithmetic is almost always better than
decimal arithmetic for general calculations, the myth still persists that decimal arithmetic is better for money
calculations than binary arithmetic. Therefore, many software systems still specify the use of decimal arith-
metic in their calculations (not to mention that there is lots of legacy code out there whose algorithms are

5. In fact, until the release of the IBM 360 in the middle 1960’s, most scientific computer systems were binary based while
most commercial/business systems were decimal based. IBM pushed their system\360 as a single purpose solution for both
business and scientific applications. Indeed, the model designation (360) was derived from the 360 degrees on a compass so
as to suggest that the system\360 was suitable for computations "at all points of the compass" (i.e., business and scientific).
Page 870 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
only stable if they use decimal arithmetic). Therefore, despite the fact that decimal arithmetic is generally
inferior to binary arithmetic, the need for decimal arithmetic still persists.

Of course, the 80x86 is not a decimal computer; therefore we have to play tricks in order to represent
decimal numbers using the native binary format. The most common technique, even employed by most
so-called decimal computers, is to use the binary coded decimal, or BCD representation. The BCD repre-
sentation (see “Nibbles” on page 46) uses four bits to represent the 10 possible decimal digits. The binary
value of those four bits is equal to the corresponding decimal value in the range 0..9. Of course, with four
bits we can actually represent 16 different values. The BCD format ignores the remaining six bit combina-
tions.

Since each BCD digit requires four bits, we can represent a two-digit BCD value with a single byte.
This means that we can represent the decimal values in the range 0..99 using a single byte (versus 0..255 if
we treat the value as an unsigned binary number). Clearly it takes a bit more memory to represent the same
value in BCD as it does to represent the same value in binary. For example, with a 32-bit value you can rep-
resent BCD values in the range 0..99,999,999 (eight significant digits) but you can represent values in the
range 0..4,294,967,295 (better than nine significant digits) using the binary representation.

Not only does the BCD format waste memory on a binary computer (since it uses more bits to represent
a given integer value), but decimal arithmetic is slower. For these reasons, you should avoid the use of dec-
imal arithmetic unless it is absolutely mandated for a given application.

Binary coded decimal representation does offer one big advantage over binary representation: it is fairly
trivial to convert between the string representation of a decimal number and the BCD representation. This
feature is particularly beneficial when working with fractional values since fixed and floating point binary
representations cannot exactly represent many commonly used values between zero and one (e.g., 1/10).

Table 1: Binary Code Decimal (BCD) Representation

BCD Representation Decimal Equivalent

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 Illegal

1011 Illegal

1100 Illegal

1101 Illegal

1110 Illegal

1111 Illegal
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 871

Chapter Four Volume Four
Therefore, BCD operations can be efficient when reading from a BCD device, doing a simple arithmetic
operation (e.g., a single addition) and then writing the BCD value to some other device.

4.4.1 Literal BCD Constants

HLA does not provide, nor do you need, a special literal BCD constant. Since BCD is just a special
form of hexadecimal notation that does not allow the values $A..$F, you can easily create BCD constants
using HLA’s hexadecimal notation. Of course, you must take care not to include the symbols ’A’..’F’ in a
BCD constant since they are illegal BCD values. As an example, consider the following MOV instruction
that copies the BCD value ’99’ into the AL register:

mov($99, al);

The important thing to keep in mind is that you must not use HLA literal decimal constants for BCD
values. That is, "mov(95, al);" does not load the BCD representation for ninety-five into the AL register.
Instead, it loads $5F into AL and that’s an illegal BCD value. Any computations you attempt with illegal
BCD values will produce garbage results. Always remember that, even though it seems counter-intuitive,
you use hexadecimal literal constants to represent literal BCD values.

4.4.2 The 80x86 DAA and DAS Instructions

The integer unit on the 80x86 does not directly support BCD arithmetic. Instead, the 80x86 requires
that you perform the computation using binary arithmetic and use some auxiliary instructions to convert the
binary result to BCD. To support packed BCD addition and subtraction with two digits per byte, the 80x86
provides two instructions: decimal adjust after addition (DAA) and decimal adjust after subtraction (DAS).
You would execute these two instructions immediately after an ADD/ADC or SUB/SBB instruction to cor-
rect the binary result in the AL register.

Two add a pair of two-digit (i.e., single-byte) BCD values together, you would use the following
sequence:

mov(bcd_1, al); // Assume that bcd1 and bcd2 both contain
add(bcd_2, al); // value BCD values.
daa();

The first two instructions above add the two byte values together using standard binary arithmetic. This
may not produce a correct BCD result. For example, if bcd_1 contains $9 and bcd_2 contains $1, then the
first two instructions above will produce the binary sum $A instead of the correct BCD result $10. The DAA
instruction corrects this invalid result. It checks to see if there was a carry out of the low order BCD digit
and adjusts the value (by adding six to it) if there was an overflow. After adjusting for overflow out of the
L.O. digit, the DAA instruction repeats this process for the H.O. digit. DAA sets the carry flag if the was a
(decimal) carry out of the H.O. digit of the operation.

The DAA instruction only operates on the AL register. It will not adjust (properly) for a decimal addi-
tion if you attempt to add a value to AX, EAX, or any other register. Specifically note that DAA limits you
to adding two decimal digits (a single byte) at a time. This means that for the purposes of computing deci-
mal sums, you have to treat the 80x86 as though it were an eight-bit processor, capable of adding only eight
bits at a time. If you wish to add more than two digits together, you must treat this as a multiprecision oper-
ation. For example, to add four decimal digits together (using DAA), you must execute a sequence like the
following:

// Assume "bcd_1:byte[2];", "bcd_2:byte[2];", and "bcd_3:byte[2];"

mov(bcd_1[0], al);
add(bcd_2[0], al);
daa();
mov(al, bcd_3[0]);
mov(bcd_1[1], al);
Page 872 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
adc(bcd_2[1], al);
daa();
mov(al, bcd_3[1], al);

// Carry is set at this point if there was unsigned overflow.

Since a binary addition of a word requires only three instructions, you can see why decimal arithmetic is so
expensive6.

The DAS (decimal adjust after subtraction) adjusts the decimal result after a binary SUB or SBB
instruction. You use it the same way you use the DAA instruction. Examples:

// Two-digit (one byte) decimal subtraction:

mov(bcd_1, al); // Assume that bcd1 and bcd2 both contain
sub(bcd_2, al); // value BCD values.
das();

// Four-digit (two-byte) decimal subtraction.
// Assume "bcd_1:byte[2];", "bcd_2:byte[2];", and "bcd_3:byte[2];"

mov(bcd_1[0], al);
sub(bcd_2[0], al);
das();
mov(al, bcd_3[0]);
mov(bcd_1[1], al);
sbb(bcd_2[1], al);
das();
mov(al, bcd_3[1], al);

// Carry is set at this point if there was unsigned overflow.

Unfortunately, the 80x86 only provides support for addition and subtraction of packed BCD values
using the DAA and DAS instructions. It does not support multiplication, division, or any other arithmetic
operations. Because decimal arithmetic using these instructions is so limited, you’ll rarely see any programs
use these instructions.

4.4.3 The 80x86 AAA, AAS, AAM, and AAD Instructions

In addition to the packed decimal instructions (DAA and DAS), the 80x86 CPUs support four unpacked
decimal adjustment instructions. Unpacked decimal numbers store only one digit per eight-bit byte. As you
can imagine, this data representation scheme wastes a considerable amount of memory. However, the
unpacked decimal adjustment instructions support the multiplication and division operations, so they are
marginally more useful.

The instruction mnemonics AAA, AAS, AAM, and AAD stand for "ASCII adjust for Addition, Sub-
traction, Multiplication, and Division" (respectively). Despite their name, these instructions do not process
ASCII characters. Instead, they support an unpacked decimal value in AL whose L.O. four bits contain the
decimal digit and the H.O. four bits contain zero. Note, though, that you can easily convert an ASCII deci-
mal digit character to an unpacked decimal number by simply ANDing AL with the value $0F.

The AAA instruction adjusts the result of a binary addition of two unpacked decimal numbers. If the
addition of those two values exceeds 10, then AAA will subtract 10 from AL and increment AH by one (as
well as set the carry flag). AAA assumes that the two values you add together were legal unpacked decimal
values. Other than the fact that AAA works with only one decimal digit at a time (rather than two), you use
it the same way you use the DAA instruction. Of course, if you need to add together a string of decimal dig-

6. You’ll also soon see that it’s rare to find decimal arithmetic done this way. So it hardly matters.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 873

Chapter Four Volume Four
its, using unpacked decimal arithmetic will require twice as many operations and, therefore, twice the execu-
tion time.

You use the AAS instruction the same way you use the DAS instruction except, of course, it operates on
unpacked decimal values rather than packed decimal values. As for AAA, AAS will require twice the num-
ber of operations to add the same number of decimal digits as the DAS instruction. If you’re wondering why
anyone would want to use the AAA or AAS instructions, keep in mind that the unpacked format supports
multiplication and division, while the packed format does not. Since packing and unpacking the data is usu-
ally more expensive than working on the data a digit at a time, the AAA and AAS instruction are more effi-
cient if you have to work with unpacked data (because of the need for multiplication and division).

The AAM instruction modifies the result in the AX register to produce a correct unpacked decimal result
after multiplying two unpacked decimal digits using the MUL instruction. Because the largest product you
may obtain is 81 (9*9 produces the largest possible product of two single digit values), the result will fit in
the AL register. AAM unpacks the binary result by dividing it by 10, leaving the quotient (H.O. digit) in AH
and the remainder (L.O. digit) in AL. Note that AAM leaves the quotient and remainder in different registers
than a standard eight-bit DIV operation.

Technically, you do not have to use the AAM instruction immediately after a multiply. AAM simply
divides AL by ten and leaves the quotient and remainder in AH and AL (respectively). If you have need of
this particular operation, you may use the AAM instruction for this purpose (indeed, that’s about the only
use for AAM in most programs these days).

If you need to multiply more than two unpacked decimal digits together using MUL and AAM, you will
need to devise a multiprecision multiplication that uses the manual algorithm from earlier in this chapter.
Since that is a lot of work, this section will not present that algorithm. If you need a multiprecision decimal
multiplication, see the next section; it presents a better solution.

The AAD instruction, as you might expect, adjusts a value for unpacked decimal division. The unusual
thing about this instruction is that you must execute it before a DIV operation. It assumes that AL contains
the least significant digit of a two-digit value and AH contains the most significant digit of a two-digit
unpacked decimal value. It converts these two numbers to binary so that a standard DIV instruction will pro-
duce the correct unpacked decimal result. Like AAM, this instruction is nearly useless for its intended pur-
pose as extended precision operations (e.g., division of more than one or two digits) are extremely
inefficient. However, this instruction is actually quite useful in its own right. It computes AX = AH*10+AL
(assuming that AH and AL contain single digit decimal values). You can use this instruction to easily con-
vert a two-character string containing the ASCII representation of a value in the range 0..99 to a binary
value. E.g.,

mov(’9’, al);
mov(’9’, ah); // "99" is in AH:AL.
and($0F0F, ax); // Convert from ASCII to unpacked decimal.
aad(); // After this, AX contains 99.

The decimal and ASCII adjust instructions provide an extremely poor implementation of decimal arith-
metic. To better support decimal arithmetic on 80x86 systems, Intel incorporated decimal operations into
the FPU. The next section discusses how to use the FPU for this purpose. However, even with FPU support,
decimal arithmetic is inefficient and less precise than binary arithmetic. Therefore, you should carefully
consider whether you really need to use decimal arithmetic before incorporating it into your programs.

4.4.4 Packed Decimal Arithmetic Using the FPU

To improve the performance of applications that rely on decimal arithmetic, Intel incorporated support
for decimal arithmetic directly into the FPU. Unlike the packed and unpacked decimal formats of the previ-
ous sections, the FPU easily supports values with up to 18 decimal digits of precision, all at FPU speeds.
Furthermore, all the arithmetic capabilities of the FPU (e.g., transcendental operations) are available in addi-
tion to addition, subtraction, multiplication, and division. Assuming you can live with only 18 digits of pre-
cision and a few other restrictions, decimal arithmetic on the FPU is the right way to go if you must use
decimal arithmetic in your programs.
Page 874 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
The first fact you must note when using the FPU is that it doesn’t really support decimal arithmetic.
Instead, the FPU provides two instruction, FBLD and FBSTP, that convert between packed decimal and
binary floating point formats when moving data to and from the FPU. The FBLD (float/BCD load) instruc-
tion loads an 80-bit packed BCD value unto the top of the FPU stack after converting that BCD value to the
IEEE binary floating point format. Likewise, the FBSTP (float/BCD store and pop) instruction pops the
floating point value off the top of stack, converts it to a packed BCD value, and stores the BCD value into the
destination memory location.

Once you load a packed BCD value into the FPU, it is no longer BCD. It’s just a floating point value.
This presents the first restriction on the use of the FPU as a decimal integer processor: calculations are done
using binary arithmetic. If you have an algorithm that absolutely positively depends upon the use of decimal
arithmetic, it may fail if you use the FPU to implement it7.

The second limitation is that the FPU supports only one BCD data type: a ten-byte 18-digit packed dec-
imal value. It will not support smaller values nor will it support larger values. Since 18 digits is usually suf-
ficient and memory is cheap, this isn’t a big restriction.

A third consideration is that the conversion between packed BCD and the floating point format is not a
cheap operation. The FBLD and FBSTP instructions can be quite slow (more than two orders of magnitude
slower than FLD and FSTP, for example). Therefore, these instructions can be costly if you’re doing simple
additions or subtractions; the cost of conversion far outweighs the time spent adding the values a byte at a
time using the DAA and DAS instructions (multiplication and division, however, are going to be faster on
the FPU).

You may be wondering why the FPU’s packed decimal format only supports 18 digits. After all, with
ten bytes it should be possible to represent 20 BCD digits. As it turns out, the FPU’s packed decimal format
uses the first nine bytes to hold the packed BCD value in a standard packed decimal format (the first byte
contains the two L.O. digits and the ninth byte holds the H.O. two digits). The H.O. bit of the tenth byte
holds the sign bit and the FPU ignores the remaining bits in the tenth byte. If you’re wondering why Intel
didn’t squeeze in one more digit (i.e., use the L.O. four bits of the tenth byte to allow for 19 digits of preci-
sion), just keep in mind that doing so would create some possible BCD values that the FPU could not exactly
represent in the native floating point format. Hence the limitation to 18 digits.

The FPU uses a one’s complement notation for negative BCD values. That is, the sign bit contains a one
if the number is negative or zero and it contains a zero if the number is positive or zero (like the binary one’s
complement format, there are two distinct representations for zero).

HLA’s tbyte type is the standard data type you would use to define packed BCD variables. The FBLD
and FBSTP instructions require a tbyte operand. Unfortunately, the current version of HLA does not let you
(directly) provide an initializer for a tbyte variable. There are several solutions to this problem, the next
chapter will present some of them. One solution is to put any tbyte objects you need to initialize in the
DATA section of your program. For example, consider the following code fragment:

data
tbyteObject: tbyte;

byte $21, $43, $65, 0, 0, 0, 0, 0, 0, 0;

The tbyteObject declaration tells HLA that this is a tbyte object but does not explicitly set aside any
space for the variable (see “The Static Sections” on page 161). The following BYTE directive sets aside ten
bytes of storage and initializes these ten bytes with the value $654321 (remember that the 80x86 organizes
data from the L.O. byte to the H.O. byte in memory). While this scheme is inelegant, it will get the job done.
The next chapter on Macros and the Compile-Time Language will discuss a better way to initialize tbyte and
qword data.

Because the FPU converts packed decimal values to the internal floating point format, you can mix
packed decimal, floating point, and (binary) integer formats in the same calculation. The following program
demonstrate how you might achieve this:

7. An example of such an algorithm might by a multiplication by ten by shifting the number one digit to the left. However,
such operations are not possible within the FPU itself, so algorithms that misbehave inside the FPU are actually quite rare.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 875

Chapter Four Volume Four
program MixedArithmetic;
#include("stdlib.hhf")

static
 tb: tbyte; nostorage;
 byte $21,$43,$65,0,0,0,0,0,0,0;

begin MixedArithmetic;

 fbld(tb);
 fmul(2.0);
 fiadd(1);
 fbstp(tb);
 stdout.put("bcd value is ");
 stdout.puttb(tb);
 stdout.newln();

end MixedArithmetic;

Program 4.7 Mixed Mode FPU Arithmetic

The FPU treats packed decimal values as integer values. Therefore, if your calculations produce frac-
tional results, the FBSTP instruction will round the result according to the current FPU rounding mode. If
you need to work with fractional values, you need to stick with floating point results.

4.5 Sample Program

The sample program for this chapter demonstrates BCD I/O. The following program provides two pro-
cedures, BCDin and BCDout. These two procedures read an 18-digit BCD value from the user (with possi-
ble leading minus sign) and write a BCD value to the standard output device.

program bcdIO;
#include("stdlib.hhf")

// The following is equivalent to TBYTE except it
// lets us easily gain access to the individual
// components of a BCD value.

type
 bcd:record

 LO8: dword;
 MID8: dword;
 HO2: byte;
 Sign: byte;

 endrecord;

// BCDin-
//
Page 876 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
// This function reads a BCD value from the standard input
// device. The number can be up to 18 decimal digits long
// and may contain a leading minus sign.
//
// This procedure stores the BCD value in the variable passed
// by reference as a parameter to this routine.

procedure BCDin(var input:tbyte); nodisplay;
var
 bcdVal: bcd;
 delimiters: cset;

begin BCDin;

 push(eax);
 push(ebx);

 // Get a copy of the input delimiter characters and
 // make sure that #0 is a member of this set.

 conv.getDelimiters(delimiters);
 cs.unionChar(#0, delimiters);

 // Skip over any leading delimiter characters in the text:

 while(stdin.peekc() in delimiters) do

 // If we're at the end of an input line, read a new
 // line of text from the user, otherwise remove the
 // delimiter character from the input stream.

 if(stdin.peekc() = #0) then

 stdin.ReadLn(); // Get a new line of input text.

 else

 stdin.getc(); // Remove the delimeter.

 endif;

 endwhile;

 // Initialize our input accumulator to zero:

 xor(eax, eax);
 mov(eax, bcdVal.LO8);
 mov(eax, bcdVal.MID8);
 mov(al, bcdVal.HO2);
 mov(al, bcdVal.Sign);

 // If the first character is a minus sign, then eat it and
 // set the sign bit to one.

 if(stdin.peekc() = '-') then

 stdin.getc(); // Eat the sign character.
 mov($80, bcdVal.Sign); // Make this number negative.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 877

Chapter Four Volume Four

 endif;

 // We must have at least one decimal digit in this number:

 if(stdin.peekc() not in '0'..'9') then

 raise(ex.ConversionError);

 endif;

 // Okay, read in up to 18 decimal digits:

 while(stdin.peekc() in '0'..'9') do

 stdin.getc(); // Read this decimal digit.
 shl(4, al); // Move digit to H.O. bits of AL

 mov(4, ebx);
 repeat

 // Cheesy way to SHL bcdVal by four bits and
 // merge in the new character.

 shl(1, al);
 rcl(1, bcdVal.LO8);
 rcl(1, bcdVal.MID8);
 rcl(1, bcdVal.HO2);

 // If the user has entered more than 18
 // decimal digits, the carry will be set
 // after the RCL above. Test that here.

 if(@c) then

 raise(ex.ValueOutOfRange);

 endif;
 dec(ebx);

 until(@z);

 endwhile;

 // Be sure that the number ends with a proper delimiter:

 if(stdin.peekc() not in delimiters) then

 raise(ex.ConversionError);

 endif;

 // Okay, store the ten-byte input result into
 // the location specified by the parameter.

 mov(input, ebx);
 mov(bcdVal.LO8, eax);
 mov(eax, [ebx]);
 mov(bcdVal.MID8, eax);
 mov(eax, [ebx+4]);
Page 878 © 2001, By Randall Hyde Version: 7/4/01

Advanced Arithmetic
 mov((type word bcdVal.HO2), ax); // Grabs "Sign" too.
 mov(ax, [ebx+8]);

 pop(ebx);
 pop(eax);

end BCDin;

// BCDout-
//
// The converse of the above. Prints the string representation
// of the packed BCD value to the standard output device.

procedure BCDout(output:tbyte); nodisplay;
var
 q:qword;

begin BCDout;

 // This code cheats *big time*.
 // It converts the BCD value to a 64-bit integer
 // and then calls the stdout.puti64 routine to
 // actually print the number. In theory, this is
 // a whole lot slower than converting the BCD value
 // to ASCII and printing the ASCII chars, however,
 // I/O is so much slower than the conversion that
 // no one will notice the extra time.

 fbld(output);
 fistp(q);
 stdout.puti64(q);

end BCDout;

static
 tb1: tbyte;
 tb2: tbyte;
 tbRslt: tbyte;

begin bcdIO;

 stdout.put("Enter a BCD value: ");
 BCDin(tb1);
 stdout.put("Enter a second BCD value: ");
 BCDin(tb2);

 fbld(tb1);
 fbld(tb2);
 fadd();
 fbstp(tbRslt);

 stdout.put("The sum of ");
 BCDout(tb1);
 stdout.put(" + ");
 BCDout(tb2);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 879

Chapter Four Volume Four
 stdout.put(" is ");
 BCDout(tbRslt);
 stdout.newln();

end bcdIO;

Program 4.8 BCD I/O Sample Program

4.6 Putting It All Together

Extended precision arithmetic is one of those activities where assembly language truly shines. It’s
much easier to perform extended precision arithmetic in assembly language than in most high level lan-
guages; it’s far more efficient to do it in assembly language, as well. Extended precision arithmetic was,
perhaps, the most important subject that this chapter teaches.

Although extended precision arithmetic and logical calculations are important, what good are extended
precision calculations if you can’t get the extend precision values in and out of the machine? Therefore, this
chapter devotes a good chunk of its space to describing how to write your own extended precision I/O rou-
tines. Between the calculations and the I/O this chapter describes, you’re set to perform those really hairy
calculations you’ve always dreamed of!

Although decimal arithmetic is nowhere near as prominent as it once was, the need for decimal arith-
metic does arise on occasion. Therefore, this chapter spends some time discussing BCD arithmetic on the
80x86.
Page 880 © 2001, By Randall Hyde Version: 7/4/01

Bit Manipulation
Bit Manipulation Chapter Five

5.1 Chapter Overview

Manipulating bits in memory is, perhaps, the thing that assembly language is most famous for. Indeed,
one of the reasons people claim that the “C” programming language is a “medium-level” language rather
than a high level language is because of the vast array of bit manipulation operators that it provides. Even
with this wide array of bit manipulation operations, the C programming language doesn’t provide as com-
plete a set of bit manipulation operations as assembly language.

This chapter will discuss how to manipulate strings of bits in memory and registers using 80x86 assem-
bly language. This chapter begins with a review of the bit manipulation instructions covered thus far in this
text and it also introduces a few new instructions. This chapter reviews information on packing and unpack-
ing bit strings in memory since this is the basis for many bit manipulation operations. Finally, this chapter
discusses several bit-centric algorithms and their implementation in assembly language.

5.2 What is Bit Data, Anyway?

Before describing how to manipulate bits, it might not be a bad idea to define exactly what this text
means by “bit data.” Most readers probably assume that “bit manipulation programs” twiddle individual bits
in memory. While programs that do this are definitely “bit manipulation programs,” we’re not going to limit
this title to just those programs. For our purposes, bit manipulation refers to working with data types that
consist of strings of bits that are non-contiguous or are not an even multiple of eight bits long. Generally,
such bit objects will not represent numeric integers, although we will not place this restriction on our bit
strings.

A bit string is some contiguous sequence of one or more bits (this term even applies if the bit string’s
length is an even multiple of eight bits). Note that a bit string does not have to start or end at any special
point. For example, a bit string could start in bit seven of one byte in memory and continue through to bit six
of the next byte in memory. Likewise, a bit string could begin in bit 30 of EAX, consume the upper two bits
of EAX, and then continue from bit zero through bit 17 of EBX. In memory, the bits must be physically
contiguous (i.e., the bit numbers are always increasing except when crossing a byte boundary, and at byte
boundaries the byte number increases by one). In registers, if a bit string crosses a register boundary, the
application defines the continuation register but the bit string always continues in bit zero of that second reg-
ister.

A bit set is a collection of bits, not necessarily contiguous (though it may be), within some larger data
structure. For example, bits 0..3, 7, 12, 24, and 31 from some double word object forms a set of bits. Usu-
ally, we will limit bit sets to some reasonably sized container object (that is, the data structure that encapsu-
lates the bit set), but the definition doesn’t specifically limit the size. Normally, we will deal with bit sets
that are part of an object no more than about 32 or 64 bits in size. Note that bit strings are special cases of bit
sets.

A bit run is a sequence of bits with all the same value. A run of zeros is a bit string containing all zeros,
a run of ones is a bit string containing all ones. The first set bit in a bit string is the bit position of the first set
bit in a bit string, i.e., the first set bit following a run of zeros (assuming of course, that such a bit even
exists). A similar definition exists for the first clear bit. The last set bit is the last bit position in a bit string
containing a one; afterwards, the remainder of the string forms an uninterrupted run of zeros. A similar def-
inition exists for the last clear bit.

A bit offset is the number of bits from some boundary position (usually a byte boundary) to the specified
bit. As noted in Volume One, we’ll number the bits starting from zero at the boundary location. If the offset
is less than 32, then the bit offset is the same as the bit number in a byte, word, or double word value.

A mask is a sequence of bits that we’ll use to manipulate certain bits in another value. For example, the
bit string %0000_1111_0000, when used with the AND instruction, can mask away (clear) all the bits except
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 881

Chapter Five Volume Four
bits four through seven. Likewise, if you use this same value with the OR instruction, it can force bits four
through seven to ones in the destination operand. The term “mask” comes from the use of these bit strings
with the AND instruction; in those situations the one and zero bits behave like masking tape when you’re
painting something; they pass through certain bits unchanged while masking out the other bits.

Armed with these definitions, we’re ready to start manipulating some bits!

5.3 Instructions That Manipulate Bits

Bit manipulation generally consists of six activities: setting bits, clearing bits, inverting bits, testing and
comparing bits, extracting bits from a bit string, and inserting bits into a bit string. By now you should be
familiar with most of the instructions we’ll use to perform these operations; their introduction started way
back in the earliest chapters of Volume One. Nevertheless, it’s worthwhile to review the old instructions here
as well as present the few bit manipulation instructions we’ve yet to consider.

The most basic bit manipulation instructions are the AND, OR, XOR, NOT, TEST, and shift and rotate
instructions. Indeed, on the earliest 80x86 processors, these were the only instructions available for bit man-
pulation. The following paragraphs review these instructions, concentrating on how you could use them to
manipulate bits in memory or registers.

The AND instruction provides the ability to strip away unwanted bits from some bit sequence, replacing
the unwanted bits with zeros. This instruction is especially useful for isolating a bit string or a bit set that is
merged with other, unrelated data (or, at least, data that is not part of the bit string or bit set). For example,
suppose that a bit string consumes bit positions 12 through 24 of the EAX register, we can isolate this bit
string by setting all other bits in EAX to zero by using the following instruction:

and(%1_1111_1111_1111_0000_0000_0000, eax);

Most programs use the AND instruction to clear bits that are not part of the desired bit string. In theory, you
could use the OR instruction to mask all unwanted bits to ones rather than zeros, but later comparisons and
operations are often easier if the unneeded bit positions contain zero.

Figure 5.1 Isolating a Bit String Using the AND Instruction

Once you’ve cleared the unneeded bits in a set of bits, you can often operate on the bit set in place. For
example, to see if the string of bits in positions 12 through 24 of EAX contain $12F3 you could use the fol-
lowing code:

and(%1_1111_1111_1111_0000_0000_0000, eax);
cmp(eax, %1_0010_1111_0011_0000_0000_0000);

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

X X X X X X X S S S S S S S S S S S S S X X X X X X X X X X X X

0 0 0 0 0 0 0 S S S S S S S S S S S S S 0 0 0 0 0 0 0 0 0 0 0 0

Using a bit mask to isolate bits 12..24 in EAX

Top: Original value in EAX. Middle: Bit Mask. Bottom: Final Value in EAX.
Page 882 © 2001, By Randall Hyde Beta Draft - Do not distribute

Bit Manipulation
Here’s another solution, using constant expressions, that’s a little easier to digest:

and(%1_1111_1111_1111_0000_0000_0000, eax);
cmp(eax, $12F3 << 12); // “<<12” shifts $12F3 to the left 12 bits.

Most of the time, however, you’ll want (or need) the bit string aligned with bit zero in EAX prior to any
operations you would want to perform. Of course, you can use the SHR instruction to properly align the
value after you’ve masked it:

and(%1_1111_1111_1111_0000_0000_0000, eax);
shr(12, eax);
cmp(eax, $12F3);
<< Other operations that requires the bit string at bit #0 >>

Now that the bit string is aligned with bit zero, the constants and other values you use in conjunction with
this value are easier to deal with.

You can also use the OR instruction to mask unwanted bits around a set of bits. However, the OR
instruction does not let you clear bits, it allows you to set bits to ones. In some instances setting all the bits
around your bit set may be desirable; most software, however, is easier to write if you clear the surrounding
bits rather than set them.

The OR instruction is especially useful for inserting a bit set into some other bit string. To do this, there
are several steps you must go through:

• Clear all the bits surrounding your bit set in the source operand.
• Clear all the bits in the destination operand where you wish to insert the bit set.
• OR the bit set and destination operand together.

For example, suppose you have a value in bits 0..12 of EAX that you wish to insert into bits 12..24 of EBX
without affecting any of the other bits in EBX. You would begin by stripping out bits 13 and above from
EAX; then you would strip out bits 12..24 in EBX. Next, you would shift the bits in EAX so the bit string
occupies bits 12..24 of EAX. Finally, you would OR the value in EAX into EBX (see Figure 5.2):

and($1FFF, eax); // Strip all but bits 0..12 from EAX
and($1FF_F000, ebx); // Clear bits 12..24 in EBX.
shl(12, eax); // Move bits 0..12 to 12..24 in EAX.
or(eax, ebx); // Merge the bits into EBX.

U U U U U U U U U U U U U U U U U U U A A A A A A A A A A A A A

X X X X X X X Y Y Y Y Y Y Y Y Y Y Y Y Y X X X X X X X X X X X X
EBX:

EAX:

Step One: Strip the unneeded bits from EAX (the “U” bits)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A A A A A A A A A A A A A

X X X X X X X Y Y Y Y Y Y Y Y Y Y Y Y Y X X X X X X X X X X X X
EBX:

EAX:

Step Two: Mask out the destination bit field in EBX.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 883

Chapter Five Volume Four
Figure 5.2 Inserting Bits 0..12 of EAX into Bits 12..24 of EBX

In this example the desired bits (AAAAAAAAAAAAA) formed a bit string. However, this algorithm still
works fine even if you’re manipulating a non-contiguous set of bits. All you’ve got to do is to create an
appropriate bit mask you can use for ANDing that has ones in the appropriate places.

When working with bit masks, it is incredibly poor programming style to use literal numeric constants
as in the past few examples. You should always create symbolic constants in the HLA CONST (or VAL)
section for your bit masks. Combined with some constant expressions, you can produce code that is much
easier to read and maintain. The current example code is more properly written as:

const
StartPosn: 12;
BitMask: dword := $1FFF << StartPosn; // Mask occupies bits 12..24

.

.

.
shl(StartPosn, eax); // Move into position.
and(BitMask, eax); // Strip all but bits 12..24 from EAX
and(!BitMask, ebx); // Clear bits 12..24 in EBX.
or(eax, ebx); // Merge the bits into EBX.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A A A A A A A A A A A A A

X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X X X X X X
EBX:

EAX:

Step Three: Shift the bits in EAX 12 positions to the left to align them with the destination bit field.

0 0 0 0 0 0 0 A A A A A A A A A A A A A 0 0 0 0 0 0 0 0 0 0 0 0

X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X X X X X X
EBX:

EAX:

Step Four: Merge the value in EAX with the value in EBX.

0 0 0 0 0 0 0 A A A A A A A A A A A A A 0 0 0 0 0 0 0 0 0 0 0 0

X X X X X X X A A A A A A A A A A A A A X X X X X X X X X X X X
EBX:

EAX:

Final result is in EBX.
Page 884 © 2001, By Randall Hyde Beta Draft - Do not distribute

Bit Manipulation
Notice the use of the compile-time not operator (“!”) to invert the bit mask in order to clear the bit positions
in EBX where the code inserts the bits from EAX. This saves having to create another constant in the pro-
gram that has to be changed anytime you modify the BitMask constant. Having to maintain two separate
symbols whose values are dependent on one another is not a good thing in a program.

Of course, in addition to merging one bit set with another, the OR instruction is also useful for forcing
bits to one in a bit string. By setting various bits in a source operand to one you can force the corresponding
bits in the destination operand to one by using the OR instruction.

The XOR instruction, as you may recall, gives you the ability to invert selected bits belonging to a bit
set. Although the need to invert bits isn’t as common as the need to set or clear them, the XOR instruction
still sees considerable use in bit manipulation programs. Of course, if you want to invert all the bits in some
destination operand, the NOT instruction is probably more appropriate than the XOR instruction; however,
to invert selected bits while not affecting others, the XOR is the way to go.

One interesting fact about XOR’s operation is that it lets you manipulate known data in just about any
way imaginable. For example, if you know that a field contains %1010 you can force that field to zero by
XORing it with %1010. Similarly, you can force it to %1111 by XORing it with %0101. Although this
might seem like a waste, since you can easily force this four-bit string to zero or all ones using AND or OR,
the XOR instruction has two advantages: (1) you are not limited to forcing the field to all zeros or all ones;,
you can actually set these bits to any of the 16 valid combination via XOR; (2) if you need to manipulate
other bits in the destination operand at the same time, AND/OR may not be able to accommodate you. For
example, suppose that you know that one field contains %1010 that you want to force to zero and another
field contains %1000 and you wish to increment that field by one (i.e., set the field to %1001). You cannot
accomplish both operations with a single AND or OR instruction, but you can do this with a single XOR
instruction; just XOR the first field with %1010 and the second field with %0001. Remember, however, that
this trick only works if you know the current value of a bit set within the destination operand. Of course,
while you’re adjusting the values of bit fields containing known values, you can invert bits in other fields
simultaneously.

In addition to setting, clearing, and inverting bits in some destination operand, the AND, OR, and XOR
instructions also affect various condition codes in the FLAGs register. These instructions affect the flags as
follows:

• These instructions always clear the carry and overflow flags.
• These instructions set the sign flag if the result has a one in the H.O. bit; they clear it otherwise.

I.e., these instructions copy the H.O. bit of the result into the sign flag.
• These instructions set/clear the zero flag depending on whether the result is zero.
• These instructions set the parity flag if there are an even number of set bits in the L.O. byte of

the destination operand, they clear the parity flag if there are an odd number of one bits in the
L.O. byte of the destination operand.

The first thing to note is that these instructions always clear the carry and overflow flags. This means that
you cannot expect the system to preserve the state of these two flags across the execution of these instruc-
tions. A very common mistake in many assembly language programs is the assumption that these instruc-
tions do not affect the carry flag. Many people will execute an instruction that sets/clears the carry flag,
execute an AND/OR/XOR instruction, and then attempt to test the state of the carry from the previous
instruction. This simply will not work.

One of the more interesting aspects to these instructions is that they copy the H.O. bit of their result into
the sign flag. This means that you can easily test the setting of the H.O. bit of the result by testing the sign
flag (using SETS/SETNS, JS/JNS, or by using the @S/@NS flags in a boolean expression). For this reason,
many assembly language programmers will often place an important boolean variable in the H.O. bit of
some operand so they can easily test the state of that bit using the sign flag after a logical operation.

We haven’t talked much about the parity flag in this text. Indeed, earlier volumes have done little more
than acknowledge its existence. We’re not going to get into a big discussion of this flag and what you use it
for since the primary purpose for this flag has been taken over by hardware1. However, since this is a chap-

1. Serial communications chips and other communication hardware that uses parity for error checking normally computes the
parity in hardware, you don’t have to use software for this purpose.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 885

Chapter Five Volume Four
ter on bit manipulation and parity computation is a bit manipulation operation, it seems only fitting to pro-
vide a brief discussion of the parity flag at this time.

Parity is a very simple error detection scheme originally employed by telegraphs and other serial com-
munication schemes. The idea was to count the number of set bits in a character and include an extra bit in
the transmission to indicate whether that character contained an even or odd number of set bits. The receiv-
ing end of the transmission would also count the bits and verify that the extra “parity” bit indicated a suc-
cessful transmission. We’re not going to explore the information theory aspects of this error checking
scheme at this point other than to point out that the purpose of the parity flag is to help compute the value of
this extra bit.

The 80x86 AND, OR, and XOR instructions set the parity bit if the L.O. byte of their operand contains
an even number of set bits. An important fact bears repeating here: the parity flag only reflects the number of
set bits in the L.O. byte of the destination operand; it does not include the H.O. bytes in a word, double
word, or other sized operand. The instruction set only uses the L.O. byte to compute the parity because com-
munication programs that use parity are typically character-oriented transmission systems (there are better
error checking schemes if you transmit more than eight bits at a time).

Although the need to know whether the L.O. (or only) byte of some computation has an even or odd
number of set bits isn’t common in modern programs, it does come in useful once in a great while. Since
this is, intrinsically, a bit operation, it’s worthwhile to mention the use of this flag and how the
AND/OR/XOR instructions affect this flag.

The zero flag setting is one of the more important results the AND/OR/XOR instructions produce.
Indeed, programs reference this flag so often after the AND instruction that Intel added a separate instruc-
tion, TEST, whose main purpose was to logically AND two results and set the flags without otherwise affect-
ing either instruction operand.

There are three main uses of the zero flag after the execution of an AND or TEST instruction: (1) check-
ing to see if a particular bit in an operand is set; (2) checking to see if at least one of several bits in a bit set is
one; and (3) checking to see if an operand is zero. Use (1) is actually a special case of (2) where the bit set
contains only a single bit. We’ll explore each of these uses in the following paragraphs.

A common use for the AND instruction, and also the original reason for the inclusion of the TEST
instruction in the 80x86 instruction set, is to test to see if a particular bit is set in a given operand. To per-
form this type of test, you would normally AND/TEST a constant value containing a single set bit with the
operand you wish to test. These clears all the other bits in the second operand leaving a zero in the bit posi-
tion under test (the bit position with the single set bit in the constant operand) if the operand contains a zero
in that position and leaving a one if the operand contains a one in that position. Since all of the other bits in
the result are zero, the entire result will be zero if that particular bit is zero, the entire result will be non-zero
if that bit position contains a one. The 80x86 reflects this status in the zero flag (Z=1 indicates a zero bit,
Z=0 indicates a one bit). The following instruction sequence demonstrates how to test to see if bit four is set
in EAX:

test(%1_000, eax); // Check bit #4 to see if it is 0/1
if(@nz) then

<< Do this if the bit is set >>

else

<< Do this if the bit is clear >>

endif;

You can also use the AND/TEST instructions to see if any one of several bits is set. Simply supply a
constant that has one bits in all the positions you want to test (and zeros everywhere else). AND such a value
with an unknown quantity will produce a non-zero value if one or more of the bits in the operand under test
contain a one. The following example tests to see if the value in EAX contains a one in bit positions one,
two, four, and seven:

test(%1001_0010, eax);
if(@nz) then // at least one of the bits is set.
Page 886 © 2001, By Randall Hyde Beta Draft - Do not distribute

Bit Manipulation
<< do whatever needs to be done if one of the bits is set >>

endif;

Note that you cannot use a single AND or TEST instruction to see if all the corresponding bits in the bit
set are equal to one. To accomplish this, you must first mask out the bits that are not in the set and then com-
pare the result against the mask itself. If the result is equal to the mask, then all the bits in the bit set contain
ones. You must use the AND instruction for this operation as the TEST instruction does not mask out any
bits. The following example checks to see if all the bits corresponding to a value this code calls bitMask are
equal to one:

and(bitMask, eax);
cmp(eax, bitMask);
if(@e) then

<< All the bit positions in EAX corresponding to the set >>
<< bits in bitMask are equal to one if we get here. >>

endif;

Of course, once we stick the CMP instruction in there, we don’t really have to check to see if all the bits in
the bit set contain ones. We can check for any combination of values by specifying the appropriate value as
the operand to the CMP instruction.

Note that the TEST/AND instructions will only set the zero flag in the above code sequences if all the
bits in EAX (or other destination operand) have zeros in the positions where ones appear in the constant
operand. This suggests another way to check for all ones in the bit set: invert the value in EAX prior to
using the AND or TEST instruction. Then if the zero flag is set, you know that there were all ones in the
(original) bit set, e.g.,

not(eax);
test(bitMask, eax);
if(@z) then

<< At this point, EAX contained all ones in the bit positions >>
<< occupied by ones in the bitMask constant. >>

endif;

The paragraphs above all suggest that the bitMask (i.e., source operand) is a constant. This was for purposes
of example only. In fact, you can use a variable or other register here, if you prefer. Simply load that vari-
able or register with the appropriate bit mask before you execute the TEST, AND, or CMP instructions in the
examples above.

Another set of instructions we’ve already seen that we can use to manipulate bits are the bit test instruc-
tions. These instructions include BT (bit test), BTS (bit test and set), BTC (bit test and complement), and
BTR (bit test and reset). We’ve used these instructions to manipulate bits in HLA character set variables, we
can also use them to manipulate bits in general. The BTx instructions allow the following syntactical forms:

btx(BitNumber, BitsToTest);

btx(reg16, reg16);

btx(reg32, reg32);

btx(constant, reg16);

btx(constant, reg32);

btx(reg16, mem16);

btx(reg32, mem32);

btx(constant, mem16);

btx(constant, mem32);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 887

Chapter Five Volume Four
The BT instruction’s first operand is a bit number that specifies which bit to check in the second operand. If
the second operand is a register, then the first operand must contain a value between zero and the size of the
register (in bits) minus one; since the 80x86’s largest registers are 32 bits, this value have the maximum
value 31 (for 32-bit registers). If the second operand is a memory location, then the bit count is not limited
to values in the range 0..31. If the first operand is a constant, it can be any eight-bit value in the range 0..255.
If the first operand is a register, it has no limitation.

The BT instruction copies the specified bit from the second operand into the carry flag. For example,
the “bt(8, eax);” instruction copies bit number eight of the EAX register into the carry flag. You can test the
carry flag after this instruction to determine whether bit eight was set or clear in EAX.

In general, the BT instruction is, perhaps, not the best instruction for testing individual bits in a register.
The TEST (or AND) instruction is a bit more efficient. These latter two instructions are Intel “RISC Core”
instructions while the BT instruction is a “Complex” instruction. Therefore, you will often get better perfor-
mance using TEST or AND rather than BT. If you want to test bits in memory operands (especially in bit
arrays), then the BT instruction is probably a reasonable way to go.

The BTS, BTC, and BTR instructions manipulate the bit they test while they are testing it. These
instructions are rather slow and you should avoid them if performance is your primary concern. In a later
volume when we discuss semaphores you will see the true purpose for these instructions. Until then, if per-
formance (versus convenience) is an issue, you should always try two different algorithms, one that uses
these instructions, one that uses AND/OR instructions, and measure the performance difference; then
choose the best of the two different approaches.

The shift and rotate instructions are another group of instructions you can use to manipulate and test
bits. Of course, all of these instructions move the H.O. (left shift/rotate) or L.O. (right shift/rotate) bits into
the carry flag. Therefore, you can test the carry flag after you execute one of these instructions to determine
the original setting of the operand’s H.O. or L.O. bit (depending on the direction). Of course, the shift and
rotate instructions are invaluable for aligning bit strings, packing, and unpacking data. Volume One has sev-
eral examples of this and, of course, some earlier examples in the section also use the shift instructions for
this purpose.

5.4 The Carry Flag as a Bit Accumulator

The BTx, shift, and rotate instructions all set or clear the carry flag depending on the operation and/or
selected bit. Since these instructions place their “bit result” in the carry flag, it is often convenient to think of
the carry flag as a one-bit register or accumulator for bit operations. In this section we will explore some of
the operations possible with this bit result in the carry flag.

Instructions that will be useful for manipulating bit results in the carry flag are those that use the carry
flag as some sort of input value. The following is a sampling of such instructions:

• ADC, SBB
• RCL, RCR
• CMC (we’ll throw in CLC and STC even though they don’t use the carry as input)
• JC, JNC
• SETC, SETNC

The ADC and SBB instructions add or subtract their operands along with the carry flag. So if you’ve
computed some bit result into the carry flag, you can figure that result into an addition or subtraction using
these instructions. This isn’t a common operation, but it is available if it’s useful to you.

To merge a bit result in the carry flag, you most often use the rotate through carry instructions (RCL and
RCR). These instructions, of course, move the carry flag into the L.O. or H.O. bits of their destination oper-
and. These instructions are very useful for packing a set of bit results into a byte, word, or double word
value.

The CMC (complement carry) instruction lets you easily invert the result of some bit operation. You
can also use the CLC and STC instructions to initialize the carry flag prior to some string of bit operations
involving the carry flag.
Page 888 © 2001, By Randall Hyde Beta Draft - Do not distribute

Bit Manipulation
Of course, instructions that test the carry flag are going to be very popular after a calculation that leaves
a bit result in the carry flag. The JC, JNC, SETC, and SETNC instructions are quite useful here. You can
also use the HLA @C and @NC operands in a boolean expression to test the result in the carry flag.

If you have a sequence of bit calculations and you would like to test to see if the calculations produce a
specific sequence of one-bit results, the easiest way to do this is to clear a register or memory location and
use the RCL or RCR instructions to shift each result into that location. Once the bit operations are complete,
then you can compare the register or memory location against a constant value to see if you’ve obtained a
particular result. If you want to test a sequence of results involving conjunction and disjunction (i.e., strings
of results involving ANDs and ORs) then you could use the SETC and SETNC instruction to set a register to
zero or one and then use the AND/OR instructions to merge the results.

5.5 Packing and Unpacking Bit Strings

A common bit operation is inserting a bit string into an operand or extracting a bit string from an oper-
and. Previous chapters in this text have provided simple examples of packing and unpacking such data, now
it is time to formally describe how to do this.

For the purposes of the current discussion, we will assume that we’re dealing with bit strings; that is, a
contiguous sequence of bits. A little later in this chapter we’ll take a look at how to extract and insert bit sets
in an operand. Another simplification we’ll make is that the bit string completely fits within a byte, word, or
double word operand. Large bit strings that cross object boundaries require additional processing; a discus-
sion of bit strings that cross double word boundaries appears later in this section.

A bit string has two attributes that we must consider when packing and unpacking that bit string in a
larger operand: a starting bit position and a length. The starting bit position is the bit number of the L.O. bit
of the bit string in the larger operand. The length, of course, is the number of bits in the operand. To insert
(pack) data into a destination operand we will assume that we start with a bit string of the appropriate length
that is right-justified (i.e., starts in bit position zero) in an operand and is zero extended to eight, sixteen, or
thirty-two bits. The task is to insert this data at the appropriate starting position in some other operand that is
eight, sixteen, or thirty-bits wide. There is no guarantee that the destination bit positions contain any partic-
ular value.

The first two steps (which can occur in any order) is to clear out the corresponding bits in the destination
operand and shift (a copy of) the bit string so that the L.O. bit begins at the appropriate bit position. After
completing these two steps, the third step is to OR the shifted result with the destination operand. This
inserts the bit string into the destination operand.

0 0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y

X X X X X X X D D D D X X X X X
Destination:

Source:

Step One: Insert YYYY into the positions occupied by DDDD in the destination operand.
 Begin by shifting the source operand to the left five bits.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 889

Chapter Five Volume Four
Figure 5.3 Inserting a Bit String Into a Destination Operand

It only takes three instructions to insert a bit string of known length into a destination operand. The fol-
lowing three instructions demonstrate how to handle the insertion operation in Figure 5.3; These instruc-
tions assume that the source operand is in BX and the destination operand is AX:

shl(5, bx);
and(%111111000011111, ax);
or(bx, ax);

If the length and the starting position aren’t known when you’re writing the program (that is, you have
to calculate them at run time), then bit string insertion is a little more difficult. However, with the use of a
lookup table it’s still an easy operation to accomplish. Let’s assume that we have two eight-bit values: a
starting bit position for the field we’re inserting and a non-zero eight-bit length value. Also assume that the
source operand is in EBX and the destination operand is EAX. The code to insert one operand into another
could take the following form:

readonly

// The index into the following table specifies the length of the bit string
// at each position:

MaskByLen: dword[32] :=

0 0 0 0 0 0 0 Y Y Y Y 0 0 0 0 0

X X X X X X X D D D D X X X X X
Destination:

Source:

Step Two: Clear out the destination bits using the AND instruction.

0 0 0 0 0 0 0 Y Y Y Y 0 0 0 0 0

X X X X X X X 0 0 0 0 X X X X X
Destination:

Source:

Step Three: OR the two values together

0 0 0 0 0 0 0 Y Y Y Y 0 0 0 0 0

X X X X X X X Y Y Y Y X X X X X
Destination:

Source:

Final result appears in the destination operand.
Page 890 © 2001, By Randall Hyde Beta Draft - Do not distribute

Bit Manipulation
[
0, $1, $3, $7, $f, $1f, $3f, $7f,
$ff, $1ff, $3ff, $7ff, $fff, $1fff, $3fff, $7fff, $ffff,
$1_ffff, $3_ffff, $7_ffff, $f_ffff,
$1f_ffff, $3f_ffff, $7f_ffff, $ff_ffff,
$1ff_ffff, $3ff_ffff, $7ff_ffff, $fff_ffff,
$1fff_ffff, $3fff_ffff, $7fff_ffff, $ffff_ffff

];
.
.
.

movzx(Length, edx);
mov(MaskByLen[edx*4], edx);
mov(StartingPosition, cl);
shl(cl, edx);
not(edx);
shl(cl, ebx);
and(edx, eax);
or(ebx, eax);

Each entry in the MaskByLen table contains the number of one bits specified by the index into the table.
Using the Length value as an index into this table fetches a value that has as many one bits as the Length
value. The code above fetches an appropriate mask, shifts it to the left so that the L.O. bit of this run of ones
matches the starting position of the field into which we want to insert the data, then it inverts the mask and
uses the inverted value to clear the appropriate bits in the destination operand.

To extract a bit string from a larger operand is just as easy as inserting a bit string into some larger oper-
and. All you’ve got to do is mask out the unwanted bits and then shift the result until the L.O. bit of the bit
string is in bit zero of the destination operand. For example, to extract the four-bit field starting at bit posi-
tion five in EBX and leave the result in EAX, you could use the following code:

mov(ebx, eax); // Copy data to destination.
and(%1_1110_0000, ebx); // Strip unwanted bits.
shr(5, eax); // Right justify to bit position zero.

If you do not know the bit string’s length and starting position when you’re writing the program, you
can still extract the desired bit string. The code is very similar to insertion (though a tiny bit simpler).
Assuming you have the Length and StartingPosition values we used when inserting a bit string, you can
extract the corresponding bit string using the following code (assuming source=EBX and dest=EAX):

movzx(Length, edx);
mov(MaskByLen[edx*4], edx);
mov(StartingPosition, cl);
mov(ebx, eax);
shr(cl, eax);
and(edx, eax);

The examples up to this point all assume that the bit string appears completely within a double word (or
smaller) object. This will always be the case if the bit string is less than or equal to 24 bits in length. How-
ever, if the length of the bit string plus its starting position (mod eight) within an object is greater than 32,
then the bit string will cross a double word boundary within the object. To extract such bit strings requires
up to three operations: one operation to extract the start of the bit string (up to the first double word bound-
ary), an operation that copies whole double words (assuming the bit string is so long that it consumes several
double words), and a final operation that copies left-over bits in the last double word at the end of the bit
string. The actual implementation of this operation is left as an exercise at the end of this volume.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 891

Chapter Five Volume Four
5.6 Coalescing Bit Sets and Distributing Bit Strings

Inserting and extract bit sets is little different than inserting and extract bit strings if the “shape” of the
bit set you’re inserting (or resulting bit set you’re extracting) is the same as the bit set in the main object.
The “shape” of a bit set is the distribution of the bits in the set, ignoring the starting bit position of the set.
So a bit set that includes bits zero, four, five, six, and seven has the same shape as a bit set that includes bits
12, 16, 17, 18, and 19 since the distribution of the bits is the same. The code to insert or extract this bit set is
nearly identical to that of the previous section; the only difference is the mask value you use. For example,
to insert this bit set starting at bit number zero in EAX into the corresponding bit set starting at position 12 in
EBX, you could use the following code:

and(%1111_0001_0000_0000_0000, ebx); // Mask out destination bits.
shl(12, eax); // Move source bits into posn.
or(eax, ebx); // Merge the bit set into EBX.

However, suppose you have five bits in bit positions zero through four in EAX and you want to merge
them into bits 12, 16, 17, 18, and 19 in EBX. Somehow you’ve got to distribute the bits in EAX prior to log-
ically ORing the values into EBX. Given the fact that this particular bit set has only two runs of one bits, the
process is somewhat simplified, the following code achieves this in a somewhat sneaky fashion:

and(%1111_0001_0000_0000_0000, ebx);
shl(3, eax); // Spread out the bits: 1-4 goes to 4-7 and 0 to 3.
btr(3, eax); // Bit 3->carry and then clear bit 3
rcl(12, eax); // Shift in carry and put bits into final position
or(eax, ebx); // Merge the bit set into EBX.

This trick with the BTR (bit test and reset) instruction worked well because we only had one bit out of
place in the original source operand. Alas, had the bits all been in the wrong location relative to one another,
this scheme might not have worked quite as well. We’ll see a more general solution in just a moment.

Extracting this bit set and collecting (“coalescing”) the bits into a bit string is not quite as easy. How-
ever, there are still some sneaky tricks we can pull. Consider the following code that extracts the bit set from
EBX and places the result into bits 0..4 of EAX:

mov(ebx, eax);
and(%1111_0001_0000_0000_0000, eax); // Strip unwanted bits.
shr(5, eax); // Put bit 12 into bit 7, etc.
shr(3, ah); // Move bits 11..14 to 8..11.
shr(7, eax); // Move down to bit zero.

This code moves (original) bit 12 into bit position seven, the H.O. bit of AL. At the same time it moves bits
16..19 down to bits 11..14 (bits 3..6 of AH). Then the code shifts the bits 3..6 in AH down to bit zero. This
positions the H.O. bits of the bit set so that they are adjacent to the bit left in AL. Finally, the code shifts all
the bits down to bit zero. Again, this is not a general solution, but it shows a clever way to attack this prob-
lem if you think about it carefully.

The problem with the coalescing and distribution algorithms above is that they are not general. They
apply only to their specific bit sets. In general, specific solutions are going to provide the most efficient solu-
tion. A generalized solution (perhaps that lets you specify a mask and the code distributes or coalesces the
bits accordingly) is going to be a bit more difficult. The following code demonstrates how to distribute the
bits in a bit string according to the values in a bit mask:

// EAX- Originally contains some value into which we insert bits from EBX.
// EBX- L.O. bits contain the values to insert into EAX.
// EDX- bitmap with ones indicating the bit positions in EAX to insert.
// CL- Scratchpad register.

 mov(32, cl); // Count # of bits we rotate.
 jmp DistLoop;

CopyToEAX: rcr(1, ebx); // Don't use SHR here, must preserve Z-flag.
Page 892 © 2001, By Randall Hyde Beta Draft - Do not distribute

Bit Manipulation
 rcr(1, eax);
 jz Done;
DistLoop: dec(cl);
 shr(1, edx);
 jc CopyToEAX;
 ror(1, eax); // Keep current bit in EAX.
 jnz DistLoop;

Done: ror(cl, eax); // Reposition remaining bits.

In the code above, if we load EDX with %1100_1001 then this code will copy bits 0..3 to bits 0, 3, 6, and 7
in EAX. Notice the short circuit test that checks to see if we’ve exhausted the values in EDX (by checking
for a zero in EDX). Note that the rotate instructions do not affect the zero flag while the shift instructions do.
Hence the SHR instruction above will set the zero flag when there are no more bits to distribute (i.e., when
EDX becomes zero).

The general algorithm for coalescing bits is a tad more efficient than distribution. Here’s the code that
will extract bits from EBX via the bit mask in EDX and leave the result in EAX:

// EAX- Destination register.
// EBX- Source register.
// EDX- Bitmap with ones representing bits to copy to EAX.
// EBX and EDX are not preserved.

 sub(eax, eax); // Clear destination register.
 jmp ShiftLoop;

ShiftInEAX: rcl(1, ebx); // Up here we need to copy a bit from
 rcl(1, eax); // EBX to EAX.
ShiftLoop: shl(1, edx); // Check mask to see if we need to copy a bit.
 jc ShiftInEAX; // If carry set, go copy the bit.
 rcl(1, ebx); // Current bit is uninteresting, skip it.
 jnz ShiftLoop; // Repeat as long as there are bits in EDX.

This sequence takes advantage of one sneaky trait of the shift and rotate instructions: the shift instructions
affect the zero flag while the rotate instructions do not. Therefore, the “shl(1, edx);” instruction sets the zero
flag when EDX becomes zero (after the shift). If the carry flag was also set, the code will make one addi-
tional pass through the loop in order to shift a bit into EAX, but the next time the code shifts EDX one bit to
the left, EDX is still zero and so the carry will be clear. On this iteration, the code falls out of the loop.

Another way to coalesce bits is via table lookup. By grabbing a byte of data at a time (so your tables
don’t get too large) you can use that byte’s value as an index into a lookup table that coalesces all the bits
down to bit zero. Finally, you can merge the bits at the low end of each byte together. This might produce a
more efficient coalescing algorithm in certain cases. The implementation is left to the reader...

5.7 Packed Arrays of Bit Strings

Although it is far more efficient to create arrays whose elements’ have an integral number of bytes, it is
quite possible to create arrays of elements whose size is not a multiple of eight bits. The drawback is that
calculating the “address” of an array element and manipulating that array element involves a lot of extra
work. In this section we’ll take a look at a few examples of packing and unpacking array elements in an
array whose elements are an arbitrary number of bits long.

Before proceeding, it’s probably worthwhile to discuss why you would want to bother with arrays of bit
objects. The answer is simple: space. If an object only consumes three bits, you can get 2.67 times as many
elements into the same space if you pack the data rather than allocating a whole byte for each object. For
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 893

Chapter Five Volume Four
very large arrays, this can be a substantial savings. Of course, the cost of this space savings is speed: you’ve
got to execute extra instructions to pack and unpack the data, thus slowing down access to the data.

The calculation for locating the bit offset of an array element in a large block of bits is almost identical
to the standard array access; it is

Element_Address_in_bits = Base_address_in_bits + index * element_size_in_bits

Once you calculate the element’s address in bits, you need to convert it to a byte address (since we have to
use byte addresses when accessing memory) and extract the specified element. Because the base address of
an array element (almost) always starts on a byte boundary, we can use the following equations to simplify
this task:

Byte_of_1st_bit = Base_Address + (index * element_size_in_bits)/8
Offset_to_1st_bit = (index * element_size_in_bits) % 8 (note “%” = MOD)

For example, suppose we have an array of 200 three-bit objects that we declare as follows:

static
AO3Bobjects: byte[(200*3)/8 + 1]; // “+1” handles trucation.

The constant expression in the dimension above reserves space for enough bytes to hold 600 bits (200 ele-
ments, each three bits long). As the comment notes, the expression adds an extra byte at the end to ensure
we don’t lose any odd bits (that won’t happen in this example since 600 is evenly divisible by 8, but in gen-
eral you can’t count on this; one extra byte usually won’t hurt things).

Now suppose you want to access the ith three-bit element of this array. You can extract these bits by
using the following code:

// Extract the ith group of three bits in AO3Bobjects and leave this value
// in EAX.

sub(ecx, ecx); // Put of i/8 remainder here.
mov(i, eax); // Get the index into the array.
shrd(3, eax, ecx); // EAX/8 -> EAX and EAX mod 8 -> ECX (H.O. bits)
rol(3, ecx); // Put remainder into L.O. three bits of ECX.

// Okay, fetch the word containing the three bits we want to extract.
// We have to fetch a word because the last bit or two could wind up
// crossing the byte boundary (i.e., bit offset six and seven in the
// byte).

mov(AO3Bobjecs[eax], eax);
shr(cl, eax); // Move bits down to bit zero.
and(%111, eax); // Remove the other bits.

Inserting an element into the array is a bit more difficult. In addition to computing the base address and
bit offset of the array element, you’ve also got to create a mask to clear out the bits in the destination where
you’re going to insert the new data. The following code inserts the L.O. three bits of EAX into the ith ele-
ment of the AO3Bobjects array.

// Insert the L.O. three bits of AX into the ith element of AO3Bobjects:

readonly
Masks: word[8] :=

[
!%0000_0111, !%0000_1110, !%0001_1100, !%0011_1000,
!%0111_0000, !%1110_0000, !%1_1100_0000, !%11_1000_0000

];
.
.
.

sub(ecx, ecx); // Put remainder here.
mov(i, ebx); // Get the index into the array.
Page 894 © 2001, By Randall Hyde Beta Draft - Do not distribute

Bit Manipulation
shrd(3, ebx, ecx); // i/8 -> EBX, i % 8 -> ECX.
rol(3, ecx);

and(%111, ax); // Clear unneeded bits from AX.
mov(Masks[ecx], dx); // Mask to clear out our array element.
and(AO3Bobjects[ebx], dx); // Grab the bits and clear those
 // we’re inserting.
shl(cl, ax); // Put our three bits in their proper location.
or(ax, dx); // Merge bits into destination.
mov(dx, AO3Bobjects[ebx]); // Store back into memory.

Notice the use of a lookup table to generate the masks needed to clear out the appropriate position in the
array. Each element of this array contains all ones except for three zeros in the position we need to clear for
a given bit offset (note the use of the “!” operator to invert the constants in the table).

5.8 Searching for a Bit

A very common bit operation is to locate the end of some run of bits. A very common special case of
this operation is to locate the first (or last) set or clear bit in a 16- or 32-bit value. In this section we’ll
explore ways to accomplish this.

Before describing how to search for the first or last bit of a given value, perhaps it’s wise to discuss
exactly what the terms “first” and “last” mean in this context. The term “first set bit” means the first bit in a
value, scanning from bit zero towards the high order bit, that contains a one. A similar definition exists for
the “first clear bit.” The “last set bit” is the first bit in a value, scanning from the high order bit towards bit
zero, that contains a one. A similar definition exists for the last clear bit.

One obvious way to scan for the first or last bit is to use a shift instruction in a loop and count the num-
ber of iterations before you shift out a one (or zero) into the carry flag. The number of iterations specifies the
position. Here’s some sample code that checks for the first set bit in EAX and returns that bit position in
ECX:

mov(-32, ecx); // Count off the bit positions in ECX.
TstLp: shr(1, eax); // Check to see if current bit position contains

jc Done // a one; exit loop if it does.
inc(ecx); // Bump up our bit counter by one.
jnz TstLp; // Exit if we execute this loop 32 times.

Done: add(32, cl); // Adjust loop counter so it holds the bit posn.

// At this point, ECX contains the bit position of the first set bit.
// ECX contains 32 if EAX originally contained zero (no set bits).

The only thing tricky about this code is the fact that it runs the loop counter from -32 to zero rather than 32
down to zero. This makes it slightly easier to calculate the bit position once the loop terminates.

The drawback to this particular loop is that it’s expensive. This loop repeats as many as 32 times
depending on the original value in EAX. If the values you’re checking often have lots of zeros in the L.O.
bits of EAX, this code runs rather slow.

Searching for the first (or last) set bit is such a common operation that Intel added a couple of instruc-
tions on the 80386 specifically to accelerate this process. These instructions are BSF (bit scan forward) and
BSR (bit scan reverse). Their syntax is as follows:

bsr(source, destReg);
bsf(source, destReg);

The source and destinations operands must be the same size and they must both be 16- or 32-bit objects.
The destination operand has to be a register, the source operand can be a register or a memory location.

The BSF instruction scans for the first set bit (starting from bit position zero) in the source operand. The
BSR instruction scans for the last set bit in the source operand by scanning from the H.O. bit towards the
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 895

Chapter Five Volume Four
L.O. bit. If these instructions find a bit that is set in the source operand then they clear the zero flag and put
the bit position into the destination register. If the source register contains zero (i.e., there are no set bits)
then these instructions set the zero flag and leave an indeterminate value in the destination register. Note that
you should test the zero flag immediately after the execution of these instructions to validate the destination
register’s value. Examples:

mov(SomeValue, ebx); // Value whose bits we want to check.
bsf(ebx. eax); // Put position of first set bit in EAX.
jz NoBitsSet; // Branch if SomeValue contains zero.
mov(eax, FirstBit); // Save location of first set bit.
 .
 .
 .

You use the BSR instruction in an identical fashion except that it computes the bit position of the last set bit
in an operand (that is, the first set bit it finds when scanning from the H.O. bit towards the L.O. bit).

The 80x86 CPUs do not provide instructions to locate the first bit containing a zero. However, you can
easily scan for a zero bit by first inverting the source operand (or a copy of the source operand if you must
preserve the source operand’s value). If you invert the source operand, then the first “1” bit you find corre-
sponds to the first zero bit in the original operand value.

The BSF and BSR instructions are complex instructions (i.e., they are not a part of the 80x86 “RISC
core” instruction set). Therefore, these instructions are necessarily as fast as other instructions. Indeed, in
some circumstances it may be faster to locate the first set bit using discrete instructions. However, since the
execution time of these instructions varies widely from CPU to CPU, you should first test the performance of
these instructions prior to using them in time critical code.

Note that the BSF and BSR instructions do not affect the source operand. A common operation is to
extract the first (or last) set bit you find in some operand. That is, you might want to clear the bit once you
find it. If the source operand is a register (or you can easily move it into a register) then you can use the BTR
(or BTC) instruction to clear the bit once you’ve found it. Here’s some code that achieves this result:

bsf(eax, ecx); // Locate first set bit in EAX.
if(@nz) then // If we found a bit, clear it.

 btr(ecx, eax); // Clear the bit we just found.

endif;

At the end of this sequence, the zero flag indicates whether we found a bit (note that BTR does not
affect the zero flag). Alternately, you could add an ELSE section to the IF statement above that handles the
case when the source operand (EAX) contains zero at the beginning of this instruction sequence.

Since the BSF and BSR instructions only support 16- and 32-bit operands, you will have to compute the
first bit position of an eight-bit operand a little differently. There are a couple of reasonable approaches.
First, of course, you can usually zero extend an eight-bit operand to 16 or 32 bits and then use the BSF or
BSR instructions on this operand. Another alternative is to create a lookup table where each entry in the
table contains the number of bits in the value you use as an index into the table; then you can use the XLAT
instruction to “compute” the first bit position in the value (note that you will have to handle the value zero as
a special case). Another solution is to use the shift algorithm appearing at the beginning of this section; for
an eight-bit operand, this is not an entirely inefficient solution.

One interesting use of the BSF and BSR instructions is to “fill in” a character set with all the values
from the lowest-valued character in the set through the highest-valued character. For example, suppose a
character set contains the values {‘A’, ‘M’, ‘a’..’n’, ‘z’}; if we filled in the gaps in this character set we
would have the values {‘A’..’z’}. To compute this new set we can use BSF to determine the ASCII code of
the first character in the set and BSR to determine the ASCII code of the last character in the set. After doing
this, we can feed those two ASCII codes to the cs.rangeChar function to compute the new set.

You can also use the BSF and BSR instructions to determine the size of a run of bits, assuming that you
have a single run of bits in your operand. Simply locate the first and last bits in the run (as above) and the
Page 896 © 2001, By Randall Hyde Beta Draft - Do not distribute

Bit Manipulation
compute the difference (plus one) of the two values. Of course, this scheme is only valid if there are no
intervening zeros between the first and last set bits in the value.

5.9 Counting Bits

The last example in the previous section demonstrates a specific case of a very general problem: count-
ing bits. Unfortunately, that example has a severe limitation: it only counts a single run of one bits appearing
in the source operand. This section discusses a more general solution to this problem.

Hardly a week goes by that someone doesn’t ask how to count the number of bits in a register operand
on one of the Internet news groups. This is a common request, undoubtedly, because many assembly lan-
guage course instructors assign this task a project to their students as a way to teach them about the shift and
rotate instructions. Undoubtedly, the solution these instructor expect is something like the following:

// BitCount1:
//
// Counts the bits in the EAX register, returning the count in EBX.

mov(32, cl); // Count the 32 bits in EAX.
sub(ebx, ebx); // Accumulate the count here.

CntLoop: shr(1, eax); // Shift next bit out of EAX and into Carry.
adc(0, bl); // Add the carry into the EBX register.
dec(cl); // Repeat 32 times.
jnz CntLoop

The “trick” worth noting here is that this code uses the ADC instruction to add the value of the carry flag into
the BL register. Since the count is going to be less than 32, the result will fit comfortable into BL. This code
uses “adc(0, bl);” rather than “adc(0, ebx);” because the former instruction is smaller.

Tricky code or not, this instruction sequence is not particularly fast. As you can tell with just a small
amount of analysis, the loop above always executes 32 times, so this code sequence executes 130 instruc-
tions (four instructions per iteration plus two extra instructions). One might ask if there is a more efficient
solution, the answer is yes. The following code, taken from the AMD Athlon optimization guide, provides a
faster solution (see the comments for a description of the algorithm):

 // bitCount-
 //
 // Counts the number of "1" bits in a dword value.
 // This function returns the dword count value in EAX.

 procedure bits.cnt(BitsToCnt:dword); nodisplay;

 const
 EveryOtherBit := $5555_5555;
 EveryAlternatePair := $3333_3333;
 EvenNibbles := $0f0f_0f0f;

 begin cnt;

 push(edx);
 mov(BitsToCnt, eax);
 mov(eax, edx);

 // Compute sum of each pair of bits
 // in EAX. The algorithm treats
 // each pair of bits in EAX as a two
 // bit number and calculates the
 // number of bits as follows (description
 // is for bits zero and one, it generalizes
 // to each pair):
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 897

Chapter Five Volume Four
 //
 // EDX = BIT1 BIT0
 // EAX = 0 BIT1
 //
 // EDX-EAX = 00 if both bits were zero.
 // 01 if Bit0=1 and Bit1=0.
 // 01 if Bit0=0 and Bit1=1.
 // 10 if Bit0=1 and Bit1=1.
 //
 // Note that the result is left in EDX.

 shr(1, eax);
 and(EveryOtherBit, eax);
 sub(eax, edx);

 // Now sum up the groups of two bits to
 // produces sums of four bits. This works
 // as follows:
 //
 // EDX = bits 2,3, 6,7, 10,11, 14,15, ..., 30,31
 // in bit positions 0,1, 4,5, ..., 28,29 with
 // zeros in the other positions.
 //
 // EAX = bits 0,1, 4,5, 8,9, ... 28,29 with zeros
 // in the other positions.
 //
 // EDX+EAX produces the sums of these pairs of bits.
 // The sums consume bits 0,1,2, 4,5,6, 8,9,10, ... 28,29,30
 // in EAX with the remaining bits all containing zero.

 mov(edx, eax);
 shr(2, edx);
 and(EveryAlternatePair, eax);
 and(EveryAlternatePair, edx);
 add(edx, eax);

 // Now compute the sums of the even and odd nibbles in the
 // number. Since bits 3, 7, 11, etc. in EAX all contain
 // zero from the above calcuation, we don't need to AND
 // anything first, just shift and add the two values.
 // This computes the sum of the bits in the four bytes
 // as four separate value in EAX (AL contains number of
 // bits in original AL, AH contains number of bits in
 // original AH, etc.)

 mov(eax, edx);
 shr(4, eax);
 add(edx, eax);
 and(EvenNibbles, eax);

 // Now for the tricky part.
 // We want to compute the sum of the four bytes
 // and return the result in EAX. The following
 // multiplication achieves this. It works
 // as follows:
 // (1) the $01 component leaves bits 24..31
 // in bits 24..31.
 //
 // (2) the $100 component adds bits 17..23
 // into bits 24..31.
 //
Page 898 © 2001, By Randall Hyde Beta Draft - Do not distribute

Bit Manipulation
 // (3) the $1_0000 component adds bits 8..15
 // into bits 24..31.
 //
 // (4) the $1000_0000 component adds bits 0..7
 // into bits 24..31.
 //
 // Bits 0..23 are filled with garbage, but bits
 // 24..31 contain the actual sum of the bits
 // in EAX's original value. The SHR instruction
 // moves this value into bits 0..7 and zeroes
 // out the H.O. bits of EAX.

 intmul($0101_0101, eax);
 shr(24, eax);

 pop(edx);

 end cnt;

5.10 Reversing a Bit String

Another common programming project instructions assign, and a useful function in its own right, is a
program that reverses the bits in an operand. That is, it swaps the L.O. bit with the H.O. bit, bit #1 with the
next-to-H.O. bit, etc. The typical solution an instructor probably expects for this assignment is the follow-
ing:

// Reverse the 32-bits in EAX, leaving the result in EBX:

mov(32, cl);
RvsLoop: shr(1, eax); // Move current bit in EAX to the carry flag.

rcl(1, ebx); // Shift the bit back into EBX, backwards.
dec(cl);
jnz RvsLoop

As with the previous examples, this code suffers from the fact that it repeats the loop 32 times for a grand
total of 129 instructions. By unrolling the loop you can get it down to 64 instructions, but this is still some-
what expensive.

As usual, the best solution to an optimization problem is often a better algorithm rather than attempting
to tweak your code by trying to choose faster instructions to speed up some code. However, a little intelli-
gence goes a long way when manipulating bits. In the last section, for example, we were able to speed up
counting the bits in a string by substituting a more complex algorithm for the simplistic “shift and count”
algorithm. In the example above, we are once again faced with a very simple algorithm with a loop that
repeats for one bit in each number. The question is: “Can we discover an algorithm that doesn’t execute 129
instructions to reverse the bits in a 32-bit register?” The answer is “yes” and the trick is to do as much work
as possible in parallel.

Suppose that all we wanted to do was swap the even and odd bits in a 32-bit value. We can easily swap
the even an odd bits in EAX using the following code:

mov(eax, edx); // Make a copy of the odd bits in the data.
shr(1, eax); // Move the even bits to the odd positions.
and($5555_5555, edx); // Isolate the odd bits by clearing even bits.
and($5555_5555, eax); // Isolate the even bits (in odd posn now).
shl(1, edx); // Move the odd bits to the even positions.
or(edx, eax); // Merge the bits and complete the swap.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 899

Chapter Five Volume Four
Of course, swapping the even and odd bits, while somewhat interesting, does not solve our larger prob-
lem of reversing all the bits in the number. But it does take us part of the way there. For example, if after
executing the code sequence above, we swap adjacent pairs of bits, then we’ve managed to swap the bits in
all the nibbles in the 32-bit value. Swapping adjacent pairs of bits is done in a manner very similar to the
above, the code is

mov(eax, edx); // Make a copy of the odd numbered bit pairs.
shr(2, eax); // Move the even bit pairs to the odd posn.
and($3333_3333, edx); // Isolate the odd pairs by clearing even pairs.
and($3333_3333, eax); // Isolate the even pairs (in odd posn now).
shl(2, edx); // Move the odd pairs to the even positions.
or(edx, eax); // Merge the bits and complete the swap.

After completing the sequence above we swap the adjacent nibbles in the 32-bit register. Again, the
only difference is the bit mask and the length of the shifts. Here’s the code:

mov(eax, edx); // Make a copy of the odd numbered nibbles.
shr(4, eax); // Move the even nibbles to the odd position.
and($0f0f_0f0f, edx); // Isolate the odd nibbles.
and($0f0f_0f0f, eax); // Isolate the even nibbles (in odd posn now).
shl(4, edx); // Move the odd pairs to the even positions.
or(edx, eax); // Merge the bits and complete the swap.

You can probably see the pattern developing and can figure out that in the next two steps we’ve got to
swap the bytes and then the words in this object. You can use code like the above, but there is a better way –
use the BSWAP instruction. The BSWAP (byte swap) instruction uses the following syntax:

bswap(reg32);

This instruction swaps bytes zero and three and it swaps bytes one and two in the specified 32-bit register.
The principle use of this instruction is to convert data between the so-called “little endian” and “big-endian”
data formats2. Although we don’t specifically need this instruction for this purpose here, the BSWAP
instruction does swap the bytes and words in a 32-bit object exactly the way we want them when reversing
bits, so rather than sticking in another 12 instructions to swap the bytes and then the words, we can simply
use a “bswap(eax);” instruction to complete the job after the instructions above. The final code sequence is

mov(eax, edx); // Make a copy of the odd bits in the data.
shr(1, eax); // Move the even bits to the odd positions.
and($5555_5555, edx); // Isolate the odd bits by clearing even bits.
and($5555_5555, eax); // Isolate the even bits (in odd posn now).
shl(1, edx); // Move the odd bits to the even positions.
or(edx, eax); // Merge the bits and complete the swap.

mov(eax, edx); // Make a copy of the odd numbered bit pairs.
shr(2, eax); // Move the even bit pairs to the odd posn.
and($3333_3333, edx); // Isolate the odd pairs by clearing even pairs.
and($3333_3333, eax); // Isolate the even pairs (in odd posn now).
shl(2, edx); // Move the odd pairs to the even positions.
or(edx, eax); // Merge the bits and complete the swap.

mov(eax, edx); // Make a copy of the odd numbered nibbles.
shr(4, eax); // Move the even nibbles to the odd position.
and($0f0f_0f0f, edx); // Isolate the odd nibbles.
and($0f0f_0f0f, eax); // Isolate the even nibbles (in odd posn now).
shl(4, edx); // Move the odd pairs to the even positions.
or(edx, eax); // Merge the bits and complete the swap.

2. In the little endian system, which the native 80x86 format, the L.O. byte of an object appears at the lowest address in mem-
ory. In the big endian system, which various RISC processors use, the H.O. byte of an object appears at the lowest address in
memory. The BSWAP instruction converts between these two data formats.
Page 900 © 2001, By Randall Hyde Beta Draft - Do not distribute

Bit Manipulation
bswap(eax); // Swap the bytes and words.

This algorithm only requires 13 instructions and it executes much faster than the bit shifting loop
appearing earlier. Of course, this sequence does consume a bit more memory, so if you’re trying to save
memory rather than clock cycles, the loop is probably a better solution.

5.11 Merging Bit Strings

Another common bit string operation is producing a single bit string by merging, or interleaving, bits
from two different sources. The following example code sequence creates a 32-bit string by merging alter-
nate bits from two 16-bit strings:

// Merge two 16-bit strings into a single 32-bit string.
// AX - Source for even numbered bits.
// BX - Source for odd numbered bits.
// CL - Scratch register.
// EDX- Destination register.

mov(16, cl);
MergeLp: shrd(1, eax, edx); // Shift a bit from EAX into EDX.

shrd(1, ebx, edx); // Shift a bit from EBX into EDX.
dec(cl);
jne MergeLp;

This particular example merged two 16-bit values together, alternating their bits in the result value. For a
faster implementation of this code, unrolling the loop is probably you’re best bet since this eliminates half
the instructions that execute on each iteration of the loop above.

With a few slight modifications, we could also have merged four eight-bit values together, or we could have
generated the result using other bit sequences; for example, the following code copies bits 0..5 from EAX,
then bits 0..4 from EBX, then bits 6..11 from EAX, then bits 5..15 from EBX, and finally bits 12..15 from
EAX:

shrd(6, eax, edx);
shrd(5, ebx, edx);
shrd(6, eax, edx);
shrd(11, ebx, edx);
shrd(4, eax, edx);

5.12 Extracting Bit Strings

Of course, we can easily accomplish the converse of merging two bit streams; i.e., we can extract and
distribute bits in a bit string among multiple destinations. The following code takes the 32-bit value in EAX
and distributes alternate bits among the BX and DX registers:

mov(16, cl); // Count off the number of loop iterations.
ExtractLp:‘ shrd(1, eax, ebx); // Extract even bits to (E)BX.

shrd(1, eax, edx); // Extract odd bits to (E)DX.
dec(cl); // Repeat 16 times.
jnz ExtractLp;
shr(16, ebx); // Need to move the results from the H.O.
shr(16, edx); // bytes of EBX/EDX to the L.O. bytes.

This sequence executes 51 instructions. This isn’t terrible, but we can probably do a little better by
using a better algorithm that extracts bits in parallel. Employing the technique we used to reverse bits in a
register, we can come up with the following algorithm that relocates all the even bits to the L.O. word of
EAX and all the odd bits to the H.O. word of EAX.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 901

Chapter Five Volume Four
// Swap bits at positions (1,2), (5,6), (9,10), (13,14), (17,18),
// (21,22), (25,26), and (29, 30).

mov(eax, edx);
and($9999_9999, eax); // Mask out the bits we’ll keep for now.
mov(edx, ecx);
shr(1, edx); // Move 1st bits in tuple above to the
and($2222_2222, ecx); // correct position and mask out the
and($2222_2222, edx); // unneeded bits.
shl(1, ecx); // Move 2nd bits in tuples above.
or(edx, ecx); // Merge all the bits back together.
or(ecx, eax);

// Swap bit pairs at positions ((2,3), (4,5)), ((10,11), (12,13)), etc.

mov(eax, edx);
and($c3c3_c3c3, eax); // The bits we’ll leave alone.
mov(edx, ecx);
shr(2, edx);
and($0c0c_0c0c, ecx);
and($0c0c_0c0c, edx);
shl(2, ecx);
or(edx, ecx);
or(ecx, eax);

// Swap nibbles at nibble positions (1,2), (5,6), (9,10), etc.

mov(eax, edx);
and($f00f_f00f, eax);
mov(edx, ecx);
shr(4, edx);
and($0f0f_0f0f, ecx);
and($0f0f_0f0f, ecx);
shl(4, ecx);
or(edx, ecx);
or(ecx, eax);

// Swap bits at positions 1 and 2.

ror(8, eax);
xchg(al, ah);
rol(8, eax);

This sequence require 30 instructions. At first blush it looks like a winner since the original loop executes 64
instructions. However, this code isn’t quite as good as it looks. After all, if we’re willing to write this much
code, why not unroll the loop above 16 times to obtain the following 32 instructions:

shrd(1, eax, ebx);
shrd(1, eax, edx);
shrd(1, eax, ebx);
shrd(1, eax, edx);
shrd(1, eax, ebx);
shrd(1, eax, edx);
shrd(1, eax, ebx);
shrd(1, eax, edx);
shrd(1, eax, ebx);
shrd(1, eax, edx);
shrd(1, eax, ebx);
shrd(1, eax, edx);
shrd(1, eax, ebx);
shrd(1, eax, edx);
Page 902 © 2001, By Randall Hyde Beta Draft - Do not distribute

Bit Manipulation
shrd(1, eax, ebx);
shrd(1, eax, edx);
shrd(1, eax, ebx);
shrd(1, eax, edx);
shrd(1, eax, ebx);
shrd(1, eax, edx);
shrd(1, eax, ebx);
shrd(1, eax, edx);
shrd(1, eax, ebx);
shrd(1, eax, edx);
shrd(1, eax, ebx);
shrd(1, eax, edx);
shrd(1, eax, ebx);
shrd(1, eax, edx);
shrd(1, eax, ebx);
shrd(1, eax, edx);
shrd(1, eax, ebx);
shrd(1, eax, edx);

This sequence only requires 32 instructions. So the complexity of the previous algorithm doesn’t gain much
on instruction count. As to which sequence is faster, well, you’ll have to time them to figure this out. How-
ever, the SHRD instructions are not particularly fast, neither are the instructions in the other sequence. This
example does not appear here to show you a better algorithm, but rather to demonstrate that writing really
tricky code doesn’t always provide a big performance boost.

Extracting other bit combinations is left as an exercise for the reader.

5.13 Searching for a Bit Pattern

Another bit-related operation you may need is the ability to search for a particular bit pattern in a string
of bits. For example, you might want to locate the bit index of the first occurrence of %1011 starting at some
particular position in a bit string. In this section we’ll explore some simple algorithms to accomplish this
task.

To search for a particular bit pattern we’re going to need to know four things: (1) the pattern to search
for (the pattern), (2) the length of the pattern we’re searching for, (3) the bit string that we’re going to search
through (the source), and (4) the length of the bit string to search through. The basic idea behind the search
is to create a mask based on the length of the pattern and mask a copy of the source with this value. Then we
can directly compare the pattern with the masked source for equality. If they are equal, we’re done; if
they’re not equal, then increment a bit position counter, shift the source one position to the right, and try
again. We repeat this operation length(source) - length(pattern) times. The algorithm fails if it does not
detect the bit pattern after this many attempts (since we will have exhausted all the bits in the source operand
that could match the pattern’s length). Here’s a simple algorithm that searches for a four-bit pattern through-
out the EBX register:

mov(28, cl); // 28 attempts since 32-4 = 28 (len(src)-len(pat)).
mov(%1111, ch); // Mask for the comparison.
mov(pattern, al); // Pattern to search for.
and(ch, al); // Mask unnecessary bits in AL.
mov(source, ebx); // Get the source value.

ScanLp: mov(bl, dl); // Make a copy of the L.O. four bits of EBX
and(ch, dl); // Mask unwanted bits.
cmp(dl, al); // See if we match the pattern.
jz Matched;
dec(cl); // Repeat the specified number of times.
jnz ScanLp;

<< If we get to this point, we failed to match the bit string >>

jmp Done;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 903

Chapter Five Volume Four
Matched:
<< If we get to this point, we matched the bit string. We can >>
<< compute the position in the original source as 28-cl. >>

Done:

Bit string scanning is a special case of string matching. String matching is a well studied problem in
Computer Science and many of the algorithms you can use for string matching are applicable to bit string
matching as well. Such algorithms are a bit beyond the scope of this chapter, but to give you a preview of
how this works, you compute some function (like XOR or SUB) between the pattern and the current source
bits and use the result as an index into a lookup table to determine how many bits you can skip. Such algo-
rithms let you skip several bits rather than only shifting once per each iteration of the scanning loop (as is
done by the algorithm above). For more details on string scanning and their possible application to bit string
matching, see the appropriate chapter in the volume on Advanced String Handling.

5.14 The HLA Standard Library Bits Module

The HLA Standard Library provides a “bits” module that provides several bit related functions, includ-
ing built-in functions for many of the algorithms we’ve studied in this chapter. This section will describe
these functions available in the HLA Standard Library.

procedure bits.cnt(b:dword); returns("EAX");

This procedure returns the number of one bits present in the “b” parameter. It returns the count in the
EAX register. To count the number of zero bits in the parameter value, invert the value of the parameter
before passing it to bits.cnt. If you want to count the number of bits in a 16-bit operand, simply zero extend
it to 32 bits prior to calling this function. Here are a couple of examples:

// Compute the number of bits in a 16-bit register:

pushw(0);
push(ax);
call bits.cnt;

// If you prefer to use a higher-level syntax, try the following:

bits.cnt(#{ pushw(0); push(ax); }#);

// Compute the number of bits in a 16-bit memory location:

pushw(0);
push(mem16);
bits.cnt;

If you want to compute the number of bits in an eight-bit operand it’s probably faster to write a simple loop
that rotates all the bits in the source operand and adds the carry into the accumulating sum. Of course, if per-
formance isn’t an issue, you can zero extend the byte to 32 bits and call the bits.cnt procedure.

procedure bits.distribute(source:dword; mask:dword; dest:dword);
returns("EAX");

This function takes the L.O. n bits of source, where n is the number of “1” bits in mask, and inserts these
bits into dest at the bit positions specified by the “1” bits in mask (i.e., the same as the distribute algorithm
appearing earlier in this chapter). This function does not change the bits in dest that correspond to the zeros
in the mask value. This function does not affect the value of the actual dest parameter, instead, it returns the
new value in the EAX register.
Page 904 © 2001, By Randall Hyde Beta Draft - Do not distribute

Bit Manipulation
procedure bits.coalese(source:dword; mask:dword);
returns("EAX");

This function is the converse of bits.distribute. It extracts all the bits in source whose corresponding posi-
tions in mask contain a one. This function coalesces (right justifies) these bits in the L.O. bit positions of the
result and returns the result in EAX.

procedure bits.extract(var d:dword); returns("EAX"); // Really a macro.

This function extracts the first set bit in d searching from bit #0 and returns the index of this bit in the
EAX register; the function will also return the zero flag clear in this case. This function also clears that bit
in the operand. If d contains zero, then this function returns the zero flag set and EAX will contain -1.

Note that HLA actually implements this function as a macro, not a procedure (see the chapter on Mac-
ros for details). This means that you can pass any double word operand as a parameter (i.e., a memory or a
register operand). However, the results are undefined if you pass EAX as the parameter (since this function
returns the bit number in EAX).

procedure bits.reverse32(d:dword); returns("EAX");
procedure bits.reverse16(w:word); returns("AX");
procedure bits.reverse8(b:byte); returns("AL");

These three routines return their parameter value with the its bits reversed in the accumulator register
(AL/AX/EAX). Call the routine appropriate for your data size.

procedure bits.merge32(even:dword; odd:dword); returns("EDX:EAX");
procedure bits.merge16(even:word; odd:word); returns("EAX");
procedure bits.merge8(even:byte; odd:byte); returns("AX");

These routines merge two streams of bits to produce a value whose size is the combination of the two
parameters. The bits from the “even” parameter occupy the even bits in the result, the bits from the “odd”
parameter occupy the odd bits in the result. Notice that these functions return 16, 32, or 64 bits based on
byte, word, and double word parameter values.

procedure bits.nibbles32(d:dword); returns("EDX:EAX");
procedure bits.nibbles16(w:word); returns("EAX");
procedure bits.nibbles8(b:byte); returns("AX");

These routines extract each nibble from the parameter and place those nibbles into individual bytes.
The bits.nibbles8 function extracts the two nibbles from the b parameter and places the L.O. nibble in AL
and the H.O. nibble in AH. The bits.nibbles16 function extracts the four nibbles in w and places them in
each of the four bytes of EAX. You can use the BSWAP or ROx instructions to gain access to the nibbles in
the H.O. word of EAX. The bits.nibbles32 function extracts the eight nibbles in EAX and distributes them
through the eight bytes in EDX:EAX. Nibble zero winds up in AL and nibble seven winds up in the H.O.
byte of EDX. Again, you can use BSWAP or the rotate instructions to access the upper bytes of EAX and
EDX.

5.15 Putting It All Together

Bit manipulation is one area where assembly language really shines. Not only is bit manipulation far
more efficient in assembly language than in high level languages, but it’s often easier as well. Although the
need to manipulate bits is not an everyday requirement, bit manipulation is still a very important problem
area. In this chapter we’ve explored several ways to manipulate data as bits. Although this chapter only
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 905

Chapter Five Volume Four
begins to cover the possibilities, it should give you some ideas for developing your own bit manipulation
algorithms for use in your applications.
Page 906 © 2001, By Randall Hyde Beta Draft - Do not distribute

The String Instructions
The String Instructions Chapter Six

6.1 Chapter Overview

A string is a collection of objects stored in contiguous memory locations. Strings are usually arrays of
bytes, words, or (on 80386 and later processors) double words. The 80x86 microprocessor family supports
several instructions specifically designed to cope with strings. This chapter explores some of the uses of
these string instructions.

The 80x86 CPUs can process three types of strings: byte strings , word strings, and double word strings.
They can move strings, compare strings, search for a specific value within a string, initialize a string to a
fixed value, and do other primitive operations on strings. The 80x86’s string instructions are also useful for
manipulating arrays, tables, and records. You can easily assign or compare such data structures using the
string instructions. Using string instructions may speed up your array manipulation code considerably.

6.2 The 80x86 String Instructions

All members of the 80x86 family support five different string instructions: MOVSx, CMPSx, SCASx,
LODSx, and STOSx1. (x= B, W, or D for byte, word, or double word, respectively. This text will generally
drop the x suffix when talking about these string instructions in a general sense.) They are the string primi-
tives since you can build most other string operations from these five instructions. How you use these five
instructions is the topic of the next several sections.

For MOVS:
movsb();
movsw();
movsd();

For CMPS:
cmpsb(); // Note: repz is a synonym for repe
cmpsw();
cmpsd();

cmpsb(); // Note: repnz is a synonym for repne.
cmpsw();
cmpsd();

For SCAS:
scasb(); // Note: repz is a synonym for repe
scasw();
scasd();

scasb(); // Note: repnz is a synonym for repne.
scasw();
scasd();

For STOS:
stosb();
stosw();
stosd();

1. The 80x86 processor support two additional string instructions, INS and OUTS which input strings of data from an input
port or output strings of data to an output port. We will not consider these instructions since they are privileged instructions
and you cannot execute them in a standard Win32 application.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 907

Chapter Six Volume Six
For LODS:
lodsb();
lodsw();
lodsd();

6.2.1 How the String Instructions Operate

The string instructions operate on blocks (contiguous linear arrays) of memory. For example, the MOVS
instruction moves a sequence of bytes from one memory location to another. The CMPS instruction com-
pares two blocks of memory. The SCAS instruction scans a block of memory for a particular value. These
string instructions often require three operands, a destination block address, a source block address, and
(optionally) an element count. For example, when using the MOVS instruction to copy a string, you need a
source address, a destination address, and a count (the number of string elements to move).

Unlike other instructions which operate on memory, the string instructions don’t have any explicit oper-
ands. The operands for the string instructions include

• the ESI (source index) register,
• the EDI (destination index) register,
• the ECX (count) register,
• the AL/AX/EAX register, and
• the direction flag in the FLAGS register.

For example, one variant of the MOVS (move string) instruction copies a string from the source address
specified by ESI to the destination address specified by EDI, of length ECX. Likewise, the CMPS instruction
compares the string pointed at by ESI, of length ECX, to the string pointed at by EDI.

Not all instructions have source and destination operands (only MOVS and CMPS support them). For
example, the SCAS instruction (scan a string) compares the value in the accumulator (AL, AX, or EAX) to
values in memory.

6.2.2 The REP/REPE/REPZ and REPNZ/REPNE Prefixes

The string instructions, by themselves, do not operate on strings of data. The MOVS instruction, for
example, will move a single byte, word, or double word. When executed by itself, the MOVS instruction
ignores the value in the ECX register. The repeat prefixes tell the 80x86 to do a multi-byte string operation.
The syntax for the repeat prefix is:

For MOVS:
rep.movsb();
rep.movsw();
rep.movsd();

For CMPS:
repe.cmpsb(); // Note: repz is a synonym for repe.
repe.cmpsw();
repe.cmpsd();

repne.cmpsb(); // Note: repnz is a synonym for repne.
repne.cmpsw();
repne.cmpsd();

For SCAS:
repe.scasb(); // Note: repz is a synonym for repe.
repe.scasw();
repe.scasd();
Page 908 © 2001, By Randall Hyde Beta Draft - Do not distribute

The String Instructions
repne.scasb(); // Note: repnz is a synonym for repne.
repne.scasw();
repne.scasd();

For STOS:
rep.stosb();
rep.stosw();
rep.stosd();

You don’t normally use the repeat prefixes with the LODS instruction.

When specifying the repeat prefix before a string instruction, the string instruction repeats ECX times2.
Without the repeat prefix, the instruction operates only on a single byte, word, or double word.

You can use repeat prefixes to process entire strings with a single instruction. You can use the string
instructions, without the repeat prefix, as string primitive operations to synthesize more powerful string
operations.

6.2.3 The Direction Flag

Besides the ESI, EDI, ECX, and AL/AX/EAX registers, one other register controls the 80x86’s string
instructions – the flags register. Specifically, the direction flag in the flags register controls how the CPU pro-
cesses strings.

If the direction flag is clear, the CPU increments ESI and EDI after operating upon each string element.
For example, if the direction flag is clear, then executing MOVS will move the byte, word, or double word at
ESI to EDI and will increment ESI and EDI by one, two, or four. When specifying the REP prefix before this
instruction, the CPU increments ESI and EDI for each element in the string. At completion, the ESI and EDI
registers will be pointing at the first item beyond the string.

 If the direction flag is set, then the 80x86 decrements ESI and EDI after processing each string element.
After a repeated string operation, the ESI and EDI registers will be pointing at the first byte or word before
the strings if the direction flag was set.

The direction flag may be set or cleared using the CLD (clear direction flag) and STD (set direction flag)
instructions. When using these instructions inside a procedure, keep in mind that they modify the machine
state. Therefore, you may need to save the direction flag during the execution of that procedure. The follow-
ing example exhibits the kinds of problems you might encounter:

procedure Str2; nodisplay;
begin Str2;

std();
<Do some string operations>

 .
 .
 .

end Str2;
 .
 .
 .
cld();

<do some operations>
Str2();

<do some string operations requiring D=0>

2. Except for the cmps instruction which repeats at most the number of times specified in the cx register.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 909

Chapter Six Volume Six
This code will not work properly. The calling code assumes that the direction flag is clear after Str2
returns. However, this isn’t true. Therefore, the string operations executed after the call to Str2 will not func-
tion properly.

There are a couple of ways to handle this problem. The first, and probably the most obvious, is always to
insert the CLD or STD instructions immediately before executing a sequence of one or more string instruc-
tions. The other alternative is to save and restore the direction flag using the PUSHFD and POPFD instruc-
tions. Using these two techniques, the code above would look like this:

Always issuing CLD or STD before a string instruction:

procedure Str2; nodisplay;
begin Str2;

std();
<Do some string operations>

 .
 .
 .

end Str2;
 .
 .
 .
cld();

<do some operations>
Str2();
cld();

<do some string operations requiring D=0>

 Saving and restoring the flags register:

procedure Str2; nodisplay;
begin Str2;

pushfd();
std();

<Do some string operations>
 .
 .
 .
popfd();

end Str2;
 .
 .
 .
cld();

<do some operations>
Str2();

<do some string operations requiring D=0>

If you use the PUSHFD and POPFD instructions to save and restore the flags register, keep in mind that
you’re saving and restoring all the flags. Therefore, such subroutines cannot return any information in the
flags. For example, you will not be able to return an error condition in the carry flag if you use PUSHFD and
POPFD.

6.2.4 The MOVS Instruction

The MOVS instruction uses the following syntax:

movsb()
Page 910 © 2001, By Randall Hyde Beta Draft - Do not distribute

The String Instructions
movsw()
movsd()
rep.movsb()
rep.movsw()
rep.movsd()

The MOVSB (move string, bytes) instruction fetches the byte at address ESI, stores it at address EDI
and then increments or decrements the ESI and EDI registers by one. If the REP prefix is present, the CPU
checks ECX to see if it contains zero. If not, then it moves the byte from ESI to EDI and decrements the
ECX register. This process repeats until ECX becomes zero.

The MOVSW (move string, words) instruction fetches the word at address ESI, stores it at address EDI
and then increments or decrements ESI and EDI by two. If there is a REP prefix, then the CPU repeats this
procedure as many times as specified in ECX.

The MOVSD instruction operates in a similar fashion on double words. Incrementing or decrementing
ESI and EDI by four for each data movement.

When you use the rep prefix, the MOVSB instruction moves the number of bytes you specify in the
ECX register. The following code segment copies 384 bytes from CharArray1 to CharArray2:

CharArray1: byte[384];
CharArray2: byte[384];

 .
 .
 .
cld();
lea(esi, CharArray1);
lea(edi, CharArray2);
mov(384, ecx);
rep.movsb();

If you substitute MOVSW for MOVSB, then the code above will move 384 words (768 bytes) rather
than 384 bytes:

WordArray1: word[384];
WordArray2: word[384];

 .
 .
 .
cld();
lea(esi, WordArray1);
lea(edi, WordArray2);
mov(384, ecx);
rep.movsw();

Remember, the ECX register contains the element count, not the byte count. When using the MOVSW
instruction, the CPU moves the number of words specified in the ECX register. Similarly, MOVSD moves
the number of double words you specify in the ECX register, not the number of bytes.

If you’ve set the direction flag before executing a MOVSB/MOVSW/MOVSD instruction, the CPU dec-
rements the ESI and EDI registers after moving each string element. This means that the ESI and EDI regis-
ters must point at the end of their respective strings before issuing a MOVSB, MOVSW, or MOVSD
instruction. For example,

CharArray1: byte[384];
CharArray2: byte[384];

 .
 .
 .
cld();
lea(esi, CharArray1[383]);
lea(edi, CharArray2[383]);
mov(384, ecx);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 911

Chapter Six Volume Six
rep.movsb();

Although there are times when processing a string from tail to head is useful (see the CMPS description
in the next section), generally you’ll process strings in the forward direction since it’s more straightforward
to do so. There is one class of string operations where being able to process strings in both directions is abso-
lutely mandatory: processing strings when the source and destination blocks overlap. Consider what happens
in the following code:

CharArray1: byte;
CharArray2: byte[384];

 .
 .
 .
cld();
lea(esi, CharArray1);
lea(edi, CharArray2);
mov(384, ecx);
rep.movsb();

This sequence of instructions treats CharArray1 and CharArray2 as a pair of 384 byte strings. However,
the last 383 bytes in the CharArray1 array overlap the first 383 bytes in the CharArray2 array. Let’s trace the
operation of this code byte by byte.

When the CPU executes the MOVSB instruction, it copies the byte at ESI (CharArray1) to the byte
pointed at by EDI (CharArray2). Then it increments ESI and EDI, decrements ECX by one, and repeats this
process. Now the ESI register points at CharArray1+1 (which is the address of CharArray2) and the EDI
register points at CharArray2+1. The MOVSB instruction copies the byte pointed at by ESI to the byte
pointed at by EDI. However, this is the byte originally copied from location CharArray1. So the MOVSB
instruction copies the value originally in location CharArray1 to both locations CharArray2 and
CharArray2+1. Again, the CPU increments ESI and EDI, decrements ECX, and repeats this operation. Now
the movsb instruction copies the byte from location CharArray1+2 (CharArray2+1) to location
CharArray2+2. But once again, this is the value that originally appeared in location CharArray1. Each repe-
tition of the loop copies the next element in CharArray1[0] to the next available location in the CharArray2
array. Pictorially, it looks something like that shown in Figure 6.1.
Page 912 © 2001, By Randall Hyde Beta Draft - Do not distribute

The String Instructions
Figure 6.1 Copying Data Between Two Overlapping Arrays (forward direction)

The end result is that the MOVSB instruction replicates X throughout the string. The MOVSB instruc-
tion copies the source operand into the memory location which will become the source operand for the very
next move operation, which causes the replication.

If you really want to move one array into another when they overlap, you should move each element of
the source string to the destination string starting at the end of the two strings as shown in Figure 6.2.

X A B C D E F G H I J K L

1st move operation:

X X B C D E F G H I J K L

2nd move operation:

X X X C D E F G H I J K L

3rd move operation:

X X X X D E F G H I J K L

4th move operation:

X X X X X X X X X X X X L

nth move operation:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 913

Chapter Six Volume Six
Figure 6.2 Using a Backwards Copy to Copy Data in Overlapping Arrays

Setting the direction flag and pointing ESI and EDI at the end of the strings will allow you to (correctly)
move one string to another when the two strings overlap and the source string begins at a lower address than
the destination string. If the two strings overlap and the source string begins at a higher address than the des-
tination string, then clear the direction flag and point ESI and EDI at the beginning of the two strings.

If the two strings do not overlap, then you can use either technique to move the strings around in mem-
ory. Generally, operating with the direction flag clear is the easiest, so that makes the most sense in this case.

You shouldn’t use the MOVSx instruction to fill an array with a single byte, word, or double word value.
Another string instruction, STOS, is much better for this purpose. However, for arrays whose elements are
larger than four bytes, you can use the MOVS instruction to initialize the entire array to the content of the
first element. See the questions for additional information.

The MOVS instruction is far more efficient when copying double words than it is copying bytes or
words. In fact, it typically takes the same amount of time to copy a byte using MOVSB as it does to copy a
double word using MOVSD3. Therefore, if you are moving a large number of bytes from one array to
another, the copy operation will be faster if you can use the MOVSD instruction rather than the MOVSB

3. This is true for MOVSW, as well.

X A B C D E F G H I J K L

1st move operation:

X A B C D E F G H I J K K

2nd move operation:

X A B C D E F G H I J J K

3rd move operation:

X A B C D E F G H I I J K

4th move operation:

X A A B C D E F G H I J K

nth move operation:
Page 914 © 2001, By Randall Hyde Beta Draft - Do not distribute

The String Instructions
instruction. Of course, if the number of bytes you wish to move is an even multiple of four, this is a trivial
change; just divide the number of bytes to copy by four, load this value into ECX, and then use the MOVSB
instruction. If the number of bytes is not evenly divisible by four, then you can use the MOVSD instruction
to copy all but the last one, two, or three bytes of the array (that is, the remainder after you divide the byte
count by four). For example, if you want to efficiently move 4099 bytes, you can do so with the following
instruction sequence:

lea(esi, Source);
lea(edi, Destination);
mov(1024, ecx); // Copy 1024 dwords = 4096 bytes
rep.movsd();
movsw(); // Copy bytes 4097 and 4098.
movsb(); // Copy the last byte.

Using this technique to copy data never requires more than three MOVSx instructions since you can copy
one, two, or three bytes with no more than two MOVSB and MOVSW instructions. The scheme above is
most efficient if the two arrays are aligned on double word boundaries. If not, you might want to move the
MOVSB or MOVSW instruction (or both) before the MOVSD so that the MOVSD instruction works with
dword-aligned data (see Chapter Three for an explanation of the performance benefits of double word
aligned data).

If you do not know the size of the block you are copying until the program executes, you can still use
code like the following to improve the performance of a block move of bytes:

lea(esi, Source);
lea(edi, Dest);
mov(Length, ecx);
shr(2, ecx); // divide by four.
if(@nz) then // Only execute MOVSD if four or more bytes.

rep.movsd(); // Copy the dwords.

endif;
mov(Length, ecx);
and(%11, ecx); // Compute (Length mod 4).
if(@nz) then // Only execute MOVSB if #bytes/4 <> 0.

rep.movsb(); // Copy the remaining one, two, or three bytes.

endif;

On most computer systems, the MOVSD instruction provides about the fastest way to copy bulk data
from one location to another. While there are, arguably, faster ways to copy the data on certain CPUs, ulti-
mately the memory bus performance is the limiting factor and the CPUs are generally much faster than the
memory bus. Therefore, unless you have a special system, writing fancy code to improve memory to mem-
ory transfers is probably a waste of time.

6.2.5 The CMPS Instruction

The CMPS instruction compares two strings. The CPU compares the string referenced by EDI to the
string pointed at by ESI. CX contains the length of the two strings (when using the REPE or REPNE prefix).
Like the MOVS instruction, HLA allows several different forms of this instruction:

cmpsb();
cmpsw();
cmpsd();

repe.cmpsb();
repe.cmpsw();
repe.cmpsd();
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 915

Chapter Six Volume Six
repne.cmpsb();
repne.cmpsw();
repne.cmpsd();

 Like the MOVS instruction you specify the actual operand addresses in the ESI and EDI registers.

Without a repeat prefix, the CMPS instruction subtracts the value at location EDI from the value at ESI
and updates the flags. Other than updating the flags, the CPU doesn’t use the difference produced by this
subtraction. After comparing the two locations, CMPS increments or decrements the ESI and EDI registers
by one, two, or four (for CMPSB/CMPSW/CMPSD, respectively). CMPS increments the ESI and EDI reg-
isters if the direction flag is clear and decrements them otherwise.

Of course, you will not tap the real power of the CMPS instruction using it to compare single bytes,
words, or double words in memory. This instruction shines when you use it to compare whole strings. With
CMPS, you can compare consecutive elements in a string until you find a match or until consecutive ele-
ments do not match.

To compare two strings to see if they are equal or not equal, you must compare corresponding elements
in a string until they don’t match. Consider the following strings:

“String1”

“String1”

The only way to determine that these two strings are equal is to compare each character in the first string
to the corresponding character in the second. After all, the second string could have been “String2” which
definitely is not equal to “String1”. Of course, once you encounter a character in the destination string which
doesn’t equal the corresponding character in the source string, the comparison can stop. You needn’t com-
pare any other characters in the two strings.

The REPE prefix accomplishes this operation. It will compare successive elements in a string as long as
they are equal and ECX is greater than zero. We could compare the two strings above using the following
80x86 assembly language code:

cld();
mov(AdrsString1, esi);
mov(AdrsString2, edi);
mov(7, ecx);
repe.cmpsb();

After the execution of the CMPSB instruction, you can test the flags using the standard conditional jump
instructions. This lets you check for equality, inequality, less than, greater than, etc.

Character strings are usually compared using lexicographical ordering. In lexicographical ordering, the
least significant element of a string carries the most weight. This is in direct contrast to standard integer com-
parisons where the most significant portion of the number carries the most weight. Furthermore, the length
of a string affects the comparison only if the two strings are identical up to the length of the shorter string.
For example, “Zebra” is less than “Zebras”, because it is the shorter of the two strings, however, “Zebra” is
greater than “AAAAAAAAAAH!” even though it is shorter. Lexicographical comparisons compare corre-
sponding elements until encountering a character which doesn’t match, or until encountering the end of the
shorter string. If a pair of corresponding characters do not match, then this algorithm compares the two
strings based on that single character. If the two strings match up to the length of the shorter string, we must
compare their length. The two strings are equal if and only if their lengths are equal and each corresponding
pair of characters in the two strings is identical. Lexicographical ordering is the standard alphabetical order-
ing you’ve grown up with.

For character strings, use the CMPS instruction in the following manner:

• The direction flag must be cleared before comparing the strings.
• Use the CMPSB instruction to compare the strings on a byte by byte basis. Even if the strings

contain an even number of characters, you cannot use the CMPSW or CMPSD instructions.
They do not compare strings in lexicographical order.

• You must load the ECX register with the length of the smaller string.
Page 916 © 2001, By Randall Hyde Beta Draft - Do not distribute

The String Instructions
• Use the REPE prefix.
• The ESI and EDI registers must point at the very first character in the two strings you want to

compare.

After the execution of the CMPS instruction, if the two strings were equal, their lengths must be com-
pared in order to finish the comparison. The following code compares a couple of character strings:

mov(AdrsStr1, esi);
mov(AdrsStr2, edi);
mov(LengthSrc, ecx);
if(ecx > LengthDest) then // Put the length of the shorter string in ECX.

mov(LengthDest, ecx);

endif;
repe.cmpsb();
if(@z) then // If equal to the length of the shorter string, cmp lengths.

mov(LengthSrc, ecx);
cmp(ecx, LengthDest);

endif;

If you’re using bytes to hold the string lengths, you should adjust this code appropriately (i.e., use a MOVZX
instruction to load the lengths into ECX). Of course, HLA strings use a double word to hold the current
length value, so this isn’t an issue when using HLA strings.

You can also use the CMPS instruction to compare multi-word integer values (that is, extended preci-
sion integer values). Because of the amount of setup required for a string comparison, this isn’t practical for
integer values less than six or eight double words in length, but for large integer values, it’s an excellent way
to compare such values. Unlike character strings, we cannot compare integer strings using a lexicographical
ordering. When comparing strings, we compare the characters from the least significant byte to the most sig-
nificant byte. When comparing integers, we must compare the values from the most significant byte (or
word/double word) down to the least significant byte, word or double word. So, to compare two 32-byte
(256-bit) integer values, use the following code on the 80x86:

std();
lea(esi, SourceInteger[28]);
lea(edi, DestInteger[28]);
mov(8, ecx);
rep.cmpsd();

This code compares the integers from their most significant word down to the least significant word. The
CMPSD instruction finishes when the two values are unequal or upon decrementing ECX to zero (implying
that the two values are equal). Once again, the flags provide the result of the comparison.

The REPNE prefix will instruct the CMPS instruction to compare successive string elements as long as
they do not match. The 80x86 flags are of little use after the execution of this instruction. Either the ECX
register is zero (in which case the two strings are totally different), or it contains the number of elements
compared in the two strings until a match. While this form of the CMPS instruction isn’t particularly useful
for comparing strings, it is useful for locating the first pair of matching items in a couple of byte, word, or
double word arrays. In general, though, you’ll rarely use the REPNE prefix with CMPS.

One last thing to keep in mind with using the CMPS instruction – the value in the ECX register deter-
mines the number of elements to process, not the number of bytes. Therefore, when using CMPSW, ECX
specifies the number of words to compare. This, of course, is twice the number of bytes to compare. Like-
wise, for CMPSD, ECX contains the number of double words to process.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 917

Chapter Six Volume Six
6.2.6 The SCAS Instruction

The CMPS instruction compares two strings against one another. You do not use it to search for a partic-
ular element within a string. For example, you could not use the CMPS instruction to quickly scan for a zero
throughout some other string. You can use the SCAS (scan string) instruction for this task.

Unlike the MOVS and CMPS instructions, the SCAS instruction only requires a destination string
(pointed at by EDI) rather than both a source and destination string. The source operand is the value in the
AL (SCASB), AX (SCASW), or EAX (SCASD) register. The SCAS instruction compares the value in the
accumulator (AL, AX, or EAX) against the value pointed at by EDI and then increments (or decrements)
EDI by one, two, or four. The CPU sets the flags according to the result of the comparison. While this might
be useful on occasion, SCAS is a lot more useful when using the REPE and REPNE prefixes.

With the REPE prefix (repeat while equal), SCAS scans the string searching for an element which does
not match the value in the accumulator. When using the REPNE prefix (repeat while not equal), SCAS scans
the string searching for the first string element which is equal to the value in the accumulator.

You’re probably wondering “why do these prefixes do exactly the opposite of what they ought to do?”
The paragraphs above haven’t quite phrased the operation of the SCAS instruction properly. When using the
REPE prefix with SCAS, the 80x86 scans through the string while the value in the accumulator is equal to
the string operand. This is equivalent to searching through the string for the first element which does not
match the value in the accumulator. The SCAS instruction with REPNE scans through the string while the
accumulator is not equal to the string operand. Of course, this form searches for the first value in the string
which matches the value in the accumulator register. The SCAS instructions take the following forms:

scasb()
scasw()
scasd()

repe.scasb()
repe.scasw()
repe.scasd()

repne.scasb()
repne.scasw()
repne.scasd()

Like the CMPS and MOVS instructions, the value in the ECX register specifies the number of elements
to process, not bytes, when using a repeat prefix.

6.2.7 The STOS Instruction

The STOS instruction stores the value in the accumulator at the location specified by EDI. After storing
the value, the CPU increments or decrements EDI depending upon the state of the direction flag. Although
the STOS instruction has many uses, its primary use is to initialize arrays and strings to a constant value. For
example, if you have a 256-byte array you want to clear out with zeros, use the following code:

cld();
lea(edi, DestArray);
mov(64, ecx); // 64 double words = 256 bytes.
xor(eax, eax); // Zero out EAX.
rep.stosd();

This code writes 64 double words rather than 256 bytes because a single STOSD operation is faster than four
STOSB operations.

The STOS instructions take four forms. They are

stosb();
stosw();
Page 918 © 2001, By Randall Hyde Beta Draft - Do not distribute

The String Instructions
stosd();

rep.stosb();
rep.stosw();
rep.stosd();

The STOSB instruction stores the value in the AL register into the specified memory location(s), the
STOSW instruction stores the AX register into the specified memory location(s) and the STOSD instruction
stores EAX into the specified location(s).

Keep in mind that the STOS instruction is useful only for initializing a byte, word, or double word array
to a constant value. If you need to initialize an array to different values, you cannot use the STOS instruction.
See the exercises for additional details.

6.2.8 The LODS Instruction

The LODS instruction is unique among the string instructions. You will probably never use a repeat pre-
fix with this instruction. The LODS instruction copies the byte, word, or double word pointed at by ESI into
the AL, AX, or EAX register, after which it increments or decrements the ESI register by one, two, or four.
Repeating this instruction via the repeat prefix would serve no purpose whatsoever since the accumulator
register will be overwritten each time the LODS instruction repeats. At the end of the repeat operation, the
accumulator will contain the last value read from memory.

Instead, use the LODS instruction to fetch bytes (LODSB), words (LODSW), or double words
(LODSD) from memory for further processing. By using the STOS instruction, you can synthesize powerful
string operations.

Like the STOS instruction, the LODS instructions take four forms:

lodsb();
lodsw();
lodsd();

rep.lodsb();
rep.lodsw();
rep.lodsd();

As mentioned earlier, you’ll rarely, if ever, use the REP prefixes with these instructions4. The 80x86
increments or decrements ESI by one, two, or four depending on the direction flag and whether you’re using
the LODSB, LODSW, or LODSD instruction.

6.2.9 Building Complex String Functions from LODS and STOS

The 80x86 supports only five different string instructions: MOVS, CMPS, SCAS, LODS, and STOS5.
These certainly aren’t the only string operations you’ll ever want to use. However, you can use the LODS
and STOS instructions to easily generate any particular string operation you like. For example, suppose you
wanted a string operation that converts all the upper case characters in a string to lower case. You could use
the following code:

mov(StringAddress, esi); // Load string address into ESI.
mov(esi, edi); // Also point EDI here.
mov((type str.strrec [esi].length, ecx);

repeat

4. They appear here simply because they are allowed. They’re not useful, but they are allowed.
5. Not counting INS and OUTS which we’re ignoring here.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 919

Chapter Six Volume Six
lodsb(); // Get the next character in the string.
if(al in ’A’..’Z’) then

or($20, al); // Convert upper case character to lower case.

endif;
stosb(); // Store converted character back into string.
dec(ecx);

until(ecx == 0);

Since the LODS and STOS instructions use the accumulator as an intermediary, you can use any accu-
mulator operation to quickly manipulate string elements.

6.3 Putting It All Together

In this chapter we took a quick look at the 80x86’s string instructions. We studied their implementation
and saw how to use them. These instructions are quite useful for synthesizing character set functions (see
the source code for the HLA Standard Library string module for examples). We also saw how to use these
instructions for non-character string purpose such as moving large blocks of memory (i.e., assigning one
array to another) and comparing large integer values. For more information on the use of these instructions,
please see the volume on Advanced String Handling.
Page 920 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
The HLA Compile-Time Language Chapter Seven

6.1 Chapter Overview

Now we come to the fun part. For the past nine chapters this text has been molding and conforming you
to deal with the HLA language and assembly language programming in general. In this chapter you get to
turn the tables; you’ll learn how to force HLA to conform to your desires. This chapter will teach you how
to extend the HLA language using HLA’s compile-time language. By the time you are through with this
chapter, you should have a healthy appreciation for the power of the HLA compile-time language. You will
be able to write short compile-time programs. You will also be able to add new statements, of your own
choosing, to the HLA language.

6.2 Introduction to the Compile-Time Language (CTL)

HLA is actually two languages rolled into a single program. The run-time language is the standard
80x86/HLA assembly language you’ve been reading about for the past nine chapters. This is called the
run-time language because the programs you write execute when you run the executable file. HLA contains
an interpreter for a second language, the HLA Compile-Time Language (or CTL) that executes programs
while HLA is compiling a program. The source code for the CTL program is embedded in an HLA assem-
bly language source file; that is, HLA source files contain instructions for both the HLA CTL and the
run-time program. HLA executes the CTL program during compilation. Once HLA completes compilation,
the CTL program terminates; the CTL application is not a part of the run-time executable that HLA emits,
although the CTL application can write part of the run-time program for you and, in fact, this is the major
purpose of the CTL.

Figure 6.1 Compile-Time vs. Run-Time Execution

HLA Compiler &
Compile-Time
Interpreter

Compile Time

Run Time

Actions produced by the executing object code
produced by the compiler.

Actions produced by the interpretation
of the compile-time language during
compilation.

Executable File
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 921

Chapter Seven Volume Four
It may seem confusing to have two separate languages built into the same compiler. Perhaps you’re
even questioning why anyone would need a compile time language. To understand the benefits of a compile
time language, consider the following statement that you should be very comfortable with at this point:

stdout.put("i32=", i32, " strVar=", strVar, " charVar=", charVar, nl);

This statement is neither a statement in the HLA language nor a call to some HLA Standard Library proce-
dure. Instead, stdout.put is actually a statement in a CTL application provided by the HLA Standard Library.
The stdout.put "application" processes a list of objects (the parameter list) and makes calls to various other
Standard Library procedures; it chooses the procedure to call based on the type of the object it is currently
processing. For example, the stdout.put "application" above will emit the following statements to the
run-time executable:

stdout.puts("i32=");
stdout.puti32(i32);
stdout.puts(" strVar=");
stdout.puts(strVar);
stdout.puts(" charVar=");
stdout.putc(charVar);
stdout.newln();

Clearly the stdout.put statement is much easier to read and write than the sequence of statements that
stdout.put emits in response to its parameter list. This is one of the more powerful capabilities of the HLA
programming language: the ability to modify the language to simplify common programming tasks. Print-
ing lots of different data objects in a sequential fashion is a common task; the stdout.put "application"
greatly simplifies this process.

The HLA Standard Library is loaded with lots of HLA CTL examples. In addition to standard library
usage, the HLA CTL is quite adept at handling "one-off" or "one-use" applications. A classic example is fill-
ing in the data for a lookup table. In Chapter Six this text noted that it is possible to construct look-up tables
using the HLA CTL (see “Tables” on page 625 and “Generating Tables” on page 629). Not only is this pos-
sible, but it is often far less work to use the HLA CTL to construct these look-up tables. This chapter
abounds with examples of exactly this application of the CTL.

Although the CTL itself is relatively inefficient, it does maximize the use of that one precious commod-
ity of which there is so little available: your time. By learning how to use the HLA CTL, and applying it
properly, you can develop assembly language applications as rapidly as high level language applications
(even faster since HLA’s CTL lets you create very high level language constructs).

6.3 The #PRINT and #ERROR Statements

Chapter One of this textbook began with the typical first program most people write when learning a
new language; the "Hello World" program. It is only fitting for this chapter to present that same program
when discussing the second language of this text. So here it is, the basic "Hello World" program written in
the HLA compile time language:

program ctlHelloWorld;
begin ctlHelloWorld;

 #print("Hello, World of HLA/CTL")

end ctlHelloWorld;

Program 6.1 The CTL "Hello World" Program
Page 922 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
The only CTL statement in this program is the "#print" statement. The remaining lines are needed just
to keep the compiler happy (we could reduced the overhead to two lines by using a UNIT rather than a PRO-
GRAM declaration).

The #PRINT statement displays the textual representation of its argument list during the compilation of
an HLA program. Therefore, if you compile the program above with the command "hla ctlHW.hla" the
HLA compiler will immediately print, before returning control to the command line, the text:

Hello, World of HLA/CTL

Note that there is a big difference between the following two statements in an HLA source file:

#print("Hello World")
stdout.puts("Hello World" nl);

The first statement prints "Hello World" (and a newline) during the compilation process. This first statement
does not have any effect on the executable program. The second line doesn’t affect the compilation process
(other than the emission of code to the executable file). However, when you run the executable file, the sec-
ond statement prints the string "Hello World" followed by a new line sequence.

The HLA/CTL #PRINT statement uses the following basic syntax:

#print(list_of_comma_separated_constants)

Note that a semicolon does not terminate this statement. Semicolons terminate run-time statements, they
generally do not terminate compile-time statements (there is one big exception, as you will see a little later).

The #PRINT statement must have at least one operand; if multiple operands appear in the parameter
list, you must separate each operand with a comma (just like stdout.put). If a particular operand is not a
string constant, HLA will translate that constant to its corresponding string representation and print that
string. Example:

#print("A string Constant ", 45, ’ ’, 54.9, ’ ’, true)

You may specify named symbolic constants and constant expressions. However, all #PRINT operands
must be constants (either literal constants or constants you define in the CONST or VAL sections) and those
constants must be defined before you use them in the #PRINT statement. Example:

const
pi := 3.14159;
charConst := ’c’;

#print("PI = ", pi, " CharVal=", CharConst)

The HLA #PRINT statement is particularly invaluable for debugging CTL programs (since there is no
debugger available for CTL code). This statement is also useful for displaying the progress of the compila-
tion and displaying assumptions and default actions that take place during compilation. Other than display-
ing the text associated with the #PRINT parameter list, the #PRINT statement does not have any affect on
the compilation of the program.

The #ERROR statement allows a single string constant operand. Like #PRINT this statement will dis-
play the string to the console during compilation. However, the #ERROR statement treats the string as a
error message and displays the string as part of an HLA error diagnostic. Further, the #ERROR statement
increments the error count and this will cause HLA to stop the compilation (without assembly or linking) at
the conclusion of the source file. You would normally use the #ERROR statement to display an error mes-
sage during compilation if your CTL code discovers something that prevents it from creating valid code.
Example:

#error("Statement must have exactly one operand")

Like the #PRINT statement, the #ERROR statement does not end with a semicolon. Although #ERROR
only allows a string operand, it’s very easy to print other values by using the string (constant) concatenation
operator and several of the HLA built-in compile-time functions (see “Compile-Time Constants and Vari-
ables” on page 924 and “Compile-Time Functions” on page 927) for more details).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 923

Chapter Seven Volume Four
6.4 Compile-Time Constants and Variables

Just as the run-time language supports constants and variables, so does the compile-time language.
You declare compile-time constants in the CONST section, the same as for the run-time language. You
declare compile-time variables in the VAL section. Objects you declare in the VAL sections are constants as
far as the run-time language is concerned, but remember that you can change the value of an object you
declare in the VAL section throughout the source file. Hence the term "compile-time variable." See “HLA
Constant and Value Declarations” on page 381 for more details.

The CTL assignment statement ("?") computes the value of the constant expression to the right of the
assignment operator (":=") and stores the result into the VAL object name appearing immediately to the left
of the assignment operator1. The following example is a rework of the example above; this example, how-
ever, may appear anywhere in your HLA source file, not just in the VAL section of the program.

?ConstToPrint := 25;
#print("ConstToPrint = ", ConstToPrint)
?ConstToPrint := ConstToPrint + 5;
#print("Now ConstToPrint = ", ConstToPrint)

Note that HLA’s CTL ignores the distinction between the different sizes of numeric objects. HLA
always reserves storage for the largest possible object of a given type, so HLA merges the following types:

byte, word, dword -> dword
uns8, uns16, uns32 -> uns32
int8, int16, int32 -> int32
real32, real64, real80 -> real80

For most practical applications of the CTL, this shouldn’t make a difference in the operation of the program.

6.5 Compile-Time Expressions and Operators

As the previous section states, the HLA CTL supports constant expressions in the CTL assignment
statement. Unlike the run-time language (where you have to translate algebraic notation into a sequence of
machine instructions), the HLA CTL allows a full set of arithmetic operations using familiar expression syn-
tax. This gives the HLA CTL considerable power, especially when combined with the built-in compile-time
functions the next section discusses.

HLA’s CTL supports the following operators in compile-time expressions:

1. If the identifier to the left of the assignment operator is undefined, HLA will automatically declare this object at the current
scope level.

Table 1: Compile-Time Operators

Operator(s) Operand Typesa Description

- (unary)
numeric Negates the specific numeric value (int, uns, real).

cset Returns the complement of the specified character set.

! (unary)
integer Inverts all the bits in the operand (bitwise not).

boolean Boolean NOT of the operand.

*
numericL * numericR Multiplies the two operands.

csetL * csetR Computes the intersection of the two sets
Page 924 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
div integerL div integerR Computes the quotient of the two integer (int/uns/dword)
operands.

mod integerL mod integerR Computes the remainder of the division of the two integer
(int/uns/dword) operands.

/ numericL / numericR Computes the real quotient of the two numeric operands.
Returns a real result even if both operands are integers.

<< integerL << integerR Shifts integerL operand to the left the number of bits speci-
fied by the integerR operand.

>> integerL >> integerR Shifts integerL operand to the right the number of bits spec-
ified by the integerR operand.

+

numericL + numericR Adds the two numeric operands.

csetL + csetR Computes the union of the two sets.

strL + strR Concatenates the two strings.

-
numericL - numericR Computes the difference between numericL and numericR.

csetL - csetR Computes the set difference of csetL-csetR.

= or ==

numericL = numericR Returns true if the two operands have the same value.

csetL = csetR Returns true if the two sets are equal.

strL = strR Returns true if the two strings/chars are equal.

typeL = typeR Returns true if the two values are equal. They must be the
same type.

<> or != typeL <> typeR
(Same as =)

Returns false if the two (compatible) operands are not equal
to one another.

<

numericL < numericR Returns true if numericL is less than numericR.

csetL < csetR Returns true if csetL is a proper subset of csetR.

strL < strR Returns true if strL is less than strR

booleanL < booleanR Returns true if left operand is less than right operand (note:
false < true).

enumL < enumR Returns true if enumL appears in the same enum list as
enumR and enumL appears first.

<= Same as < Returns true if the left operand is less than or equal to the
right operand. For character sets, this means that the left
operand is a subset of the right operand.

> Same as < Returns true if the left operand is greater than the right oper-
and. For character sets, this means that the left operand is a
proper superset of the right operand.

Table 1: Compile-Time Operators

Operator(s) Operand Typesa Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 925

Chapter Seven Volume Four
>= Same as <= Returns true if the left operand is greater than or equal to the
right operand. For character sets, this means that the left
operand is a superset of the right operand.

&
integerL & integerR Computes the bitwise AND of the two operands.

booleanL & booleanR Computes the logical AND of the two operands.

|
integerL | integerR Computes the bitwise OR of the two operands.

booleanL | booleanR Computes the logical OR of the two operands.

^
integerL ^ integerR Computes the bitwise XOR of the two operands.

booleanL ^ booleanR Computes the logical XOR of the two operands. Note that
this is equivalent to "booleanL <> booleanR".

in charL in csetR Returns true if charL is a member of csetR.

a. Numeric is {intXX, unsXX, byte, word, dword, and realXX} values. Cset is a character set operand. Type
integer is { intXX, unsXX, byte, word, dword }. Type str is any string or character value. "TYPE" indicates
an arbitrary HLA type. Other types specify an explicit HLA data type.

Table 2: Operator Precedence and Associativity

Associativity
Precedence (Highest to

Lowest)
Operator

Right-to-left
6

!

-

Left to right 5

*

div

mod

/

>>

<<

Left to right 4
+

-

Table 1: Compile-Time Operators

Operator(s) Operand Typesa Description
Page 926 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
Of course, you can always override the default precedence and associativity of an operator by using
parentheses in an expression.

6.6 Compile-Time Functions

HLA provides a wide range of compile-time functions you can use. These functions compute values
during compilation the same way a high level language function computes values at run-time. The HLA
compile-time language includes a wide variety of numeric, string, and symbol table functions that help you
write sophisticated compile-time programs.

Most of the names of the built-in compile-time functions begin with the special symbol "@" and have
names like @sin or @length. The use of these special identifiers prevents conflicts with common names you
might want to use in your own programs (like length). The remaining compile-time functions (those that do
not begin with "@") are typically data conversion functions that use type names like int8 and real64. You
can even create your own compile-time functions using macros (see “Macros” on page 941).

HLA organizes the compile-time functions into various classes depending on the type of operation. For
example, there are functions that convert constants from one form to another (e.g., string to integer conver-
sion), there are many useful string functions, and HLA provides a full set of compile-time numeric func-
tions.

The complete list of HLA compile-time functions is too lengthy to present here. Instead, a complete
description of each of the compile-time objects and functions appears in Appendix H (see “HLA Com-
pile-Time Functions” on page 1447); this section will highlight a few of the functions in order to demon-
strate their use. Later sections in this chapter, as well as future chapters, will make extensive use of the
various compile-time functions.

Perhaps the most important concept to understand about the compile-time functions is that they are
equivalent to constants in your assembly language code (i.e., the run-time program). For example, the com-
pile-time function invocation "@sin(3.1415265358979328)" is roughly equivalent to specifying "0.0" at
that point in your program2. A function invocation like "@sin(x)" is legal only if x is a constant with a pre-
vious declaration at the point of the function call in the source file. In particular, x cannot be a run-time vari-

Left to right 3

= or ==

<> or !=

<

<=

>

>=

Left to right
2

&

|

^

Nonassociative 1 in

2. Actually, since @sin’s parameter in this example is not exactly π, you will get a small positive number instead of zero as
the function result, but in theory you should get zero.

Table 2: Operator Precedence and Associativity

Associativity
Precedence (Highest to

Lowest)
Operator
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 927

Chapter Seven Volume Four
able or other object whose value exists at run-time rather than compile-time. Since HLA replaces
compile-time function calls with their constant result, you may ask why you should even bother with com-
pile time functions. After all, it’s probably more convenient to type "0.0" than it is to type
"@sin(3.1415265358979328)" in your program. However, compile-time functions are really handy for
generating lookup tables (see “Generating Tables” on page 629) and other mathematical results that may
change whenever you change a CONST value in your program. Later sections in this chapter will explore
these ideas farther.

6.6.1 Type Conversion Compile-time Functions

One set of commonly used compile-time functions are the type conversion functions. These functions
take a single parameter of one type and convert that information to some specified type. These functions use
several of the HLA built-in data type names as the function names. Functions in this category are

• boolean
• int8, int16, and int32
• uns8, uns16, and uns32
• byte, word, dword (these are effectively equivalent to uns8, uns16, and uns32)
• real32, real64, and real80
• char
• string
• cset
• text

These functions accept a single constant expression parameter and, if at all reasonable, convert that expres-
sion’s value to the type specified by the type name. For example, the following function call returns the
value -128 since it converts the string constant to the corresponding integer value:

int8("-128")

Certain conversions don’t make sense or have restrictions associated with them. For example, the bool-
ean function will accept a string parameter, but that string must be "true" or "false" or the function will gen-
erate a compile-time error. Likewise, the numeric conversion functions (e.g., int8) allow a string operand but
the string operand must represent a legal numeric value. Some conversions (e.g., int8 with a character set
parameter) simply don’t make sense and are always illegal.

One of the most useful functions in this category is the string function. This function accepts nearly all
constant expression types and it generates a string that represents the parameter’s data. For example, the
invocation "string(128)" produces the string "128" as the return result. This function is real handy when
you have a value that you wish to use where HLA requires a string. For example, the #ERROR com-
pile-time statement only allows a single string operand. You can use the string function and the string con-
catenation operator ("+") to easily get around this limitation, e.g.,

#error("Value (" + string(Value) + ") is out of range")

6.6.2 Numeric Compile-Time Functions

The functions in this category perform standard mathematical operations at compile time. These func-
tions are real handy for generating lookup tables and "parameterizing" your source code by recalculating
functions on constants defined at the beginning of your program. Functions in this category include the fol-
lowing:

• @abs
• @ceil, @floor
• @sin, @cos,@tan
• @exp, @log, @log10
• @min,@max
Page 928 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
• @random, @randomize
• @sqrt

See Appendix H for more details on these functions.

6.6.3 Character Classification Compile-Time Functions

The functions in this group all return a boolean result. They test a character (or all the characters in a
string) to see if it belongs to a certain class of characters. The functions in this category include

• @isAlpha, @isAlphanum
• @isDigit, @isxDigit
• @isLower, @isUpper
• @isSpace

In addition to these character classification functions, the HLA language provides a set of pattern
matching functions that you can also use to classify character and string data. See the appropriate sections a
little later for the discussion of these routines.

6.6.4 Compile-Time String Functions

The functions in this category operate on string parameters. Most return a string result although a few
(e.g., @length and @index) return integer results. These functions do not directly affect the values of their
parameters; instead, they return an appropriate result that you can assign back to the parameter if you wish to
do so.

• @delete, @insert
• @index, @rindex
• @length
• @lowercase, @uppercase
• @strbrk, @strspan
• @strset
• @substr, @tokenize, @trim

For specific details concerning these functions and their parameters and their types, see Appendix H.
Combined with the pattern matching functions, the string handling functions give you the ability to extend
the HLA language by processing textual data that appears in your source files. Later sections appearing in
this chapter will discuss ways to do this.

The @length function deserves a special discussion because it is probably the most popular function in
this category. It returns an uns32 constant specifying the number of characters found in its string parameter.
The syntax is the following:

@length(string_expression)

Where string_expression represents any compile-time string expression. As noted above, this function
returns the length, in characters, of the specified expression.

6.6.5 Compile-Time Pattern Matching Functions

HLA provides a very rich set of string/pattern matching functions that let you test a string to see if it
begins with certain types of characters or strings. Along with the string processing functions, the pattern
matching functions let you extend the HLA language and provide several other benefits as well. There are far
too many pattern matching functions to list here (see Appendix H for complete details). However, a few
examples will demonstrate the power and convenience of these routines.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 929

Chapter Seven Volume Four
The pattern matching functions all return a boolean true/false result. If a function returns true, we say
that the function succeeds in matching its operand. If the function returns false, then we say it fails to match
its operand. An important feature of the pattern matching functions is that they do not have to match the
entire string you supply as a parameter, these patterns will (usually) succeed as long as they match a prefix of
the string parameter. The @matchStr function is a good example, the following function invocation always
returns true:

@matchStr("Hello World", "Hello")

The first parameter of all the pattern matching functions ("Hello World" in this example) is the string to
match. The matching functions will attempt to match the characters at the beginning of the string with the
other parameters supplied for that particular function. In the @matchStr example above, the function suc-
ceeds if the first parameter begins with the string specified as the second parameter (which it does). The fact
that the "Hello World" string contains additional characters beyond "Hello" is irrelevant; it only needs to
begin with the string "Hello" is doesn’t require equality with "Hello".

Most of the compile-time pattern matching functions support two optional parameters. The functions
store additional data into the VAL objects specified by these two parameters if the function is successful
(conversely, if the function fails, it does not modify these objects). The first parameter is where the function
stores the remainder. The remainder after the execution of a pattern matching function is those characters
that follow the matched characters in the string. In the example above, the remainder would be " World". If
you wanted to capture this remainder data, you would add a third parameter to the @matchStr function invo-
cation:

@matchStr("Hello World", "Hello", World)

This function invocation would leave " World" sitting in the World VAL object. Note that World must be pre-
declared in the VAL section (or via the "?" statement) prior to the invocation of this function.

By using the conjunction operator ("&") you can combine several pattern matching functions into a sin-
gle expression, e.g.,

@matchStr("Hello There World", "Hello ", tw) & @matchStr(tw, "There ", World)

This full expression returns true and leaves "World" sitting in the World variable. It also leaves "There
World" sitting in tw, although tw is probably a temporary object whose value has no meaning beyond this
expression. Of course, the above could be more efficiently implemented as follows:

@matchStr("Hello There World", "Hello There", World)

However, keep in mind that you can combine different pattern matching functions using conjunction, they
needn’t all be calls to @matchStr.

The second optional parameter to most pattern matching functions holds a copy of the text that the func-
tion matched. E.g., the following call to @matchStr returns "Hello" in the Hello VAL object3

@matchStr("Hello World", "Hello", World, Hello)

For more information on these pattern matching functions please see Appendix H. The chapter on
Domain Specific Languages (see “Domain Specific Embedded Languages” on page 975) and several other
sections in this chapter will also make further use of these functions.

6.6.6 Compile-Time Symbol Information

During compilation HLA maintains an internal database known as the symbol table. The symbol table
contains lots of useful information concerning all the identifiers you’ve defined up to a given point in the
program. In order to generate machine code output, HLA needs to query this database to determine how to

3. Strictly speaking, this example is rather contrived since we generally know the string that @matchStr matches. However,
for other pattern matching functions this is not the case.
Page 930 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
treat certain symbols. In your compile-time programs, it is often necessary to query the symbol table to
determine how to handle an identifier or expression in your code. The HLA compile-time symbol informa-
tion functions handle this task.

Many of the compile-time symbol information functions are well beyond the scope of this chapter (and,
in some cases, beyond the scope of this text). This chapter will present a few of the functions and later chap-
ters will add to this list. For a complete list of the compile-time symbol table functions, see Appendix H.
The functions we will consider in this chapter include the following:

• @size
• @defined
• @typeName
• @elements
• @elementSize

Without question, the @size function is probably the most important function in this group. Indeed,
previous chapters have made use of this function already. The @size function accepts a single HLA identi-
fier or constant expression as a parameter. It returns the size, in bytes, of the data type of that object (or
expression). If you supply an identifier, it can be a constant, type, or variable identifier. HLA returns the
size of the type of the object. As you’ve seen in previous chapters, this function is invaluable for allocating
storage via malloc and allocating arrays.

Another very useful function in this group is the @defined function. This function accepts a single
HLA identifier as a parameter, e.g.,

@defined(MyIdentifier)

This function returns true if the identifier is defined at that point in the program, it returns false otherwise.

The @typeName function returns a string specifying the type name of the identifier or expression you
supply as a parameter. For example, if i32 is an int32 object, then "@typeName(i32)" returns the string
"int32". This function is useful for testing the types of objects you are processing in your compile-time pro-
grams.

The @elements function requires an array identifier or expression. It returns the total number of array
elements as the function result. Note that for multi-dimensional arrays this function returns the product of
all the array dimensions4.

The @elementSize function returns the size, in bytes, of an element of an array whose name you pass as
a parameter. This function is extremely valuable for computing indices into an array (i.e., this function com-
putes the element_size component of the array index calculation, see “Accessing Elements of a Single
Dimension Array” on page 447).

6.6.7 Compile-Time Expression Classification Functions

The HLA compile-time language provides functions that will classify some arbitrary text and determine
if that text is a constant expression, a register, a memory operand, a type identifier, and more. Some of the
more common functions are

• @isConst
• @isReg, @isReg8, @isReg16, @isReg32, @isFReg
• @isMem
• @isType

Except for @isType, which requires an HLA identifier as a parameter, these functions all take some
arbitrary text as their parameter. These functions return true or false depending upon whether that parameter
satisfies the function requirements (e.g., @isConst returns true if its parameter is a constant identifier or
expression). The @isType function returns true if its parameter is a type identifier.

4. There is an @dim function that returns an array specifying the bounds on each dimension of a multidimensional array. See
the appendices for more details if you’re interested in this function.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 931

Chapter Seven Volume Four
The HLA compile-time language includes several other classification functions that are beyond the
scope of this chapter. See Appendix H for details on those functions.

6.6.8 Miscellaneous Compile-Time Functions

The HLA compile-time language contains several additional functions that don’t fall into one of the cat-
egories above. Some of the more useful miscellaneous functions include

• @odd
• @lineNumber
• @text

The @odd function takes an ordinal value (i.e., non-real numeric or character) as a parameter and
returns true if the value is odd, false if it is even. The @lineNumber function requires no parameters, it
returns the current line number in the source file. This function is quite useful for debugging compile-time
(and run-time!) programs.

The @text function is probably the most useful function in this group. It requires a single string param-
eter. It expands that string as text in place of the @text function call. This function is quite useful in con-
junction with the compile-time string processing functions. You can build an instruction (or a portion of an
instruction) using the string manipulation functions and then convert that string to program source code
using the @text function. The following is a trivial example of this function in operation:

?id1:string := "eax";
?id2:string := "i32";
@text("mov(" + id1 + ", " + id2 + ");")

The sequence above compiles to

mov(eax, i32);

6.6.9 Predefined Compile-Time Variables

In addition to functions, HLA also includes several predefined compile-time variables. The use of most
of HLA’s compile time variables is beyond the scope of this text. However, the following you’ve already
seen:

• @bound
• @into

Volume Three (see “Some Additional Instructions: INTMUL, BOUND, INTO” on page 377) discusses
the use of these objects to control the emission of the INTO and BOUND instructions. These two boolean
pseudo-variables determine whether HLA will compile the BOUND (@bound) and INTO (@into) instruc-
tions or treat them as comments. By default, these two variables contain true and HLA will compile these
instructions to machine code. However, if you set these values to false, using one or both of the following
statements then HLA will not compile the associated statement:

?@bound := false;
?@into := false;

If you set @bound to false, then HLA treats BOUND instructions as though they were comments. If
you set @into to false, then HLA treats INTO instructions as comments. You can control the emission of
these statements throughout your program by selectively setting these pseudo-variables to true or false at dif-
ferent points in your code.
Page 932 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
6.6.10 Compile-Time Type Conversions of TEXT Objects

Once you create a text constant in your program, it’s difficult to manipulate that object. The following
example demonstrates a programmer’s desire to change the definition of a text symbol within a program:

val
t:text := "stdout.put";

.

.

.
?t:text := "fileio.put";

The basic idea in this example is that t expands to "stdout.put" in the first half of the code and it expands
to "fileio.put" in the second half of the program. Unfortunately, this simple example will not work. The
problem is that HLA will expand a text symbol in place almost anywhere it finds that symbol. This includes
occurrences of t within the "?" statement above. Therefore, the code above expands to the following (incor-
rect) text:

val
t:text := "stdout.put";

.

.

.
?stdout.put:text := "fileio.put";

HLA doesn’t know how to deal with the "?" statement above, so it generates a syntax error.

At times you may not want HLA to expand a text object. Your code may want to further process the
string data held by the text object. HLA provides a couple of operators that deal with these two problems:

• @string:identifier
• @toString:identifier

The @string:identifier operator consists of @string, immediately followed by a colon and a text identi-
fier (with no interleaving spaces or other characters). HLA returns a string constant corresponding to the
text data associated with the text object. In other words, this operator lets you treat a text object as though it
were a string constant within an expression.

Unfortunately, the @string operator converts a text object to a string constant, not a string identifier.
Therefore, you cannot say something like

?@string:t := "Hello"

This doesn’t work because @string:t replaces itself with the string constant associated with the text object t.
Given the former assignment to t, this statement expands to

?"stdout.put" := "Hello";

This statement is still illegal.

The @toString:identifier operator comes to the rescue in this case. The @toString operator requires a
text object as the associated identifier. It converts this text object to a string object (still maintaining the
same string data) and then returns the identifier. Since the identifier is now a string object, you can assign a
value to it (and change its type to something else, e.g., text, if that’s what you need). To achieve the original
goal, therefore, you’d use code like the following:

val
t:text := "stdout.put";

.

.

.
?@tostring:t : text := "fileio.put";
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 933

Chapter Seven Volume Four
6.7 Conditional Compilation (Compile-Time Decisions)

HLA’s compile-time language provides an IF statement, #IF, that lets you make various decisions at
compile-time. The #IF statement has two main purposes: the traditional use of #IF is to support conditional
compilation (or conditional assembly) allowing you to include or exclude code during a compilation
depending on the status of various symbols or constant values in your program. The second use of this state-
ment is to support the standard IF statement decision making process in the HLA compile-time language.
This section will discuss these two uses for the HLA #IF statement.

The simplest form of the HLA compile-time #IF statement uses the following syntax:

#if(constant_boolean_expression)

<< text >>

#endif

Note that you do not place semicolons after the #ENDIF clause. If you place a semicolon after the #ENDIF,
it becomes part of the source code and this would be identical to inserting that semicolon immediately before
the next text item in the program.

At compile-time, HLA evaluates the expression in the parentheses after the #IF. This must be a constant
expression and its type must be boolean. If the expression evaluates true, then HLA continues processing
the text in the source file as though the #IF statement were not present. However, if the expression evaluates
false, then HLA treats all the text between the #IF and the corresponding #ENDIF clause as though it were a
comment (i.e., it ignores this text).

Figure 6.1 Operation of HLA Compile-Time #IF Statement

Keep in mind that HLA’s constant expressions support a full expression syntax like you’d find in a high
level language like C or Pascal. The #IF expression syntax is not limited as are expressions in the HLA IF
statement. Therefore, it is perfectly reasonable to write fancy expressions like the following:

#if(@length(someStrConst) < 10 & (MaxItems < 100 | MinItems < 10))

<< text >>

#endif

Keep in mind that the items in a compile-time expression must all be CONST or VAL identifiers or an
HLA compile-time function call (with appropriate parameters). In particular, remember that HLA evaluates
these expressions at compile-time so they cannot contain run-time variables5. Also note that HLA’s compile
time language uses complete boolean evaluation, so any side effects that occur in the expression may pro-
duce undesired results.

5. Except, of course, as parameters to certain HLA compile-time functions like @size or @typeName.

#if(constant_boolean_expression)

#endif

HLA compiles this code if
the expression is true. Else
HLA treats this code like
a comment.
Page 934 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
The HLA #IF statement supports optional #ELSEIF and #ELSE clauses that behave in the intuitive
fashion. The complete syntax for the #IF statement looks like the following:

#if(constant_boolean_expression1)

<< text1 >>

#elseif(constant_boolean_expression2)

<< text2 >>

#else

<< text3 >>

#endif

If the first boolean expression evaluates true then HLA processes the text up to the #ELSEIF clause. It
then skips all text (i.e., treats it like a comment) until it encounters the #ENDIF clause. HLA continues pro-
cessing the text after the #ENDIF clause in the normal fashion.

If the first boolean expression above evaluates false, then HLA skips all the text until it encounters a
#ELSEIF, #ELSE, or #ENDIF clause. If it encounters a #ELSEIF clause (as above), then HLA evaluates
the boolean expression associated with that clause. If it evaluates true, then HLA processes the text between
the #ELSEIF and the #ELSE clauses (or to the #ENDIF clause if the #ELSE clause is not present). If, dur-
ing the processing of this text, HLA encounters another #ELSEIF or, as above, a #ELSE clause, then HLA
ignores all further text until it finds the corresponding #ENDIF.

If both the first and second boolean expressions in the example above evaluate false, then HLA skips
their associated text and begins processing the text in the #ELSE clause. As you can see, the #IF statement
behaves in a relatively intuitive fashion once you understand how HLA "executes" the body of these state-
ments (that is, it processes the text or treats it as a comment depending on the state of the boolean expres-
sion). Of course, you can create a nearly infinite variety of different #IF statement sequences by including
zero or more #ELSEIF clauses and optionally supplying the #ELSE clause. Since the construction is identi-
cal to the HLA IF..THEN..ELSEIF..ELSE..ENDIF statement, there is no need to elaborate further here.

A very traditional use of conditional compilation is to develop software that you can easily configure for
several different environments. For example, the FCOMIP instruction makes floating point comparisons
very easy but this instruction is available only on Pentium Pro and later processors. If you want to use this
instruction on the processors that support it, and fall back to the standard floating point comparison on the
older processors you would normally have to write two versions of the program - one with the FCOMIP
instruction and one with the traditional floating point comparison sequence. Unfortunately, maintaining two
different source files (one for newer processors and one for older processors) is very difficult. Most engi-
neers prefer to use conditional compilation to embed the separate sequences in the same source file. The fol-
lowing example demonstrates how to do this.

const
PentProOrLater: boolean := false; // Set true to use FCOMIxx instrs.

.

.

.
#if(PentProOrLater)

fcomip(); // Compare st1 to st0 and set flags.

#else

fcomp(); // Compare st1 to st0.
fstsw(ax); // Move the FPU condition code bits
sahf(); // into the FLAGS register.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 935

Chapter Seven Volume Four
#endif

As currently written, this code fragment will compile the three instruction sequence in the #ELSE
clause and ignore the code between the #IF and #ELSE clauses (because the constant PentProOrLater is
false). By changing the value of PentProOrLater to true, you can tell HLA to compile the single FCOMIP
instruction rather than the three-instruction sequence. Of course, you can use the PentProOrLater constant
in other #IF statements throughout your program to control how HLA compiles your code.

Note that conditional compilation does not let you create a single executable that runs efficiently on all
processors. When using this technique you will still have to create two executable programs (one for Pen-
tium Pro and later processors, one for the earlier processors) by compiling your source file twice; during the
first compilation you must set the PentProOrLater constant to false, during the second compilation you must
set this constant to true. Although you must create two separate executables, you need only maintain a sin-
gle source file.

If you are familiar with conditional compilation in other languages, such as the C/C++ language, you
may be wondering if HLA supports a statement like C’s "#ifdef" statement. The answer is no, it does not.
However, you can use the HLA compile-time function @DEFINED to easily test to see if a symbol has been
defined earlier in the source file. Consider the following modification to the above code that uses this tech-
nique:

const
// Note: uncomment the following line if you are compiling this
// code for a Pentium Pro or later CPU.

// PentProOrLater :=0; // Value and type are irrelevant
.
.
.

#if(@defined(PentProOrLater))

fcomip(); // Compare st1 to st0 and set flags.

#else

fcomp(); // Compare st1 to st0.
fstsw(ax); // Move the FPU condition code bits
sahf(); // into the FLAGS register.

#endif

Another common use of conditional compilation is to introduce debugging and testing code into your
programs. A typical debugging technique that many HLA programmers use is to insert "print" statements at
strategic points throughout their code in order to trace through their code and display important values at
various checkpoints. A big problem with this technique is that they must remove the debugging code prior to
completing the project. The software’s customer (or a student’s instructor) probably doesn’t want to see
debugging output in the middle of a report the program produces. Therefore, programmers who use this
technique tend to insert code temporarily and then remove the code once they run the program and deter-
mine what is wrong. There are at least two problems with this technique:

• Programmers often forget to remove some debugging statements and this creates defects in the
final program, and

• After removing a debugging statement, these programmers often discover that they need that
same statement to debug some different problem at a later time. Hence they are constantly
inserting, removing, and inserting the same statements over and over again.

Conditional compilation can provide a solution to this problem. By defining a symbol (say, debug) to
control debug output in your program, you can easily activate or deactivate all debugging output by simply
modifying a single line of source code. The following code fragment demonstrates this:

const
Page 936 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
debug: boolean := false; // Set to true to activate debug output.
.
.
.

#if(debug)

stdout.put("At line ", @lineNumber, " i=", i, nl);

#endif

As long as you surround all debugging output statements with a #IF statement like the one above, you
don’t have to worry about debug output accidentally appearing in your final application. By setting the
debug symbol to false you can automatically disable all such output. Likewise, you don’t have to remove all
your debugging statements from your programs once they’ve served their immediate purpose. By using
conditional compilation, you can leave these statements in your code because they are so easy to deactivate.
Later, if you decide you need to view this same debugging information during a program run, you won’t
have to reenter the debugging statement - you simply reactivate it by setting the debug symbol to true.

We will return to this issue of inserting debugging code into your programs in the chapter on macros.

Although program configuration and debugging control are two of the more common, traditional, uses
for conditional compilation, don’t forget that the #IF statement provides the basic conditional statement in
the HLA compile-time language. You will use the #IF statement in your compile-time programs the same
way you would use an IF statement in HLA or some other language. Later sections in this text will present
lots of examples of using the #IF statement in this capacity.

6.8 Repetitive Compilation (Compile-Time Loops)

HLA’s #WHILE..#ENDWHILE statement provides a compile-time loop construct. The #WHILE state-
ment tells HLA to repetitively process the same sequence of statements during compilation. This is very
handy for constructing data tables (see “Constructing Data Tables at Compile Time” on page 968) as well as
providing a traditional looping structure for compile-time programs. Although you will not employ the
#WHILE statement anywhere near as often as the #IF statement, this compile-time control structure is very
important when writing advanced HLA programs.

The #WHILE statement uses the following syntax:

#while(constant_boolean_expression)

<< text >>

#endwhile

When HLA encounters the #WHILE statement during compilation, it will evaluate the constant boolean
expression. If the expression evaluates false, then HLA will skip over the text between the #WHILE and the
#ENDWHILE clause (the behavior is similar to the #IF statement if the expression evaluates false). If the
expression evaluates true, then HLA will process the statements between the #WHILE and #ENDWHILE
clauses and then "jump back" to the start of the #WHILE statement in the source file and repeat this process.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 937

Chapter Seven Volume Four
Figure 6.1 HLA Compile-Time #WHILE Statement Operation

To understand how this process works, consider the following program:

program ctWhile;
#include("stdlib.hhf")

static
 ary: uns32[5] := [2, 3, 5, 8, 13];

begin ctWhile;

 ?i := 0;
 #while(i < 5)

 stdout.put("array[", i, "] = ", ary[i*4], nl);
 ?i := i + 1;

 #endwhile

end ctWhile;

Program 6.2 #WHILE..#ENDWHILE Demonstration

As you can probably surmise, the output from this program is the following:

array[0] = 2
array[1] = 3
array[2] = 4
array[3] = 5
array[4] = 13

What is not quite obvious is how this program generates this output. Remember, the #WHILE..#END-
WHILE construct is a compile-time language feature, not a run-time control construct. Therefore, the
#WHILE loop above repeats five times during compilation. On each repetition of the loop, the HLA com-
piler processes the statements between the #WHILE and #ENDWHILE clauses. Therefore, the program
above is really equivalent to the following:

#while(constant_boolean_expression)

#endwhile

HLA repetitively compiles this code
as long as the expression is true.
It effectively inserts multiple copies
of this statement sequence into your
source file (the exact number of copies
depends on the value of the loop control
expression).
Page 938 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
program ctWhile;
#include("stdlib.hhf")

static
 ary: uns32[5] := [2, 3, 5, 8, 13];

begin ctWhile;

 stdout.put("array[", 0, "] = ", ary[0*4], nl);
 stdout.put("array[", 1, "] = ", ary[1*4], nl);
 stdout.put("array[", 2, "] = ", ary[2*4], nl);
 stdout.put("array[", 3, "] = ", ary[3*4], nl);
 stdout.put("array[", 4, "] = ", ary[4*4], nl);

end ctWhile;

Program 6.3 Program Equivalent to the Code in Program 6.2

As you can see, the #WHILE statement is very convenient for constructing repetitive code sequences.
This is especially invaluable for unrolling loops. Additional uses of the #WHILE loop appear in later sec-
tions of this text.

6.9 Putting It All Together

The HLA compile-time language provides considerable power. With the compile-time language you
can automate the generation of tables, selectively compile code for different environments, easily unroll
loops to improve performance, and check the validity of code you’re writing. Combined with macros and
other features that HLA provides, the compile-time language is probably the premier feature of the HLA
language – no other assembler provides comparable features. For more information about the HLA compile
time language, be sure to read the next chapter on macros.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 939

Chapter Seven Volume Four
Page 940 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
Macros Chapter Eight

7.1 Chapter Overview

This chapter continues where the previous chapter left off – continuing to discuss the HLA compile time
language. This chapter discusses what is, perhaps, the most important component of the HLA compile-time
language, macros. Many people judge the power of an assembler by the power of its macro processing capa-
bilities. If you happen to be one of these people, you’ll probably agree that HLA is one of the more powerful
assemblers on the planet after reading this chapter; because HLA has one of the most powerful macro pro-
cessing facilities of any computer language processing system.

7.2 Macros (Compile-Time Procedures)

Macros are symbols that a language processor replaces with other text during compilation. Macros are
great devices for replacing long repetitive sequences of text with much shorter sequences of text. In addi-
tional to the traditional role that macros play (e.g., "#define" in C/C++), HLA’s macros also serve as the
equivalent of a compile-time language procedure or function. Therefore, macros are very important in
HLA’s compile-time language; just as important as functions and procedures are in other high level lan-
guages.

Although macros are nothing new, HLA’s implementation of macros far exceeds the macro processing
capabilities of other programming languages. The following sections explore HLA’s macro processing facil-
ities and the relationship between macros and other HLA CTL control constructs.

7.2.1 Standard Macros

HLA supports a straight-forward macro facility that lets you define macros in a manner that is similar
to declaring a procedure. A typical, simple, macro declaration takes the following form:

macro macroname;

<< macro body >>

endmacro;

Although macro and procedure declarations are similar, there are several immediate differences
between the two that are obvious from this example. First, of course, macro declarations use the reserved
word MACRO rather than PROCEDURE. Second, you do not begin the body of the macro with a
"BEGIN macroname;" clause. This is because macros don’t have a declaration section like procedures so
there is no need for a keyword that separates the macro declarations from the macro body. Finally, you will
note that macros end with the "ENDMACRO;" clause rather than "END macroname;" The following is a
concrete example of a macro declaration:

macro neg64;

neg(edx);
neg(eax);
sbb(0, edx);

endmacro;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 941

Chapter Eight Volume Four
Execution of this macro’s code will compute the two’s complement of the 64-bit value in EDX:EAX (see
“Extended Precision NEG Operations” on page 846).

To execute the code associated with neg64, you simply specify the macro’s name at the point you want
to execute these instructions, e.g.,

mov((type dword i64), eax);
mov((type dword i64+4), edx);
neg64;

Note that you do not follow the macro’s name with a pair of empty parentheses as you would a procedure
call (the reason for this will become clear a little later).

Other than the lack of parentheses following neg64’s invocation1 this looks just like a procedure call.
You could implement this simple macro as a procedure using the following procedure declaration:

procedure neg64p;
begin neg64p;

neg(edx);
neg(eax);
sbb(0, edx);

end neg64p;

Note that the following two statements will both negate the value in EDX:EAX:

neg64; neg64p();

The difference between these two (i.e., the macro invocation versus the procedure call) is the fact that mac-
ros expand their text in-line whereas a procedure call emits a call to the associate procedure elsewhere in the
text. That is, HLA replaces the invocation "neg64;" directly with the following text:

neg(edx);
neg(eax);
sbb(0, edx);

On the other hand, HLA replaces the procedure call "neg64p();" with the single call instruction:

call neg64p;

Presumably, you’ve defined the neg64p procedure earlier in the program.

You should make the choice of macro versus procedure call on the basis of efficiency. Macros are
slightly faster than procedure calls because you don’t execute the CALL and corresponding RET instruc-
tions. On the other hand, the use of macros can make your program larger because a macro invocation
expands to the text in the body of the macro on each invocation. Procedure calls jump to a single instance of
the procedure’s body. Therefore, if the macro body is large and you invoke the macro several times through-
out your program, it will make your final executable much larger. Also, if the body of your macro executes
more than a few simple instructions, the overhead of a CALL/RET sequence has little impact on the overall
execution time of the code, so the execution time savings are nearly negligible. On the other hand, if the
body of a procedure is very short (like the neg64 example above), you’ll discover that the macro implemen-
tation is much faster and doesn’t expand the size of your program by much. Therefore, a good rule of thumb
is

❏ Use macros for short, time-critical program units. Use procedures for longer blocks of
code and when execution time is not as critical.

Macros have many other disadvantages over procedures. Macros cannot have local (automatic) vari-
ables, macro parameters work differently than procedure parameters, macros don’t support (run-time) recur-

1. To differentiate macros and procedures, this text will use the term invocation when describing the use of a macro and call
when describing the use of a procedure.
Page 942 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
sion, and macros are a little more difficult to debug than procedures (just to name a few disadvantages).
Therefore, you shouldn’t really use macros as a substitute for procedures except in some rare situations.

7.2.2 Macro Parameters

Like procedures, macros let you define parameters that let you supply different data on each macro
invocation. This lets you write generic macros whose behavior can vary depending on the parameters you
supply. By processing these macro parameters at compile-time, you can write very sophisticated macros.

Macro parameter declaration syntax is very straight-forward. You simply supply a list of parameter
names within parentheses in a macro declaration:

macro neg64(reg32HO, reg32LO);

neg(reg32HO);
neg(reg32LO);
sbb(0, reg32HO);

endmacro;

Note that you do not associate a data type with a macro parameter like you do procedural parameters. This
is because HLA macros are always text objects. The next section will explain the exact mechanism HLA
uses to substitute an actual parameter for a formal parameter.

When you invoke a macro, you simply supply the actual parameters the same way you would for a pro-
cedure call:

neg64(edx, eax);

Note that a macro invocation that requires parameters expects you to enclose the parameter list within paren-
theses.

7.2.2.1 Standard Macro Parameter Expansion

As the previous section explains, HLA automatically associates the type text with macro parameters.
This means that during a macro expansion, HLA substitutes the text you supply as the actual parameter
everywhere the formal parameter name appears. The semantics of "pass by textual substitution" are a little
different than "pass by value" or "pass by reference" so it is worthwhile exploring those differences here.

Consider the following macro invocations, using the neg64 macro from the previous section:

neg64(edx, eax);
neg64(ebx, ecx);

These two invocations expand into the following code:

// neg64(edx, eax);

neg(edx);
neg(eax);
sbb(0, edx);

// neg64(ebx, ecx);

neg(ebx);
neg(ecx);
sbb(0, ebx);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 943

Chapter Eight Volume Four
Note that macro invocations do not make a local copy of the parameters (as pass by value does) nor do
they pass the address of the actual parameter to the macro. Instead, a macro invocation of the form
"neg64(edx, eax);" is equivalent to the following:

?reg32HO: text := "edx";
?reg32LO: text := "eax";

neg(reg32HO);
neg(reg32LO);
sbb(0, reg32HO);

Of course, the text objects immediately expand their string values in-line, producing the former expansion
for "neg64(edx, eax);".

Note that macro parameters are not limited to memory, register, or constant operands as are instruction
or procedure operands. Any text is fine as long as its expansion is legal wherever you use the formal param-
eter. Similarly, formal parameters may appear anywhere in the macro body, not just where memory, register,
or constant operands are legal. Consider the following macro declaration and sample invocations:

macro chkError(instr, jump, target);

instr;
jump target;

endmacro;

chkError(cmp(eax, 0), jnl, RangeError); // Example 1
...

chkError(test(1, bl), jnz, ParityError); // Example 2

// Example 1 expands to

cmp(eax, 0);
jnl RangeError;

// Example 2 expands to

test(1, bl);
jnz ParityError;

In general, HLA assumes that all text between commas constitutes a single macro parameter. If HLA
encounters any opening "bracketing" symbols (left parentheses, left braces, or left brackets) then it will
include all text up to the appropriate closing symbol, ignoring any commas that may appear within the
bracketing symbols. This is why the chkError invocations above treat "cmp(eax, 0)" and "test(1, bl)" as
single parameters rather than as a pair of parameters. Of course, HLA does not consider commas (and
bracketing symbols) within a string constant as the end of an actual parameter. So the following macro and
invocation is perfectly legal:

macro print(strToPrint);

stdout.out(strToPrint);

endmacro;
.
.
.
print("Hello, world!");

HLA treats the string "Hello, world!" as a single parameter since the comma appears inside a literal string
constant, just as your intuition suggests.
Page 944 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
If you are unfamiliar with textual macro parameter expansion in other languages, you should be aware
that there are some problems you can run into when HLA expands your actual macro parameters. Consider
the following macro declaration an invocation:

macro Echo2nTimes(n, theStr);

?echoCnt: uns32 := 0;
#while(echoCnt < n*2)

#print(theStr)
?echoCnt := echoCnt + 1;

#endwhile

endmacro;

.

.

.
Echo2nTimes(3+1, "Hello");

This example displays "Hello" five times during compilation rather than the eight times you might intu-
itively expect. This is because the #WHILE statement above expands to

#while(echoCnt < 3+1*2)

The actual parameter for n is "3+1", since HLA expands this text directly in place of n, you get the text
above. Of course, at compile time HLA computes "3+1*2" as the value five rather than as the value eight
(which you would get had HLA passed this parameter by value rather than by textual substitution).

The common solution to this problem, when passing numeric parameters that may contain compile-time
expressions, is to surround the formal parameter in the macro with parentheses. E.g., you would rewrite the
macro above as follows:

macro Echo2nTimes(n, theStr);

?echoCnt: uns32 := 0;
#while(echoCnt < (n)*2)

#print(theStr)
?echoCnt := echoCnt + 1;

#endwhile

endmacro;

The previous invocation would expand to the following code:

?echoCnt: uns32 := 0;
#while(echoCnt < (3+1)*2)

#print(theStr)
?echoCnt := echoCnt + 1;

#endwhile

This version of the macro produces the intuitive result.

If the number of actual parameters does not match the number of formal parameters, HLA will generate
a diagnostic message during compilation. Like procedures, the number of actual parameters must agree with
the number of formal parameters. If you would like to have optional macro parameters, then keep reading...
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 945

Chapter Eight Volume Four
7.2.2.2 Macros with a Variable Number of Parameters

You may have noticed by now that some HLA macros don’t require a fixed number of parameters. For
example, the stdout.put macro in the HLA Standard Library allows one or more actual parameters. HLA
uses a special array syntax to tell the compiler that you wish to allow a variable number of parameters in a
macro parameter list. If you follow the last macro parameter in the formal parameter list with "[]" then
HLA will allow a variable number of actual parameters (zero or more) in place of that formal parameter.
E.g.,

macro varParms(varying[]);

<< macro body >>

endmacro;
.
.
.
varParms(1);
varParms(1, 2);
varParms(1, 2, 3);
varParms();

Note, especially, the last example above. If a macro has any formal parameters, you must supply paren-
theses with the macro list after the macro invocation. This is true even if you supply zero actual parameters
to a macro with a varying parameter list. Keep in mind this important difference between a macro with no
parameters and a macro with a varying parameter list but no actual parameters.

When HLA encounters a formal macro parameter with the "[]" suffix (which must be the last parameter
in the formal parameter list), HLA creates a constant string array and initializes that array with the text asso-
ciated with the remaining actual parameters in the macro invocation. You can determine the number of
actual parameters assigned to this array using the @ELEMENTS compile-time function. For example,
"@elements(varying)" will return some value, zero or greater, that specifies the total number of parameters
associated with that parameter. The following declaration for varParms demonstrates how you might use
this:

macro varParms(varying[]);

?vpCnt := 0;
#while(vpCnt < @elements(varying))

#print(varying[vpCnt])
?vpCnt := vpCnt + 1;

#endwhile

endmacro;
.
.
.
varParms(1); // Prints "1" during compilation.
varParms(1, 2); // Prints "1" and "2" on separate lines.
varParms(1, 2, 3); // Prints "1", "2", and "3" on separate lines.
varParms(); // Doesn’t print anything.

Since HLA doesn’t allow arrays of text objects, the varying parameter must be an array of strings. This,
unfortunately, means you must treat the varying parameters differently than you handle standard macro
parameters. If you want some element of the varying string array to expand as text within the macro body,
you can always use the @TEXT function to achieve this. Conversely, if you want to use a non-varying for-
Page 946 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
mal parameter as a string object, you can always use the @STRING:name operator. The following example
demonstrates this:

macro ReqAndOpt(Required, optional[]);

?@text(optional[0]) := @string:ReqAndOpt;
#print(@text(optional[0]))

endmacro;

.

.

.
ReqAndOpt(i, j);

// The macro invocation above expands to

?@text("j") := @string:i;
#print("j")

// The above further expands to

j := "i";
#print(j)

// The above simply prints "i" during compilation.

Of course, it would be a good idea, in a macro like the above, to verify that there are at least two param-
eters before attempting to reference element zero of the optional parameter. You can easily do this as fol-
lows:

macro ReqAndOpt(Required, optional[]);

#if(@elements(optional) > 0)

?@text(optional[0]) := @string:ReqAndOpt;
#print(@text(optional[0]))

#else

#error("ReqAndOpt must have at least two parameters")

#endif

endmacro;

7.2.2.3 Required Versus Optional Macro Parameters

As noted in the previous section, HLA requires exactly one actual parameter for each non-varying for-
mal macro parameter. If there is no varying macro parameter (and there can be at most one) then the number
of actual parameters must exactly match the number of formal parameters. If a varying formal parameter is
present, then there must be at least as many actual macro parameters as there are non-varying (or required)
formal macro parameters. If there is a single, varying, actual parameter, then a macro invocation may have
zero or more actual parameters.

There is one big difference between a macro invocation of a macro with no parameters and a macro
invocation of a macro with a single, varying, parameter that has no actual parameters: the macro with the
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 947

Chapter Eight Volume Four
varying parameter list must have an empty set of parentheses after it while the macro invocation of the macro
without any parameters does not allow this. You can use this fact to your advantage if you wish to write a
macro that doesn’t have any parameters but you want to follow the macro invocation with "()" so that it
matches the syntax of a procedure call with no parameters. Consider the following macro:

macro neg64(JustForTheParens[]);

#if(@elements(JustForTheParens) = 0)

neg(edx);
neg(eax);
sbb(0, edx);

#else

#error("Unexpected operand(s)")

#endif

endmacro;

The macro above allows invocations of the form "neg64();" using the same syntax you would use for a
procedure call. This feature is useful if you want the syntax of your parameterless macro invocations to
match the syntax of a parameterless procedure call. It’s not a bad idea to do this, just in the off chance you
need to convert the macro to a procedure at some point (or vice versa, for that matter).

If, for some reason, it is more convenient to operate on your macro parameters as string objects rather
than text objects, you can specify a single varying parameter for the macro and then use #IF and @ELE-
MENTS to enforce the number of required actual parameters.

7.2.2.4 The "#(" and ")#" Macro Parameter Brackets

Once in a (really) great while, you may want to include arbitrary commas (i.e., outside a bracketing
pair) within a macro parameter. Or, perhaps, you might want to include other text as part of a macro expan-
sion that HLA would normally process before storing away the text as the value for the formal parameter2.
The "#(" and ")#" bracketing symbols tell HLA to collect all text, except for surrounding whitespace,
between these two symbols and treat that text as a single parameter. Consider the following macro:

macro PrintName(theParm);

?theName := @string:theParm;
#print(theName)

endmacro;

Normally, this macro will simply print the text of the actual parameter you pass to it. So were you to
invoke the macro with "PrintName(j);" HLA would simply print "j" during compilation. This occurs
because HLA associates the parameter data ("j") with the string value for the text object theParm. The
macro converts this text data to a string, puts the string data in theName, and then prints this string.

Now consider the following statements:

?tt:text := "j";
PrintName(tt);

This macro invocation will also print "j". The reason is that HLA expands text constants immediately upon
encountering them. So after this expansion, the invocation above is equivalent to

2. For example, HLA will normally expand all text objects prior to the creation of the data for the formal parameter. You
might not want this expansion to occur.
Page 948 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
PrintName(j);

So this macro invocation prints "j" for the same reason the last example did.

What if you want the macro to print "tt" rather than "j"? Unfortunately, HLA’s eager evaluation of the
text constant gets in the way here. However, if you bracket "tt" with the "#(" and ")#" brackets, you can
instruct HLA to defer the expansion of this text constant until it actually expands the macro. I.e., the follow-
ing macro invocation prints "tt" during compilation:

PrintName(#(tt)#);

Note that HLA allows any amount of arbitrary text within the "#(" and ")#" brackets. This can include
commas and other arbitrary text. The following macro invocation prints "Hello, World!" during compila-
tion:

PrintName(#(Hello, World!)#);

Normally, HLA would complain about the mismatched number of parameters since the comma would
suggest that there are two parameters here. However, the deferred evaluation brackets tell HLA to consider
all the text between the "#(" and ")#" symbols as a single parameter.

7.2.2.5 Eager vs. Deferred Macro Parameter Evaluation

HLA uses two schemes to process macro parameters. As you saw in the previous section, HLA uses
eager evaluation when processing text constants appearing in a macro parameter list. You can force deferred
evaluation of the text constant by surrounding the text with the "#(" and ")#" brackets. For other types of
operands, HLA uses deferred macro parameter evaluation. This section discusses the difference between
these two forms and describes how to force eager evaluation if necessary.

Eager evaluation occurs while HLA is collecting the text associated with each macro parameter. For
example, if "T" is a text constant containing the string "U" and "M" is a macro, then when HLA encounters
"M(T)" it will first expand "T" to "U". Then HLA processes the macro invocation "M(U)" as though you
had supplied the text "U" as the parameter to begin with.

Deferred evaluation of macro parameters means that HLA does not process the parameter(s), but rather
passes the text unchanged to the macro. Any expansion of the text associated with macro parameters occurs
within the macro itself. For example, if M and N are both macros accepting a single parameter, then the
invocation "M(N(0))" defers the evaluation of "N(0)" until HLA processes the macro body. It does not
evaluate "N(0)" first and pass this expansion on to the macro. The following program demonstrates eager
and deferred evaluation:

// This program demonstrates the difference
// between deferred and eager macro parameter
// processing.

program EagerVsDeferredEvaluation;

macro ToDefer(tdParm);

 #print("ToDefer: ", @string:tdParm)
 @string:tdParm

endmacro;

macro testEVD(theParm);

 #print("testEVD:'", @string:theParm, "'")

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 949

Chapter Eight Volume Four
endmacro;

const

 txt:text := "Hello";
 str:string := "there";

begin EagerVsDeferredEvaluation;

 testEVD(str); // Deferred evaluation.
 testEVD(txt); // Eager evaluation.
 testEVD(ToDefer(World)); //Deferred evaluation.

end EagerVsDeferredEvaluation;

Program 7.1 Eager vs. Deferred Macro Parameter Evaluation

Note that the macro testEVD outputs the text associated with the formal parameter as a string during
compilation. When you compile Program 7.1 it produces the following output:

testEVD:’Hello’
testEVD:’Hello’
testEVD:’ToDefer(World)’

The first line prints ’Hello’ because this is the text supplied as a parameter for the first call to testEVD.
Since this is a string constant, not a text constant, HLA uses deferred evaluation. This means that it passes
the text appearing between the parentheses unchanged to the testEVD macro. That text is "Hello" hence the
same output as the parameter text.

The second testEVD invocation prints ’Hello’. This is because the macro parameter, txt, is a text object.
HLA eagerly processes text constants before invoking the macro. Therefore, HLA translates "testEVD(txt)"
to "testEVD(Hello)" prior to invoking the macro. Since the macro parameter text is now "Hello", that’s what
HLA prints during compilation while processing this macro.

The third invocation of testEVD above is semantically identical to the first. It is present just to demon-
strate that HLA defers processing macros just like it defers the processing of everything else except text con-
stants.

Although the code in Program 7.1 does not actually evaluate the ToDefer macro invocation, this is only
because the body of testEVD does not directly use the parameter. Instead, it converts theParm to a string and
prints its value. Had this code actually referred to theParm in an expression (or as a statement), then HLA
would have invoked ToDefer and let it do its job. Consider the following modification to the above program:

// This program demonstrates the difference
// between deferred and eager macro parameter
// processing.

program DeferredEvaluation;

macro ToDefer(tdParm);

 @string:tdParm

endmacro;
Page 950 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
macro testEVD(theParm);

 #print("Hello ", theParm)

endmacro;

begin DeferredEvaluation;

 testEVD(ToDefer(World));

end DeferredEvaluation;

Program 7.2 Deferred Macro Parameter Expansion

The macro invocation "testEVD(ToDefer(World));" defers the evaluation of its parameter. Therefore,
the actual parameter theParm is a text object containing the string "ToDefer(World)". Inside the testEVD
macro, HLA encounters theParm and expands it to this string, i.e.,

#print("Hello ", theParm)

expands to

#print("Hello ", ToDefer(World))

When HLA processes the #PRINT statement, it eagerly processes all parameters. Therefore, HLA
expands the statement above to

#print("Hello ", "World")

since "ToDefer(World)" expands to @string:tdParm and that expands to "World".

Most of the time, the choice between deferred and eager evaluation produces the same result. In Pro-
gram 7.2, for example, it doesn’t matter whether the ToDefer macro expansion is eager (thus passing the
string "World" as the parameter to testEVD) or deferred. Either mechanism produces the same output.

There are situations where deferred evaluation is not interchangeable with eager evaluation. The fol-
lowing program demonstrates a problem that can occur when you use deferred evaluation rather than eager
evaluation. In this example the program attempts to pass the current line number in the source file as a
parameter to a macro. This does not work because HLA expands (and evaluates) the @LINENUMBER
function call inside the macro on every invocation. Therefore, this program always prints the same line
number (eight) regardless of the invocation line number:

// This program a situation where deferred
// evaluation fails to work properly.

program DeferredFails;

macro printAt(where);

 #print("at line ", where)

endmacro;

begin DeferredFails;

 printAt(@linenumber);
 printAt(@lineNumber);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 951

Chapter Eight Volume Four

end DeferredFails;

Program 7.3 An Example Where Deferred Evaluation Fails to Work Properly

Intuitively, this program should print:

at line 14
at line 15

Unfortunately, because of deferred evaluation, the two printAt invocations simply pass the text "@linenum-
ber" as the actual parameter value rather than the string representing the line numbers of these two state-
ments in the program. Since the formal parameter always expands to @LINENUMBER on the same line
(line eight), this program always prints the same line number regardless of the line number of the macro
invocation.

If you need an eager evaluation of a macro parameter there are three ways to achieve this. First of all, of
course, you can specify a text object as a macro parameter and HLA will immediately expand that object
prior to passing it as the macro parameter. The second option is to use the @TEXT function (with a string
parameter). HLA will also immediately process this object, expanding it to the appropriate text, prior to pro-
cessing that text as a macro parameter. The third option is to use the @EVAL pseudo-function. Within a
macro invocation’s parameter list, the @EVAL function instructs HLA to evaluate the @EVAL parameter
prior to passing the text to the macro. Therefore, you can correct the problem in Program 7.3 by using the
following code (which properly prints at "at line 14" and "at line 15"):

// This program a situation where deferred
// evaluation fails to work properly.

program EvalSucceeds;

macro printAt(where);

 #print("at line ", where)

endmacro;

begin EvalSucceeds;

 printAt(@eval(@linenumber));
 printAt(@eval(@lineNumber));

end EvalSucceeds;

Program 7.4 Demonstration of @EVAL Compile-time Function

In addition to immediately processing built-in compiler functions like @LINENUMBER, the @EVAL
pseudo-function will also invoke any macros appearing in the @EVAL parameter. @EVAL usually leaves
other values unchanged.

7.2.3 Local Symbols in a Macro

Consider the following macro declaration:

macro JZC(target);
Page 952 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
jnz NotTarget;
jc target;

NotTarget:

endmacro;

The purpose of this macro is to simulate an instruction that jumps to the specified target location if the
zero flag is set and the carry flag is set. Conversely, if either the zero flag is clear or the carry flag is clear
this macro transfers control to the instruction immediately following the macro invocation.

There is a serious problem with this macro. Consider what happens if you use this macro more than
once in your program:

JZC(Dest1);
.
.
.

JZC(Dest2);
.
.
.

The macro invocations above expand to the following code:

jnz NotTarget;
jc Dest1;

NotTarget:
.
.
.

jnz NotTarget;
jc Dest2;

NotTarget:
.
.
.

The problem with the expansion of these two macro invocations is that they both emit the same label, Not-
Target, during macro expansion. When HLA processes this code it will complain about a duplicate symbol
definition. Therefore, you must take care when defining symbols inside a macro because multiple invoca-
tions of that macro may lead to multiple definitions of that symbol.

HLA’s solution to this problem is to allow the use of local symbols within a macro. Local macro sym-
bols are unique to a specific invocation of a macro. For example, had NotTarget been a local symbol in the
JZC macro invocations above, the program would have compiled properly since HLA treats each occurrence
of NotTarget as a unique symbol.

HLA does not automatically make internal macro symbol definitions local to that macro3. Instead, you
must explicitly tell HLA which symbols must be local. You do this in a macro declaration using the follow-
ing generic syntax:

macro macroname (optional_parameters) : optional_list_of_local_names ;
<< macro body >>

endmacro;

The list of local names is a sequence of one or more HLA identifiers separated by commas. Whenever
HLA encounters this name in a particular macro invocation it automatically substitutes some unique name
for that identifier. For each macro invocation, HLA substitutes a different name for the local symbol.

You can correct the problem with the JZC macro by using the following macro code:

3. Sometimes you actually want the symbols to be global.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 953

Chapter Eight Volume Four
macro JZC(target):NotTarget;

jnz NotTarget;
jc target;

NotTarget:

endmacro;

Now whenever HLA processes this macro it will automatically associate a unique symbol with each occur-
rence of NotTarget. This will prevent the duplicate symbol error that occurs if you do not declare NotTarget
as a local symbol.

HLA implements local symbols by substituting a symbol of the form "_nnnn_" (where nnnn is a
four-digit hexadecimal number) wherever the local symbol appears in a macro invocation. For example, a
macro invocation of the form "JZC(SomeLabel);" might expand to

jnz _010A_;
jc SomeLabel;

010A:

For each local symbol appearing within a macro expansion HLA will generate a unique temporary identifier
by simply incrementing this numeric value for each new local symbol it needs. As long as you do not explic-
itly create labels of the form "_nnnn_" (where nnnn is a hexadecimal value) there will never be a conflict in
your program. HLA explicitly reserves all symbols that begin and end with a single underscore for its own
private use (and for use by the HLA Standard Library). As long as you honor this restriction, there should
be no conflicts between HLA local symbol generation and labels in your own programs since all HLA-gen-
erated symbols begin and end with a single underscore.

HLA implements local symbols by effectively converting that local symbol to a text constant that
expands to the unique symbol HLA generates for the local label. That is, HLA effectively treats local sym-
bol declarations as indicated by the following example:

macro JZC(target);
?NotTarget:text := "_010A_";

jnz NotTarget;
jc target;

NotTarget:

endmacro;

Whenever HLA expands this macro it will substitute "_010A_" for each occurrence of NotTarget it encoun-
ters in the expansion. This analogy isn’t perfect because the text symbol NotTarget in this example is still
accessible after the macro expansion whereas this is not the case when defining local symbols within a
macro. But this does give you an idea of how HLA implements local symbols.

One important consequence of HLA’s implementation of local symbols within a macro is that HLA will
produce some puzzling error messages if an error occurs on a line that uses a local symbol. Consider the fol-
lowing (incorrect) macro declaration:

macro LoopZC(TopOfLoop): ExitLocation;

jnz ExitLocation;
jc TopOfLoop;

endmacro;

Note that in this example the macro does not define the ExitLocation symbol even though there is a jump
(JNZ) to this label. If you attempt to compile this program, HLA will complain about an undefined state-
ment label and it will state that the symbol is something like "_010A_" rather than ExitLocation.

Locating the exact source of this problem can be challenging since HLA cannot report this error until
the end of the procedure or program in which LoopZC appears (long after you’ve invoked the macro). If you
Page 954 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
have lots of macros with lots of local symbols, locating the exact problem is going to be a lot of work; your
only option is to carefully analyze the macros you do call (perhaps by commenting them out of your pro-
gram one by one until the error goes away) to discover the source of the problem. Once you determine the
offending macro, the next step is to determine which local symbol is the culprit (if the macro contains more
than one local symbol). Because tracking down bugs associated with local symbols can be tough, you
should be especially careful when using local symbols within a macro.

Because local symbols are effectively text constants, don’t forget that HLA eagerly processes any local
symbols you pass as parameters to other macros. To see this effect, consider the following sample program:

// LocalDemo.HLA
//
// This program demonstrates the effect
// of passing a local macro symbol as a
// parameter to another macro. Remember,
// local macro symbols are text constants
// so HLA eager evaluates them when they
// appear as macro parameters.

program LocalExpansionDemo;

macro printIt(what);

 #print(@string:what)
 #print(what)

endmacro;

macro LocalDemo:local;

 ?local:string := "localStr";

 printIt(local); // Eager evaluation, passes "_nnnn_".
 printIt(#(local)#) // Force deferred evaluation, passes "local".

endmacro;

begin LocalExpansionDemo;

 LocalDemo;

end LocalExpansionDemo;

Program 7.5 Local Macro Symbols as Macro Parameters

Inside LocalDemo HLA associates the unique symbol "_0001_" (or something similar) with the local
symbol local. Next, HLA defines "_0001_" to be a string constant and associates the text "localStr" with this
constant.

The first printIt macro invocation expands to "printIt(_0001_)" because HLA eagerly processes text
constants in macro parameter lists (remember, local symbols are, effectively, text constants). Therefore,
printIt’s what parameter contains the text "_0001_" for this first invocation. Therefore, the first #PRINT
statement prints this textual data ("_0001_") and the second print statement prints the value associated with
"_0001_" which is "localStr".

The second printIt macro invocation inside the LocalDemo macro explicitly forces HLA to use deferred
evaluation since it surrounds local with the "#(" and ")#" bracketing symbols. Therefore, HLA associates
the text "local" with printIt’s formal parameter rather than the expansion "_0001_". Inside printIt, the first
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 955

Chapter Eight Volume Four
#PRINT statement displays the text associated with the what parameter (which is "local" at this point). The
second #PRINT statement expands what to produce "local". Since local is a currently defined text constant
(defined within LocalDemo that invokes printIt), HLA expands this text constant to produce "_0001_".
Since "_0001_" is a string constant, HLA prints the specified string ("localStr") during compilation. The
complete output during compilation is

0001
localStr
local
localStr

Discussing the expansion of local symbols may seem like a lot of unnecessary detail. However, as your
macros become more complex you may run into difficulties with your code based on the way HLA expands
local symbols. Hence it is necessary to have a good grasp on how HLA processes these symbols.

Quick tip: if you ever need to generate a unique label in your program, you can use HLA local symbol
facility to achieve this. Normally, you can only reference HLA’s local symbols within the macro that defines
the symbol. However, you can convert that local symbol to a string and process that string in your program
as the following simple program demonstrates:

// UniqueSymbols.HLA
//
// This program demonstrates how to generate
// unique symbols in a program.

program UniqueSymsDemo;

macro unique:theSym;

 @string:theSym

endmacro;

begin UniqueSymsDemo;

 ?label:text := unique;

 jmp label;

label:

 ?@tostring:label :text := unique;
 jmp label;

label:

end UniqueSymsDemo;

Program 7.6 A Macro That Generates Unique Symbols for a Program

The first instance of label: in this program expands to "_0001_:" while the second instance of label: in
this program expands to "_0003_:". Of course, reusing symbols in this manner is horrible programming
style (it’s very confusing), but there are some cases you’ll encounter when writing advanced macros where
you will want to generate a unique symbol for use in your program. The unique macro in this program dem-
onstrates exactly how to do this.
Page 956 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
7.2.4 Macros as Compile-Time Procedures

Although programmers typically use macros to expand to some sequence of machine instructions, there
is absolutely no requirement that a macro body contain any executable instructions. Indeed, many macros
contain only compile-time language statements (e.g., #IF, #WHILE, "?" assignments, etc.). By placing only
compile-time language statements in the body of a macro, you can effectively write compile-time proce-
dures and functions using macros.

The unique macro from the previous section is a good example of a compile-time function that returns a
string result. Consider, again, the definition of this macro:

macro unique:theSym;

 @string:theSym

endmacro;

Whenever your code references this macro, HLA replaces the macro invocation with the text
"@string:theSym" which, of course, expands to some string like "_021F_". Therefore, you can think of this
macro as a compile-time function that returns a string result.

Be careful that you don’t take the function analogy too far. Remember, macros always expand to their
body text at the point of invocation. Some expansions may not be legal at any arbitrary point in your pro-
grams. Fortunately, most compile-time statements are legal anywhere whitespace is legal in your programs.
Therefore, macros generally behave as you would expect functions or procedures to behave during the exe-
cution of your compile-time programs.

Of course, the only difference between a procedure and a function is that a function returns some
explicit value while procedures simply do some activity. There is no special syntax for specifying a com-
pile-time function return value. As the example above indicates, simply specifying the value you wish to
return as a statement in the macro body suffices. A compile-time procedure, on the other hand, would not
contain any non-compile-time language statements that expand into some sort of data during macro invoca-
tion.

7.2.5 Multi-part (Context-Free) Macros

HLA’s macro facilities, as described up to this point, are not particularly amazing. Indeed, most assem-
blers provide macro facilities very similar to those this chapter presents up to this point. Earlier, this chapter
made the claim that HLA’s macro facilities are quite a bit more powerful than those found in other assembly
languages (or any programming language for that matter). Part of this power comes from the synergy that
exists between the HLA compile-time language and HLA’s macros. However, the one feature that sets
HLA’s macro facilities apart from all others is HLA’s ability to handle multi-part, or context-free4, macros.
This section describes this powerful feature.

The best way to introduce HLA’s context-free macro facilities is via an example. Suppose you wanted
to create a macro to define a new high level language statement in HLA (a very common use for macros).
Let’s say you wanted to create a statement like the following:

nLoop(10)

<< body >>

endloop;

4. The term "context-free" is an automata theory term used to describe constructs, like programming language control struc-
tures, that allow nesting.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 957

Chapter Eight Volume Four
The basic idea is that this code would execute the body of the loop ten times (or however many times the
nLoop parameter specifies). A typical low-level implementation of this control structure might take the fol-
lowing form:

mov(10, ecx);
UniqueLabel:

<< body >>

dec(ecx);
jne UniqueLabel;

Clearly it will require two macros (nLoop and endloop) to implement this control structure. The first
attempt a beginner might try is doomed to failure:

macro nLoop(cnt);
mov(cnt, ecx);

UniqueLabel:

endmacro;

macro endloop;
dec(ecx);
jne UniqueLabel;

endmacro;

You’ve already seen the problem with this pair of macros: they use a global target label. Any attempt to
use the nLoop macro more than once will result in a duplicate symbol error. Previously, we utilized HLA’s
local symbol facilities to overcome this problem. However, that approach will not work here because local
symbols are local to a specific macro invocation; unfortunately, the endloop macro needs to reference
UniqueLabel inside the nLoop invocation, so UniqueLabel cannot be a local symbol in this example.

A quick and dirty solution might be to take advantage of the trick employed by the unique macro
appearing in previous sections. By utilizing a global text constant, you can share the label information
across two macros using an implementation like the following:

macro nLoop(cnt):UniqueLabel;

?nLoop_target:string := @string:UniqueLabel;
mov(cnt, ecx);
UniqueLabel:

endmacro;

macro endloop;

dec(ecx);
jnz @text(nLoop_target);

endmacro;

Using this definition, you can have multiple calls to the nLoop and endloop macros and HLA will not
generate a duplicate symbol error:

nLoop(10)

stdout.put("Loop counter = ", ecx, nl);

endloop;

nLoop(5)

stdout.put("Second Loop Counter = ", ecx, nl);
Page 958 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
endloop;

The macro invocations above produce something like the following (reasonably correct) expansion:

mov(10, ecx);
023A: //UniqueLabel, first invocation

stdout.put("Loop counter = ", ecx, nl);

dec(ecx);
jne _023A_; // Expansion of nLoop_target becomes _023A_.

mov(5, ecx);
023B: // UniqueLabel, second invocation.

stdout.put("Second Loop Counter = ", ecx, nl);

dec(ecx);
jnz _023B_; // Expansion of nLoop_target becomes _023B_.

This scheme looks like it’s working properly. However, this implementation suffers from a big draw-
back- it fails if you attempt to nest the nLoop..endloop control structure:

nLoop(10)

push(ecx); // Must preserve outer loop counter.
nLoop(5)

stdout.put("ecx=", ecx, " [esp]=", (type dword [esp]), nl);

endloop;
pop(ecx); // Restore outer loop counter.

endloop;

You would expect to see this code print its message 50 times. However, the macro invocations above
produce code like the following:

mov(10, ecx);
0321: //UniqueLabel, first invocation

push(ecx);
mov(5, ecx);

0322:

stdout.put("ecx=", ecx, " [esp]=", (type dword [esp]), nl);

dec(ecx);
jne _0322_; // Expansion of nLoop_target becomes _0322_.
pop(ecx);
dec(ecx);
jne _0322_; // Expansion of nLoop_target incorrectly becomes _0322_.

Note that the last JNE should jump to label "_0321_" rather than "_0322_". Unfortunately, the nested
invocation of the nLoop macro overwrites the value of the global string constant nLoop_target thus the last
JNE transfers control to the wrong label.

It is possible to correct this problem using an array of strings and another compile-time constant to cre-
ate a stack of labels. By pushing and popping these labels as you encounter nLoop and endloop you can emit
the correct code. However, this is a lot of work, is very inelegant, and you must repeat this process for every
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 959

Chapter Eight Volume Four
nestable control structure you dream up. In other words, it’s a total kludge. Fortunately, HLA provides a
better solution: multi-part macros.

Multi-part macros let you define a set of macros that work together. The nLoop and the endloop macros
in this section are a good example of a pair of macros that work intimately together. By defining nLoop and
endloop within a multi-part macro definition, the problems with communicating the target label between the
two macros goes away because multi-part macros share parameters and local symbols. This provides a
much more elegant solution to this problem than using global constants to hold target label information.

As its name suggests, a multi-part macro consists of a sequence of statements containing two matched
macro names (e.g., nLoop and endloop). Multi-part macro invocations always consist of at least two macro
invocations: a beginning invocation (e.g., nLoop) and a terminating invocation (e.g., endloop). Some num-
ber of unrelated (to the macro bodies) instructions may appear between the two invocations. To declare a
multi-part macro, you use the following syntax:

macro beginningMacro (optional_parameters) : optional_local_symbols;

<< beginningMacro body >>

terminator terminatingMacro (optional_parameters) : optional_local_symbols;

<< terminatingMacro body >>

endmacro;

The presence of the TERMINATOR section in the macro declaration tells HLA that this is a multi-part
macro declaration. It also ends the macro declaration of the beginning macro and begins the declaration of
the terminating macro (i.e., the invocation of beginningMacro does not emit the code associated with the
TERMINATOR macro). As you would expect, parameters and local symbols are optional in both declara-
tions and the associated glue characters (parentheses and colons) are not present if the parameters and local
symbol lists are not present.

Now let’s look at the multi-part macro declaration for the nLoop..endloop macro pair:

macro nLoop(cnt):TopOfLoop;

mov(cnt, ecx);
TopOfLoop:

terminator endloop;

dec(ecx);
jne TopOfLoop;

endmacro;

As you can see in this example, the definition of the nLoop..endloop control structure is much simpler when
using multi-part macros; better still, multi-part macro declarations work even if you nest the invocations.

The most notable thing in this particular macro declaration is that the endloop macro has access to
nLoop’s parameters and local symbols (in this example the endloop macro does not reference cnt, but it
could if this was necessary). This makes communication between the two macros trivial.

Multi-part macro invocations must always occur in pairs. If the beginning macro appears in the text, the
terminating macro must follow at some point. A terminating macro may never appear in the source file with-
out a previous, matching, instance of the beginning macro. These semantics are identical to many of the
HLA high level control structures; i.e., you cannot have an ENDIF without having a corresponding IF clause
earlier in the source file.

When you nest multi-part macro invocations, HLA "magically" keeps track of local symbols and always
emits the appropriate local label value. The nested macros appearing earlier are no problem for multi-part
macros:

nLoop(10)
Page 960 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
push(ecx); // Must preserve outer loop counter.
nLoop(5)

stdout.put("ecx=", ecx, " [esp]=", (type dword [esp]), nl);

endloop;
pop(ecx); // Restore outer loop counter.

endloop;

The above code properly compiles to something like:

mov(10, ecx);
01FE:

push(ecx);
mov(5, ecx);

01FF:

stdout.put("ecx=", ecx, " [esp]=", (type dword [esp]), nl);

dec(ecx);
jne _01FF_;

pop(ecx);

dec(ecx);
jne _01FE_; // Note the correct label here.

In addition to terminating macros, HLA’s multi-part macro facilities also provide an option for introduc-
ing additional macro declarations associated with the beginning/terminating macro pair: KEYWORD mac-
ros. KEYWORD macros are macros that are active only between a specific beginning and terminating
macro pair. The classic use for KEYWORD macros is to allow the introduction of context-sensitive key-
words into the macro (context-sensitive, in this case, meaning that the terms are only active within the con-
text of the body of statements between the beginning and terminating macros). Classic examples of
statements that could employ these types of macros include the BREAK and CONTINUE statements within
a loop body and the CASE clause within a SWITCH..ENDSWITCH statement.

The syntax for a multi-part macro declaration that includes one or more KEYWORD macros is the fol-
lowing:

macro beginningMacro(optional_parameters): optional_local_labels;

<< beginningMacro Body >>

keyword keywordMacro(optional_parameters): optional_local_labels;

<< keywordMacro Body >>

terminator terminatingMacro(optional_parameters): optional_local_labels;

<< terminatingMacro Body >>

endmacro;

If a KEYWORD macro is present in a macro declaration there must also be a terminating macro decla-
ration. You cannot have a KEYWORD macro without a corresponding TERMINATOR macro. The TER-
MINATOR macro declaration is always last in a multi-part macro declaration.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 961

Chapter Eight Volume Four
The syntax example above specifies only a single KEYWORD macro. HLA, however, allows zero or
more KEYWORD macro declarations in a multi-part macro. The HLA SWITCH statement, for example,
defines two KEYWORD macros, case and default.

KEYWORD and TERMINATOR macros may refer to the parameters and local symbols defined in the
beginning macro, but they may not refer to locals and parameters in other KEYWORD macros. Parameters
and local symbols in KEYWORD macro declarations are local to that specific macro. If you really need to
communicate information between KEYWORD and TERMINATOR macros, define some local symbols in
the beginning macro and assign these local symbols the parameter (or local symbol) values in the affected
KEYWORD macro. Then refer to this beginning macro local symbol in other parts of the macro. The fol-
lowing is a trivial example of this:

macro ShareParameter:parmValue;

<< beginning macro body >>

keyword ParmToShare(p);

?parmValue:text := @string:p;

<< keyword macro body >>

terminator UsesSharedParm;

mov(parmValue, ecx);

<< terminator macro body >>

endmacro;

By assigning ParmToShare’s parameter value to the beginning macro’s parmValue local symbol, this code
makes the value of p accessible by the UsesSharedParm terminating macro.

This section only touches on the capabilities of HLA’s multi-part macro facilities. Additional examples
appear later in this chapter in the section on Domain Specific Embedded Languages (see “Domain Specific
Embedded Languages” on page 975). This text will make use of HLA’s multi-part macros in later chapters
as well. For more information on multi-part macros, see these sections in this text or check out the HLA
documentation.

7.2.6 Simulating Function Overloading with Macros

The C++ language supports a nifty feature known as function overloading. Function overloading lets
you write several different functions or procedures that all have the same name. The difference between
these functions is the types of their parameters or the number of parameters. A procedure declaration is said
to be unique if it has a different number of parameters than other functions with the same name or if the
types of its parameters differs from another function with the same name. HLA does not directly support
procedure overloading but you can use macros to achieve the same result. This section explains how to use
HLA’s macros and the compile-time language to achieve function/procedure overloading.

One good use for procedure overloading is to reduce the number of standard library routines you must
remember how to use. For example, the HLA Standard Library provides four different "puti" routines that
output an integer value: stdout.puti64, stdout.puti32, stdout.puti16, and stdout.puti8. The different routines,
as their name suggests, output integer values according to the size of their integer parameter. In the C++
language (or another other language supporting procedure/function overloading) the engineer designing the
input routines would probably have chosen to name them all stdout.puti and leave it up to the compiler to
Page 962 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
select the appropriate one based on the operand size5. The following macro demonstrates how to do this in
HLA using the compile-time language to figure out the size of the parameter operand:

// Puti.hla
//
// This program demonstrates procedure overloading via macros.
//
// It defines a "puti" macro that calls stdout.puti8, stdout.puti16,
// stdout.puti32, or stdout.puti64 depending on the size of the operand.

program putiDemo;
#include("stdlib.hhf")

// puti-
//
// Automatically decides whether we have a 64, 32, 16, or 8-bit
// operand and calls the appropriate stdout.putiX routine to
// output this value.

macro puti(operand);

 // If we have an eight-byte operand, call puti64:

 #if(@size(operand) = 8)

 stdout.puti64(operand);

 // If we have a four-byte operand, call puti32:

 #elseif(@size(operand) = 4)

 stdout.puti32(operand);

 // If we have a two-byte operand, call puti16:

 #elseif(@size(operand) = 2)

 stdout.puti16(operand);

 // If we have a one-byte operand, call puti8:

 #elseif(@size(operand) = 1)

 stdout.puti8(operand);

 // If it's not an eight, four, two, or one-byte operand,
 // then print an error message:

 #else

5. By the way, the HLA Standard Library does this as well. Although it doesn’t provide stdout.puti, it does provide stdout.put
that will choose an appropriate output routine based upon the parameter’s type. This is a bit more flexible than a puti routine.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 963

Chapter Eight Volume Four
 #error("Expected a 64, 32, 16, or 8-bit operand")

 #endif

endmacro;

// Some sample variable declarations so we can test the macro above.

static
 i8: int8 := -8;
 i16: int16 := -16;
 i32: int32 := -32;
 i64: qword;

begin putiDemo;

 // Initialize i64 since we can't do this in the static section.

 mov(-64, (type dword i64));
 mov($FFFF_FFFF, (type dword i64[4]));

 // Demo the puti macro:

 puti(i8); stdout.newln();
 puti(i16); stdout.newln();
 puti(i32); stdout.newln();
 puti(i64); stdout.newln();

end putiDemo;

Program 7.7 Simple Procedure Overloading Based on Operand Size

The example above simply tests the size of the operand to determine which output routine to use. You
can use other HLA compile-time functions, like @TYPENAME, to do more sophisticated processing. Con-
sider the following program that demonstrates a macro that overloads stdout.puti32, stdout.putu32, and std-
out.putd depending on the type of the operand:

// put32.hla
//
// This program demonstrates procedure overloading via macros.
//
// It defines a "put32" macro that calls stdout.puti32, stdout.putu32,
// or stdout.putdw depending on the type of the operand.

program put32Demo;
#include("stdlib.hhf")

// put32-
//
// Automatically decides whether we have an int32, uns32, or dword
// operand and calls the appropriate stdout.putX routine to
// output this value.
Page 964 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
macro put32(operand);

 // If we have an int32 operand, call puti32:

 #if(@typename(operand) = "int32")

 stdout.puti32(operand);

 // If we have an uns32 operand, call putu32:

 #elseif(@typename(operand) = "uns32")

 stdout.putu32(operand);

 // If we have a dword operand, call putidw:

 #elseif(@typename(operand) = "dword")

 stdout.putdw(operand);

 // If it's not a 32-bit integer value, report an error:

 #else

 #error("Expected an int32, uns32, or dword operand")

 #endif

endmacro;

// Some sample variable declarations so we can test the macro above.

static
 i32: int32 := -32;
 u32: uns32 := 32;
 d32: dword := $32;

begin put32Demo;

 // Demo the put32 macro:

 put32(d32); stdout.newln();
 put32(u32); stdout.newln();
 put32(i32); stdout.newln();

end put32Demo;

Program 7.8 Procedure Overloading Based on Operand Type

You can easily extend the macro above to output eight and sixteen-bit operands as well as 32-bit operands.
That is left as an exercise.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 965

Chapter Eight Volume Four
The number of actual parameters is another way to resolve which overloaded procedure to call. If you
specify a variable number of macro parameters (using the "[]" syntax, see “Macros with a Variable Number
of Parameters” on page 946) you can use the @ELEMENTS compile-time function to determine exactly
how many parameters are present and call the appropriate routine. The following sample program uses this
trick to determine whether it should call stdout.puti32 or stdout.puti32Size:

// puti32.hla
//
// This program demonstrates procedure overloading via macros.
//
// It defines a "puti32" macro that calls stdout.puti32 or stdout.puti32size
// depending on the number of parameters present.

program puti32Demo;
#include("stdlib.hhf")

// puti32-
//
// Automatically decides whether we have an int32, uns32, or dword
// operand and calls the appropriate stdout.putX routine to
// output this value.

macro puti32(operand[]);

 // If we have a single operand, call stdout.puti32:

 #if(@elements(operand) = 1)

 stdout.puti32(@text(operand[0]));

 // If we have two operands, call stdout.puti32size and
 // supply a default value of ' ' for the padding character:

 #elseif(@elements(operand) = 2)

 stdout.puti32Size(@text(operand[0]), @text(operand[1]), ' ');

 // If we have three parameters, then pass all three of them
 // along to puti32size:

 #elseif(@elements(operand) = 3)

 stdout.puti32Size
 (
 @text(operand[0]),
 @text(operand[1]),
 @text(operand[2])
);

 // If we don't have one, two, or three operands, report an error:

 #else

 #error("Expected one, two, or three operands")
Page 966 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language

 #endif

endmacro;

// A sample variable declaration so we can test the macro above.

static
 i32: int32 := -32;

begin puti32Demo;

 // Demo the put32 macro:

 puti32(i32); stdout.newln();
 puti32(i32, 5); stdout.newln();
 puti32(i32, 5, '*'); stdout.newln();

end puti32Demo;

Program 7.9 Using the Number of Parameters to Resolve Overloaded Procedures

All the examples up to this point provide procedure overloading for Standard Library routines (specifi-
cally, the integer output routines). Of course, you are not limited to overloading procedures in the HLA
Standard Library. You can create your own overloaded procedures as well. All you’ve got to do is write a set
of procedures, all with unique names, and then use a single macro to decide which routine to actually call
based on the macro’s parameters. Rather than call the individual routines, invoke the common macro and let
it decide which procedure to actually call.

Although not strictly an example of procedure overloading, a related use for macros is to rearrange
parameters in a procedure call. For example, some languages (most notably C/C++) expect you to pass their
parameters on the stack in the reverse order of how you declare them in the parameter list. Since HLA
expects the caller to push the parameters in the order they appear in the parameter list, HLA’s order is the
opposite of C/C++’s. Were you to write a procedure in HLA that you call from C/C++, you would have to
reverse the order of the parameters. Similarly, if you call a C/C++ function from HLA, your HLA external
declaration must specify the parameters in the reverse order that they appear in the C/C++ declaration. This
is often very confusing. You can avoid this problem by simply specifying a macro that declares the (macro)
parameters in the correct order and whose body calls the C/C++ function swapping the order of the parame-
ters in the actual call. This allows you to use the same calling sequence (from the programmer’s perspective)
for both C/C++ and HLA calls to the same function. (Note, of course, that HLA’s STDCALL and CDECL
calling conventions also serve this purpose, but there are other calling conventions possible for which these
macro facilities would be useful.)

7.3 Writing Compile-Time "Programs"

The HLA compile-time language provides a powerful facility with which to write "programs" that exe-
cute while HLA is compiling your assembly language programs. Although it is possible to write some gen-
eral purpose programs using the HLA compile-time language, the real purpose of the HLA compile-time
language is to allow you to write short programs that write other programs. In particular, the primary pur-
pose of the HLA compile-time language is to automate the creation of large or complex assembly language
sequences. The following subsections provide some simple examples of such compile-time programs.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 967

Chapter Eight Volume Four
7.3.1 Constructing Data Tables at Compile Time

Earlier, this text suggested that you could write programs to generate large, complex, lookup tables for
your assembly language programs (see “Generating Tables” on page 629). That chapter provided examples
in HLA but suggested that writing a separate program was unnecessary. This is true, you can generate most
look-up tables you’ll need using nothing more than the HLA compile-time language facilities. Indeed, fill-
ing in table entries is one of the principle uses of the HLA compile-time language. In this section we will
take a look at using the HLA compile-time language to construct data tables during compilation.

In the section on generating tables, this text gave an example of an HLA program that writes a text file
containing a lookup table for the trigonometric sine function. The table contains 360 entries with the index
into the table specifying an angle in degrees. Each int32 entry in the table contained the value
sin(angle)*1000 where angle is equal to the index into the table. The section on generating tables suggested
running this program and then including the text output from that program into the actual program that used
the resulting table. You can avoid much of this work by using the compile-time language. The following
HLA program includes a short compile-time code fragment that constructs this table of sines directly.

// demoSines.hla
//
// This program demonstrates how to create a lookup table
// of sine values using the HLA compile-time language.

program demoSines;
#include("stdlib.hhf")

const
 pi :real80 := 3.1415926535897;

readonly
 sines: int32[360] :=
 [
 // The following compile-time program generates
 // 359 entries (out of 360). For each entry
 // it computes the sine of the index into the
 // table and multiplies this result by 1000
 // in order to get a reasonable integer value.

 ?angle := 0;
 #while(angle < 359)

 // Note: HLA's @sin function expects angles
 // in radians. radians = degrees*pi/180.
 // the "int32" function truncates its result,
 // so this function adds 1/2 as a weak attempt
 // to round the value up.

 int32(@sin(angle * pi / 180.0) * 1000 + 0.5),
 ?angle := angle + 1;

 #endwhile

 // Here's the 360th entry in the table. This code
 // handles the last entry specially because a comma
 // does not follow this entry in the table.

 int32(@sin(359 * pi / 180.0) * 1000 + 0.5)
];
Page 968 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
begin demoSines;

 // Simple demo program that displays all the values in the table.

 for(mov(0, ebx); ebx<360; inc(ebx)) do

 mov(sines[ebx*4], eax);
 stdout.put
 (
 "sin(",
 (type uns32 ebx),
 ")*1000 = ",
 (type int32 eax),
 nl
);

 endfor;

end demoSines;

Program 7.10 Generating a SINE Lookup Table with the Compile-time Language

Another common use for the compile-time language is to build ASCII character lookup tables for use by
the XLAT instruction at run-time. Common examples include lookup tables for alphabetic case manipula-
tion. The following program demonstrates how to construct an upper case conversion table and a lower case
conversion table6. Note the use of a macro as a compile-time procedure to reduce the complexity of the
table generating code:

// demoCase.hla
//
// This program demonstrates how to create a lookup table
// of alphabetic case conversion values using the HLA
// compile-time language.

program demoCase;
#include("stdlib.hhf")

const
 pi :real80 := 3.1415926535897;

// emitCharRange-
//
// This macro emits a set of character entries
// for an array of characters. It emits a list
// of values (with a comma suffix on each value)
// from the starting value up to, but not including,
// the ending value.

macro emitCharRange(start, last): index;

6. Note that on modern processors, using a lookup table is probably not the most efficient way to convert between alphabetic
cases. However, this is just an example of filling in the table using the compile-time language. The principles are correct
even if the code is not exactly the best it could be.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 969

Chapter Eight Volume Four
 ?index:uns8 := start;
 #while(index < last)

 char(index),
 ?index := index + 1;

 #endwhile

endmacro;

readonly

 // toUC:
 // The entries in this table contain the value of the index
 // into the table except for indicies #$61..#$7A (those entries
 // whose indicies are the ASCII codes for the lower case
 // characters). Those particular table entries contain the
 // codes for the corresponding upper case alphabetic characters.
 // If you use an ASCII character as an index into this table and
 // fetch the specified byte at that location, you will effectively
 // translate lower case characters to upper case characters and
 // leave all other characters unaffected.

 toUC: char[256] :=
 [
 // The following compile-time program generates
 // 255 entries (out of 256). For each entry
 // it computes toupper(index) where index is
 // the character whose ASCII code is an index
 // into the table.

 emitCharRange(0, uns8('a'))

 // Okay, we've generated all the entries up to
 // the start of the lower case characters. Output
 // Upper Case characters in place of the lower
 // case characters here.

 emitCharRange(uns8('A'), uns8('Z') + 1)

 // Okay, emit the non-alphabetic characters
 // through to byte code #$FE:

 emitCharRange(uns8('z') + 1, $FF)

 // Here's the last entry in the table. This code
 // handles the last entry specially because a comma
 // does not follow this entry in the table.

 #$FF
];

 // The following table is very similar to the one above.
 // You would use this one, however, to translate upper case
 // characters to lower case while leaving everything else alone.
 // See the comments in the previous table for more details.

 TOlc: char[256] :=
Page 970 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
 [
 emitCharRange(0, uns8('A'))
 emitCharRange(uns8('a'), uns8('z') + 1)
 emitCharRange(uns8('Z') + 1, $FF)

 #$FF
];

begin demoCase;

 for(mov(uns32(' '), eax); eax <= $FF; inc(eax)) do

 mov(toUC[eax], bl);
 mov(TOlc[eax], bh);
 stdout.put
 (
 "toupper('",
 (type char al),
 "') = '",
 (type char bl),
 "' tolower('",
 (type char al),
 "') = '",
 (type char bh),
 "'",
 nl
);

 endfor;

end demoCase;

Program 7.11 Generating Case Conversion Tables with the Compile-Time Language

One important thing to note about this sample is the fact that a semicolon does not follow the emitChar-
Range macro invocations. Macro invocations do not require a closing semicolon. Often, it is legal to go
ahead and add one to the end of the macro invocation because HLA is normally very forgiving about having
extra semicolons inserted into the code. In this case, however, the extra semicolons are illegal because they
would appear between adjacent entries in the TOlc and toUC tables. Keep in mind that macro invocations
don’t require a semicolon, especially when using macro invocations as compile-time procedures.

7.3.2 Unrolling Loops

In the chapter on Low-Level Control Structures (see “Unraveling Loops” on page 776) this text points
out that you can unravel loops to improve the performance of certain assembly language programs. One
problem with unravelling, or unrolling, loops is that you may need to do a lot of extra typing, especially if
many iterations are necessary. Fortunately, HLA’s compile-time language facilities, especially the #WHILE
loop, comes to the rescue. With a small amount of extra typing plus one copy of the loop body, you can
unroll a loop as many times as you please.

If you simply want to repeat the same exact code sequence some number of times, unrolling the code is
especially trivial. All you’ve got to do is wrap an HLA #WHILE..#ENDWHILE loop around the sequence
and count down a VAL object the specified number of times. For example, if you wanted to print "Hello
World" ten times, you could encode this as follows:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 971

Chapter Eight Volume Four
?count := 0;
#while(count < 10)

stdout.put("Hello World", nl);
?count := count + 1;

#endwhile

Although the code above looks very similar to a WHILE (or FOR) loop you could write in your pro-
gram, remember the fundamental difference: the code above simply consists of ten straight stdout.put calls
in the program. Were you to encode this using a FOR loop, there would be only one call to stdout.put and
lots of additional logic to loop back and execute that single call ten times.

Unrolling loops becomes slightly more complicated if any instructions in that loop refer to the value of
a loop control variable or other value that changes with each iteration of the loop. A typical example is a
loop that zeros the elements of an integer array:

mov(0, eax);
for(mov(0, ebx); ebx < 20; inc(ebx)) do

mov(eax, array[ebx*4]);

endfor;

In this code fragment the loop uses the value of the loop control variable (in EBX) to index into array.
Simply copying "mov(eax, array[ebx*4]);" twenty times is not the proper way to unroll this loop. You
must substitute an appropriate constant index in the range 0..76 (the corresponding loop indices, times four)
in place of "EBX*4" in this example. Correctly unrolling this loop should produce the following code
sequence:

mov(eax, array[0*4]);
mov(eax, array[1*4]);
mov(eax, array[2*4]);
mov(eax, array[3*4]);
mov(eax, array[4*4]);
mov(eax, array[5*4]);
mov(eax, array[6*4]);
mov(eax, array[7*4]);
mov(eax, array[8*4]);
mov(eax, array[9*4]);
mov(eax, array[10*4]);
mov(eax, array[11*4]);
mov(eax, array[12*4]);
mov(eax, array[13*4]);
mov(eax, array[14*4]);
mov(eax, array[15*4]);
mov(eax, array[16*4]);
mov(eax, array[17*4]);
mov(eax, array[18*4]);
mov(eax, array[19*4]);

You can do this more efficiently using the following compile-time code sequence:

?iteration := 0;
#while(iteration < 20)

mov(eax, array[iteration*4]);
?iteration := iteration+1;

#endwhile
Page 972 © 2001, By Randall Hyde Beta Draft - Do not distribute

The HLA Compile-Time Language
If the statements in a loop make use of the loop control variable’s value, it is only possible to unroll such
loops if those values are known at compile time. You cannot unroll loops when user input (or other run-time
information) controls the number of iterations.

7.4 Using Macros in Different Source Files

Unlike procedures, macros do not have a fixed piece of code at some address in memory. Therefore,
you cannot create "external" macros and link them with other modules in your program. However, it is very
easy to share macros with different source files – just put the macros you wish to reuse in a header file and
include that file using the #include directive. You can make the macro will be available to any source file
you choose using this simple trick.

7.5 Putting It All Together

This chapter has barely touched on the capabilities of the HLA macro processor and compile-time lan-
guage. The HLA language has one of the most powerful macro processors around. None of the other 80x86
assemblers even come close to HLA’s capabilities with regard to macros. Indeed, if you could say just one
thing about HLA in relation to other assemblers, it would have to be that HLA’s macro facilities are, by far,
the best.

The combination of the HLA compile-time language and the macro processor give HLA users the abil-
ity to extend the HLA language in many ways. In the chapter on Domain Specific Languages, you’ll get the
opportunity to see how to create your own specialized languages using HLA’s macro facilities.

Even if you don’t do exotic things like creating your own languages, HLA’s macro facilities and com-
pile-time language are really great for automating code generation in your programs. The HLA Standard
Library, for example, makes heavy use of HLA’s macro facilities; "procedures" like stdout.put and stdin.get
would be very difficult (if not impossible) to create without the power of HLA macro facilities and the com-
pile-time language. For some good examples of the possible complexity one can achieve with HLA’s mac-
ros, you should scan through the #include files in the HLA Standard Library and look at some of the macros
appearing therein.

This chapter serves as a basic introduction to HLA’s macro facilities. As you use macros in your own
programs you will gain even more insight into their power. So by all means, use macros as much as you can
– they can help reduce the effort needed to develop programs.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 973

Chapter Eight Volume Four
Page 974 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
Domain Specific Embedded Languages Chapter Nine

9.1 Chapter Overview

HLA’s compile time language was designed with one purpose in mind: to give the HLA user the ability
to change the syntax of the language in a user-defined manner. The compile-time language is actually so
powerful that it lets you implement the syntax of other languages (not just an assembly language) within an
HLA source file. This chapter discusses how to take this feature to an extreme and implement your own
"mini-languages" within the HLA language.

9.2 Introduction to DSELs in HLA

One of the most interesting features of the HLA language is its ability to support Domain Specific
Embedded Languages (or DSELs, for short, which you pronounce as D-cells). A domain specific language
is a language designed with a specific purpose in mind. Applications written in an appropriate domains spe-
cific language (DSL) are often much shorter and much easier to write than that same application written in a
general purpose language (like C/C++ or Pascal). Unfortunately, writing a compiler for a DSL is consider-
able work. Since most DSLs are so specific that few programs are ever written in them, it is generally
cost-prohibitive to create a DSL for a given application. This economic fact has led to the popularity of
domain specific embedded languages. The difference between a DSL and a DSEL is the fact that you don’t
write a new compiler for DSEL; instead, you provide some tools for use by an existing language translator
to let the user extend the language as necessary for the specific application. This allows the language
designer to use the features of the existing (i.e., embedding) language without having to write the translator
for these features in the DSEL. The HLA language incorporates lots of features that let you extend the lan-
guage to handle your own particular needs. This section discusses how to use these features to extend HLA
as you choose.

As you probably suspect by now, the HLA compile-time language is the principle tool at your disposal
for creating DSELs. HLA’s multi-part macros let you easily create high level language-like control struc-
tures. If you need some new control structure that HLA does not directly support, it’s generally an easy task
to write a macro to implement that control structure. If you need something special, something that HLA’s
multi-part macros won’t directly support, then you can write code in the HLA compile-time language to pro-
cess portions of your source file as though they were simply string data. By using the compile-time string
handling functions you can process the source code in just about any way you can imagine. While many
such techniques are well beyond the scope of this text, it’s reassuring to know that HLA can handle just
about anything you want to do, even once you become an advanced assembly language programmer.

The following sections will demonstrate how to extend the HLA language using the compile-time lan-
guage facilities. Don’t get the idea that these simple examples push the limits of HLA’s capabilities, they
don’t. You can accomplish quite a bit more with the HLA compile-time language; these examples must be
fairly simple because of the assumed general knowledge level of the audience for this text.

9.2.1 Implementing the Standard HLA Control Structures

HLA supports a wide set of high level language-like control structures. These statements are not true
assembly language statements, they are high level language statements that HLA compiles into the corre-
sponding low-level machine instructions. They are general control statements, not "domain specific" (which
is why HLA includes them) but they are quite typical of the types of statements one can add to HLA in order
to extend the language. In this section we will look at how you could implement many of HLA’s high-level
control structures using the compile-time language. Although there is no real need to implement these state-
ments in this manner, their example should provide a template for implementing other types of control struc-
tures in HLA.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 975

Chapter Nine Volume Five
The following sections show how to implement the FOREVER..ENDFOR, WHILE..ENDWHILE, and
IF..ELSEIF..ELSE..ENDIF statements. The REPEAT..UNTIL and BEGIN..EXIT..EXITIF..END statements
appear as exercises at the end of the chapter. The remaining high level language control structures (e.g.,
TRY..ENDTRY) are a little too complex to present at this point.

Because words like "if" and "while" are reserved by HLA, the following examples will use macro iden-
tifiers like "_if" and "_while". This will let us create recognizable statements using standard HLA identifiers
(i.e., no conflicts with reserved words).

9.2.1.1 The FOREVER Loop

The FOREVER loop is probably the easiest control structure to implement. After all, the basic FOR-
EVER loop simply consists of a label and a JMP instruction. So the first pass at implementing
_FOREVER.._ENDFOR might look like the following:

macro _forever: topOfLoop;
topOfLoop:

terminator _endfor;
jmp topOfLoop;

endmacro;

Unfortunately, there is a big problem with this simple implementation: you’ll probably want the ability
to exit the loop via break and breakif statements and you might want the equivalent of a continue and contin-
ueif statement as well. If you attempt to use the standard BREAK, BREAKIF, CONTINUE, and CONTIN-
UEIF statements inside this _forever loop implementation, you’ll quickly discover that they do not work.
These statements are valid only inside an HLA loop and the _forever macro above is not an HLA loop. Of
course, we could easily solve this problem by defining _FOREVER thusly:

macro _forever;
forever

terminator _endfor;
endfor;

endmacro;

Now you can use BREAK, BREAKIF, CONTINUE, and CONTINUEIF inside the _forever.._endfor state-
ment. However, this solution is ridiculous. The purpose of this section is to show you how you could create
this statement were it not present in the HLA language. Simply renaming FOREVER to _forever is not an
interesting solution.

Probably the best way to implement these additional statements is via KEYWORD macros within the
_forever macro. Not only is this easy to do, but it has the added benefit of not allowing the use of these state-
ments outside a _forever loop.

Implementing a _continue statement is very easy. Continue must transfer control to the first statement
at the top of the loop. Therefore, the _continue KEYWORD macro will simply expand to a single JMP
instruction that transfers control to the topOfLoop label. The complete implementation is the following:

keyword _continue;
jmp topOfLoop;

Implementing _continueif is a little bit more difficult because this statement must evaluate a boolean
expression and decide whether it must jump to the topOfLoop label. Fortunately, the HLA JT (jump if true)
pseudo-instruction makes this a relatively trivial task. The JT pseudo-instruction is passed a boolean expres-
sion (the same as allowed by CONTINUEIF) and transfers control to the corresponding target label if the
result of the expression evaluation is true. The _continueif implementation is nearly trivial with JT:

keyword _continueif(ciExpr);
Page 976 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
JT(ciExpr) topOfLoop;

You will implement the _break and _breakif KEYWORD macros in a similar fashion. The only differ-
ence is that you must add a new label just beyond the JMP in the _endfor macro and the break statements
should jump to this local label. The following program provides a complete implementation of the
_forever.._endfor loop as well as a sample test program for the _forever loop.

/**/
/* */
/* foreverMac.hla */
/* */
/* This program demonstrates how to use HLA's */
/* "context-free" macros, along with the JT */
/* "medium-level" instruction to create */
/* the FOREVER..ENDFOR, BREAK, BREAKIF, */
/* CONTINUE, and CONTINUEIF control statements. */
/* */
/**/

program foreverDemo;
#include("stdlib.hhf")

 // Emulate the FOREVER..ENDFOR loop here, plus the
 // corresponding CONTINUE, CONTINUEIF, BREAK, and
 // BREAIF statements.

 macro _forever:foreverLbl, foreverbrk;

 // Target label for the top of the
 // loop. This is also the destination
 // for the _continue and _continueif
 // macros.

 foreverLbl:

 // The _continue and _continueif statements
 // transfer control to the label above whenever
 // they appear in a _forever.._endfor statement.
 // (Of course, _continueif only transfers control
 // if the corresponding boolean expression evaluates
 // true.)

 keyword _continue;
 jmp foreverLbl;

 keyword _continueif(cifExpr);
 jt(cifExpr) foreverLbl;

 // the _break and _breakif macros transfer
 // control to the "foreverbrk" label which
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 977

Chapter Nine Volume Five
 // is at the bottom of the loop.

 keyword _break;
 jmp foreverbrk;

 keyword _breakif(bifExpr);
 jt(bifExpr) foreverbrk;

 // At the bottom of the _forever.._endfor
 // loop this code must jump back to the
 // label at the top of the loop. The
 // _endfor terminating macro must also supply
 // the target label for the _break and _breakif
 // keyword macros:

 terminator _endfor;
 jmp foreverLbl;
 foreverbrk:

 endmacro;

begin foreverDemo;

 // A simple main program that demonstrates the use of the
 // statements above.

 mov(0, ebx);
 _forever

 stdout.put("Top of loop, ebx = ", (type uns32 ebx), nl);
 inc(ebx);

 // On first iteration, skip all further statements.

 _continueif(ebx = 1);

 // On fourth iteration, stop.

 _breakif(ebx = 4);

 _continue; // Always jumps to top of loop.
 _break; // Never executes, just demonstrates use.

 _endfor;

end foreverDemo;

Program 9.1 Macro Implementation of the FOREVER..ENDFOR Loop
Page 978 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
9.2.1.2 The WHILE Loop

Once the FOREVER..ENDFOR loop is behind us, implementing other control structures like the
WHILE..ENDWHILE loop is fairly easy. Indeed, the only notable thing about implementing the
_while.._endwhile macros is that the code should implement this control structure as a REPEAT..UNTIL
statement for efficiency reasons. The implementation appearing in this section takes a rather lazy approach
to implementing the DO reserved word. The following code uses a KEYWORD macro to implement a
"_do" clause, but it does not enforce the (proper) use of this keyword. Instead, the code simply ignores the
_do clause wherever it appears between the _while and _endwhile. Perhaps it would have been better to
check for the presence of this statement (not to difficult to do) and verify that it immediately follows the
_while clause and associated expression (somewhat difficult to do), but this just seems like a lot of work to
check for the presence of an irrelevant keyword. So this implementation simply ignores the _do. The com-
plete implementation appears in Program 9.2:

/**/
/* */
/* whileMacs.hla */
/* */
/* This program demonstrates how to use HLA's */
/* "context-free" macros, along with the JT and */
/* JF "medium-level" instructions to create */
/* the basic WHILE statement. */
/* */
/**/

program whileDemo;
#include("stdlib.hhf")

 // Emulate the while..endwhile loop here.
 //
 // Note that this code implements the WHILE
 // loop as a REPEAT..UNTIL loop for efficiency
 // (though it inserts an extra jump so the
 // semantics remain the same as the WHILE loop).

 macro _while(whlexpr): repeatwhl, whltest, brkwhl;

 // Transfer control to the bottom of the loop
 // where the termination test takes place.

 jmp whltest;

 // Emit a label so we can jump back to the
 // top of the loop.

 repeatwhl:

 // Ignore the "_do" clause. Note that this
 // macro should really check to make sure
 // that "_do" follows the "_while" clause.
 // But it's not semantically important so
 // this code takes the lazy way out.

 keyword _do;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 979

Chapter Nine Volume Five

 // If we encounter "_break" inside this
 // loop, transfer control to the first statement
 // beyond the loop.

 keyword _break;
 jmp brkwhl;

 // Ditto for "_breakif" except, of course, we
 // only exit the loop if the corresponding
 // boolean expression evaluates true.

 keyword _breakif(biwExpr);
 jt(biwExpr) brkwhl;

 // The "_continue" and "_continueif" statements
 // should transfer control directly to the point
 // where this loop tests for termination.

 keyword _continue;
 jmp whltest;

 keyword _continueif(ciwExpr);
 jt(ciwExpr) whltest;

 // The "_endwhile" clause does most of the work.
 // First, it must emit the target label used by the
 // "_while", "_continue", and "_continueif" clauses
 // above. Then it must emit the code that tests the
 // loop termination condition and transfers control
 // to the top of the loop (the "repeatwhl" label)
 // if the expression evaluates false. Finally,
 // this code must emit the "brkwhl" label the "_break"
 // and "_breakif" statements reference.

 terminator _endwhile;

 whltest:
 jt(whlexpr) repeatwhl;
 brkwhl:

 endmacro;

begin whileDemo;

 // Quick demo of the _while statement.
 // Note that the _breakif in the nested
 // _while statement only skips the
 // inner-most _while, just as you should expect.

 mov(0, eax);
 _while(eax < 10) _do

 stdout.put("eax in loop = ", eax, " ebx=");
 inc(eax);
 mov(0, ebx);
Page 980 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
 _while(ebx < 4) _do

 stdout.puti32(ebx);
 _breakif(ebx = 3);
 stdout.put(", ");
 inc(ebx);

 _endwhile;
 stdout.newln();

 _continueif(eax = 5);
 _breakif(eax = 8);
 _continue;
 _break;

 _endwhile

end whileDemo;

Program 9.2 Macro Implementation of the WHILE..ENDWHILE Loop

9.2.1.3 The IF Statement

Simulating the HLA IF..THEN..ELSEIF..ELSE..ENDIF statement using macros is a little bit more
involved than the simulation of FOREVER or WHILE. The semantics of the ELSEIF and ELSE clauses
complicate the code generation and require careful thought. While it is easy to write KEYWORD macros
for _elseif and _else, ensuring that these statements generate correct (and efficient) code is another matter
altogether.

The basic _if.._endif statement, without the _elseif and _else clauses, is very easy to implement (even
easier than the _while.._endwhile loop of the previous section). The complete implementation is

macro _if(ifExpr): onFalse;

jf(ifExpr) onFalse;

keyword _then; // Just ignore _then.

terminator _endif;

onFalse:

endmacro;

This macro generates code that tests the boolean expression you supply as a macro parameter. If the
expression evaluates false, the code this macro emits immediately jumps to the point just beyond the _endif
terminating macro. So this is a simple and elegant implementation of the IF..ENDIF statement, assuming
you don’t need an ELSE or ELSEIF clause.

Adding an ELSE clause to this statement introduces some difficulties. First of all, we need some way to
emit the target label of the JF pseudo-instruction in the _else section if it is present and we need to emit this
label in the terminator section if the _else section is not present.

A related problem is that the code after the _if clause must end with a JMP instruction that skips the
_else section if it is present. This JMP must transfer control to the same location as the current onFalse
label.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 981

Chapter Nine Volume Five
Another problem that occurs when we use KEYWORD macros to implement the _else clause, is that we
need some mechanism in place to ensure that at most one invocation of the _else macro appears in a given
_if.._endif sequence.

We can easily solve these problems by introducing a compile-time variable (i.e., VAL object) into the
macro. We will use this variable to indicate whether we’ve seen an _else section. This variable will tell us if
we have more than one _else clause (which is an error) and it will tell us if we need to emit the onFalse label
in the _endif macro. A reasonable implementation might be the following:

macro _if(ifExpr): onFalse, ifDone, hasElse;

?hasElse := False; // Haven’t seen an _else clause yet.

jf(ifExpr) onFalse;

keyword _then; // Just ignore _then.

keyword _else;

// Check to see if this _if statement already has an _else clause:

#if(hasElse)

#error("Only one _else clause is legal in an _if statement’)

#endif

?hasElse := true; //Let the world know we’ve see an _else clause.

// Since we’ve just encountered the _else clause, we’ve just finished
// processing the statements in the _if section. The first thing we
// need to do is emit a JMP instruction that will skip around the
// _else statements (so the _if section doesn’t fall in to the
// _else code).

jmp ifDone;

// Okay, emit the onFalse label here so a false expression will transfer
// control to the _else statements:

onFalse:

terminator _endif;

// If there was no _else section, we must emit the onFalse label
// so that the former JF instruction has a proper destination.
// If an _else section was present, we cannot emit this label
// (since the _else code has already done so) but we must emit
// the ifDone label.

#if(hasElse)

ifdone:

#else

onFalse:

#endif

endmacro;
Page 982 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
Adding the _elseif clause to the _if.._endif statement complicates things considerably. The problem is
that _elseif can appear zero or more times in an _if statement and each occurrence needs to generate a unique
onFalse label. Worse, if at least one _elseif clause appears in the sequence, then the JF instruction in the _if
clause must transfer control to the first _elseif, not to the _else clause. Also, the last _elseif clause must
transfer control to the _else clause (or to the first statement beyond the _endif clause) if its expression evalu-
ates false. A straight-forward implementation just isn’t going to work here.

A clever solution is to create a string variable that contains the name of the previous JF target label.
Whenever you encounter an _elseif or an _else clause you simply emit this string to the source file as the tar-
get label. Then the only trick is "how do we generate a unique label whenever we need one?". Well, let’s
suppose that we have a string that is unique on each invocation of the _if macro. This being the case, we can
generate a (source file wide) unique string by concatenating a counter value to the end of this base string.
Each time we need a unique string, we simply bump the value of the counter up by one and create a new
string. Consider the following macro:

macro genLabel(base, number);

@text(base + string(number));

endmacro;

If the base parameter is a string value holding a valid HLA identifier and the number parameter is an
integer numeric operand, then this macro will emit a valid HLA identifier that consists of the base string fol-
lowed by a string representing the numeric constant. For example, ’genLabel("Hello", 52)’ emits the label
Hello52. Since we can easily create an uns32 VAL object inside our _if macro and increment this each time
we need a unique label, the only problem is to generate a unique base string on each invocation of the _if
macro. Fortunately, HLA already does this for us.

Remember, HLA converts all local macro symbols to a unique identifier of the form "_xxxx_" where
xxxx represents some four-digit hexadecimal value. Since local symbols are really nothing more than text
constants initialized with these unique identifier strings, it’s very easy to obtain an unique string in a macro
invocation- just declare a local symbol (or use an existing local symbol) and apply the @STRING: operator
to it to extract the unique name as a string. The following example demonstrates how to do this:

macro uniqueIDs: counter, base;

?counter := 0; // Increment this for each unique symbol you need.
?base := @string:base; // base holds the base name to use.

.

.

.

// Generate a unique label at this point:

genLabel(base, counter): // Notice the colon. We’re defining a
?counter := counter + 1; // label at this point!

.

.

.
genLabel(base, counter):
?counter := counter + 1;

.

.

.
etc.

endmacro;

Once we have the capability to generate a sequence of unique labels throughout a macro, implementing
the _elseif clause simply becomes the task of emitting the last referenced label at the beginning of each
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 983

Chapter Nine Volume Five
_elseif (or _else) clause and jumping if false to the next unique label in the series. Program 9.3 implements
the _if.._then.._elseif.._else.._endif statement using exactly this technique.

/***/
/* */
/* IFmacs.hla */
/* */
/* This program demonstrates how to use HLA's */
/* "context-free" macros, along with the JT and */
/* JF "medium-level" instructions to create */
/* an IF statement. */
/* */
/***/

program IFDemo;
#include("stdlib.hhf")

 // genlabel-
 //
 // This macro creates an HLA-compatible
 // identifier of the form "_xxxx_n" where
 // "_xxxx_" is the string associated with
 // the "base" parameter and "n" represents
 // some numeric value that the caller. The
 // combination of the base and the n values
 // will produce a unique label in the
 // program if base's string is unique for
 // each invocation of the "_if" macro.

 macro genLabel(base, number);

 @text(base + string(number))

 endmacro;

 /*
 ** Emulate the if..elseif..else..endif statement here.
 */

 macro _if(ifexpr):elseLbl, ifDone, hasElse, base;

 // This macro must create a unique ID string
 // in base. One sneaky way to do this is
 // to use the converted name HLA generates
 // for the "base" object (this is generally
 // a string of the form "_xxxx_" where "xxxx"
 // is a four-digit hexadecimal value).

 ?base := @string:base;

 // This macro may need to generate a large set
 // of different labels (one for each _elseif
 // clause). This macro uses the elseLbl
 // value, along with the value of "base" above,
 // to generate these unique labels.

 ?elseLbl := 0;

 // hasElse determines if we have an _else clause
Page 984 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
 // present in this statement. This macro uses
 // this value to determine if it must emit a
 // final else label when it encounters _endif.

 ?hasElse := false;

 // For an IF statement, we must evaluate the
 // boolean expression and jump to the current
 // else label if the expression evaluates false.

 jf(ifexpr) genLabel(base, elseLbl);

 // Just ignore the _then keyword.
 // A slightly better implementation would require
 // this keyword, the current implementation lets
 // you write an "_if" clause without the "_then"
 // clause. For that matter, the current implementation
 // lets you arbitrarily sprinkle "_then" clauses
 // throughout the "_if" statement; we will ignore
 // this for this example.

 keyword _then;

 // Handle the "_elseif" clause here.

 keyword _elseif(elsex);

 // _elseif clauses are illegal after
 // an _else clause in the statement.
 // Enforce that here.

 #if(hasElse)

 #error("Unexpected '_elseif' clause")

 #endif

 // We've just finished the "_if" clause
 // or a previous "_elseif" clause. So
 // the first thing we have to do is jump
 // to the code just beyond this "_if"
 // statement.

 jmp ifDone;

 // Okay, this is where the previous "_if" or
 // "_elseif" statement must jump if its boolean
 // expression evaluates false. Emit the target
 // label. Next, because we're about to jump
 // to our own target label, bump up the elseLbl
 // value by one to prevent jumping back to the
 // label we're about to emit. Finally, emit
 // the code that tests the boolean expression and
 // transfers control to the next _elseif or _else
 // clause if the result is false.

 genLabel(base, elseLbl):
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 985

Chapter Nine Volume Five
 ?elseLbl := elseLbl+1;
 jf(elsex) genLabel(base, elseLbl);

 keyword _else;

 // Only allow a single "_else" clause in this
 // "_if" statement:

 #if(hasElse)

 #error("Unexpected '_else' clause")

 #endif

 // As above, we've just finished the previous "_if"
 // or "_elseif" clause, so jump directly to the end
 // of the "_if" statement.

 jmp ifDone;

 // Okay, emit the current 'else' label so that
 // the failure of the previous "_if" or "_elseif"
 // test will transfer control here. Also set
 // 'hasElse' to true to catch additional "_elseif"
 // and "_else" clauses.

 genLabel(base, elseLbl):
 ?hasElse := true;

 terminator _endif;

 // At the end of the _if statement we must emit the
 // destination label that the _if and _elseif sections
 // jump to. Also, if there was no _else section, this
 // code has to emit the last deployed else label.

 ifDone:
 #if(!hasElse)

 genLabel(base, elseLbl):

 #endif

 endmacro;

begin IFDemo;

 // Quick demo of the use of the above statements.

 for(mov(0, eax); eax < 5; inc(eax)) do

 _if(eax = 0) _then

 stdout.put("in _if statement" nl);

 _elseif(eax = 1) _then
Page 986 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages

 stdout.put("in first _elseif clause" nl);

 _elseif(eax = 2) _then

 stdout.put("in second _elseif clause" nl);

 _else

 stdout.put("in _else clause" nl);
 _if(eax > 3) _then

 stdout.put("in second _if statement" nl);

 _endif;

 _endif;

 endfor;

end IFDemo;

Program 9.3 Macro Implementation of the IF..ENDIF Statement

9.2.2 The HLA SWITCH/CASE Statement

HLA doesn’t support a selection statement (SWITCH or CASE statement). Instead, HLA’s
SWITCH..CASE..DEFAULT..ENDSWITCH statement exists only as a macro in the HLA Standard Library
HLL.HHF file. This section discusses HLA’s macro implementation of the SWITCH statement.

The SWITCH statement is very complex so it should come as no surprise that the macro implementa-
tion is long, involved, and complex. The example appearing in this section is slightly simplified over the
standard HLA version, but not by much. This discussion assumes that you’re familiar with the low-level
implementation of the SWITCH..CASE..DEFAULT..ENDSWITCH statement. If you are not comfortable
with that implementation, or feel a little rusty, you may want to take another look at “SWITCH/CASE State-
ments” on page 752 before attempting to read this section. The discussion in this section is somewhat
advanced and assumes a fair amount of programming skill. If you have trouble following this discussion,
you may want to skip this section until you gain some more experience.

There are several different ways to implement a SWITCH statement. In this section we will assume that
the _switch.._endswitch macro we are writing will implement the SWITCH statement using a jump table.
Implementation as a sequence of if..elseif statements is fairly trivial and is left as an exercise. Other schemes
are possible as well, this section with not consider them.

A typical SWITCH statement implementation might look like the following:

readonly
JmpTbl:dword[3] := [&Stmt5, &Stmt6, &Stmt7];

 .
 .
 .

// switch(i)

mov(i, eax); // Check to see if "i" is outside the range
cmp(eax, 5); // 5..7 and transfer control directly to the
jb EndCase // DEFAULT case if it is.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 987

Chapter Nine Volume Five
cmp(eax, 7);
ja EndCase;
jmp(JmpTbl[eax*4 - 5*@size(dword)]);

// case(5)
Stmt5:

stdout.put(“I=5”);
jmp EndCase;

// Case(6)
Stmt6:

stdout.put(“I=6”);
jmp EndCase;

// Case(7)
Stmt7:

stdout.put(“I=7”);

EndCase:

If you study this code carefully, with an eye to writing a macro to implement this statement, you’ll dis-
cover a couple of major problems. First of all, it is exceedingly difficult to determine how many cases and
the range of values those cases cover before actually processing each CASE in the SWITCH statement.
Therefore, it is really difficult to emit the range check (for values outside the range 5..7) and the indirect
jump before processing all the cases in the SWITCH statement. You can easily solve this problem, however,
by moving the checks and the indirect jump to the bottom of the code and inserting a couple of extra JMP
instructions. This produces the following implementation:

readonly
JmpTbl:dword[3] := [&Stmt5, &Stmt6, &Stmt7];

 .
 .
 .

// switch(i)

jmp DoSwitch; // First jump inserted into this code.

// case(5)
Stmt5:

stdout.put(“I=5”);
jmp EndCase;

// Case(6)
Stmt6:

stdout.put(“I=6”);
jmp EndCase;

// Case(7)
Stmt7:

stdout.put(“I=7”);
jmp EndCase; // Second jump inserted into this code.

DoSwitch: // Insert this label and move the range
mov(i, eax); // checks and indirect jump down here.
cmp(eax, 5);
jb EndCase
cmp(eax, 7);
ja EndCase;
jmp(JmpTbl[eax*4 - 5*@size(dword)]);
Page 988 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
// All the cases (including the default case) jump down here:

EndCase:

Since the range check code appears after all the cases, the macro can now process those cases and easily
determine the bounds on the cases by the time it must emit the CMP instructions above that check the
bounds of the SWITCH value. However, this implementation still has a problem. The entries in the JmpTbl
table refer to labels that can only be determined by first processing all the cases in the SWITCH statement.
Therefore, a macro cannot emit this table in a READONLY section that appears earlier in the source file than
the SWITCH statement. Fortunately, HLA lets you embed data in the middle of the code section using the
READONLY..ENDREADONLY and STATIC..ENDSTATIC directives1. Taking advantage of this feature
allows use to rewrite the SWITCH implementation as follows:

// switch(i)

jmp DoSwitch; // First jump inserted into this code.

// case(5)
Stmt5:

stdout.put(“I=5”);
jmp EndCase;

// Case(6)
Stmt6:

stdout.put(“I=6”);
jmp EndCase;

// Case(7)
Stmt7:

stdout.put(“I=7”);
jmp EndCase; // Second jump inserted into this code.

DoSwitch: // Insert this label and move the range
mov(i, eax); // checks and indirect jump down here.
cmp(eax, 5);
jb EndCase
cmp(eax, 7);
ja EndCase;
jmp(JmpTbl[eax*4 - 5*@size(dword)]);

// All the cases (including the default case) jump down here:

EndCase:

readonly
JmpTbl:dword[3] := [&Stmt5, &Stmt6, &Stmt7];

endreadonly;

HLA’s macros can produce code like this when processing a SWITCH macro. So this is the type of code we
will generate with a _switch.._case.._default.._endswitch macro.

Since we’re going to need to know the minimum and maximum case values (in order to generate the
appropriate operands for the CMP instructions above), the _case KEYWORD macro needs to compare the
current case value(s) against the global minimum and maximum case values for all cases. If the current case
value is less than the global minimum or greater than the global maximum, then the _case macro must
update these global values accordingly. The _endswitch macro will use these global minimum and maxi-
mum values in the two CMP instructions it generates for the range checking sequence.

1. HLA actually moves the data to the appropriate segment in memory, the data is not stored directly in the CODE section.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 989

Chapter Nine Volume Five
For each case value appearing in a _switch statement, the _case macros must save the case value and an
identifying label for that case value. This is necessary so that the _endswitch macro can generate the jump
table. What is really needed is an arbitrary list of records, each record containing a value field and a label
field. Unfortunately, the HLA compile-time language does not support arbitrary lists of objects, so we will
have to implement the list using a (fixed size) array of record constants. The record declaration will take the
following form:

caseRecord:
record

value:uns32;
label:uns32;

endrecord;

The value field will hold the current case value. The label field will hold a unique integer value for the
corresponding _case that the macros can use to generate statement labels. The implementation of the
_switch macro in this section will use a variant of the trick found in the section on the _if macro; it will con-
vert a local macro symbol to a string and append an integer value to the end of that string to create a unique
label. The integer value appended will be the value of the label field in the caseRecord list.

Processing the _case macro becomes fairly easy at this point. All the _case macro has to do is create an
entry in the caseRecord list, bump a few counters, and emit an appropriate case label prior to the code emis-
sion. The implementation in this section uses Pascal semantics, so all but the first case in the
_switch.._endswitch statement must first emit a jump to the statement following the _endswitch so the previ-
ous case’s code doesn’t fall into the current case.

The real work in implementing the _switch.._endswitch statement lies in the generation of the jump
table. First of all, there is no requirement that the cases appear in ascending order in the _switch.._endswitch
statement. However, the entries in the jump table must appear in ascending order. Second, there is no
requirement that the cases in the _switch.._endswitch statement be consecutive. Yet the entries in the jump
table must be consecutive case values2. The code that emits the jump table must handle these inconsisten-
cies.

The first task is to sort the entries in the caseRecord list in ascending order. This is easily accomplished
by writing a little SortCases macro to sort all the caseRecord entries once the _switch.._endswitch macro has
processed all the cases. SortCases doesn’t have to be fancy. In fact, a bubblesort algorithm is perfect for this
because:

• Bubble sort is easy to implement
• Bubble sort is efficient when sorting small lists and most SWITCH statements only have a few

cases.
• Bubble sort is especially efficient on nearly sorted data and most programmers put their cases

in ascending order.

After sorting the cases, only one problem remains: there may be gaps in the case values. This problem
is easily handled by stepping through the caseRecord elements one by one and synthesizing consecutive
entries whenever a gap appears in the list. Program 9.4 provides the full _switch.._case.._default.._endswitch
macro implementation.

/**/
/* */
/* switch.hla- */
/* */
/* This program demonstrates how to implement the */
/* _switch.._case.._default.._endswitch statement */
/* using macros. */
/* */
/**/

2. Of course, if there are gaps in the case values, the jump table entries for the missing items should contain the address of the
default case.
Page 990 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages

program demoSwitch;
#include("stdlib.hhf")

const

 // Because this code uses an array to implement
 // the caseRecord list, we have to specify a fixed
 // number of cases. The following constant defines
 // the maximum number of possible cases in a
 // _switch statement.

 maxCases := 256;

type

 // The following data type hold the case value
 // and statement label information for each
 // case appearing in a _switch statement.

 caseRecord:
 record

 value:uns32;
 label:uns32;

 endrecord;

// SortCases
//
// This routine does a bubble sort on an array
// of caseRecord objects. It sorts in ascending
// order using the "value" field as the key.
//
// This is a good old fashioned bubble sort which
// turns out to be very efficient because:
//
// (1) The list of cases is usually quite small, and
// (2) The data is usually already sorted (or mostly sorted).

macro SortCases(sort_array, sort_size):
 sort_i,
 sort_bnd,
 sort_didswap,
 sort_temp;

 ?sort_bnd := sort_size - 1;
 ?sort_didswap := true;
 #while(sort_didswap)

 ?sort_didswap := false;
 ?sort_i := 0;
 #while(sort_i < sort_bnd)

 #if
 (
 sort_array[sort_i].value >
 sort_array[sort_i+1].value
)
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 991

Chapter Nine Volume Five

 ?sort_temp := sort_array[sort_i];
 ?sort_array[sort_i] := sort_array[sort_i+1];
 ?sort_array[sort_i+1] := sort_temp;
 ?sort_didswap := true;

 #elseif
 (
 sort_array[sort_i].value =
 sort_array[sort_i+1].value
)

 #error
 (
 "Two cases have the same value: (" +
 string(sort_array[sort_i].value) +
 ")"
)

 #endif
 ?sort_i := sort_i + 1;

 #endwhile
 ?sort_bnd := sort_bnd - 1;

 #endwhile;

endmacro;

// HLA Macro to implement a C SWITCH statement (using
// Pascal semantics). Note that the switch parameter
// must be a 32-bit register.

macro _switch(switch_reg):
 switch_minval,
 switch_maxval,
 switch_otherwise,
 switch_endcase,
 switch_jmptbl,
 switch_cases,
 switch_caseIndex,
 switch_doCase,
 switch_hasotherwise; // Just used to generate unique names.

 // Verify that we have a register operand.

 #if(!@isReg32(switch_reg))

 #error("Switch operand must be a 32-bit register")

 #endif
Page 992 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages

 // Create the switch_cases array. Allow, at most, 256 cases.

 ?switch_cases:caseRecord[maxCases];

 // General initialization for processing cases.

 ?switch_caseIndex := 0; // Index into switch_cases array.
 ?switch_minval := $FFFF_FFFF; // Minimum case value.
 ?switch_maxval := 0; // Maximum case value.
 ?switch_hasotherwise := false; // Determines if DEFAULT section present.

 // We need to process the cases to collect information like
 // switch_minval prior to emitting the indirect jump. So move the
 // indirect jump to the bottom of the case statement.

 jmp switch_doCase;

 // "case" keyword macro handles each of the cases in the
 // case statement. Note that this syntax allows you to
 // specify several cases in the same _case macro, e.g.,
 // _case(2, 3, 4). Such a situation tells this macro
 // that these three values all execute the same code.

keyword _case(switch_parms[]):
 switch_parmIndex,
 switch_parmCount,
 switch_constant;

 ?switch_parmCount:uns32;
 ?switch_parmCount := @elements(switch_parms);

 #if(switch_parmCount <= 0)

 #error("Must have at least one case value");
 ?switch_parms:uns32[1] := [0];

 #endif

 // If we have at least one case already, terminate
 // the previous case by transfering control to the
 // first statement after the endcase macro. Note
 // that these semantics match Pascal's CASE statement,
 // not C/C++'s SWITCH statement which would simply
 // fall through to the next CASE.

 #if(switch_caseIndex <> 0)

 jmp switch_endcase;

 #endif

 // The following loop processes each case value
 // supplied to the _case macro.

 ?switch_parmIndex:uns32;
 ?switch_parmIndex := 0;
 #while(switch_parmIndex < switch_parmCount)
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 993

Chapter Nine Volume Five

 ?switch_constant: uns32;
 ?switch_constant: uns32 :=
 uns32(@text(switch_parms[switch_parmIndex]));

 // Update minimum and maximum values based on the
 // current case value.

 #if(switch_constant < switch_minval)

 ?switch_minval := switch_constant;

 #endif
 #if(switch_constant > switch_maxval)

 ?switch_maxval := switch_constant;

 #endif

 // Emit a unique label to the source code for this case:

 @text
 (
 "_case"
 + @string:switch_caseIndex
 + string(switch_caseIndex)
):

 // Save away the case label and the case value so we
 // can build the jump table later on.

 ?switch_cases[switch_caseIndex].value := switch_constant;
 ?switch_cases[switch_caseIndex].label := switch_caseIndex;

 // Bump switch_caseIndex value because we've just processed
 // another case.

 ?switch_caseIndex := switch_caseIndex + 1;
 #if(switch_caseIndex >= maxCases)

 #error("Too many cases in statement");

 #endif

 ?switch_parmIndex := switch_parmIndex + 1;

 #endwhile

 // Handle the default keyword/macro here.

keyword _default;

 // If there was not a preceding case, this is an error.
 // If so, emit a jmp instruction to skip over the
 // default case.

 #if(switch_caseIndex < 1)

 #error("Must have at least one case");
Page 994 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
 #endif

 jmp switch_endcase;

 // Emit the label for this default case and set the
 // switch_hasotherwise flag to true.

 switch_otherwise:
 ?switch_hasotherwise := true;

 // The endswitch terminator/macro checks to see if
 // this is a reasonable switch statement and emits
 // the jump table code if it is.

terminator _endswitch:
 switch_i_,
 switch_j_,
 switch_curCase_;

 // If the difference between the smallest and
 // largest case values is great, the jump table
 // is going to be fairly large. If the difference
 // between these two values is greater than 256 but
 // less than 1024, warn the user that the table will
 // be large. If it's greater than 1024, generate
 // an error.
 //
 // Note: these are arbitrary limits. Feel free to
 // adjust them if you like.

 #if((switch_maxval - switch_minval) > 256)

 #if((switch_maxval - switch_minval) > 1024)

 // Perhaps in the future, this macro could
 // switch to generating an if..elseif..elseif...
 // chain if the range between the values is
 // too great.

 #error("Range of cases is too great");

 #else

 #print("Warning: Range of cases is large");

 #endif

 #endif

 // Table emission algorithm requires that the switch_cases
 // array be sorted by the case values.

 SortCases(switch_cases, switch_caseIndex);

 // Build a string of the form:
 //
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 995

Chapter Nine Volume Five
 // switch_jmptbl:dword[xx] := [&case1, &case2, &case3...&casen];
 //
 // so we can output the jump table.

 readonly

 switch_jmptbl:dword[switch_maxval - switch_minval + 1] := [

 ?switch_i_ := 0;
 #while(switch_i_ < switch_caseIndex)

 ?switch_curCase_ := switch_cases[switch_i_].value;
 // Emit the label associated with the current case:

 @text
 (
 "&"
 + "_case"
 + @string:switch_caseIndex
 + string(switch_cases[switch_i_].label)
 + ","
)

 // Emit "&switch_otherwise" table entries for any gaps present
 // in the table:

 ?switch_j_ := switch_cases[switch_i_ + 1].value;
 ?switch_curCase_ := switch_curCase_ + 1;

 #while(switch_curCase_ < switch_j_)

 &switch_otherwise,
 ?switch_curCase_ := switch_curCase_ + 1;

 #endwhile
 ?switch_i_ := switch_i_ + 1;

 #endwhile

 // Emit a dummy entry to terminate the table:

 &switch_otherwise];

 endreadonly;

 #if(switch_caseIndex < 1)

 #error("Must have at least one case");

 #endif

 // After the default case, or after the last
 // case entry, jump over the code that does
 // the conditional jump.

 jmp switch_endcase;

 // Okay, here's the code that does the conditional jump.

 switch_doCase:
Page 996 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages

 // If the minimum case value is zero, we don't
 // need to emit a CMP instruction for it.

 #if(switch_minval <> 0)

 cmp(switch_reg, switch_minval);
 jb switch_otherwise;

 #endif
 cmp(switch_reg, switch_maxval);
 ja switch_otherwise;
 jmp(switch_jmptbl[switch_reg*4 - switch_minval*4]);

 // If there was no default case, transfer control
 // to the first statement after the "endcase" clause.

 #if(!switch_hasotherwise)

 switch_otherwise:

 #endif

 // When each of the cases complete execution,
 // transfer control down here.

 switch_endcase:

 // The following statement deallocates the storage
 // assocated with the switch_cases array (this saves
 // memory at compile time, it does not affect the
 // execution of the resulting machine code).

 ?switch_cases := 0;

endmacro;

begin demoSwitch;

 // A simple demonstration of the _switch.._endswitch statement:

 for(mov(0, eax); eax < 8; inc(eax)) do

 _switch(eax)

 _case(0)

 stdout.put("eax = 0" nl);

 _case(1, 2)

 stdout.put("eax = 1 or 2" nl);

 _case(3, 4, 5)

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 997

Chapter Nine Volume Five
 stdout.put("eax = 3, 4, or 5" nl);

 _case(6)

 stdout.put("eax = 6" nl);

 _default

 stdout.put("eax is not in the range 0-6" nl);

 _endswitch;

 endfor;

end demoSwitch;

Program 9.4 Macro Implementation of the SWITCH..ENDSWITCH Statement

9.2.3 A Modified WHILE Loop

The previous sections have shown you how to implement statements that are already available in HLA
or the HLA Standard Library. While this approach lets you work with familiar statements that you should be
comfortable with, it doesn’t really demonstrate that you can create new control statements with HLA’s com-
pile-time language. In this section you will see how to create a variant of the WHILE statement that is not
simply a rehash of HLA’s WHILE statement. This should amply demonstrate that there are some useful con-
trol structures that HLA (and high level languages) don’t provide and that you can easily use HLA com-
pile-time language to implement specialized control structures as needed.

A common use of a WHILE loop is to search through a list and stop upon encountering some desired
value or upon hitting the end of the list. A typical HLA example might take the following form:

while(<<There are more items in the list>>) do

breakif(<<This was the item we’re looking for>>);
<< select the next item in the list>>

endwhile;

The problem with this approach is that when the statement immediately following the ENDWHILE exe-
cutes, that code doesn’t know whether the loop terminated because it found the desired value or because it
exhausted the list. The typical solution is to test to see if the loop exhausted the list and deal with that
accordingly:

while(<<There are more items in the list>>) do

breakif(<<This was the item we’re looking for>>);
<< select the next item in the list>>

endwhile;
if(<<The list wasn’t exhausted>>) then

<< do something with the item we found >>

endif;

The problem with this "solution" should be obvious if you think about it a moment. We’ve already
tested to see if the loop is empty, immediately after leaving the loop we repeat this same test. This is some-
what inefficient. A better solution would be to have something like an "else" clause in the WHILE loop that
Page 998 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
executes if you break out of the loop and doesn’t execute if the loop terminates because the boolean expres-
sion evaluated false. Rather than use the keyword ELSE, let’s invent a new (more readable) term: onbreak.
The ONBREAK section of a WHILE loop executes (only once) if a BREAK or BREAKIF statement was the
reason for the loop termination. With this ONBREAK clause, you could recode the previous WHILE loop a
little bit more elegantly as follows:

while(<<There are more items in the list>>) do

breakif(<<This was the item we’re looking for>>);
<< select the next item in the list>>

onbreak

<< do something with the item we found >>

endwhile;

Note that if the ONBREAK clause is present, the WHILE’s loop body ends at the ONBREAK keyword. The
ONBREAK clause executes at most once per execution of this WHILE statement.

Implementing a _while.._onbreak.._endwhile statement is very easy using HLA’s multi-part macros.
Program 9.5 provides the complete implementation of this statement:

/**/
/* */
/* while.hla */
/* */
/* This program demonstrates a variant of the */
/* WHILE loop that provides a special "onbreak" */
/* clause. The _onbreak clause executes if the */
/* program executes a _break clause or it executes */
/* a _breakif clause and the corresponding */
/* boolean expression evaluates true. The _onbreak */
/* section does not execute if the loop terminates */
/* due to the _while boolean expression evaluating */
/* false. */
/* */
/**/

program Demo_while;
#include("stdlib.hhf")

// _while semantics:
//
// _while(expr)
//
// << stmts including optional _break, _breakif
// _continue, and _continueif statements >>
//
// _onbreak // This section is optional.
//
// << stmts that only execute if program executes
// a _break or _breakif (with true expression)
// statement. >>
//
// _endwhile;

macro _while(expr):falseLbl, breakLbl, topOfLoop, hasOnBreak;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 999

Chapter Nine Volume Five
 // hasOnBreak keeps track of whether we've seen an _onbreak
 // section.
 ?hasOnBreak:boolean:=false;

 // Here's the top of the WHILE loop.
 // Implement this as a straight-forward WHILE (test for
 // loop termination at the top of the loop).

 topOfLoop:
 jf(expr) falseLbl;

 // Ignore the _do keyword.

 keyword _do;

 // _continue and _continueif (with a true expression)
 // transfer control to the top of the loop where the
 // _while code retests the loop termination condition.

 keyword _continue;
 jmp topOfLoop;

 keyword _continueif(expr1);
 jt(expr1) topOfLoop;

 // Unlike the _break or _breakif in a standard WHILE
 // statement, we don't immediately exit the WHILE.
 // Instead, this code transfers control to the optional
 // _onbreak section if it is present. If it is not
 // present, control transfers to the first statement
 // beyond the _endwhile.

 keyword _break;
 jmp breakLbl;

 keyword _breakif(expr2);
 jt(expr2) breakLbl;

 // If we encounter an _onbreak section, this marks
 // the end of the while loop body. Emit a jump that
 // transfers control back to the top of the loop.
 // This code also has to verify that there is only
 // one _onbreak section present. Any code following
 // this clause is going to execute only if the _break
 // or _breakif statements execute and transfer control
 // down here.

 keyword _onbreak;
 #if(hasOnBreak)

 #error("Extra _onbreak clause encountered")

 #else

 jmp topOfLoop;
 ?hasOnBreak := true;

 breakLbl:
Page 1000 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages

 #endif

 terminator _endwhile;

 // If we didn't have an _onbreak section, then
 // this is the bottom of the _while loop body.
 // Emit the jump to the top of the loop and emit
 // the "breakLbl" label so the execution of a
 // _break or _breakif transfers control down here.

 #if(!hasOnBreak)

 jmp topOfLoop;
 breakLbl:

 #endif
 falseLbl:

endmacro;

static
 i:int32;

begin Demo_while;

 // Demonstration of standard while loop

 mov(0, i);
 _while(i < 10) _do

 stdout.put("1: i=", i, nl);
 inc(i);

 _endwhile;

 // Demonstration with BREAKIF:

 mov(5, i);
 _while(i < 10) _do

 stdout.put("2: i=", i, nl);
 _breakif(i = 7);
 inc(i);

 _endwhile

 // Demonstration with _BREAKIF and _ONBREAK:

 mov(0, i);
 _while(i < 10) _do

 stdout.put("3: i=", i, nl);
 _breakif(i = 4);
 inc(i);

 _onbreak

 stdout.put("Breakif was true at i=", i, nl);

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1001

Chapter Nine Volume Five
 _endwhile
 stdout.put("All Done" nl);

end Demo_while;

Program 9.5 The Implementation of _while.._onbreak.._endwhile

9.2.4 A Modified IF..ELSE..ENDIF Statement

The IF statement is another statement that doesn’t always do exactly what you want. Like the
_while.._onbreak.._endwhile example above, it’s quite possible to redefine the IF statement so that it behaves
the way we want it to. In this section you’ll see how to implement a variant of the IF..ELSE..ENDIF state-
ment that nests differently than the standard IF statement.

It is possible to simulate short-circuit boolean evaluation invovling conjunction and disjunction without
using the "&&" and "||" operators if you carefully structure your code. Consider the following example:

// "C" code employing logical-AND operator:

if(expr1 && expr2)
{

<< statements >>
}

// Equivalent HLA version:

if(expr1) then

if(expr2) then

<< statements >>

endif;

endif;

In both cases ("C" and HLA) the << statements>> block executes only if both expr1 and expr2 evaluate
true. So other than the extra typing involved, it is often very easy to simulate logical conjunction by using
two IF statements in HLA.

There is one very big problem with this scheme. Consider what happens if you modify the "C" code to
be the following:

// "C" code employing logical-AND operator:

if(expr1 && expr2)
{

<< ’true’ statements >>
}
else
{

<< ’false’ statements >>
}

The only way to convert this to HLA (using the standard HLA high level control constructs) is by dupli-
cating the ’false’ statements. This introduces a bit of inefficiency into your code. As a result, many HLA
programmers will switch to low-level control constructs or HLA’s hybrid control structures (see “Hybrid
Page 1002 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
Control Structures in HLA” on page 778) in order to avoid duplicating code. Unfortunately, dropping down
into low-level code may make your program harder to read. It would be nice if you could efficiently handle
this situation without making your code unreadable. Fortunately, you can do exactly this by creating a new
version of the IF statement using HLA’s multi-part macro facilities.

Before describing how to create this new type of IF statement, we must digress for a moment and
explore an interesting feature of HLA’s multi-part macro expansion: KEYWORD macros do not have to use
unique names. Whenever you declare an HLA KEYWORD macro, HLA accepts whatever name you
choose. If that name happens to be already defined, then the KEYWORD macro name takes precedence as
long as the macro is active (that is, from the point you invoke the macro name until HLA encounters the
TERMINATOR macro). Therefore, the KEYWORD macro name hides the previous definition of that name
until the termination of the macro. This feature applies even to the original macro name; that is, it is possi-
ble to define a KEYWORD macro with the same name as the original macro to which the KEYWORD
macro belongs. This is a very useful feature because it allows you to change the definition of the macro
within the scope of the opening and terminating invocations of the macro.

Although not pertinent to the IF statement we are construction, you should note that parameter and local
symbols in a macro also override any previously defined symbols of the same name. So if you use that sym-
bol between the opening macro and the terminating macro, you will get the value of the local symbol, not the
global symbol. E.g.,

var
i:int32;
j:int32;

.

.

.
macro abc:i;

?i:text := "j";
.
.
.

terminator xyz;
.
.
.

endmacro
.
.
.

mov(25, i);
mov(10, j);
abc

mov(i, eax); // Loads j’s value (10), not 25 into eax.
xyz;

The code above loads 10 into EAX because the "mov(i, eax);" instruction appears between the opening and
terminating macros abc..xyz. Between those two macros the local definition of i takes precedence over the
global definition. Since i is a text constant that expands to j, the aforementioned MOV statement is really
equivalent to "mov(j, eax);" That statement, of course, loads 10 into EAX. Since this problem is difficult to
see while reading your code, you should choose local symbols in multi-part macros very carefully. A good
convention to adopt is to combine your local symbol name with the macro name, e.g.,

macro abc : i_abc;

You may wonder why HLA allows something to crazy to happen in your source code, in a moment you’ll
see why this behavior is useful (and now, with this brief message out of the way, back to our regularly sched-
uled discussion).

Before we digressed to discuss this interesting feature in HLA multi-part macros, we were trying to fig-
ure out how to efficiently simulate the conjunction and disjunction operators in an IF statement without actu-
ally using this operators in our code. The problem in the example appearing earlier in this section is that you
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1003

Chapter Nine Volume Five
would have to duplicate some code in order to convert the IF..ELSE statement properly. The following code
shows this problem:

// "C" code employing logical-AND operator:

if(expr1 && expr2)
{

<< ’true’ statements >>
}
else
{

<< ’false’ statements >>
}

// Corresponding HLA code using the "nested-IF" algorithm:

if(expr1) then

if(expr2) then

<< ’true’ statements >>

else

<< ’false’ statements >>

endif;

else

<< ’false’ statements >>

endif;

Note that this code must duplicate the "<< ’false’ statements >>" section if the logic is to exactly match the
original "C" code. This means that the program will be larger and harder to read than is absolutely neces-
sary.

One solution to this problem is to create a new kind of IF statement that doesn’t nest the same way stan-
dard IF statements nest. In particular, if we define the statement such that all IF clauses nested with an outer
IF..ENDIF block share the same ELSE and ENDIF clauses. If this were the case, then you could implement
the code above as follows:

if(expr1) then

if(expr2) then

<< ’true’ statements >>

else

<< ’false’ statements >>

endif;

If expr1 is false, control immediately transfers to the ELSE clause. If the value of expr1 is true, the con-
trol falls through to the next IF statement.

If expr2 evaluates false, then the program jumps to the single ELSE clause that all IFs share in this state-
ment. Notice that a single ELSE clause (and corresponding ’false’ statements) appear in this code; hence the
Page 1004 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
code does not necessarily expand in size. If expr2 evaluates true, then control falls through to the ’true’
statements, exactly like a standard IF statement.

Notice that the nested IF statement above does not have a corresponding ENDIF. Like the ELSE clause,
all nested IFs in this structure share the same ENDIF. Syntactically, there is no need to end the nested IF
statement; the end of the THEN section ends with the ELSE clause, just as the outer IF statement’s THEN
block ends.

Of course, we can’t actually define a new macro named "if" because you cannot redefine HLA reserved
words. Nor would it be a good idea to do so even if these were legal (since it would make your programs
very difficult to comprehend if the IF keyword had different semantics in different parts of the program. The
following program uses the identifiers "_if", "_then", "_else", and "_endif" instead. It is questionable if
these are good identifiers in production code (perhaps something a little more different would be appropri-
ate). The following code example uses these particular identifiers so you can easily correlate them with the
corresponding high level statements.

/***/
/* */
/* if.hla */
/* */
/* This program demonstrates a modification of */
/* the IF..ELSE..ENDIF statement using HLA's */
/* multi-part macros. */
/* */
/***/

program newIF;
#include("stdlib.hhf")

// Macro implementation of new form of if..then..else..endif.
//
// In this version, all nested IF statements transfer control
// to the same ELSE clause if any one of them have a false
// boolean expression. Syntax:
//
// _if(expression) _then
//
// <<statements including nested _if clauses>>
//
// _else // this is optional
//
// <<statements, but _if clauses are not allowed here>>
//
// _endif
//
//
// Note that nested _if clauses do not have a corresponding
// _endif clause. This is because the single _else and/or
// _endif clauses terminate all the nested _if clauses
// including the first one. Of course, once the code
// encounters an _endif another _if statement may begin.

// Macro to handle the main "_if" clause.
// This code just tests the expression and jumps to the _else
// clause if the expression evaluates false.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1005

Chapter Nine Volume Five
macro _if(ifExpr):elseLbl, hasElse, ifDone;

 ?hasElse := false;
 jf(ifExpr) elseLbl;

// Just ignore the _then keyword.

keyword _then;

// Nested _if clause (yes, HLA lets you replace the main
// macro name with a keyword macro). Identical to the
// above _if implementation except this one does not
// require a matching _endif clause. The single _endif
// (matching the first _if clause) terminates all nested
// _if clauses as well as the main _if clause.

keyword _if(nestedIfExpr);
 jf(nestedIfExpr) elseLbl;

 // If this appears within the _else section, report
 // an error (we don't allow _if clauses nested in
 // the else section, that would create a loop).

 #if(hasElse)

 #error("All _if clauses must appear before the _else clause")

 #endif

// Handle the _else clause here. All we need to is check to
// see if this is the only _else clause and then emit the
// jmp over the else section and output the elseLbl target.

keyword _else;
 #if(hasElse)

 #error("Only one _else clause is legal per _if.._endif")

 #else

 // Set hasElse true so we know that we've seen an _else
 // clause in this statement.

 ?hasElse := true;
 jmp ifDone;
 elseLbl:

 #endif

// _endif has two tasks. First, it outputs the "ifDone" label
// that _else uses as the target of its jump to skip over the
// else section. Second, if there was no else section, this
// code must emit the "elseLbl" label so that the false conditional(s)
// in the _if clause(s) have a legal target label.

terminator _endif;

 ifDone:
Page 1006 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
 #if(!hasElse)

 elseLbl:

 #endif

endmacro;

static
 tr:boolean := true;
 f:boolean := false;

begin newIF;

 // Real quick demo of the _if statement:

 _if(tr) _then

 _if(tr) _then
 _if(f) _then

 stdout.put("error" nl);

 _else

 stdout.put("Success");

 _endif

end newIF;

Program 9.6 Using Macros to Create a New IF Statement

Just in case you’re wondering, this program prints "Success" and then quits. This is because the nested
"_if" statements are equivalent to the expression "true && true && false" which, of course, is false. There-
fore, the "_else" portion of this code should execute.

The only surprise in this macro is the fact that it redefines the _if macro as a keyword macro upon invo-
cation of the main _if macro. The reason this code does this is so that any nested _if clauses do not require a
corresponding _endif and don’t support an _else clause.

Implementing an ELSEIF clause introduces some difficulties, hence its absence in this example. The
design and implementation of an ELSEIF clause is left to the more serious reader3.

9.3 Sample Program: A Simple Expression Compiler

This program’s sample program is a bit complex. In fact, the theory behind this program is well beyond
the scope of this text (since it involves compiler theory). However, this example is such a good demonstra-
tion of the capabilities of HLA’s macro facilities and DSEL capabilities, it was too good not to include here.
The following paragraphs will attempt to explain how this compile-time program operates. If you have dif-
ficulty understanding what’s going on, don’t feel too bad, this code isn’t exactly the type of stuff that begin-
ning assembly language programmers would normally develop on their own.

3. I.e., I don’t even want to have to think about this problem!
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1007

Chapter Nine Volume Five
This program presents a (very) simple expression compiler. This code includes a macro, u32expr, that
emits a sequence of instructions that compute the value of an arithmetic expression and leave that result sit-
ting in one of the 80x86’s 32-bit registers. The syntax for the u32expr macro invocation is the following:

u32expr(reg32, uns32_expression);

This macro emits the code that computes the following (HLL) statement:

reg32 := uns32_expression;

For example, the macro invocation "u32expr(eax, ebx+ecx*5 - edi);" computes the value of the expression
"ebx+ecx*5 - edi" and leaves the result of this expression sitting in the EAX register.

The u32expr macro places several restrictions on the expression. First of all, as the name implies, it
only computes the result of an uns32 expression. No other data types may appear within the expression.
During computation, the macro uses the EAX and EDX registers, so expressions should not contain these
registers as their values may be destroyed by the code that computes the expression (EAX or EDX may
safely appear as the first operand of the expression, however). Finally, expressions may only contain the fol-
lowing operators:

<, <=, >, >=, <>, !=, =, ==
+, -
*, /
(,)

The "<>" and "!=" operators are equivalent (not equals) and the "=" and "==" operators are also equivalent
(equals). The operators above are listed in order of increasing precedence; i.e., "*" has a higher precedence
than "+" (as you would expect). You can override the precedence of an operator by using parentheses in the
standard manner.

It is important to remember that u32expr is a macro, not a function. That is, the invocation of this macro
results in a sequence of 80x86 assembly language instructions that computes the desired expression. The
u32expr invocation is not a function call. to some routine that computes the result.

To understand how this macro works, it would be a good idea to review the section on “Converting
Arithmetic Expressions to Postfix Notation” on page 613. That section discusses how to convert floating
point expressions to reverse polish notation; although the u32expr macro works with uns32 objects rather
than floating point objects, the approach it uses to translate expressions into assembly language uses this
same algorithm. So if you don’t remember how to translate expressions into reverse polish notation, it might
be worthwhile to review that section of this text.

Converting floating point expressions to reverse polish notation is especially easy because the 80x86’s
FPU uses a stack architecture. Alas, the integer instructions on the 80x86 use a register architecture and effi-
ciently translating integer expression to assembly language is a bit more difficult (see “Arithmetic Expres-
sions” on page 577). We’ll solve this problem by translating the expressions to assembly code in a
somewhat less than efficient manner; we’ll simulate an integer stack architecture by using the 80x86’s hard-
ware stack to hold temporary results during an integer calculation.

To push an integer constant or variable onto the 80x86 hardware stack, we need only use a PUSH or
PUSHD instruction. This operation is trivial.

To add two values sitting on the top of stack together, leaving their sum on the stack, all we need do is
pop those two values into registers, add the register values, and then push the result back onto the stack. We
can do this operation slightly more efficiently, since addition is commutative, by using the following code:

// Compute X+Y where X is on NOS (next on stack) and Y is on TOS (top of stack):

pop(eax); // Get Y’s value.
add(eax, [esp]); // Add with X’s value and leave sum on TOS.
Page 1008 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
Subtraction is identical to addition. Although subtraction is not commutative the operands just happen
to be on the stack in the proper order to efficiently compute their difference. To compute "X-Y" where X is
on NOS and Y is on TOS, we can use code like the following:

// Compute X-y where X is on NOS and Y is on TOS:

pop(eax);
sub(eax, [esp]);

Multiplication of the two items on the top of stack is a little more complicated since we must use the
MUL instruction (the only unsigned multiplication instruction available) and the destination operand must
be the EDX:EAX register pair. Fortunately, multiplication is a commutative operation, so we can compute
the product of NOS and TOS using code like the following:

// Compute X*Y where X is on NOS and Y is on TOS:

pop(eax);
mul([esp], eax); // Note that this wipes out the EDX register.
mov(eax, [esp]);

Division is problematic because it is not a commutative operation and its operands on the stack are not
in a convenient order. That is, to compute X/Y it would be really convenient if X was on TOS and Y was in
the NOS position. Alas, as you’ll soon see, it turns out that X is at NOS and Y is on the TOS. To resolve this
issue requires slightly less efficient code that the sequences we’ve used above. Since the DIV instruction is
so slow anyway, this will hardly matter.

// Compute X/Y where X is on NOS and Y is on TOS:

mov([esp+4], eax); // Get X from NOS.
xor(edx, edx); // Zero-extend EAX into EDX:EAX
div([esp], edx:eax); // Compute their quotient.
pop(edx); // Remove unneeded Y value from the stack.
mov(eax, [esp]); // Store quotient to the TOS.

The remaining operators are the comparison operators. These operators compare the value on NOS
with the value on TOS and leave true (1) or false (0) sitting on the stack based on the result of the compari-
son. While it is easy to work around the non-commutative aspect of many of the comparison operators, the
big challenge is converting the result to true or false. The SETcc instructions are convenient for this pur-
pose, but they only work on byte operands. Therefore, we will have to zero extend the result of the SETcc
instructions to obtain an uns32 result we can push onto the stack. Ultimately, the code we must emit for a
comparison is similar to the following:

// Compute X <= Y where X is on NOS and Y is on TOS.

pop(eax);
cmp([esp], eax);
setbe(al); // This instruction changes for other operators.
movzx(al, eax);
mov(eax, [esp]);

As it turns out, the appearance of parentheses in an expression only affects the order of the instructions
appearing in the sequence, it does not affect the number of type of instructions that correspond to the calcu-
lation of an expression. As you’ll soon see, handling parentheses is an especially trivial operation.

With this short description of how to emit code for each type of arithmetic operator, it’s time to discuss
exactly how we will write a macro to automate this translation. Once again, a complete discussion of this
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1009

Chapter Nine Volume Five
topic is well beyond the scope of this text, however a simple introduction to compiler theory will certainly
ease the understanding the u32expr macro.

For efficiency and reasons of convenience, most compilers are broken down into several components
called phases. A compiler phase is collection of logically related activities that take place during compila-
tion. There are three general compiler phases we are going to consider here: (1) lexical analysis (or scan-
ning), (2) parsing, and (3) code generation. It is important to realize that these three activities occur
concurrently during compilation; that is, they take place at the same time rather than as three separate,
serial, activities. A compiler will typically run the lexical analysis phase for a short period, transfer control
to the parsing phase, do a little code generation, and then, perhaps, do some more scanning and parsing and
code generation (not necessarily in that order). Real compilers have additional phases, the u32expr macro
will only use these three phases (and if you look at the macro, you’ll discover that it’s difficult to separate the
parsing and code generation phases).

Lexical analysis is the process of breaking down a string of characters, representing the expression to
compile, into a sequence of tokens for use by the parser. For example, an expression of the form "MaxVal -
x <= $1c" contains five distinct tokens:

• MaxVal
• -
• x
• <=
• $1c

Breaking any one of these tokens into smaller objects would destroy the intent of the expression (e.g., con-
verting MaxVal to "Max" and "Val" or converting "<=" into "<" and "="). The job of the lexical analyzer is
to break the string down into a sequence of constituent tokens and return this sequence of tokens to the
parser (generally one token at a time, as the parser requests new tokens). Another task for the lexical ana-
lyzer is to remove any extra white space from the string of symbols (since expressions may generally contain
an arbitrary amount of white space).

Fortunately, it is easy to extract the next available token in the input string by skipping all white space
characters and then look at the current character. Identifiers always begin with an alphabetic character or an
underscore, numeric values always begin with a decimal digit, a dollar sign ("$"), or a percent sign ("%").
Operators always begin with the corresponding punctuation character that represents the operator. There are
only two major issues here: how do we classify these tokens and how do we differentiate two or more dis-
tinct tokens that start with the same character (e.g., "<", "<=", and "<>")? Fortunately, HLA’s compile-time
functions provide the tools we need to do this.

Consider the declaration of the u32expr macro:

macro u32expr(reg, expr):sexpr;

The expr parameter is a text object representing the expression to compile. The sexpr local symbol will
contain the string equivalent of this text expression. The macro translates the text expr object to a string with
the following statement:

?sexpr := @string:expr;

From this point forward, the macro works with the string in sexpr.

The lexer macro (compile-time function) handles the lexical analysis operation. This macro expects a
single string parameter from which it extracts a single token and removes the string associated with that
token from the front of the string. For example, the following macro invocation returns "2" as the function
result and leaves "+3" in the parameter string (str2Lex):

?str2Lex := "2+3";
?TokenResult := lexer(str2Lex);

The lexer function actually returns a little more than the string it extracts from its parameter. The actual
return value is a record constant that has the definition:

 tokType:
 record
Page 1010 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages

 lexeme:string;
 tokClass:tokEnum;

 endrecord;

The lexeme field holds that actual string (e.g., "2" in this example) that the lexer macro returns. The tok-
Class field holds a small numeric value (see the tokEnum enumerated data type) that specifies that type of
the token. In this example, the call to lexer stores the value intconst into the tokClass field. Having a single
value (like intconst) when the lexeme could take on a large number of different forms (e.g., "2", "3", "4", ...)
will help make the parser easier to write. The call to lexer in the previous example produces the following
results:

str2lex : "+3"
TokenResult.lexeme: "2"
TokenResult.tokClass: intconst

A subsequent call to lexer, immediately after the call above, will process the next available character in
the string and return the following values:

str2lex : "3"
TokenResult.lexeme: "+"
TokenResult.tokClass: plusOp

To see how lexer works, consider the first few lines of the lexer macro:

macro lexer(input):theLexeme,boolResult;

 ?theLexeme:string; // Holds the string we scan.
 ?boolResult:boolean; // Used only as a dummy value.

 // Check for an identifier.

 #if(@peekCset(input, tok1stIDChar))

 // If it began with a legal ID character, extract all
 // ID characters that follow. The extracted string
 // goes into "theLexeme" and this call also removes
 // those characters from the input string.

 ?boolResult := @oneOrMoreCset(input, tokIDChars, input, theLexeme);

 // Return a tokType constant with the identifier string and
 // the "identifier" token value:

 tokType:[theLexeme, identifier]

 // Check for a decimal numeric constant.

 #elseif(@peekCset(input, digits))

.

.

.

The real work begins with the #IF statement where the code uses the @peekCset function to see if the
first character of the input parameter is a member of the tok1stIDChar set (which is the alphabetic characters
plus an underscore, i.e., the set of character that may appear as the first character of an identifier). If so, the
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1011

Chapter Nine Volume Five
code executes the @oneOrMoreCset function to extract all legal identifier characters (alphanumerics plus
underscore), storing the result in the theLexeme string variable. Note that this function call to @oneOr-
MoreCset also removes the string it matches from the front of the input string (see the description of @one-
OrMoreCset for more details). This macro returns a tokType result by simply specifying a tokType constant
containing theLexeme and the enum constant identifier.

If the first character of the input string is not in the tok1stIDChar set, then the lexer macro checks to see
if the first character is a legal decimal digit. If so, then this macro processes that string of digits in a manner
very similar to identifiers. The code handles hexadecimal and binary constants in a similar fashion. About
the only thing exciting in the whole macro is the way it differentiates tokens that begin with the same sym-
bol. Once it determines that a token begins with a character common to several lexemes, it calls @matchStr
to attempt to match the longer tokens before settling on the shorter lexeme (i.e., lexer attempts to match "<="
or "<>" before it decides the lexeme is just "<"). Other than this complication, the operation of the lexer is
really quite simple.

The operation of the parser/code generation phases is a bit more complex, especially since these macros
are indirectly recursive; to simplify matters we will explore the parser/code generator in a bottom-up fash-
ion.

The parser/code generator phases consist of four separate macros: doTerms, doMulOps, doAddOps, and
doCmpOps. The reason for these four separate macros is to handle the different precedences of the arith-
metic operators and the parentheses. An explanation of how these four macros handle the different arith-
metic precedences is beyond the scope of this text; we’ll just look at how these four macros do their job.

The doTerms macro is responsible for handling identifiers, numeric constants, and subexpressions sur-
rounded by parentheses. The single parameter is the current input string whose first (non-blank) character
sequence is an identifier, constant, or parenthetical expression. Here is the full text for this macro:

macro doTerms(expr):termToken;

 // Begin by removing any leading white space from the string:

 ?expr := @trim(expr, 0);

 // Okay, call the lexer to extract the next token from the input:

 ?termToken:tokType := lexer(expr);

 // See if the current token is an identifier. If so, assume that
 // it’s an uns32 identifier and emit the code to push its value onto
 // the stack.

 #if(termToken.tokClass = identifier)

 // If we've got an identifier, emit the code to
 // push that identifier onto the stack.

 push(@text(termToken.lexeme));

 // If it wasn’t an identifier, see if it’s a numeric constant.
 // If so, emit the code that will push this value onto the stack.

 #elseif(termToken.tokClass = intconst)

 // If we've got a constant, emit the code to push
 // that constant onto the stack.

 pushd(@text(termToken.lexeme));

 // If it’s not an identifier or an integer constant, see if it’s
 // a parenthesized subexpression. If so, invoke the doCmpOps macro
 // to do the real work of code generation for the subexpression.
 // The call to the doCmpOps macro emits all the code needed to push
Page 1012 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
 // the result of the subexpression onto the stack; note that this
 // macro doesn’t need to emit any code for the parenthetical expression,
 // all the code emission is handled by doCmpOps.

 #elseif(termToken.tokClass = lparen)

 // If we've got a parenthetical expression, emit
 // the code to leave the parenthesized expression
 // sitting on the stack.

 doCmpOps(expr);

 // We must have a closing right parentheses after the subexpression.
 // Skip any white space and check for the closing ")" here.

 ?expr := @trim(expr, 0);
 ?termToken:tokType := lexer(expr);
 #if(termToken.tokClass <> rparen)

 #error("Expected closing parenthesis: " + termToken.lexeme)

 #endif

 // If we get to this point, then the lexer encountered something besides
 // an identifier, a numeric constant, or a parenthetical expression.

 #else

 #error("Unexpected term: '" + termToken.lexeme + "'")

 #endif

endmacro;

The doTerms macro is responsible for leaving a single item sitting on the top of the 80x86 hardware
stack. That stack item is either the value of an uns32 identifier, the value of an uns32 expression, or the value
left on the stack via a parenthesized subexpression. The important thing to remember is that you can think of
doTerms as a function that emits code that leaves a single item on the top of the 80x86 stack.

The doMulOps macro handles expressions consisting of a single term (items handled by the doTerms
macro) optionally followed by zero or more pairs consisting of a multiplicative operator ("*" or "/") and a
second term. It is especially important to remember that the doMulOps macro does not require the presence
of a multiplicative operator; it will legally process a single term (identifier, numeric constant, or parentheti-
cal expression). If one or more multiplicative operator and term pairs are present, the doMulOps macro will
emit the code that will multiply the values of the two terms together and push the result onto the stack. E.g.,
consider the following:

X * 5

Since there is a multiplicative operator present ("*"), the doMulOps macro will call doTerms to process
the two terms (pushing X and then Y onto the stack) and then the doMulOps macro will emit the code to mul-
tiply the two values on the stack leaving their product on the stack. The complete code for the doMulOps
macro is the following:

macro doMulOps(sexpr):opToken;

 // Process the leading term (not optional). Note that
 // this expansion leaves an item sitting on the stack.

 doTerms(sexpr);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1013

Chapter Nine Volume Five

 // Process all the MULOPs at the current precedence level.
 // (these are optional, there may be zero or more of them.)
 // Begin by removing any leading white space.

 ?sexpr := @trim(sexpr, 0);
 #while(@peekCset(sexpr, MulOps))

 // Save the operator so we know what code we should
 // generate later.

 ?opToken := lexer(sexpr);

 // Get the term following the operator.

 doTerms(sexpr);

 // Okay, the code for the two terms is sitting on
 // the top of the stack (left operand at [esp+4] and
 // the right operand at [esp]). Emit the code to
 // perform the specified operation.

 #if(opToken.lexeme = "*")

 // For multiplication, compute
 // [esp+4] = [esp] * [esp+4] and
 // then pop the junk off the top of stack.

 pop(eax);
 mul((type dword [esp]));
 mov(eax, [esp]);

 #elseif(opToken.lexeme = "/")

 // For division, compute
 // [esp+4] = [esp+4] / [esp] and
 // then pop the junk off the top of stack.

 mov([esp+4], eax);
 xor(edx, edx);
 div([esp], edx:eax);
 pop(edx);
 mov(eax, [esp]);

 #endif
 ?sexpr := @trim(sexpr, 0);

 #endwhile

endmacro;

Note the simplicity of the code generation. This macro assumes that doTerms has done its job leaving
two values sitting on the top of the stack. Therefore, the only code this macro has to generate is the code to
pop these two values off the stack and them multiply or divide them, depending on the actual operator that is
present. The code generation uses the sequences appearing earlier in this section.

The doAddOps and doCmpOps macros work in a manner nearly identical to doMulOps. The only dif-
ference is the operators these macros handle (and, of course, the code that they generate). See Program 9.7,
below, for details concerning these macros.
Page 1014 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
Once we’ve got the lexer and the four parser/code generation macros written, writing the u32expr macro
is quite easy. All that u32expr needs to do is call the doCmpOps macro to compile the expression and then
pop the result off the stack and store it into the destination register appearing as the first operand. This
requires little more than a single POP instruction.

About the only thing interesting in the u32expr macro is the presence of the RETURNS statement. This
HLA statement takes the following form:

returns({ statements }, string_expression)

This statement simply compiles the sequence of statements appearing between the braces in the first
operand and then it uses the second string_expression operand as the "returns" value for this statement. As
you may recall from the discussion of instruction composition (see “Instruction Composition in HLA” on
page 538), HLA substitutes the "returns" value of a statement in place of that statement if it appears as an
operand to another expression. The RETURNS statement appearing in the u32expr macro returns the regis-
ter you specify as the first parameter as the "returns" value for the macro invocation. This lets you invoke the
u32expr macro as an operand to many different instructions (that accept a 32-bit register as an operand). For
example, the following u32expr macro invocations are all legal:

mov(u32expr(eax, i*j+k/15 - 2), m);
if(u32expr(edx, eax < (ebx-2)*ecx)) then ... endif;
funcCall(u32expr(eax, (x*x + y*y)/z*z), 16, 2);

Well, without further ado, here’s the complete code for the u32expr compiler and some test code that
checks out the operation of this macro:

// u32expr.hla
//
// This program demonstrates how to write an "expression compiler"
// using the HLA compile-time language. This code defines a macro
// (u32expr) that accepts an arithmetic expression as a parameter.
// This macro compiles that expression into a sequence of HLA
// machine language instructions that will compute the result of
// that expression at run-time.
//
// The u32expr macro does have some severe limitations.
// First of all, it only support uns32 operands.
// Second, it only supports the following arithmetic
// operations:
//
// +, -, *, /, <, <=, >, >=, =, <>.
//
// The comparison operators produce zero (false) or
// one (true) depending upon the result of the (unsigned)
// comparison.
//
// The syntax for a call to u32expr is
//
// u32expr(register, expression)
//
// The macro computes the result of the expression and
// leaves this result sitting in the register specified
// as the first operand. This register overwrites the
// values in the EAX and EDX registers (though these
// two registers are fine as the destination for the
// result).
//
// This macro also returns the first (register) parameter
// as its "returns" value, so you may use u32expr anywhere
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1015

Chapter Nine Volume Five
// a 32-bit register is legal, e.g.,
//
// if(u32expr(eax, (i*3-2) < j)) then
//
// << do something if (i*3-2) < j >>
//
// endif;
//
// The statement above computes true or false in EAX and the
// "if" statement processes this result accordingly.

program TestExpr;
#include("stdlib.hhf")

// Some special character classifications the lexical analyzer uses.

const

 // tok1stIDChar is the set of legal characters that
 // can begin an identifier. tokIDChars is the set
 // of characters that may follow the first character
 // of an identifier.

 tok1stIDChar := { 'a'..'z', 'A'..'Z', '_' };
 tokIDChars := { 'a'..'z', 'A'..'Z', '0'..'9', '_' };

 // digits, hexDigits, and binDigits are the sets
 // of characters that are legal in integer constants.
 // Note that these definitions don't allow underscores
 // in numbers, although it would be a simple fix to
 // allow this.

 digits := { '0'..'9' };
 hexDigits := { '0'..'9', 'a'..'f', 'A'..'F' };
 binDigits := { '0'..'1' };

 // CmpOps, PlusOps, and MulOps are the sets of
 // operator characters legal at three levels
 // of precedence that this parser supports.

 CmpOps := { '>', '<', '=', '!' };
 PlusOps := { '+', '-' };
 MulOps := { '*', '/' };

type

 // tokEnum-
 //
 // Data values the lexical analyzer returns to quickly
 // determine the classification of a lexeme. By
 // classifying the token with one of these values, the
 // parser can more quickly process the current token.
 // I.e., rather than having to compare a scanned item
 // against the two strings "+" and "-", the parser can
 // simply check to see if the current item is a "plusOp"
Page 1016 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
 // (which indicates that the lexeme is "+" or "-").
 // This speeds up the compilation of the expression since
 // only half the comparisons are needed and they are
 // simple integer comparisons rather than string comparisons.

 tokEnum: enum
 {
 identifier,
 intconst,
 lparen,
 rparen,
 plusOp,
 mulOp,
 cmpOp
 };

 // tokType-
 //
 // This is the "token" type returned by the lexical analyzer.
 // The "lexeme" field contains the string that matches the
 // current item scanned by the lexer. The "tokClass" field
 // contains a generic classifcation for the symbol (see the
 // "tokEnum" type above).

 tokType:
 record

 lexeme:string;
 tokClass:tokEnum;

 endrecord;

// lexer-
//
// This is the lexical analyzer. On each call it extracts a
// lexical item from the front of the string passed to it as a
// parameter (it also removes this item from the front of the
// string). If it successfully matches a token, this macro
// returns a tokType constant as its return value.

macro lexer(input):theLexeme,boolResult;

 ?theLexeme:string; // Holds the string we scan.
 ?boolResult:boolean; // Used only as a dummy value.

 // Check for an identifier.

 #if(@peekCset(input, tok1stIDChar))

 // If it began with a legal ID character, extract all
 // ID characters that follow. The extracted string
 // goes into "theLexeme" and this call also removes
 // those characters from the input string.

 ?boolResult := @oneOrMoreCset(input, tokIDChars, input, theLexeme);

 // Return a tokType constant with the identifier string and
 // the "identifier" token value:

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1017

Chapter Nine Volume Five
 tokType:[theLexeme, identifier]

 // Check for a decimal numeric constant.

 #elseif(@peekCset(input, digits))

 // If the current item began with a decimal digit, extract
 // all the following digits and put them into "theLexeme".
 // Also remove these characters from the input string.

 ?boolResult := @oneOrMoreCset(input, digits, input, theLexeme);

 // Return an integer constant as the current token.

 tokType:[theLexeme, intconst]

 // Check for a hexadecimal numeric constant.

 #elseif(@peekChar(input, '$'))

 // If we had a "$" symbol, grab it and any following
 // hexadecimal digits. Set boolResult true if there
 // is at least one hexadecimal digit. As usual, extract
 // the hex value to "theLexeme" and remove the value
 // from the input string:

 ?boolResult := @oneChar(input, '$', input) &
 @oneOrMoreCset(input, hexDigits, input, theLexeme);

 // Returns the hex constant string as an intconst object:

 tokType:['$' + theLexeme, intconst]

 // Check for a binary numeric constant.

 #elseif(@peekChar(input, '%'))

 // See the comments for hexadecimal constants. This boolean
 // constant scanner works the same way.

 ?boolResult := @oneChar(input, '%', input) &
 @oneOrMoreCset(input, binDigits, input, theLexeme);
 tokType:['%' + theLexeme, intconst]

 // Handle the "+" and "-" operators here.

 #elseif(@peekCset(input, PlusOps))

 // If it was a "+" or "-" sign, extract it from the input
 // and return it as a "plusOp" token.

 ?boolResult := @oneCset(input, PlusOps, input, theLexeme);
 tokType:[theLexeme, plusOp]

Page 1018 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages

 // Handle the "*" and "/" operators here.

 #elseif(@peekCset(input, MulOps))

 // If it was a "*" or "/" sign, extract it from the input
 // and return it as a "mulOp" token.

 ?boolResult := @oneCset(input, MulOps, input, theLexeme);
 tokType:[theLexeme, mulOp]

 // Handle the "=" ("=="), "<>" ("!="), "<", "<=", ">", and ">="
 // operators here.

 #elseif(@peekCset(input, CmpOps))

 // Note that we must check for two-character operators
 // first so we don't confuse them with the single
 // character opertors:

 #if
 (
 @matchStr(input, ">=", input, theLexeme)
 | @matchStr(input, "<=", input, theLexeme)
 | @matchStr(input, "<>", input, theLexeme)
)

 tokType:[theLexeme, cmpOp]

 #elseif(@matchStr(input, "!=", input, theLexeme))

 tokType:["<>", cmpOp]

 #elseif(@matchStr(input, "==", input, theLexeme))

 tokType:["=", cmpOp]

 #elseif(@oneCset(input, {'>', '<', '='}, input, theLexeme))

 tokType:[theLexeme, cmpOp]

 #else

 #error("Illegal comparison operator: " + input)

 #endif

 // Handle the parentheses down here.

 #elseif(@oneChar(input, '(', input, theLexeme))

 tokType:["(", lparen]

 #elseif(@oneChar(input, ')', input, theLexeme))

 tokType:[")", rparen]

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1019

Chapter Nine Volume Five

 // Anything else is an illegal character.

 #else

 #error
 (
 "Illegal character in expression: '" +
 @substr(input, 0, 1) +
 "' ($" +
 string(dword(@substr(input, 0, 1))) +
 ")"
)
 ?input := @substr(input, 1, @length(input) - 1);

 #endif

endmacro;

// Handle identifiers, constants, and sub-expressions within
// paretheses within this macro.
//
// terms-> identifier | intconst | '(' CmpOps ')'
//
// This compile time function does the following:
//
// (1) If it encounters an indentifier, it emits the
// following instruction to the code stream:
//
// push(identifier);
//
// (2) If it encounters an (unsigned) integer constant, it emits
// the following instruction to the code stream:
//
// pushd(constant_value);
//
// (3) If it encounters an expression surrounded by parentheses,
// then it emits whatever instruction sequence is necessary
// to leave the value of that (unsigned integer) expression
// sitting on the top of the stack.
//
// (4) If the current lexeme is none of the above, then this
// macro prints an appropriate error message.
//
// The end result of the execution of this macro is the emission
// of some code that leaves a single 32-bit unsigned value sitting
// on the top of the 80x86 stack (assuming no error).

macro doTerms(expr):termToken;

 ?expr := @trim(expr, 0);
 ?termToken:tokType := lexer(expr);
 #if(termToken.tokClass = identifier)

 // If we've got an identifier, emit the code to
 // push that identifier onto the stack.

 push(@text(termToken.lexeme));
Page 1020 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages

 #elseif(termToken.tokClass = intconst)

 // If we've got a constant, emit the code to push
 // that constant onto the stack.

 pushd(@text(termToken.lexeme));

 #elseif(termToken.tokClass = lparen)

 // If we've got a parenthetical expression, emit
 // the code to leave the parenthesized expression
 // sitting on the stack.

 doCmpOps(expr);
 ?expr := @trim(expr, 0);
 ?termToken:tokType := lexer(expr);
 #if(termToken.tokClass <> rparen)

 #error("Expected closing parenthesis: " + termToken.lexeme)

 #endif

 #else

 #error("Unexpected term: '" + termToken.lexeme + "'")

 #endif

endmacro;

// Handle the multiplication, division, and modulo operations here.
//
// MulOps-> terms (mulOp terms)*
//
// The above grammar production tells us that a "MulOps" consists
// of a "terms" expansion followed by zero or more instances of a
// "mulop" followed by a "terms" expansion (like wildcard filename
// expansions, the "*" indicates zero or more copies of the things
// inside the parentheses).
//
// This code assumes that "terms" leaves whatever operands/expressions
// it processes sitting on the 80x86 stack at run time. If there is
// a single term (no optional mulOp/term following), then this code
// does nothing (it leaves the result on the stack that was pushed
// by the "terms" expansion). If one or more mulOp/terms pairs are
// present, then for each pair this code assumes that the two "terms"
// expansions left some value on the stack. This code will pop
// those two values off the stack and multiply or divide them and
// push the result back onto the stack (sort of like the way the
// FPU multiplies or divides values on the FPU stack).
//
// If there are three or more operands in a row, separated by
// mulops ("*" or "/") then this macro will process them in
// a left-to-right fashion, popping each pair of values off the
// stack, operating on them, pushing the result, and then processing
// the next pair. E.g.,
//
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1021

Chapter Nine Volume Five
// i * j * k
//
// yields:
//
// push(i); // From the "terms" macro.
// push(j); // From the "terms" macro.
//
// pop(eax); // Compute the product of i*j
// mul((type dword [esp]));
// mov(eax, [esp]);
//
// push(k); // From the "terms" macro.
//
// pop(eax); // Pop K
// mul((type dword [esp])); // Compute K* (i*j) [i*j is value on TOS].
// mov(eax, [esp]); // Save product on TOS.

macro doMulOps(sexpr):opToken;

 // Process the leading term (not optional). Note that
 // this expansion leaves an item sitting on the stack.

 doTerms(sexpr);

 // Process all the MULOPs at the current precedence level.
 // (these are optional, there may be zero or more of them.)

 ?sexpr := @trim(sexpr, 0);
 #while(@peekCset(sexpr, MulOps))

 // Save the operator so we know what code we should
 // generate later.

 ?opToken := lexer(sexpr);

 // Get the term following the operator.

 doTerms(sexpr);

 // Okay, the code for the two terms is sitting on
 // the top of the stack (left operand at [esp+4] and
 // the right operand at [esp]). Emit the code to
 // perform the specified operation.

 #if(opToken.lexeme = "*")

 // For multiplication, compute
 // [esp+4] = [esp] * [esp+4] and
 // then pop the junk off the top of stack.

 pop(eax);
 mul((type dword [esp]));
 mov(eax, [esp]);

 #elseif(opToken.lexeme = "/")

 // For division, compute
 // [esp+4] = [esp+4] / [esp] and
 // then pop the junk off the top of stack.

Page 1022 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
 mov([esp+4], eax);
 xor(edx, edx);
 div([esp], edx:eax);
 pop(edx);
 mov(eax, [esp]);

 #endif
 ?sexpr := @trim(sexpr, 0);

 #endwhile

endmacro;

// Handle the addition, and subtraction operations here.
//
// AddOps-> MulOps (addOp MulOps)*
//
// The above grammar production tells us that an "AddOps" consists
// of a "MulOps" expansion followed by zero or more instances of an
// "addOp" followed by a "MulOps" expansion.
//
// This code assumes that "MulOps" leaves whatever operands/expressions
// it processes sitting on the 80x86 stack at run time. If there is
// a single MulOps item then this code does nothing. If one or more
// addOp/MulOps pairs are present, then for each pair this code
// assumes that the two "MulOps" expansions left some value on the
// stack. This code will pop those two values off the stack and
// add or subtract them and push the result back onto the stack.

macro doAddOps(sexpr):opToken;

 // Process the first operand (or subexpression):

 doMulOps(sexpr);

 // Process all the ADDOPs at the current precedence level.

 ?sexpr := @trim(sexpr, 0);
 #while(@peekCset(sexpr, PlusOps))

 // Save the operator so we know what code we should
 // generate later.

 ?opToken := lexer(sexpr);

 // Get the MulOp following the operator.

 doMulOps(sexpr);

 // Okay, emit the code associated with the operator.

 #if(opToken.lexeme = "+")

 pop(eax);
 add(eax, [esp]);

 #elseif(opToken.lexeme = "-")

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1023

Chapter Nine Volume Five
 pop(eax);
 sub(eax, [esp]);

 #endif

 #endwhile

endmacro;

// Handle the comparison operations here.
//
// CmpOps-> addOps (cmpOp AddOps)*
//
// The above grammar production tells us that a "CmpOps" consists
// of an "AddOps" expansion followed by zero or more instances of an
// "cmpOp" followed by an "AddOps" expansion.
//
// This code assumes that "MulOps" leaves whatever operands/expressions
// it processes sitting on the 80x86 stack at run time. If there is
// a single MulOps item then this code does nothing. If one or more
// addOp/MulOps pairs are present, then for each pair this code
// assumes that the two "MulOps" expansions left some value on the
// stack. This code will pop those two values off the stack and
// add or subtract them and push the result back onto the stack.

macro doCmpOps(sexpr):opToken;

 // Process the first operand:

 doAddOps(sexpr);

 // Process all the CMPOPs at the current precedence level.

 ?sexpr := @trim(sexpr, 0);
 #while(@peekCset(sexpr, CmpOps))

 // Save the operator for the code generation task later.

 ?opToken := lexer(sexpr);

 // Process the item after the comparison operator.

 doAddOps(sexpr);

 // Generate the code to compare [esp+4] against [esp]
 // and leave true/false sitting on the stack in place
 // of these two operands.

 #if(opToken.lexeme = "<")

 pop(eax);
 cmp([esp], eax);
 setb(al);
 movzx(al, eax);
 mov(eax, [esp]);

 #elseif(opToken.lexeme = "<=")
Page 1024 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages

 pop(eax);
 cmp([esp], eax);
 setbe(al);
 movzx(al, eax);
 mov(eax, [esp]);

 #elseif(opToken.lexeme = ">")

 pop(eax);
 cmp([esp], eax);
 seta(al);
 movzx(al, eax);
 mov(eax, [esp]);

 #elseif(opToken.lexeme = ">=")

 pop(eax);
 cmp([esp], eax);
 setae(al);
 movzx(al, eax);
 mov(eax, [esp]);

 #elseif(opToken.lexeme = "=")

 pop(eax);
 cmp([esp], eax);
 sete(al);
 movzx(al, eax);
 mov(eax, [esp]);

 #elseif(opToken.lexeme = "<>")

 pop(eax);
 cmp([esp], eax);
 setne(al);
 movzx(al, eax);
 mov(eax, [esp]);

 #endif

 #endwhile

endmacro;

// General macro that does the expression compliation.
// The first parameter must be a 32-bit register where
// this macro will leave the result. The second parameter
// is the expression to compile. The expression compiler
// will destroy the value in EAX and may destroy the value
// in EDX (though EDX and EAX make fine destination registers
// for this macro).
//
// This macro generates poor machine code. It is more a
// "proof of concept" rather than something you should use
// all the time. Nevertheless, if you don't have serious
// size or time constraints on your code, this macro can be
// quite handy. Writing an optimizer is left as an exercise
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1025

Chapter Nine Volume Five
// to the interested reader.

macro u32expr(reg, expr):sexpr;

 // The "returns" statement processes the first operand
 // as a normal sequence of statements and then returns
 // the second operand as the "returns" value for this
 // macro.

 returns
 (
 {

 ?sexpr:string := @string:expr;
 #if(!@IsReg32(reg))

 #error("Expected a 32-bit register")

 #else

 // Process the expression and leave the
 // result sitting in the specified register.

 doCmpOps(sexpr);
 pop(reg);

 #endif
 },

 // Return the specified register as the "returns"
 // value for this compilation:

 @string:reg
)

endmacro;

// The following main program provides some examples of the
// use of the above macro:

static
 x:uns32;
 v:uns32 := 5;

begin TestExpr;

 mov(10, x);
 mov(12, ecx);

 // Compute:
 //
 // edi := (x*3/v + %1010 == 16) + ecx;
 //
 // This is equivalent to:
 //
 // edi := (10*3/5 + %1010 == 16) + 12
Page 1026 © 2001, By Randall Hyde Beta Draft - Do not distribute

Domain Specific Embedded Languages
 // := (30/5 + %1010 == 16) + 12
 // := (6 + 10 == 16) + 12
 // := (16 == 16) + 12
 // := (1) + 12
 // := 13
 //
 // This macro invocation emits the following code:
 //
 // push(x);
 // pushd(3);
 // pop(eax);
 // mul((type dword [esp]));
 // mov(eax, [esp]);
 // push(v);
 // mov([esp+4], eax);
 // xor edx, edx
 // div([esp], edx:eax);
 // pop(edx);
 // mov(eax, [esp]);
 // pushd(10);
 // pop(eax);
 // add(eax, [esp]);
 // pushd(16);
 // pop(eax);
 // cmp([esp], eax);
 // sete(al);
 // movzx(al, eax);
 // mov(eax, [esp+0]);
 // push(ecx);
 // pop(eax);
 // add(eax, [esp]);
 // pop(edi);

 u32expr(edi, (x*3/v+%1010 == 16) + ecx);
 stdout.put("Sum = ", (type uns32 edi), nl);

 // Now compute:
 //
 // eax := x + ecx/2
 // := 10 + 12/2
 // := 10 + 6
 // := 16
 //
 // This macro emits the following code:
 //
 // push(x);
 // push(ecx);
 // pushd(2);
 // mov([esp+4], eax);
 // xor(edx, edx);
 // div([esp], edx:eax);
 // pop(edx);
 // mov(eax, [esp]);
 // pop(eax);
 // add(eax, [esp]);
 // pop(eax);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1027

Chapter Nine Volume Five
 u32expr(eax, x+ecx/2);
 stdout.put("x=", x, " ecx=", (type uns32 ecx), " v=", v, nl);
 stdout.put("x+ecx/2 = ", (type uns32 eax), nl);

 // Now determine if (x+ecx/2) < v
 // (it is not since (x+ecx/2)=16 and v = 5.)
 //
 // This macro invocation emits the following code:
 //
 // push(x);
 // push(ecx);
 // pushd(2);
 // mov([esp+4], eax);
 // xor(edx, edx);
 // div([esp], edx:eax);
 // pop(edx);
 // mov(eax, [esp]);
 // pop(eax);
 // add(eax, [esp]);
 // push(v);
 // pop(eax);
 // cmp(eax, [esp+0]);
 // setb(al);
 // movzx(al, eax);
 // mov(eax, [esp+0]);
 // pop(eax);

 if(u32expr(eax, x+ecx/2 < v)) then

 stdout.put("x+ecx/2 < v" nl);

 else

 stdout.put("x+ecx/2 >= v" nl);

 endif;

end TestExpr;

Program 9.7 Uns32 Expression Compiler

9.4 Putting It All Together

The ability to extend the HLA language is one of the most powerful features of the HLA language. In
this chapter you got to explore the use of several tools that allow you to extend the base language. Although
a complete treatise on language design and implementation is beyond the scope of this chapter, further study
in the area of compiler construction will help you learn new techniques for extending the HLA language.
Later volumes in this text, including the volume on advanced string handling, will cover additional topics of
interest to those who want to design and implement their own language constructs.
Page 1028 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
Classes and Objects Chapter Ten

10.1 Chapter Overview

Many modern imperative high level languages now support the notion of classes and objects in their
programming paradigm. C++ (an object version of C) and Delphi (an object version of Pascal) are two good
examples. Of course, these high level language compilers translate their high level source code into
low-level machine code, so it should be pretty obvious that some mechanism exists in machine code for
implementing classes and objects.

Although it has always been possible to implement classes and objects in machine code, most assem-
blers provide poor support for writing object-oriented assembly language programs. Of course, HLA does
not suffer from this drawback as it provides good support for writing object-oriented assembly language pro-
grams. This chapter discusses the general principles behind object-oriented programming (OOP) and how
HLA supports OOP.

10.2 General Principles

Before discussing the mechanisms behind OOP, it is probably a good idea to take a step back and
explore the benefits of using OOP (especially in assembly language programs). Most texts describing the
benefits of OOP will mention buzz-words like “code reuse,” “abstract data types,” “improved development
efficiency,” and so on. While all of these features are nice and are good attributes for a programming para-
digm, a good software engineer would question the use of assembly language in an environment where
“improved development efficiency” is an important goal. After all, you can probably obtain far better effi-
ciency by using a high level language (even in a non-OOP fashion) than you can by using objects in assem-
bly language. If the purported features of OOP don’t seem to apply to assembly language programming,
why bother using OOP in assembly? This section will explore some of those reasons.

The first thing you should realize is that the use of assembly language does not negate the aforemen-
tioned OOP benefits. OOP in assembly language does promote code reuse, it provides a good method for
implementing abstract data types, and it can improve development efficiency in assembly language. In other
words, if you’re dead set on using assembly language, there are benefits to using OOP.

To understand one of the principle benefits of OOP, consider the concept of a global variable. Most pro-
gramming texts strongly recommend against the use of global variables in a program (as does this text).
Interprocedural communication through global variables is dangerous because it is difficult to keep track of
all the possible places in a large program that modify a given global object. Worse, it is very easy when
making enhancements to accidentally reuse a global object for something other than its intended purpose;
this tends to introduce defects into the system.

Despite the well-understood problems with global variables, the semantics of global objects (extended
lifetimes and accessibility from different procedures) are absolutely necessary in various situations. Objects
solve this problem by letting the programmer decide on the lifetime of an object1 as well as allow access to
data fields from different procedures. Objects have several advantages over simple global variables insofar
as objects can control access to their data fields (making it difficult for procedures to accidentally access the
data) and you can also create multiple instances of an object allowing two separate sections of your program
to use their own unique “global” object without interference from the other section.

Of course, objects have many other valuable attributes. One could write several volumes on the benefits
of objects and OOP; this single chapter cannot do this subject justice. The following subsections present
objects with an eye towards using them in HLA/assembly programs. However, if you are a beginning to

1. That is, the time during which the system allocates memory for an object.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1029

Chapter Ten Volume Five
OOP or wish more information about the object-oriented paradigm, you should consult other texts on this
subject.

An important use for classes and objects is to create abstract data types (ADTs). An abstract data type
is a collection of data objects and the functions (which we’ll call methods) that operate on the data. In a pure
abstract data type, the ADT’s methods are the only code that has access to the data fields of the ADT; exter-
nal code may only access the data using function calls to get or set data field values (these are the ADT’s
accessor methods). In real life, for efficiency reasons, most languages that support ADTs allow, at least,
limited access to the data fields of an ADT by external code.

Assembly language is not a language most people associate with ADTs. Nevertheless, HLA provides
several features to allow the creation of rudimentary ADTs. While some might argue that HLA’s facilities
are not as complete as those in a language such as C++ or Java, keep in mind that these differences exist
because HLA is assembly language.

True ADTs should support information hiding. This means that the ADT does not allow the user of an
ADT access to internal data structures and routines which manipulate those structures. In essence, informa-
tion hiding restricts access to an ADT to only the accessor methods provided by the ADT. Assembly lan-
guage, of course, provides very few restrictions. If you are dead set on accessing an object directly, there is
very little HLA can do to prevent you from doing this. However, HLA has some facilities which will provide
a small amount of information hiding capabilities. Combined with some care on your part, you will be able
to enjoy many of the benefits of information hiding within your programs.

The primary facility HLA provides to support information hiding is separate compilation, linkable mod-
ules, and the #INCLUDE/#INCLUDEONCE directives. For our purposes, an abstract data type definition
will consist of two sections: an interface section and an implementation section.

The interface section contains the definitions which must be visible to the application program. In gen-
eral, it should not contain any specific information which would allow the application program to violate the
information hiding principle, but this is often impossible given the nature of assembly language. Neverthe-
less, you should attempt to only reveal what is absolutely necessary within the interface section.

The implementation section contains the code, data structures, etc., to actually implement the ADT.
While some of the methods and data types appearing in the implementation section may be public (by virtue
of appearance within the interface section), many of the subroutines, data items, and so on will be private to
the implementation code. The implementation section is where you hide all the details from the application
program.

If you wish to modify the abstract data type at some point in the future, you will only have to change the
interface and implementation sections. Unless you delete some previously visible object which the applica-
tions use, there will be no need to modify the applications at all.

Although you could place the interface and implementation sections directly in an application program,
this would not promote information hiding or maintainability, especially if you have to include the code in
several different applications. The best approach is to place the implementation section in an include file that
any interested application reads using the HLA #INCLUDE directive and to place the implementation sec-
tion in a separate module that you link with your applications.

The include file would contain EXTERNAL directives, any necessary macros, and other definitions you
want made public. It generally would not contain 80x86 code except, perhaps, in some macros. When an
application wants to make use of an ADT it would include this file.

The separate assembly file containing the implementation section would contain all the procedures,
functions, data objects, etc., to actually implement the ADT. Those names which you want to be public
should appear in the interface include file and have the EXTERNAL attribute. You should also include the
interface include file in the implementation file so you do not have to maintain two sets of EXTERNAL
directives.

One problem with using procedures for data access methods is the fact that many accessor methods are
especially trivial (typically just a MOV instruction) and the overhead of the call and return instructions is
expensive for such trivial operations. For example, suppose you have an ADT whose data object is a struc-
ture, but you do not want to make the field names visible to the application and you really do not want to
allow the application to access the fields of the data structure directly (because the data structure may change
in the future). The normal way to handle this is to supply a method GetField which returns the desired field
Page 1030 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
of the object. However, as pointed out above, this can be very slow. An alternative, for simple access meth-
ods is to use a macro to emit the code to access the desired field. Although code to directly access the data
object appears in the application program (via macro expansion), it will be automatically updated if you ever
change the macro in the interface section by simply assembling your application.

Although it is quite possible to create ADTs using nothing more than separate compilation and, perhaps,
RECORDs, HLA does provide a better solution: the class. Read on to find out about HLA’s support for
classes and objects as well as how to use these to create ADTs.

10.3 Classes in HLA

HLA’s classes provide a good mechanism for creating abstract data types. Fundamentally, a class is little
more than a RECORD declaration that allows the definition of fields other than data fields (e.g., procedures,
constants, and macros). The inclusion of other program declaration objects in the class definition dramati-
cally expands the capabilities of a class over that of a record. For example, with a class it is now possible to
easily define an ADT since classes may include data and methods that operate on that data (procedures).

The principle way to create an abstract data type in HLA is to declare a class data type. Classes in HLA
always appear in the TYPE section and use the following syntax:

classname : class

<< Class declaration section >>

endclass;

The class declaration section is very similar to the local declaration section for a procedure insofar as it
allows CONST, VAL, VAR, and STATIC variable declaration sections. Classes also let you define macros
and specify procedure, iterator, and method prototypes (method declarations are legal only in classes). Con-
spicuously absent from this list is the TYPE declaration section. You cannot declare new types within a
class.

A method is a special type of procedure that appears only within a class. A little later you will see the
difference between procedures and methods, for now you can treat them as being one and the same. Other
than a few subtle details regarding class initialization and the use of pointers to classes, their semantics are
identical2. Generally, if you don’t know whether to use a procedure or method in a class, the safest bet is to
use a method.

You do not place procedure/iterator/method code within a class. Instead you simply supply prototypes
for these routines. A routine prototype consists of the PROCEDURE, ITERATOR, or METHOD reserved
word, the routine name, any parameters, and a couple of optional procedure attributes (RETURNS and
EXTERNAL). The actual routine definition (i.e., the body of the routine and any local declarations it needs)
appears outside the class.

The following example demonstrates a typical class declaration appearing in the TYPE section:

TYPE
TypicalClass: class

const
TCconst := 5;

val
TCval := 6;

var
TCvar : uns32; // Private field used only by TCproc.

2. Note, however, that the difference between procedures and methods makes all the difference in the world to the object-ori-
ented programming paradigm. Hence the inclusion of methods in HLA’s class definitions.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1031

Chapter Ten Volume Five
static
TCstatic : int32;

procedure TCproc(u:uns32); returns("eax");
iterator TCiter(i:int32); external;
method TCmethod(c:char);

endclass;

As you can see, classes are very similar to records in HLA. Indeed, you can think of a record as being a
class that only allows VAR declarations. HLA implements classes in a fashion quite similar to records inso-
far as it allocates sequential data fields in sequential memory locations. In fact, with only one minor excep-
tion, there is almost no difference between a RECORD declaration and a CLASS declaration that only has a
VAR declaration section. Later you’ll see exactly how HLA implements classes, but for now you can
assume that HLA implements them the same as it does records and you won’t be too far off the mark.

You can access the TCvar and TCstatic fields (in the class above) just like a record’s fields. You access
the CONST and VAL fields in a similar manner. If a variable of type TypicalClass has the name obj, you
can access the fields of obj as follows:

mov (obj.TCconst, eax);
mov(obj.TCval, ebx);
add(obj.TCvar, eax);
add(obj.TCstatic, ebx);
obj.TCproc(20); // Calls the TCproc procedure in TypicalClass.
etc.

If an application program includes the class declaration above, it can create variables using the Typical-
Class type and perform operations using the above methods. Unfortunately, the application program can also
access the fields of the ADT data type with impunity. For example, if a program created a variable MyClass
of type TypicalClass, then it could easily execute instructions like “MOV(MyClass.TCvar, eax);” even
though this field might be private to the implementation section. Unfortunately, if you are going to allow an
application to declare a variable of type TypicalClass, the field names will have to be visible. While there are
some tricks we could play with HLA’s class definitions to help hide the private fields, the best solution is to
thoroughly comment the private fields and then exercise some restraint when accessing the fields of that
class. Specifically, this means that ADTs you create using HLA’s classes cannot be “pure” ADTs since HLA
allows direct access to the data fields. However, with a little discipline, you can simulate a pure ADT by
simply electing not to access such fields outside the class’ methods, procedures, and iterators.

Prototypes appearing in a class are effectively FORWARD declarations. Like normal forward declara-
tions, all procedures, iterators, and methods you define in a class must have an actual implementation later in
the code. Alternately, you may attach the EXTERNAL keyword to the end of a procedure, iterator, or
method declaration within a class to inform HLA that the actual code appears in a separate module. As a
general rule, class declarations appear in header files and represent the interface section of an ADT. The pro-
cedure, iterator, and method bodies appear in the implementation section which is usually a separate source
file that you compile separately and link with the modules that use the class.

The following is an example of a sample class procedure implementation:

procedure TypicalClass.TCproc(u:uns32); nodisplay;
<< Local declarations for this procedure >>

begin TCproc;

<< Code to implement whatever this procedure does >>

end TCProc;

There are several differences between a standard procedure declaration and a class procedure declara-
tion. First, and most obvious, the procedure name includes the class name (e.g., TypicalClass.TCproc). This
differentiates this class procedure definition from a regular procedure that just happens to have the name
Page 1032 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
TCproc. Note, however, that you do not have to repeat the class name before the procedure name in the
BEGIN and END clauses of the procedure.

A second difference between class procedures and non-class procedures is not obvious. Some proce-
dure attributes (EXTERNAL, RETURNS, CDECL, PASCAL, and STDCALL) are legal only in the proto-
type declaration appearing within the class while other attributes (NOFRAME, NODISPLAY,
NOALIGNSTK, and ALIGN) are legal only within the procedure definition and not within the class. Fortu-
nately, HLA provides helpful error messages if you stick the option in the wrong place, so you don’t have to
memorize this rule.

If a class routine’s prototype does not have the EXTERNAL option, the compilation unit (that is, the
PROGRAM or UNIT) containing the class declaration must also contain the routine’s definition or HLA will
generate an error at the end of the compilation. For small, local, classes (i.e., when you’re embedding the
class declaration and routine definitions in the same compilation unit) the convention is to place the class’
procedure, iterator, and method definitions in the source file shortly after the class declaration. For larger
systems (i.e., when separately compiling a class’ routines), the convention is to place the class declaration in
a header file by itself and place all the procedure, iterator, and method definitions in a separate HLA unit and
compile them by themselves.

10.4 Objects

Remember, a class definition is just a type. Therefore, when you declare a class type you haven’t cre-
ated a variable whose fields you can manipulate. An object is an instance of a class; that is, an object is a
variable whose type is some class type. You declare objects (i.e., class variables) the same way you declare
other variables: in a VAR, STATIC, or STORAGE section3. A pair of sample object declarations follow:

var
T1: TypicalClass;
T2: TypicalClass;

For a given class object, HLA allocates storage for each variable appearing in the VAR section of the
class declaration. If you have two objects, T1 and T2, of type TypicalClass then T1.TCvar is unique as is
T2.TCvar. This is the intuitive result (similar to RECORD declarations); most data fields you define in a
class will appear in the VAR declaration section.

Static data objects (e.g., those you declare in the STATIC section of a class declaration) are not unique
among the objects of that class; that is, HLA allocates only a single static variable that all variables of that
class share. For example, consider the following (partial) class declaration and object declarations:

type
sc: class

var
i:int32;

static
s:int32;
.
.
.

endclass;

var
s1: sc;
s2: sc;

In this example, s1.i and s2.i are different variables. However, s1.s and s2.s are aliases of one another
Therefore, an instruction like “mov(5, s1.s);” also stores five into s2.s. Generally you use static class vari-

3. Technically, you could also declare an object in a READONLY section, but HLA does not allow you to define class con-
stants, so there is little utility in declaring class objects in the READONLY section.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1033

Chapter Ten Volume Five
ables to maintain information about the whole class while you use class VAR objects to maintain informa-
tion about the specific object. Since keeping track of class information is relatively rare, you will probably
declare most class data fields in a VAR section.

You can also create dynamic instances of a class and refer to those dynamic objects via pointers. In fact,
this is probably the most common form of object storage and access. The following code shows how to cre-
ate pointers to objects and how you can dynamically allocate storage for an object:

var
pSC: pointer to sc;

.

.

.
malloc(@size(sc));
mov(eax, pSC);

.

.

.
mov(pSC, ebx);
mov((type sc [ebx]).i, eax);

Note the use of type coercion to cast the pointer in EBX as type sc.

10.5 Inheritance

Inheritance is one of the most fundamental ideas behind object-oriented programming. The basic idea
behind inheritance is that a class inherits, or copies, all the fields from some class and then possibly expands
the number of fields in the new data type. For example, suppose you created a data type point which
describes a point in the planar (two dimensional) space. The class for this point might look like the follow-
ing:

type
point: class

var
x:int32;
y:int32;
method distance;

endclass;

Suppose you want to create a point in 3D space rather than 2D space. You can easily build such a data
type as follows:

type
point3D: class inherits(point)

var
z:int32;

endclass;

The INHERITS option on the CLASS declaration tells HLA to insert the fields of point at the beginning of
the class. In this case, point3D inherits the fields of point. HLA always places the inherited fields at the
beginning of a class object. The reason for this will become clear a little later. If you have an instance of
point3D which you call P3, then the following 80x86 instructions are all legal:

mov(P3.x, eax);
add(P3.y, eax);
mov(eax, P3.z);
Page 1034 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
P3.distance();

Note that the P3.distance method invocation in this example calls the point.distance method. You do
not have to write a separate distance method for the point3D class unless you really want to do so (see the
next section for details). Just like the x and y fields, point3D objects inherit point’s methods.

10.6 Overriding

Overriding is the process of replacing an existing method in an inherited class with one more suitable
for the new class. In the point and point3D examples appearing in the previous section, the distance method
(presumably) computes the distance from the origin to the specified point. For a point on a two-dimensional
plane, you can compute the distance using the function:

However, the distance for a point in 3D space is given by the equation:

Clearly, if you call the distance function for point for a point3D object you will get an incorrect answer. In
the previous section, however, you saw that the P3 object calls the distance function inherited from the point
class. Therefore, this would produce an incorrect result.

In this situation the point3D data type must override the distance method with one that computes the
correct value. You cannot simply redefine the point3D class by adding a distance method prototype:

type
point3D: class inherits(point)

var
z:int32;

method distance; // This doesn’t work!

endclass;

The problem with the distance method declaration above is that point3D already has a distance method – the
one that it inherits from the point class. HLA will complain because it doesn’t like two methods with the
same name in a single class.

To solve this problem, we need some mechanism by which we can override the declaration of point.dis-
tance and replace it with a declaration for point3D.distance. To do this, you use the OVERRIDE keyword
before the method declaration:

type
point3D: class inherits(point)

var
z:int32;

override method distance; // This will work!

endclass;

The OVERRIDE prefix tells HLA to ignore the fact that point3D inherits a method named distance from the
point class. Now, any call to the distance method via a point3D object will call the point3D.distance method
rather than point.distance. Of course, once you override a method using the OVERRIDE prefix, you must
supply the method in the implementation section of your code, e.g.,

method point3D.distance; nodisplay;

<< local declarations for the distance function>>

dist = x2+y2

dist = x2+y2+z2
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1035

Chapter Ten Volume Five
begin distance;

<< Code to implement the distance function >>

end distance;

10.7 Virtual Methods vs. Static Procedures

A little earlier, this chapter suggested that you could treat class methods and class procedures the same.
There are, in fact, some major differences between the two (after all, why have methods if they’re the same
as procedures?). As it turns out, the differences between methods and procedures is crucial if you want to
develop object-oriented programs. Methods provide the second feature necessary to support true polymor-
phism: virtual procedure calls4. A virtual procedure call is just a fancy name for an indirect procedure call
(using a pointer associated with the object). The key benefit of virtual procedures is that the system automat-
ically calls the right method when using pointers to generic objects.

Consider the following declarations using the point class from the previous sections:

var
P2: point;
p: pointer to point;

Given the declarations above, the following assembly statements are all legal:

mov(P2.x, eax);
mov(P2.y, ecx);
P2.distance(); // Calls point3D.distance.

lea(ebx, P2); // Store address of P2 into P.
mov(ebx, P);
P.distance(); // Calls point.distance.

Note that HLA lets you call a method via a pointer to an object rather than directly via an object variable.
This is a crucial feature of objects in HLA and a key to implementing virtual method calls.

The magic behind polymorphism and inheritance is that object pointers are generic. In general, when
your program references data indirectly through a pointer, the value of the pointer should be the address of
the underlying data type associated with that pointer. For example, if you have a pointer to a 16-bit unsigned
integer, you wouldn’t normally use that pointer to access a 32-bit signed integer value. Similarly, if you have
a pointer to some record, you would not normally cast that pointer to some other record type and access the
fields of that other type5. With pointers to class objects, however, we can lift this restriction a bit. Pointers
to objects may legally contain the address of the object’s type or the address of any object that inherits the
fields of that type. Consider the following declarations that use the point and point3D types from the previ-
ous examples:

var
P2: point;
P3: point3D;
p: pointer to point;

.

.

.
lea(ebx, P2);
mov(ebx, p);

4. Polymorphism literally means “many-faced.” In the context of object-oriented programming polymorphism means that
the same method name, e.g., distance, and refer to one of several different methods.
5. Of course, assembly language programmers break rules like this all the time. For now, let’s assume we’re playing by the
rules and only access the data using the data type associated with the pointer.
Page 1036 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
p.distance(); // Calls the point.distance method.
.
.
.

lea(ebx, P3);
mov(ebx, p); // Yes, this is semantically legal.
p.distance(); // Surprise, this calls point3D.distance.

Since p is a pointer to a point object, it might seem intuitive for p.distance to call the point.distance
method. However, methods are polymorphic. If you’ve got a pointer to an object and you call a method
associated with that object, the system will call the actual (overridden) method associated with the object,
not the method specifically associated with the pointer’s class type.

Class procedures behave differently than methods with respect to overridden procedures. When you
call a class procedure indirectly through an object pointer, the system will always call the procedure associ-
ated with the underlying class associated with the pointer. So had distance been a procedure rather than a
method in the previous examples, the “p.distance();” invocation would always call point.distance, even if p
is pointing at a point3D object. The section on Object Initialization, later in this chapter, explains why meth-
ods and procedures are different (see “Object Implementation” on page 1040).

Note that iterators are also virtual; so like methods an object iterator invocation will always call the
(overridden) iterator associated with the actual object whose address the pointer contains. To differentiate
the semantics of methods and iterators from procedures, we will refer to the method/iterator calling seman-
tics as virtual procedures and the calling semantics of a class procedure as a static procedure.

10.8 Writing Class Methods, Iterators, and Procedures

For each class procedure, method, and iterator prototype appearing in a class definition, there must be a
corresponding procedure, method, or iterator appearing within the program (for the sake of brevity, this sec-
tion will use the term routine to mean procedure, method, or iterator from this point forward). If the proto-
type does not contain the EXTERNAL option, then the code must appear in the same compilation unit as the
class declaration. If the EXTERNAL option does follow the prototype, then the code may appear in the
same compilation unit or a different compilation unit (as long as you link the resulting object file with the
code containing the class declaration). Like external (non-class) procedures and iterators, if you fail to pro-
vide the code the linker will complain when you attempt to create an executable file. To reduce the size of
the following examples, they will all define their routines in the same source file as the class declaration.

HLA class routines must always follow the class declaration in a compilation unit. If you are compiling
your routines in a separate unit, the class declarations must still precede the code with the class declaration
(usually via an #INCLUDE file). If you haven’t defined the class by the time you define a routine like
point.distance, HLA doesn’t know that point is a class and, therefore, doesn’t know how to handle the rou-
tine’s definition.

Consider the following declarations for a point2D class:

type
point2D: class

const
UnitDistance: real32 := 1.0;

var
x: real32;
y: real32;

static
LastDistance: real32;

method distance(fromX: real32; fromY:real32); returns("st0");
procedure InitLastDistance;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1037

Chapter Ten Volume Five
endclass;

The distance function for this class should compute the distance from the object’s point to
(fromX,fromY). The following formula describes this computation:

A first pass at writing the distance method might produce the following code:

method point2D.distance(fromX:real32; fromY:real32); nodisplay;
begin distance;

fld(x); // Note: this doesn’t work!
fld(fromX); // Compute (x-fromX)
fsub();
fld(st0); // Duplicate value on TOS.
fmul(); // Compute square of difference.

fld(y); // This doesn’t work either.
fld(fromY); // Compute (y-fromY)
fsub();
fld(st0); // Compute the square of the difference.
fmul();

fsqrt();

end distance;

This code probably looks like it should work to someone who is familiar with an object-oriented pro-
gramming language like C++ or Delphi. However, as the comments indicate, the instructions that push the x
and y variables onto the FPU stack don’t work – HLA doesn’t automatically define the symbols associated
with the data fields of a class within that class’ routines.

To learn how to access the data fields of a class within that class’ routines, we need to back up a moment
and discover some very important implementation details concerning HLA’s classes. To do this, consider
the following variable declarations:

var
Origin: point2D;
PtInSpace: point2D;

Remember, whenever you create two objects like Origin and PtInSpace, HLA reserves storage for the x
and y data fields for both of these objects. However, there is only one copy of the point2D.distance method
in memory. Therefore, were you to call Origin.distance and PtInSpace.distance, the system would call the
same routine for both method invocations. Once inside that method, one has to wonder what an instruction
like “fld(x);” would do. How does it associate x with Origin.x or PtInSpace.x? Worse still, how would this
code differentiate between the data field x and a global object x? In HLA, the answer is “it doesn’t.” You do
not specify the data field names within a class routine by simply using their names as though they were com-
mon variables.

To differentiate Origin.x from PtInSpace.x within class routines, HLA automatically passes a pointer to
an object’s data fields whenever you call a class routine. Therefore, you can reference the data fields indi-
rectly off this pointer. HLA passes this object pointer in the ESI register. This is one of the few places where
HLA-generated code will modify one of the 80x86 registers behind your back: anytime you call a class
routine, HLA automatically loads the ESI register with the object’s address. Obviously, you cannot
count on ESI’s value being preserved across class routine class nor can you pass parameters to the class rou-
tine in the ESI register. For class methods and iterators (but not procedures), HLA will also load the EDI
register with the address of the class’ virtual method table (see “Virtual Method Tables” on page 1043).

x fromX–()2
y fromY–()2

+

Page 1038 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
While the virtual method table address isn’t as interesting as the object address, keep in mind that HLA-gen-
erated code will overwrite any value in the EDI register when you call a method or an iterator.

Upon entry into a class routine, ESI contains a pointer to the (non-static) data fields associated with the
class. Therefore, to access fields like x and y (in our point2D example), you could use an address expression
like the following:

(type point2D [esi].x

Since you use ESI as the base address of the object’s data fields, it’s a good idea not to disturb ESI’s value
within the class routines (or, at least, preserve ESI’s value if you need to access the objects data fields after
some point where you must use ESI for some other purpose). Note that if you call an iterator or a method
you do not have to preserve EDI (unless, for some reason, you need access to the virtual method table, which
is unlikely).

Accessing the fields of a data object within a class’ routines is such a common operation that HLA pro-
vides a shorthand notation for casting ESI as a pointer to the class object: THIS. Within a class in HLA, the
reserved word THIS automatically expands to a string of the form “(type classname [esi])” substituting, of
course, the appropriate class name for classname. Using the THIS keyword, we can (correctly) rewrite the
previous distance method as follows:

method point2D.distance(fromX:real32; fromY:real32); nodisplay;
begin distance;

fld(this.x);
fld(fromX); // Compute (x-fromX)
fsub();
fld(st0); // Duplicate value on TOS.
fmul(); // Compute square of difference.

fld(this.y);
fld(fromY); // Compute (y-fromY)
fsub();
fld(st0); // Compute the square of the difference.
fmul();

fsqrt();

end distance;

Don’t forget that calling a class routine wipes out the value in the ESI register. This isn’t obvious from
the syntax of the routine’s invocation. It is especially easy to forget this when calling some class routine
from inside some other class routine; don’t forget that if you do this the internal call wipes out the value in
ESI and on return from that call ESI no longer points at the original object. Always push and pop ESI (or
otherwise preserve ESI’s value) in this situation, e.g.,

.

.

.
fld(this.x); // ESI points at current object.
.
.
.
push(esi); // Preserve ESI across this method call.
SomeObject.SomeMethod();
pop(esi);
.
.
.
lea(ebx, this.x); // ESI points at original object here.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1039

Chapter Ten Volume Five
The THIS keyword provides access to the class variables you declare in the VAR section of a class. You
can also use THIS to call other class routines associated with the current object, e.g.,

this.distance(5.0, 6.0);

To access class constants and STATIC data fields you generally do not use the THIS pointer. HLA asso-
ciates constant and static data fields with the whole class, not a specific object. To access these class mem-
bers, just use the class name in place of the object name. For example, to access the UnitDistance constant
in the point2D class you could use a statement like the following:

fld(point2D.UnitDistance);

As another example, if you wanted to update the LastDistance field in the point2D class each time you com-
puted a distance, you could rewrite the point2D.distance method as follows:

method point2D.distance(fromX:real32; fromY:real32); nodisplay;
begin distance;

fld(this.x);
fld(fromX); // Compute (x-fromX)
fsub();
fld(st0); // Duplicate value on TOS.
fmul(); // Compute square of difference.

fld(this.y);
fld(fromY); // Compute (y-fromY)
fsub();
fld(st0); // Compute the square of the difference.
fmul();

fsqrt();

fst(point2D.LastDistance); // Update shared (STATIC) field.

end distance;

To understand why you use the class name when referring to constants and static objects but you use THIS to
access VAR objects, check out the next section.

Class procedures are also static objects, so it is possible to call a class procedure by specifying the class
name rather than an object name in the procedure invocation, e.g., both of the following are legal:

Origin.InitLastDistance();
point2D.InitLastDistance();

There is, however, a subtle difference between these two class procedure calls. The first call above loads ESI
with the address of the Origin object prior to actually calling the InitLastDistance procedure. The second
call, however, is a direct call to the class procedure without referencing an object; therefore, HLA doesn’t
know what object address to load into the ESI register. In this case, HLA loads NULL (zero) into ESI prior
to calling the InitLastDistance procedure. Because you can call class procedures in this manner, it’s always
a good idea to check the value in ESI within your class procedures to verify that HLA contains an object
address. Checking the value in ESI is a good way to determine which calling mechanism is in use. Later,
this chapter will discuss constructors and object initialization; there you will see a good use for static proce-
dures and calling those procedures directly (rather than through the use of an object).

10.9 Object Implementation

In a high level object-oriented language like C++ or Delphi, it is quite possible to master the use of
objects without really understanding how the machine implements them. One of the reasons for learning
assembly language programming is to fully comprehend low-level implementation details so one can make
Page 1040 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
educated decisions concerning the use of programming constructs like objects. Further, since assembly lan-
guage allows you to poke around with data structures at a very low-level, knowing how HLA implements
objects can help you create certain algorithms that would not be possible without a detailed knowledge of
object implementation. Therefore, this section, and its corresponding subsections, explains the low-level
implementation details you will need to know in order to write object-oriented HLA programs.

HLA implements objects in a manner quite similar to records. In particular, HLA allocates storage for
all VAR objects in a class in a sequential fashion, just like records. Indeed, if a class consists of only VAR
data fields, the memory representation of that class is nearly identical to that of a corresponding RECORD
declaration. Consider the Student record declaration taken from Volume Three and the corresponding class:

type
student: record

Name: char[65];
Major: int16;
SSN: char[12];
Midterm1: int16;
Midterm2: int16;
Final: int16;
Homework: int16;
Projects: int16;

endrecord;

student2: class
Name: char[65];
Major: int16;
SSN: char[12];
Midterm1: int16;
Midterm2: int16;
Final: int16;
Homework: int16;
Projects: int16;

endclass;

Figure 10.1 Student RECORD Implementation in Memory

Figure 10.2 Student CLASS Implementation in Memory

Name
(65 bytes)

Major
(2 bytes)

SSN
(12 bytes)

Mid 1
(2 bytes)

Final
(2 bytes)

Homework
(2 bytes)

Projects
(2 bytes)

John

Mid 2
(2 bytes)

Name
(65 bytes)

Major
(2 bytes)

SSN
(12 bytes)

Mid 1
(2 bytes)

Final
(2 bytes)

Homework
(2 bytes)

Projects
(2 bytes)

John

Mid 2
(2 bytes)

VMT
Pointer

(4 Bytes)
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1041

Chapter Ten Volume Five
If you look carefully at these two figures, you’ll discover that the only difference between the class and
the record implementations is the inclusion of the VMT (virtual method table) pointer field at the beginning
of the class object. This field, which is always present in a class, contains the address of the class’ virtual
method table which, in turn, contains the addresses of all the class’ methods and iterators. The VMT field,
by the way, is present even if a class doesn’t contain any methods or iterators.

As pointed out in previous sections, HLA does not allocate storage for STATIC objects within the
object’s storage. Instead, HLA allocates a single instance of each static data field that all objects share. As
an example, consider the following class and object declarations:

type
tHasStatic: class

var
i:int32;
j:int32;
r:real32;

static
c:char[2];
b:byte;

endclass;

var
hs1: tHasStatic;
hs2: tHasStatic;

Figure 10.3 shows the storage allocation for these two objects in memory.

Figure 10.3 Object Allocation with Static Data Fields

Of course, CONST, VAL, and MACRO objects do not have any run-time memory requirements associ-
ated with them, so HLA does not allocate any storage for these fields. Like the STATIC data fields, you may
access CONST, VAL, and MACRO fields using the class name as well as an object name. Hence, even if

VMT

i

j

r

hs1

VMT

i

j

r

hs2

c[0]
c[1]

tHasStatic.c

tHasStatic.b
Page 1042 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
tHasStatic has these types of fields, the memory organization for tHasStatic objects would still be the same
as shown in Figure 10.3.

Other than the presence of the virtual method table pointer (VMT), the presence of methods, iterators,
and procedures has no impact on the storage allocation of an object. Of course, the machine instructions
associated with these routines does appear somewhere in memory. So in a sense the code for the routines is
quite similar to static data fields insofar as all the objects share a single instance of the routine.

10.9.1 Virtual Method Tables

When HLA calls a class procedure, it directly calls that procedure using a CALL instruction, just like
any normal non-class procedure call. Methods and iterators are another story altogether. Each object in the
system carries a pointer to a virtual method table which is an array of pointers to all the methods and itera-
tors appearing within the object’s class.

Figure 10.4 Virtual Method Table Organization

Each iterator or method you declare in a class has a corresponding entry in the virtual method table.
That dword entry contains the address of the first instruction of that iterator or method. To call a class
method or iterator is a bit more work than calling a class procedure (it requires one additional instruction
plus the use of the EDI register). Here is a typical calling sequence for a method:

mov(ObjectAdrs, ESI); // All class routines do this.
mov([esi], edi); // Get the address of the VMT into EDI
call((type dword [edi+n])); // "n" is the offset of the method’s entry

// in the VMT.

For a given class there is only one copy of the VMT in memory. This is a static object so all objects of a
given class type share the same VMT. This is reasonable since all objects of the same class type have exactly
the same methods and iterators (see Figure 10.5).

VMT

field1

field2

...

SomeObject

Method/ Iterator #1

Method/ Iterator #2

...

Method/ Iterator #n

fieldn
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1043

Chapter Ten Volume Five
Figure 10.5 All Objects That are the Same Class Type Share the Same VMT

Although HLA builds the VMT record structure as it encounters methods and iterators within a class,
HLA does not automatically create the actual run-time virtual method table for you. You must explicitly
declare this table in your program. To do this, you include a statement like the following in a STATIC or
READONLY declaration section of your program, e.g.,

readonly
VMT(classname);

Since the addresses in a virtual method table should never change during program execution, the REA-
DONLY section is probably the best choice for declaring VMTs. It should go without saying that changing
the pointers in a VMT is, in general, a really bad idea. So putting VMTs in a STATIC section is usually not
a good idea.

A declaration like the one above defines the variable classname._VMT_. In section 10.10 (see “Con-
structors and Object Initialization” on page 1048) you see that you’ll need this name when initializing object
variables. The class declaration automatically defines the classname._VMT_ symbol as an external static
variable. The declaration above just provides the actual definition of this external symbol.

The declaration of a VMT uses a somewhat strange syntax because you aren’t actually declaring a new
symbol with this declaration, you’re simply supplying the data for a symbol that you previously declared
implicitly by defining a class. That is, the class declaration defines the static table variable class-
name._VMT_, all you’re doing with the VMT declaration is telling HLA to emit the actual data for the table.
If, for some reason, you would like to refer to this table using a name other than classname._VMT_, HLA
does allow you to prefix the declaration above with a variable name, e.g.,

readonly
myVMT: VMT(classname);

In this declaration, myVMT is an alias of classname._VMT_. As a general rule, you should avoid aliases in a
program because they make the program more difficult to read and understand. Therefore, it is unlikely that
you would ever really need to use this type of declaration.

Like any other global static variable, there should be only one instance of a VMT for a given class in a
program. The best place to put the VMT declaration is in the same source file as the class’ method, iterator,
and procedure code (assuming they all appear in a single file). This way you will automatically link in the
VMT whenever you link in the routines for a given class.

Object1

Object2

Object3

VMT

Note:Objects are all the same class type
Page 1044 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
10.9.2 Object Representation with Inheritance

Up to this point, the discussion of the implementation of class objects has ignored the possibility of
inheritance. Inheritance only affects the memory representation of an object by adding fields that are not
explicitly stated in the class declaration.

Adding inherited fields from a base class to another class must be done carefully. Remember, an impor-
tant attribute of a class that inherits fields from a base class is that you can use a pointer to the base class to
access the inherited fields from that base class in another class. As an example, consider the following
classes:

type
tBaseClass: class

var
i:uns32;
j:uns32;
r:real32;

method mBase;
endclass;

tChildClassA: class inherits(tBaseClass)
var

c:char;
b:boolean;
w:word;

method mA;
endclass;

tChildClassB: class inherits(tBaseClass)
var

d:dword;
c:char;
a:byte[3];

endclass;

Since both tChildClassA and tChildClassB inherit the fields of tBaseClass, these two child classes
include the i, j, and r fields as well as their own specific fields. Furthermore, whenever you have a pointer
variable whose base type is tBaseClass, it is legal to load this pointer with the address of any child class of
tBaseClass; therefore, it is perfectly reasonable to load such a pointer with the address of a tChildClassA or
tChildClassB variable, e.g.,

var
B1: tBaseClass;
CA: tChildClassA;
CB: tChildClassB;
ptr: pointer to tBaseClass;

.

.

.
lea(ebx, B1);
mov(ebx, ptr);
<< Use ptr >>

.

.

.
lea(eax, CA);
mov(ebx, ptr);
<< Use ptr >>
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1045

Chapter Ten Volume Five
.

.

.
lea(eax, CB);
mov(eax, ptr);
<< Use ptr >>

Since ptr points at an object of tBaseClass, you may legally (from a semantic sense) access the i, j, and r
fields of the object where ptr is pointing. It is not legal to access the c, b, w, or d fields of the tChildClassA
or tChildClassB objects since at any one given moment the program may not know exactly what object type
ptr references.

In order for inheritance to work properly, the i, j, and r fields must appear at the same offsets all child
classes as they do in tBaseClass. This way, an instruction of the form “mov((type tBaseClass [ebx]).i, eax);”
will correct access the i field even if EBX points at an object of type tChildClassA or tChildClassB. Figure
10.6 shows the layout of the child and base classes:

Figure 10.6 Layout of Base and Child Class Objects in Memory

Note that the new fields in the two child classes bear no relation to one another, even if they have the
same name (e.g., field c in the two child classes does not lie at the same offset). Although the two child
classes share the fields they inherit from their common base class, any new fields they add are unique and
separate. Two fields in different classes share the same offset only by coincidence.

All classes (even those that aren’t related to one another) place the pointer to the virtual method table at
offset zero within the object. There is a single VMT associated with each class in a program; even classes
that inherit fields from some base class have a VMT that is (generally) different than the base class’ VMT.
shows how objects of type tBaseClass, tChildClassA and tChildClassB point at their specific VMTs:

VMT

i

j

r

VMT

i

j

r

VMT

i

j

r

b
c

w

d

c

a

Derived (child) classes locate their inherited fields at the same offsets as
those fields in the base class.

tBaseClass tChildClassA tChildClassB
Page 1046 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
Figure 10.7 Virtual Method Table References from Objects

A virtual method table is nothing more than an array of pointers to the methods and iterators associated
with a class. The address of the first method or iterator appearing in a class is at offset zero, the address of
the second appears at offset four, etc. You can determine the offset value for a given iterator or method by
using the @offset function. If you want to call a method or iterator directly (using 80x86 syntax rather than
HLA’s high level syntax), you code use code like the following:

var
sc: tBaseClass;

.

.

.
lea(esi, sc); // Get the address of the object (& VMT).
mov([esi], edi); // Put address of VMT into EDI.
call((type dword [edi+@offset(tBaseClass.mBase)]);

Of course, if the method has any parameters, you must push them onto the stack before executing the code
above. Don’t forget, when making direct calls to a method, that you must load ESI with the address of the
object. Any field references within the method will probably depend upon ESI containing this address. The
choice of EDI to contain the VMT address is nearly arbitrary. Unless you’re doing something tricky (like
using EDI to obtain run-time type information), you could use any register you please here. As a general
rule, you should use EDI when simulating class iterator/method calls because this is the convention that
HLA employs and most programmers will expect this.

B1
tBaseClass:VMT

CA

tChildClassA:VMT

tChildClassB:VMT

CB

var
 B1: tBaseClass;
 CA: tChildClassA;
 CB: tChildClassB;
 CB2: tChildClassB;
 CA2: tChildClassA;

CA2

CB2

VMT Pointer
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1047

Chapter Ten Volume Five
Whenever a child class inherits fields from some base class, the child class’ VMT also inherits entries
from the base class’ VMT. For example, the VMT for class tBaseClass contains only a single entry – a
pointer to method tBaseClass.mBase. The VMT for class tChildClassA contains two entries: a pointer to
tBaseClass.mBase and tChildClassA.mA. Since tChildClassB doesn’t define any new methods or iterators,
tChildClassB’s VMT contains only a single entry, a pointer to the tBaseClass.mBase method. Note that tCh-
ildClassB’s VMT is identical to tBaseClass’ VMT. Nevertheless, HLA produces two distinct VMTs. This is
a critical fact that we will make use of a little later. Figure 10.8 shows the relationship between these VMTs:

Figure 10.8 Virtual Method Tables for Inherited Classes

Although the VMT always appears at offset zero in an object (and, therefore, you can access the VMT
using the address expression “[ESI]” if ESI points at an object), HLA actually inserts a symbol into the sym-
bol table so you may refer to the VMT symbolically. The symbol _pVMT_ (pointer to Virtual Method Table)
provides this capability. So a more readable way to access the VMT pointer (as in the previous code exam-
ple) is

lea(esi, sc);
mov((type tBaseClass [esi])._pVMT_, edi);
call((type dword [edi+@offset(tBaseClass.mBase)]);

If you need to access the VMT directly, there are a couple ways to do this. Whenever you declare a
class object, HLA automatically includes a field named _VMT_ as part of that class. _VMT_ is a static array
of double word objects. Therefore, you may refer to the VMT using an identifier of the form class-
name._VMT_. Generally, you shouldn’t access the VMT directly, but as you’ll see shortly, there are some
good reasons why you need to know the address of this object in memory.

10.10 Constructors and Object Initialization

If you’ve tried to get a little ahead of the game and write a program that uses objects prior to this point,
you’ve probably discovered that the program inexplicably crashes whenever you attempt to run it. We’ve
covered a lot of material in this chapter thus far, but you are still missing one crucial piece of information –
how to properly initialize objects prior to use. This section will put the final piece into the puzzle and allow
you to begin writing programs that use classes.

Consider the following object declaration and code fragment:

var
bc: tBaseClass;

.

.

.
bc.mBase();

Remember that variables you declare in the VAR section are uninitialized at run-time. Therefore, when
the program containing these statements gets around to executing bc.mBase, it executes the three-statement
sequence you’ve seen several times already:

mBase mBase

mA

mBase

tBaseClass tChildClassA tChildClassB

Virtual Method Tables for Derived (inherited) Classes

Offset Zero

Offset Four
Page 1048 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
lea(esi, sbc);
mov([esi], edi);
call((type dword [edi+@offset(tBaseClass.mBase)]);

The problem with this sequence is that it loads EDI with an undefined value assuming you haven’t previ-
ously initialized the bc object. Since EDI contains a garbage value, attempting to call a subroutine at address
“[EDI+@offset(tBaseClass.mBase)]” will likely crash the system. Therefore, before using an object, you
must initialize the _pVMT_ field with the address of that object’s VMT. One easy way to do this is with the
following statement:

mov(&tBaseClass._VMT_, bc._pVMT_);

Always remember, before using an object, be sure to initialize the virtual method table pointer for that
field.

Although you must initialize the virtual method table pointer for all objects you use, this may not be the
only field you need to initialize in those objects. Each specific class may have its own application-specific
initialization that is necessary. Although the initialization may vary by class, you need to perform the same
initialization on each object of a specific class that you use. If you ever create more than a single object from
a given class, it is probably a good idea to create a procedure to do this initialization for you. This is such a
common operation that object-oriented programmers have given these initialization procedures a special
name: constructors.

Some object-oriented languages (e.g., C++) use a special syntax to declare a constructor. Others (e.g.,
Delphi) simply use existing procedure declarations to define a constructor. One advantage to employing a
special syntax is that the language knows when you define a constructor and can automatically generate code
to call that constructor for you (whenever you declare an object). Languages, like Delphi, require that you
explicitly call the constructor; this can be a minor inconvenience and a source of defects in your programs.
HLA does not use a special syntax to declare constructors – you define constructors using standard class pro-
cedures. As such, you will need to explicitly call the constructors in your program; however, you’ll see an
easy method for automating this in a later section of this chapter.

Perhaps the most important fact you must remember is that constructors must be class procedures.
You must not define constructors as methods (or iterators). The reason is quite simple: one of the tasks of
the constructor is to initialize the pointer to the virtual method table and you cannot call a class method or
iterator until after you’ve initialized the VMT pointer. Since class procedures don’t use the virtual method
table, you can call a class procedure prior to initializing the VMT pointer for an object.

By convention, HLA programmers use the name Create for the class constructor. There is no require-
ment that you use this name, but by doing so you will make your programs easier to read and follow by
other programmers.

As you may recall, you can call a class procedure via an object reference or a class reference. E.g., if
clsProc is a class procedure of class tClass and Obj is an object of type tClass, then the following two class
procedure invocations are both legal:

tClass.clsProc();
Obj.clsProc();

There is a big difference between these two calls. The first one calls clsProc with ESI containing zero
(NULL) while the second invocation loads the address of Obj into ESI before the call. We can use this fact
to determine within a method the particular calling mechanism.

10.10.1 Dynamic Object Allocation Within the Constructor

As it turns out, most programs allocated object dynamically using malloc and refer to those objects indi-
rectly using pointers. This adds one more step to the initialization process – allocating storage for the object.
The constructor is the perfect place to allocate this storage. Since you probably won’t need to allocate all
objects dynamically, you’ll need two types of constructors: one that allocates storage and then initializes the
object, and another that simply initializes an object that already has storage.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1049

Chapter Ten Volume Five
Another constructor convention is to merge these two constructors into a single constructor and differ-
entiate the type of constructor call by the value in ESI. On entry into the class’ Create procedure, the pro-
gram checks the value in ESI to see if it contains NULL (zero). If so, the constructor calls malloc to allocate
storage for the object and returns a pointer to the object in ESI. If ESI does not contain NULL upon entry
into the procedure, then the constructor assumes that ESI points at a valid object and skips over the memory
allocation statements. At the very least, a constructor initializes the pointer to the VMT; therefore, the min-
imalist constructor will look like the following:

procedure tBaseClass.mBase; nodisplay;
begin mBase;

if(ESI = 0) then

push(EAX); // Malloc returns its result here, so save it.
malloc(@size(tBaseClass));
mov(eax, esi); // Put pointer into ESI;
pop(eax);

endif;

// Initialize the pointer to the VMT:
// (remember, "this" is shorthand for (type tBaseClass [esi])"

mov(&tBaseClass._VMT_, this._pVMT_);

// Other class initialization would go here.

end mBase;

After you write a constructor like the one above, you choose an appropriate calling mechanism based on
whether your object’s storage is already allocated. For pre-allocated objects (i.e., those you’ve declared in
VAR, STATIC, or STORAGE sections6 or those you’ve previously allocated storage for via malloc) you
simply load the address of the object into ESI and call the constructor. For those objects you declare as a
variable, this is very easy – just call the appropriate Create constructor:

var
bc0: tBaseClass;
bcp: pointer to tBaseClass;

.

.

.
bc0.Create(); // Initializes pre-allocated bc0 object.

.

.

.
malloc(@size(tBaseClass)); // Allocate storage for bcp object.
mov(eax, bcp);

.

.

.
bcp.Create(); // Initializes pre-allocated bcp object.

Note that although bcp is a pointer to a tBaseClass object, the Create method does not automatically
allocate storage for this object. The program already allocates the storage earlier. Therefore, when the pro-
gram calls bcp.Create it loads ESI with the address contained within bcp; since this is not NULL, the tBase-
Class.Create procedure does not allocate storage for a new object. By the way, the call to bcp.Create emits
the following sequence of machine instructions:

mov(bcp, esi);

6. You generally do not declare objects in READONLY sections because you cannot initialize them.
Page 1050 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
call tBaseClass.Create;

Until now, the code examples for a class procedure call always began with an LEA instruction. This is
because all the examples to this point have used object variables rather than pointers to object variables.
Remember, a class procedure (method/iterator) call passes the address of the object in the ESI register. For
object variables HLA emits an LEA instruction to obtain this address. For pointers to objects, however, the
actual object address is the value of the pointer variable; therefore, to load the address of the object into ESI,
HLA emits a MOV instruction that copies the value of the pointer into the ESI register.

In the example above, the program preallocates the storage for an object prior to calling the object con-
structor. While there are several reasons for preallocating object storage (e.g., you’re creating a dynamic
array of objects), you can achieve most simple object allocations like the one above by calling a standard
Create method (i.e., one that allocates storage for an object if ESI contains NULL). The following example
demonstrates this:

var
bcp2: pointer to tBaseClass;

.

.

.
tBaseClass.Create(); // Calls Create with ESI=NULL.
mov(esi, bcp2); // Save pointer to new class object in bcp2.

Remember, a call to a tBaseClass.Create constructor returns a pointer to the new object in the ESI register.
It is the caller’s responsibility to save the pointer this function returns into the appropriate pointer variable;
the constructor does not automatically do this for you.

10.10.2 Constructors and Inheritance

Constructors for derived (child) classes that inherit fields from a base class represent a special case.
Each class must have its own constructor but needs the ability to call the base class constructor. This section
explains the reasons for this and how to do this.

A derived class inherits the Create procedure from its base class. However, you must override this pro-
cedure in a derived class because the derived class probably requires more storage than the base class and,
therefore, you will probably need to use a different call to malloc to allocate storage for a dynamic object.
Hence, it is very unusual for a derived class not to override the definition of the Create procedure.

However, overriding a base class’ Create procedure has problems of its own. When you override the
base class’ Create procedure, you take the full responsibility of initializing the (entire) object, including all
the initialization required by the base class. At the very least, this involves putting duplicate code in the
overridden procedure to handle the initialization usually done by the base class constructor. In addition to
make your program larger (by duplicating code already present in the base class constructor), this also vio-
lates information hiding principles since the derived class must be aware of all the fields in the base class
(including those that are logically private to the base class). What we need here is the ability to call a base
class’ constructor from within the derived class’ destructor and let that call do the lower-level initialization
of the base class’ fields. Fortunately, this is an easy thing to do in HLA.

Consider the following class declarations (which does things the hard way):

type
tBase: class

var
i:uns32;
j:int32;

procedure Create(); returns("esi");
endclass;

tDerived: class inherits(tBase)
var
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1051

Chapter Ten Volume Five
r: real64;

override procedure Create(); returns("esi");
endclass;

procedure tBase.Create; nodisplay;
begin Create;

if(esi = 0) then

push(eax);
mov(malloc(@size(tBase)), esi);
pop(eax);

endif;
mov(&tBase._VMT_, this._pVMT_);
mov(0, this.i);
mov(-1, this.j);

end Create;

procedure tDerived.Create; nodisplay;
begin Create;

if(esi = 0) then

push(eax);
mov(malloc(@size(tDerived)), esi);
pop(eax);

endif;

// Initialize the VMT pointer for this object:

mov(&tDerived._VMT_, this._pVMT_);

// Initialize the "r" field of this particular object:

fldz();
fstp(this.r);

// Duplicate the initialization required by tBase.Create:

mov(0, this.i);
mov(-1, this.j);

end Create;

Let’s take a closer look at the tDerived.Create procedure above. Like a conventional constructor, it
begins by checking ESI and allocates storage for a new object if ESI contains NULL. Note that the size of a
tDerived object includes the size required by the inherited fields, so this properly allocates the necessary
storage for all fields in a tDerived object.

Next, the tDerived.Create procedure initializes the VMT pointer field of the object. Remember, each
class has its own VMT and, specifically, derived classes do not use the VMT of their base class. Therefore,
this constructor must initialize the _pVMT_ field with the address of the tDerived VMT.

After initializing the VMT pointer, the tDerived constructor initializes the value of the r field to 0.0
(remember, FLDZ loads zero onto the FPU stack). This concludes the tDerived-specific initialization.

The remaining instructions in tDerived.Create are the problem. These statements duplicate some of the
code appearing in the tBase.Create procedure. The problem with code duplication becomes really apparent
Page 1052 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
when you decide to modify the initial values of these fields; if you’ve duplicated the initialization code in
derived classes, you will need to change the initialization code in more than one Create procedure. More
often than not, this results in defects in the derived class Create procedures, especially if those derived
classes appear in different source files than the base class.

Another problem with burying base class initialization in derived class constructors is the violation of
the information hiding principle. Some fields of the base class may be logically private. Although HLA
does not explicitly support the concept of public and private fields in a class (as, say, C++ does), well-disci-
plined programmers will still partition the fields as private or public and then only use the private fields in
class routines belonging to that class. Initializing these private fields in derived classes is not acceptable to
such programmers. Doing so will make it very difficult to change the definition and implementation of some
base class at a later date.

 Fortunately, HLA provides an easy mechanism for calling the inherited constructor within a derived
class’ constructor. All you have to do is call the base constructor using the classname syntax, e.g., you could
call tBase.Create directly from within tDerived.Create. By calling the base class constructor, your derived
class constructors can initialize the base class fields without worrying about the exact implementation (or
initial values) of the base class.

Unfortunately, there are two types of initialization that every (conventional) constructor does that will
affect the way you call a base class constructor: all conventional constructors allocate memory for the class
if ESI contains zero and all conventional constructors initialize the VMT pointer. Fortunately, it is very easy
to deal with these two problems

The memory required by an object of some most base class is usually less than the memory required for
an object of a class you derive from that base class (because the derived classes usually add more fields).
Therefore, you cannot allow the base class constructor to allocate the storage when you call it from inside
the derived class’ constructor. This problem is easily solved by checking ESI within the derived class con-
structor and allocating any necessary storage for the object before calling the base class constructor.

The second problem is the initialization of the VMT pointer. When you call the base class’ constructor,
it will initialize the VMT pointer with the address of the base class’ virtual method table. A derived class
object’s _pVMT_ field, however, must point at the virtual method table for the derived class. Calling the
base class constructor will always initialize the _pVMT_ field with the wrong pointer; to properly initialize
the _pVMT_ field with the appropriate value, the derived class constructor must store the address of the
derived class’ virtual method table into the _pVMT_ field after the call to the base class constructor (so that it
overwrites the value written by the base class constructor).

The tDerived.Create constructor, rewritten to call the tBase.Create constructors, follows:

procedure tDerived.Create; nodisplay;
begin Create;

if(esi = 0) then

push(eax);
mov(malloc(@size(tDerived)), esi);
pop(eax);

endif;

// Call the base class constructor to do any initialization
// needed by the base class. Note that this call must follow
// the object allocation code above (so ESI will always contain
// a pointer to an object at this point and tBase.Create will
// never allocate storage).

tBase.Create();

// Initialize the VMT pointer for this object. This code
// must always follow the call to the base class constructor
// because the base class constructor also initializes this
// field and we don’t want the initial value supplied by
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1053

Chapter Ten Volume Five
// tBase.Create.

mov(&tDerived._VMT_, this._pVMT_);

// Initialize the "r" field of this particular object:

fldz();
fstp(this.r);

end Create;

This solution solves all the above concerns with derived class constructors.

10.10.3 Constructor Parameters and Procedure Overloading

All the constructor examples to this point have not had any parameters. However, there is nothing spe-
cial about constructors that prevent the use of parameters. Constructors are procedures therefore you can
specify any number and types of parameters you choose. You can use these parameter values to initialize
certain fields or control how the constructor initializes the fields. Of course, you may use constructor param-
eters for any purpose you’d use parameters in any other procedure. In fact, about the only issue you need
concern yourself with is the use of parameters whenever you have a derived class. This section deals with
those issues.

The first, and probably most important, problem with parameters in derived class constructors actually
applies to all overridden procedures, iterators, and methods: the parameter list of an overridden routine must
exactly match the parameter list of the corresponding routine in the base class. In fact, HLA doesn’t even
give you the chance to violate this rule because OVERRIDE routine prototypes don’t allow parameter list
declarations – they automatically inherit the parameter list of the base routine. Therefore, you cannot use a
special parameter list in the constructor prototype for one class and a different parameter list for the con-
structors appearing in base or derived classes. Sometimes it would be nice if this weren’t the case, but there
are some sound and logical reasons why HLA does not support this7.

Some languages, like C++, support function overloading letting you specify several different construc-
tors whose parameter list specifies which constructor to use. HLA does not directly support procedure over-
loading in this manner, but you can use macros to simulate this language feature (see “Simulating Function
Overloading with Macros” on page 962). To use this trick with constructors you would create a macro with
the name Create. The actual constructors could have names that describe their differences (e.g., CreateDe-
fault, CreateSetIJ, etc.). The Create macro would parse the actual parameter list to determine which routine
to call.

HLA does not support macro overloading. Therefore, you cannot override a macro in a derived class to
call a constructor unique to that derived class. In certain circumstances you can create a small workaround
by defining empty procedures in your base class that you intend to override in some derived class (this is
similar to an abstract method, see “Abstract Methods” on page 1060). Presumably, you would never call the
procedure in the base class (in fact, you would probably want to put an error message in the body of the pro-
cedure just in case you accidentally call it). By putting the empty procedure declaration in the base class, the
macro that simulates function overloading can refer to that procedure and you can use that in derived classes
later on.

7. Calling virtual methods and iterators would be a real problem since you don’t really know which routine a pointer refer-
ences. Therefore, you couldn’t know the proper parameter list. While the problems with procedures aren’t quite as drastic,
there are some subtle problems that could creep into your code if base or derived classes allowed overridden procedures with
different parameter lists.
Page 1054 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
10.11 Destructors

A destructor is a class routine that cleans up an object once a program finishes using that object. Like
constructors, HLA does not provide a special syntax for creating destructors nor does HLA automatically
call a destructor; unlike constructors, a destructor is usually a method rather than a procedure (since virtual
destructors make a lot of sense while virtual constructors do not).

A typical destructor will close any files opened by the object, free the memory allocated during the use
of the object, and, finally, free the object itself if it was created dynamically. The destructor also handles any
other clean-up chores the object may require before it ceases to exist.

By convention, most HLA programmers name their destructors Destroy. Destructors generally do not
have any parameters, so the issue of overloading the parameter list rarely arises. About the only code that
most destructors have in common is the code to free the storage associated with the object. The following
destructor demonstrates how to do this:

procedure tBase.Destroy; nodisplay;
begin Destroy;

push(eax); // isInHeap uses this

// Place any other clean up code here.
// The code to free dynamic objects should always appear last
// in the destructor.

/*************/

// The following code assumes that ESI still contains the address
// of the object.

if(isInHeap(esi)) then

free(esi);

endif;
pop(eax);

end Destroy;

The HLA Standard Library routine isInHeap returns true if its parameter is an address that malloc
returned. Therefore, this code automatically frees the storage associated with the object if the program orig-
inally allocated storage for the object by calling malloc. Obviously, on return from this method call, ESI
will no longer point at a legal object in memory if you allocated it dynamically. Note that this code will not
affect the value in ESI nor will it modify the object if the object wasn’t one you’ve previously allocated via a
call to malloc.

10.12 HLA’s “_initialize_” and “_finalize_” Strings

Although HLA does not automatically call constructors and destructors associated with your classes,
HLA does provide a mechanism whereby you can cause these calls to happen automatically: by using the
initialize and _finalize_ compile-time string variables (i.e., VAL constants) HLA automatically declares in
every procedure.

Whenever you write a procedure, iterator, or method, HLA automatically declares several local symbols
in that routine. Two such symbols are _initialize_ and _finalize_. HLA declares these symbols as follows:

val
initialize: string := "";
finalize: string := "";
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1055

Chapter Ten Volume Five
HLA emits the _initialize_ string as text at the very beginning of the routine’s body, i.e., immediately
after the routine’s BEGIN clause8. Similarly, HLA emits the _finalize_ string at the very end of the routine’s
body, just before the END clause. This is comparable to the following:

procedure SomeProc;
<< declarations >>

begin SomeProc;

@text(_initialize_);

<< procedure body >>

@text(_finalize_);

end SomeProc;

Since _initialize_ and _finalize_ initially contain the empty string, these expansions have no effect on
the code that HLA generates unless you explicitly modify the value of _initialize_ prior to the BEGIN clause
or you modify _finalize_ prior to the END clause of the procedure. So if you modify either of these string
objects to contain a machine instruction, HLA will compile that instruction at the beginning or end of the
procedure. The following example demonstrates how to use this technique:

procedure SomeProc;
?_initialize_ := "mov(0, eax);";
?_finalize_ := "stdout.put(eax);"

begin SomeProc;

// HLA emits "mov(0, eax);" here in response to the _initialize_
// string constant.

add(5, eax);

// HLA emits "stdout.put(eax);" here.

end SomeProc;

Of course, these examples don’t save you much. It would be easier to type the actual statements at the
beginning and end of the procedure than assign a string containing these statements to the _initialize_ and
finalize compile-time variables. However, if we could automate the assignment of some string to these
variables, so that you don’t have to explicitly assign them in each procedure, then this feature might be use-
ful. In a moment, you’ll see how we can automate the assignment of values to the _initialize_ and _finalize_
strings. For the time being, consider the case where we load the name of a constructor into the _initialize_
string and we load the name of a destructor in to the _finalize_ string. By doing this, the routine will “auto-
matically” call the constructor and destructor for that particular object.

The example above has a minor problem. If we can automate the assignment of some value to
initialize or _finalize_, what happens if these variables already contain some value? For example, suppose
we have two objects we use in a routine and the first one loads the name of its constructor into the
initialize string; what happens when the second object attempts to do the same thing? The solution is
simple: don’t directly assign any string to the _initialize_ or _finalize_ compile-time variables, instead,
always concatenate your strings to the end of the existing string in these variables. The following is a modi-
fication to the above example that demonstrates how to do this:

procedure SomeProc;
?_initialize_ := _initialize_ + "mov(0, eax);";
?_finalize_ := _finalize_ + "stdout.put(eax);"

begin SomeProc;

8. If the routine automatically emits code to construct the activation record, HLA emits _initialize_’s text after the code that
builds the activation record.
Page 1056 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
// HLA emits "mov(0, eax);" here in response to the _initialize_
// string constant.

add(5, eax);

// HLA emits "stdout.put(eax);" here.

end SomeProc;

When you assign values to the _initialize_ and _finalize_ strings, HLA almost guarantees that the
initialize sequence will execute upon entry into the routine. Sadly, the same is not true for the _finalize_
string upon exit. HLA simply emits the code for the _finalize_ string at the end of the routine, immediately
before the code that cleans up the activation record and returns. Unfortunately, “falling off the end of the
routine” is not the only way that one could return from that routine. One could explicitly return from some-
where in the middle of the code by executing a RET instruction. Since HLA only emits the _finalize_ string
at the very end of the routine, returning from that routine in this manner bypassing the _finalize_ code.
Unfortunately, other than manually emitting the _finalize_ code, there is nothing you can do about this9.
Fortunately, this mechanism for exiting a routine is completely under your control; if you never exit a rou-
tine except by “falling off the end” then you won’t have to worry about this problem (note that you can use
the EXIT control structure to transfer control to the end of a routine if you really want to return from that
routine from somewhere in the middle of the code).

Another way to prematurely exit a routine which, unfortunately, you have no control over, is by raising
an exception. Your routine could call some other routine (e.g., a standard library routine) that raises an
exception and then transfers control immediately to whomever called your routine. Fortunately, you can
easily trap and handle exceptions by putting a TRY..ENDTRY block in your procedure. Here is an example
that demonstrates this:

procedure SomeProc;
<< declarations that modify _initialize_ and _finalize_ >>

begin SomeProc;

<< HLA emits the code for the _initialize_ string here. >>

try // Catch any exceptions that occur:

<< Procedure Body Goes Here >>

 anyexception

push(eax); // Save the exception #.
@text(_finalize_); // Execute the _finalize_ code here.
pop(eax); // Restore the exception #.
raise(eax); // Reraise the exception.

endtry;

// HLA automatically emits the _finalize_ code here.

end SomeProc;

Although the code above handles some problems that exist with _finalize_, by no means that this handle
every possible case. Always be on the look out for ways your program could inadvertently exit a routine
without executing the code found in the _finalize_ string. You should explicitly expand _finalize_ if you
encounter such a situation.

9. Note that you can manually emit the _finalize_ code using the statement “@text(_finalize_);”.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1057

Chapter Ten Volume Five
There is one important place you can get into trouble with respect to exceptions: within the code the
routine emits for the _initialize_ string. If you modify the _initialize_ string so that it contains a construc-
tor call and the execution of that constructor raises an exception, this will probably force an exit from that
routine without executing the corresponding _finalize_ code. You could bury the TRY..ENDTRY statement
directly into the _initialize_ and _finalize_ strings but this approach has several problems, not the least of
which is the fact that one of the first constructors you call might raise an exception that transfers control to
the exception handler that calls the destructors for all objects in that routine (including those objects whose
constructors you have yet to call). Although no single solution that handles all problems exists, probably
the best approach is to put a TRY..ENDTRY block around each constructor call if it is possible for that con-
structor to raise some exception that is possible to handle (i.e., doesn’t require the immediate termination of
the program).

Thus far this discussion of _initialize_ and _finalize_ has failed to address one important point: why use
this feature to implement the “automatic” calling of constructors and destructors since it apparently involves
more work that simply calling the constructors and destructors directly? Clearly there must be a way to
automate the assignment of the _initialize_ and _finalize_ strings or this section wouldn’t exist. The way to
accomplish this is by using a macro to define the class type. So now it’s time to take a look at another HLA
feature that makes is possible to automate this activity: the FORWARD keyword.

You’ve seen how to use the FORWARD reserved word to create procedure and iterator prototypes (see
“Forward Procedures” on page 546), it turns out that you can declare forward CONST, VAL, TYPE, and
variable declarations as well. The syntax for such declarations takes the following form:

ForwardSymbolName: forward(undefinedID);

This declaration is completely equivalent to the following:

?undefinedID: text := "ForwardSymbolName";

Especially note that this expansion does not actually define the symbol ForwardSymbolName. It just con-
verts this symbol to a string and assigns this string to the specified TEXT object (undefinedID in this exam-
ple).

Now you’re probably wonder how something like the above is equivalent to a forward declaration. The
truth is, it isn’t. However, FORWARD declarations let you create macros that simulate type names by
allowing you to defer the actual declaration of an object’s type until some later point in the code. Consider
the following example:

type
myClass: class

var
i:int32;

procedure Create; returns("esi");
procedure Destroy;

endclass;

macro _myClass: varID;
forward(varID);
?_initialize_ := _initialize_ + @string:varID + ".Create(); ";
?_finalize_ := _finalize_ + @string:varID + ".Destroy(); ";
varID: myClass

endmacro;

Note, and this is very important, that a semicolon does not follow the “varID: myClass” declaration at the
end of this macro. You’ll find out why this semicolon is missing in a little bit.

If you have the class and macro declarations above in your program, you can now declare variables of
type _myClass that automatically invoke the constructor and destructor upon entry and exit of the routine
containing the variable declarations. To see how, take a look at the following procedure shell:

procedure HasmyClassObject;
var
Page 1058 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
mco: _myClass;
begin HasmyClassObject;

<< do stuff with mco here >>

end HasmyClassObject;

Since _myClass is a macro, the procedure above expands to the following text during compilation:

procedure HasmyClassObject;
var

mco: // Expansion of the _myClass macro:
forward(_0103_); // _0103_ symbol is and HLA supplied text symbol
 // that expands to "mco".

?_initialize_ := _initialize_ + "mco" + ".Create(); ";
?_finalize_ := _finalize_ + "mco" + ".Destroy(); ";
mco: myClass;

begin HasmyClassObject;

mco.Create(); // Expansion of the _initialize_ string.

<< do stuff with mco here >>

mco.Destroy(); // Expansion of the _finalize_ string.

end HasmyClassObject;

You might notice that a semicolon appears after “mco: myClass” declaration in the example above. This
semicolon is not actually a part of the macro, instead it is the semicolon that follows the “mco: _myClass;”
declaration in the original code.

If you want to create an array of objects, you could legally declare that array as follows:

var
mcoArray: _myClass[10];

Because the last statement in the _myClass macro doesn’t end with a semicolon, the declaration above will
expand to something like the following (almost correct) code:

mcoArray: // Expansion of the _myClass macro:
forward(_0103_); // _0103_ symbol is and HLA supplied text symbol
 // that expands to "mcoArray".

?_initialize_ := _initialize_ + "mcoArray" + ".Create(); ";
?_finalize_ := _finalize_ + "mcoArray" + ".Destroy(); ";
mcoArray: myClass[10];

The only problem with this expansion is that it only calls the constructor for the first object of the array.
There are several ways to solve this problem; one is to append a macro name to the end of _initialize_ and
finalize rather than the constructor name. That macro would check the object’s name (mcoArray in this
example) to determine if it is an array. If so, that macro could expand to a loop that calls the constructor for
each element of the array (the implementation appears as a programming project at the end of this chapter).

Another solution to this problem is to use a macro parameter to specify the dimensions for arrays of
myClass. This scheme is easier to implement than the one above, but it does have the drawback of requiring
a different syntax for declaring object arrays (you have to use parentheses around the array dimension rather
than square brackets).

The FORWARD directive is quite powerful and lets you achieve all kinds of tricks. However, there are
a few problems of which you should be aware. First, since HLA emits the _initialize_ and _finalize_ code
transparently, you can be easily confused if there are any errors in the code appearing within these strings. If
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1059

Chapter Ten Volume Five
you start getting error messages associated with the BEGIN or END statements in a routine, you might want
to take a look at the _initialize_ and _finalize_ strings within that routine. The best defense here is to always
append very simple statements to these strings so that you reduce the likelihood of an error.

Fundamentally, HLA doesn’t support automatic constructor and destructor calls. This section has pre-
sented several tricks to attempt to automate the calls to these routines. However, the automation isn’t perfect
and, indeed, the aforementioned problems with the _finalize_ strings limit the applicability of this approach.
The mechanism this section presents is probably fine for simple classes and simple programs. However, one
piece of advice is probably worth following: if your code is complex or correctness is critical, it’s probably a
good idea to explicitly call the constructors and destructors manually.

10.13 Abstract Methods

An abstract base class is one that exists solely to supply a set of common fields to its derived classes.
You never declare variables whose type is an abstract base class, you always use one of the derived classes.
The purpose of an abstract base class is to provide a template for creating other classes, nothing more. As it
turns out, the only difference in syntax between a standard base class and an abstract base class is the pres-
ence of at least one abstract method declaration. An abstract method is a special method that does not have
an actual implementation in the abstract base class. Any attempt to call that method will raise an exception.
If you’re wondering what possible good an abstract method could be, well, keep on reading...

Suppose you want to create a set of classes to hold numeric values. One class could represent unsigned
integers, another class could represent signed integers, a third could implement BCD values, and a fourth
could support real64 values. While you could create four separate classes that function independently of one
another, doing so passes up an opportunity to make this set of classes more convenient to use. To understand
why, consider the following possible class declarations:

type
uint: class

var
TheValue: dword;

method put;
<< other methods for this class >>

endclass;

sint: class
var

TheValue: dword;

method put;
<< other methods for this class >>

endclass;

r64: class
var

TheValue: real64;

method put;
<< other methods for this class >>

endclass;

The implementation of these classes is not unreasonable. They have fields for the data, they have a put
method (which, presumably, writes the data to the standard output device), Presumably they have other
methods and procedures in implement various operations on the data. There is, however, two problems with
these classes, one minor and one major, both occurring because these classes do not inherit any fields from a
common base class.
Page 1060 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
The first problem, which is relatively minor, is that you have to repeat the declaration of several com-
mon fields in these classes. For example, the put method declaration appears in each of these classes10. This
duplication of effort involves results in a harder to maintain program because it doesn’t encourage you to use
a common name for a common function since it’s easy to use a different name in each of the classes.

A bigger problem with this approach is that it is not generic. That is, you can’t create a generic pointer
to a “numeric” object and perform operations like addition, subtraction, and output on that value (regardless
of the underlying numeric representation).

We can easily solve these two problems by turning the previous class declarations into a set of derived
classes. The following code demonstrates an easy way to do this:

type
numeric: class

procedure put;
<< Other common methods shared by all the classes >>

endclass;

uint: class inherits(numeric)
var

TheValue: dword;

override method put;
<< other methods for this class >>

endclass;

sint: class inherits(numeric)
var

TheValue: dword;

override method put;
<< other methods for this class >>

endclass;

r64: class inherits(numeric)
var

TheValue: real64;

override method put;
<< other methods for this class >>

endclass;

This scheme solves both the problems. First, by inheriting the put method from numeric, this code
encourages the derived classes to always use the name put thereby making the program easier to maintain.
Second, because this example uses derived classes, it’s possible to create a pointer to the numeric type and
load this pointer with the address of a uint, sint, or r64 object. That pointer can invoke the methods found in
the numeric class to do functions like addition, subtraction, or numeric output. Therefore, the application
that uses this pointer doesn’t need to know the exact data type, it only deals with numeric values in a generic
fashion.

One problem with this scheme is that it’s possible to declare and use variables of type numeric. Unfor-
tunately, such numeric variables don’t have the ability to represent any type of number (notice that the data
storage for the numeric fields actually appears in the derived classes). Worse, because you’ve declared the
put method in the numeric class, you’ve actually got to write some code to implement that method even
though one should never really call it; the actual implementation should only occur in the derived classes.
While you could write a dummy method that prints an error message (or, better yet, raises an exception),
there shouldn’t be any need to write “dummy” procedures like this. Fortunately, there is no reason to do so
– if you use abstract methods.

10. Note, by the way, that TheValue is not a common class because this field has a different type in the r64 class.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1061

Chapter Ten Volume Five
The ABSTRACT keyword, when it follows a method declaration, tells HLA that you are not going to
provide an implementation of the method for this class. Instead, it is the responsibility of all derived class to
provide a concrete implementation for the abstract method. HLA will raise an exception if you attempt to
call an abstract method directly. The following is the modification to the numeric class to convert put to an
abstract method:

type
numeric: class

method put; abstract;
<< Other common methods shared by all the classes >>

endclass;

An abstract base class is a class that has at least one abstract method. Note that you don’t have to make
all methods abstract in an abstract base class; it is perfectly legal to declare some standard methods (and, of
course, provide their implementation) within the abstract base class.

Abstract method declarations provide a mechanism by which a base class enforces the methods that the
derived classes must implement. In theory, all derived classes must provide concrete implementations of all
abstract methods or those derived classes are themselves abstract base classes. In practice, it’s possible to
bend the rules a little and use abstract methods for a slightly different purpose.

A little earlier, you read that one should never create variables whose type is an abstract base class. For
if you attempt to execute an abstract method the program would immediately raise an exception to complain
about this illegal method call. In practice, you actually can declare variables of an abstract base type and get
away with this as long as you don’t call any abstract methods. We can use this fact to provide a better form
of method overloading (that is, providing several different routines with the same name but different param-
eter lists). Remember, the standard trick in HLA to overload a routine is to write several different routines
and then use a macro to parse the parameter list and determine which actual routine to call (see “Simulating
Function Overloading with Macros” on page 962). The problem with this technique is that you cannot over-
ride a macro definition in a class, so if you want to use a macro to override a routine’s syntax, then that
macro must appear in the base class. Unfortunately, you may not need a routine with a specific parameter
list in the base class (for that matter, you may only need that particular version of the routine in a single
derived class), so implementing that routine in the base class and in all the other derived classes is a waste of
effort. This isn’t a big problem. Just go ahead and define the abstract method in the base class and only
implement it in the derived class that needs that particular method. As long as you don’t call that method in
the base class or in the other derived classes that don’t override the method, everything will work fine.

One problem with using abstract methods to support overloading is that this trick does not apply to pro-
cedures - only methods and iterators. However, you can achieve the same effect with procedures by declar-
ing a (non-abstract) procedure in the base class and overriding that procedure only in the class that actually
uses it. You will have to provide an implementation of the procedure in the base class, but that is a minor
issue (the procedure’s body, by the way, should simply raise an exception to indicate that you should have
never called it).

An example of routine overloading in a class appears in this chapter’s sample program.

10.14 Run-time Type Information (RTTI)

When working with an object variable (as opposed to a pointer to an object), the type of that object is
obvious: it’s the variable’s declared type. Therefore, at both compile-time and run-time the program trivially
knows the type of the object. When working with pointers to objects you cannot, in the general case, deter-
mine the type of an object a pointer references. However, at run-time it is possible to determine the object’s
actual type. This section discusses how to detect the underlying object’s type and how to use this informa-
tion.

If you have a pointer to an object and that pointer’s type is some base class, at run-time the pointer could
point at an object of the base class or any derived type. At compile-time it is not possible to determine the
exact type of an object at any instant. To see why, consider the following short example:
Page 1062 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
ReturnSomeObject(); // Returns a pointer to some class in ESI.
mov(esi, ptrToObject);

The routine ReturnSomeObject returns a pointer to an object in ESI. This could be the address of some
base class object or a derived class object. At compile-time there is no way for the program to know what
type of object this function returns. For example, ReturnSomeObject could ask the user what value to return
so the exact type could not be determined until the program actually runs and the user makes a selection.

In a perfectly designed program, there probably is no need to know a generic object’s actual type. After
all, the whole purpose of object-oriented programming and inheritance is to produce general programs that
work with lots of different objects without having to make substantial changes to the program. In the real
world, however, programs may not have a perfect design and sometimes it’s nice to know the exact object
type a pointer references. Run-time type information, or RTTI, gives you the capability of determining an
object’s type at run-time, even if you are referencing that object using a pointer to some base class of that
object.

Perhaps the most fundamental RTTI operation you need is the ability to ask if a pointer contains the
address of some specific object type. Many object-oriented languages (e.g., Delphi) provide an IS operator
that provides this functionality. IS is a boolean operator that returns true if its left operand (a pointer) points
at an object whose type matches the left operand (which must be a type identifier). The typical syntax is
generally the following:

ObjectPointerOrVar is ClassType

This operator would return true if the variable is of the specified class, it returns false otherwise. Here is a
typical use of this operator (in the Delphi language)

if(ptrToNumeric is uint) then begin
.
.
.

end;

It’s actually quite simple to implement this functionality in HLA. As you may recall, each class is given
its own virtual method table. Whenever you create an object, you must initialize the pointer to the VMT
with the address of that class’ VMT. Therefore, the VMT pointer field of all objects of a given class type
contain the same pointer value and this pointer value is different that the VMT pointer field of all other
classes. We can use this fact to see if an object is some specific type. The following code demonstrates how
to implement the Delphi statement above in HLA:

mov(ptrToNumeric, esi);
if((type uint [esi])._pVMT_ = &uint._VMT_) then

.

.

.
endif;

This IF statement simply compares the object’s _pVMT_ field (the pointer to the VMT) against the
address of the desired class’ VMT. If they are equal, then the ptrToNumeric variable points at an object of
type uint.

Within the body of a class method or iterator, there is a slightly easier way to see if the object is a certain
class. Remember, upon entry into a method or an iterator, the EDI register contains the address of the virtual
method table. Therefore, assuming you haven’t modified EDI’s value, you can easily test to see if THIS
(ESI) is a specific class type using an IF statement like the following:

if(EDI = &uint._VMT_) then
.
.
.

endif;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1063

Chapter Ten Volume Five
10.15 Calling Base Class Methods

In the section on constructors you saw that it is possible to call an ancestor class’ procedure within the
derived class’ overridden procedure. To do this, all you needed to do was to invoke the procedure using the
call “classname.procedureName(parameters);” On occasion you may want to do this same operation with a
class’ methods as well as its procedures (that is, have an overridden method call the corresponding base class
method in order to do some computation you’d rather not repeat in the derived class’ method). Unfortu-
nately, HLA does not let you directly call methods as it does procedures. You will need to use an indirect
mechanism to achieve this; specifically, you will have to call the function using the address in the base
class’ virtual method table. This section describes how to do this.

Whenever your program calls a method it does so indirectly, using the address found in the virtual
method table for the method’s class. The virtual method table is nothing more than an array of 32-bit point-
ers with each entry containing the address of one of that class’ methods. So to call a method, all you need is
the index into this array (or, more properly, the offset into the array) of the address of the method you wish to
call. The HLA compile-time function @offset comes to the rescue- it will return the offset into the virtual
method table of the method whose name you supply as a parameter. Combined with the CALL instruction,
you can easily call any method associated with a class. Here’s an example of how you would do this:

type
myCls: class

.

.

.
method m;
.
.
.

endclass;
.
.
.

call(myCls._VMT_[@offset(myCls.m)]);

The CALL instruction above calls the method whose address appears at the specified entry in the virtual
method table for myCls. The @offset function call returns the offset (i.e., index times four) of the address of
myCls.m within the virtual method table. Hence, this code indirectly calls the m method by using the virtual
method table entry for m.

There is one major drawback to calling methods using this scheme: you don’t get to use the high level
syntax for procedure/method calls. Instead, you must use the low-level CALL instruction. In the example
above, this isn’t much of an issue because the m procedure doesn’t have any parameters. If it did have
parameters, you would have to manually push those parameters onto the stack yourself (see “Passing Param-
eters on the Stack” on page 798). Fortunately, you’ll rarely need to call ancestor class methods from a
derived class, so this won’t be much of an issue in real-world programs.

10.16 Sample Program

This chapter’s sample program will present what is probably the epitome of object-oriented programs: a
simple “drawing” program that uses objects to represent shapes to draw on the display. While limited to a
demonstration program, this program does demonstrate important object-oriented concepts in assembly lan-
guage.

This is an unusual drawing program insofar as it draws shapes using ASCII characters. While the
shapes it draws are very rough (compared to a graphics-based drawing program), the output of this program
could be quite useful for creating rudimentary diagrams to include as comments in your HLA (or other lan-
Page 1064 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
guage) programs. This sample program does not provide a “user interface” for drawing images (something
you would need to effectively use this program) because the user interface represents a lot of code that won’t
improve your appreciation of object-oriented programming (not to mention, this book is long enough
already). Providing a mouse-based user interface to this program is left as an exercise to the interested
reader.

This program consists of three source files: the class definitions in a header file, the implementation of
the class’ procedures and methods in an HLA source file, and a main program that demonstrates a simple use
of the class’ objects. The following listings are for these three files.

type

 // Generic shape class:

 shape: class

 const

 maxX: uns16 := 80;
 maxY: uns16 := 25;

 var
 x: uns16;
 y: uns16;
 width: uns16;
 height: uns16;
 fillShape: boolean;

 procedure create; returns("esi"); external;

 method draw; abstract;
 method fill(f:boolean); external;
 method moveTo(x:uns16; y:uns16); external;
 method resize(width: uns16; height: uns16); external;

 endclass;

 // Class for a rectangle shape
 //
 // +------+
 // | |
 // +------+

 rect: class inherits(shape)

 override procedure create; external;
 override method draw; external;

 endclass;

 // Class for a rounded rectangle shape
 //
 // --------
 // / \
 // | |
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1065

Chapter Ten Volume Five
 // \ /
 // --------

 roundrect: class inherits(shape)

 override procedure create; external;
 override method draw; external;

 endclass;

 // Class for a diamond shape
 //
 // /\
 // / \
 // \ /
 // \/

 diamond: class inherits(shape)

 override procedure create; external;
 override method resize; external;
 override method draw; external;

 endclass;

Program 10.1 Shapes.hhf - The Shape Class Header Files

unit Shapes;
#includeonce("stdlib.hhf")
#includeonce("shapes.hhf")

// Emit the virtual method tables for the classes:

static
 vmt(shape);
 vmt(rect);
 vmt(roundrect);
 vmt(diamond);

/***/

// Generic shape methods and procedures

// Constructor for the shape class.
//
// Note: this should really be an abstract procedure, but since
// HLA doesn't support abstract procedures we'll fake it by
// raising an exception if somebody tries to call this proc.
Page 1066 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
procedure shape.create; nodisplay; noframe;
begin create;

 // This should really be an abstract procedure,
 // but such things don't exist, so we will fake it.

 raise(ex.ExecutedAbstract);

end create;

// Generic shape.fill method.
// This is an accessor function that sets the "fill" field
// to the value of the parameter.

method shape.fill(f:boolean); nodisplay;
begin fill;

 push(eax);
 mov(f, al);
 mov(al, this.fillShape);
 pop(eax);

end fill;

// Generic shape.moveTo method.
// Checks the coordinates passed as a parameter and
// then sets the (X,Y) coordinates of the underlying
// shape object to these values.

method shape.moveTo(x:uns16; y:uns16); nodisplay;
begin moveTo;

 push(eax);
 push(ebx);

 mov(x, ax);
 assert(ax < shape.maxX);
 mov(ax, this.x);

 mov(y, ax);
 assert(ax < shape.maxY);
 mov(ax, this.y);

 pop(ebx);
 pop(eax);

end moveTo;

// Generic shape.resize method.
// Sets the width and height fields of the underlying object
// to the values passed as parameters.
//
// Note: Ignores resize request if the size is less than 2x2.

method shape.resize(width:uns16; height:uns16); nodisplay;
begin resize;

 push(eax);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1067

Chapter Ten Volume Five
 assert(width <= shape.maxX);
 assert(height <= shape.maxY);

 if(width > 2) then

 if(height > 2) then

 mov(width, ax);
 mov(ax, this.width);

 mov(height, ax);
 mov(ax, this.height);

 endif;

 endif;
 pop(eax);

end resize;

/*******************/
/* */
/* rect's methods: */
/* */
/*******************/

// Constructor for the rectangle class:

procedure rect.create; nodisplay; noframe;
begin create;

 push(eax);

 // If called as rect.create, then allocate a new object
 // on the heap and return the pointer in ESI.

 if(esi = NULL) then

 mov(malloc(@size(rect)), esi);

 endif;

 // Initialize the pointer to the VMT:

 mov(&rect._VMT_, this._pVMT_);

 // Initialize fields to create a non-filled unit square.

 sub(eax, eax);

 mov(ax, this.x);
 mov(ax, this.y);
 inc(eax);
 mov(al, this.fillShape); // Sets fillShape to true.
 inc(eax);
 mov(ax, this.height);
 mov(ax, this.width);
Page 1068 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
 pop(eax);
 ret();

end create;

// Here's the method to draw a text-based square on the display.

method rect.draw; nodisplay;
static
 horz: str.strvar(shape.maxX); // Holds "+------...--+"
 spcs: str.strvar(shape.maxX); // Holds " ... " for fills.

begin draw;

 push(eax);
 push(ebx);
 push(ecx);
 push(edx);

 // Initialize the horz and spcs strings to speed up
 // drawing our rectangle.

 movzx(this.width, ebx);
 str.setstr('-', horz, ebx);
 mov(horz, eax);
 mov('+', (type char [eax]));
 mov('+', (type char [eax+ebx-1]));

 // If the fillShape field contains true, then we
 // need to fill in the characters inside the rectangle.
 // If this is false, we don't want to overwrite the
 // text in the center of the rectangle. The following
 // code initializes spcs to all spaces or the empty string
 // to accomplish this.

 if(this.fillShape) then

 sub(2, ebx);
 str.setstr(' ', spcs, ebx);

 else

 str.cpy("", spcs);

 endif;

 // Okay, position the cursor and draw
 // our rectangle.

 console.gotoxy(this.y, this.x);
 stdout.puts(horz); // Draws top horz line.

 // For each row except the top and bottom rows,
 // draw "|" characters on the left and right
 // hand sides and the fill characters (if fillShape
 // is true) inbetween them.

 mov(this.y, cx);
 mov(cx, bx);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1069

Chapter Ten Volume Five
 add(this.height, bx);
 inc(cx);
 dec(bx);
 while(cx < bx) do

 console.gotoxy(cx, this.x);
 stdout.putc('|');
 stdout.puts(spcs);
 mov(this.x, dx);
 add(this.width, dx);
 dec(dx);
 console.gotoxy(cx, dx);
 stdout.putc('|');
 inc(cx);

 endwhile;

 // Draw the bottom horz bar:

 console.gotoxy(cx, this.x);
 stdout.puts(horz);

 pop(edx);
 pop(ecx);
 pop(ebx);
 pop(eax);

end draw;

/************************/
/* */
/* roundrect's methods: */
/* */
/************************/

// This is the constructor for the roundrect class.
// See the comments in rect.create for details
// (since this is just a clone of that code with
// minor changes here and there).

procedure roundrect.create; nodisplay; noframe;
begin create;

 push(eax);
 if(esi = NULL) then

 mov(malloc(@size(rect)), esi);

 endif;
 mov(&roundrect._VMT_, this._pVMT_);

 // Initialize fields to create a non-filled unit square.

 sub(eax, eax);
Page 1070 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
 mov(ax, this.x);
 mov(ax, this.y);
 inc(eax);
 mov(al, this.fillShape); // Sets fillShape to true.
 inc(eax);
 mov(ax, this.height);
 mov(ax, this.width);

 pop(eax);
 ret();

end create;

// Here is the draw method for the roundrect object.
// Note: if the object is less than 5x4 in size,
// this code calls rect.draw to draw a rectangle
// since roundrects smaller than 5x4 don't look good.
//
// Typical roundrect:
//
// --------
// / \
// | |
// \ /
// --------

method roundrect.draw; nodisplay;
static
 horz: str.strvar(shape.maxX);
 spcs: str.strvar(shape.maxX);

begin draw;

 push(eax);
 push(ebx);
 push(ecx);
 push(edx);

 if
 (#{
 cmp(this.width, 5);
 jb true;
 cmp(this.height, 4);
 jae false;
 }#) then

 // If it's too small to draw an effective
 // roundrect, then draw it as a rectangle.

 call(rect._VMT_[@offset(rect.draw)]);

 else

 // Okay, it's big enough, draw it as a rounded
 // rectangle object. Begin by initializing the
 // horz string with a set of dashes with spaces
 // at either end.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1071

Chapter Ten Volume Five
 movzx(this.width, ebx);
 sub(4, ebx);
 str.setstr('-', horz, ebx);
 if(this.fillShape) then

 add(2, ebx);
 str.setstr(' ', spcs, ebx);

 else

 str.cpy("", spcs);

 endif;

 // Okay, draw the top line.

 mov(this.x, ax);
 add(2, ax);
 console.gotoxy(this.y, ax);
 stdout.puts(horz);

 // Now draw the second line and the
 // as "/" and "\" with optional spaces
 // inbetween (if fillShape is true).

 mov(this.y, cx);
 inc(cx);
 console.gotoxy(cx, ax);
 stdout.puts(spcs);

 console.gotoxy(cx, this.x);
 stdout.puts(" /");

 add(this.width, ax);
 sub(4, ax); // Sub 4 because we added two above.
 console.gotoxy(cx, ax);
 stdout.puts("\ ");

 // Okay, now draw the bottom line:

 mov(this.x, ax);
 add(2, ax);
 mov(this.y, cx);
 add(this.height, cx);
 dec(cx);
 console.gotoxy(cx, ax);
 stdout.puts(horz);

 // And draw the second from the bottom
 // line as "\" and "/" with optional
 // spaces inbetween (depending on fillShape)

 dec(cx);
 console.gotoxy(cx, this.x);
 stdout.puts(spcs);

 console.gotoxy(cx, this.x);
 stdout.puts(" \");

 mov(this.x, ax);
Page 1072 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
 add(this.width, ax);
 sub(2, ax); // Sub 4 because we added two above.
 console.gotoxy(cx, ax);
 stdout.puts("/ ");

 // Finally, draw all the lines inbetween the
 // top two and bottom two lines.

 mov(this.y, cx);
 mov(this.height, bx);
 add(cx, bx);
 add(2, cx);
 sub(2, bx);
 mov(this.x, ax);
 add(this.width, ax);
 dec(ax);

 while(cx < bx) do

 console.gotoxy(cx, this.x);
 stdout.putc('|');
 stdout.puts(spcs);
 console.gotoxy(cx, ax);
 stdout.putc('|');
 inc(cx);

 endwhile;

 endif;

 pop(edx);
 pop(ecx);
 pop(ebx);
 pop(eax);

end draw;

/*********************/
/* */
/* Diamond's methods */
/* */
/*********************/

// Constructor for a diamond shape.
// See pertinent comments for the rect constructor
// for more details.

procedure diamond.create; nodisplay; noframe;
begin create;

 push(eax);
 if(esi = NULL) then

 mov(malloc(@size(rect)), esi);

 endif;
 mov(&diamond._VMT_, this._pVMT_);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1073

Chapter Ten Volume Five
 // Initialize fields to create a 2x2 diamond.

 sub(eax, eax);

 mov(ax, this.x);
 mov(ax, this.y);
 inc(eax);
 mov(al, this.fillShape); // Sets fillShape to true.
 inc(eax); // Minimum diamond size is 2x2.
 mov(ax, this.height);
 mov(ax, this.width);

 pop(eax);
 ret();

end create;

// We have to overload the resize method for diamonds
// (unlike the other objects) because diamond shapes
// have to be symmetrical. That is, the width and
// the height have to be the same. This code enforces
// this restriction by setting both parameters to the
// minimum of the width/height parameters and then it
// calls shape.resize to do the dirty work.

method diamond.resize(width:uns16; height:uns16); nodisplay;
begin resize;

 // Diamonds are symmetrical shapes, so the width and
 // height must be the same. Force that here:

 push(eax);
 mov(width, ax);
 if(ax > height) then

 mov(height, ax);

 endif;

 // Call the shape.resize method to do the actual work:

 push(eax); // Pass the minimum value as the width.
 push(eax); // Also pass the minimum value as the height.
 call(shape._VMT_[@offset(shape.resize)]);

 pop(eax);

end resize;

// Here's the code to draw the diamond.

method diamond.draw; nodisplay;
var
 startY: uns16;
 endY: uns16;
 startX: uns16;
 endX: uns16;

begin draw;
Page 1074 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
 push(eax);
 push(ebx);
 push(ecx);
 push(edx);

 if
 (#{
 cmp(this.width, 2);
 jb true;
 cmp(this.height, 2);
 jae false;
 }#) then

 // Special cases for small diamonds.
 // Resizing prevents most of these from ever appearing.
 // However, if someone pokes around directly in the
 // width and height fields this code will save us:

 cmp(this.width, 1);
 ja D2x1;
 cmp(this.height, 1);
 ja D1x2;

 // At this point we must have a 1x1 diamond

 console.gotoxy(this.y, this.x);
 stdout.putc('+');
 jmp SmallDiamondDone;

 D2x1:

 // Okay, we have a 2x1 (WxH) diamond here:

 console.gotoxy(this.y, this.x);
 stdout.puts("<>");
 jmp SmallDiamondDone;

 D1x2:

 // We have a 1x2 (WxH) diamond here:

 mov(this.y, ax);
 console.gotoxy(ax, this.x);
 stdout.putc('^');
 inc(ax);
 console.gotoxy(ax, this.x);
 stdout.putc('V');

 SmallDiamondDone:

 else

 // Okay, we're drawing a reasonable sized diamond.
 // There is still a minor problem. The best looking
 // diamonds always have a width and height that is an
 // even integer. We need to do something special if
 // the height or width is odd.
 //
 // Odd Odd
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1075

Chapter Ten Volume Five
 // Height Width
 // . <- That's a period
 // /\ / \
 // < > \ /
 // \/ ' <- That's an apostrophe
 //
 // Both
 // .
 // / \
 // < >
 // \ /
 // '
 //
 // Step one: determine if we have an odd width. If so,
 // output the period and quote at the appropriate points.

 mov(this.width, ax);
 mov(this.y, cx);
 test(1, al);
 if(@nz) then

 shr(1, ax);
 add(this.x, ax);
 console.gotoxy(cx, ax);
 stdout.putc('.');
 inc(cx);
 mov(cx, startY);

 add(this.height, cx);
 sub(2, cx);
 console.gotoxy(cx, ax);
 stdout.putc('''');
 dec(cx);
 mov(cx, endY);

 else

 mov(this.y, ax);
 mov(ax, startY);
 add(this.height, ax);
 dec(ax);
 mov(ax, endY);

 endif;

 // Step two: determine if we have an odd height. If so,
 // output the less than and greater than symbols at the
 // appropriate spots (in the center of the diamond).

 mov(this.height, ax);
 mov(this.x, cx);
 test(1, al);
 if(@nz) then

 shr(1, ax);
 add(this.y, ax);
 console.gotoxy(ax, cx);
 stdout.putc('<');
 inc(cx);
 mov(cx, startX);

Page 1076 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
 // Write spaces across the center if fillShape is true.

 if(this.fillShape) then

 lea(ebx, [ecx+1]);
 mov(this.x, dx);
 add(this.width, dx);
 dec(dx);
 while(bx < dx) do

 stdout.putc(' ');
 inc(bx);

 endwhile;

 endif;

 add(this.width, cx);
 sub(2, cx);
 console.gotoxy(ax, cx);
 stdout.putc('>');
 dec(cx);
 mov(cx, endX);

 else

 mov(this.x, ax);
 mov(ax, startX);
 add(this.width, ax);
 dec(ax);
 mov(ax, endX);

 endif;

 // Step three: fill in the sides of the diamond
 //
 // /\ '
 // / \ O / \ (or something inbetween these two).
 // \ / R < >
 // \/ \ /
 // '
 // We've already drawn the points if there was an odd height
 // or width, now we've just got to fill in the sides with
 // "/" and "\" characters.
 //
 // Compute the middle two (or three) lines beginning with
 // the "/" (decY) and "\" (incY) symbols:
 //
 // decY = ((startY + endY - 1) and $FFFE)/2
 // incY = (startY + endY)/2 + 1

 mov(startY, ax);
 add(endY, ax);
 mov(ax, bx);
 dec(ax);
 and($FFFE, ax); // Force value to be even.
 shr(1, ax);

 shr(1, bx);
 inc(bx);

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1077

Chapter Ten Volume Five

 // Fill in pairs of rows as long as we don't hit the bottom/top
 // of the diamond:

 while((type int16 ax) >= (type int16 startY)) do

 // Draw the sides on the upper half of the diamond:

 mov(startX, cx);
 mov(endX, dx);
 console.gotoxy(ax, cx);
 stdout.putc('/');
 if(this.fillShape) then

 inc(cx);
 while(cx < dx) do

 stdout.putc(' ');
 inc(cx);

 endwhile;

 endif;
 console.gotoxy(ax, dx);
 stdout.putc('\');

 // Draw the sides on the lower half of the diamond:

 mov(startX, cx);
 mov(endX, dx);
 console.gotoxy(bx, cx);
 stdout.putc('\');
 if(this.fillShape) then

 inc(cx);
 while(cx < dx) do

 stdout.putc(' ');
 inc(cx);

 endwhile;

 endif;
 console.gotoxy(bx, dx);
 stdout.putc('/');

 inc(bx);
 dec(ax);
 inc(startX);
 dec(endX);

 endwhile;

 endif;

 pop(edx);
 pop(ecx);
 pop(ebx);
 pop(eax);
Page 1078 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
end draw;

end Shapes;

Program 10.2 Shapes.hla - The Implementation of the Shape Class

// This is a simple demonstration program
// that shows how to use the shape objects
// in the shape, rect, roundrect, and diamond classes.

program ASCIIDraw;
#include("stdlib.hhf")
#includeonce("shapes.hhf")

type
 pShape: pointer to shape;

// Allocate storage for various shapes:

static
 aRect1: pointer to rect;
 aRect2: pointer to rect;
 aRect3: pointer to rect;

 aRrect1: pointer to roundrect;
 aRrect2: pointer to roundrect;
 aRrect3: pointer to roundrect;

 aDiamond1: pointer to diamond;
 aDiamond2: pointer to diamond;
 aDiamond3: pointer to diamond;

 // We'll create a list of generic objects
 // in the following array in order to demonstrate
 // virual method calls and polymorphism.

 DrawList: pShape[9];

begin ASCIIDraw;

 console.cls();

 // Initialize various rectangle, roundrect, and diamond objects.
 // This code also stores pointers to each of these objects in
 // the DrawList array.

 mov(rect.create(), aRect1); mov(esi, DrawList[0*4]);
 mov(rect.create(), aRect2); mov(esi, DrawList[1*4]);
 mov(rect.create(), aRect3); mov(esi, DrawList[2*4]);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1079

Chapter Ten Volume Five

 mov(roundrect.create(), aRrect1); mov(esi, DrawList[3*4]);
 mov(roundrect.create(), aRrect2); mov(esi, DrawList[4*4]);
 mov(roundrect.create(), aRrect3); mov(esi, DrawList[5*4]);

 mov(diamond.create(), aDiamond1); mov(esi, DrawList[6*4]);
 mov(diamond.create(), aDiamond2); mov(esi, DrawList[7*4]);
 mov(diamond.create(), aDiamond3); mov(esi, DrawList[8*4]);

 // Size and position each of these objects:

 aRect1.resize(10, 10);
 aRect1.moveTo(10, 10);

 aRect2.resize(10, 10);
 aRect2.moveTo(15, 15);

 aRect3.resize(10, 10);
 aRect3.moveTo(20, 20);
 aRect3.fill(false);

 aRrect1.resize(10, 10);
 aRrect1.moveTo(40, 10);

 aRrect2.resize(10, 10);
 aRrect2.moveTo(45, 15);

 aRrect3.resize(10, 10);
 aRrect3.moveTo(50, 20);
 aRrect3.fill(false);

 aDiamond1.resize(9, 9);
 aDiamond1.moveTo(28, 0);

 aDiamond2.resize(9, 9);
 aDiamond2.moveTo(28, 3);

 aDiamond3.resize(9, 9);
 aDiamond3.moveTo(28, 6);
 aDiamond3.fill(false);

 // Note for the real fun, draw all of the objects
 // on the screen using the following simple loop.

 for(mov(0, ebx); ebx < 9; inc(ebx)) do

 DrawList.draw[ebx*4]();

 endfor;

end ASCIIDraw;

Program 10.3 ShapeMain.hla - The Main Program That Demonstrates Using Shape Objects
Page 1080 © 2001, By Randall Hyde Beta Draft - Do not distribute

Classes and Objects
10.17 Putting It All Together

HLA’s class declarations provide a powerful tool for creating object-oriented assembly language pro-
grams. Although object-oriented programming is not as popular in assembly as in high level languages, part
of the reason has been the lack of assemblers that support object-oriented programming in a reasonable fash-
ion and an even greater lack of tutorial information on object-oriented programming in assembly language.

While this chapter cannot go into great detail about the object-oriented programming paradigm (space
limitations prevent this), this chapter does explain the object-oriented facilities that HLA provides and sup-
plies several example programs that use those facilities. From here on, it’s up to you to utilize these facilities
in your programs and gain experience writing object oriented assembly code.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1081

Chapter Ten Volume Five
Page 1082 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
The MMX Instruction Set Chapter Eleven

11.1 Chapter Overview

While working on the Pentium and Pentium Pro processors, Intel was also developing an instruction set
architecture extension for multimedia applications. By studying several existing multimedia applications,
developing lots of multimedia related algorithms, and through simulation, Intel developed 57 instructions
that would greatly accelerate the execution of multimedia applications. The end result was their multimedia
extensions to the Pentium processor that Intel calls the MMX Technology Instructions.

Prior to the invention of the MMX enhancements, good quality multimedia systems required separate
digital signal processors and special electronics to handle much of the multimedia workload1. The introduc-
tion of the MMX instruction set allowed later Pentium processors to handle these multimedia tasks without
these expensive digital signal processors (DSPs), thus lowering the cost of multimedia systems. So later
Pentiums, Pentium II, Pentium III, and Pentium IV processors all have the MMX instruction set. Earlier
Pentiums (and CPUs prior to the Pentium) and the Pentium Pro do not have these instructions available.
Since the instruction set has been available for quite some time, you can probably use the MMX instructions
without worrying about your software failing on many machines.

In this chapter we will discuss the MMX Technology instructions and how to use them in your assembly
language programs. The use of MMX instructions, while not completely limited to assembly language, is
one area where assembly language truly shines since most high level languages do not make good use of
MMX instructions except in library routines. Therefore, writing fast code that uses MMX instructions is
mainly the domain of the assembly language programmer. Hence, it’s a good idea to learn these instructions
if you’re going to write much assembly code.

11.2 Determining if a CPU Supports the MMX Instruction Set

While it’s almost a given that any modern CPU your software will run on will support the MMX
extended instruction set, there may be times when you want to write software that will run on a machine
even in the absence of MMX instructions. There are two ways to handle this problem – either provide two
versions of the program, one with MMX support and one without (and let the user choose which program
they wish to run), or the program can dynamically determine whether a processor supports the MMX
instruction set and skip the MMX instructions if they are not available.

The first situation, providing two different programs, is the easiest solution from a software develop-
ment point of view. You don’t actually create two source files, of course; what you do is use conditional
compilation statements (i.e., #IF..#ELSE..#ENDIF) to selectively compile MMX or standard instructions
depending on the presence of an identifier or value of a boolean constant in your program. See “Conditional
Compilation (Compile-Time Decisions)” on page 934 for more details.

Another solution is to dynamically determine the CPU type at run-time and use program logic to skip
over the MMX instructions and execute equivalent standard code if the CPU doesn’t support the MMX
instruction set. If you’re expecting the software to run on an Intel Pentium or later CPU, you can use the
CPUID instruction to determine whether the processor supports the MMX instruction set . The CPUID
instruction will return bit 23 as a one in the feature flags return result.

The following code illustrates how to use the CPUID instruction. This example does not demonstrate
the entire CPUID sequence, but shows the portion used for detection of MMX technology.

1. A good example was the Apple Quadra 660AV and 840AV computer systems; they were built around the Motorola 68040
processor rather than a Pentium, but the 68040 was no more capable of handling multimedia applications than the Pentium.
However, an on-board DSP (digital signal processor) CPU allowed the Quadras to easily handle audio applications that the
68040 could not.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1083

Chapter Eleven Volume Four
// For a perfectly general routine, you should determine if this
// is a Pentium or later processor. We’ll assume at least a Pentium
// for now, since most Win32 OSes expect a Pentium or better processor.

mov(1, eax); // Request for CPUID feature flags.
CPUID(); // Get the feature flags into EDX.
test($80_0000, edx); // Is bit 23 set?
jnz HasMMX;

This code assumes at least the presence of a Pentium Processor. If your code needs to run on a 486 or
386 processor, you will have to detect that the system is using one of these processors. There is tons of code
on the net that detects different processors, but most of it will not run under Windows since that code typi-
cally uses protected (non-user-mode) instructions. There is also a Windows API call (Get_Machine_Info)
that will return this status. We’ll not go into the details here because 99% of the users out there that are run-
ning modern versions of Windows have a CPU that supports the MMX instruction set or, at least, the CPUID
instruction.

11.3 The MMX Programming Environment

The MMX architecture extends the Pentium architecture by adding the following:

• Eight MMX registers (MM0..MM7).
• Four MMX data types (packed bytes, packed words, packed double words, and quad word).
• 57 MMX Instructions.

11.3.1 The MMX Registers

The MMX architecture adds eight 64-bit registers to the Pentium. The MMX instructions refer to these
registers as MM0, MM1, MM2, MM3, MM4, MM5, MM6, and MM7. These are strictly data registers, you
cannot use them to hold addresses nor are they suitable for calculations involving addresses.

Although MM0..MM7 appear as separate registers in the Intel Architecture, the Pentium processors
alias these registers with the FPU’s registers (ST0..ST7). Each of the eight MMX 64-bit registers is physi-
cally equivalent to the L.O. 64-bits of each of the FPU’s registers (see Figure 11.1). The MMX registers
overlay the FPU registers in much the same way that the 16-bit general purpose registers overlay the 32-bit
general purpose registers.
Page 1084 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
Figure 11.1 MMX and FPU Register Aliasing

Because the MMX registers overlay the FPU registers, you cannot mix FPU and MMX instructions in
the same computation sequence. You can begin executing an MMX instruction sequence at any time; how-
ever, once you execute an MMX instruction you cannot execute another FPU instruction until you execute a
special MMX instruction, EMMS (Exit MMX Machine State). This instruction resets the FPU so you may
begin a new sequence of FPU calculations. The CPU does not save the FPU state across the execution of the
MMX instructions; executing EMMS clears all the FPU registers. Because saving FPU state is very expen-
sive, and the EMMS instruction is quite slow, it’s not a good idea to frequently switch between MMX and
FPU calculations. Instead, you should attempt to execute the MMX and FPU instructions at different times
during your program’s execution.

You’re probably wondering why Intel chose to alias the MMX registers with the FPU registers. Intel, in
their literature, brags constantly about what a great idea this was. You see, by aliasing the MMX registers
with the FPU registers, Microsoft and other multitasking OS vendors did not have to write special code to
save the MMX state when the CPU switched from one process to another. The fact that the OS automati-
cally saved the FPU state means that the CPU would automatically save the MMX state as well. This meant
that the new Pentium chips with MMX technology that Intel created were automatically compatible with
Windows 95, Windows NT, and Linux without any changes to the operating system code.

Of course, those operating systems have long since been upgraded and Microsoft (and Linux develop-
ers) could have easily provided a “service pack” to handle the new registers (had Intel chosen not to alias the
FPU and MMX registers). So while aliasing MMX with the FPU provided a very short-lived and temporary
benefit, in retrospect Intel made a big mistake with this decision. They’ve obviously realized their mistake,
because as they’ve introduced new “streaming” instructions (the floating point equivalent of the MMX
instruction set) they’ve added new registers (XMM0..XMM7) without using this trick. It’s too bad they

ST0

ST1

ST2

ST3

ST4

ST5

ST6

ST7

79 63 0

MM7

MM6

MM5

MM4

MM3

MM2

MM1

MM0
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1085

Chapter Eleven Volume Four
don’t fix the problem in their current CPUs (there is no technical reason why they can’t create separate
MMX and FPU registers at this point). Oh well, you’ll just have to live with the fact that you can’t execute
interleaved FPU and MMX instructions.

11.3.2 The MMX Data Types

The MMX instruction set supports four different data types: an eight-byte array, a four-word array, a
two element double word array, and a quadword object. Each MMX register processes one of these four
data types (see Figure 11.2).

Figure 11.2 The MMX Data Types

63 0

MMi

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Eight Packed Bytes

63 0

MMi

Word 3 Word 2 Word 1 Word 0

Four Packed Words

63 0

MMi

DWord 1 DWord 0

Two Packed Double Words

63 0

MMi

A Single Quad Word
Page 1086 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
Despite the presence of 64-bit registers, the MMX instruction set does not extend the 32-bit Pentium
processor to 64-bits. Instead, after careful study Intel added only those 64-bit instructions that were useful
for multimedia operations. For example, you cannot add or subtract two 64-bit integers with the MMX
instruction set. In fact, only the logical and shift operations directly manipulate 64 bits.

The MMX instruction set was not designed to provide general 64-bit capabilities to the Pentium.
Instead, the MMX instruction set provides the Pentium with the capability of performing multiple eight-,
sixteen-, or thirty-two bit operations simultaneously. In other words, the MMX instructions are generally
SIMD (Single Instruction Multiple Data) instructions (see “Parallel Processing” on page 258 for an explana-
tion of SIMD). For example, a single MMX instruction can add eight separate pairs of byte values together.
This is not the same as adding two 64-bit values since the overflow from the individual bytes does not carry
over into the higher order bytes. This can accelerate a program that needs to add a long string of bytes
together since a single MMX instruction can do the work of eight regular Pentium instructions. This is how
the MMX instruction set speeds up multimedia applications – by processing multiple data objects in parallel
with a single instruction. Given the data types the MMX instruction set supports, you can process up to
eight byte objects in parallel, four word objects in parallel, or two double words in parallel.

11.4 The Purpose of the MMX Instruction Set

The Single Instruction Multiple Data model the MMX architecture supports may not look all that
impressive when viewed with a SISD (Single Instruction, Single Data) bias. Once you’ve mastered the basic
integer instructions on the 80x86, it’s difficult to see the application of the MMX’s SIMD instruction set.
However, the MMX instructions directly address the needs of modern media, communications, and graphics
applications, which often use sophisticated algorithms that perform the same operations on a large number
of small data types (bytes, words, and double words).

For example, most programs use a stream of bytes or words to represent audio and video data. The
MMX instructions can operate on eight bytes or four words with a single instruction, thus accelerating the
program by almost a factor of four or eight.

One drawback to the MMX instruction set is that it is not general purpose. Intel’s research that led to
the development of these new instructions specifically targeted audio, video, graphics, and another multime-
dia applications. Although some of the instructions are applicable in many general programs, you’ll find that
many of the instructions have very little application outside their limited domain. Although, with a lot of
deep thought, you can probably dream up some novel uses of many of these instructions that have nothing
whatsoever at all to do with multimedia, you shouldn’t get too frustrated if you cannot figure out why you
would want to use a particular instruction; that instruction probably has a specific purpose and if you’re not
trying to code a solution for that problem, you may not be able to use the instruction. If you’re questioning
why Intel would put such limited instructions in their instruction set, just keep in mind that although you can
use the instruction(s) for lots of different purposes, they are invaluable for the few purposes they are
uniquely suited.

11.5 Saturation Arithmetic and Wraparound Mode

The MMX instruction set supports saturating arithmetic (see “Sign Extension, Zero Extension, Contrac-
tion, and Saturation” on page 63). When manipulating standard integer values and an overflow occurs, the
integer instructions maintain the correct L.O. bits of the value in the integer while truncating any overflow2.
This form of arithmetic is known as wraparound mode since the L.O. bits wrap back around to zero. For
example, if you add the two eight-bit values $02 and $FF you wind up with a carry and the result $01. The
actual sum is $101, but the operation truncates the ninth bit and the L.O. byte wraps around to $01.

In saturation mode, results of an operation that overflow or underflow are clipped (saturated) to some
maximum or minimum value depending on the size of the object and whether it is signed or unsigned. The

2. For some instructions the overflow may appear in another register or the carry flag, but in the destination register the high
order bits are lost.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1087

Chapter Eleven Volume Four
result of an operation that exceeds the range of a data-type saturates to the maximum value of the range. A
result that is less than the range of a data type saturates to the minimum value of the range.

For example, when the result exceeds the data range limit for signed bytes, it is saturated to $7f; if a
value is less than the data range limit, it is saturated to $80 for signed bytes. If a value exceeds the range for
unsigned bytes, it is saturated to $ff or $00.

This saturation effect is very useful for audio and video data. For example, if you are amplifying an
audio signal by multiplying the words in the 44.1 kHz audio stream by 1.5, clipping the value at +32767,
while introducing distortion, sounds far better than allowing the waveform to wrap around to -32768. Simi-
larly, if you are mixing colors in a 24-bit graphic or video image, saturating to white produces much more
meaningful results than wrap-around.

Since Intel created the MMX architecture to support audio, graphics, and video, it should come as no
surprise that the MMX instruction set supports saturating arithmetic. For those applications that require sat-
urating arithmetic, having the CPU automatically handle this process (rather than having to explicitly check
after each calculation) is another way the MMX architecture speeds up multimedia applications.

11.6 MMX Instruction Operands

Most MMX instructions operate on two operands, a source and a destination operand. A few instruc-
tions have three operands with the third operand being a small immediate (constant) value. In this section
we’ll take a look at the common MMX instruction operands.

The destination operand is almost always an MMX register. In fact, the only exceptions are those
instructions that store an MMX register into memory. The MMX instructions always leave the result of
MMX calculations in an MMX register.

The source operand can be an MMX register or a memory location. The memory location is usually a
quad word entity, but certain instructions operate on double word objects. Note that, in this context, “quad
word” and “double word” mean eight or four consecutive bytes in memory; they do not necessarily imply
that the MMX instruction is operating on a qword or dword object. For example, if you add eight bytes
together using the PADDB (packed add bytes) instruction, PADDB references a qword object in memory,
but actually adds together eight separate bytes.

For most MMX instructions, the generic HLA syntax is one of the following:

mmxInstr(source, dest);

The specific forms are

mmxInstr(mmi, mmi); // i=0..7
mmxInstr(mem, mmi); // i=0..7

Table 1:

Data Type
Decimal Hexadecimal

Lower Limit Upper Limit Lower Limit Upper Limit

Signed Byte -128 +127 $80 $7f

Unsigned Byte 0 255 0 $ff

Signed Word -32768 +32767 $8000 $7fff

Unsigned Word 0 65535 0 $ffff
Page 1088 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
MMX instructions access memory using the same addressing modes as the standard integer instruc-
tions. Therefore, any legal 80x86 addressing mode is usable in an MMX instruction. For those instructions
that reference a 64-bit memory location, HLA requires that you specify an anonymous memory object (e.g.,
“[ebx]” or “[ebp+esi*8+6]”) or a qword variable.

A few instructions require a small immediate value (or constant). For example, the shift instructions let
you specify a shift count as an immediate value in the range 0..63. Another instruction uses the immediate
value to specify a set of four different count values in the range 0..3 (i.e., four two-bit count values). These
instructions generally take the following form:

mmxInstr(imm8, source, dest);

Note that, in general, MMX instructions do not allow you to specify immediate constants as operands
except for a few special cases (such as shift counts). In particular, the source operand to an MMX instruc-
tion has to be a register or a quad word variable, it cannot be a 64-bit constant. To achieve the same effect as
specifying a constant as the source operand, you must initialize a quad word variable in the READONLY (or
STATIC) section of your program and specify this variable as the source operand. Unfortunately, HLA does
not support 64-bit constants, so initializing the value is going to be a bit of a problem. There are two solu-
tions to this problem: break the constant into smaller pieces (bytes, words, or double words) and emit the
constant in pieces that HLA can process; or you can write your own numeric conversion routine(s) using the
HLA compile-time language to allow the emission of a 64-bit constant. We’ll explore both of those
approaches here.

The first approach is the one you will most commonly use. Very few MMX instructions actually operate
on 64-bit data operands; instead, they typically operate on a (small) array of bytes, words, or double words.
Since HLA provides good support for byte, word, and double word constant expressions, specifying a 64-bit
MMX memory operand as a short array of objects is probably the best way to create this data. Since the
MMX instructions that fetch a source value from memory expect a 64-bit operand, you must declare such
objects as qword variables, e.g.,

static
mmxVar:qword;

The big problem with this declaration is that the qword type does not allow an initializer (since HLA
cannot handle 64-bit constant expressions). Since this declaration occurs in the STATIC segment, HLA will
initialize mmxVar with zero; probably not the value you’re interested in supplying here.

There are two ways to solve this problem. The first way is to attach the NOSTORAGE option to the
MMX variable declarations in the STATIC segment. The data declarations that immediately follow the vari-
able definition provide the initial data for that variable. Here’s an example of such a declaration:

static
mmxDVar: qword; nostorage;

dword $1234_5678, $90ab_cdef;

Note that the DWORD directive above stores the double word constants in successive memory locations.
Therefore, $1234_5678 will appear in the L.O. double word of the 64-bit value and $90ab_cdef will appear
in the H.O. double word of the 64-bit value. Always keep in mind that the L.O. objects come first in the list
following the DWORD (or BYTE, or WORD, or ???) directive; this appears to be opposite of the way
you’re used to reading values.

The example above used a DWORD directive to provide the initialization constant. However, you can
use any data declaration directive, or even a combination of directives, as long as you allocate at least eight
bytes (64-bits) for each qword constant. The following data declaration, for example, initializes eight
eight-bit constants for an MMX operand; this would be perfect for a PADDB instruction or some other
instruction that operates on eight bytes in parallel:

static
eightBytes: qword; nostorage;

byte 0, 1, 2, 3, 4, 5, 6, 7;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1089

Chapter Eleven Volume Four
Although most MMX instructions operate on small arrays of bytes, words, or double words, a few actu-
ally do operate on 64-bit quantities. For such memory operands you would probably prefer to specify a
64-bit constant rather than break it up into its constituent double word values. This way, you don’t have to
remember to put the L.O. double word first and perform other mental adjustments.

Although HLA does not support 64-bit constants in the compile time language, HLA is flexible enough
to allow you to extend the language to handle such declarations. Program 11.1 demonstrates how to write a
macro to accept a 64-bit hexadecimal constant. This macro will automatically emit two DWORD declara-
tions containing the L.O. and H.O. components of the 64-bit value you specify as the qword16 (quadword
constant, base 16) macro parameter. You would typically use the qword16 macro as follows:

static
HOOnes: qword; nostorage;

qword16($FFFF_FFFF_0000_0000);

The qword16 macro would emit the following:

dword 0;
dword $FFFF_FFFF;

Without further ado, here’s the macro (and a sample test program):

program qwordConstType;
#include(“stdlib.hhf”)

// The following macro accepts a 64-bit hexadecimal constant
// and emits two dword objects in place of the constant.

macro qword16(theHexVal):hs, len, dwval, mplier, curch, didLO;

 // Remove whitespace around the macro parameter (shouldn’t
 // be any, but just in case something weird is going on) and
 // convert all lower case characters to upper case.

 ?hs := @uppercase(@trim(@string:theHexVal, 0), 0);

 // If there is a leading “$” symbol, strip it from the string.

 #if(@substr(hs, 0, 1) = “$”)

 ?hs := @substr(hs, 1, 256);

 #endif

 // Process each character in the string from the L.O. digit
 // through to the H.O. digit. Add the digit, multiplied by
 // some successive power of 16, to the current sum we’re
 // accumulating in dwval. When we cross a dword boundary,
 // emit the L.O. dword and start over.

 ?len := @length(hs); // Number of characters to process.
 ?dwval:dword := 0; // Accumulate value here.
 ?mplier:dword := 1; // Power of 16 to multiply by.
 ?didLO:boolean := false; // Checks for overflow.
 #while(len > 0) // Repeat for each char in string.

 // For each character in the string, verify that it is
 // a legal hexadecimal character and merge it in with the
 // current accumulated value if it is. Print an error message
 // if we come across an illegal character.
Page 1090 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
 ?len := len - 1; // Next available char.
 ?curch := char(@substr(hs, len, 1)); // Get the character.
 #if(curch in {‘0’..’9’}) // See if valid decimal digit.

 // Accumulate result if decimal digit.

 ?dwval := dwval +
 (uns8(curch) - uns8(‘0’)) * mplier;

 #elseif(curch in {‘A’..’F’}) // See if valid hex digit.

 // Accumulate result if a hexadecimal digit.

 ?dwval := dwval +
 (uns8(curch) - uns8(‘A’) + 10) * mplier;

 // Ignore underscore characters and report an error for anything
 // else we find in the string.

 #elseif(curch <> ‘_’)

 #error(“Illegal character in 64-bit hexadecimal constant”)
 #print(“Character = ‘”, curch, “‘ Rest of string: ‘”, hs, “‘”)

 #endif

 // If it’s not an underscore character, adjust the multiplier value.
 // If we cross a dword boundary, emit the L.O. value as a dword
 // and reset everything for the H.O. dword.

 #if(curch <> ‘_’)

 // If the current value fits in 32 bits, process this
 // as though it were a dword object.

 #if(mplier < $1000_0000)

 ?mplier := mplier * 16;

 #elseif(len > 0)

 // Down here we’ve just processed the last hex
 // digit that will fit into 32 bits. So emit the
 // L.O. dword and reset the mplier and dwval constants.

 ?mplier := 1;
 dword dwval;
 ?dwval := 0;

 // If we’ve been this way before, we’ve got an
 // overflow.

 #if(didLO)

 #error(“64-bit overflow in constant”);

 #endif
 ?didLO := true;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1091

Chapter Eleven Volume Four
 #endif

 #endif

 #endwhile

 // Emit the H.O. dword here.

 dword dwval;

 // If the constant only consumed 32 bits, we’ve got to emit a zero
 // for the H.O. dword at this point.

 #if(!didLO)

 dword 0;

 #endif

endmacro;

static
 x:qword; nostorage;
 qword16($1234_5678_90ab_cdef);
 qword16(100);

begin qwordConstType;

 stdout.put(“64-bit value of x = $”);
 stdout.putqw(x);
 stdout.newln();

end qwordConstType;

Program 11.1 qword16 Macro to Process 64-bit Hexadecimal Constants

Although it’s a little bit more difficult, you could also write a qword10 macro that lets you specify deci-
mal constants as the macro operand rather than hexadecimal constants. The implementation of qword10 is
left as a programming exercise at the end of this volume.

11.7 MMX Technology Instructions

The following subsections describe each of the MMX instructions in detail. The organization is as fol-
lows:

• Data Transfer Instructions,
• Conversion Instructions,
• Packed Arithmetic Instructions,
• Comparisons,
• Logical Instructions,
• Shift and Rotate Instructions,
• the EMMS Instruction.
Page 1092 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
These sections describe what these instructions do, not how you would use them. Later sections will
provide examples of how you can use several of these instructions.

11.7.1 MMX Data Transfer Instructions

movd(reg32, mmi);

movd(mem32, mmi);

movd(mmi, reg32);

movd(mmi, mem32);

movq(mem64, mmi);

movq(mmi, mem64);

movq(mmi, mmi);

The MOVD (move double word) instruction copies data between a 32-bit integer register or double
word memory location and an MMX register. If the destination is an MMX register, this instruction
zero-extends the value while moving it. If the destination is a 32-bit register or memory location, this
instruction copies the L.O. 32-bits of the MMX register to the destination.

The MOVQ (move quadword) instruction copies data between two MMX registers or between an MMX
register and memory. If either the source or destination operand is a memory object, it must be a qword vari-
able or HLA will complain.

11.7.2 MMX Conversion Instructions

packssdw(mem64, mmi);

packssdw(mmi, mmi);

packsswb(mem64, mmi);

packsswb(mmi, mmi);

packusdw(mem64, mmi);

packusdw(mmi, mmi);

packuswb(mem64, mmi);

packuswb(mmi, mmi);

punpckhbw(mem64, mmi);

punpckhbw(mmi, mmi);

punpckhdq(mem64, mmi);

punpckhdq(mmi, mmi);

punpckhwd(mem64, mmi);

punpckhwd(mmi, mmi);

punpcklbw(mem64, mmi);

punpcklbw(mmi, mmi);

punpckldq(mem64, mmi);

punpckldq(mmi, mmi);

punpcklwd(mem64, mmi);

punpcklwd(mmi, mmi);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1093

Chapter Eleven Volume Four
The PACKSSxx instructions pack and saturate signed values. They convert a sequence of larger values
to a sequence of smaller values via saturation. Those instructions with the dw suffix pack four double words
into four words; those with the wb suffix saturate and pack eight signed words into eight signed bytes.

The PACKSSDW instruction takes the two double words in the source operand and the two double
words in the destination operand and converts these to four signed words via saturation. The instruction
packs these four words together and stores the result in the destination MMX register. See Figure 11.3 for
details.

The PACKSSWB instruction takes the four words from the source operand and the four signed words
from the destination operand and converts, via signed saturation, these values to eight signed bytes. This
instruction leaves the eight bytes in the destination MMX register. See Figure 11.4 for details.

One application for these pack instructions is to convert UNICODE to ASCII (ANSI). You can convert
UNICODE (16-bit) character to ANSI (8-bit) character if the H.O. eight bits of each UNICODE character is
zero. The PACKUSWB instruction will take eight UNICODE characters and pack them into a string that is
eight bytes long with a single instruction. If the H.O. byte of any UNICODE character contains a non-zero
value, then the PACKUSWB instruction will store $FF in the respective byte; therefore, you can use $FF as
a conversion error indication.

Another use for the PACKSSWB instruction is to translate a 16-bit audio stream to an eight-bit stream.
Assuming you’ve scaled your sixteen-bit values to produce a sequence of values in the range -128..+127,
you can use the PACKSSWB instruction to convert that sequence of 16-bit values into a packed sequence of
eight bit values.

Figure 11.3 PACKSSDW Instruction

63 0

Source

63 0

Word 3 Word 2 Word 1 Word 0

Destination

63 0

Destination

PACKSSDW Operation
Page 1094 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
Figure 11.4 PACKSSWB Instruction

The unpack instructions (PUNPCKxxx) provide the converse operation to the pack instructions. The
unpack instructions take a sequence of smaller, packed, values and translate them into larger values. There is
one problem with this conversion, however. Unlike the pack instructions, where it took two 64-bit oper-
ands to generate a single 64-bit result, the unpack operations will produce a 64-bit result from a single 32-bit
result. Therefore, these instructions cannot operate directly on full 64-bit source operands. To overcome
this limitation, there are two sets of unpack instructions: one set unpacks the data from the L.O. double
word of a 64-bit object, the other set of instructions unpacks the H.O. double word of a 64-bit object. By
executing one instruction from each set you can unpack a 64-bit object into a 128-bit object.

The PUNPCKLBW, PUNPCKLWD, and PUNPCKLDQ instructions merge (unpack) the L.O. double
words of their source and destination operands and store the 64-bit result into their destination operand.

The PUNPCKLBW instruction unpacks and interleaves the low-order four bytes of the source (first) and
destination (second) operands. It places the L.O. four bytes of the destination operand at the even byte posi-
tions in the destination and it places the L.O. four bytes of the source operand in the odd byte positions of
the destination operand.(see Figure 11.5).

63 0

Source

63 0

Word 3 Word 2 Word 1 Word 0

Destination

63 0

Destination

PACKSSWB Operation
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1095

Chapter Eleven Volume Four
Figure 11.5 UNPCKLBW Instruction

The PUNPCKLWD instruction unpacks and interleaves the low-order two words of the source (first) and
destination (second) operands. It places the L.O. two words of the destination operand at the even word posi-
tions in the destination and it places the L.O. words of the source operand in the odd word positions of the
destination operand (see Figure 11.6).

63 0

Source

63 0

Word 3 Word 2 Word 1 Word 0

Destination

63 0

Destination

PUNPCKLBW Operation

he
Page 1096 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
Figure 11.6 The PUNPCKLWD Instruction

The PUNPCKDQ instruction copies the L.O. dword of the source operand to the L.O. dword of the des-
tination operand and it copies the (original) L.O. dword of the destination operand to the L.O. dword of the
destination (i.e., it doesn’t change the L.O. dword of the destination, see Figure 11.7).

Figure 11.7 PUNPCKLDQ Instruction

63 0

Source

63 0

DWord 1 DWord 0

Destination

63 0

Destination

PUNPCKLWD Operation

63 0

Source

63 0

QWord

Destination

63 0

Destination

PUNPCKLDQ Operation
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1097

Chapter Eleven Volume Four
The PUNPCKHBW instruction is quite similar to the PUNPCKLBW instruction. The difference is that
it unpacks and interleaves the high-order four bytes of the source (first) and destination (second) operands. It
places the H.O. four bytes of the destination operand at the even byte positions in the destination and it
places the H.O. four bytes of the source operand in the odd byte positions of the destination operand (see
Figure 11.8).

Figure 11.8 PUNPCKHBW Instruction

The PUNPCKHWD instruction unpacks and interleaves the low-order two words of the source (first) and
destination (second) operands. It places the L.O. two words of the destination operand at the even word posi-
tions in the destination and it places the L.O. words of the source operand in the odd word positions of the
destination operand (see Figure 11.9)

63 0

Source

63 0

Word 3 Word 2 Word 1 Word 0

Destination

63 0

Destination

PUNPCKHBW Operation
Page 1098 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
Figure 11.9 PUNPCKHWD Instruction

The PUNPCKHDQ instruction copies the H.O. dword of the source operand to the H.O. dword of the
destination operand and it copies the (original) H.O. dword of the destination operand to the L.O. dword of
the destination (see Figure 11.10).

Figure 11.10 PUNPCKDQ Instruction

63 0

Source

63 0

DWord 1 DWord 0

Destination

63 0

Destination

PUNPCKHWD Operation

63 0

Source

63 0

QWord

Destination

63 0

Destination

PUNPCKHDQ Operation
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1099

Chapter Eleven Volume Four
Since the unpack instructions provide the converse operation of the pack instructions, it should come as
no surprise that you can use these instructions to perform the inverse algorithms of the examples given ear-
lier for the pack instructions. For example, if you have a string of eight-bit ANSI characters, you can con-
vert them to their UNICODE equivalents by setting one MMX register (the source) to all zeros. You can
convert each four characters of the ANSI string to UNICODE by loading those four characters into the L.O.
double word of an MMX register and executing the PUNPCKLBW instruction. This will interleave each of
the characters with a zero byte, thus converting them from ANSI to UNICODE.

Of course, the unpack instructions are quite valuable any time you need to interleave data. For example,
if you have three separate images containing the blue, red, and green components of a 24-bit image, it is pos-
sible to merge these three bytes together using the PUNPCKLBW instruction3.

11.7.3 MMX Packed Arithmetic Instructions

paddb(mem64, mmi);
paddb(mmi, mmi);

paddw(mem64, mmi);
paddw(mmi, mmi);

paddd(mem64, mmi);
paddd(mmi, mmi);

paddsb(mem64, mmi);
paddsb(mmi, mmi);

paddsw(mem64, mmi);
paddsw(mmi, mmi);

paddusb(mem64, mmi);
paddusb(mmi, mmi);

paddusw(mem64, mmi);
paddusw(mmi, mmi);

psubb(mem64, mmi);
psubb(mmi, mmi);

psubw(mem64, mmi);
psubw(mmi, mmi);

psubd(mem64, mmi);
psubd(mmi, mmi);

psubsb(mem64, mmi);
psubsb(mmi, mmi);

psubsw(mem64, mmi);
psubsw(mmi, mmi);

psubusb(mem64, mmi);
psubusb(mmi, mmi);

psubusw(mem64, mmi);
psubusw(mmi, mmi);

3. Typically you would merge in a fourth byte of zero and then store the resulting double word every three bytes in memory to
overwrite the zeros.
Page 1100 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
pmulhuw(mem64, mmi);
pmulhuw(mmi, mmi);

pmulhw(mem64, mmi);
pmulhw(mmi, mmi);

pmullw(mem64, mmi);
pmullw(mmi, mmi);

pmaddwd(mem64, mmi);
pmaddwd(mmi, mmi);

The packed arithmetic instructions operate on a set of bytes, words, or double words within a 64-bit
block. For example, the PADDW instruction computes four 16-bit sums of two operand simultaneously.
None of these instructions affect the CPU’s FLAGs register. Therefore, there is no indication of overflow,
underflow, zero result, negative result, etc. If you need to test a result after a packed arithmetic computation,
you will need to use one of the packed compare instructions (see “MMX Comparison Instructions” on
page 1103).

The PADDB, PADDW, and PADDD instructions add the individual bytes, words, or double words in the
two 64-bit operands using a wrap-around (i.e., non-saturating) addition. Any carry out of a sum is lost; it is
your responsibility to ensure that overflow never occurs. As for the integer instructions, these packed add
instructions add the values in the source operand to the destination operand, leaving the sum in the destina-
tion operand. These instructions produce correct results for signed or unsigned operands (assuming over-
flow/underflow does not occur).

The PADDSB and PADDSW instructions add the eight eight-bit or four 16-bit operands in the source
and destination locations together using signed saturation arithmetic. The PADDUSB and PADDUSW
instructions add their eight eight-bit or four 16-bit operands together using unsigned saturation arithmetic.
Notice that you must use different instructions for signed and unsigned value since saturation arithmetic is
different depending upon whether you are manipulating signed or unsigned operands. Also note that the
instruction set does not support the saturated addition of double word values.

The PSUBB, PSUBW, and PSUBD instructions work just like their addition counterparts, except of
course, they compute the wrap-around difference rather than the sum. These instructions compute
dest=dest-src. Likewise, the PSUBSB, PSUBSW, PSUBUSB, and PSUBUSW instruction compute the dif-
ference of the destination and source operands using saturation arithmetic.

While addition and subtraction can produce a one-bit carry or borrow, multiplication of two n-bit oper-
ands can produce as large as a 2*n bit result. Since overflow is far more likely in multiplication than in addi-
tion or subtraction, the MMX packed multiply instructions work a little differently than their addition and
subtraction counterparts. To successfully multiply two packed values requires two instructions - one to com-
pute the L.O. component of the result and one to produce the H.O. component of the result. The PMULLW,
PMULHW, and PMULHUW instructions handle this task.

The PMULLW instruction multiplies the four words of the source operand by the four words of the des-
tination operand and stores the four L.O. words of the four double word results into the destination operand.
This instruction ignores the H.O. words of the results. Used by itself, this instruction computes the
wrap-around product of an unsigned or signed set of operands; this is also the L.O. words of the four prod-
ucts.

The PMULHW and PMULHUW instructions complete the calculation. After computing the L.O.
words of the four products with the PMULLW instruction, you use either the PMULHW or PMULHUW
instruction to compute the H.O. words of the products. These two instruction multiply the four words in the
source by the four words in the destination and then store the H.O. words of the results in the destination
MMX register. The difference between the two is that you use PMULHW for signed operands and PMUL-
HUW for unsigned operands. If you compute the full product by using a PMULLW and a PMULHW (or
PMULHUW) instruction pair, then there is no overflow possible, hence you don’t have to worry about
wrap-around or saturation arithmetic.

The PMADDWD instruction multiplies the four words in the source operand by the four words in the
destination operand to produce four double word products. Then it adds the two L.O. double words together
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1101

Chapter Eleven Volume Four
and stores the result in the L.O. double word of the destination MMX register; it also adds together the two
H.O. double words and stores their sum in the H.O. word of the destination MMX register.

11.7.4 MMX Logic Instructions

pand(mem64, mmi);
pand(mmi, mmi);

pandn(mem64, mmi);
pandn(mmi, mmi);

por(mem64, mmi);
por(mmi, mmi);

pxor(mem64, mmi);
pxor(mmi, mmi);

The packed logic instructions are some examples of MMX instructions that actually operate on 64-bit
values. There are no packed byte, packed word, or packed double word versions of these instructions. Of
course, there is no need for special byte, word, or double word versions of these instructions since they
would all be equivalent to the 64-bit logic instruction. Hence, if you want to logically AND eight bytes
together in parallel, you use the PAND instruction; likewise, if you want to logically AND four words or
two double words together, you just use the PAND instruction.

The PAND, POR, and PXOR instructions do the same thing as their 32-bit integer instruction counter-
parts (AND, OR, XOR) except, of course, they operate on two 64-bit MMX operands. Hence, no further
discussion of these instructions is really necessary here. The PANDN (AND NOT) instruction is a new logic
instruction, so it bears a little bit of a discussion. The PANDN instruction computes the following result:

dest := dest and (not source);

As you may recall from the chapter on Introduction to Digital Design, this is the inhibition function. If the
destination operand is B and the source operand is A, this function computes B = BA’. (see “Boolean Func-
tions and Truth Tables” on page 197 for details of the inhibition function). If you’re wondering why Intel
chose to include such a weird function in the MMX instruction set, well, this instruction has one very useful
property: it forces bits to zero in the destination operand everywhere there is a one bit in the source operand.
This is an extremely useful function for merging to 64-bit quantities together. The following code sequence
demonstrates this:

readonly
AlternateNibbles: qword; nostorage;

qword16($F0F0_F0F0_F0F0_F0F0); // Note: needs qword16 macro!
.
.
.

// Create a 64-bit value in MM0 containing the Odd nibbles from MM1 and
// the even nibbles from MM0:

pandn(AlternateNibbles, mm0); // Clear the odd numbered nibbles.
pand(AlternateNibbles, mm1); // Clear the even numbered nibbles.
por(mm1, mm0); // Merge the two.

The PANDN operation is also useful for compute the set difference of two character sets. You could
implement the cs.difference function using only six MMX instructions:

// Compute csdest := csdest - cssrc;

movq((type qword csdest), mm0);
pandn((type qword cssrc), mm0);
movq(mm0, (type qword csdest));
Page 1102 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
movq((type qword csdest[8]), mm0);
pandn((type qword cssrc[8]), mm0);
movq(mm0, (type qword csdest[8]));

Of course, if you want to improve the performance of the HLA Standard Library character set functions,
you can use the MMX logic instructions throughout that module. Examples of such code appear later in this
chapter.

11.7.5 MMX Comparison Instructions

pcmpeqb(mem64, mmi);
pcmpeqb(mmi, mmi);

pcmpeqw(mem64, mmi);
pcmpeqw(mmi, mmi);

pcmpeqd(mem64, mmi);
pcmpeqd(mmi, mmi);

pcmpgtb(mem64, mmi);
pcmpgtb(mmi, mmi);

pcmpgtw(mem64, mmi);
pcmpgtw(mmi, mmi);

pcmpgtd(mem64, mmi);
pcmpgtd(mmi, mmi);

The packed comparison instructions compare the destination (second) operand to the source (first) oper-
and to test for equality or greater than. These instructions compare eight pairs of bytes (PCMPEQB,
PCMPGTB), four pairs of words (PCMPEQW, PCMPGTW), or two pairs of double words (PCMPEQD,
PCMPGTD).

The first big difference to notice about these packed comparison instructions is that they compare the
second operand to the first operand. This is exactly opposite of the standard CMP instruction (that compares
the first operand to the second operand). The reason for this will become clear in a moment; however, you
do have to keep in mind when using these instructions that the operands are opposite what you would nor-
mally expect. If this ordering bothers you, you can create macros to reverse the operands; we will explore
this possibility a little later in this section.

The second big difference between the packed comparisons and the standard integer comparison is that
these instructions test for a specific condition (equality or greater than) rather than doing a generic compari-
son. This is because these instructions, like the other MMX instructions, do not affect any condition code
bits in the FLAGs register. This may seem contradictory, after all the whole purpose of the CMP instruction
is to set the condition code bits. However, keep in mind that these instructions simultaneously compare two,
four, or eight operands; that implies that you would need two, four, or eight sets of condition code bits to
hold the results of the comparisons. Since the FLAGs register maintains only one set of condition code bits,
it is not possible to reflect the comparison status in the FLAGs. This is why the packed comparison instruc-
tions test a specific condition - so they can return true or false to indicate the result of their comparison.

Okay, so where do these instructions return their true or false values? In the destination operand, of
course. This is the third big difference between the packed comparisons and the standard integer CMP
instruction – the packed comparisons modify their destination operand. Specifically, the PCMPEQB and
PCMPGTB instruction compare each pair of bytes in the two operands and write false ($00) or true ($FF) to
the corresponding byte in the destination operand, depending on the result of the comparison. For example,
the instruction “pcmpgtb(MM1, MM0);” compares the L.O. byte of MM0 (A) with the L.O. byte of MM1
(B) and writes $00 to the L.O. byte of MM0 if A is not greater than B. It writes $FF to the L.O. byte of MM0
if A is greater than B (see Figure 11.11).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1103

Chapter Eleven Volume Four
Figure 11.11 PCMPEQB and PCMPGTB Instructions

The PCMPEQW, PCMPGTW, PCMPEQD, and PCMPGTD instructions work in an analogous fashion
except, of course, they compare words and double words rather than bytes (see Figure 11.12 and Figure
11.13).

Figure 11.12 PCMPEQW and PCMPGTW Instructions

63 0

Source

63 0

Destination

63 0

Destination

PCMPEQB/PCMPGTB Operation

$00 / FF00 / FF00 / FF00 / FF00 / FF00 / FF00 / FF00 / $FF

63 0

Source

63 0

Destination

63 0

Destination

PCMPEQW/PCMPGTW Operation

$0000 / $FFFF$0000 / $FFFF$0000 / $FFFF$0000 / $FFFF
Page 1104 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
Figure 11.13 PCMPEQD and PCMPGTD Instructions

You’ve probably already noticed that there isn’t a set of PCMPLTx instructions. Intel chose not to pro-
vide these instructions because you can simulate them with the PCMPGTx instructions by reversing the
operands. That is, A>B implies B<A. Therefore, if you want to do a concurrent comparison of multiple
operands for less than, you can use the PCMPGTx instructions to do this by simply reversing the operands.
The only time this isn’t directly possible is if your source operand is a memory operand; since the destina-
tion operand of the packed comparison instructions has to be an MMX register, you would have to move the
memory operand into an MMX register before comparing them.

In addition to the lack of a packed less than comparison, you’re also missing the not equals, less than or
equal, and greater than or equal comparisons. You can easily synthesize these comparisons by executing a
PXOR or POR instruction after the packed comparison.

To simulate a PCMPNEx instruction, all you’ve got to do is invert all the bits in the destination operand
after executing a PCMPEQx instruction, e.g.,

pcmpeqb(mm1, mm0);
pxor(AllOnes, mm0); // Assumption: AllOnes is a qword variable
 // containing $FFFF_FFFF_FFFF_FFFF.

Of course, you can save the PXOR instruction by testing for zeros in the destination operand rather than
ones (that is, use your program’s logic to invert the result rather than actually computing the inverse).

To simulate the PCMPGEx and PCMPLEx instructions, you must do two comparisons, one for equality
and one for greater than or less than, and then logically OR the results. Here’s an example that computes
MM0 <= MM1:

movq(mm1, mm2); // Need a copy of destination operand.
pcmpgtb(mm0, mm1); // Remember: A<B is equal to B>A, so we’re
pcmpeqb(mm0, mm2); // MM0<MM1 and MM0=MM1 here.
por(mm2, mm1); // Leaves boolean results in MM1.

If it really bothers you to have to reverse the operands, you can create macros to create your own PCM-
PLTx instructions. The following example demonstrates how to create the PCMPLTB macro:

macro pcmpltb(mmOp1, mmOp2);

pcmpgtb(mmOp2, mmOp1);

endmacro;

63 0

Source

63 0

Destination

63 0

Destination

PCMPEQD/PCMPGTD Operation

$0000_0000 / $FFFF_FFFF$0000_0000 / $FFFF_FFFF
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1105

Chapter Eleven Volume Four
Of course, you must keep in mind that there are two very big differences between this PCMPLTB
“instruction” and a true PCMPLTB instruction. First, this form leaves the result in the first operand, not the
second operand, hence the semantics of this “instruction” are different than the other packed comparisons.
Second, the first operand has to be an MMX register while the second operand can be an MMX register or a
quad word variable; again, just the opposite of the other packed instructions. The fact that this instruction’s
operands behave differently than the PCMPGTB instruction may create some problems. So you will have to
carefully consider whether you really want to use this scheme to create a PCMPLTB “instruction” for use in
your programs. If you decide to do this, it would help tremendously if you always commented each invoca-
tion of the macro to point out that the first operand is the destination operand, e.g.,

pcmpltb(mm0, mm1); // Computes mm0 := mm1<mm0!

If the fact that the packed comparison instruction’s operands are reversed bothers you, you can also use
macros to swap those operands. The following example demonstrates how to write such macros for the
PEQB (PCMPEQB), PGTB (PCMPGTB), and PLTB (packed less than, byte) instructions.

macro peqb(leftOp, rightOp);

pcmpeqb(rightOp, leftOp);

endmacro;

macro pgtb(leftOp, rightOp);

pcmpgtb(rightOp, leftOp);

endmacro;

macro pltb(leftOp, rightOp);

pcmpgtb(leftOp, rightOp);

endmacro;

Note that these macros don’t solve the PLTB problem of having the wrong operand as the destination.
However, these macros do compare the first operand to the second operand, just like the standard CMP
instruction.

Of course, once you obtain a boolean result in an MMX register, you’ll probably want to test the results
at one point or another. Unfortunately, the MMX instructions only provide a couple of ways to move com-
parison information in and out of the MMX processor – you can store an MMX register value into memory
or you can copy 32-bits of an MMX register to a general-purpose integer register. Since the comparison
instructions produce a 64-bit result, writing the destination of a comparison to memory is the easiest way to
gain access to the comparison results in your program. Typically, you’d use an instruction sequence like the
following:

pcmpeqb(mm1, mm0); // Compare 8 bytes in mm1 to mm0.
movq(mm0, qwordVar); // Write comparison results to memory.
if((type boolean qwordVar)) then

<< do this if byte #0 contained true ($FF, which is non-zero). >>

endif;
if((type boolean qwordVar[1])) then

<< do this if byte #1 contained true. >>

endif;
etc.
Page 1106 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
11.7.6 MMX Shift Instructions

psllw(mem, mmi);
psllw(mmi, mmi);
psllw(imm8, mmi);

pslld(mem, mmi);
pslld(mmi, mmi);
pslld(imm8, mmi);

psllq(mem, mmi);
psllq(mmi, mmi);
psllq(imm8, mmi);

pslrw(mem, mmi);
pslrw(mmi, mmi);
pslrw(imm8, mmi);

psrld(mem, mmi);
psrld(mmi, mmi);
psrld(imm8, mmi);

pslrq(mem, mmi);
pslrq(mmi, mmi);
pslrq(imm8, mmi);

psraw(mem, mmi);
psraw(mmi, mmi);
psraw(imm8, mmi);

psrad(mem, mmi);
psrad(mmi, mmi);
psrad(imm8, mmi);

The MMX shift, like the arithmetic instructions, allow you to simultaneously shift several different val-
ues in parallel. The PSLLx instructions perform a packed shift left logical operation, the PSLRx instructions
do a packed logical shift right operation, and the PSRAx instruction do a packed arithmetic shift right opera-
tion. These instructions operate on word, double word, and quad word operands. Note that Intel does not
provide a version of these instructions that operate on bytes.

The first operand to these instructions specifies a shift count. This should be an unsigned integer value
in the range 0..15 for word shifts, 0..31 for double word operands, and 0..63 for quadword operands. If the
shift count is outside these ranges, then these instructions set their destination operands to all zeros. If the
count (first) operand is not an immediate constant, then it must be an MMX register or a qword memory
location.

The PSLLW instruction simultaneously shifts the four words in the destination MMX register to the left
one bit position. The instruction shifts zero into the L.O. bit of each word and the bit shifted out of the H.O.
bit of each word is lost. There is no carry from one word to the other (since that would imply a larger shift
operation). This instruction, like all the other MMX instructions, does not affect the FLAGs register (includ-
ing the carry flag).

The PSLLD instruction simultaneously shifts the two double words in the destination MMX register to
the left one bit position. Like the PSLLW instruction, this instruction shifts zeros into the L.O. bits and any
bits shifted out of the H.O. positions are lost.

The PSLLQ is one of the few MMX instructions that operates on 64-bit quantities. This instruction
shifts the entire 64-bit destination register to the left the number of bits specified by the count operand. In
addition to allowing you to manipulate 64-bit integer quantities, this instruction is especially useful for mov-
ing data around in MMX registers so you can pack or unpack data as needed.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1107

Chapter Eleven Volume Four
Although there is no PSLLB instruction to shift bits, you can simulate this instruction using a PSLLW
and a PANDN instruction. After shifting the word values to the left the specified number of bits, all you’ve
got to do is clear the L.O. n bits of each byte, where n is the shift count. For example, to shift the bytes in
MM0 to the left three positions you could use the following two instructions:

static
ThreeBitsZero: byte; nostorage;

byte $F8, $F8, $F8, $F8, $F8, $F8, $F8, $F8;
.
.
.

psllw(3, mm0);
pandn(ThreeBitsZero, mm0);

The PSLRW, PSLRD, and PSLRQ instructions work just like their left shift counterparts except that
these instructions shift their operands to the right rather than to the left. They shift zeros into the vacated
H.O. positions of the destination values and bits they shift out of the L.O. bits are lost. As with the shift left
instructions, there is no PSLRB instruction but you can easily simulate this with a PSLRW and a PANDN
instruction.

The PSRAW and PSRAD instructions do an arithmetic shift right operation on the words or double
words in the destination MMX register. Note that there isn’t a PSRAQ instruction. While shifting data to
the right, these instructions replicate the H.O. bit of each word, double word, or quad word rather than shift-
ing in zeros. As for the logical shift right instructions, bits that these instructions shift out of the L.O. bits
are lost forever.

The PSLLQ and PSLRQ instructions provide a convenient way to shift a quad word to the left or right.
However, the MMX shift instructions are not generally useful for extended precision shifts since all data
shifted out of the operands is lost. If you need to do an extended precision shift other than 64 bits, you
should stick with the SHLD and SHRD instructions. The MMX shift instructions are mainly useful for
shifting several values in parallel or (PSLLQ and PSLRQ) repositioning data in an MMX register.

11.8 The EMMS Instruction

emms();

The EMMS (Empty MMX Machine State) instruction restores the FPU status on the CPU so that it can
begin processing FPU instructions again after an MMX instruction sequence. You should always execute the
EMMS instruction once you complete some MMX sequence. Failure to do so may cause any following
floating point instructions to fail.

When an MMX instruction executes, the floating point tag word is marked valid (00s). Subsequent float-
ing-point instructions that will be executed may produce unexpected results because the floating-point stack
seems to contain valid data. The EMMS instruction marks the floating point tag word as empty. This must
occur before the execution of any following floating point instructions.

Of course, you don’t have to execute the EMMS instruction immediately after an MMX sequence if
you’re going to execute some additional MMX instructions prior to executing any FPU instructions, but you
must take care to execute this instruction if

• You call any library routines or Windows APIs (that might possibly use the FPU).
• You switch tasks in a cooperative fashion (for example, see the chapter on Coroutines in the

Volume on Advanced Procedures).
• You execute any FPU instructions.

If the EMMS instruction is not used when trying to execute a floating-point instruction, the following
may occur:

• Depending on the exception mask bits of the floating-point control word, a floating point
exception event may be generated.
Page 1108 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
• A “soft exception” may occur. In this case floating-point code continues to execute, but gener-
ates incorrect results.

The EMMS instruction is rather slow, so you don’t want to unnecessarily execute it, but it is critical that
you execute it at the appropriate times. Of course, better safe that sorry; if you’re not sure you’re going to
execute more MMX instructions before any FPU instructions, then go ahead and execute the EMMS instruc-
tion to clear the state.

11.9 The MMX Programming Paradigm

In general, you don’t learn scalar (non-MMX) 80x86 assembly language programming and then use that
same mindset when writing programs using the MMX instruction set. While it is possible to directly use
various MMX instructions the same way you would the general purpose integer instructions, one phrase
comes to mind when working with MMX: think parallel. This text has spent many hundreds of pages up to
this point attempting to get you to think in assembly language; to think that this small section can teach you
how to design optimal MMX sequence would be ludicrous. Nonetheless, a few simple examples are useful
to help start you thinking about how to use the MMX instructions to your benefit in your programs. This
section will begin by presenting some fairly obvious uses for the MMX instruction set, and then it will
attempt to present some examples that exploit the inherent parallelism of the MMX instructions.

Since the MMX registers are 64-bits wide, you can double the speed of certain data movement opera-
tions by using MMX registers rather than the 32-bit general purpose registers. For example, consider the
following code from the HLA Standard Library that copies one character set object to another:

procedure cs.cpy(src:cset; var dest:cset); nodisplay;
begin cpy;

 push(eax);
 push(ebx);
 mov(dest, ebx);
 mov((type dword src), eax);
 mov(eax, [ebx]);
 mov((type dword src[4]), eax);
 mov(eax, [ebx+4]);
 mov((type dword src[8]), eax);
 mov(eax, [ebx+8]);
 mov((type dword src[12]), eax);
 mov(eax, [ebx+12]);
 pop(ebx);
 pop(eax);

end cpy;

Program 11.2 HLA Standard Library cs.cpy Routine

This is a relatively simple code sequence. Indeed, a fair amount of the execution time is spent copying
the parameters (20 bytes) onto the stack, calling the routine, and returning from the routine. This entire
sequence can be reduced to the following four MMX instructions:

movq((type qword src), mm0);
movq((type qword src[8]), mm1);
movq(mm0, (type qword dest));
movq(mm1, (type qword dest[8]));
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1109

Chapter Eleven Volume Four
Of course, this sequence assumes two things: (1) it’s okay to wipe out the values in MM0 and MM1, and
(2) you’ll execute the EMMS instruction a little later on after the execution of some other MMX instruc-
tions. If either, or both, of these assumptions is incorrect, the performance of this sequence won’t be quite as
good (though probably still better than the cs.cpy routine). However, if these two assumptions do hold, then
it’s relatively easy to implement the cs.cpy routine as an in-line function (i.e., a macro) and have it run much
faster. If you really need this operation to occur inside a procedure and you need to preserve the MMX reg-
isters, and you don’t know if any MMX instructions will execute shortly thereafter (i.e., you’ll need to exe-
cute EMMS), then it’s doubtful that using the MMX instructions will help here. However, in those cases
when you can put the code in-line, using the MMX instructions will be faster.

Warning: don’t get too carried away with the MMX MOVQ instruction. Several programmers have
gone to great extremes to use this instruction as part of a high performance MOVSD replacement. However,
except in very special cases on very well designed systems, the limiting factor for a block move is the speed
of memory. Since Intel has optimized the operation of the MOVSD instruction, you’re best off using the
MOVSD instructions when moving blocks of memory around.

Earlier, this chapter used the cs.difference function as an example when discussing the PANDN instruc-
tion. Here’s the HLA Standard Library implementation of this function:

procedure cs.difference(src:cset; var dest:cset); nodisplay;
begin difference;

 push(eax);
 push(ebx);
 mov(dest, ebx);
 mov((type dword src), eax);
 not(eax);
 and(eax, [ebx]);
 mov((type dword src[4]), eax);
 not(eax);
 and(eax, [ebx+4]);
 mov((type dword src[8]), eax);
 not(eax);
 and(eax, [ebx+8]);
 mov((type dword src[12]), eax);
 not(eax);
 and(eax, [ebx+12]);
 pop(ebx);
 pop(eax);

end difference;

Program 11.3 HLA Standard Library cs.difference Routine

Once again, the high-level nature of HLA is hiding the fact that calling this function is somewhat expen-
sive. A typical call to cs.difference emits five or more instructions just to push the parameters (it takes four
32-bit PUSH instructions to pass the src character set because it is a value parameter). If you’re willing to
wipe out the values in MM0 and MM1, and you don’t need to execute an EMMS instruction right away, it’s
possible to compute the set difference with only six instructions – that’s about the same number of instruc-
tions (and often fewer) than are needed to call this routine, much less do the actual work. Here are those six
instructions:

movq(dest, mm0);
movq(dest[8], mm1);
pandn(src, mm0);
pandn(src[8], mm1);
Page 1110 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
movq(mm0, dest);
movq(mm1, dest[8]);

These six instructions replace 12 of the instructions in the body of the function. The sequence is suffi-
ciently short that it’s reasonable to code it in-line rather than in a function. However, were you to bury this
code in the cs.difference routine, you needed to preserve MM0 and MM14, and you needed to execute
EMMS afterwards, this would cost more than it’s worth. As an in-line macro, however, it is going to be sig-
nificantly faster since it avoids passing parameters and the call/return sequence.

If you want to compute the intersection of two character sets, the instruction sequence is identical to the
above except you substitute PAND for PANDN. Similarly, if you want to compute the union of two charac-
ter sets, use the code sequence above substituting POR for PANDN. Again, both approaches pay off hand-
somely if you insert the code in-line rather than burying it in a procedure and you don’t need to preserve
MMX registers or execute EMMS afterwards.

We can continue with this exercise of working our way through the HLA Standard Library character set
(and other) routines substituting MMX instructions in place of standard integer instructions. As long as we
don’t need to preserve the MMX machine state (i.e., registers) and we don’t have to execute EMMS, most of
the character set operations will be short enough to code in-line. Unfortunately, we’re not buying that much
over code the standard implementations of these functions in-line from a performance point of view (though
the code would be quite a bit shorter). The problem here is that we’re not “thinking in MMX.” We’re still
thinking in scalar (non-parallel mode) and the fact that the MMX instruction set requires a lot of set-up
(well, “tear-down” actually) negates many of the advantages of using MMX instructions in our programs.

The MMX instructions truly shine when you compute multiple results in parallel The problem with the
character set examples above is that we’re not even processing a whole data object with a single instruction;
we’re actually only processing a half of a character set with a sequence of three MMX instructions (i.e., it
requires six instructions to compute the intersection, union, or difference of two character sets). At best, we
can only expect the code to run about twice as fast since we’re processing 64 bits at a time instead of 32 bits.
Executing EMMS (and, God help us, having to preserve MMX registers) negates much of what we might
gain by using the MMX instructions. Again, we’re only going to see a speed improvement if we process
multiple objects with a single MMX instruction. We’re not going to do that manipulating large objects like
character sets.

One data type that will let us easily manipulate up to eight objects at one time is a character string. We
can speed up many character string operations by operating on eight characters in the string at one time.
Consider the HLA Standard Library str.uppercase procedure. This function steps through each character of
a string, tests to see if it’s a lower case character, and if so, converts the lower case character to upper case. A
good question to ask is “can we process eight characters at a time using the MMX instructions?” The
answer turns out to be yes and the MMX implementation of this function provides an interesting perspective
on writing MMX code.

At first glance it might seem impractical to use the MMX instructions to test for lower case characters
and convert them to upper case. Consider the typical scalar approach that tests and converts a single charac-
ter at a time:

<< Get character to convert into the AL register >>

cmp(al, ‘a’);
jb noConversion;
cmp(al, ‘z’);
ja noConversion;
sub($20, al); // Could also use AND($5f, al); here.

noConversion:

This code first checks the value in AL to see if it’s actually a lower case character (that’s the CMP and Jcc
instructions in the code above). If the character is outside the range ‘a’..’z’ then this code skips over the con-
version (the SUB instruction); however, if the code is in the specified range, then the sequence above drops
through to the SUB instruction and converts the lower case character to upper case by subtracting $20 from

4. Actually, the code could be rewritten easily enough to use only one MMX register.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1111

Chapter Eleven Volume Four
the lower case character’s ASCII code (since lower case characters always have bit #5 set, subtracting $20
always clears this bit).

Any attempt to convert this code directly to an MMX sequence is going to fail. Comparing and branch-
ing around the conversion instruction only works if you’re converting one value at a time. When operating
on eight character simultaneously, any mixture of the eight characters may or may not require conversion
from lower case to upper case. Hence, we need to be able to perform some calculation that is benign if the
character is not lower case (i.e., doesn’t affect the character’s value) while converting the character to upper
case if it was lower case to begin with. Worse, we have to do this with pure computation since flow of con-
trol isn’t going to be particularly effective here (if we test each individual result in our MMX register we
won’t really save anything over the scalar approach). To save you some suspense, yes, such a calculation
does exist.

Consider the following algorithm that converts lower case characters to upper case:

<< Get character to test into AL >>
cmp(al, ‘a’);
setae(bl); // bl := al >= ‘a’
cmp(al, ‘z’);
setbe(bh); // bh := al <= ‘z’
and(bh, bl); // bl := (al >= ‘a’) && (al <= ‘z’);
dec(bl); // bl := $FF/$00 if false/true.
not(bl); // bl := $FF/$00 if true/false.
and($20, bl); // bl := $20/$00 if true/false.
sub(bl, al); // subtract $20 if al was lowercase.

This code sequence is fairly straight-forward up until the DEC instruction above. It computes true/false
in BL depending on whether AL is in the range ‘a’..’z’. At the point of the DEC instruction, BL contains one
if AL is a lower case character, it contains zero if AL’s value is not lower case. After the DEC instruction,
BL contains $FF for false (AL is not lower case) and $00 for true (AL is lowercase). The code is going to
use this as a mask a little later, but it really needs true to be $FF and false $00, hence the NOT instruction
that follows. The (second) AND instruction above converts true to $20 and false to $00 and the final SUB
instruction subtracts $20 if AL contained lower case, it subtracts $00 from AL if AL did not contain a lower
case character (subtracting $20 from a lower case character will convert it to upper case).

Whew! This sequence probably isn’t very efficient when compared to the simpler code given previ-
ously. Certainly there are more instructions in this version (nearly twice as many). Whether this code with-
out any branches runs faster or slower than the earlier code with two branches is a good question. The
important thing to note here, though, is that we converted the lower case characters to upper case (leaving
other characters unchanged) using only a calculation; no program flow logic is necessary. This means that
the code sequence above is a good candidate for conversion to MMX. Even if the code sequence above is
slower than the previous algorithm when converting one character at a time to upper case, it’s positively
going to scream when it converts eight characters at a shot (since you’ll only need to execute the sequence
one-eighth as many times).

The following is the code sequence that will convert the eight characters starting at location [EDI] in
memory to upper case:

data
A:qword;

byte $60, $60, $60, $60, $60, $60, $60, $60; // Note: $60 = ‘a’-1.
Z:qword;

byte $7B, $7B, $7B, $7B, $7B, $7B, $7B, $7B; // Note: $7B = ‘z’ + 1.
ConvFactor:qword;

byte $20, $20, $20, $20, $20, $20, $20, $20; // Magic value for lc->UC.
.
.
.

 movq(ConvFactor, mm4); // Eight copies of conversion value.
 movq(A, mm2); // Put eight “a” characters in mm2.
 movq(Z, mm3); // Put eight “z” characters in mm3.
 movq([edi], mm0); // Get next eight characters of our string.
Page 1112 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
 movq(mm0, mm1); // We need two copies.
 pcmpgtb(mm2, mm1); // Generate 1's in MM1 everywhere chars >= 'a'
 pcmpgtb(mm0, mm3); // Generate 1's in MM3 everywhere chars <= 'z'
 pand(mm3, mm1); // Generate 1's in MM1 when 'a'<=chars<='z'
 pand(mm4, mm1); // Generates $20 in each spot we have a l.c. char
 psubb(mm1, mm0); // Convert l.c. chars to U.C. by adding $20.
 movq(mm0, [edi]);

Note that this code compares the characters that [EDI] points at to ‘a’-1 and ‘z’+1 because we only have a
greater than comparison rather than a greater or equal comparison (this saves a few extra instructions).
Other than setting up the MMX registers and taking advantage of the fact that the PCMPGTB instructions
automatically produce $FF for true and $00 for false, this is a faithful reproduction of the previous algorithm
except it operates on eight bytes simultaneously. So if we put this code in a loop and execute it once for each
eight characters in the string, there will be one-eighth the iterations of a similar loop using the scalar instruc-
tions.

Of course, there is one problem with this code. Not all strings have lengths that are an even multiple of
eight bytes. Therefore, we’ve got to put some special case code into our algorithm to handle strings that are
less than eight characters long and handle strings whose length is not an even multiple of eight characters. In
the following program, the mmxupper function simply borrows the scalar code from the HLA Standard
Library’s str.upper procedure to handle the leftover characters. The following example program provides
both an MMX and a scalar solution with a main program that compares the running time of both. If you’re
wondering, the MMX version is about three times faster (on a Pentium III) for strings around 35 characters
long, containing mostly lower case (mostly lower case favors the scalar algorithm since fewer branches are
taken with lower case characters; longer strings favor the MMX algorithm since it spends more time in the
MMX code compared to the scalar code at the end).

program UpperCase;
#include(“stdlib.hhf”)

// The following code was stolen from the
// HLA Standard Library’s str.upper function.
// It is not optimized, but then none of this
// code is optimized other than to use the MMX
// instruction set (later).

procedure strupper(dest: string); nodisplay;
begin strupper;

 push(edi);
 push(eax);

 mov(dest, edi);
 if(edi = 0) then

 raise(ex.AttemptToDerefNULL);

 endif;

 // Until we encounter a zero byte, convert any lower
 // case characters to upper case.

 forever

 mov([edi], al);
 breakif(al = 0); // Quit when we find a zero byte.

 // If a lower case character, convert it to upper case
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1113

Chapter Eleven Volume Four
 // and store the result back into the destination string.

 if
 (#{
 cmp(al, ‘a’);
 jb false;
 cmp(al, ‘z’);
 ja false;
 }#) then

 and($5f, al); // Magic lc->UC translation.
 mov(al, [edi]); // Save result.

 endif;

 // Move on to the next character.

 inc(edi);

 endfor;

 pop(edi);
 pop(eax);

end strupper;

procedure mmxupper(dest: string); nodisplay;
const
 zCh:char := char(uns8(‘z’) + 1);
 aCh:char := char(uns8(‘a’) - 1);

static

 // Create eight copies of the A-1 and Z+1 characters
 // so we can compare eight characters at once:

 A:qword; nostorage;
 byte aCh, aCh, aCh, aCh, aCh, aCh, aCh, aCh;

 Z:qword; nostorage;
 byte zCh, zCh, zCh, zCh, zCh, zCh, zCh, zCh;

 // Conversion factor: UC := LC - $20.

 ConvFactor: qword; nostorage;
 byte $20, $20, $20, $20, $20, $20, $20, $20;

begin mmxupper;

 push(edi);
 push(eax);

 mov(dest, edi);
 if(edi = 0) then

 raise(ex.AttemptToDerefNULL);

 endif;
Page 1114 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set

 // Some invariant operations (things that don’t
 // change on each iteration of the loop):

 movq(A, mm2);
 movq(ConvFactor, mm4);

 // Get the string length from the length field:

 mov((type str.strRec [edi]).length, eax);

 // Process the string in blocks of eight characters:

 while((type int32 eax) >= 8) do

 movq([edi], mm0); // Get next eight characters of our string.
 movq(mm0, mm1); // We need two copies.
 movq(Z, mm3); // Need to refresh on each loop.
 pcmpgtb(mm2, mm1); // Generate 1’s in MM1 everywhere chars >= ‘a’
 pcmpgtb(mm0, mm3); // Generate 1’s in MM3 everywhere chars <= ‘z’
 pand(mm3, mm1); // Generate 1’s in MM1 when ‘a’<=chars<=’z’
 pand(mm4, mm1); // Generates $20 in each spot we have a l.c. char
 psubb(mm1, mm0); // Convert l.c. chars to U.C. by adding $20.
 movq(mm0, (type qword [edi]));

 // Move on to the next eight characters in the string.

 sub(8, eax);
 add(8, edi);

 endwhile;

 // If we’re processing less than eight characters, do it the old-fashioned
 // way (one character at a time). This also handles the last 1..7 chars
 // if the number of characters is not an even multiple of eight. This
 // code was swiped directly from the HLA str.upper function (above).

 if(eax != 0) then

 forever

 mov([edi], al);
 breakif(al = 0); // Quit when we find a zero byte.

 // If a lower case character, convert it to upper case
 // and store the result back into the destination string.

 if
 (#{
 cmp(al, ‘a’);
 jb false;
 cmp(al, ‘z’);
 ja false;
 }#) then

 and($5f, al); // Magic lc->UC translation.
 mov(al, [edi]); // Save result.

 endif;

 // Move on to the next character.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1115

Chapter Eleven Volume Four

 inc(edi);

 endfor;

 endif;
 emms(); // Clean up MMX state.

 pop(edi);
 pop(eax);

end mmxupper;

static
 MyStr: string := “Hello There, MMX Uppercase Routine!”;
 destStr:string;
 mmxCycles:qword;
 strCycles:qword;

begin UpperCase;

 // Charge up the cache (prefetch the code and data
 // to avoid cache misses later).

 mov(str.a_cpy(MyStr), destStr);
 mmxupper(destStr);
 strupper(destStr);

 // Okay, time the execution of the MMX version:

 mov(str.a_cpy(MyStr), destStr);

 rdtsc();
 mov(eax, (type dword mmxCycles));
 mov(edx, (type dword mmxCycles[4]));
 mmxupper(destStr);
 rdtsc();
 sub((type dword mmxCycles), eax);
 sbb((type dword mmxCycles[4]), edx);
 mov(eax, (type dword mmxCycles));
 mov(edx, (type dword mmxCycles[4]));

 stdout.put(“Dest String = ‘”, destStr, “‘”, nl);

 // Okay, time the execution of the HLA version:

 mov(str.a_cpy(MyStr), destStr);

 rdtsc();
 mov(eax, (type dword strCycles));
 mov(edx, (type dword strCycles[4]));
 strupper(destStr);
 rdtsc();
 sub((type dword strCycles), eax);
 sbb((type dword strCycles[4]), edx);
 mov(eax, (type dword strCycles));
Page 1116 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
 mov(edx, (type dword strCycles[4]));

 stdout.put(“Dest String(2) = ‘”, destStr, “‘”, nl);

 stdout.put(“MMX cycles:”);
 stdout.puti64(mmxCycles);
 stdout.put(nl “HLA cycles: “);
 stdout.puti64(strCycles);
 stdout.newln();

end UpperCase;

Program 11.4 MMX Implementation of the HLA Standard Library str.upper Procedure

Other string functions, like a case insensitive string comparison, can greatly benefit from the use of par-
allel computation via the MMX instruction set. Implementation of other string functions is left as an exer-
cise to the reader; interested readers should consider converting string functions that involve calculations
and tests on each individual characters in a string as candidates for optimization via MMX.

11.10 Putting It All Together

Intel’s MMX enhancements to the basic Pentium instruction set allow the acceleration of certain algo-
rithms. Unfortunately, the MMX instruction set isn’t generally applicable to a wide range of problems. The
MMX instructions, with their SIMD orientation, are generally useful for manipulating a large amount of
data organized as byte, word, or double word arrays where the MMX instructions can calculate several val-
ues in parallel. Learning to effectively use the MMX instruction set requires a paradigm shift on the part of
the programmer. You don’t apply the same rules for scalar 80x86 instructions to the MMX instructions.
However, if you take the time to master parallel programming techniques with the MMX instructions, then
you will be able to accelerate many of your applications.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1117

Chapter Eleven Volume Four
Page 1118 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
Mixed Language Programming Chapter Twelve

12.1 Chapter Overview

Most assembly language code doesn’t appear in a stand-alone assembly language program. Instead,
most assembly code is actually part of a library package that programs written in a high level language wind
up calling. Although HLA makes it really easy to write standalone assembly applications, at one point or
another you’ll probably want to call an HLA procedure from some code written in another language or you
may want to call code written in another language from HLA. This chapter discusses the mechanisms for
doing this in three languages: MASM (low-level assembly), C/C++, and Delphi. The mechanisms for other
languages are usually similar to one of these three, so the material in this chapter will still apply even if
you’re using some other high level language.

12.2 Mixing HLA and MASM Code in the Same Program

It may seem kind of weird to mix MASM and HLA code in the same program. After all, they’re both
assembly languages and almost anything you can do with MASM can be done in HLA. So why bother try-
ing to mix the two in the same program? Well, there are three reasons:

• You’ve already got a lot of code written in MASM and you don’t want to convert it to HLA’s
syntax.

• There are a few things MASM does that HLA cannot, and you happen to need to do one of
those things.

• Someone else has written some MASM code and they want to be able to call code you’ve writ-
ten using HLA.

In this section, we’ll discuss two ways to merge MASM and HLA code in the same program: via in-line
assembly code and through linking OBJ files.

12.2.1 In-Line (MASM) Assembly Code in Your HLA Programs

As you’re probably aware, the HLA compiler doesn’t actually produce machine code directly from your
HLA source files. Instead, it first compiles the code to a MASM-compatible assembly language source file
and then it calls MASM to assemble this code to object code. If you’re interested in seeing the MASM out-
put HLA produces, just edit the filename.ASM file that HLA creates after compiling your filename.HLA
source file. The output assembly file isn’t amazingly readable, but it is fairly easy to correlate the assembly
output with the HLA source file.

HLA provides two mechanisms that let you inject raw MASM code directly into the output file it pro-
duces: the #ASM..#ENDASM sequence and the #EMIT statement. The #ASM..#ENDASM sequence cop-
ies all text between these two clauses directly to the MASM output file, e.g.,

#asm

mov eax, 0 ;MASM syntax for MOV(0, EAX);
add eax, ebx ; “ “ “ ADD(ebx, eax);

#endasm

The #ASM..#ENDASM sequence is how you inject in-line (MASM) assembly code into your HLA pro-
grams. For the most port there is very little need to use this feature, but in a few instances it is valuable. For
example, if you’re writing structured exception handling code under Windows, you’ll need to access the
double word at address FS:[0] (offset zero in the segment pointed at by the 80x86’s FS segment register).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1119

Chapter Twelve Volume Four
Unfortunately, HLA does not support segmentation and the use of segment registers. However, you can drop
into MASM for a statement or two in order to access this value:

#asm
mov ebx, fs:[0] ; Loads process pointer into EBX

#endasm

At the end of this instruction sequence, EBX will contain the pointer to the process information structure
that Windows maintains.

HLA blindly copies all text between the #ASM and #ENDASM clauses directly to the MASM output
file. HLA does not check the syntax of this code or otherwise verify its correctness. If you introduce an
error within this section of your program, MASM will report the error when HLA assembles your code by
calling MASM.

The #EMIT statement also writes text directly to the assembly output file. However, this statement does
not simply copy the text from your source file to the output file; instead, this statement copies the value of a
string (constant) expression to the output file. The syntax for this statement is as follows:

#emit(string_expression);

This statement evaluates the expression and verifies that it’s a string expression. Then it copies the string
data to the output file. Like the #ASM/#ENDASM statement, the #EMIT statement does not check the syn-
tax of the MASM statement it writes to the assembly file. If there is a syntax error, MASM will catch it later
on when HLA assembles the output file.

When HLA compiles your programs into assembly language, it does not use the same symbols in the
assembly language output file that you use in the HLA source files. There are several technical reasons for
this, but the bottom line is this: you cannot easily reference your HLA identifiers in your in-line assembly
code. The only exception to this rule are external identifiers. HLA external identifiers use the same name in
the MASM file as in the HLA source file. Therefore, you can refer to external objects within your in-line
assembly sequences or in the strings you output via #EMIT.

One advantage of the #EMIT statement is that it lets you construct MASM statements under (com-
pile-time) program control. You can write an HLA compile-time program that generates a sequence of
strings and emits them to the MASM file via the #EMIT statement. The compile-time program has access to
the HLA symbol table; this means that you can extract the identifiers that HLA emits to the assembly file
and use these directly, even if they aren’t external objects.

The @StaticName compile-time function returns the name that HLA uses to refer to most static objects
in your program. The following program demonstrates a simple use of this compile-time function to obtain
the MASM name of an HLA procedure:

program emitDemo;
#include(“stdlib.hhf”)

 procedure myProc;
 begin myProc;

 stdout.put(“Inside MyProc” nl);

 end myProc;

begin emitDemo;

 ?stmt:string := “call “ + @StaticName(myProc);
 #emit(stmt);

end emitDemo;

Page 1120 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
Program 12.1 Using the @StaticName Function

This example creates a string value (stmt) that contains something like “call ?741_myProc” and emits
this MASM instruction directly to the source file (“?741_myProc” is typical of the type of name mangling
that HLA does to static names it writes to the output file). If you compile and run this program, it should dis-
play “Inside MyProc” and then quit. If you look at the MASM file that HLA emits, you will see that it has
given the myProc procedure the same name it appends to the CALL instruction1.

The @StaticName function is only valid for static symbols. This includes STATIC, READONLY, and
STORAGE variables, procedures, and iterators. It does not include VAR objects, constants, macros, class
iterators, or methods.

You can access VAR variables by using the [EBP+offset] addressing mode, specifying the offset of the
desired local variable. You can use the @offset compile-time function to obtain the offset of a VAR object or
a parameter. The following program demonstrates how to do this:

program offsetDemo;
#include(“stdlib.hhf”)

var
 i:int32;

begin offsetDemo;

 mov(-255, i);
 ?stmt := “mov eax, [ebp+(“ + string(@offset(i)) + “)]”;
 #print(“Emitting ‘”, stmt, “‘”)
 #emit(stmt);
 stdout.put(“eax = “, (type int32 eax), nl);

end offsetDemo;

Program 12.2 Using the @Offset Compile-Time Function

This example emits the statement “mov eax, [ebp+(-8)]” to the assembly language source file. It turns out
that -8 is the offset of the i variable in the offsetDemo program’s activation record.

Of course, the examples of #EMIT up to this point have been somewhat ridiculous since you can
achieve the same results by using HLA statements. One very useful purpose for the #emit statement, how-
ever, is to create some instructions that HLA does not support. For example, as of this writing HLA does not
support the LES instruction because you can’t really use it under Win32. However, if you found a need for
this instruction, you could easily write a macro to emit this instruction and appropriate operands to the
MASM source file. Using the #EMIT statement gives you the ability to reference HLA objects, something
you cannot do with the #ASM..#ENDASM sequence.

1. HLA may assign a different name that “?741_myProc” when you compile the program. The exact symbol HLA chooses
varies from version to version of the assembler (it depends on the number of symbols defined prior to the definition of
myProc. In this example, there were 741 static symbols defined in the HLA Standard Library before the definition of
myProc.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1121

Chapter Twelve Volume Four
12.2.2 Linking MASM-Assembled Modules with HLA Modules

Although you can do some interesting things with HLA’s in-line assembly statements, you’ll probably
never use them. Further, future versions of HLA may not even support these statements, so you should avoid
them as much as possible even if you see a need for them. Of course, HLA does most of the stuff you’d want
to do with the #ASM/#ENDASM and #EMIT statements anyway, so there is very little reason to use them at
all. If you’re going to combine MASM (or other assembler) code and HLA code together in a program,
most of the time this will occur because you’ve got a module or library routine written in some other assem-
bly language and you would like to take advantage of that code in your HLA programs. Rather than convert
the other assembler’s code to HLA, the easy solution is to simply compile that other code to an OBJ file and
link it with your HLA programs.

Once you’ve compiled or assembled a source file to an OBJ file, the routines in that module are callable
from almost any machine code that can handle the routines’ calling sequences. If you have an OBJ file that
contains a SQRT function, for example, it doesn’t matter whether you compiled that function with HLA,
MASM, TASM, NASM, Gas, or even a high level language; if it’s object code and it exports the proper
symbols, you can call it from your HLA program.

Compiling a module in MASM and linking that with your HLA program is little different than linking
other HLA modules with your main HLA program. In the MASM source file you will have to export some
symbols (using the PUBLIC directive) and in your HLA program you’ve got to tell HLA that those symbols
appear in a separate module (using the EXTERNAL option).

Since the two modules are written in assembly language, there is very little language imposed structure
on the calling sequence and parameter passing mechanisms. If you’re calling a function written in MASM
from your HLA program, then all you’ve got to do is to make sure that your HLA program passes parame-
ters in the same locations where the MASM function is expecting them.

About the only issue you’ve got to deal with is the case of identifiers in the two programs. By default,
MASM is case insensitive. HLA, on the other hand, enforces case neutrality (which, essentially, means that
it is case sensitive). Fortunately, there is a MASM command line option (“/Cp”) that tells MASM to pre-
serve case in all public symbols. It’s a real good idea to use this option when assembling modules you’re
going to link with HLA so that MASM doesn’t mess with the case of your identifiers during assembly.

Of course, once MASM starts processing symbols in a case sensitive manner, it’s possible to create two
separate identifiers that are the same except for alphabetic case. HLA enforces case neutrality so it won’t let
you (directly) create two different identifiers that differ only in case. In general, this is such a bad program-
ming practice that one would hope you never encounter it (and God forbid you actually do this yourself).
However, if you inherit some MASM code written by a C hacker, it’s quite possible the code uses this tech-
nique. The way around this problem is to use two separate identifiers in your HLA program and use the
extended form of the EXTERNAL directive to provide the external names. For example, suppose that in
MASM you have the following declarations:

public AVariable
public avariable

.

.

.
.data

AVariable dword ?
avariable byte ?

If you assemble this code with the “/Cp” or “/Cx” (total case sensitivity) command line options, MASM will
emit these two external symbols for use by other modules. Of course, were you to attempt to define vari-
ables by these two names in an HLA program, HLA would complain about a duplicate symbol definition.
However, you can connect two different HLA variables to these two identifiers using code like the following:

static
AVariable: dword; external(“AVariable”);
AnotherVar: byte; external(“avariable”);
Page 1122 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
HLA does not check the strings you supply as parameters to the EXTERNAL clause. Therefore, you
can supply two names that are the same except for case and HLA will not complain. Note that when HLA
calls MASM to assemble it’s output file, HLA specifies the “/Cp” option that tells MASM to preserve case in
public and global symbols.

The following program demonstrates how to call a MASM subroutine from an HLA main program:

// To compile this module and the attendant MASM file, use the following
// command line:
//
// hla masmdemo1.hla masmupper.asm
//
// Sorry about no make file for this code, but these two files are in
// the HLA Vol4/Ch12 subdirectory that has it’s own makefile for building
// all the source files in the directory and I wanted to avoid confusion.

program MasmDemo1;
#include(“stdlib.hhf”)

 // The following external declaration defines a function that
 // is written in MASM to convert the character in AL from
 // lower case to upper case.

 procedure masmUpperCase(c:char in al); external(“masmUpperCase”);

static
 s: string := “Hello World!”;

begin MasmDemo1;

 stdout.put(“String converted to uppercase: ‘”);
 mov(s, edi);
 while(mov([edi], al) <> #0) do

 masmUpperCase(al);
 stdout.putc(al);
 inc(edi);

 endwhile;
 stdout.put(“‘” nl);

end MasmDemo1;

Program 12.3 Main HLA Program to Link with a MASM Program

; MASM source file to accompany the MasmDemo1.HLA source
; file. This code compiles to an object module that
; gets linked with an HLA main program. The function
; below converts the character in AL to upper case if it
; is a lower case character.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1123

Chapter Twelve Volume Four
 .586
 .model flat, pascal

 .code
 public masmUpperCase
masmUpperCase proc near32
 .if al >= 'a' && al <= 'z'
 and al, 5fh
 .endif
 ret
masmUpperCase endp
 end

Program 12.4 Calling a MASM Procedure from an HLA Program: MASM Module

It is also possible to call an HLA procedure from a MASM program (this should be obvious since HLA
compiles its source code to a MASM source file and that MASM source file can call HLA procedures such
as those found in the HLA Standard Library). There are a few restrictions when calling HLA code from
some other language. First of all, you can’t easily use HLA’s exception handling facilities in the modules
you call from other languages (including MASM). The HLA main program initializes the exception han-
dling system; this initialization is probably not done by your MASM programs. Further, the HLA main pro-
gram exports a couple of important symbols needed by the exception handling subsystem; again, it’s
unlikely your main MASM program provides these public symbols. In the Volume on Advanced Procedures
this text will discuss how to deal with Window’s Structured Exception Handling subsystem and HLA’s layer
on top of this. However, that topic is a little too advanced for this chapter. Until you get to the point you can
write code in MASM to properly set up the HLA exception handling system, you should not execute any
code that uses the TRY..ENDTRY, RAISE, or any other exception handling statements.

Warning; a large percentage of the HLA Standard Library routines include exception
handling statements or call other routines that use exception handling statements. Unless
you’ve set up the HLA exception handling subsystem properly, you should not call any
HLA Standard Library routines from non-HLA programs.

Other than the issue of exception handling, calling HLA procedures from MASM code is really easy.
All you’ve got to do is put an EXTERNAL prototype in the HLA code to make the symbol you wish to
access public and then include an EXTERN (or EXTERNDEF) statement in the MASM source file to pro-
vide the linkage. Then just compile the two source files and link them together.

About the only issue you need concern yourself with when calling HLA procedures from MASM is the
parameter passing mechanism. Of course, if you pass all your parameters in registers (the best place), then
communication between the two languages is trivial. Just load the registers with the appropriate parameters
in your MASM code and call the HLA procedure. Inside the HLA procedure, the parameter values will be
sitting in the appropriate registers (sort of the converse of what happened in Program 12.4).

If you decide to pass parameters on the stack, note that HLA uses the PASCAL language calling model.
Therefore, you push parameters on the stack in the order they appear in a parameter list (from left to right)
and it is the called procedure’s responsibility to remove the parameters from the stack. Note that you can
specify the PASCAL calling convention for use with MASM’s INVOKE statement using the “.model” direc-
tive, e.g.,

 .586
 .model flat, pascal

.

.

.

Of course, if you manually push the parameters on the stack yourself, then the specific language model
doesn’t really matter.
Page 1124 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
This section is not going to attempt to go into gory details about MASM syntax. There is an appendix in
this text that contrasts the HLA language with MASM; you should be able to get a rough idea of MASM
syntax from that appendix if you’re completely unfamiliar with MASM. Another alternative is to read a
copy of the DOS/16-bit edition of this text that uses the MASM assembler. That text describes MASM syn-
tax in much greater detail, albeit from a 16-bit perspective. Finally, this section isn’t going to go into any
further detail because, quite frankly, the need to call MASM code from HLA (or vice versa) just isn’t that
great. After all, most of the stuff you can do with MASM can be done directly in HLA so there really is little
need to spend much more time on this subject. Better to move on to more important questions, like how do
you call HLA routines from C or Pascal...

12.3 Programming in Delphi and HLA

Delphi is a marvelous language for writing Win32 GUI-based applications. Its support for Rapid Appli-
cation Design (RAD) and visual programming is superior to almost every other Win32 programming
approach available. However, being Pascal-based, there are some things that just cannot be done in Delphi
and many things that cannot be done as efficiently in Delphi as in assembly language. Fortunately, Delphi
lets you call assembly language procedures and functions so you can overcome Delphi’s limitations.

Delphi provides two ways to use assembly language in the Pascal code: via a built-in assembler
(BASM) or by linking in separately compiled assembly language modules. The built-in “Borland Assem-
bler” (BASM) is a very weak Intel-syntax assembler. It is suitable for injecting a few instructions into your
Pascal source code or perhaps writing a very short assembly language function or procedure. It is not suit-
able for serious assembly language programming. If you know Intel syntax and you only need to execute a
few machine instructions, then BASM is perfect. However, since this is a text on assembly language pro-
gramming, the assumption here is that you want to write some serious assembly code to link with your Pas-
cal/Delphi code. To do that, you will need to write the assembly code and compile it with a different
assembler (e.g., HLA) and link the code into your Delphi application. That is the approach this section will
concentrate on. For more information about BASM, check out the Delphi documentation.

Before we get started discussing how to write HLA modules for your Delphi programs, you must under-
stand two very important facts:

HLA’s exception handling facilities are not directly compatible with Delphi’s. This means
that you cannot use the TRY..ENDTRY and RAISE statements in the HLA code you
intend to link to a Delphi program. This also means that you cannot call library functions
that contain such statements. Since the HLA Standard Library modules use exception
handling statements all over the place, this effectively prevents you from calling HLA
Standard Library routines from the code you intend to link with Delphi2.

Although you can write console applications with Delphi, 99% of Delphi applications are
Windows/GUI applications. You cannot call console-related functions (e.g., stdin.xxxx or
stdout.xxxx) from a GUI application. Even if HLA’s console and standard input/output
routines didn’t use exception handling, you wouldn’t be able to call them from a standard
Delphi application.

Given the rich set of language features that Delphi supports, it should come as no surprise that the inter-
face between Delphi’s Object Pascal language and assembly language is somewhat complex. Fortunately
there are two facts that reduce this problem. First, HLA uses many of the same calling conventions as Pascal;
so much of the complexity is hidden from sight by HLA. Second, the other complex stuff you won’t use
very often, so you may not have to bother with it.

Note: the following sections assume you are already familiar with Delphi programming.
They make no attempt to explain Delphi syntax or features other than as needed to explain
the Delphi assembly language interface. If you’re not familiar with Delphi, you will prob-
ably want to skip this section.

2. Note that the HLA Standard Library source code is available; feel free to modify the routines you want to use and remove
any exception handling statements contained therein.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1125

Chapter Twelve Volume Four
12.3.1 Linking HLA Modules With Delphi Programs

The basic unit of interface between a Delphi program and assembly code is the procedure or function.
That is, to combine code between the two languages you will write procedures in HLA (that correspond to
procedures or functions in Delphi) and call these procedures from the Delphi program. Of course, there are
a few mechanical details you’ve got to worry about, this section will cover those.

To begin with, when writing HLA code to link with a Delphi program you’ve got to place your HLA
code in an HLA UNIT. An HLA PROGRAM module contains start up code and other information that Win-
dows uses to determine where to begin program execution when it loads an EXE file from disk. However,
the Delphi program also supplies this information and specifying two starting addresses confuses the linker,
therefore, you must place all your HLA code in a UNIT rather than a PROGRAM module.

Within the HLA UNIT you must create EXTERNAL procedure prototypes for each procedure you wish
to call from Delphi. If you prefer, you can put these prototype declarations in a header file and #INCLUDE
them in the HLA code, but since you’ll probably only reference these declarations from this single file, it’s
okay to put the EXTERNAL prototype declarations directly in the HLA UNIT module. These EXTERNAL
prototype declarations tell HLA that the associated functions will be public so that Delphi can access their
names during the link process. Here’s a typical example:

unit LinkWithDelphi;

procedure prototype; external;

procedure prototype;
begin prototype;

<< Code to implement prototype’s functionality >>

end prototype;

end LinkWithDelphi;

After creating the module above, you’d compile it using HLA’s “-s” (compile to assembly only) command
line option. This will produce an ASM file. Were this just about any other language, you’d then assemble
the ASM file with MASM. Unfortunately, Delphi doesn’t like OBJ files that MASM produces. For all but
the most trivial of assembly modules, Delphi will reject the MASM’s output. Borland Delphi expects exter-
nal assembly modules to be written with Borland’s assembler, TASM32.EXE (the 32-bit Turbo Assembler).
Fortunately, as of HLA v1.26, HLA provides an option to produce TASM output that is compatible with
TASM v5.3 and later. Unfortunately, Borland doesn’t really sell TASM anymore; the only way to get a copy
of TASM v5.3 is to obtain a copy of Borlands C++ Builder Professional system which includes TASM32
v5.3. If you don’t own Borland C++ and really have no interest in using C++ Builder, Borland has produced
an evaluation disk for C++ Builder that includes TASM 5.3. Note that earlier versions of TASM32 (e.g.,
v5.0) do not support MMX and various Pentium-only instructions, you really need TASM v5.3 if you want
ot use the MASM output.

Here are all the commands to compile and assemble the module given earlier:

hla -c -tasm -omf LinkWithDelphi.hla

Of course, if you don’t like typing this long command to compile and assemble your HLA code, you can
always create a make file or a batch file that will let you do both operations with a single command. See the
chapter on Managing Large Programs for more details (see “Make Files” on page 557).

Once you’ve created the HLA code and compiled it to an OBJ file, the next step is to tell Delphi that it
needs to call the HLA/assembly code. There are two steps needed to achieve this: You’ve got to inform Del-
phi that a procedure (or function) is written in assembly language (rather than Pascal) and you’ve got to tell
Delphi to link in the OBJ file you’ve created when compiling the Delphi code.

The second step above, telling Delphi to include the HLA object module, is the easiest task to achieve.
All you’ve got to do is insert a compiler directive of the form “{$L objectFileName.obj }” in the Delphi pro-
Page 1126 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
gram before declaring and calling your object module. A good place to put this is after the implementation
reserved word in the module that calls your assembly procedure. The code examples a little later in this sec-
tion will demonstrate this.

The next step is to tell Delphi that you’re supplying an external procedure or function. This is done
using the Delphi EXTERNAL directive on a procedure or function prototype. For example, a typical exter-
nal declaration for the prototype procedure appearing earlier is

procedure prototype; external; // This may look like HLA code, but it’s
 // really Delphi code!

As you can see here, Delphi’s syntax for declaring external procedures is nearly identical to HLA’s (in fact,
in this particular example the syntax is identical). This is not an accident, much of HLA’s syntax was bor-
rowed directly from Pascal.

The next step is to call the assembly procedure from the Delphi code. This is easily accomplished using
standard Pascal procedure calling syntax. The following two listings provide a complete, working, example
of an HLA procedure that a Delphi program can call. This program doesn’t accomplish very much other
than to demonstrate how to link in an assembly procedure. The Delphi program contains a form with a sin-
gle button on it. Pushing the button calls the HLA procedure, whose body is empty and therefore returns
immediately to the Delphi code without any visible indication that it was ever called. Nevertheless, this
code does provide all the syntactical elements necessary to create and call an assembly language routine
from a Delphi program.

unit LinkWithDelphi;

 procedure CalledFromDelphi; external;

 procedure CalledFromDelphi;
 begin CalledFromDelphi;
 end CalledFromDelphi;

end LinkWithDelphi;

Program 12.5 CalledFromDelphi.HLA Module Containing the Assembly Code

unit DelphiEx1;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls;

type
 TDelphiEx1Form = class(TForm)
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1127

Chapter Twelve Volume Four
var
 DelphiEx1Form: TDelphiEx1Form;

implementation

{$R *.DFM}
{$L CalledFromDelphi.obj }

procedure CalledFromDelphi; external;

procedure TDelphiEx1Form.Button1Click(Sender: TObject);
begin

 CalledFromDelphi();

end;

end.

Program 12.6 DelphiEx1– Delphi Source Code that Calls an Assembly Procedure

The full Delphi and HLA source code for the programs appearing in Program 12.5 and Program 12.6
accompanies the HLA software distribution in the appropriate subdirectory for this chapter in the Example
code module. If you’ve got a copy of Delphi 5 or later, you might want to load this module and try compil-
ing it. To compile the HLA code for this example, you would use the following commands from the com-
mand prompt:

hla -tasm -c -omf CalledFromDelphi.hla

After producing the CalledFromDelphi object module with the two commands above, you’d enter the Delphi
Integrated Development Environment and tell it to compile the DelphiEx1 code (i.e., you’d load the
DelphiEx1Project file into Delphi and the compile the code). This process automatically links in the HLA
code and when you run the program you can call the assembly code by simply pressing the single button on
the Delphi form.

12.3.2 Register Preservation

Delphi code expects all procedures to preserve the EBX, ESI, EDI, and EBP registers. Routines written
in assembly language may freely modify the contents of EAX, ECX, and EDX without preserving their val-
ues. The HLA code will have to modify the ESP register to remove the activation record (and, possibly,
some parameters). Of course, HLA procedures (unless you specify the NOFRAME option) automatically
preserve and set up EBP for you, so you don’t have to worry about preserving this register’s value; of
course, you will not usually manipulate EBP’s value since it points at your procedure’s parameters and local
variables.

Although you can modify EAX, ECX, and EDX to your heart’s content and not have to worry about
preserving their values, don’t get the idea that these registers are available for your procedure’s exclusive
use. In particular, Delphi may pass parameters into a procedure within these registers and you may need to
return function results in some of these registers. Details on the further use of these registers appears in later
sections of this chapter.

Whenever Delphi calls a procedure, that procedure can assume that the direction flag is clear. On
return, all procedures must ensure that the direction flag is still clear. So if you manipulate the direction flag
in your assembly code (or call a routine that might set the direction flag), be sure to clear the direction flag
before returning to the Delphi code.
Page 1128 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
If you use any MMX instructions within your assembly code, be sure to execute the EMMS instruction
before returning. Delphi code assumes that it can manipulate the floating point stack without running into
problems.

Although the Delphi documentation doesn’t explicitly state this, experiments with Delphi code seem to
suggest that you don’t have to preserve the FPU (or MMX) registers across a procedure call other than to
ensure that you’re in FPU mode (versus MMX mode) upon return to Delphi.

12.3.3 Function Results

Delphi generally expects functions to return their results in a register. For ordinal return results, a func-
tion should return a byte value in AL, a word value in AX, or a double word value in EAX. Functions return
pointer values in EAX. Functions return real values in ST0 on the FPU stack. The code example in this sec-
tion demonstrates each of these parameter return locations.

For other return types (e.g., arrays, sets, records, etc.), Delphi generally passes an extra VAR parameter
containing the address of the location where the function should store the return result. We will not consider
such return results in this text, see the Delphi documentation for more details.

The following Delphi/HLA program demonstrates how to return different types of scalar (ordinal and
real) parameters to a Delphi program from an assembly language function. The HLA functions return bool-
ean (one byte) results, word results, double word results, a pointer (PChar) result, and a floating point result
when you press an appropriate button on the form. See the DelphiEx2 example code in the HLA/Art of
Assembly examples code for the full project. Note that the following code doesn’t really do anything useful
other than demonstrate how to return Function results in EAX and ST0.

unit DelphiEx2;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls;

type
 TDelphiEx2Form = class(TForm)
 BoolBtn: TButton;
 BooleanLabel: TLabel;
 WordBtn: TButton;
 WordLabel: TLabel;
 DWordBtn: TButton;
 DWordLabel: TLabel;
 PtrBtn: TButton;
 PCharLabel: TLabel;
 FltBtn: TButton;
 RealLabel: TLabel;
 procedure BoolBtnClick(Sender: TObject);
 procedure WordBtnClick(Sender: TObject);
 procedure DWordBtnClick(Sender: TObject);
 procedure PtrBtnClick(Sender: TObject);
 procedure FltBtnClick(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1129

Chapter Twelve Volume Four
 DelphiEx2Form: TDelphiEx2Form;

implementation

{$R *.DFM}

// Here’s the directive that tells Delphi to link in our
// HLA code.

{$L ReturnBoolean.obj }
{$L ReturnWord.obj }
{$L ReturnDWord.obj }
{$L ReturnPtr.obj }
{$L ReturnReal.obj }

// Here are the external function declarations:

function ReturnBoolean:boolean; external;
function ReturnWord:smallint; external;
function ReturnDWord:integer; external;
function ReturnPtr:pchar; external;
function ReturnReal:real; external;

// Demonstration of calling an assembly language
// procedure that returns a byte (boolean) result.

procedure TDelphiEx2Form.BoolBtnClick(Sender: TObject);
var
 b:boolean;

begin

 // Call the assembly code and return its result:

 b := ReturnBoolean;

 // Display “true” or “false” depending on the return result.

 if(b) then

 booleanLabel.caption := ‘Boolean result = true ‘

 else

 BooleanLabel.caption := ‘Boolean result = false’;

end;

// Demonstrate calling an assembly language function that
// returns a word result.

procedure TDelphiEx2Form.WordBtnClick(Sender: TObject);
var
 si:smallint; // Return result here.
 strVal:string; // Used to display return result.
begin

 si := ReturnWord(); // Get result from assembly code.
 str(si, strVal); // Convert result to a string.
Page 1130 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
 WordLabel.caption := ‘Word Result = ‘ + strVal;

end;

// Demonstration of a call to an assembly language routine
// that returns a 32-bit result in EAX:

procedure TDelphiEx2Form.DWordBtnClick(Sender: TObject);
var
 i:integer; // Return result goes here.
 strVal:string; // Used to display return result.
begin

 i := ReturnDWord(); // Get result from assembly code.
 str(i, strVal); // Convert that value to a string.
 DWordLabel.caption := ‘Double Word Result = ‘ + strVal;

end;

// Demonstration of a routine that returns a pointer
// as the function result. This demo is kind of lame
// because we can’t initialize anything inside the
// assembly module, but it does demonstrate the mechanism
// even if this example isn’t very practical.

procedure TDelphiEx2Form.PtrBtnClick(Sender: TObject);
var
 p:pchar; // Put returned pointer here.
begin

 // Get the pointer (to a zero byte) from the assembly code.

 p := ReturnPtr();

 // Display the empty string that ReturnPtr returns.

 PCharLabel.caption := ‘PChar Result = “‘ + p + ‘”’;

end;

// Quick demonstration of a function that returns a
// floating point value as a function result.

procedure TDelphiEx2Form.FltBtnClick(Sender: TObject);
var
 r:real;
 strVal:string;
begin

 // Call the assembly code that returns a real result.

 r := ReturnReal(); // Always returns 1.0

 // Convert and display the result.

 str(r:13:10, strVal);
 RealLabel.caption := ‘Real Result = ‘ + strVal;

end;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1131

Chapter Twelve Volume Four
end.

Program 12.7 DelphiEx2: Pascal Code for Assembly Return Results Example

// ReturnBooleanUnit-
//
// Provides the ReturnBoolean function for the DelphiEx2 program.

// The following MASM code must appear at this point because Delphi

#code(“_TEXT”, “para”, “CODE”)
#static(“_DATA”, “para”, “DATA”)
#readonly(“_DATA”, “para”, “DATA”)
#storage(“_DATA”, “para”, “DATA”)
#const(“_INIDATA_”, “para”, “INITDATA”)

unit ReturnBooleanUnit;

// Tell HLA that ReturnBoolean is a public symbol:

procedure ReturnBoolean; external;

// Demonstration of a function that returns a byte value in AL.
// This function simply returns a boolean result that alterates
// between true and false on each call.

procedure ReturnBoolean; nodisplay; noalignstk; noframe;
static b:boolean:=false;
begin ReturnBoolean;

 xor(1, b); // Invert boolean status
 and(1, b); // Force to zero (false) or one (true).
 mov(b, al); // Function return result comes back in AL.
 ret();

end ReturnBoolean;

end ReturnBooleanUnit;

Program 12.8 ReturnBoolean: Demonstrates Returning a Byte Value in AL

// ReturnWordUnit-
//
// Provides the ReturnWord function for the DelphiEx2 program.

#code(“_TEXT”, “para”, “CODE”)
#static(“_DATA”, “para”, “DATA”)
#readonly(“_DATA”, “para”, “DATA”)
Page 1132 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
#storage(“_DATA”, “para”, “DATA”)
#const(“_INIDATA_”, “para”, “INITDATA”)

unit ReturnWordUnit;

procedure ReturnWord; external;

procedure ReturnWord; nodisplay; noalignstk; noframe;
static w:int16 := 1234;
begin ReturnWord;

 // Increment the static value by one on each
 // call and return the new result as the function
 // return value.

 inc(w);
 mov(w, ax);
 ret();

end ReturnWord;

end ReturnWordUnit;

Program 12.9 ReturnWord: Demonstrates Returning a Word Value in AX

// ReturnDWordUnit-
//
// Provides the ReturnDWord function for the DelphiEx2 program.

#code(“_TEXT”, “para”, “CODE”)
#static(“_DATA”, “para”, “DATA”)
#readonly(“_DATA”, “para”, “DATA”)
#storage(“_DATA”, “para”, “DATA”)
#const(“_INIDATA_”, “para”, “INITDATA”)

unit ReturnDWordUnit;

procedure ReturnDWord; external;

// Same code as ReturnWord except this one returns a 32-bit value
// in EAX rather than a 16-bit value in AX.

procedure ReturnDWord; nodisplay; noalignstk; noframe;
static
 d:int32 := -7;
begin ReturnDWord;

 inc(d);
 mov(d, eax);
 ret();

end ReturnDWord;

end ReturnDWordUnit;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1133

Chapter Twelve Volume Four
Program 12.10 ReturnDWord: Demonstrates Returning a DWord Value in EAX

// ReturnPtrUnit-
//
// Provides the ReturnPtr function for the DelphiEx2 program.

#code(“_TEXT”, “para”, “CODE”)
#static(“_DATA”, “para”, “DATA”)
#readonly(“_DATA”, “para”, “DATA”)
#storage(“_DATA”, “para”, “DATA”)
#const(“_INIDATA_”, “para”, “INITDATA”)

unit ReturnPtrUnit;

procedure ReturnPtr; external;

// This function, which is lame, returns a pointer to a zero
// byte in memory (i.e., an empty pchar string). Although
// not particularly useful, this code does demonstrate how
// to return a pointer in EAX.

procedure ReturnPtr; nodisplay; noalignstk; noframe;
static
 stringData:byte:nostorage;
 byte “Pchar object”, 0;

begin ReturnPtr;

 lea(eax, stringData);
 ret();

end ReturnPtr;

end ReturnPtrUnit;

Program 12.11 ReturnPtr: Demonstrates Returning a 32-bit Address in EAX

// ReturnRealUnit-
//
// Provides the ReturnReal function for the DelphiEx2 program.

#code(“_TEXT”, “para”, “CODE”)
#static(“_DATA”, “para”, “DATA”)
#readonly(“_DATA”, “para”, “DATA”)
#storage(“_DATA”, “para”, “DATA”)
#const(“_INIDATA_”, “para”, “INITDATA”)

unit ReturnRealUnit;

procedure ReturnReal; external;
procedure ReturnReal; nodisplay; noalignstk; noframe;
Page 1134 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
static
 realData: real80 := 1.234567890;

begin ReturnReal;

 fld(realData);
 ret();

end ReturnReal;

end ReturnRealUnit;

Program 12.12 ReturnReal: Demonstrates Returning a Real Value in ST0

The second thing to note is the #code, #static, etc., directives at the beginning of each file to change the
segment name declarations. You’ll learn the reason for these segment renaming directives a little later in this
chapter.

12.3.4 Calling Conventions

Delphi supports five different calling mechanisms for procedures and functions: register, pascal, cdecl,
stdcall, and safecall. The register and pascal calling methods are very similar except that the pascal
parameter passing scheme always passes all parameters on the stack while the register calling mechanism
passes the first three parameters in CPU registers. We’ll return to these two mechanisms shortly since they
are the primary mechanisms we’ll use. The cdecl calling convention uses the C/C++ programming language
calling convention. We’ll study this scheme more in the section on interfacing C/C++ with HLA. There is
no need to use this scheme when calling HLA procedures from Delphi. If you must use this scheme, then
see the section on the C/C++ languages for details. The stdcall convention is used to call Windows API
functions. Again, there really is no need to use this calling convention, so we will ignore it here. See the
Delphi documentation for more details. Safecall is another specialized calling convention that we will not
use. See, we’ve already reduced the complexity from five mechanisms to two! Seriously, though, when call-
ing assembly language routines from Delphi code that you’re writing, you only need to use the pascal and
register conventions.

The calling convention options specify how Delphi passes parameters between procedures and func-
tions as well as who is responsible for cleaning up the parameters when a function or procedure returns to its
caller. The pascal calling convention passes all parameters on the stack and makes it the procedure or func-
tion’s responsibility to remove those parameters from the stack. The pascal calling convention mandates that
the caller push parameters in the order the compiler encounters them in the parameter list (i.e., left to right).
This is exactly the calling convention that HLA uses (assuming you don’t use the “IN register” parameter
option). Here’s an example of a Delphi external procedure declaration that uses the pascal calling conven-
tion:

procedure UsesPascal(parm1:integer; parm2:integer; parm3:integer);

The following program provides a quick example of a Delphi program that calls an HLA procedure (func-
tion) using the pascal calling convention.

unit DelphiEx3;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1135

Chapter Twelve Volume Four
 StdCtrls;

type
 TForm1 = class(TForm)
 callUsesPascalBtn: TButton;
 UsesPascalLabel: TLabel;
 procedure callUsesPascalBtnClick(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}
{$L usespascal.obj}

function UsesPascal
(
 parm1:integer;
 parm2:integer;
 parm3:integer
):integer; pascal; external;

procedure TForm1.callUsesPascalBtnClick(Sender: TObject);
var
 i: integer;
 strVal: string;
begin

 i := UsesPascal(5, 6, 7);
 str(i, strVal);
 UsesPascalLabel.caption := ‘Uses Pascal = ‘ + strVal;

end;

end.

Program 12.13 DelphiEx3 – Sample Program that Demonstrates the pascal Calling Convention

// UsesPascalUnit-
//
// Provides the UsesPascal function for the DelphiEx3 program.

unit UsesPascalUnit;

// Tell HLA that UsesPascal is a public symbol:

procedure UsesPascal(parm1:int32; parm2:int32; parm3:int32); external;

// Demonstration of a function that uses the PASCAL calling convention.
Page 1136 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
// This function simply computes parm1+parm2-parm3 and returns the
// result in EAX. Note that this function does not have the
// “NOFRAME” option because it needs to build the activation record
// (stack frame) in order to access the parameters. Furthermore, this
// code must clean up the parameters upon return (another chore handled
// automatically by HLA if the “NOFRAME” option is not present).

procedure UsesPascal(parm1:int32; parm2:int32; parm3:int32);
 nodisplay; noalignstk;

begin UsesPascal;

 mov(parm1, eax);
 add(parm2, eax);
 sub(parm3, eax);

end UsesPascal;

end UsesPascalUnit;

Program 12.14 UsesPascal – HLA Function the Previous Delphi Code Will Call

To compile the HLA code, you would use the following two commands in a command window:

hla -c -tasm -omf UsesPascal.hla

Once you produce the OBJ file with the above two commands, you can get into Delphi and compile the Pas-
cal code.

The register calling convention also processes parameters from left to right and requires the proce-
dure/function to clean up the parameters upon return; the difference is that procedures and functions that use
the register calling convention will pass their first three (ordinal) parameters in the EAX, EDX, and ECX
registers (in that order) rather than on the stack. You can use HLA’s “IN register” syntax to specify that you
want the first three parameters passed in this registers, e.g.,

procedure UsesRegisters
(

parm1:int32 in EAX;
parm2:int32 in EDX;
parm3:int32 in ECX

);

If your procedure had four or more parameters, you would not specify registers as their locations. Instead,
you’d access those parameters on the stack. Since most procedures have three or fewer parameters, the reg-
ister calling convention will typically pass all of a procedure’s parameters in a register.

Although you can use the register keyword just like pascal to force the use of the register calling con-
vention, the register calling convention is the default mechanism in Delphi. Therefore, a Delphi declaration
like the following will automatically use the register calling convention:

procedure UsesRegisters
(

parm1:integer;
parm2:integer;
parm3:integer

); external;

The following program is a modification of the previous program in this section that uses the register
calling convention rather than the pascal calling convention.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1137

Chapter Twelve Volume Four
unit DelphiEx4;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls;

type
 TForm1 = class(TForm)
 callUsesRegisterBtn: TButton;
 UsesRegisterLabel: TLabel;
 procedure callUsesRegisterBtnClick(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}
{$L usesregister.obj}

function UsesRegister
(
 parm1:integer;
 parm2:integer;
 parm3:integer;
 parm4:integer
):integer; external;

procedure TForm1.callUsesRegisterBtnClick(Sender: TObject);
var
 i: integer;
 strVal: string;
begin

 i := UsesRegister(5, 6, 7, 3);
 str(i, strVal);
 UsesRegisterLabel.caption := ‘Uses Register = ‘ + strVal;

end;

end.

Program 12.15 DelphiEx4 – Using the register Calling Convention

// UsesRegisterUnit-
//
Page 1138 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
// Provides the UsesRegister function for the DelphiEx4 program.

unit UsesRegisterUnit;

// Tell HLA that UsesRegister is a public symbol:

procedure UsesRegister
(
 parm1:int32 in eax;
 parm2:int32 in edx;
 parm3:int32 in ecx;
 parm4:int32
); external;

// Demonstration of a function that uses the REGISTER calling convention.
// This function simply computes (parm1+parm2-parm3)*parm4 and returns the
// result in EAX. Note that this function does not have the
// “NOFRAME” option because it needs to build the activation record
// (stack frame) in order to access the fourth parameter. Furthermore, this
// code must clean up the fourth parameter upon return (another chore handled
// automatically by HLA if the “NOFRAME” option is not present).

procedure UsesRegister
(
 parm1:int32 in eax;
 parm2:int32 in edx;
 parm3:int32 in ecx;
 parm4:int32
); nodisplay; noalignstk;

begin UsesRegister;

 mov(parm1, eax);
 add(parm2, eax);
 sub(parm3, eax);
 intmul(parm4, eax);

end UsesRegister;

end UsesRegisterUnit;

Program 12.16 HLA Code to support the DelphiEx4 Program

To compile the HLA code, you would use the following two commands in a command window:

hla -tasm -c -omf UsesRegister.hla

Once you produce the OBJ file with the above command, you can get into Delphi and compile the Pascal
code.

12.3.5 Pass by Value, Reference, CONST, and OUT in Delphi

A Delphi program can pass parameters to a procedure or function using one of four different mecha-
nisms: pass by value, pass by reference, CONST parameters, and OUT parameters. The examples up to this
point in this chapter have all used Delphi’s (and HLA’s) default pass by value mechanism. In this section
we’ll look at the other parameter passing mechanisms.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1139

Chapter Twelve Volume Four
HLA and Delphi also share a (mostly) common syntax for pass by reference parameters. The following
two lines provide an external declaration in Delphi and the corresponding external (public) declaration in
HLA for a pass by reference parameter using the pascal calling convention:

procedure HasRefParm(var refparm: integer); pascal; external; // Delphi
procedure HasRefParm(var refparm: int32); external; // HLA

Like HLA, Delphi will pass the 32-bit address of whatever actual parameter you specify when calling the
HasRefParm procedure. Don’t forget, inside the HLA code, that you must dereference this pointer to access
the actual parameter data. See the chapter on Intermediate Procedures for more details (see “Pass by Refer-
ence” on page 793).

The CONST and OUT parameter passing mechanisms are virtually identical to pass by reference. Like
pass by reference these two schemes pass a 32-bit address of their actual parameter. The difference is that
the called procedure is not supposed to write to CONST objects since they’re, presumably, constant. Con-
versely, the called procedure is supposed to write to an OUT parameter (and not assume that it contains any
initial value of consequence) since the whole purpose of an OUT parameter is to return data from a proce-
dure or function. Other than the fact that the Delphi compiler will check procedures and functions (written
in Delphi) for compliance with this rules, there is no difference between CONST, OUT, and reference
parameters. Delphi passes all such parameters by reference to the procedure or function. Note that in HLA
you would declare all CONST and OUT parameters as pass by reference parameters. HLA does not enforce
the readonly attribute of the CONST object nor does it check for an attempt to access an uninitialized OUT
parameter; those checks are the responsibility of the assembly language programmer.

As you learned in the previous section, by default Delphi uses the register calling convention. If you
pass one of the first three parameters by reference to a procedure or function, Delphi will pass the address of
that parameter in the EAX, EDX, or ECX register. This is very convenient as you can immediately apply the
register indirect addressing mode without first loading the parameter into a 32-bit register.

Like HLA, Delphi lets you pass untyped parameters by reference (or by CONST or OUT). The syntax
to achieve this in Delphi is the following:

procedure UntypedRefParm(var parm1; const parm2; out parm3); external;

Note that you do not supply a type specification to these parameters. Delphi will compute the 32-bit address
of these objects and pass them on to the UntypedRefParm procedure without any further type checking. In
HLA, you can use the VAR keyword as the data type to specify that you want an untyped reference parame-
ter. Here’s the corresponding prototype for the UntypedRefParm procedure in HLA:

procedure UntypedRefParm(var parm1:var; var parm2:var; var parm3:var);
external;

As noted above, you use the VAR keyword (pass by reference) when passing CONST and OUT parameters.
Inside the HLA procedure it’s your responsibility to use these pointers in a manner that is reasonable given
the expectations of the Delphi code.

12.3.6 Scalar Data Type Correspondence Between Delphi and HLA

When passing parameters between Delphi and HLA procedures and functions, it’s very important that
the calling code and the called code agree on the basic data types for the parameters. In this section we will
draw a correspondence between the Delphi (v5.0) scalar data types and the HLA (v1.x) data types3.

Assembly language supports any possible data format, so HLA’s data type capabilities will always be a
superset of Delphi’s. Therefore, there may be some objects you can create in HLA that have no counterpart
in Delphi, but the reverse is not true. Since the assembly functions and procedures you write are generally
manipulating data that Delphi provides, you don’t have to worry too much about not being able to process
some data passed to an HLA procedure by Delphi4.

3. Scalar data types are the ordinal, pointer, and real types. It does not include strings or other composite data types.
Page 1140 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
Delphi 5.0 provides a wide range of different integer data types. The following table lists the Delphi
types and the HLA equivalents:

In addition to the integer values, Delphi supports several non-integer ordinal types. The following table
provides their HLA equivalents:

4. Delphi string objects are an exception. For reasons that have nothing to do with data representation, you should not manip-
ulate string parameters passed in from Delphi to an HLA routine. This section will explain the problems more fully a little
later.

Table 1: Delphi and HLA Integer Types

Delphi HLA Equivalent
Range

Minimum Maximum

integer int32a

a. Int32 is the implementation of integer in Delphi 5. This may change in later releases.

-2147483648 2147483647

cardinal uns32b

b. Uns32 is the implementation of cardinal in Delphi 5. This may change in later releases.

0 4294967295

shortint int8 -128 127

smallint int16 -32768 32767

longint int32 -2147483648 2147483647

int64 qword -263 (263-1)

byte uns8 0 255

word uns16 0 65535

longword uns32 0 4294967295

subrange types Depends on range minimum range value maximum range value

Table 2: Non-integer Ordinal Types in Delphi and HLA

Delphi HLA
Range

Minimum Maximum

char char #0 #255

widechar word chr(0) chr(65535)

boolean boolean false (0) true(1)

bytebool byte 0(false) 255 (non-zero is true)

wordbool word 0 (false) 65535 (non-zero is
true)

longbool dword 0 (false) 4294967295 (non-zero
is true)
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1141

Chapter Twelve Volume Four
Like the integer types, Delphi supports a wide range of real numeric formats. The following table pre-
sents these types and their HLA equivalents.

The last scalar type of interest is the pointer type. Both HLA and Delphi use a 32-bit address to repre-
sent pointers, so these data types are completely equivalent in both languages.

12.3.7 Passing String Data Between Delphi and HLA Code

Delphi supports a couple of different string formats. The native string format is actually very similar to
HLA’s string format. A string object is a pointer that points at a zero terminated sequence of characters. In
the four bytes preceding the first character of the string, Delphi stores the current dynamic length of the
string (just like HLA). In the four bytes before the length, Delphi stores a reference count (unlike HLA,
which stores a maximum length value in this location). Delphi uses the reference count to keep track of how
many different pointers contain the address of this particular string object. Delphi will automatically free the
storage associated with a string object when the reference count drops to zero (this is known as garbage col-
lection).

The Delphi string format is just close enough to HLA’s to tempt you to use some HLA string functions
in the HLA Standard Library. This will fail for two reasons: (1) many of the HLA Standard Library string
functions check the maximum length field, so they will not work properly when they access Delphi’s refer-

enumerated types enum, byte, or word 0 Depends on number of
items in the enumera-
tion list. Usually the

upper limit is 256 sym-
bols

Table 3: Real Types in Delphi and HLA

Delphi HLA
Range

Minimum Maximum

real real64 5.0 E-324 1.7 E+308

single real32 1.5 E-45 3.4 E+38

double real64 5.0 E-324 1.7 E+308

extended real80 3.6 E-4951 1.1 E+4932

comp real80 -263+1 263-1

currency real80 -922337203685477.5808 922337203685477.5807

real48a

a. real48 is an obsolete type that depends upon a software floating point library. You should never use

this type in assembly code. If you do, you are responsible for writing the necessary floating point sub-

routines to manipulate the data.

byte[6] 2.9 E-39 1.7 E+38

Table 2: Non-integer Ordinal Types in Delphi and HLA

Delphi HLA
Range

Minimum Maximum
Page 1142 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
ence count field; (2) HLA Standard Library string functions have a habit of raising string overflow (and
other) exceptions if they detect a problem (such as exceeding the maximum string length value). Remember,
the HLA exception handling facility is not directly compatible with Delphi’s, so you should never call any
HLA code that might raise an exception.

Of course, you can always grab the source code to some HLA Standard Library string function and strip
out the code that raises exceptions and checks the maximum length field (this is usually the same code that
raises exceptions). However, you could still run into problems if you attempt to manipulate some Delphi
string. In general, it’s okay to read the data from a string parameter that Delphi passes to your assembly
code, but you should never change the value of such a string. To understand the problem, consider the fol-
lowing HLA code sequence:

static
s:string := “Hello World”;
sref:string;
scopy:string;

.

.

.
str.a_cpy(s, scopy); // scopy has its own copy of “Hello World”

mov(s, eax); // After this sequence, s and sref point at
mov(eax, sref); // the same character string in memory.

After the code sequence above, any change you would make to the scopy string would affect only scopy
because it has its own copy of the “Hello World” string. On the other hand, if you make any changes to the
characters that s points at, you’ll also be changing the string that sref points at because sref contains the same
pointer value as s; in other words, s and sref are aliases of the same data. Although this aliasing process can
lead to the creation of some killer defects in your code, there is a big advantage to using copy by reference
rather than copy by value: copy by reference is much quicker since it only involves copying a single
four-byte pointer. If you rarely change a string variable after you assign one string to that variable, copy by
reference can be very efficient.

Of course, what happens if you use copy by reference to copy s to sref and then you want to modify the
string that sref points at without changing the string that s points at? One way to do this is to make a copy of
the string at the time you want to change sref and then modify the copy. This is known as copy on write
semantics. In the average program, copy on write tends to produce faster running programs because the typ-
ical program tends to assign one string to another without modification more often that it assigns a string
value and then modifies it later. Of course, the real problem is “how do you know whether multiple string
variables are pointing at the same string in memory?” After all, if only one string variable is pointing at the
string data, you don’t have to make a copy of the data, you can manipulate the string data directly. The ref-
erence counter field that Delphi attaches to the string data solves this problem. Each time a Delphi program
assigns one string variable to another, the Delphi code simply copies a pointer and then increments the refer-
ence counter. Similarly, if you assign a string address to some Delphi string variable and that variable was
previously pointing at some other string data, Delphi decrements the reference counter field of that previous
string value. When the reference count hits zero, Delphi automatically deallocates storage for the string (this
is the garbage collection operation).

Note that Delphi strings don’t need a maximum length field because Delphi dynamically allocates (stan-
dard) strings whenever you create a new string. Hence, string overflow doesn’t occur and there is no need to
check for string overflow (and, therefore, no need for the maximum length field). For literal string constants
(which the compiler allocates statically, not dynamically on the heap), Delphi uses a reference count field of
-1 so that the compiler will not attempt to deallocate the static object.

It wouldn’t be that hard to take the HLA Standard Library strings module and modify it to use Delphi’s
dynamically allocated string format. There is, however, one problem with this approach: Borland has not
published the internal string format for Delphi strings (the information appearing above is the result of
sleuthing through memory with a debugger). They have probably withheld this information because they
want the ability to change the internal representation of their string data type without breaking existing Del-
phi programs. So if you poke around in memory and modify Delphi string data (or allocate or deallocate
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1143

Chapter Twelve Volume Four
these strings on your own), don’t be surprised if your program malfunctions when a later version of Delphi
appears. By the way, the discussion above is current as of Delphi v5.0. Who knows if this explanation will
still apply in Kylix (the Linux version of Delphi), Delphi 6.0, or any later versions.

Like HLA strings, a Delphi string is a pointer that happens to contain the address of the first character of
a zero terminated string in memory. As long as you don’t modify this pointer, you don’t modify any of the
characters in that string, and you don’t attempt to access any bytes before the first character of the string or
after the zero terminating byte, you can safely access the string data in your HLA programs. Just remember
that you cannot use any Standard Library routines that check the maximum string length or raise any excep-
tions. If you need the length of a Delphi string that you pass as a parameter to an HLA procedure, it would
be wise to use the Delphi Length function to compute the length and pass this value as an additional param-
eter to your procedure. This will keep your code working should Borland ever decide to change their inter-
nal string representation.

Delphi also supports a ShortString data type. This data type provides backwards compatibility with
older versions of Borland’s Turbo Pascal (Borland Object Pascal) product. ShortString objects are tradi-
tional length-prefixed strings (see “Character Strings” on page 401). A short string variable is a sequence of
one to 256 bytes where the first byte contains the current dynamic string length (a value in the range 0..255)
and the following n bytes hold the actual characters in the string (n being the value found in the first byte of
the string data). If you need to manipulate the value of a string variable within an assembly language mod-
ule, you should pass that parameter as a ShortString variable (assuming, of course, that you don’t need to
handle strings longer than 256 characters). For efficiency reasons, you should always pass ShortString vari-
ables by reference (or CONST or OUT) rather than by value. If you pass a short string by value, Delphi
must copy all the characters allocated for that string (even if the current length is shorter) into the proce-
dure’s activation record. This can be very slow. If you pass a ShortString by reference, then Delphi will
only need to pass a pointer to the string’s data; this is very efficient.

Note that ShortString objects do not have a zero terminating byte following the string data. Therefore,
your assembly code should use the length prefix byte to determine the end of the string, it should not search
for a zero byte in the string.

If you need the maximum length of a ShortString object, you can use the Delphi high function to obtain
this information and pass it to your HLA code as another parameter. Note that the high function is an com-
piler intrinsic much like HLA’s @size function. Delphi simply replaces this “function” with the equivalent
constant at compile-time; this isn’t a true function you can call. This maximum size information is not
available at run-time (unless you’ve used the Delphi high function) and you cannot compute this information
within your HLA code.

12.3.8 Passing Record Data Between HLA and Delphi

Records in HLA are (mostly) compatible with Delphi records. Syntactically their declarations are very
similar and if you’ve specified the correct Delphi compiler options you can easily translate a Delphi record
to an HLA record. In this section we’ll explore how to do this and learn about the incompatibilities that exist
between HLA records and Delphi records.

For the most part, translating Delphi records to HLA is a no brainer. The two record declarations are so
similar syntactically that conversion is trivial. The only time you really run into a problem in the conversion
process is when you encounter case variant records in Delphi; fortunately, these don’t occur very often and
when they do, HLA’s anonymous unions within a record come to the rescue.

Consider the following Pascal record type declaration:

type
recType =

record

day: byte;
month:byte;
year:integer;
dayOfWeek:byte;
Page 1144 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
end;

The translation to an HLA record is, for the most part, very straight-forward. Just translate the field types
accordingly and use the HLA record syntax (see “Records” on page 465) and you’re in business. The trans-
lation is the following:

type
recType:

record

day: byte;
month: byte;
year:int32;
dayOfWeek:byte;

endrecord;

There is one minor problem with this example: data alignment. By default Delphi aligns each field of a
record on the size of that object and pads the entire record so its size is an even multiple of the largest (sca-
lar) object in the record. This means that the Delphi declaration above is really equivalent to the following
HLA declaration:

type
recType:

record

day: byte;
month: byte;
padding:byte[2]; // Align year on a four-byte boundary.
year:int32;
dayOfWeek:byte;
morePadding: byte[3]; // Make record an even multiple of four bytes.

endrecord;

Of course, a better solution is to use HLA’s ALIGN directive to automatically align the fields in the
record:

type
recType:

record

day: byte;
month: byte;
align(4); // Align year on a four-byte boundary.
year:int32;
dayOfWeek:byte;
align(4); // Make record an even multiple of four bytes.

endrecord;

Alignment of the fields is good insofar as access to the fields is faster if they are aligned appropriately.
However, aligning records in this fashion does consume extra space (five bytes in the examples above) and
that can be expensive if you have a large array of records whose fields need padding for alignment.

The alignment parameters for an HLA record should be the following:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1145

Chapter Twelve Volume Four
Another possibility is to tell Delphi not to align the fields in the record. There are two ways to do this:
use the packed reserved word or use the {$A-} compiler directive.

The packed keyword tells Delphi not to add padding to a specific record. For example, you could
declare the original Delphi record as follows:

type
recType =

packed record

day: byte;
month:byte;
year:integer;
dayOfWeek:byte;

end;

With the packed reserved word present, Delphi does not add any padding to the fields in the record. The
corresponding HLA code would be the original record declaration above, e.g.,

type
recType:

record

day: byte;
month: byte;
year:int32;
dayOfWeek:byte;

endrecord;

The nice thing about the packed keyword is that it lets you explicitly state whether you want data align-
ment/padding in a record. On the other hand, if you’ve got a lot of records and you don’t want field align-
ment on any of them, you’ll probably want to use the “{$A-}” (turn data alignment off) option rather than
add the packed reserved word to each record definition. Note that you can turn data alignment back on with
the “{$A+”} directive if you want a sequence of records to be packed and the rest of them to be aligned.

While it’s far easier (and syntactically safer) to used packed records when passing record data between
assembly language and Delphi, you will have to determine on a case-by-case basis whether you’re willing to
give up the performance gain in exchange for using less memory (and a simpler interface). It is certainly the

Table 4: Alignment of Record Fields

Data Type Alignment

Ordinal Types Size of the type: 1, 2, or 4 bytes.

Real Types 2 for real48 and extended, 4 bytes for other real types

ShortString 1

Arrays Same as the element size

Records Same as the largest alignment of all the fields.

Sets 1 or two if the set has fewer than 8 or 16 elements, 4
otherwise

All other types 4
Page 1146 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
case that packed records are easier to maintain in HLA than aligned records (since you don’t have to care-
fully place ALIGN directives throughout the record in the HLA code). Furthermore, on new processors
most mis-aligned data accesses aren’t particularly expensive. However, if performance really matters you
will have to measure the performance of your program and determine the cost of using packed records.

Case variant records in Delphi let you add mutually exclusive fields to a record with an optional tag
field. Here are two examples:

type
r1=

record

stdField: integer;
case choice:boolean of

true:(i:integer);
false:(r:real);

end;

r2=
record

s2:real;
case boolean of // Notice no tag object here.

true:(s:string);
false:(c:char);

end;

HLA does not support the case variant syntax, but it does support anonymous unions in a record that let
you achieve the same semantics. The two examples above, converted to HLA (assuming “{A-}”) are

type
r1:

record

stdField: int32;
choice: boolean; // Notice that the tag field is just another field
union

i:int32;
r:real64;

endunion;

endrecord;

r2:
record

s2:real64;
union

s: string;
c: char;

endunion;

endrecord;

Again, you should insert appropriate ALIGN directives if you’re not creating a packed record. Note that
you shouldn’t place any ALIGN directives inside the anonymous union section; instead, place a single
ALIGN directive before the UNION reserved word that specifies the size of the largest (scalar) object in the
union as given by the table “Alignment of Record Fields” on page 1146.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1147

Chapter Twelve Volume Four
In general, if the size of a record exceeds about 16 bytes, you should pass the record by reference rather
than by value.

12.3.9 Passing Set Data Between Delphi and HLA

Sets in Delphi can have between 1 and 256 elements. Delphi implements sets using an array of bits,
exactly as HLA implements character sets (see “Character Sets” on page 423). Delphi reserves one to 32
bytes for each set; the size of the set (in bytes) is (Number_of_elements + 7) div 8. Like HLA’s character
sets, Delphi uses a set bit to indicate that a particular object is a member of the set and a zero bit indicates
absence from the set. You can use the bit test (and set/complement/reset) instructions and all the other bit
manipulation operations to manipulate character sets. Furthermore, the MMX instructions might provide a
little added performance boost to your set operations (see “The MMX Instruction Set” on page 1083). For
more details on the possibilities, consult the Delphi documentation and the chapters on character sets and the
MMX instructions in this text.

Generally, sets are sufficiently short (maximum of 32 bytes) that passing the by value isn’t totally horri-
ble. However, you will get slightly better performance if you pass larger sets by reference. Note that HLA
often passes character sets by value (16 bytes per set) to various Standard Library routines, so don’t be
totally afraid of passing sets by value.

12.3.10Passing Array Data Between HLA and Delphi

Passing array data between some procedures written in Delphi and HLA is little different than passing
array data between two HLA procedures. Generally, if the arrays are large, you’ll want to pass the arrays by
reference rather than value. Other than that, you should declare an appropriate array type in HLA to match
the type you’re passing in from Delphi and have at it. The following code fragments provide a simple exam-
ple:

type
PascalArray = array[0..127, 0..3] of integer;

procedure PassedArrray(var ary: PascalArray); external;

Corresponding HLA code:

type
PascalArray: int32[128, 4];

procedure PassedArray(var ary: PascalArray); external;

As the above examples demonstrate, Delphi’s array declarations specify the starting and ending indices
while HLA’s array bounds specify the number of elements for each dimension. Other than this difference,
however, you can see that the two declarations are very similar.

Delphi uses row-major ordering for arrays. So if you’re accessing elements of a Delphi multi-dimen-
sional array in HLA code, be sure to use the row-major order computation (see “Row Major Ordering” on
page 451).

12.3.11Delphi Limitations When Linking with (Non-TASM) Assembly Code

Delphi places a couple of restrictions on OBJ files that it links with the Pascal code. Some of these
restrictions appears to be defects in the implementation of the linker, but only Borland can say for sure if
these are defects or they are design deficiencies. The bottom line is that Delphi seems to work okay with the
OBJ files that TASM produces, but fails miserably with OBJ files that other assemblers (including MASM)
produce. While there are workarounds for those who insist on using the other assemblers, the only reason-
able solution is to use the TASM assembler when assembling HLA output.
Page 1148 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
Note that TASM v5.0 does not support Pentium+ instructions. Further, the latest (and probably last)
version of TASM (v5.3) does not support many of the newer SSE instructions. Therefore, you should avoid
using these instructions in your HLA programs when linking with Delphi code.

12.3.12Referencing Delphi Objects from HLA Code

Symbols you declare in the INTERFACE section of a Delphi program are public. Therefore, you can
access these objects from HLA code if you declare those objects as external in the HLA program. The fol-
lowing sample program demonstrates this fact by declaring a structured constant (y) and a function (callme)
that the HLA code uses when you press the button on a form. The HLA code calls the callme function
(which returns the value 10) and then the HLA code stores the function return result into the y structured
constant (which is really just a static variable).

unit DelphiEx5;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls;

type
 TDataTable = class(TForm)
 GetDataBtn: TButton;
 DataLabel: TLabel;
 procedure GetDataBtnClick(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

 // Here’s a static variable that we will export to
 // the HLA source code (in Delphi, structured constants
 // are initialized static variables).

const
 y:integer = 12345;

var
 DataTable: TDataTable;

 // Here’s the function we will export to the HLA code:

 function callme:integer;

implementation

{$R *.DFM}
{$L TableData.obj }

function TableData:integer; external;

// This function will simply return 10 as the function
// result (remember, function results come back in EAX).

function callme;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1149

Chapter Twelve Volume Four
begin

 callme := 10;

end;

procedure TDataTable.GetDataBtnClick(Sender: TObject);
var
 strVal: string;
 yVal: string;
begin

 // Display the value that TableData returns.
 // Also display the value of y, which TableValue modifies

 str(TableData(), strVal);
 str(y, yVal);
 DataLabel.caption := ‘Data = ‘ + strVal + ‘ y=’ + yVal;

end;

end.

Program 12.17 DelphiEx5 – Static Data and Delphi Public Symbols Demonstration

#code(“_TEXT”, “para”, “CODE”)
#static(“_DATA”, “para”, “DATA”)
#readonly(“_DATA”, “para”, “DATA”)
#storage(“_DATA”, “para”, “DATA”)
#const(“_INITDATA_”, “para”, “INITDATA”)

unit TableDataUnit;

// In order to reference more than a single static object
// in this code, we’ll bury all the static variables in the
// following record.

type
 dataseg:
 record
 index: uns32;
 TheTable:int32;
 endrecord;

// Here’s the actual variable declarations for this code:

static
 y:int32; external; // Static object from Delphi code

 d:dataseg:nostorage; // All of our static variables are here.

Page 1150 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
 dword -1; // index initial value;
 dword -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6; // TheTable values.

// Interface to “callme” procedure found in the Delphi code:

procedure callme; external;

// Declare the procedure we’re supplying to the Delphi code:

procedure TableData; external;
procedure TableData; nodisplay; noalignstk; noframe;
begin TableData;

 callme(); // Call Delphi code.
 mov(eax, y); // Store return result in Y.

 // Okay, on each successive call to this function, return
 // the next element (or wraparound to the first element) from
 // the “TheTable” array:

 inc(d.index);
 mov(d.index, eax);
 if(eax > 11) then

 xor(eax, eax);
 mov(eax, d.index);

 endif;
 mov(d.TheTable[eax*4], eax);
 ret();

end TableData;

end TableDataUnit;

Program 12.18 HLA Code for DelphiEx5 Example

12.4 Programming in C/C++ and HLA

Without question, the most popular language used to develop Win32 applications is, uh, Visual Basic.
We’re not going to worry about interfacing Visual Basic to assembly in this text for two reasons: (1) Visual
Basic programmers will get better control and performance from their code if they learn Delphi, and (2)
Visual Basic’s interface to assembly is very similar to Pascal’s (Delphi’s) so teaching the interface to Visual
Basic would repeat a lot of the material from the previous section. Coming in second as the Win32 develop-
ment language of choice is C/C++. The C/C++ interface to assembly language is a bit different than Pas-
cal/Delphi. That’s why this section appears in this text.

Unlike Delphi, that has only a single vendor, there are many different C/C++ compilers available on the
market. Each vendor (Microsoft, Borland, Watcom, GNU, etc.) has their own ideas about how C/C++
should interface to external code. Many vendors have their own extensions to the C/C++ language to aid in
the interface to assembly and other languages. For example, Borland provides a special keyword to let Bor-
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1151

Chapter Twelve Volume Four
land C++ (and C++ Builder) programmers call Pascal code (or, conversely, allow Pascal code to call the
C/C++ code). Microsoft, who stopped making Pascal compilers years ago, no longer supports this option.
This is unfortunate since HLA uses the Pascal calling conventions. Fortunately, HLA provides a special
interface to code that C/C++ systems generate.

Before we get started discussing how to write HLA modules for your C/C++ programs, you must under-
stand two very important facts:

HLA’s exception handling facilities are not directly compatible with C/C++’s exception
handling facilities. This means that you cannot use the TRY..ENDTRY and RAISE state-
ments in the HLA code you intend to link to a C/C++ program. This also means that you
cannot call library functions that contain such statements. Since the HLA Standard
Library modules use exception handling statements all over the place, this effectively pre-
vents you from calling HLA Standard Library routines from the code you intend to link
with C/C++5.

Although you can write console applications with C/C++, a good percentage of C/C++
(and nearly all C++ Builder) applications are Windows/GUI applications. You cannot call
console-related functions (e.g., stdin.xxxx or stdout.xxxx) from a GUI application. Even
if HLA’s console and standard input/output routines didn’t use exception handling, you
wouldn’t be able to call them from a standard C/C++ application. Even if you are writing
a console application in C/C++, you still shouldn’t call the stdin.xxxx or stdout.xxx rou-
tines because they use the RAISE statement.

Given the rich set of language features that C/C++ supports, it should come as no surprise that the inter-
face between the C/C++ language and assembly language is somewhat complex. Fortunately there are two
facts that reduce this problem. First, HLA (v1.26 and later) supports C/C++’s calling conventions. Second,
the other complex stuff you won’t use very often, so you may not have to bother with it.

Note: the following sections assume you are already familiar with C/C++ programming.
They make no attempt to explain C/C++ syntax or features other than as needed to explain
the C/C++ assembly language interface. If you’re not familiar with C/C++, you will prob-
ably want to skip this section.

Also note: although this text uses the generic term “C/C++” when describing the interface
between HLA and various C/C++ compilers, the truth is that you’re really interfacing
HLA with the C language. There is a fairly standardized interface between C and assem-
bly language that most vendors follow. No such standard exists for the C++ language and
every vendor, if they even support an interface between C++ and assembly, uses a different
scheme. In this text we will stick to interfacing HLA with the C language. Fortunately, all
popular C++ compilers support the C interface to assembly, so this isn’t much of a prob-
lem.

The examples in this text will use the Borland C++ compiler and Microsoft’s Visual C++ compiler.
There may be some minor adjustments you need to make if you’re using some other C/C++ compiler;
please see the vendor’s documentation for more details. This text will note differences between Borland’s
and Microsoft’s offerings, as necessary.

12.4.1 Linking HLA Modules With C/C++ Programs

One big advantage of C/C++ over Delphi is that (most) C/C++ compiler vendors’ products emit stan-
dard OBJ files. Well, almost standard. You wouldn’t, for example, want to attempt to link the output of
Microsoft’s Visual C++ with TLINK (Borland’s Turbo Linker) nor would you want to link the output of Bor-
land C++ with Microsoft’s linker. Nevertheless, working with OBJ files and a true linker is much nicer than
having to deal with Delphi’s built-in linker. As nice as the Delphi system is, interfacing with assembly lan-
guage is much easier in C/C++ than in Delphi.

5. Note that the HLA Standard Library source code is available; feel free to modify the routines you want to use and remove
any exception handling statements contained therein.
Page 1152 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
Note: the HLA Standard Library was created using Microsoft tools. This means that you
will probably not be able to link this library module using the Borland TLINK program.
Of course, you probably shouldn’t be linking Standard Library code with C/C++ code
anyway, so this shouldn’t matter. However, if you really want to link some module from
the HLA Standard Library with Borland C/C++, you should recompile the module and use
the OBJ file directly rather than attempt to link the HLALIB.LIB file.

The Visual C++ compiler works with COFF object files. The Borland C++ compiler works with OMF
object files. Both forms of object files use the OBJ extension, so you can’t really tell by looking at a direc-
tory listing which form you’ve got. Fortunately, if you need to create a single OBJ file that will work with
both, the Visual C++ compiler will also accept OMF files and convert them to a COFF file during the link
phase. Of course, most of the time you will not be using both compilers, so you can pick whichever OBJ file
format you’re comfortable with and use that.

By default, HLA tells MASM to produce a COFF file when assembling the HLA output. This means
that if you compile and HLA program using a command line like the following, you will not be able to
directly link the code with Borland C++ code:

hla -c filename.hla // The “-c” option tells HLA to compile and assemble.

If you want to create an OMF file rather than a COFF file, you can do so by using the following two com-
mands:

hla -omf filename.hla // The “-omf” option tells HLA to compile to OMF.

The execution of the above command produces and OMF object file that both VC++ and BCC (Borland
C++) will accept (though VC++ prefers COFF, it accepts OMF).

Both BCC and VC++ look at the extension of the source file names you provide on the command line to
determine whether they are compiling a C or a C++ program. There are some minor syntactical differences
between the external declarations for a C and a C++ program. This text assumes that you are compiling C++
programs that have a “.cpp” extension. The difference between a C and a C++ compilation occurs in the
external declarations for the functions you intend to write in assembly language. For example, in a C source
file you would simply write:

extern char* RetHW(void);

However, in a C++ environment, you would need the following external declaration:

extern “C”
{

extern char* RetHW(void);
};

The ‘extern “C”’ clause tells the compiler to use standard C linkage even though the compiler is processing
a C++ source file (C++ linkage is different than C and definitely far more complex; this text will not con-
sider pure C++ linkage since it varies so much from vendor to vendor). If you’re going to compile C source
files with VC++ or BCC (i.e., files with a “.c” suffix), simply drop the ‘extern “C”’ and the curly braces from
around the external declarations.

The following sample program demonstrates this external linkage mechanism by writing a short HLA
program that returns the address of a string (“Hello World”) in the EAX register (like Delphi, C/C++ expects
functions to return their results in EAX). The main C/C++ program then prints this string to the console
device.

#include <stdlib.h>
#include "ratc.h"

extern "C"
{
 extern char* ReturnHW(void);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1153

Chapter Twelve Volume Four
};

int main()
_begin(main)

 printf("%s\n", ReturnHW());
 _return 0;

_end(main)

Program 12.19 Cex1 - A Simple Example of a Call to an Assembly Function from C++

unit ReturnHWUnit;

 procedure ReturnHW; external("_ReturnHW");
 procedure ReturnHW; nodisplay; noframe; noalignstk;
 begin ReturnHW;

 lea(eax, "Hello World");
 ret();

 end ReturnHW;

end ReturnHWUnit;

Program 12.20 RetHW.hla - Assembly Code that Cex1 Calls

There are several new things in both the C/C++ and HLA code that might confuse you at first glance, so
let’s discuss these things real quick here.

The first strange thing you will notice in the C++ code is the #include “ratc.h” statement. RatC is a
C/C++ macro library that adds several new features to the C++ language. RatC adds several interesting fea-
tures and capabilities to the C/C++ language, but a primary purpose of RatC is to help make C/C++ pro-
grams a little more readable. Of course, if you’ve never seen RatC before, you’ll probably argue that it’s not
as readable as pure C/C++, but even someone who has never seen RatC before can figure out 80% of Ratc
within a minutes. In the example above, the _begin and _end clauses clearly map to the “{“ and “}” symbols
(notice how the use of _begin and _end make it clear what function or statement associates with the braces;
unlike the guesswork you’ve got in standard C). The _return statement is clearly equivalent to the C return
statement. As you’ll quickly see, all of the standard C control structures are improved slightly in RatC.
You’ll have no trouble recognizing them since they use the standard control structure names with an under-
score prefix. This text promotes the creation of readable programs, hence the use of RatC in the examples
appearing in this chapter6. You can find out more about RatC on Webster at http://webster.cs.ucr.edu.

The C/C++ program isn’t the only source file to introduce something new. If you look at the HLA code
you’ll notice that the LEA instruction appears to be illegal. It takes the following form:

lea(eax, “Hello World”);

The LEA instruction is supposed to have a memory and a register operand. This example has a register and
a constant; what is the address of a constant, anyway? Well, this is a syntactical extension that HLA pro-

6. If RatC really annoys you, just keep in mind that you’ve only got to look at a few RatC programs in this chapter. Then you
can go back to the old-fashioned C code and hack to your heart’s content!
Page 1154 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
vides to 80x86 assembly language. If you supply a constant instead of a memory operand to LEA, HLA will
create a static (readonly) object initialized with that constant and the LEA instruction will return the address
of that object. In this example, HLA will emit the string to the constants (#const) segment and then load
EAX with the address of the first character of that string. Since HLA strings always have a zero terminating
byte, EAX will contain the address of a zero-terminated string which is exactly what C++ wants. If you look
back at the original C++ code, you will see that RetHW returns a char* object and the main C++ program
displays this result on the console device.

If you haven’t figured it out yet, this is a round-about version of the venerable “Hello World” program.

Microsoft VC++ users can compile this program from the command line by using the following com-
mands7:

hla -c RetHW.hla // Compiles and assembles RetHW.hla to RetHW.obj
cl Cex1.cpp RetHW.obj // Compiles C++ code and links it with RetHW.obj

If you’re a Borland C++ user, you’d use the following command sequence:

hla -o:omf RetHW.hla // Compile HLA file to an OMF file.
bcc32i Cex1.cpp RetHW.obj // Compile and link C++ and assembly code.
 // Could also use the BCC32 compiler.

12.4.2 Register Preservation

Unlike Delphi, a single language with a single vendor, there is no single list of registers that you can
freely use as scratchpad values within an assembly language function. The list changes by vendor and even
changes between versions from the same vendor. However, you can safely assume that EAX is available for
scratchpad use since C functions return their result in the EAX register. You should probably preserve every-
thing else.

12.4.3 Function Results

C/C++ compilers universally seem to return ordinal and pointer function results in AL, AX, or EAX
depending on the operand’s size. The compilers probably return floating point results on the top of the FPU
stack as well. Other than that, check your C/C++ vendor’s documentation for more details on function
return locations.

12.4.4 Calling Conventions

The standard C/C++ calling convention is probably the biggest area of contention between the C/C++
and HLA languages. VC++ and BCC both support multiple calling conventions. BCC even supports the
Pascal calling convention that HLA uses, making it trivial to write HLA functions for BCC programs8.
However, before we get into the details of these other calling conventions, it’s probably a wise idea to first
discuss the standard C/C++ calling convention.

Both VC++ and BCC decorate the function name when you declare an external function. For external
“C” functions, the decoration consists of an underscore. If you look back at Program 12.20 you’ll notice that
the external name the HLA program actually uses is “_RetHW” rather than simply “RetHW”. The HLA
program itself, of course, uses the symbol “RetHW” to refer to the function, but the external name (as speci-
fied by the optional parameter to the EXTERNAL option) is “_RetHW”. In the C/C++ program (Program

7. This text assumes you’ve executed the VCVARS32.BAT file that sets up the system to allow the use of VC++ from the
command line.
8. Microsoft used to support the Pascal calling convention, but when they stopped supporting their QuickPascal language,
they dropped support for this option.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1155

Chapter Twelve Volume Four
12.19) there is no explicit indication of this decoration; you simply have to read the compiler documentation
to discover that the compiler automatically prepends this character to the function name9. Fortunately,
HLA’s EXTERNAL option syntax allows us to undecorate the name, so we can refer to the function using
the same name as the C/C++ program. Name decoration is a trivial matter, easily fixed by HLA.

The next big problem is the fact that C/C++ pushes parameters on the stack in the opposite direction of
just about every other (non-C base) language on the planet; specifically, C/C++ pushes actual parameters on
the stack from right to left instead of the more common left to right. This means that you cannot declare a
C/C++ function with two or more parameters and use a simple translation of the C/C++ external declaration
as your HLA procedure declaration, i.e., the following are not equivalent:

external void CToHLA(int p, unsigned q, double r);
procedure CToHLA(p:int32; q:uns32; r:real64); external(“_CToHLA”);

Were you to call CToHLA from the C/C++ program, the compiler would push the r parameter first, the q
parameter second, and the p parameter third - exactly the opposite order that the HLA code expects. As a
result, the HLA code would use the L.O. double word of r as p’s value, the H.O. double word of r as q’s
value, and the combination of p and q’s values as the value for r. Obviously, you’d most likely get an incor-
rect result from this calculation. Fortunately, there’s an easy solution to this problem: use the CDECL proce-
dure option in the HLA code to tell it to reverse the parameters:

procedure CToHLA(p:int32; q:uns32; r:real64); cdecl; external(“_CToHLA”);

Now when the C/C++ code calls this procedure, it push the parameters on the stack and the HLA code will
retrieve them in the proper order.

There is another big difference between the C/C++ calling convention and HLA: HLA procedures auto-
matically clean up after themselves by removing all parameters pass to a procedure prior to returning to the
caller. C/C++, on the other hand, requires the caller, not the procedure, to clean up the parameters. This has
two important ramifications: (1) if you call a C/C++ function (or one that uses the C/C++ calling sequence),
then your code has to remove any parameters it pushed upon return from that function; (2) your HLA code
cannot automatically remove parameter data from the stack if C/C++ code calls it. The CDECL procedure
option tells HLA not to generate the code that automatically removes parameters from the stack upon return.
Of course, if you use the NOFRAME option, you must ensure that you don’t remove these parameters your-
self when your procedures return to their caller.

One thing HLA cannot handle automatically for you is removing parameters from the stack when you
call a procedure or function that uses the CDECL calling convention; for example, you must manually pop
these parameters whenever you call a C/C++ function from your HLA code.

Removing parameters from the stack when a C/C++ function returns to your code is very easy, just exe-
cute an “add(constant, esp);” instruction where constant is the number of parameter bytes you’ve pushed on
the stack. For example, the CToHLA function has 16 bytes of parameters (two int32 objects and one real64
object) so the calling sequence (in HLA) would look something like the following:

CToHLA(pVal, qVal, rVal); // Assume this is the macro version.
add(16, esp); // Remove parameters from the stack.

Dealing with cleaning up after a call is easy enough. However, if you’re writing the function that must
leave it up to the caller to remove the parameters from the stack, then you’ve got a tiny problem – by default,
HLA procedures always clean up after themselves. If you use the CDECL option and don’t specify the
NOFRAME option, then HLA automatically handles this for you. However, if you use the NOFRAME
option, then you’ve got to ensure that you leave the parameter data on the stack when returning from a func-
tion/procedure that uses the CDECL calling convention.

If you want to leave the parameters on the stack for the caller to remove, then you must write the stan-
dard entry and exit sequences for the procedure that build and destroy the activation record (see “The Stan-
dard Entry Sequence” on page 789 and “The Standard Exit Sequence” on page 790). This means you’ve got

9. Most compilers provide an option to turn this off if you don’t want this to occur. We will assume that this option is active
in this text since that’s the standard for external C names.
Page 1156 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
to use the NOFRAME (and NODISPLAY) options on your procedures that C/C++ will call. Here’s a sam-
ple implementation of the CToHLA procedure that builds and destroys the activation record:

procedure _CToHLA(rValue:real64; q:uns32; p:int32); nodisplay; noframe;
begin _CToHLA;

push(ebp); // Standard Entry Sequence
mov(esp, ebp);
// sub(_vars_, esp); // Needed if you have local variables.

.

. // Code to implement the function’s body.

.
mov(ebp, esp); // Restore the stack pointer.
pop(ebp); // Restore link to previous activation record.
ret(); // Note that we don’t remove any parameters.

end _CToHLA;

If you’re willing to use some vendor extensions to the C/C++ programming language, then you can
make the interface to HLA much simpler. For example, if you’re using Borland’s C++ product, it has an
option you can apply to function declarations to tell the compiler to use the Pascal calling convention. Since
HLA uses the Pascal calling convention, specifying this option in your BCC programs will make the inter-
face to HLA trivial. In Borland C++ you can specify the Pascal calling convention for an external function
using the following syntax:

extern type _pascal funcname(parameters)

Example:

extern void _pascal CToHLA(int p, unsigned q, double r);

The Pascal calling convention does not decorate the name, so the HLA name would not have a leading
underscore. The Pascal calling convention uses case insensitive names; BCC achieves this by converting
the name to all uppercase. Therefore, you’d probably want to use an HLA declaration like the following:

procedure CToHLA(p:int32; q:uns32; r:real64); external(“CTOHLA”);

Procedures using the Pascal calling convention push their parameters from left to right and leave it up to the
procedure to clean up the stack upon return; exactly what HLA does by default. When using the Pascal call-
ing convention, you could write the CToHLA function as follows:

procedure CToHLA(rValue:real64; q:uns32; p:int32); external(“CTOHLA”);

procedure CToHLA(rValue:real64; q:uns32; p:int32); nodisplay; noalignstk;
begin CToHLA;

.

. // Code to implement the function’s body.

.
end CToHLA;

Note that you don’t have to supply the standard entry and exit sequences. HLA provides those automati-
cally.

Of course, Microsoft isn’t about to support the Pascal calling sequence since they don’t have a Pascal
compiler. So this option isn’t available to VC++ users.

Both Borland and Microsoft (and HLA) support the so-called StdCall calling convention. This is the
calling convention that Windows uses, so nearly every language that operates under Windows provides this
calling convention. The StdCall calling convention is a combination of the C and Pascal calling conventions.
Like C, the functions need to have their parameters pushed on the stack in a right to left order; like Pascal, it
is the caller’s responsibility to clean up the parameters when the function returns; like C, the function name
is case sensitive; like Pascal, the function name is not decorated (i.e., the external name is the same as the
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1157

Chapter Twelve Volume Four
function declaration). The syntax for a StdCall function is the same in both VC++ and BCC, it is the follow-
ing:

extern void _stdcall CToHLA(int p, unsigned q, double r);

HLA supports the StdCall convention using the STDCALL procedure option.. Because the name is
undecorated, you could use a prototype and macro like the following:

procedure CToHLA(p:int32; q:uns32; r:real64); stdcall; external(“CToHLA”);
procedure CToHLA(p:int32; q:uns32; r:real64); nodisplay; nostkalign;
begin CToHLA;

.

. // Function body

.
end CToHLA;

.

.

.
CToHLA(pValue, qValue, rValue); // Demo of a call to CToHLA.

12.4.5 Pass by Value and Reference in C/C++

A C/C++ program can pass parameters to a procedure or function using one of two different mecha-
nisms: pass by value and pass by reference. Since pass by reference parameters use pointers, this parameter
passing mechanism is completely compatible between HLA and C/C++. The following two lines provide an
external declaration in C++ and the corresponding external (public) declaration in HLA for a pass by refer-
ence parameter using the calling convention:

extern void HasRefParm(int& refparm); // C++
procedure HasRefParm(var refparm: int32); external; // HLA

Like HLA, C++ will pass the 32-bit address of whatever actual parameter you specify when calling the Has-
RefParm procedure. Don’t forget, inside the HLA code, that you must dereference this pointer to access the
actual parameter data. See the chapter on Intermediate Procedures for more details (see “Pass by Reference”
on page 793).

Like HLA, C++ lets you pass untyped parameters by reference. The syntax to achieve this in C++ is the
following:

extern void UntypedRefParm(void* parm1);

Actually, this is not a reference parameter, but a value parameter with an untyped pointer. Whenever you
call this function you must explicitly take the address of the actual parameter using the “&” operator.

In HLA, you can use the VAR keyword as the data type to specify that you want an untyped reference
parameter. Here’s the corresponding prototype for the UntypedRefParm procedure in HLA:

procedure UntypedRefParm(var parm1:var);
external;

12.4.6 Scalar Data Type Correspondence Between Delphi and HLA

When passing parameters between C/C++ and HLA procedures and functions, it’s very important that
the calling code and the called code agree on the basic data types for the parameters. In this section we will
draw a correspondence between the C/C++ scalar data types and the HLA (v1.x) data types.

Assembly language supports any possible data format, so HLA’s data type capabilities will always be a
superset of C/C++’s. Therefore, there may be some objects you can create in HLA that have no counterpart
in C/C++, but the reverse is not true. Since the assembly functions and procedures you write are generally
Page 1158 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
manipulating data that C/C++ provides, you don’t have to worry too much about not being able to process
some data passed to an HLA procedure by C/C++.

C/C++ provides a wide range of different integer data types. Unfortunately, the exact representation of
these types is implementation specific. The following table lists the C/C++ types as currently implemented
by Borland C++ and Microsoft VC++. This table may very well change as 64-bit compilers become avail-
able.

In addition to the integer values, C/C++ supports several non-integer ordinal types. The following table
provides their HLA equivalents:

Like the integer types, C/C++ supports a wide range of real numeric formats. The following table pre-
sents these types and their HLA equivalents.

Table 5: Delphi and HLA Integer Types

C/C++ HLA Equivalent
Range

Minimum Maximum

int int32 -2147483648 2147483647

unsigned uns32 0 4294967295

signed char int8 -128 127

short int16 -32768 32767

long int32 -2147483648 2147483647

unsigned char uns8 0 255

unsigned short uns16 0 65535

Table 6: Non-integer Ordinal Types in C/C++ and HLA

C/C++ HLA
Range

Minimum Maximum

wchar, TCHAR word 0 65535

BOOL boolean false (0) true (not zero)

Table 7: Real Types in C/C++ and HLA

C/C++ HLA
Range

Minimum Maximum

double real64 5.0 E-324 1.7 E+308

float real32 1.5 E-45 3.4 E+38

long doublea real80 3.6 E-4951 1.1 E+4932
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1159

Chapter Twelve Volume Four
The last scalar type of interest is the pointer type. Both HLA and C/C++ use a 32-bit address to repre-
sent pointers, so these data types are completely equivalent in both languages.

12.4.7 Passing String Data Between C/C++ and HLA Code

C/C++ uses zero terminated strings. Algorithms that manipulate zero-terminated strings are not as effi-
cient as functions that work on length-prefixed strings; on the plus side, however, zero-terminated strings
are very easy to work with. HLA’s strings are downwards compatible with C/C++ strings since HLA places
a zero byte at the end of each HLA string. Since you’ll probably not be calling HLA Standard Library string
routines, the fact that C/C++ strings are not upwards compatible with HLA strings generally won’t be a
problem. If you do decide to modify some of the HLA string functions so that they don’t raise exceptions,
you can always translate the str.cStrToStr function that translates zero-terminated C/C++ strings to HLA
strings.

A C/C++ string variable is typically a char* object or an array of characters. In either case, C/C++ will
pass the address of the first character of the string to an external procedure whenever you pass a string as a
parameter. Within the procedure, you can treat the parameter as an indirect reference and dereference to
pointer to access characters within the string.

12.4.8 Passing Record/Structure Data Between HLA and C/C++

Records in HLA are (mostly) compatible with C/C++ structs. You can easily translate a C/C++ struct to
an HLA record. In this section we’ll explore how to do this and learn about the incompatibilities that exist
between HLA records and C/C++ structures.

For the most part, translating C/C++ records to HLA is a no brainer. Just grab the “guts” of a structure
declaration and translate the declarations to HLA syntax within a RECORD..ENDRECORD block and
you’re done.

Consider the following C/C++ structure type declaration:

typedef struct
{

unsigned char day;
unsigned char month;
int year;
unsigned char dayOfWeek;

} dateType;

The translation to an HLA record is, for the most part, very straight-forward. Just translate the field types
accordingly and use the HLA record syntax (see “Records” on page 465) and you’re in business. The trans-
lation is the following:

type
recType:

record

day: byte;
month: byte;
year:int32;
dayOfWeek:byte;

endrecord;

There is one minor problem with this example: data alignment. Depending on your compiler and what-
ever defaults it uses, C/C++ might not pack the data in the structure as compactly as possible. Some C/C++

a. This data type is 80 bits only in BCC. VC++ uses 64 bits for the long double type.
Page 1160 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
compilers will attempt to align the fields on double word or other boundaries. With double word alignment
of objects larger than a byte, the previous C/C++ typedef statement is probably better modelled by

type
recType:

record

day: byte;
month: byte;
padding:byte[2]; // Align year on a four-byte boundary.
year:int32;
dayOfWeek:byte;
morePadding: byte[3]; // Make record an even multiple of four bytes.

endrecord;

Of course, a better solution is to use HLA’s ALIGN directive to automatically align the fields in the
record:

type
recType:

record

day: byte;
month: byte;
align(4); // Align year on a four-byte boundary.
year:int32;
dayOfWeek:byte;
align(4); // Make record an even multiple of four bytes.

endrecord;

Alignment of the fields is good insofar as access to the fields is faster if they are aligned appropriately.
However, aligning records in this fashion does consume extra space (five bytes in the examples above) and
that can be expensive if you have a large array of records whose fields need padding for alignment.

You will need to check your compiler vendor’s documentation to determine whether it packs or pads
structures by default. Most compilers give you several options for packing or padding the fields on various
boundaries. Padded structures might be a bit faster while packed structures (i.e., no padding) are going to be
more compact. You’ll have to decide which is more important to you and then adjust your HLA code
accordingly.

Note that by default, C/C++ passes structures by value. A C/C++ program must explicitly take the
address of a structure object and pass that address in order to simulate pass by reference. In general, if the
size of a structure exceeds about 16 bytes, you should pass the structure by reference rather than by value.

12.4.9 Passing Array Data Between HLA and C/C++

Passing array data between some procedures written in C/C++ and HLA is little different than passing
array data between two HLA procedures. First of all, C/C++ can only pass arrays by reference, never by
value. Therefore, you must always use pass by reference inside the HLA code. The following code frag-
ments provide a simple example:

int CArray[128][4];

extern void PassedArrray(int array[128][4]);

Corresponding HLA code:

type
CArray: int32[128, 4];
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1161

Chapter Twelve Volume Four
procedure PassedArray(var ary: CArray); external;

As the above examples demonstrate, C/C++’s array declarations are similar to HLA’s insofar as you
specify the bounds of each dimension in the array.. Other than this difference, however, you can see that the
two declarations are very similar.

C/C++ uses row-major ordering for arrays. So if you’re accessing elements of a C/C++ multi-dimen-
sional array in HLA code, be sure to use the row-major order computation (see “Row Major Ordering” on
page 451).

12.5 Putting It All Together

Most real-world assembly code that is written consists of small modules that programmers link to pro-
grams written in other languages. Most languages provide some scheme for interfacing that language with
assembly (HLA) code. Unfortunately, the number of interface mechanisms is sufficiently close to the num-
ber of language implementations to make a complete exposition of this subject impossible. In general, you
will have to refer to the documentation for your particular compiler in order to learn sufficient details to suc-
cessfully interface assembly with that language.

Fortunately, nagging details aside, most high level languages do share some common traits with respect
to assembly language interface. Parameter passing conventions, stack clean up, register preservation, and
several other important topics often apply from one language to the next. Therefore, once you learn how to
interface a couple of languages to assembly, you’ll quickly be able to figure out how to interface to others
(given the documentation for the new language).

This chapter discusses the interface between the Delphi and C/C++ languages and assembly language.
Although there are more popular languages out there (e.g., Visual Basic), Delphi and C/C++ introduce most
of the concepts you’ll need to know in order to interface a high level language with assembly language.
Beyond that point, all you need is the documentation for your specific compiler and you’ll be interfacing
assembly with that language in no time.
Page 1162 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
Questions, Projects, and Labs Chapter Thirteen

13.1 Questions

1) What is the purpose of the UNPROTECTED section in a TRY..ENDTRY statement?

2) Once a TRY..ENDTRY statement has handled an exception, how can it tell the system to let a nesting
TRY..ENDTRY statement also handle that (same) exception?

3) What is the difference between static and dynamic nesting (e.g., with respect to the TRY..ENDTRY state-
ment)?

4) How you can you handle any exception that occurs without having to write an explicit EXCEPTION han-
dler for each possible exception?

5) What HLA high level statement could you use immediately return from a procedure without jumping to
the end of the procedure’s body?

6) What is the difference between the CONTINUE and BREAK statements?

7) Explain how you could use the EXIT statement to break out of two nested loops (from inside the inner-
most loop). Provide an example.

8) The EXIT statement translates into a single 80x86 machine instruction. What is that instruction?

9) What is the algorithm for converting a conditional jump instruction to its opposite form?

10) Discuss how you could use the JF instruction and a label to simulate an HLA IF..ENDIF statement and a
WHILE loop.

11) Which form requires the most instructions: complete boolean evaluation or short circuit evaluation?

12) Translate the following C/C++ statements into “pure” assembly language and complete boolean evalua-
tion:

a) if((eax >= 0) && (ebx < eax) || (ebx < 0)) ebx = ebx + 2;

b) while((ebx != 0) && (*ebx != 0)) { *ebx = ‘a’; ++ebx; }

c) if(al == ‘c’ || al == ‘d’ || bl == al) al = ‘a’;

d) if(al >= ‘a’ && al <= ‘z’) al = al & 0x5f;

13) Repeat question (12) using short circuit boolean evaluation.

14) Convert the following Pascal CASE statement to assembly language:

CASE I OF
0: I := 5;

 1: J := J+1;
 2: K := I+J;
 3: K := I-J;
 Otherwise I := 0;
END;

15) Which implementation method for the CASE statement (jump table or IF form) produces the least amount
of code (including the jump table, if used) for the following Pascal CASE statements?

 a)

CASE I OF
0:stmt;
100:stmt;
1000:stmt;

 END;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1163

Chapter Thirteen Volume Four
b)

CASE I OF
0:stmt;
1:stmt;
2:stmt;
3:stmt;
4:stmt;

END;

16) For question (15), which form produces the fastest code?

17) Implement the CASE statements in problem three using 80x86 assembly language.

18) What three components compose a loop?

19) What is the major difference between the WHILE, REPEAT..UNTIL, and FOREVER..ENDFOR loops?

20) What is a loop control variable?

21) Convert the following C/C++ WHILE loops to pure assembly language: (Note: don’t optimize these
loops, stick exactly to the WHILE loop format)

a) I = 0;

while (I < 100)

I = I + 1;

b) CH = ‘ ‘;

while (CH <> ‘.’)

{

CH := getch();

putch(CH);

}

22) Convert the following Pascal REPEAT..UNTIL loops into pure assembly language: (Stick exactly to the
REPEAT..UNTIL loop format)

a) I := 0;

REPEAT

I := I + 1;

UNTIL I >= 100;

b) REPEAT

CH := GETC;

PUTC(CH);

UNTIL CH = ‘.’;

23) What are the differences, if any, between the loops in problems (21) and (22)? Do they perform the same
operations? Which versions are most efficient?

24) By simply adding a JMP instruction, convert the two loops in problem (21) into REPEAT..UNTIL loops.

25) By simply adding a JMP instruction, convert the two loops in problem (22) to WHILE loops.

26) Convert the following C/C++ FOR loops into pure assembly language (Note: feel free to use any of the
routines provided in the HLA Standard Library package):

a) for(i = 0; i < 100; ++i) cout << “i = “ << i << endl;
Page 1164 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
b) for(i = 0; i < 8; ++i)

for(j = 0; j < 8; ++j)

k = k * (i - j);

c) for(k= 255; k >= 16; --k)

A [k] := A[240-k]-k;

27) How does moving the loop termination test to the end of the loop improve the performance of that loop?

28) What is a loop invariant computation?

29) How does executing a loop backwards improve the performance of the loop?

30) What does unraveling a loop mean?

31) How does unraveling a loop improve the loop’s performance?

32) Give an example of a loop that cannot be unraveled.

33) Give an example of a loop that can be but shouldn’t be unraveled.

34) What is the difference between unstructured and destructured code?

35) What is the principle difference between a state machine and a SWITCH statement?

36) What is the effect of the NODISPLAY procedure option?

37) What is the effect of the NOFRAME procedure option?

38) What is the effect of the NOSTKALIGN procedure option?

39) Why don’t you normally use the RET instruction in a procedure that does not have the NOFRAME
option?

40) What does the operand to the RET(n) instruction specify?

41) What is an activation record?

42) What part of the activation record does the caller construct?

43) What part of the activation record does the callee (the procedure) construct?

44) Provide a generic definition for “The Standard Entry Sequence.”

45) What four instructions are typically found in an HLA Standard Entry Sequence?

46) Which instruction in the Standard Entry Sequence will HLA not generate if you specify the NOALIGN-
STK option in the procedure?

47) Which instruction is the Standard Entry Sequence is optional if there are no automatic variables?

48) Provide a generic definition for “The Standard Exit Sequence.”

49) What three instructions are typically found in an HLA Standard Exit Sequence?

50) What data in the activation record is probably being accessed by an address of the form “[ebp-16]”?

51) What data in the activation record is probably being accessed by an address of the form “[ebp+16]”?

52) What does the _vars_ constant tell you?

53) What is the big advantage to using automatic variables in a procedure?

54) What is the difference between pass by reference parameters and pass by value parameters?

55) Name three different places where you can pass parameters.

56) Which parameter passing mechanism uses pointers?
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1165

Chapter Thirteen Volume Four
57) For each of the following procedure prototypes and corresponding high level syntax procedure calls, pro-
vide an equivalent sequence of low-level assembly language statements. Assume all variables are int32
objects unless otherwise specified. If the procedure call is illegal, simply state that fact and don’t attempt
to write any code for the call. Assume that you are passing all parameters on the stack.

a) procedure proc1(i:int32); forward;

a1) proc1(10);

a2) proc1(j);

a3) proc1(eax);

a4) proc1([eax]);

b) procedure proc2(var v:int32); forward;

b1) proc2(10);

b2) proc2(j);

b3) proc2(eax);

b4) proc2([eax]);

58) When passing parameters in the code stream, where do you find the pointer to the parameter data?

59) When passing parameter data immediately after a CALL instruction, how do you prevent the procedure
call from attempting to execute the parameter data upon immediate return from the procedure?

60) Draw a picture of the activation record for each of the following procedure fragments. Be sure to label the
size of each item in the activation record.

a)

procedure P1(val i:int16; var j:int16); nodisplay;
var

c:char;
k:uns32;
w:word;

begin P1;
 .
 .
 .

end P1;

b)

procedure P2(r:real64; val b:boolean; var c:char); nodisplay;
begin P2;

 .
 .
 .

end P2;

c)

procedure P3; nodisplay;
var

i:uns32;
j:char;
k:boolean;
w:word;
r:real64;
Page 1166 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
begin P3;
 .
 .
 .

end P3;

61) Fill in the pseudo-code (in comments) for the following procedures:

a)

procedure P4(val v:uns32); nodisplay;
var

w:dword;
begin P4;

// w = v;
// print w;

end P4;

b)

procedure P5(var v:uns32); nodisplay;
var

w:dword;
begin P5;

// w = v;
// print w;

end P5;

62) Given the procedures defined in question (61) above, provide the low-level code for each of the following
(pseudo-code) calls to P4 and P5. You may assume that you can use any registers you need for temporary
calculations. You may also assume that all variables are uns32 objects.

a) P4(i);

b) P4(10);

c) P4(eax+10);

d) P5(i);

e) P5(i[eax*4]);

f) P5([eax+ebx*4]);

63) This question also uses the procedure declarations for P4 and P5 in question (61). Write the low-level
code for the statements in the P6 procedure below:

procedure p6(val v:uns32; var r:uns32); nodisplay;
begin P6;

P4(v);
P4(r);
P5(v);
P5(r);

end P6;

64) Describe the HLA hybrid parameter passing syntax and explain why you might want to use it over the
low-level and high-level procedure call syntax provided by HLA.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1167

Chapter Thirteen Volume Four
65) 30)What is a procedure variable? Give some examples.

66) When you pass a procedure variable by value to a procedure, what do we typically call such a parameter?

67) How does an iterator return success? How does it return failure?

68) What does the yield() procedure do?

69) Why shouldn’t you break out of a FOREACH..ENDFOR loop?

70) An extended precision ADD operation will set the carry flag, the overflow flag, and the sign flag properly.
It does not set the zero flag properly. Explain how you can check to see if an extended precision ADD
operation produces a zero result.

71) Since SUB and CMP are so closely related, why can’t you use the SUB/SBB sequence to perform an
extended precision compare? (hint: this has nothing to do with the fact that SUB/SBB actually compute a
difference of their two operands.)

72) Provide the code to add together two 48-bit values, storing the sum in a third 48-bit variable. This should
only take six instructions.

73) For 64-bit multiprecision operations, why is it more convenient to declare an uns64 variable as "uns32[2]"
rather than as a qword?

74) The 80x86 INTMUL instruction provides an n x n bit (n=16 or 32) multiplication producing an n-bit
result (ignoring any overflow). Provide a variant of the MUL64 routine in this chapter that produces a
64-bit result, ignoring any overflow (hint: mostly this involves removing instructions from the existing
code).

75) When computing an extended precision NEG operation using the "subtract from zero" algorithm, does the
algorithm work from the H.O. double word down to the L.O. double word, or from the L.O. double word
to the H.O. double word?

76) When computing an extended precision logical operation (AND, OR, XOR, or NOT), does it matter what
order you compute the result (H.O.->L.O. or L.O.->H.O.)? Explain.

77) Since the extended precision shift operations employ the rotate instructions, you cannot check the sign or
zero flags after an extended precision shift (since the rotate instructions do not affect these flags). Explain
how you could check the result of an extended precision shift for zero or a negative result.

78) Which of the two data operands does the SHRD and SHLD instructions leave unchanged?

79) What is the maximum number of digits a 128-bit unsigned integer will produce on output?

80) What is the purpose of the conv.getDelimiters function in the HLA Standard Library?

81) Why do the extended precision input routine always union in the EOS (#0) character into the HLA Stan-
dard Library delimiter characters when HLA, by default, already includes this character?

82) Suppose you have a 32-bit signed integer and a 32-bit unsigned integer, and both can contain an arbitrary
value. Explain why an extended precision addition may be necessary to add these two values together.

83) Provide the code to add a 32-bit signed integer together with a 32-bit unsigned integer, producing a 64-bit
result.

84) Why is binary representation more efficient than decimal (packed BCD) representation?

85) What is the one big advantage of decimal representation over binary representation?

86) How do you represent BCD literal constants in an HLA program?

87) What data type do you use to hold packed BCD values for use by the FPU?

88) How many significant BCD digits does the FPU support?

89) How does the FPU represent BCD values in memory? While inside the CPU/FPU?

90) Why are decimal operations so slow on the 80x86 architecture?

91) What are the repeat prefixes used for?

92) Which string prefixes are used with the following instructions?
Page 1168 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
a) MOVS b) CMPS c) STOS d) SCAS

93) Why aren’t the repeat prefixes normally used with the LODS instruction?

94) What happens to the ESI, DDI, and DCX registers when the MOVSB instruction is executed (without a
repeat prefix) and:

a) the direction flag is set. b) the direction flag is clear.

95) Explain how the MOVSB and MOVSW instructions work. Describe how they affect memory and regis-
ters with and without the repeat prefix. Describe what happens when the direction flag is set and clear.

96) How do you preserve the value of the direction flag across a procedure call?

97) How can you ensure that the direction flag always contains a proper value before a string instruction with-
out saving it inside a procedure?

98) What is the difference between the “MOVSB”, “MOVSW”, and “MOVS oprnd1,oprnd2” instructions?

99) Consider the following Pascal array definition:

a:array [0..31] of record

a,b,c:char;

i,j,k:integer;

 end;

Assuming A[0] has been initialized to some value, explain how you can use the MOVS instruction to ini-
tialize the remaining elements of A to the same value as A[0].

100) Give an example of a MOVS operation which requires the direction flag to be:

a) clear b) set

101) How does the CMPS instruction operate? (what does it do, how does it affect the registers and flags, etc.)

102) Which segment contains the source string? The destination string?

103) What is the SCAS instruction used for?

104) How would you quickly initialize an array to all zeros?

105) How are the LODS and STOS instructions used to build complex string operations?

106) Write a short loop which multiplies each element of a single dimensional array by 10. Use the string
instructions to fetch and store each array element.

107) Explain how to perform an extended precision integer comparison using CMPS

108) Explain the difference in execution time between compile-time programs and execution-time programs.

109) What is the difference between the stdout.put and the #PRINT statements?

110) What is the purpose of the #ERROR statement?

111) In what declaration section do you declare compile-time constants?

112) In what declaration section do you declare run-time constants?

113) Where do you declare compile-time variables?

114) Where do you declare run-time variables?
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1169

Chapter Thirteen Volume Four
115) Explain the difference between the following two computations (assume appropriate declarations for each
symbol in these two examples:

a) ? i := j+k*m;

b) mov(k, eax);

intmul(m, eax);

add(j, eax);

mov(eax, i);

116) What is the purpose of the compile-time conversion functions?

117) What is the difference between @sin(x) and fsin()? Where would you use @sin?

118) What is the difference between the #IF and the IF statement?

119) Explain the benefit of using conditional compilation statements in your program to control the emission
of debugging code in the run-time program.

120) Describe how you can use conditional compilation to configure a program for different run-time environ-
ments.

121) What compile-time statement could you use to fill in the entries in a read-only table?

122) The HLA compile-time language does not support a #switch statement. Explain how you could achieve
the same result as a #switch statement using existing compile-time statements.

123) What HLA compile-time object corresponds to a compile-time procedure declaration?

124) What HLA compile-time language facility provides a looping construct?

125) HLA TEXT constants let you perform simple textual substitution at compile time. What other HLA lan-
guage facility provides textual substitution capabilities?

126) Because HLA’s compile-time language provides looping capabilities, there is the possibility of creating
an infinite loop in the compile-time language. Explain how the system would behave if you create a com-
pile-time infinite loop.

127) Explain how to create an HLA macro that allows a variable number of parameters.

128) What is the difference between a macro and a (run-time) procedure? (Assume both constructs produce
some result at run-time.)

129) When declaring macro that allows a variable number of parameters, HLA treats those "extra" (variable)
parameters differently than it does the fixed parameters. Explain the difference between these two types
of macro parameters in an HLA program.

130) How do you declare local symbols in an HLA macro?

131) What is a multipart macro? What three components appear in a multipart macro? Which part is optional?
How do you invoke multipart macros?

132) Explain how you could use the #WHILE statement to unroll (or unravel) a loop.

133) The #ERROR statement allows only a single string operation. Explain (and provide an example) how you
can display the values of compile-time variable and constant expressions along with text in a #ERROR
statement.

134) Explain how to create a Domain Specific Embedded Language (DSEL) within HLA.

135) Explain how you could use the #WHILE statement to unroll (or unravel) a loop.

136) What is lexical analysis?

137) Explain how to use HLA compile-time functions like @OneOrMoreCSet and @OneCset to accomplish
lexical analysis/scanning.
Page 1170 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
138) The #ERROR statement allows only a single string operation. Explain (and provide an example) how you
can display the values of compile-time variable and constant expressions along with text in a #ERROR
statement.

139) What are some differences between a RECORD declaration and a CLASS declaration?

140) What declaration section may not appear within a class definition?

141) What is the difference between a class and an object?

142) What is inheritance?

143) What is polymorphism?

144) What is the purpose of the OVERRIDE prefix on procedures, methods, and iterators?

145) What is the difference between a virtual and a static routine in a class? How do you declare virtual rou-
tines in HLA? How do you declare static routines in HLA?

146) Are class iterators virtual or static in HLA?

147) What is the purpose of the virtual method table (VMT)?

148) Why do you implement constructors in HLA using procedures rather than methods?

149) Can destructors be procedures? Can they be methods? Which is preferable?

150) What are the two common activities that every class constructor should accomplish?

151) Although HLA programs do not automatically call constructors for an object when you declare the object,
there is an easy work-around you can use to automate calling constructors. Explain how this works and
give an example.

152) When writing a constructor for a derived class, you will often want to call the corresponding constructor
for the base class within the derived class’ constructor. Describe how to do this.

153) When writing overridden methods for a derived class, once in a great while you may need to call the base
class’ method that you’re overriding. Explain how to do this. What are some limitations to doing this
(versus calling class procedures)?

154) What is an abstract method? What is the purpose of an abstract method?

155) Explain why you would need Run-Time Type Information (RTTI) in a program. Describe how to access
this information in your code.

13.2 Programming Problems

Note: unless otherwise specified, you may not use the HLA high level language statements
(e.g., if..elseif..else..endif) in the following programming projects. One exception is the
TRY..ENDTRY statement. If necessary, you may use TRY..ENDTRY in any of these pro-
grams.

1) Solve the following problem using only “pure” assembly language instructions (i.e., no high level state-
ments).

Write a procedure, PrintArray(var ary:int32; NumRows:uns32; NumCols:uns32), that will print a
two-dimensional array in matrix form. Note that calls to the PrintArray function will need to coerce the
actual array to an int32. Assume that the array is always an array of INT32 values. Write the procedure
as part of a UNIT with an appropriate header file. Also write a sample main program to test the PrintAr-
ray function. Include a makefile that will compile and run the program. Here is an example of a typical
call to PrintArray:

static
MyArray: int32[4, 5];

.

.

.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1171

Chapter Thirteen Volume Four
PrintArray((type int32 MyArray), 4, 5);

2) Solve problem (2) using HLA’s hybrid control structures.

3) Solve the following problem using pure assembly language instructions (i.e., no high level language state-
ments):

Write a program that inputs a set of grades for courses a student takes in a given quarter. The program
should then compute the GPA for that student for the quarter. Assume the following grade points for each
of the following possible letter grades:

• A+ 4.0
• A 4.0
• A- 3.7
• B+ 3.3
• B 3.0
• B- 2.7
• C+ 2.3
• C 2.0
• C- 1.7
• D+ 1.3
• D 1.0
• D- 0.7
• F 0

4) Solve problem (3) using HLA’s hybrid control structures (see the description above).

5) Write a “number guessing” program that attempts to guess the number a user has chosen. The number
should be limited to the range 0..100. A well designed program should be able to guess the answer with
seven or fewer guesses. Use only pure assembly language statements for this assignment.

6) Write a “calendar generation” program. The program should accept a month and a year from the user.
Then it should print a calendar for the specific month. You should use the date.IsValid library routine to
verify that the user’s input date is valid (supply a day value of one). You can also use date.dateOfWeek(
m, d, y); to determine whether a day is Monday, Tuesday, Wednesday, etc. Print the name of the month
and the year above the calendar for that month. As usual, use only low-level “pure” machine instructions
for this assignment.

7) A video producer needs a calculator to compute “time frame” values. Time on video tape is marked as
HH:MM:SS:FF where HH is the hours (0..99), MM represents minutes (0..59), SS represents seconds
(0..59), and FF represents frames (0..29). This producer needs to be able to add and subtract two time val-
ues. Write a pair of procedures that accept these four parameters and return their sum or difference in the
following registers:

HH: DH

MM: DL

SS: AH

FF: AL

The main program for this project should ask the user to input two time values (a separate input for each
component of these values is okay) and then ask whether the user wants to add these numbers or subtract
them. After the inputs, the program should display the sum or difference, as appropriate, of these two
times. Write this program using HLA’s hybrid control structures.

8) Rewrite the code in problem (7) using only low-level, pure machine language instructions.

9) Write a program that reads an 80x25 block of characters from the screen (using console.getRect, see
“Bonus Section: The HLA Standard Library CONSOLE Module” on page 184 for details) and then
“scrolls” the characters up one line in the 80x25 array of characters you’ve copied the data into. Once the
scrolling is complete (in the memory array), write the data back to the screen using the console.putRect
routine. In your main program, write several lines of (different) text to the screen and call the scroll pro-
Page 1172 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
cedure several times in a row to test the program. As usual, use only low level machine language instruc-
tions in this assignment.

10) Write a program that reads an 80x25 block of characters from the screen (using console.getRect; see the
previous problem) and horizontally “flips” the characters on the screen. That is, on each row of the screen
swap the characters at positions zero and 79, positions one and 78, etc. After swapping the characters,
write the buffer back to the display using the console.putRect procedure. Use only low level machine lan-
guage statements for this exercise.

Note: Your instructor may require that you use all low-level control structures (except for
TRY..ENDTRY and FOREVER..ENDFOR) in the following assignments. Check with
your instructor to find out if this is the case. Of course, where explicitly stated, always use
low level or high level code.

11) Write a Blackjack/21 card game. You may utilize the code from the iterator laboratory exercise (see “Iter-
ator Exercises” on page 1202). The game should play “21” with two hands: one for the house and one for
the player. The play should be given an account with $5,000 U.S. at the beginning of the game. Before
each hand, the player can bet any amount in multiples of $5. If the dealer wins, the players loses the bet;
if the player wins, the player is credited twice the amount of the bet. The player is initially dealt two
cards. Each card has the following value:

2-10: Face value of card

J, Q, K: 10

A: 1 or 11. Whichever is larger and does not cause the player’s score to exceed 21.

The game should deal out the first four cards as follows:

1st: to the player.

2nd: to the dealer.

3rd: to the player

4th: to the dealer.

The game should let the player see the dealer’s first card but it should not display the dealer’s second
card.

After dealing the cards and displaying the user’s cards and the dealer’s first card, the game should
allow the user to request additional cards. The user can request as many additional cards as desired as
long as the user’s total does not exceed 21. If the player’s total is exactly 21, the player automatically
wins, regardless of the dealer’s hand. If the player’s total exceeds 21, the player automatically loses.

Once the player decides to stop accepting cards, the dealer must deal itself cards as long as the
dealer’s point total is less than 17. Once the dealer’s total exceeds 17, the game ends. Whomever has the
larger value that does not exceed 21 wins the hand. In the event of a tie, the player wins.

Do not reshuffle the deck after each hand. Place used cards in a storage array and reshuffle those
once the card deck is exhausted. Complete the hand by dealing from the reshuffled deck. Once this hand
is complete, reshuffle the entire deck and start over.

At the end of each hand, as the player if they want to “cash out” (quit) or continue. The game auto-
matically ends if the player “goes broke” (that is, the cash account goes to zero). The house has an unlim-
ited budget and never goes broke.

12) Modify program (11) to allow more than one card deck in play at a time. Let the player specify the num-
ber of card decks when the program first starts.

13) Modify program (12) to allow more than one player in the game. Let the initial user specify the number
of players when the program first starts (hint: use HLA’s dynamic arrays for this). Any player may “cash
out” and exit the game at any time; in such a case the game continues as long as there is at least one
remaining player. If a player goes broke, that particular player automatically exits the game.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1173

Chapter Thirteen Volume Four
14) Modify the “Outer Product” sample program (see “Outer Product Computation with Procedural Parame-
ters” on page 822) to support division (“/”), logical AND (“&”), logical OR (“|”), logical XOR (“^”), and
remainder (“%”).

15) Modify project (14) to use the uns32 values 0..7 to select the function to select the operation rather than a
single character. Use a CALL-based SWITCH statement to call the actual function (see “Procedural
Parameter Exercise” on page 1199 for details on a CALL-based SWITCH statement) rather than the cur-
rent if..elseif implementation.

16) Generally, it is not a good idea to break out of a FOREACH..ENDFOR loop because of the extra data that
the iterator pushes onto the stack (that it doesn’t clean up until the iterator fails). While it is possible to
pass information back to the iterator from the FOREACH loop body (remember, the loop body is essen-
tially a procedure that the iterator calls) and you can use this return information to force the iterator to fail,
this technique is cumbersome. The program would be more readable if you could simply break out of a
FOREACH loop as you could any other loop. One solution to this problem is to save the stack pointer’s
value before executing the FOREACH statement and restoring this value to ESP immediately after the
ENDFOR statement (you should keep the saved ESP value in a local, automatic, variable). Modify the
Fibonacci number generation program in the Sample Programs section (see “Generating the Fibonacci
Sequence Using an Iterator” on page 820) and eliminate the parameter to the iterator. Have the iterator
return an infinite sequence of fibonacci numbers (that is, the iterator should never return failure unless
there is an unsigned arithmetic overflow during the fibonacci computation). In the main program, prompt
the user to enter the maximum value to allow in the sequence and let the FOREACH loop run until the
iterator returns a value greater than the user-specified maximum value (or an unsigned overflow occurs).
Be sure to clean up the stack after leaving the FOREACH loop.

17) Write a “Craps” game. Craps is played with two six-sided die1 and the rules are the following:

A player rolls a pair of dice and sums up the total of the two die. If the sum is 7 or 11, the player automat-
ically wins. If the sum is 2, 3, or 12 then the player automatically loses (“craps out”). If the total is any
other value, this becomes the player’s “point.” The player continues to throw the die until rolling either a
seven or the player’s point. If the player rolls a seven, the player loses. If the player rolls their point, they
win. If the player rolls any other value, play continues with another roll of the die.

Write a function “dice” that simulates a roll of one dice (hint: take a look at the HLA Standard Library
rand.range function). Call this function twice for each roll of the two die. In your program, display the
value on each dice and their sum for each roll until the game is over. To make the game slightly more
interesting, pause for user input (e.g., stdin.ReadLn) after each roll.

18) Modify program (17) to allow wagering. Initialize the player’s balance at $5,000 U.S. For each game, let
the user choose how much they wish to wager (up to the amount in their account balance). If the player
wins, increase their account by the amount of the wager. If the player loses, decrease their account by the
amount of the wager. The whole game ends when the player’s account drops to zero or the player chooses
to “cash out” of the game.

19) Modify program (18) to allow multiple players. In a multi-player craps game only one player throws the
dice. The other players take “sides” with the player or the house. Their wager is matched (and their indi-
vidual account is credited accordingly) if they side with the winner. Their account is deducted by the
amount of their wager if they side with the loser. When the program first begins execution, request the
total number of players from the user and dynamically allocate storage for each of the players. After each
game, rotate the player who “throws” the dice.

20) The “greatest common divisor” of two integer values A and B is the largest integer that evenly divides
(that is, has a remainder of zero) both A and B. This function has the following recursive definition:

If either A or B is zero, then gcd(A, B) is equal to the non-zero value (or zero if they are both zero.

If A and B are not zero, then gcd(A, B) is equal to gcd(B, A mod B) where “mod” is the remainder of A
divided by B.

Write a program that inputs two unsigned values A and B from the user and computes the greatest com-

1. “Die” is the plural of “dice” in case you’re wondering.
Page 1174 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
mon divisor of these two values.

21) Write a program that reads a string from the user and counts the number of characters belonging to a
user-specified class. Use the HLA Standard Library character classification routines (chars.isAlpha,
chars.isLower, chars.isAlpha, chars.isAlphaNum, chars.isDigit, chars.isXDigit, chars.isGraphic,
chars.isSpace, chars.isASCII, and chars.isCtrl) to classify each character in the string. Let the user spec-
ify which character classification routine they wish to use when processing their input string. Use a single
CALL instruction to call the appropriate chars.XXXX procedure (i.e., use a CALL table and a
CALL-based switch statement, see “Procedural Parameter Exercise” on page 1199 for more details).

22) The HLA Standard Library arrays module (“array.hhf”) includes an array.element iterator that returns
each element from an array (in row major order) and fails after returning the last element of the array.
Write a program that demonstrates the use of this iterator when processing elements of a single dimension
dynamic array.

23) The HLA Standard Library array.element iterator (see (22) above) has one serious limitation. It only
returns sequential elements from an array; it ignores the shape of the array. That is, it treats two-dimen-
sional (and higher dimensional) matrices as though they were a single dimensional array. Write a pair of
iterators specifically designed to process elements of a two-dimensional array: rowIn and elementInRow.
The prototypes for these two iterators should be the following:

type
matrix: dArray(uns32, 2);

iterator rowIn(m:matrix);
iterator elementInRow(m:matrix; row:uns32);

The rowIn iterator returns success for each row in the matrix. It also returns a row number in the EAX
register (0..n-1 where n is the number of rows in the matrix). The elementInRow iterator returns success
m times where m is the number of columns in the matrix. Note that the uns32 value m.dopeVector[0]
specifies the number of rows and the uns32 value m.dopeVector[4] specifies the number of columns in the
matrix (see the HLA Standard Library documentation for more details). The elementInRow iterator
should return the value of each successive element in the specified row on each iteration of the corre-
sponding FOREACH loop.

Write a program to test your iterators that reads the sizes for the dimensions from the user, dynamically
allocates the storage for the matrix (using array.daAlloc), inputs the data for the matrix, and then uses the
two iterators (in a pair of nested FOREACH loops) to display the data.

24) The sample program in the chapter on advanced arithmetic (BCDio, see “Sample Program” on page 876)
"cheats" on decimal output by converting the output value to a signed 64-bit quantity and then calling std-
out.puti64 to do the actual output. You can use this same trick for input (i.e., call stdin.geti64 and convert
the input integer to BCD) if you check for BCD overflow (18 digits) prior to the conversion. Modify the
sample program to use this technique to input BCD values. Be sure that your program properly handles
18 digits of ’9’ characters on input but properly reports an error if the value is 19 digits or longer.

25) Write a procedure that multiplies two signed 64-bit integer values producing a 128-bit signed integer
result. The procedure’s prototype should be the following:

type
int64: dword[2];
int128: dword[4];

procedure imul64(mcand:int64; mplier:int64; var product:int128);

The procedure should compute mcand*mplier and leave the result in product. Create a UNIT that contains
this library module and write a main program (in a separate source file) that calls and tests your division rou-
tine.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1175

Chapter Thirteen Volume Four
26) Write an extended precision unsigned division procedure that divides a 128-bit unsigned integer by a
32-bit unsigned integer divisor. (hint: use the extended precision algorithm involving the DIV instruc-
tion.) The procedure’s prototype should be the following:

type
uns128: dword[4];

procedure div128
(

dividend:uns128;
divisor:dword;

var quotient:uns128;
var remainder:dword

);

27) Write an extended precision signed division procedure that divides one int128 object by another int128
object. Place this procedure in a UNIT and write a main program (in a separate module) that calls this
routine in order to test it. Be sure to handle a division by zero error (raise the ex.DivideError exception if
a division by zero occurs).

The procedure’s prototype should be the following:

type
int128: dword[4];

procedure idiv128
(

dividend:int128;
divisor:int128;

var quotient:int128;
var remainder:int128

);

28) Extend the idiv128 procedure from (27) to use the fast division algorithm if the H.O. 96 bits of the divisor
are all zero (the fast algorithm uses the DIV instruction). If the H.O. 96 bits are not all zero, fall back to
the algorithm you wrote for problem (26).

29) Write a procedure, shr128, that shifts the bits in a 128-bit operand to the right n bit positions. Use the
SHRD instruction to implement the shift. The procedure’s prototype should be the following:

type
uns128: dword[4];

procedure shr128(var operand:uns128; n:uns32);

The function should leave the result in the operand variable and the carry flag should contain the value of the
last bit the procedure shifts out of the operand parameter.

30) Write an extended precision ROR procedure, ror128, that does a ROR operation on a 128-bit operand.
The prototype for the procedure is

type
uns128: dword[4];

procedure ror128(var operand:uns128; n:uns32);

The function should leave the result in the operand variable and the carry flag should contain the value of
the last bit the procedure shifts out of bit zero of the operand parameter.
Page 1176 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
31) Write an extended precision ROL procedure, ror128, that does a ROR operation on a 128-bit operand.
The prototype for the procedure is

type
uns128: dword[4];

procedure rol128(var operand:uns128; n:uns32);

The function should leave the result in the operand variable and the carry flag should contain the value of
the last bit the procedure shifts out of bit 63 of the operand parameter.

32) Write a 256-bit unsigned integer extended precision output routine (putu256). Place the procedure in a
UNIT (IO256) and write a main program that calls the procedure to test it. The procedure prototype
should be the following:

type
uns256: dword[8];

procedure putu256(operand:uns256);

33) Extend the 256-bit output UNIT by adding a "puti256" procedure that prints 256-bit signed integer values.
The procedure prototype should be the following:

type
int256: dword[8];

procedure puti256(operand:int256);

34) A 256-bit integer (signed or unsigned) value requires a maximum of approximately 80 to 100 digits to
represent (this value was approximated by noting that every ten binary bits is roughly equivalent to three
or four decimal digits). Write a pair of routines (and add them to the IO256 UNIT) that will calculate the
number of print positions for an uns256 or int256 object (don’t forget to count the minus sign if the num-
ber is negative). These functions should return the result in the EAX register and they have the following
procedure prototypes:

type
uns256: dword[8];
int256: dword[8]

procedure isize256(operand:int256);
procedure usize256(operand:uns256);

Probably the best way to determine how many digits the number will consume is to repeatedly divide the
value by 10 (incrementing a digit counter) until the result is zero. Don’t forget to negate negative numbers
(isize256) prior to this process.

35) Extend the IO256 UNIT by writing puti256Size and putu256Size. These procedures should print the
value of their parameter to the standard output device adding padding characters as appropriate for the
parameter’s value and the number of specified print positions. The function prototypes should be the fol-
lowing:

procedure puti256Size(number:int256; width:int32; fill:char);
procedure putu256Size(number:uns256; width:int32; fill:char);

See the HLA Standard Library documentation for the stdout.puti32Size and stdout.putu32Size routine for
more information about the parameters.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1177

Chapter Thirteen Volume Four
36) Extend the IO256 UNIT by writing an uns256 input routine, getu256. The procedure should use the fol-
lowing prototype:

type
uns256: dword[8];

procedure getu256(var operand:uns256);

37) Add a geti256 input routine to the IO256 UNIT. This procedure should read 256-bit signed integer values
from the standard input device and store the two’s complement representation in the variable the caller
passes by reference. Don’t forget to handle the leading minus sign on input. The prototype should be

type
int256: dword[8];

procedure geti256(var operand:int256);

38) Write a procedure that multiplies two four-digit unpacked decimal values utilizing the MUL and AAM
instructions. Note that the result may require as many as eight decimal digits.

39) Modify Program 7.8 by changing the "PUT32" macro to handle 8, 16, and 32-bit integers, unsigned inte-
ger, or hex (byte, word, and dword) variables.

40) Modify Program 7.9 by changing the puti32 macro to handle 8, 16, and 32-bit integers, unsigned integers,
and hexadecimal (byte, word, dword) values. (rename the macro to puti so that the name is a little more
appropriate). Of course, you should still handle multiple parameters (calling putXXXsize if more than one
parameter.

41) Write a SubStr function that extracts a substring from a zero terminated string. Pass a pointer to the string
in esi, a pointer to the destination string in edi, the starting position in the string in eax, and the length of
the substring in ecx. Be sure to handle degenerate conditions.

42) Write a word iterator to which you pass a string (by reference, on the stack). Each each iteration of the
corresponding FOREACH loop should extract a word from this string, strmalloc sufficient storage for this
string on the heap, copy that word (substring) to the malloc’d location, and return a pointer to the word.
Write a main program that calls the iterator with various strings to test it.

43) Write a strncpy routine that behaves like str.cpy except it copies a maximum of n characters (including the
zero terminating byte). Pass the source string’s address in edi, the destination string’s address in esi, and
the maximum length in ecx.

44) The MOVSB instruction may not work properly if the source and destination blocks overlap (see “The
MOVS Instruction” on page 910). Write a procedure bcopy to which you pass the address of a source
block, the address of a destination block, and a length, that will properly copy the data even if the source
and destination blocks overlap. Do this by checking to see if the blocks overlap and adjusting the source
pointer, destination pointer, and direction flag if necessary.

45) As you will discover in the lab experiments, the MOVSD instruction can move a block of data much
faster than MOVSB or MOVSW can move that same block. Unfortunately, it can only move a block that
contains an even multiple of four bytes. Write a “fastcopy” routine that uses the MOVSD instruction to
copy all but the last one to three bytes of a source block to the destination block and then manually copies
the remaining bytes between the blocks. Write a main program with several boundary test cases to verify
correct operation. Compare the performance of your fastcopy procedure against the use of the MOVSB
instruction.

46) Write a macro that computes the absolute value of an integer or floating point parameter. It should gener-
ate the appropriate code based on the type of the macro parameter.

47) Write a program that implements and tests the _repeat.._until(expr) statement using HLA’s multi-part
macros. The macros should expand into JT or JF statements (i.e., don’t simply expand these into HLA’s
repeat..until statement).

48) Write a program that implements and tests the _begin.._exit.._exitif.._end statements using HLA’s
multi-part macros. Your macros should expand into JMP, JT, and/or JF instructions; do not expand the
Page 1178 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
text to HLA’s BEGIN..EXIT..EXITIF..END statement. Note: you do not have to handle procedure or
program exits in this assignment.

49) The HLA #PRINT statement does not provide numeric formatting facilities. If you specify a constant
integer expression as an operand, for example, it will simply print that integer using the minimum number
of print positions the integer output requires. If you wish to display columns of numbers in a com-
pile-time program, this can be a problem. Write a macro, fmtInt(integer, size), that accepts an integer
expression as its first operand and a field width as its second operand and returns a string with the integer
representation of that constant right justified in a field whose width the second parameter specifies. Note
that you can use the @string function to convert the integer to a string and then you can use the string con-
catenation operator and the @strset function to build the formatted string. Test your macro thoroughly;
make sure it works properly with the specified size is less than the size the integer requires.

50) Write a function and a macro that compute signum (Signum(i): -1 if i < 0, 0 if i=0, +1 if i>0). Write a
short main program that invokes the macro three times within the body of a FOR loop: once with the
value -10, once with the value zero, and once with the value +10. Adjust the loop control variable so the
program requires approximately ten seconds to execute. Next, add a second loop to the main program
that executes the same number of iterations as the first loop; in that loop body, however, place a call to
signum function you’ve written. Compare the execution times of the two loops.

51) Add a remainder (modulo) operator to Program 9.7. Use "\" as the symbol for the mod operator (for you
"C" programmers out there, "%" is already in use for binary numbers in this program). The mod operator
should have the same precedence and associativity as the multiplication and division operators.

52) Modify Program 9.7 (or the program in problem (51), above) to support signed integers rather than
unsigned integers.

53) Modify Program 13.21 in the lab exercises to add _break and _continue statements to the _for.._endfor
and _while.._endwhile loops. Of course, your new control structures must provide the same tracing facil-
ities as Program 13.21 currently provides.

54) Modify Program 13.21 to include an _if.._elseif.._else.._endif statement with the tracing facilties.

55) Modify Program 13.21 to include _repeat.._until and _forever.._endfor loops. Be sure to provide _break
and _continue macros for each of these loops. Of course, your new control structures must provide the
same tracing facilities that Program 13.21 currently provides.

56) Modify Program 13.21 to include an _switch.._case.._default.._endswitch statement with tracing facilties.
The trace output (if engaged) should display entry into the _switch statement, display the particular _case
(or _default) the statement executes, and the display an appropriate message upon exit (i.e., executing
_endswitch).

57) Add a “triangle” class to the shapes class in the Classes chapter’s sample program. The object should
draw images that look like the following:

 /\
 --

 /\
 / \

 /\
 / \
 / \

 /\
 / \
 / \
 / \

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1179

Chapter Thirteen Volume Four
The minimum width and height of a triangle object should be 2x2. The object itself will always have a width
that is equal to (height - 1) * 2.

See the diamond class implementation to get a good idea how to draw a triangle. Don’t forget to handle filled
and unfilled shapes (based on the value of the fillShape field).

Modify the main program to draw several triangles in addition to the other shapes (demonstrate the correct
operation of filled and unfilled triangles in your output).

58) Add a “parallelogram” class to the Classes chapter’s sample program. The parallelogram class should
draw images that look like the following:

 / /
 / /

The width of a parallelogram will always be equal to the width of the base plus the height minus one (e.g., in
the example above, the base width is eight and the height is four, so the overall width is 8+(4-1) = 11).

59) Modify the parallelogram class from the project above to include a boolean data field slantRight that
draws the above parallelogram if true and draws the following if false:

 \ \
 \ \

Don’t forget to initialize the slantRight field (to true) inside the constructor.

60) Add a “Tab” class to the Class chapter’s sample program. The tab class should introduce a new boolean
data field, up, and draw the following images based on the value of the up field.

up=false: up=true:

 ------ /\
 | | / \
 \ / | |
 \/ | |

Note that the width must always be an even value (just like diamonds and triangles). The height should
always be at least width-2. If the height is greater than this, extend the size of the tab by drawing additional
vertical bar sections.

5) (Term project) Add a mouse-based user interface to the ASCIIdraw drawing program (the sample program in
the Classes chapter). See the HLA console library module for information about reading the mouse position
and other console related routines you can use.

13.3 Laboratory Exercises

Accompanying this text is a significant amount of software. The software can be found in the
AoA_Software directory. Inside this directory is a set of directories with names like Vol3 and Vol4, each
containing additional subdirectories like Ch06 and Ch07, with the names obviously corresponding to chap-
ters in this textbook. All the source code to the example programs in this chapter can be found in the
Vol4\Ch08 subdirectory. Please see this directory for more details.
Page 1180 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
13.3.1 Dynamically Nested TRY..ENDTRY Statements

In this laboratory experiment you will explore the effect of dynamically nesting TRY..ENDTRY state-
ments in an HLA program. This lab exercise uses the following program:

program DynNestTry;
#include(“stdlib.hhf”);

 // NestedINTO-
 //
 // This routine reads two hexadecimal values from
 // the user, adds them together (checking for
 // signed integer overflow), and then displays their
 // sum if there was no overflow.

 procedure NestedINTO;
 begin NestedINTO;

 try

 stdout.put(“Enter two hexadecimal values: “);
 stdin.get(al, ah);
 add(ah, al);
 into();
 stdout.put(“Their sum was $”, al, nl);

 exception(ex.ValueOutOfRange)

 stdout.put(“The values must be in the range $0..$FF” nl);

 exception(ex.ConversionError)

 stdout.put(“There was a conversion error during input” nl);

 endtry;

 end NestedINTO;

begin DynNestTry;

 // The following code calls NestedINTO to read and add
 // two hexadecimal values. If an overflow occurs during
 // the addition, an INTO instruction triggers the following
 // exception.

 try

 stdout.put(“Calling NestedINTO” nl);
 NestedINTO();
 stdout.put(“Returned from NestedINTO” nl);

 exception(ex.IntoInstr);

 stdout.put(“INTO detected an integer overflow” nl);

 endtry;
 stdout.put(“After ENDTRY” nl);

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1181

Chapter Thirteen Volume Four
end DynNestTry;

Program 13.1 Dynamically Nested TRY..ENDTRY Statements

Exercise A: Compile and run this program. Supply as input the two values “12” and “34”. Describe the
output, and why you got this particular output in your lab report.

Exercise B: Supply the two values “7F” and “10” as input to this program. Include the output from the
program in your lab report and explain the results.

Exercise C: Supply the two values “AT” and “XY” as input to this program. Include the output from the
program in your lab report and explain the results.

Exercise D: Supply the two values “1234” and “100” as input to this program. Include the output from
the program in your lab report and explain the results.

Explain the difference between a statically nested control structure and a dynamically nested control
structure in your lab report. Also explain why the TRY..ENDTRY statements in this program are dynami-
cally nested.

13.3.2 The TRY..ENDTRY Unprotected Section

In this laboratory exercise you will explore what happens if you attempt to break out of a
TRY..ENDTRY statement in an inappropriate fashion. This exercise makes use of the following program:

program UnprotectedClause;
#include(“stdlib.hhf”);

begin UnprotectedClause;

 // The following loop forces the user to enter
 // a pair of valid eight-bit hexadecimal values.
 // Note that the “unprotected” clause is commented
 // out (this is a defect in the code). Follow the
 // directions in the lab exercise concerning this
 // statement.

 forever

 try

 stdout.put(“Enter two hexadecimal values: “);
 stdin.get(al, ah);

 //unprotected

 break;

 exception(ex.ValueOutOfRange)

 stdout.put(“The values must be in the range $0..$FF” nl);

 exception(ex.ConversionError)

 stdout.put(“There was a conversion error during input” nl);

 endtry;
Page 1182 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises

 endfor;
 add(ah, al);
 stdout.put(“Their sum was $”, al, nl);

 stdout.put(“Enter another hexadecimal value: “);
 stdin.get(al);
 stdout.put(“The value you entered was $”, al, nl);

end UnprotectedClause;

Program 13.2 The TRY..ENDTRY Unprotected Section

Exercise A: Compile and run this program. When it asks for two hexadecimal values enter the values
“12” and “34”. When this program asks for a third hexadecimal value, enter the text “xy”. Include the out-
put of this program in your lab report and explain what happened.

Exercise B: The UNPROTECTED statement in this program is commented out. Remove the two
slashes before the UNPROTECTED keyword and repeat exercise A. Explain the difference in output
between the two executions of this program.

Exercise C: Put a TRY..ENDTRY block around the second stdin.get call in this program (it must handle
the ex.ConversionError exception). Remove the UNPROTECTED clause (i.e., comment it out again) in the
first TRY..ENDTRY block. Repeat exercise A. Include the source code and output of the program in your
lab report. Explain the difference in execution between exercises A, B, and C in your lab report.

13.3.3 Performance of SWITCH Statement

In this laboratory exercise you will get an opportunity to explore the difference in performance between
the jump table implementation of a SWITCH statement versus the IF..ELSEIF implementation of a switch.
Note that this code relies upon the Pentium RDTSC instruction. If you do not have access to a CPU that
supports this instruction you will have to skip this exercise or rewrite the code to use timing loops to approx-
imate the running time (see “Timing Various Arithmetic Instructions” on page 690 to see how you can use
loops to increase the running time to the point you can measure the difference between the two algorithms
using a stopwatch).

program switchStmt;
#include(“stdlib.hhf”);

static
 Cycles: qword;

 JmpTbl:dword[11] :=
 [
 &CaseDefault, //0
 &case123, //1
 &case123, //2
 &case123, //3
 &case4, //4
 &CaseDefault, //5
 &CaseDefault, //6
 &case78, //7
 &case78, //8
 &case9, //9
 &case10 //10
];
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1183

Chapter Thirteen Volume Four

begin switchStmt;

 stdout.put(“Switch vs. IF/ELSEIF demo” nl nl);

 stdout.put
 (
 “Counting the cycles for 10 invocations of the SWITCH stmt:”
 nl
 nl
);

 // Start timing the number of cycles required by the following
 // loop. Note that this code requires a Pentium or compatible
 // processor that supports the RDTSC instruction.

 rdtsc();
 push(edx);
 push(eax);

 // The following loop cycles through the values 0..15
 // in order to ensure that we hit all the cases and
 // then some (not accounted for in the jump table).

 mov(15, esi);
 xor(edi, edi);
 Rpt16TimesA:

 cmp(esi, 10); // Cases beyond 10 go to the default label
 ja CaseDefault; // ‘cause we only have 11 entries in the tbl.
 jmp(JmpTbl[esi*4]); // Jump to the specified case handler.

 case123: // Handls cases 1, 2, and 3.

 jmp EndCase;

 case4: // Handles case ESI = 4.

 jmp EndCase;

 case78: // Handles cases ESI = 7 or 8.
 jmp EndCase;

 case9: // Handle case ESI = 9.
 jmp EndCase;

 case10: // Handles case ESI = 10.
 jmp EndCase;

 CaseDefault: // Handles cases ESI = 0, 5, 6, and >=11.

 EndCase:
 dec(esi);
 jns Rpt16TimesA;

Page 1184 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises

 // Calculate the number of cycles required by the code above:
 // Note: This requires a Pentium processor (or other CPU that
 // has a RDTSC instruction).

 rdtsc();
 pop(ebx);
 sub(ebx, eax);
 mov(eax, (type dword Cycles[0]));

 pop(eax);
 sub(eax, edx);
 mov(edx, (type dword Cycles[4]));
 stdout.put(“Cycles for SWITCH stmt: “);
 stdout.putu64(Cycles);

 stdout.put
 (
 nl
 nl
 “Counting the cycles for 10 invocations of the IF/ELSEIF sequence:”
 nl
 nl
);

 // Begin counting the number of cycles required by the IF..ELSEIF
 // implementation of the SWITCH statement.

 rdtsc();
 push(edx);
 push(eax);

 mov(15, esi);
 xor(edi, edi);
 Rpt16TimesB:

 cmp(esi, 1);
 jb Try4;
 cmp(esi, 3);
 ja Try4;

 jmp EndElseIf;

 Try4:
 cmp(esi, 4);
 jne Try78;

 jmp EndElseIf;

 Try78:
 cmp(esi, 7);
 je Is78;
 cmp(esi, 8);
 jne Try9;

 Is78:
 jmp EndElseIf;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1185

Chapter Thirteen Volume Four
 Try9:
 cmp(esi, 9);
 jne Try10;

 jmp EndElseIf;

 Try10:
 cmp(esi, 10);
 jne DefaultElseIf;

 jmp EndElseIf;

 DefaultElseIf:

 EndElseIf:
 dec(esi);
 jns Rpt16TimesB;

 // Okay, compute the number of cycles required
 // by the IF..ELSEIF version of the SWITCH.
 rdtsc();
 pop(ebx);
 sub(ebx, eax);
 mov(eax, (type dword Cycles[0]));

 pop(eax);
 sub(eax, edx);
 mov(edx, (type dword Cycles[4]));
 stdout.put(“Cycles for IF/ELSEIF stmt: “);
 stdout.putu64(Cycles);

end switchStmt;

Program 13.3 Performance of SWITCH Statement.

Exercise A: Compile and run this program several times and average the cycles times for the two differ-
ent implementations. Include the results in your lab report and discuss the difference in timings.

Exercise B: Remove the cases (from both implementations) one at a time until the running time is iden-
tical for both implementations. How many cases is the break-even point for using a jump table? Include the
source code of the modified program in your lab report.

Exercise C: One feature of this particular program is that the loop control variable cycles through all the
possible case values (and then some). Modify both loops so that they still repeat sixteen times, but they do
not use the loop control variable as the value to select the particular case. Instead, fix the case so that it
aways uses the value one rather than the value of the loop control variable. Rerun the experiment and
describe your findings.

Exercise D: Repeat exercise C, except fix the case value at 15 rather than zero. Report your findings in
your lab report.
Page 1186 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
13.3.4 Complete Versus Short Circuit Boolean Evaluation

In this laboratory exercise you will measure the execution time of two instruction sequence. One
sequence computes a boolean result using complete boolean evaluation; the other uses short circuit boolean
evaluation. Like the previous exercises, the code for this exercise uses the Pentium RDTSC instruction. You
will need to modify this code if you intend to run it on a processor that does not support RDTSC.

program booleanEvaluation;
#include(“stdlib.hhf”);

static

 Cycles: qword;
 theRslt: string;

 FalseCBE: string := “Complete Boolean Evaluation result was true”;
 TrueCBE: string := “Complete Boolean Evaluation result was false”;

 FalseSC: string := “Short Circuit Evaluation result was true”;
 TrueSC: string := “Short Circuit Evaluation result was false”;

 input: int8;

 a: boolean;
 b: boolean;
 c: boolean;
 d: boolean;

begin booleanEvaluation;

 // Get some input from the user that
 // we can use to initialize our boolean
 // varibles with:

 forever

 try

 stdout.put(“Enter an eight-bit signed integer value: “);
 stdin.get(input);
 unprotected break;

 exception(ex.ConversionError)

 stdout.put(“Input contained illegal characters”);

 exception(ex.ValueOutOfRange)

 stdout.put(“Value must be between -128 and +127”);

 endtry;
 stdout.put(“, please reenter” nl);

 endfor;

 // Okay, set our boolean variables to the following
 // values:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1187

Chapter Thirteen Volume Four
 //
 // a := input < 0;
 // b := input >= -10;
 // c := input <= 10;
 // d := input = 0;

 cmp(input, 0);
 setl(a);
 cmp(input, -10);
 setge(b);
 cmp(input, 10);
 setle(c);
 cmp(input, 0);
 sete(d);

 // Now compute (not a) && (b || c) || d
 //
 // (1) using Complete Boolean Evaluation.
 // (2) using Short Circuit Evaluation.

 // Start timing the number of cycles required by the following
 // code. Note that this code requires a Pentium or compatible
 // processor that supports the RDTSC instruction.

 rdtsc();
 push(edx);
 push(eax);

 mov(a, al);
 xor(1, al); // not a
 mov(b, bl);
 or (c, bl);
 and(bl, al);
 or (d, al);
 jz CBEwasFalse;

 mov(FalseCBE, theRslt);
 jmp EndCBE;

 CBEwasFalse:

 mov(TrueCBE, theRslt);

 EndCBE:

 // Calculate the number of cycles required by the code above:
 // Note: This requires a Pentium processor (or other CPU that
 // has a RDTSC instruction).

 rdtsc();
 pop(ebx);
 sub(ebx, eax);
 mov(eax, (type dword Cycles[0]));

 pop(eax);
 sub(eax, edx);
 mov(edx, (type dword Cycles[4]));
Page 1188 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
 stdout.put(“Cycles for Complete Boolean Evaluation: “);
 stdout.putu64(Cycles);

 stdout.put(nl nl, theRslt, nl);

 // Start timing the number of cycles required by short circuit evaluation.

 rdtsc();
 push(edx);
 push(eax);

 cmp(d, true);
 je SCwasTrue;
 cmp(a, true);
 je SCwasFalse;
 cmp(b, true);
 je SCwasTrue;
 cmp(c, true);
 je SCwasTrue;
 SCwasFalse:

 mov(FalseSC, theRslt);
 jmp EndSC;

 SCwasTrue:

 mov(TrueSC, theRslt);

 EndSC:

 // Calculate the number of cycles required by the code above:
 // Note: This requires a Pentium processor (or other CPU that
 // has a RDTSC instruction).

 rdtsc();
 pop(ebx);
 sub(ebx, eax);
 mov(eax, (type dword Cycles[0]));

 pop(eax);
 sub(eax, edx);
 mov(edx, (type dword Cycles[4]));
 stdout.put(“Cycles for Short Circuit Boolean Evaluation: “);
 stdout.putu64(Cycles);

 stdout.put(nl nl, theRslt, nl);

end booleanEvaluation;

Program 13.4 Complete vs. Short Circuit Boolean Evaluation

Exercise A: Compile and run this program. Run the program several times in a row and compute the
average execution time, in cycles, for each of the two methods. Be sure to specify the input value you use
(use the same value for each run) in your lab report.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1189

Chapter Thirteen Volume Four
Exercise B: Repeat exercise A for each of the following input values: -100, -10, -5, 0, 5, 10, 100. Pro-
vide a graph of the average execution times for Complete Boolean Evaluation and Short Circuit Boolean
evaluation in your laboratory report.

13.3.5 Conversion of High Level Language Statements to Pure Assembly

For this exercise you will write a short demonstration program that uses the following HLA statements:
if..elseif..else..endif, switch..case..default..endswitch (from the HLA Standard Library hll.hhf module),
while..endwhile, repeat..until, forever..breakif..endfor, for..endfor, and begin..exit..end (the program doesn’t
have to do anything particularly useful, though the bodies of these statements should not be empty).

Exercise A: Write, compile, run, and test your program. Describe what the program does in your lab
report. Include a copy of the program in your lab report.

Exercise B: Convert the if..elseif..else..endif, while..endwhile, and repeat..until statements to the hybrid
control statements that HLA provides (see “Hybrid Control Structures in HLA” on page 778). Rerun the
program with appropriate inputs and verify that its behavior is the same as the original program. Describe
the changes you’ve made and include the source code in your lab report.

Exercise C: Create a new version of the program you created in exercise A, this time convert the control
structures to their low-level, pure assembly language form. Include the source code with your laboratory
report. Comment on the readability of the three programs.

13.3.6 Activation Record Exercises

In this laboratory exercise you will construct and examine procedure activation records. This exercise
involves letting HLA automatically construct the activation record for you as well as manual construction of
activation records and manually accessing data in the activation record.

13.3.6.1 Automatic Activation Record Generation and Access

The following program calls a procedure and returns the values of EBP and ESP from the procedure
after it has constructed the activation record. The main program then computes the size of the activation
record by subtracting the difference between ESP before the call and ESP during the call.

// This program computes and displays the size of
// a procedure’s activation record at run-time.
// This code relies on HLA’s high level syntax
// and code generation to automatically construct
// the activation record.

program ActRecSize;
#include(“stdlib.hhf”)

type
 rec:record

 u:uns32;
 i:int32;
 r:real64;

 endrecord;

Page 1190 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises

 // The following procedure allocates storage for the activation
 // record on the stack and then returns the pointer to the bottom
 // of the activation record (ESP) in the EAX register. It also
 // returns the pointer to the activation record’s base address (EBP)
 // in the EBX register.

 procedure RtnARptr(first:uns32; second:real64; var third:rec); nodisplay;
 var
 b:byte;
 c:char;
 w:word;
 d:dword;
 a:real32[4];
 r:rec[4];

 begin RtnARptr;

 mov(esp, eax);
 mov(ebp, ebx);

 end RtnARptr;

var
 PassToRtnARptr: rec;

begin ActRecSize;

 // Begin by saving the ESP and EBP register values in
 // ECX and EDX (respectively) so we can display their
 // values and compute the size of RtnARptr’s activation
 // record after the call to RtnARptr.

 mov(esp, ecx);
 mov(ebp, edx);
 RtnARptr(1, 2.0, PassToRtnARptr);

 // Display ESP/EBP value before and after the call to RtnARptr:

 mov(esp, edi);
 stdout.put(“ESP before call: $”, ecx, “ ESP after call: $”, edi, nl);

 mov(ebp, edi);
 stdout.put(“EBP before call: $”, edx, “ EBP after call: $”, edi, nl);

 // Display the activation record information:

 stdout.put(“EBP value within RtnARptr: $”, ebx, nl);
 stdout.put(“ESP value within RtnARptr: $”, eax, nl);
 sub(eax, ecx);
 stdout.put
 (
 “Size of RtnARptr’s activation record: “,
 (type uns32 ecx),
 nl
);

end ActRecSize;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1191

Chapter Thirteen Volume Four
Program 13.5 Computing the Size of a Procedure’s Activation Record

Exercise A: Execute this program and discuss the results in your lab report. Draw a stack diagram of
RtnARptr’s activation record that carefully shows the position of each named variable in the RtnARptr proce-
dure.

Exercise B: Change the parameter third from pass by reference to pass by value. Recompile and rerun
this program. Discuss the differences between the results from Exercise A and the results in this exercise.
Provide a stack diagram that describes the activation record for this version of the program.

13.3.6.2 The _vars_ and _parms_ Constants

Whenever the HLA compiler encounters a procedure declaration, it automatically defines two local
uns32 constants, _vars_ and _parms_, in the procedure. The _vars_ constant specifies the number of bytes
of local (automatic) variables the procedure declares. The _parms_ constant specifies the number of bytes of
parameters the caller passes to the procedure. The following program displays these two values for a typical
procedure.

// This program demonstrates the use of the _vars_
// and _parms_ constants in an HLA procedure.

program VarsParmsDemo;
#include(“stdlib.hhf”)

type
 rec:record

 u:uns32;
 i:int32;
 r:real64;

 endrecord;

 // The following procedure allocates storage for the activation
 // record and then displays the values of the _vars_ and _parms_
 // constants that HLA automatically creates for the procedure.
 // This procedure also returns the ESP/EBP values in the EAX
 // and EBX registers (respectively).

 procedure VarsAndParms
 (
 first:uns32;
 second:real64;
 var third:rec
); nodisplay;

 var
 b:byte;
 c:char;
 w:word;
 d:dword;
 a:real32[4];
Page 1192 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
 r:rec[4];

 begin VarsAndParms;

 stdout.put
 (
 “_vars_ = “,
 vars,
 nl
);

 stdout.put
 (
 “_parms_ = “,
 parms,
 nl
);

 mov(esp, eax);
 mov(ebp, ebx);

 end VarsAndParms;

var
 PassToProc: rec;

begin VarsParmsDemo;

 // Begin by saving the ESP and EBP register values in
 // ECX and EDX (respectively) so we can display their
 // values and compute the size of RtnARptr’s activation
 // record after the call to RtnARptr.

 mov(esp, ecx);
 mov(ebp, edx);
 VarsAndParms(2, 3.1, PassToProc);

 // Display ESP/EBP value before and after the call to RtnARptr:

 mov(esp, edi);
 stdout.put(“ESP before call: $”, ecx, “ ESP after call: $”, edi, nl);

 mov(ebp, edi);
 stdout.put(“EBP before call: $”, edx, “ EBP after call: $”, edi, nl);

 // Display the activation record information:

 stdout.put(“EBP value within VarsAndParms: $”, ebx, nl);
 stdout.put(“ESP value within VarsAndParms: $”, eax, nl);
 sub(eax, ecx);
 stdout.put
 (
 “Size of VarsAndParms’s activation record: “,
 (type uns32 ecx),
 nl
);

end VarsParmsDemo;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1193

Chapter Thirteen Volume Four
Program 13.6 Demonstration of the _vars_ and _parms_ Constants

Exercise A: Run this program and describe the output you obtain in your lab report. Explain why the
sum of the two constants _vars_ and _parms_ does not equal the size of the activation record.

Exercise B: Comment out the “c:char;” declaration in the VarsAndParms procedure. Recompile and run
the program. Note the output of the program. Now comment out the “d:dword;” declaration in the VarsAnd-
Parms procedure. In your lab report, explain why eliminating the first declaration did not produce any dif-
ference while commenting out the second declaration did (hint: see “The Standard Entry Sequence” on
page 789).

13.3.6.3 Manually Constructing an Activation Record

The _vars_ and _parms_ constants come in real handy if you decide to construct and destroy activation
records manually. The _vars_ constant specifies how many bytes of local variables you must allocate in the
standard entry sequence and the _parms_ constant specifies how many bytes of parameters you need to
remove from the stack in the standard exit sequence. The following program demonstrates the manual con-
struction and destruction of a procedure’s activation record using these constants.

program ManActRecord;
#include(“stdlib.hhf”)

type
 rec:record

 u:uns32;
 i:int32;
 r:real64;

 endrecord;

 // The following procedure manually allocates storage for the activation
 // record. This procedure also returns the ESP/EBP values in the EAX
 // and EBX registers (respectively).

 procedure VarsAndParms
 (
 first:uns32;
 second:real64;
 var third:rec
); nodisplay; noframe;

 var
 b:byte;
 c:char;
 w:word;
 d:dword;
 a:real32[4];
 r:rec[4];

 begin VarsAndParms;

Page 1194 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
 // The standard entry sequence.
 // Note that the stack alignment instruction is
 // commented out because we know that the stack
 // is properly dword aligned whenever the program
 // calls this procedure.

 push(ebp); // The standard entry sequence.
 mov(esp, ebp);
 sub(_vars_, esp); // Allocate storage for local variables.
 //and($FFFF_FFFC, esp); // Dword-align ESP.

 stdout.put
 (nl
 “VarsAndParms allocates “,
 vars,
 “ bytes of local variables and “ nl
 “automatically removes “,
 parms,
 “ parameter bytes on return.” nl
 nl
);
 mov(esp, eax);
 mov(ebp, ebx);

 // Standard exit sequence:

 mov(ebp, esp);
 pop(ebp);
 ret(_parms_); // Removes parameters from stack.

 end VarsAndParms;

static
 PassToProc: rec;
 FourPt2: real64 := 4.2;

begin ManActRecord;

 // Begin by saving the ESP and EBP register values in
 // ECX and EDX (respectively) so we can display their
 // values and compute the size of RtnARptr’s activation
 // record after the call to RtnARptr.

 mov(esp, ecx);
 mov(ebp, edx);

 // Though not really necessary for this example, the
 // following code manually constructs the parameters
 // portion of the activation record by pushing the
 // data onto the stack. This program could have used
 // the HLA high level syntax for the code as well.

 pushd(3); // Push value of “first” parameter.
 push((type dword FourPt2[4])); // Push value of “second” parameter.
 push((type dword FourPt2[0]));
 pushd(&PassToProc); // Push address of record item.
 call VarsAndParms;

 // Display ESP/EBP value before and after the call to RtnARptr:

 mov(esp, edi);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1195

Chapter Thirteen Volume Four
 stdout.put(“ESP before call: $”, ecx, “ ESP after call: $”, edi, nl);

 mov(ebp, edi);
 stdout.put(“EBP before call: $”, edx, “ EBP after call: $”, edi, nl);

 // Display the activation record information:

 stdout.put(“EBP value within VarsAndParms: $”, ebx, nl);
 stdout.put(“ESP value within VarsAndParms: $”, eax, nl);
 sub(eax, ecx);
 stdout.put
 (
 “Size of VarsAndParms’s activation record: “,
 (type uns32 ecx),
 nl
);

end ManActRecord;

Program 13.7 Manual Construction and Destruction of an Activation Record

Exercise A: Compile and run this program. Discuss the output in your lab report. Especially note the
values of ESP and EBP before and after the call to the procedure. Does the procedure properly restore all
values?

Exercise B: Change the third parameter from pass by reference to pass by value. You will also need to
change the call to VarsAndParms so that you pass the record by value (the easiest way to do this is to use the
HLA high level procedure call syntax and let HLA generate the code that copies the record; if you manually
write this code, be sure to push 16 bytes on the stack for the third parameter). Recompile and run the pro-
gram. Describe the results in your lab manual.

Exercise C: Add several additional local (automatic) variables to the VarsAndParms procedure. Recom-
pile and run the program. Explain why using the _vars_ and _parms_ constants when manually constructing
the activation record is far better than specifying literal constants in the “sub(xxx, esp);” and “ret(yyy);”
instructions in the standard entry and exit sequences.

13.3.7 Reference Parameter Exercise

In this laboratory exercise you will explore the behavior of pass by reference versus pass by value
parameters. This program passes a pair of global static variables by value and by reference to some proce-
dures that modify their formal parameters. The program prints the result of the modifications before and
after the procedure calls (and the actual modifications). This program also demonstrates passing formal
value parameters by reference and passing formal reference parameters by value.

// This program demonstrates pass by reference
// and pass by value parameters.

program PassByValRef;
#include(“stdlib.hhf”)

static
 GlobalV: uns32;
 GlobalR: uns32;
Page 1196 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
 // ValParm-
 //
 // Demonstrates immutability of actual value parameters.

 procedure ValParm(v:uns32);
 begin ValParm;

 stdout.newln();
 stdout.put(“ValParm, v(before) = “, v, nl);
 mov(1, v);
 stdout.put(“ValParm, v(after) = “, v, nl);
 stdout.put(“ValParm, GlobalV = “, GlobalV, nl);

 end ValParm;

 // RefParm-
 //
 // Demonstrates how to access the value of a pass by
 // reference parameter. Also demonstrates the mutability
 // of an actual parameter when passed by reference.
 //
 // Note that on all calls in this program, “r” and “GlobalR”
 // are aliases of one another.

 procedure RefParm(var r:uns32);
 begin RefParm;

 push(eax);
 push(ebx);

 // Display the address and value of the reference parameter
 // “r” prior to making any changes to that value.

 mov(r, ebx); // Get address of value into EBX.
 mov([ebx], eax); // Fetch the value into EAX.
 stdout.newln();
 stdout.put(“RefParm, Before assignment:” nl nl);
 stdout.put(“r(address)= $”, ebx, nl);
 stdout.put(“r(value)= “, (type uns32 eax), nl);

 // Display the address and value of the GlobalR variable
 // so we can compare it against the “r” parameter.

 mov(&GlobalR, eax);
 stdout.put(“GlobalR(address) =$”, ebx, nl);
 stdout.put(“GlobalR(value) = “, GlobalR, nl);

 // Okay, change the value of “r” from its current
 // value to “1” and redisplay everything.

 stdout.newln();
 stdout.put(“RefParm, after assignment:” nl nl);

 mov(1, (type uns32 [ebx]));
 mov([ebx], eax);
 stdout.put(“r(address)= $”, ebx, nl);
 stdout.put(“r(value)= “, (type uns32 eax), nl);

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1197

Chapter Thirteen Volume Four
 mov(&GlobalR, eax);
 stdout.put(“GlobalR(address) =$”, ebx, nl);
 stdout.put(“GlobalR(value) = “, GlobalR, nl);

 pop(ebx);
 pop(eax);

 end RefParm;

 // ValAndRef-
 //
 // This procedure has a pass by reference parameter and a pass
 // by value parameter. It demonstrates what happens when you
 // pass formal parameters in one procedure as actual parameters
 // to another procedure.

 procedure ValAndRef(v:uns32; var r:uns32);
 begin ValAndRef;

 push(eax);
 push(ebx);

 // Reset the global objects to some value other
 // than one and then print the values and addresses
 // of the local and global objects.

 mov(25, GlobalV);
 mov(52, v);
 mov(75, GlobalR);

 stdout.put(nl nl “ValAndRef: “ nl);
 lea(eax, v);
 stdout.put(“v’s address is $”, eax, nl);
 lea(eax, r);
 stdout.put(“r’s address is $”, eax, nl);
 stdout.put(“r’s value is $”, (type dword r), nl);
 mov(r, ebx);
 mov([ebx], eax);
 stdout.put(“r points at “, (type uns32 eax), nl nl);

 // Pass value by value and reference by reference to
 // the ValParm and RefParm procedures.

 ValParm(v);
 RefParm(r);

 stdout.put
 (
 nl
 “Inside ValAndRef after passing v by value, v=”,
 v,
 nl
);

 // Reset the global parameter values and then pass
 // the reference parameter by value and pass the
 // value parameter by reference.

Page 1198 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
 mov(67, GlobalV);
 mov(76, v);
 mov(89, GlobalR);
 ValParm(r);
 RefParm(v);

 // Display v’s value before we leave.

 stdout.put
 (
 nl
 “Inside ValAndRef after passing v by reference, v=”,
 v,
 nl
);

 pop(ebx);
 pop(eax);

 end ValAndRef;

begin PassByValRef;

 mov(123435, GlobalV);
 mov(67890, GlobalR);
 ValParm(GlobalV);
 RefParm(GlobalR);

 ValAndRef(GlobalV, GlobalR);

end PassByValRef;

Program 13.8 Parameter Passing Demonstration

Exercise A: Compile and run this program. Include the program output in your lab report. Annotate the
output and explain the results it produces.

Exercise B: Modify the main program in this example to manually call ValParm, RefParm, and ValAn-
dRef using the low-level syntax rather than the high level syntax (i.e., you must write the code to push the
parameters onto the stack). Verify that you get the same results as before the modification.

13.3.8 Procedural Parameter Exercise

This exercise demonstrates an interesting feature of assembly language: the ability to create a
SWITCH-like control structure that directly calls one of several functions rather than simply jumping to a
statement via a jump table. This example takes advantage of the fact that the CALL instruction supports
memory indirect forms, just like JMP, that allows an indexed addressing mode. The same logic you would
use to simulate a SWITCH statement with an indirect JMP (see “SWITCH..CASE..DEFAULT..END-
SWITCH” on page 725) applies to the indirect CALL as well.

This program requests two inputs from the user. The first is a value in the range ‘1’,,’4’ that the program
uses to select one of four different procedures to call. The second input is an arbitrary unsigned integer
input that the program passes as a parameter to the procedure the user selects.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1199

Chapter Thirteen Volume Four
// This program demonstrates a CALL-based SWITCH statement.

program callSwitch;
#include(“stdlib.hhf”)

type
 tProcPtr: procedure(i:uns32);
 tProcPtrArray: tProcPtr[4];

 // Here is a set of procedure that we will
 // call indirectly (One, Two, Three, and Four).

 procedure One(i:uns32); nodisplay;
 begin One;

 stdout.put(“One: “, i, nl);

 end One;

 procedure Two(i:uns32); nodisplay;
 begin Two;

 stdout.put(“Two: “, i, nl);

 end Two;

 procedure Three(i:uns32); nodisplay;
 begin Three;

 stdout.put(“Three: “, i, nl);

 end Three;

 procedure Four(i:uns32); nodisplay;
 begin Four;

 stdout.put(“Four: “, i, nl);

 end Four;

static

 UserIn: uns32;

 // CallTbl is an array of pointers that this program uses
 // to create a “switch” statement that does a call rather
 // than a jump.

 CallTbl: tProcPtrArray := [&One, &Two, &Three, &Four];

begin callSwitch;
Page 1200 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
 stdout.put(“Call-based Switch Statement Demo: “ nl nl);
 repeat

 stdout.put(“Enter a value in the range 1..4: “);
 stdin.flushInput();
 stdin.getc();
 if(al not in ‘1’..’4’) then

 stdout.put(“Illegal value, please reenter” nl);

 endif;

 until(al in ‘1’..’4’);
 and($f, al); // Convert ‘1’..’4’ to 1..4.
 dec(al); // Convert 1..4 to 0..3.
 movzx(al, eax); // Need a 32-bit value for use as index.

 // Get a user input value for use as the parameter.

 push(eax); // Preserve in case there’s an exception.
 forever

 try

 stdout.put(“Enter a parameter value: “);
 stdin.get(UserIn);
 unprotected break;

 exception(ex.ValueOutOfRange)

 stdout.put(“Value was out of range, please reenter” nl);

 exception(ex.ConversionError)

 stdout.put
 (
 “Input contained illegal characters, please reenter”
 nl
);

 endtry;

 endfor;
 pop(eax); // Restore index into “call table”.

 // Using an indirect call rather than an indirect jump,
 // SWITCH off to the appropriate subroutine based on
 // the user’s input.

 CallTbl[eax*4](UserIn); // Call the specified routine.

end callSwitch;

Program 13.9 A CALL-based SWITCH Statement
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1201

Chapter Thirteen Volume Four
Exercise A: Compile and run this program four times. Select procedures One, Two, Three, and Four on
each successive run of the program (you may supply any user input you desire). Include the program’s out-
put in your lab report.

Exercise B: Modify the program to print a short message immediately after the CallTbl procedure call.
Recompile the program and verify that it really does return immediately after the
“CallTbl[eax*4](UserIn);” statement.

Exercise C: Add procedures Six, Eight, Nine, and DefaultProc to this program. Modify the program so
that it lets the user input an uns32 value rather than a single character to select the procedure to call. If the
user inputs a value other than 1, 2, 3, 4, 6, 8, or 9, call the DefaultProc procedure. Be sure to test your pro-
gram with input values zero and values beyond nine (e.g., 10234). See
“SWITCH..CASE..DEFAULT..ENDSWITCH” on page 725 for details if you don’t remember how to prop-
erly encode a SWITCH statement. Include the source code and the output of a sample run in your lab
report. Explain how you designed the CALL/SWITCH statement.

13.3.9 Iterator Exercises

The HLA Standard Library includes several iterators. One such iterator appears in the random number
generators package (“rand.hhf”). The rand.deal iterator takes a single integer parameter. It returns success
the number of times specified by this parameter and then fails (e.g., rand.deal(10) will succeed ten times and
fail on the eleventh iteration). On each iteration of the corresponding FOREACH loop, the rand.deal iterator
will return a randomized value between zero and one less than the parameter value; however, rand.deal will
return each value only once. That is, “rand.deal(n)” will return the values in the range 0..n-1 in a random
order. This iterator was given the name deal because it simulates dealing a set of cards from a shuffled deck.
of cards (indeed, if you iterate over “rand.deal(52)” you can deal out all 52 possible card values from a stan-
dard playing card deck). The following program uses the rand.deal function to shuffle a deck of standard
playing cards and it displays four hands of five card dealt from this shuffled deck.

// This program demonstrates the use of the
// rand.deal iterator.

program dealDemo;
#include(“stdlib.hhf”)

type
 card: record

 face: string;
 suite: char;

 endrecord;

 deck: card[52];

readonly
 CardValue: string[13] :=
 [“A”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”, “10”, “J”, “Q”, “K”];

 CardGroup: char[4] :=
 [
 #3, // Symbol for hearts
Page 1202 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
 #4, // Symbol for diamonds
 #5, // Symbol for clubs
 #6 // Symbol for spades
];

 procedure shuffle(var theDeck: deck); nodisplay;
 begin shuffle;

 push(eax);
 push(ebx);
 push(ecx);
 push(edx);

 mov(theDeck, ecx);
 foreach rand.deal(52) do

 cdq(); // Zero extend EAX into EDX:EAX.
 div(13, edx:eax); // Divide into suites.

 // EAX contains the suite index (0..3) and EDX contains
 // the face index (0..12).
 //
 // Get the suite character and store it away into the
 // suite field of the current card.

 mov(CardGroup[eax], bl);
 mov(bl, (type card [ecx]).suite);

 // Get the face value and store it away into the
 // face field of the current card in the deck.

 mov(CardValue[edx*4], edx);
 mov(edx, (type card [ecx]).face);

 // Move on to the next card in the deck.

 add(@size(card), ecx);

 endfor;
 pop(edx);
 pop(ecx);
 pop(ebx);
 pop(eax);

 end shuffle;

static
 Deck1: deck;
 Hands: card[4, 5];

begin dealDemo;

 // Call the randomize function so we don’t deal out the same
 // hands each time this program runs.

 rand.randomize();
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1203

Chapter Thirteen Volume Four
 // Create a shuffled deck and deal out four hands of five cards each.
 // Note that the outer loop selects which card a particular player
 // receives while the inner loop alternates between the players.

 shuffle(Deck1);
 mov(0, edx); // EDX selects a card from Deck1.

 for(mov(0, ebx); ebx < 5; inc(ebx)) do

 for(mov(0, ecx); ecx < 4; inc(ecx)) do

 // Compute row-major order into Hands to
 // select Hands[ecx, ebx]

 intmul(5, ecx, edi);
 add(ebx, edi);
 intmul(@size(card), edi);

 // Copy the next available card in Deck1 (selected by
 // EDX) to the current player:

 mov(Deck1.face[edx], eax);
 mov(eax, Hands.face[edi]);
 mov(Deck1.suite[edx], al);
 mov(al, Hands.suite[edi]);

 // Move on to the next card in Deck1.

 add(@size(card), edx);

 endfor;

 endfor;

 // Okay, display the hands dealt to each player:

 stdout.newln();
 for(mov(0, ecx); ecx < 4; inc(ecx)) do //Player loop.

 lea(eax, [ecx+1]); // EAX = ECX+1
 stdout.put(“Player “, (type uns32 eax), “: “);
 for(mov(0, ebx); ebx < 5; inc(ebx)) do //Card loop.

 // Compute row-major order into Hands to
 // select Hands[ecx, ebx]

 intmul(5, ecx, edi);
 add(ebx, edi);
 intmul(@size(card), edi);

 // Display the current card for the current player.

 stdout.put(Hands.face[edi]:2, Hands.suite[edi], ‘ ‘);

 endfor;
 stdout.newln();

 endfor;

Page 1204 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
end dealDemo;

Program 13.10 Card Shuffle/Deal Program that uses the rand.deal Iterator

Exercise A: Compile and run this program several times. Include the program output in your lab report.
Verify that you get a different set of hands on each execution of the program.

Exercise B: Comment out the call to rand.randomize in the main program. Recompile and run the pro-
gram several times. Discuss the output of this program versus the output from Exercise A.

Exercise C: Using the console.setOutputAttr function, modify this program so that it prints the player’s
hands with a white background. Cards from the hearts and diamonds suites should have a red foreground
color and cards from the spades and clubs suites should have a black foreground color.

13.3.10 Performance of Multiprecision Multiplication and Division Operations

The extended precision multiplication and division routines appearing in the chapter on Advanced
Arithmetic can be found in the files "div128.hla", "div128b.hla", and "mul64.hla" in the appropriate subdi-
rectory. These sample programs contain a main program that provides a brief test of each of these functions.
Extract the multiplication and divisions procedures (and any needed support routines) and place these proce-
dure in a new program. In the main program, write some code that times the execution of the calls to these
three procedures using the RDTSC instruction (see the laboratory exercises at the end of Chapter Six for
details). If you are using a CPU that doesn’t support the RDTSC instruction, then put the calls in a loop and
measure their time using a stopwatch. Also include code in the main program that times the single precision
32-bit MUL, IMUL, DIV, and IDIV instructions.

Exercise A: Run the program and report the running times of the extended precision and standard oper-
ations in your lab report.

Exercise B: The multiplication and division operations take a varying amount of time depending on the
values of their operands (both the extended precision procedures and the machine instructions exhibit this
behavior). Modify the program to generate a pair of random operands for these operations. Repeatedly call
the procedures (or execute the machine instructions) and report the average execution time for these opera-
tions. Note: be sure to check for division by zero and any other illegal operations that can occur when using
random numbers. Use the random number generation facilities of the HLA Standard Library as your source
of random numbers. You should measure about a 1,000 calls to the procedures (or 1,000 different executions
of the machine instructions).

13.3.11 Performance of the Extended Precision NEG Operation

Write a program that uses the RDTSC instruction to time the execution of a 64-bit, a 128-bit and a
256-bit NEG operation using the two different algorithms presented in this chapter (NEG/SBB and subtract
from zero).

Exercise A: Run the programs and report the timings for the two different forms in your lab report. Also
point out which version is smaller in your lab report.

Exercise B: You can also perform an extended precision negation operation by applying the definition
of the two’s complement operation to an extended precision value (i.e., invert all the bits and add one). Add
the code to implement this third form of extended precision negation to your program and report the results
in your lab report. Also discuss the size of this third negation algorithm.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1205

Chapter Thirteen Volume Four
13.3.12 Testing the Extended Precision Input Routines

The file "uin128.hla" provides an input procedure to read 128-bit unsigned integers from the standard
input device. It is not uncommon for such routines, during initial development to contain defects. Devise a
set of tests to help verify that the getu128 procedure is operating properly. You tests should check the range
of possible values, properly processing of delimiter characters, proper rejection of illegal characters, proper
overflow handling, and so on. Describe the tests, and the programs output with your test data, in your lab
report.

13.3.13 Illegal Decimal Operations

The DAA, DAS, AAA, AAS, AAM, and AAD instructions generally assume that they are adjusting for
the result of some operation whose operands were legal BCD values. For example, DAA adjusts the value in
the AL register after an addition assuming that the packed BCD values added together were legal BCD val-
ues. In this laboratory exercise, you will force the use of illegal BCD values just to see what happens.

Exercise A: Add together two illegal decimal values (e.g., $1F and $A2) and follow their addition with
the execution of the DAA instruction. Repeat this for several pairs of illegal BCD values. Include the results
in your lab report. Try to explain the results in your lab report.

Exercise B: Repeat Exercise A using the SUB and DAS instructions.

Exercise C: Repeat Exercise A using the ADD and AAA instructions.

Exercise D: Repeat Exercise B using the SUB and AAS instructions.

13.3.14 MOVS Performance Exercise #1

The movsb, movsw, and movsd instructions operate at different speeds, even when moving around the
same number of bytes. In general, the movsw instruction is twice as fast as movsb when moving the same
number of bytes. Likewise, movsd is about twice as fast as movsw (and about four times as fast as movsb)
when moving the same number of bytes. Ex15_1.asm is a short program that demonstrates this fact. This
program consists of three sections that copy 2048 bytes from one buffer to another 100,000 times. The three
sections repeat this operation using the movsb, movsw, and movsd instructions. Run this program and time
each phase. For your lab report: present the timings on your machine. Be sure to list processor type and
clock frequency in your lab report. Discuss why the timings are different between the three phases of this
program. Explain the difficulty with using the movsd (versus movsw or movsb) instruction in any program
on an 80386 or later processor. Why is it not a general replacement for movsb, for example? How can you
get around this problem?

program MovsDemo;
#include(“stdlib.hhf”)

static

 Buffer1: byte[2048];
 Buffer2: byte[2048];

begin MovsDemo;

 // Demo of the movsb, movsw, and movsd instructions

 stdout.put
 (
Page 1206 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
 “The following code moves a block of 2,048 bytes “
 “around 10,000,000 times.”
 nl
 “The first phase does this using the movsb instruction; the second”
 nl
 “phase does this using the movsw instruction; the third phase does”
 nl
 “this using the movsd instruction.”
 nl
 nl
 “Press RETURN to begin phase one:”
);
 stdin.readLn();

 for(mov(10_000_000, edx); edx > 0; dec(edx)) do

 lea(esi, Buffer1);
 lea(edi, Buffer2);
 cld();
 mov(2048, ecx);
 rep.movsb();

 endfor;

 stdout.put
 (
 “Phase one complete”
 nl nl
 “Press any key to begin phase two:”
);
 stdin.readLn();

 for(mov(10_000_000, edx); edx > 0; dec(edx)) do

 lea(esi, Buffer1);
 lea(edi, Buffer2);
 cld();
 mov(1024, ecx);
 rep.movsw();

 endfor;

 stdout.put
 (
 “Phase two complete”
 nl nl
 “Press any key to begin phase two:”
);
 stdin.readLn();

 for(mov(10_000_000, edx); edx > 0; dec(edx)) do

 lea(esi, Buffer1);
 lea(edi, Buffer2);
 cld();
 mov(512, ecx);
 rep.movsd();

 endfor;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1207

Chapter Thirteen Volume Four
 stdout.put(“Phase Three Done!” nl);

end MovsDemo;

Program 13.11 MOVS Demonstration Program

13.3.15 MOVS Performance Exercise #2

In this exercise you will once again time the computer moving around blocks of 2,048 bytes. Like
Ex15_1.asm in the previous exercise, Ex15_2.asm contains three phases; the first phase moves data using the
movsb instruction; the second phase moves the data around using the lodsb and stosb instructions; the third
phase uses a loop with simple mov instructions. Run this program and time the three phases. For your lab
report: include the timings and a description of your machine (CPU, clock speed, etc.). Discuss the timings
and explain the results (consult Appendix D as necessary).

program MovsDemo2;
#include(“stdlib.hhf”)

static

 Buffer1: byte[2048];
 Buffer2: byte[2048];

begin MovsDemo2;

 // Demo of the movsb, movsw, and movsd instructions

 stdout.put
 (
 “The following code moves a block of 2,048 bytes “
 “around 1,000,000 times.”
 nl
 “The first phase does this using the movsb instruction; the second”
 nl
 “phase does this using the lodsb/stosb instructions; “
 “the third phase does”
 nl
 “this using the movsb instruction in a loop.”
 nl
 nl
 “Press RETURN to begin phase one:”
);
 stdin.readLn();

 for(mov(1_000_000, edx); edx > 0; dec(edx)) do

 lea(esi, Buffer1);
 lea(edi, Buffer2);
 cld();
 mov(2048, ecx);
 rep.movsb();

Page 1208 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
 endfor;

 stdout.put
 (
 “Phase one complete”
 nl nl
 “Press any key to begin phase two:”
);
 stdin.readLn();

 for(mov(1_000_000, edx); edx > 0; dec(edx)) do

 lea(esi, Buffer1);
 lea(edi, Buffer2);
 cld();
 mov(2048, ecx);
 repeat

 lodsb();
 stosb();
 dec(ecx);

 until(@z);

 endfor;

 stdout.put
 (
 “Phase two complete”
 nl nl
 “Press any key to begin phase two:”
);
 stdin.readLn();

 for(mov(1_000_000, edx); edx > 0; dec(edx)) do

 lea(esi, Buffer1);
 lea(edi, Buffer2);
 cld();
 mov(2048, ecx);
 repeat

 movsb();
 dec(ecx);

 until(@z);

 endfor;

 stdout.put(“Phase Three Done!” nl);

end MovsDemo2;

Program 13.12 MOVS Demonstration Program #2
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1209

Chapter Thirteen Volume Four
13.3.16 Memory Performance Exercise

In the previous two exercises, the programs accessed a maximum of 4K of data. Since most modern
on-chip CPU caches are at least this big, most of the activity took place directly on the CPU (which is very
fast). The following exercise is a slight modification that moves the array data in such a way as to destroy
cache performance. Run this program and time the results. For your lab report: based on what you learned
about the 80x86’s cache mechanism in Chapter Three, explain the performance differences.

program MovsDemo3;
#include(“stdlib.hhf”)

var

 Buffer1: byte[256*1024];
 Buffer2: byte[256*1024];

begin MovsDemo3;

 // Demo of the movsb, movsw, and movsd instructions

 stdout.put
 (
 “The following code moves a block of 256K bytes “
 “around 10,000 times.”
 nl
 “The first phase does this using the movsb instruction; the second”
 nl
 “phase does this using the lodsb/stosb instructions; “
 “the third phase does”
 nl
 “this using the movsb instruction in a loop.”
 nl
 nl
 “Press RETURN to begin phase one:”
);
 stdin.readLn();

 for(mov(10_000, edx); edx > 0; dec(edx)) do

 lea(esi, Buffer1);
 lea(edi, Buffer2);
 cld();
 mov(256*1024, ecx);
 rep.movsb();

 endfor;

 stdout.put
 (
 “Phase one complete”
 nl nl
 “Press any key to begin phase two:”
);
 stdin.readLn();

 for(mov(10_000, edx); edx > 0; dec(edx)) do
Page 1210 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
 lea(esi, Buffer1);
 lea(edi, Buffer2);
 cld();
 mov(256*1024, ecx);
 repeat

 lodsb();
 stosb();
 dec(ecx);

 until(@z);

 endfor;

 stdout.put
 (
 “Phase two complete”
 nl nl
 “Press any key to begin phase three:”
);
 stdin.readLn();

 for(mov(10_000, edx); edx > 0; dec(edx)) do

 lea(esi, Buffer1);
 lea(edi, Buffer2);
 cld();
 mov(256*1024, ecx);
 repeat

 movsb();
 dec(ecx);

 until(@z);

 endfor;

 stdout.put(“Phase Three Done!” nl);

end MovsDemo3;

Program 13.13 MOVS Demonstration Program #3

13.3.17 The Performance of Length-Prefixed vs. Zero-Terminated Strings

The following program (Ex15_4.asm on the companion CD-ROM) executes two million string opera-
tions. During the first phase of execution, this code executes a sequence of length-prefixed string operations
1,000,000 times. During the second phase it does a comparable set of operation on zero terminated strings.
Measure the execution time of each phase. For your lab report: report the differences in execution times
and comment on the relative efficiency of length prefixed vs. zero terminated strings. Note that the relative
performances of these sequences will vary depending upon the processor you use. Based on what you
learned in Chapter Three and the cycle timings in Appendix D, explain some possible reasons for relative
performance differences between these sequences among different processors.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1211

Chapter Thirteen Volume Four
program StringComparisons;
#include(“stdlib.hhf”)

static
 LStr1: byte := 17;
 byte “This is a string.”;

 LResult: byte[256];

 ZStr1: byte; nostorage;
 byte “This is a string”, 0;

 ZResult: byte[256];

 // LStrCpy: Copies a length prefixed string pointed at by SI to
 // the length prefixed string pointed at by DI.

 procedure LStrCpy(var src:byte; var dest:byte); nodisplay;
 begin LStrCpy;

 push(ecx);
 push(edi);
 push(esi);
 pushfd();
 cld();

 mov(src, esi);
 mov(dest, edi);

 movzx((type byte [esi]), ecx); // Get length of string in ECX.
 inc(ecx); // Include length byte in cnt.
 rep.movsb(); // Copy the string.

 popfd();
 pop(esi);
 pop(edi);
 pop(ecx);

 end LStrCpy;

 // LStrCat- Concatenates the string pointed at by SI to the end
 // of the string pointed at by DI using length
 // prefixed strings.

 procedure LStrCat(var src:byte; var dest:byte); nodisplay;
 begin LStrCat;

 push(ecx);
 push(edi);
 push(esi);
 pushfd();
 cld();

 mov(src, esi);
 mov(dest, edi);

 // Compute the final length of the concatenated string
Page 1212 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
 mov([edi], cl); // Get dest length.
 mov([esi], ch); // Get source Length.
 add(ch, [edi]); // Compute new length.

 // Move SI to the first byte beyond the end of the dest string.

 movzx(cl, ecx); // Zero extend orig len.
 add(ecx, edi); // Skip past str.
 inc(edi); // Skip past length byte.

 // Concatenate the source string (ESI) to the end of
 // the Destination string (EDI)

 rep.movsb(); // Copy 2nd to end of orig.

 popfd();
 pop(esi);
 pop(edi);
 pop(ecx);

 end LStrCat;

 // LStrCmp- String comparison using two length prefixed strings.
 // ESI points at the first string, EDI points at the
 // string to compare it against.

 procedure LStrCmp(var src:byte; var dest:byte); nodisplay;

 // Mask to clear condition code bits in FLAGS:

 const CCmask: word := !%0000_1000_1101_0101 & $FFFF;

 begin LStrCmp;

 push(ecx);
 push(edi);
 push(esi);
 pushfd();
 cld();

 mov(src, esi);
 mov(dest, edi);

 // When comparing the strings, we need to compare the strings
 // up to the length of the shorter string. The following code
 // computes the minimum length of the two strings.

 mov([esi], cl); //Get the minimum of the two lengths
 mov([edi], ch);
 cmp(cl, ch);
 if(@nb) then

 mov(ch, cl);

 endif;
 movzx(cl, ecx);

 repe.cmpsb(); //Compare the two strings.
 if(@ne) then
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1213

Chapter Thirteen Volume Four
 // We need to set the condition code bits in the FLAGS
 // value we’ve saved without affecting any of the other
 // bits, here’s the code to do that:

 pop(ecx); // Retrieve original flags.
 pushfd(); // Push condition codes.
 and(CCmask, (type word [esp]));
 and(CCmask, cx);
 or(cx, [esp]);

 popfd();
 pop(esi);
 pop(edi);
 pop(ecx);
 exit LStrCmp;

 endif;

 // If the strings are equal through the length of the shorter string,
 // we need to compare their lengths

 mov([esi], cl);
 cmp(cl, [edi]);

 pop(ecx); // See comments above regarding flags
 pushfd(); // restoration.
 and(CCmask, (type word [esp]));
 and(CCmask, cx);
 or(cx, [esp]);

 pop(esi);
 pop(edi);
 pop(ecx);

 end LStrCmp;

 // ZStrCpy- Copies the zero terminated string pointed at by SI
 // to the zero terminated string pointed at by DI.

 procedure ZStrCpy(var src:byte; var dest:byte); nodisplay;
 begin ZStrCpy;

 push(ecx);
 push(edi);
 push(esi);
 push(eax);
 pushfd();
 cld();

 mov(src, esi);
 mov(dest, edi);

 repeat

 mov([esi], al);
 mov(al, [esi]);
Page 1214 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
 inc(esi);
 inc(edi);
 cmp(al, 0);

 until(@z);

 popfd();
 pop(eax);
 pop(esi);
 pop(edi);
 pop(ecx);

 end ZStrCpy;

 // ZStrCat- Concatenates the string pointed at by SI to the end
 // of the string pointed at by DI using zero terminated
 // strings.

 procedure ZStrCat(var src:byte; var dest:byte); nodisplay;
 begin ZStrCat;

 push(ecx);
 push(edi);
 push(esi);
 push(eax);
 pushfd();
 cld();

 mov(src, esi);
 mov(dest, edi);

 // Find the end of the destination string:

 mov($FFFF_FFFF, ecx); // Search for arbitrary length.
 mov(0, al); // Look for zero byte.
 repne.scasb(); // Points EDI beyond zero byte.

 // Copy the source string to the end of the destination string:

 repeat

 mov([esi], al);
 mov(al, [edi]);
 inc(esi);
 inc(edi);
 cmp(al, 0);

 until(@z);

 popfd();
 pop(eax);
 pop(esi);
 pop(edi);
 pop(ecx);

 end ZStrCat;

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1215

Chapter Thirteen Volume Four
 // ZStrCmp- Compares two zero terminated strings.
 // This is actually easier than the length
 // prefixed comparison.

 procedure ZStrCmp(var src:byte; var dest:byte); nodisplay;

 // Mask to clear condition code bits in FLAGS:

 const CCmask: word := !%0000_1000_1101_0101 & $FFFF;

 begin ZStrCmp;

 push(ecx);
 push(edi);
 push(esi);
 push(eax);
 pushfd();
 cld();

 mov(src, esi);
 mov(dest, edi);

 // Compare the two strings until they are not equal
 // or until we encounter a zero byte. They are equal
 // if we encounter a zero byte after comparing the
 // two characters from the strings.

 repeat

 mov([esi], al);
 inc(esi);
 cmp(al, [edi]);
 breakif(@ne);
 inc(edi);
 cmp(al, 0);

 until(@z);

 // Restore the flags saved on the stack while keeping
 // the current condition code bits.

 pop(ecx); // Retrieve original flags.
 pushfd(); // Push condition codes.
 and(CCmask, (type word [esp]));
 and(CCmask, cx);
 or(cx, [esp]);

 popfd();
 pop(eax);
 pop(esi);
 pop(edi);
 pop(ecx);

 end ZStrCmp;

begin StringComparisons;

 stdout.put
 (
 “The following code does 10,000,000 string “
Page 1216 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
 “operations using”
 nl
 “length prefixed strings. Measure the amount “
 “of time this code”
 nl
 “takes to run.”
 nl nl
 “Press ENTER to begin:”
);
 stdin.readLn();

 for(mov(10_000_000, edx); EDX <> 0; dec(edx)) do

 LStrCpy(LStr1, LResult);
 LStrCat(LStr1, LResult);
 LStrCmp(LStr1, LResult);

 endfor;

 stdout.put
 (
 “The following code does 10,000,000 string “
 “operations using”
 nl
 “zero terminated strings. Measure the amount “
 “of time this code”
 nl
 “takes to run.”
 nl nl
 “Press ENTER to begin:”
);
 stdin.readLn();

 for(mov(10_000_000, edx); EDX <> 0; dec(edx)) do

 ZStrCpy(LStr1, LResult);
 ZStrCat(LStr1, LResult);
 ZStrCmp(LStr1, LResult);

 endfor;

 stdout.put(nl “All Done!” nl);

end StringComparisons;

Program 13.14 Performance Evaluation of String Formats

13.3.18 Introduction to Compile-Time Programs

In this laboratory exercise you will run a sample compile-time program that has no run-time component.
This compile-time program demonstrates the use of the #while and #print statements as well as the declara-
tion and use of compile-time constants and variables (VAL objects).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1217

Chapter Thirteen Volume Four
// Demonstration of a simple compile-time program:

program ctPgmDemo;
const
 MaxIterations:= 10;

val
 i:int32;

#print(“Compile-time loop:”);
#while(i < MaxIterations)

 #print(“i=”, i);
 ?i := i + 1;

#endwhile
#print(“End of compile-time program”);

begin ctPgmDemo;
end ctPgmDemo;

Program 13.15 A Simple Compile-Time Program

Exercise A. Compile this program. Describe its output during compilation in your lab report.

Exercise B. Although this source contains only a compile-time program, its compilation also produces
a run-time program. After compiling the code, execute the corresponding EXE file this program produces.
Explain the result of executing this program in your lab report.

Exercise C. What happens if you move the compile-time program from its current location (in the dec-
laration section) to the body of the main program (i.e., between the BEGIN and END clauses)? Do this and
repeat exercises A and B. Include the source code and explain the results in your lab report.

13.3.19 Conditional Compilation and Debug Code

Although the conditional compilation statements (#IF, #ELSE, etc.) are quite useful for many tasks, a
principle use for these compile-time statements is to control the emission of debugging code. By using a
single constant (e.g., "debug") declared as true or false at the beginning of your program, you can easily con-
trol the compilation of statements that should only appear in the run-time code during debugging runs. The
following program has a subtle bug (you will get the opportunity to discover this problem for yourself). The
use of debugging statements make locating this problem much easier. You can easily enable or disable the
debugging statements by changing the value of the debug variable (between true and false).

// Demonstration of conditional compilation:

program condCompileDemo;
#include(“stdlib.hhf”);

// The following constant declaration controls the automatic
// compilation of debug code in the program. Set “debug” to
// true in order to enable the compilation of the debugging
// code; set this constant to false to disable the debug code.

const debug := false;
Page 1218 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
// Normal variables and constants this program uses:

const
 MaxElements := 10;

static
 uArray:uns32[MaxElements];
 LoopControlVariable:uns32;

begin condCompileDemo;

 try

 for
 (
 mov(MaxElements-1, LoopControlVariable);
 LoopControlVariable >= 0;
 dec(LoopControlVariable)
) do

 #if(debug)

 stdout.put(“LoopControlVariable = “, LoopControlVariable, nl);

 #endif
 mov(LoopControlVariable, ebx);
 mov(0, uArray[ebx*4]);

 endfor;

 anyexception

 stdout.put(“Exception $”, eax, “ raised in loop”, nl);
 endtry;

end condCompileDemo;

Program 13.16 Using Conditional Compilation to Control Debugging Code

Exercise A. Set the debug constant to false. Run this program and explain the results in your lab report.
Do not try to correct the defect yet (even if the defect is obvious to you).

Exercise B. Set the debug constant to true. Rerun the program and explain the results in your lab report
(if you cannot figure out what the problem is, ask your instructor for help).

Exercise C. Correct the defect and rerun the program. The value of the debug constant should still be
true. Include the program’s output in your laboratory report.

Exercise D. Set the value of the debug constant to false and recompile and run your program. Include
the program’s output in your lab report. In your lab report, explain how you could use conditional compila-
tion and this debug variable to help track down problems in your own programs. In particular, explain why
conditional compilation is helpful here (i.e., why not simply insert and remove the debugging code without
using conditional compilation?).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1219

Chapter Thirteen Volume Four
13.3.20 The Assert Macro

The HLA Standard Library "excepts.hhf"2 header file contains a macro, assert, that is quite useful for
debugging purposes. This macro is defined as follows:

 macro assert(expr):
 skipAssertion,
 msg;

 #if(!ex.NDEBUG)

 readonly

 msg:string := @string:expr;

 endreadonly;
 jt(expr) skipAssertion;

 mov(msg, ex.AssertionStr);
 raise(ex.AssertionFailed);

 skipAssertion:

 #endif

 endmacro;

The purpose of the assert macro is to test a boolean expression. If the boolean expression evaluates true
then the assert macro does nothing; however, if the boolean expression evaluates false, then assert raises an
exception (ex.AssertionFailed). This macro is quite handy for checking the validity of certain expressions
while your program is running (e.g., checking to see if an array index is within the appropriate bounds).

If you take a close look at the assert macro definition, you’ll discover that an #IF statement surrounds
the body of the macro. If the symbol ex.NDEBUG (No DEBUG) is true, the assert macro does not generate
any code; conversely, assert will generate the code to test the boolean expression if ex.NDEBUG is false.
The reason for the #IF statement is to allow you to insert debugging assertions throughout your code and
easily disable all of them with a single statement at the beginning of your program. By default, assertions
are active and will generate code (i.e., the VAL object ex.NDEBUG initially contains false). You may dis-
able code generation for assertions by including the following statement at the beginning of your program
(after the #Include("stdlib.hhf") or #Include("excepts.hhf") directive which defines the ex.NDEBUG VAL
object):

?ex.NDEBUG := true;

You can even sprinkle statements throughout your program to selective turn code emission for the assert
macro on and off by setting ex.NDEBUG to false and true (respectively). However, turning on all asserts or
turning off all asserts at the beginning of your program should prove sufficient.

During testing, you should leave all assertions active so the program can help you locate defects (by
raising an exception if an assertion fails). Later, when you’ve debugged your code and are confident that it
behaves correctly, you can eliminate the overhead of the assert macros by setting the ex.NDEBUG object to
true.

The following sample program demostrates how to detect a common error (array bounds violation) use-
ing an assert macro. This is the program from the previous exercise (with the same problem) adapted to use
the assert macro rather than explicit debugging code.

2. The "stdlib.hhf" header file automatically includes the "excepts.hhf" header file.
Page 1220 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
// Demonstration of the Assert macro:

program assertDemo;
#include(“stdlib.hhf”);

// Set the following variable to true to tell HLA
// not to generate code for ASSERT debug macros
// (i.e., if NDEBUG [no debug] is true, turn off
// the debugging code).
//
// Conversely, set this to false to activate the
// debugging code associated with the assert macros.

val ex.NDEBUG := false;

// Normal variables and constants this program uses:

const
 MaxElements := 10;

static
 uArray:uns32[MaxElements];
 LoopControlVariable:uns32;

begin assertDemo;

 for
 (
 mov(MaxElements-1, LoopControlVariable);
 LoopControlVariable >= 0;
 dec(LoopControlVariable)
) do

 mov(LoopControlVariable, ebx);

 // The following assert verifies that
 // EBX is the range legal range for
 // elements of the uArray object:

 assert(ebx in 0..@elements(uArray)-1);
 mov(0, uArray[ebx*4]);

 endfor;

end assertDemo;

Program 13.17 Demonstration of the Assert Macro

Exercise A. Compile and run this program. Describe the results in your laboratory report. (Do not cor-
rect the defect in the program.)

Exercise B. Change the statement "?ex.NDEBUG := false;" so that the ex.NDEBUG VAL object is set
to true. Compile and run the program (with the defect still present). Describe the results in your laboratory
report. If you were debugging this code and didn’t know the cause of the error, which exception message do
you think would help you locate the defect faster? Why? Explain this in your lab report.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1221

Chapter Thirteen Volume Four
Exercise C. Correct the defect (ask your instructor if you don’t see the problem) and rerun the program
with ex.NDEBUG set to true and false (on separate runs). How does this affect the execution of your (cor-
rect) program?

13.3.21 Demonstration of Compile-Time Loops (#while)

In this laboratory exercise you will use the #WHILE compile-time statement for two purposes. First,
this program uses #WHILE to generate data for a table during the compilation of the program. Second, this
program uses #WHILE in order to unroll a loop (see “Unraveling Loops” on page 776 for more details on
unrolling loops). This sample program also uses the #IF compile-time statement, along with the UnrollLoop
constant, in order to control whether this program generates a FOR loop to manipulate an array or unroll the
FOR loop using the #WHILE statement. Here’s the source code for this exercise:

// Demonstration of the #while statement:

program whileDemo;
#include(“stdlib.hhf”);

// Set the following constant to true in order to use loop unrolling
// when initializing the array at run-time. Set this constant to
// false to use a run-time FOR loop to initialize the data:

const UnrollLoop := true;

// Normal variables and constants this program uses:

const
 MaxElements := 16;

static
 index:uns32;
 iArray:int32[MaxElements] :=
 [

 // The following #while loop initializes
 // each element of the array (except the
 // last element) with the negative version
 // of the index into the array.

 ?i := 0;
 #while(i < MaxElements-1)

 -i,
 ?i := i + 1;

 #endwhile

 // Initialize the last element (special case here
 // because we can’t have a comma at the end of the
 // list).

 -i
];

begin whileDemo;
Page 1222 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
 // Display the current elements in the array:

 stdout.put(“Initialized elements of iArray:”, nl, nl);
 for(mov(0, ebx); ebx < MaxElements; inc(ebx)) do

 assert(ebx in 0..MaxElements-1);
 stdout.put(“iArray[“, (type uns32 ebx), “] = “, iArray[ebx*4], nl);

 endfor;

 #if(UnrollLoop)

 // Reset the array elements using an unrolled loop.

 ?i := 0;
 #while(i < MaxElements)

 mov(MaxElements-i, iArray[i*4]);
 ?i := i + 1;

 #endwhile

 #else // Reset the array using a run-time FOR loop.

 for(mov(0, ebx); ebx < MaxElements; inc(ebx)) do

 mov(MaxElements, eax);
 sub(ebx, eax);
 assert(ebx < MaxElements);
 mov(eax, iArray[ebx*4]);

 endfor;

 #endif

 // Display the new array elements (should be MaxElements downto 1):

 stdout.put(nl, “Reinitialized elements of iArray:”, nl, nl);
 for(mov(0, ebx); ebx < MaxElements; inc(ebx)) do

 assert(ebx in 0..MaxElements-1);
 stdout.put(“iArray[“, (type uns32 ebx), “] = “, iArray[ebx*4], nl);

 endfor;
 stdout.put(nl, “All done!”, nl, nl);

end whileDemo;

Program 13.18 #While Loop Demonstration

Exercise A. Compile and execute this program. Include the output in your laboratory report.

Exercise B. Change the UnrollLoop constant from true to false. Recompile and run the program.
Include the output in your laboratory report. Describe the differences between the two programs (in particu-
lar, you should take care to describe how these two runs produce their output).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1223

Chapter Thirteen Volume Four
13.3.22 Writing a Trace Macro

When debugging HLA programs, especially in the absence of a good debugging tool, a common need is
to print a brief message that effectively says "here I am" while the program is running. The execution of
such a statement lets you know that the program has reached a certain point in the source code during execu-
tion.

If you only need a single such statement, probably the easiest way to achieve this is to use the stdout.put
statement as follows:

stdout.put("Here I am" nl);

Of course, if you have more than one such statement in your program you will need to modify the string
your print so that each stdout.put statement prints a different message (so you can easily identify which
statements execute in the program). A typical solution is to print a unique number with each string, e.g.,

stdout.put("Here I am at point 1" nl);
.
.
.

stdout.put("Here I am at point 2" nl);
.
.
.

stdout.put("Here I am at point 3" nl);
.
.
.

There is a big problem with this approach: it’s very easy to become confused and repeat the same num-
ber twice. This, of course, does you no good when the program prints that particular value. One way to han-
dle this is to print the line number of the stdout.put statement. Unless you put two such statements on the
same line (which would be very unusual), each call to stdout.put would produce a unique output value. You
can easily display the line number of the statement using the HLA @LineNumber compile-time function:

stdout.put("Here I am at line ", @LineNumber, nl);

There is a problem with inserting code like this into your program: you might forget to remove it later.
As noted in section 6.7, you can use the conditional compilation directives to let you easily turn debugging
code on and off in your program. E.g., you could replace the statement above by

#if(debug)

stdout.put("Here I am at line ", @LineNumber, nl);

#endif

Now, by setting the constant debug to true or false at the beginning of your program, you can easily turn the
code generation of these "trace" statements on and off.

While this is very close to what we need, there is still a problem with this approach: it’s a lot of code.
That makes it difficult to write and the amount of incidental code in your program obscures the statements
that do actual work, making your program harder to read and understand. What would really be nice is a sin-
gle, short, statement that automatically generates code like the above if debug is true (and doesn’t generate
anything if debug is false). I.e., what would would really like is to be able to write something like the fol-
lowing:

trace;
Page 1224 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
Presumably, trace expands into code similar to the above.

In this laboratory exercise you will get to use just such a macro. The actual definition of trace is some-
what complicated by the behavior of eager vs. deferred macro parameter expansion (See “Eager vs. Deferred
Macro Parameter Evaluation” on page 949.). Also, trace is actually a TEXT object rather than a macro so
that trace can automatically expand to a macro invocation and pass in a line number parameter (this saves
having to type something like "trace(@LineNumber)" manually). Here is a program that defines and uses
trace as described above:

// Demonstration of macros and the development of a debugging tool:

program macroDemo;
#include(“stdlib.hhf”);

// The TRACE “macro”.
//
// Putting “trace;” at a point in an executable section of
// your program tells HLA to print the line number of that
// statement when it encounters the statement during program
// execution. Setting the “traceOn” variable to true or false
// turns on and off the display of the trace line numbers
// during execution.
//
// Note that the “trace” object is actually a text constant
// that expands to the “tracestmt” macro invocation. This
// saves you from having to type “@linenumber” as a parameter
// to every tracestmt invocation (see the text to learn why
// you can’t simply bury “@linenumber” within the tracestmt
// macro body).

const traceOn := true;

const trace:text := “tracestmt(@eval(@LineNumber))”;
macro tracestmt(LineNumber);

 #if(traceOn)

 stdout.put(“line: “, LineNumber, nl);

 #endif

endmacro;

// Normal variables and constants this program uses:

const
 MaxElements := 16;

static
 index:uns32;
 iArray:int32[MaxElements];

begin macroDemo;

 trace;
 mov(0, ebx);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1225

Chapter Thirteen Volume Four
 trace;
 while(ebx < MaxElements) do

 mov(MaxElements, eax);
 sub(ebx, eax);
 assert(ebx < MaxElements);
 mov(eax, iArray[ebx*4]);
 inc(ebx);

 endwhile;
 trace;

 // Display the new array elements (should be MaxElements downto 1):

 stdout.put(nl, “Elements of iArray:”, nl, nl);
 trace;
 for(mov(0, ebx); ebx < MaxElements; inc(ebx)) do

 assert(ebx in 0..MaxElements-1);
 stdout.put(“iArray[“, (type uns32 ebx), “] = “, iArray[ebx*4], nl);

 endfor;
 trace;
 stdout.put(nl, “All done!”, nl, nl);

end macroDemo;

Program 13.19 Trace Macro

Exercise A. Compile and run this program. Include the output in your laboratory report.

Exercise B. Add additional "trace;" statements to the program (e.g., stick them inside the WHILE and
FOR loops). Recompile and run the program. Include the output in your lab report. Comment on the use-
fulness of the trace macro in your lab report.

Exercise C. Change the traceOn constant to false. Recompile and run your program. Explain the out-
put in your lab report.

13.3.23 Overloading

A nifty feature in the C++ language is function overloading. Function overloading lets you use the
same function (procedure) name for different functions leaving the compiler to differentiate the functions by
the number and types of the function’s parameters. Although HLA does not directly support procedure over-
loading, it is very easy to simulate this using HLA’s compile-time language. The following sample program
demonstrates how to write a Max "function" that computes the maximum of two values whose types can be
uns32, int32, or real32.

// Demonstration of using macros to implement function overloading:

program overloadDemo;
#include(“stdlib.hhf”);

procedure i32Max(val1:int32; val2:int32; var dest:int32);
begin i32Max;
Page 1226 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
 push(eax);
 push(ebx);

 mov(val1, eax);
 mov(dest, ebx);
 if(eax < val2) then

 mov(val2, eax);

 endif;
 mov(eax, [ebx]);
 pop(ebx);
 pop(eax);

end i32Max;

procedure u32Max(val1:uns32; val2:uns32; var dest:uns32);
begin u32Max;

 push(eax);
 push(ebx);

 mov(val1, eax);
 mov(dest, ebx);
 if(eax < val2) then

 mov(val2, eax);

 endif;
 mov(eax, [ebx]);
 pop(ebx);
 pop(eax);

end u32Max;

procedure r32Max(val1:real32; val2:real32; var dest:real32);
begin r32Max;

 push(eax);
 push(ebx);

 mov(dest, ebx);
 fld(val1);
 fld(val2);
 fcompp();
 fstsw(ax);
 sahf();
 if(@b) then

 mov(val1, eax); // Since real32 fit in EAX, just use EAX

 else

 mov(val2, eax);

 endif;
 mov(eax, [ebx]);
 pop(ebx);
 pop(eax);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1227

Chapter Thirteen Volume Four
end r32Max;

macro Max(val1, val2, dest);

 #if(@typeName(val1) = “uns32”)

 u32Max(val1, val2, dest);

 #elseif(@typeName(val1) = “int32”)

 i32Max(val1, val2, dest);

 #elseif(@typeName(val1) = “real32”)

 r32Max(val1, val2, dest);

 #else

 #error
 (
 “Unsupported type in ‘Max’ function: ‘” +
 @typeName(val1) +
 “‘”
)

 #endif

endmacro;

static
 u1:uns32 := 5;
 u2:uns32 := 6;
 ud:uns32;

 i1:int32 := -5;
 i2:int32 := -6;
 id:int32;

 r1:real32 := 5.0;
 r2:real32 := -6.0;
 rd:real32;

begin overloadDemo;

 Max(u1, u2, ud);
 Max(i1, i2, id);
 Max(r1, r2, rd);

 stdout.put
 (
 “Max(“, u1, “, “, u2, “) = “, ud, nl,
 “Max(“, i1, “, “, i2, “) = “, id, nl,
 “Max(“, r1, “, “, r2, “) = “, rd, nl
);
Page 1228 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
end overloadDemo;

Program 13.20 Procedure Overloading Demonstration

Exercise A. Compile and run this program. Include the output in your laboratory report.

Exercise B. Add an additional statement to the main program that attempts to compute the maximum of
an int32 and real32 object (storing the result in an uns32 object). Compile the program and explain the
results in your lab report.

Exercise C. Extend the Max macro so that it can handle real64 objects in addition to uns32, int32, and
real32 objects. Note that you will have to write an r64Max function as well as modify the Max macro (hint:
you will not be able to simply clone the r32Max procedure to achieve this).

13.3.24 Multi-part Macros and RatASM (Rational Assembly)

While the trace macro of the previous section is very nice and quite useful for debugging purpose, it
does have one major drawback, you have to explicitly insert trace macro invocations into your source code
in order to take advantage of this debugging facility. If you have an existing program, into which you have
not inserted any trace invocations, it might be a bit of effort to instrument your program by inserting dozens
or hundreds of trace invocations into the program. Wouldn’t it be nice if HLA code do this for you automat-
ically?

Unfortunately, HLA cannot automatically insert trace invocations into your program for you. However,
with a little preparation, you can almost achieve this goal. To do this, we’ll define a special Domain Specific
Embedded Language (See “Domain Specific Embedded Languages” on page 975.) that defines some of the
high level language statements found in HLA (similar to what appears in “Implementing the Standard HLA
Control Structures” on page 975). However, rather than simply mimic the existing control structures, our
new control structures will also automatically inject some output statements into the code if the traceOn
constant is true. We’ll call this DSEL RatASM (after RatC, which adds the same type of tracing features to
the C/C++ language). RatASM is short for Rational Assembly (note that the names RatASM and RatC are
derivations of RATFOR, Kernighan and Plauger’s RATional FORtran preprocessor).

RatASM works as follows: rather than using statements like WHILE..DO..ENDWHILE or
FOR..DO..ENDFOR, you use the _while.._do.._endwhile and _for.._do.._endfor macros to do the same
thing. These macros essentially expand into the equivalent HLA high level language statements. If the tra-
ceOn constant is true, then these macros also emit some additional code to display the name of the control
structure and the corresponding line number. The following sample program provides multi-part macros for
the _for and _while statements that support this tracing feature:

// Demonstration of multi-part macros and the development
// of yet another debugging tool:

program RatASMdemo;
#include(“stdlib.hhf”);

// The TRACE “macro”.
//
// Putting “trace;” at a point in an executable section of
// your program tells HLA to print the line number of that
// statement when it encounters the statement during program
// execution. Setting the “traceOn” variable to true or false
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1229

Chapter Thirteen Volume Four
// turns on and off the display of the trace line numbers
// during execution.
//
// Note that the “trace” object is actually a text constant
// that expands to the “tracestmt” macro invocation. This
// saves you from having to type “@linenumber” as a parameter
// to every tracestmt invocation (see the text to learn why
// you can’t simply bury “@linenumber” within the tracestmt
// macro body).

const traceOn := true;

const trace:text := “tracestmt(@eval(@LineNumber))”;
macro tracestmt(LineNumber);

 #if(traceOn)

 stdout.put(“trace(“, LineNumber, “)”, nl);

 #endif

endmacro;

macro traceRatASM(LineNumber, msg);

 #if(traceOn)

 stdout.put(msg, “: “, LineNumber, nl);

 #endif

endmacro;

// The “RatASM” (rational assembly) “FOR” statement.
//
// Behaves just like the standard HLA FOR statement
// except it provides the ability to transparently
// trace the execution of FOR statements in a program.

const _for:text := “?_CurStmtLineNumber := @LineNumber; raFor”;
macro raFor(init, expr, increment):ForLineNumber;
 ?ForLineNumber := _CurStmtLineNumber;
 traceRatASM(_CurStmtLineNumber, “FOR”);
 for(init; expr; increment) do

 traceRatASM(_CurStmtLineNumber, “for”);

 keyword _do;
 terminator _endfor;

 endfor;
 traceRatASM(_CurStmtLineNumber, “endfor”);

endmacro;

// The “RatASM” (rational assembly) “WHILE” statement.
//
// Behaves just like the standard HLA WHILE statement
Page 1230 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
// except it provides the ability to transparently
// trace the execution of WHILE statements in a program.

const _while:text := “?_CurStmtLineNumber := @LineNumber; raWhile”;
macro raWhile(expr):WhileLineNumber;
 ?WhileLineNumber := _CurStmtLineNumber;
 traceRatASM(_CurStmtLineNumber, “WHILE”);
 while(expr) do

 traceRatASM(_CurStmtLineNumber, “while”);

 keyword _do;
 terminator _endwhile;

 endwhile;
 traceRatASM(_CurStmtLineNumber, “endwhile”);

endmacro;

// Normal variables and constants this program uses:

const
 MaxElements := 16;

static
 index:uns32;
 iArray:int32[MaxElements];

begin RatASMdemo;

 trace;
 mov(0, ebx);
 _while(ebx < MaxElements) _do

 mov(MaxElements, eax);
 sub(ebx, eax);
 assert(ebx < MaxElements);
 mov(eax, iArray[ebx*4]);
 inc(ebx);

 _endwhile;

 // Display the new array elements (should be MaxElements downto 1):

 stdout.put(nl, “Elements of iArray:”, nl, nl);
 _for(mov(0, ebx), ebx < MaxElements, inc(ebx)) _do

 assert(ebx in 0..MaxElements-1);
 stdout.put(“iArray[“, (type uns32 ebx), “] = “, iArray[ebx*4], nl);

 _endfor;
 stdout.put(nl, “All done!”, nl, nl);

end RatASMdemo;

Program 13.21 Demonstration of RatASM _WHILE and _FOR Loops
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1231

Chapter Thirteen Volume Four
Exercise A. Compile and run this program. Include the output in your lab report. Note that some trace
messages display their text in uppercase while others display their text in lowercase. Figure out the differ-
ence between these two messages and describe the difference in your lab report.

Exercise B. Set the traceOn constant to false. Recompile and run the program. Describe the output in
your lab report.

Exercise C. Using the _while and _for definitions as a template, create a _repeat.._until RatASM state-
ment and modify the main program by adding this statement (your choice what the loop will actually do).
Include the source code in your lab report. Compile and run the program with the traceOn constant set to
true and then set to false. Include the output of the program in your lab report.

13.3.25 Virtual Methods vs. Static Procedures in a Class

Class methods and procedures are generally interchangeable in a program. One exception occurs with
polymorphism. If you have a pointer to an object rather than a standard object variable, the semantics of
method versus procedure calls are different. In this exercise you will explore those differences.

program PolyMorphDemo;
#include(“stdlib.hhf”);

type
 baseClass: class

 procedure Create; returns(“esi”);
 procedure aProc;
 method aMethod;

 endclass;

 derivedClass: class inherits(baseClass)

 override procedure Create;
 override procedure aProc;
 override method aMethod;

 endclass;

// Methods for the baseClass class type:

procedure baseClass.Create; nodisplay; noframe;
begin Create;

 stdout.put(“called baseClass.Create”, nl);

 push(eax);
 if(esi = 0) then

 mov(malloc(@size(baseClass)), esi);

 endif;
 mov(&baseClass._VMT_, this._pVMT_);
 pop(eax);
 ret();

end Create;
Page 1232 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
procedure baseClass.aProc; nodisplay; noframe;
begin aProc;

 stdout.put(“Called baseClass.aProc” nl);
 ret();

end aProc;

method baseClass.aMethod; nodisplay; noframe;
begin aMethod;

 stdout.put(“Called baseClass.aMethod” nl);
 ret();

end aMethod;

// Methods for the derivedClass class type:

procedure derivedClass.Create; nodisplay; noframe;
begin Create;

 stdout.put(“called derivedClass.Create”, nl);

 push(eax);
 if(esi = 0) then

 mov(malloc(@size(derivedClass)), esi);

 endif;
 mov(&derivedClass._VMT_, this._pVMT_);
 pop(eax);
 ret();

end Create;

procedure derivedClass.aProc; nodisplay; noframe;
begin aProc;

 stdout.put(“Called derivedClass.aProc” nl);
 ret();

end aProc;

method derivedClass.aMethod; nodisplay; noframe;
begin aMethod;

 stdout.put(“Called derivedClass.aMethod” nl);
 ret();

end aMethod;

static
 vmt(baseClass);
 vmt(derivedClass);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1233

Chapter Thirteen Volume Four
var
 b: baseClass;
 d: derivedClass;

 bPtr: pointer to baseClass;
 dPtr: pointer to derivedClass;

 generic: pointer to baseClass;

begin PolyMorphDemo;

 // Deal with the b and d objects:

 stdout.put(“Manipulating ‘b’ object:” nl);

 b.Create();
 b.aProc();
 b.aMethod();

 stdout.put(nl “Manipulating ‘d’ object:” nl);

 d.Create();
 d.aProc();
 d.aMethod();

 // Now work with pointers to the objects:

 stdout.put(nl “Manipulating ‘bPtr’ object:” nl);

 mov(baseClass.Create(), bPtr);
 bPtr.aProc();
 bPtr.aMethod();

 stdout.put(nl “Manipulating ‘dPtr’ object:” nl);

 mov(derivedClass.Create(), dPtr);
 dPtr.aProc();
 dPtr.aMethod();

 // Demonstrate polymorphism using the ‘generic’ pointer.

 stdout.put(nl “Manipulating ‘generic’ object:” nl);

 mov(bPtr, generic);
 generic.aProc();
 generic.aMethod();

 mov(dPtr, generic);
 generic.aProc();
 generic.aMethod();

end PolyMorphDemo;

Program 13.22 Polymorphism Demonstration
Page 1234 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
Exercise A: Compile and run the program. Include the output in your lab report. Describe the output
and explain why you got the output you did. Especially explain the output of the generic procedure and
method invocations.

Exercise B: Add a second pointer variable, generic2, whose type is a pointer to derivedClass. Initialize
this pointer with the value from the dPtr variable and invoke the dPtr.aProc procedure and dPtr.aMethod
method. Run the program and include the output in your lab report. Explain why these procedure/method
invocations produce different output than the output from the generic procedure and method invocations.

13.3.26 Using the _initialize_ and _finalize_ Strings in a Program

Although HLA does not provide a mechanism that automatically invokes an object’s constructors when
the procedure, iterator, method, or program that contains the object’s declaration begins execution, you can
simulate this by using HLA’s _initialize_ string. Likewise, HLA does not automatically call a class destruc-
tor associated with an object when that object goes out of scope; still, you can simulate this by using the
finalize string. In this laboratory exercise you will experiment with these two string values.

Note: the following program demonstrates the use of a class definition macro that manipulates the
initialize string in order to automatically invoke a class’ constructor. Adding a class destructor and modi-
fying the value of the _finalize_ string is one of the activities you will do in this laboratory exercise.

// Using _initialize_ and _finalize_ in a program.

program InitFinalDemo;
#include(“stdlib.hhf”);

// Define a simple class with a constructor and
// a method to demonstrate the use of the _initialize
// string.
type
 _myClass: class

 var
 s:string;

 procedure Create; returns(“esi”);
 method put;
 method assign(theValue:string);

 endclass;

// Define a “pseudo-type”. That is a macro that we use
// in place of the “_myClass” name. In addition to actually
// defining the macro name, this macro will modify the
// _initialize_ string so that the procedure/program/whatever
// containing the object declaration does an automatic call to
// the constructor.

macro myClass:theID;

 forward(theID);
 ?_initialize_ := _initialize_ + @string:theID + “.Create();”;
 theID:_myClass

endmacro;

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1235

Chapter Thirteen Volume Four
// Methods for the baseClass class type:

procedure _myClass.Create; nodisplay; noframe;
begin Create;

 push(eax);
 if(esi = 0) then

 mov(malloc(@size(_myClass)), esi);

 endif;
 mov(&_myClass._VMT_, this._pVMT_);

 // Within the constructor, initialize the string
 // to a reasonable value:

 mov(str.a_cpy(““), this.s);

 pop(eax);
 ret();

end Create;

method _myClass.assign(theValue:string); nodisplay;
begin assign;

 push(eax);

 // First, free the current value of the s field.

 strfree(this.s);

 // Now make a copy of the parameter value and point
 // the s field at this copy:

 mov(str.a_cpy(theValue), this.s);

 pop(eax);

end assign;

method _myClass.put; nodisplay; noframe;
begin put;

 stdout.put(this.s);
 ret();

end put;

static
 vmt(_myClass);

var
 mc:myClass;

begin InitFinalDemo;
Page 1236 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
 stdout.put(“Initial value of mc.s = “““);
 mc.put();
 stdout.put(““““ nl);

 mc.assign(“Hello World”);
 stdout.put(“After mc.assign(““Hello World””), mc.s=”””);
 mc.put();
 stdout.put(““““ nl);

end InitFinalDemo;

Program 13.23 Code for _initialize_/_finialize_ Laboratory Exercise

Exercise A: compile and run this program. Include the output of this program in your laboratory report.
Explain the output you obtain (and, in particular, explain why you get the output that you do). Specifically,
describe how this code automatically calls the constructor for the mc object.

Exercise B: the _myClass class does not have a destructor. Write a destructor for this class. Note that
class objects have a string variable that is allocated on the heap. Therefore, one of the tasks for this destruc-
tor is to free the storage associated with that string. You should also print a short message in the destructor to
let you know that it has been called. Modify the main program to call mc.Destroy (Destroy being the con-
ventional name for a class destructor) at the very end of the program.

For extra credit: this program assumes that the s field always points at an object that has been allocated
on the heap. In the HLA Standard Library memory allocation module there is a function that will tell you
whether a pointer is pointing into the heap. Use this function to verify that s contains a valid pointer you can
free before freeing the storage associated with this string point. To test this, try initializing the s field with an
address that is not on the heap and then call the destructor to see how it responds.

Exercise C: modify the myClass macro so that the program automatically calls the destructor when the
object loses scope. To do this, you will need to modify the value of the _finalize_ string. Use the existing
modification of the _initialize_ string as a template (and, of course, look up how to do this earlier in this
chapter). Include a sample run in your lab report and explain what is happening and how the destructor is
activating.

Exercise D: using a macro to simulate automatic constructor and destructor calls is not a panacea. Try
declaring the following and compiling your program and explain what happens during the compilation:

• Declare a “pointer to myClass” variable.
• Declare a new type name which simply renames the “myClass” type.

Bonus exercise: declare an array of myClass objects. Syntactically the compiler should accept this.
Explain the problem with this declaration considering the purpose of this exercise. Include a sample pro-
gram with your lab report that demonstrates the problem when declaring arrays of myClass objects.

13.3.27 Using RTTI in a Program

Run-time type information (RTTI) lets you determine the specific type of a generic object. This is quite
useful when you might need to do some special processing for certain objects if they have a given type. In
this exercise you will see a simple demonstration of RTTI in a generic program that demonstrates how you
can use RTTI to achieve this goal.

// Using RTTI in a program.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1237

Chapter Thirteen Volume Four
program RTTIdemo;
#include(“stdlib.hhf”);

// Define some classes so we can demonstrate RTTI:

type
 baseClass: class

 procedure Create; returns(“esi”);
 procedure aProc;
 method aMethod;

 endclass;

 derivedClass: class inherits(baseClass)

 override procedure Create;
 override procedure aProc;
 override method aMethod;
 method dcNewMethod;

 endclass;

 anotherDerivedClass: class inherits(baseClass)

 override procedure Create;
 override procedure aProc;
 override method aMethod;
 method adcNewMethod;

 endclass;

/**/

// Methods for the baseClass class type:

procedure baseClass.Create; nodisplay; noframe;
begin Create;

 stdout.put(“called baseClass.Create”, nl);

 push(eax);
 if(esi = 0) then

 mov(malloc(@size(baseClass)), esi);

 endif;
 mov(&baseClass._VMT_, this._pVMT_);
 pop(eax);
 ret();

end Create;

procedure baseClass.aProc; nodisplay; noframe;
begin aProc;

 stdout.put(“Called baseClass.aProc” nl);
 ret();
Page 1238 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises

end aProc;

method baseClass.aMethod; nodisplay; noframe;
begin aMethod;

 stdout.put(“Called baseClass.aMethod” nl);
 ret();

end aMethod;

/**/

// Methods for the derivedClass class type:

procedure derivedClass.Create; nodisplay; noframe;
begin Create;

 stdout.put(“called derivedClass.Create”, nl);

 push(eax);
 if(esi = 0) then

 mov(malloc(@size(derivedClass)), esi);

 endif;
 mov(&derivedClass._VMT_, this._pVMT_);
 pop(eax);
 ret();

end Create;

procedure derivedClass.aProc; nodisplay; noframe;
begin aProc;

 stdout.put(“Called derivedClass.aProc” nl);
 ret();

end aProc;

method derivedClass.aMethod; nodisplay; noframe;
begin aMethod;

 stdout.put(“Called derivedClass.aMethod” nl);
 ret();

end aMethod;

method derivedClass.dcNewMethod; nodisplay; noframe;
begin dcNewMethod;

 stdout.put(“Called derivedClass.dcNewMethod” nl);
 ret();

end dcNewMethod;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1239

Chapter Thirteen Volume Four
/**/

// Methods for the anotherDerivedClass class type:

procedure anotherDerivedClass.Create; nodisplay; noframe;
begin Create;

 stdout.put(“called anotherDerivedClass.Create”, nl);

 push(eax);
 if(esi = 0) then

 mov(malloc(@size(anotherDerivedClass)), esi);

 endif;
 mov(&anotherDerivedClass._VMT_, this._pVMT_);
 pop(eax);
 ret();

end Create;

procedure anotherDerivedClass.aProc; nodisplay; noframe;
begin aProc;

 stdout.put(“Called anotherDerivedClass.aProc” nl);
 ret();

end aProc;

method anotherDerivedClass.aMethod; nodisplay; noframe;
begin aMethod;

 stdout.put(“Called anotherDerivedClass.aMethod” nl);
 ret();

end aMethod;

method anotherDerivedClass.adcNewMethod; nodisplay; noframe;
begin adcNewMethod;

 stdout.put(“Called anotherDerivedClass.adcNewMethod” nl);
 ret();

end adcNewMethod;

/**/

static
 vmt(baseClass);
 vmt(derivedClass);
 vmt(anotherDerivedClass);

 bc: baseClass;
 dc: derivedClass;
 dc2: anotherDerivedClass;
Page 1240 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises

 pbc: pointer to baseClass;

 // Randomly select one of the above class variables and
 // return its address in EAX:

 procedure randomSelect
 (
 var b:baseClass;
 var d:derivedClass;
 var a:anotherDerivedClass
);
 nodisplay; returns(“eax”);

 begin randomSelect;

 // Get a pseudo-random number between zero and two and
 // use this value to select one of the addresses passed
 // in as a parameter:

 rand.urange(0, 2);
 if(al == 0) then

 mov(b, eax);

 elseif(al = 1) then

 mov(d, eax);

 else

 mov(a, eax);

 endif;

 end randomSelect;

begin RTTIdemo;

 // Warning: This code only works on Pentium and
 // compatible chips that have an enabled RDTSC
 // instruction. If your CPU doesn’t support this,
 // you will have to replace this code with something
 // else. (Suggestion: read a value from the user
 // and call rand.uniform the specified number of times.)

 rand.randomize();

 // Okay, initialize our class objects:

 bc.Create();
 dc.Create();
 dc2.Create();

 // Demonstrate calling a common method for each of these
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1241

Chapter Thirteen Volume Four
 // objects:

 bc.aMethod();
 dc.aMethod();
 dc2.aMethod();

 // Randomly select one of the objects and use RTTI to
 // exactly determine which one we want:

 for(mov(0, ecx); ecx < 10; inc(ecx)) do

 // Do the random selection:

 mov(randomSelect(bc, dc, dc2), pbc);

 // Print a separator:

 stdout.put
 (
 nl
 “--------------------------------------”
 nl
);

 // Call aProc just to verify that this is a baseClass variable:

 pbc.aProc();

 // Call aMethod to display the actual type:

 pbc.aMethod();

 // Okay, use RTTI to determine the actual type of this object
 // and call a method specific to that type (if appropriate)
 // to demonstrate RTTI.

 mov(pbc, eax);

 // If the object’s VMT pointer field contains the address of
 // derivedClass’ VMT, then this must be a derivedClass object.

 if((type baseClass [eax])._pVMT_ = &derivedClass._VMT_) then

 (type derivedClass [eax]).dcNewMethod();

 // If the object’s VMT pointer field contains the address of
 // anotherDerivedClass’ VMT, then this must be an
 // anotherDerivedClass object.

 elseif((type baseClass [eax])._pVMT_ = &anotherDerivedClass._VMT_) then

 (type derivedClass [eax]).dcNewMethod();

 // If the object’s VMT pointer field contains the address of
 // baseClass’ VMT, then this must be a baseClass object.

 elseif((type baseClass [eax])._pVMT_ = &baseClass._VMT_) then

 stdout.put
 (
 “This is the base class, there are no special methods”
Page 1242 © 2001, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
 nl
);

 // This case should never happen...

 else

 stdout.put(“Whoa! Something weird is going on...” nl);

 endif;

 endfor;

end RTTIdemo;

Program 13.24 Code for RTTI Laboratory Exercise

Exercise A: Run this program and include the output in your laboratory report. Explain the results that
you’re getting.

Exercise B: Run the program a second time. Is the output the same as the first run? If not, explain this
in your laboratory report.

Optional: If your CPU does not support the RDTSC instruction, modify the randomSelect function to
read a “random” value from the user in order to make the selection.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1243

Chapter Thirteen Volume Four
Page 1244 © 2001, By Randall Hyde Beta Draft - Do not distribute

Section Five

Advanced Assembly Language Programming
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 1245

Volume5
Page 1246 © 2000, By Randall Hyde Beta Draft - Do not distribute

Thunks
Thunks Chapter One

1.1 Chapter Overview

This chapter discusses thunks which are special types of procedures and procedure calls you can use to
defer the execution of some procedure call. Although the use of thunks is not commonplace in standard
assembly code, their semantics are quite useful in AI (artificial intelligence) and other programs. The proper
use of thunks can dramatically improve the performance of certain programs. Perhaps a reason thunks do
not find extensive use in assembly code is because most assembly language programmers are unaware of
their capabilities. This chapter will solve that problem by presenting the definition of thunks and describe
how to use them in your assembly programs.

1.2 First Class Objects

The actual low-level implementation of a thunk, and the invocation of a thunk, is rather simple. How-
ever, to understand why you would want to use a thunk in an assembly language program we need to jump to
a higher level of abstraction and discuss the concept of First Class Objects.

A first class object is one you can treat like a normal scalar data variable. You can pass it as a parameter
(using any arbitrary parameter passing mechanism), you can return it as a function result, you can change the
object’s value via certain legal operations, you can retrieve its value, and you can assign one instance of a
first class object to another. An int32 variable is a good example of a first class object.

Now consider an array. In many languages, arrays are not first class objects. Oh, you can pass them as
parameters and operate on them, but you can’t assign one array to another nor can you return an array as a
function result in many languages. In other languages, however, all these operations are permissible on
arrays so they are first class objects (in such languages).

A statement sequence (especially one involving procedure calls) is generally not a first class object in
many programming languages. For example, in C/C++ or Pascal/Delphi you cannot pass a sequence of
statements as a parameter, assign them to a variable, return them as a function result, or otherwise operate on
them as though they were data. You cannot create arbitrary arrays of statements nor can you ask a sequence
of statements to execute themselves except at their point of declaration.

If you’ve never used a language that allows you to treat executable statements as data, you’re probably
wondering why anyone would ever want to do this. There are, however, some very good reasons for wanting
to treat statements as data and execute them on demand. If you’re familiar with the C/C++ programming
language, consider the C/C++ "?" operator:

expr ? Texpr: Fexpr

For those who are unfamiliar with the "?" operator, it evaluates the first expression (expr) and then returns
the value of Texpr if expr is true, it evaluates and returns Fexpr if expr evaluates false. Note that this code
does not evaluate Fexpr if expr is true; likewise, it does not evaluate Texpr if expr is false. Contrast this with
the following C/C++ function:

int ifexpr(int x, int t, int f)
{

if(x) return t;
return f;

}

A function call of the form "ifexpr(expr, Texpr, Fexpr);" is not semantically equivalent to
"expr ? Texpr : Fexpr". The ifexpr call always evaluates all three parameters while the conditional expres-
sion operator ("?") does not. If either Texpr or Fexpr produces a side-effect, then the call to ifexpr may pro-
duce a different result than the conditional operator, e.g.,
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1247

Chapter One Volume Five
i = (x==y) ? a++ : b--;
j = ifexpr(x==y, c++, d--);

In this example either a is incremented or b is decremented, but not both because the conditional opera-
tor only evaluates one of the two expressions based on the values of x and y. In the second statement, how-
ever, the code both increments c and decrements d because C/C++ always evaluates all value parameters
before calling the function; that is, C/C++ eagerly evaluates function parameter expressions (while the con-
ditional operator uses deferred evaluation).

Supposing that we wanted to defer the execution of the statements "c++" and "d--" until inside the func-
tion’s body, this presents a classic case where it would be nice to treat a pair of statements as first class
objects. Rather than pass the value of "c++" or "d--" to the function, we pass the actual statements and
expand these statements inside the function wherever the format parameter occurs. While this is not possible
in C/C++, it is possible in certain languages that support the use of statements as first class objects. Of
course, if it can be done in any particular language, then it can be done in assembly language.

Of course, at the machine code level a statement sequence is really nothing more than a sequence of
bytes. Therefore, we could treat those statements as data by directly manipulating the object code associated
with that statement sequence. Indeed, in some cases this is the best solution. However, in most cases it will
prove too cumbersome to manipulate a statement sequence by directly manipulating its object code. A better
solution is to use a pointer to the statement sequence and CALL indirectly to that sequence whenever we
want to execute it. Using a pointer in this manner is usually far more efficient that manipulating the code
directly, especially since you rarely change the instruction sequence itself. All you really want to do is defer
the execution of that code. Of course, to properly return from such a sequence, the sequence must end with
a RET instruction. Consider the following HLA implementation of the "ifexpr" function given earlier:

procedure ifexpr(expr:boolean; trueStmts:dword; falseStmts:dword);
returns("eax");

begin ifexpr;

if(expr) then

call(trueStmts);

else

call(falseStmts);

endif;

end ifexpr;
.
.
.
jmp overStmt1;

stmt1: mov(c, eax);
inc(c);
ret();

overStmt1:
jmp overStmt2

stmt2: mov(d, eax);
dec(d);
ret();

overStmt2:
ifexpr(exprVal, &stmt1, &stmt2);

(for reasons you’ll see shortly, this code assumes that the c and d variables are global, static, objects.)
Page 1248 © 2001, By Randall Hyde Version: 7/4/01

Thunks
Notice how the code above passes the addresses of the stmt1 and stmt2 labels to the ifexpr procedure.
Also note how the code sequence above jumps over the statement sequences so that the code only executes
them in the body of the ifexpr procedure.

As you can see, the example above creates two mini-procedures in the main body of the code. Within
the ifexpr procedure the program calls one of these mini-procedures (stmt1 or stmt2). Unlike standard HLA
procedures, these mini-procedures do not set up a proper activation record. There are no parameters, there
are no local variables, and the code in these mini-procedures does not execute the standard entry or exit
sequence. In fact, the only part of the activation record present in this case is the return address.

Because these mini-procedures do not manipulate EBP’s value, EBP is still pointing at the activation
record for the ifexpr procedure. For this reason, the c and d variables must be global, static objects; you
must not declare them in a VAR section. For if you do, the mini-procedures will attempt to access these
objects in ifexpr’s activation record, not and the caller’s activation record. This, of course, would return the
wrong value.

Fortunately, there is a way around this problem. HLA provides a special data type, known as a thunk,
that eliminates this problem. To learn about thunks, keep reading...

1.3 Thunks

A thunk is an object with two components: a pointer containing the address of some code and a pointer
to an execution environment (e.g., an activation record). Thunks, therefore, are an eight-byte (64-bit) data
type, though (unlike a qword) the two pieces of a thunk are independent. You can declare thunk variables in
an HLA program, assign one thunk to another, pass thunks as parameters, return them as function results,
and, in general, do just about anything that is possible with a 64-bit data type containing two double word
pointers.

To declare a thunk in HLA you use the thunk data type, e.g.,

static
myThunk: thunk;

Like other 64-bit data types HLA does not provide a mechanism for initializing thunks you declare in a static
section. However, you’ll soon see that it is easy to initialize a thunk within the body of your procedures.

A thunk variable holds two pointers. The first pointer, in the L.O. double word of the thunk, points at
some execution environment, that is, an activation record. The second pointer, in the H.O. double word of
the thunk, points at the code to execute for the thunk.

To "call" a thunk, you simply apply the "()" suffix to the thunk’s name. For example, the following
"calls" myThunk in the procedure where you’ve declared myThunk:

myThunk();

Thunks never have parameters, so the parameter list must be empty.

A thunk invocation is a bit more involved than a simple procedure call. First of all, a thunk invocation
will modify the value in EBP (the pointer to the current procedure’s activation record), so the thunk invoca-
tion must begin by preserving EBP’s value on the stack. Next, the thunk invocation must load EBP with the
address of the thunk’s execution environment; that is, the code must load the L.O. double word of the thunk
value into EBP. Next, the thunk must call the code at the address specified by the H.O. double word of the
thunk variable. Finally, upon returning from this code, the thunk invocation must restore the original activa-
tion record pointer from the stack. Here’s the exact sequence HLA emits to a statement like "myThunk();":

push((type dword myThunk)); // Pass execution environment as parm.
call((type dword myThunk[4])); // Call the thunk

The body of a thunk, that is, the code at the address found in the H.O. double word of the thunk variable,
is not a standard HLA procedure. In particular, the body of a thunk does not execute the standard entry or
exit sequences for a standard procedure. The calling code passes the pointer to the execution environment
(i.e., an activation record) on the stack.. It is the thunk’s responsibility to preserve the current value of EBP
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1249

Chapter One Volume Five
and load EBP with this value appearing on the stack. After the thunk loads EBP appropriately, it can exe-
cute the statements in the body of the thunk, after which it must restore EBP’s original value.

Because a thunk variable contains a pointer to an activation record to use during the execution of the
thunk’s code, it is perfectly reasonable to access local variables and other local objects in the activation
record active when you define the thunk’s body. Consider the following code:

procedure SomeProc;
var

c: int32;
d: int32;
t: thunk;

begin SomeProc;

mov(ebp, (type dword t));
mov(&thunk1, (type dword t[4]));
jmp OverThunk1;

thunk1:
push(EBP); // Preserve old EBP value.
mov([esp+8], ebp); // Get pointer to original thunk environment.
mov(d, eax);
add(c, eax);
pop(ebp); // Restore caller’s environment.
ret(4); // Remove EBP value passed as parameter.

OverThunk1:
.
.
.
t(); // Computes the sum of c and d into EAX.

This example initializes the t variable with the value of SomeProc’s activation record pointer (EBP) and
the address of the code sequence starting at label thunk1. At some later point in the code the program
invokes the thunk which begins by pushing the pointer to SomeProc’s activation record. Then the thunk exe-
cutes the PUSH/MOV/MOV/ADD/POP/RET sequence starting at address thunk1. Since this code loads
EBP with the address of the activation record containing c and d, this code sequence properly adds these
variables together and leaves their sum in EAX. Perhaps this example is not particularly exciting since the
invocation of t occurs while EBP is still pointing at SomeProc’s activation record. However, you’ll soon see
that this isn’t always the case.

1.4 Initializing Thunks

In the previous section you saw how to manually initialize a thunk variable with the environment
pointer and the address of an in-line code sequence. While this is a perfectly legitimate way to initialize a
thunk variable, HLA provides an easier solution: the THUNK statement.

The HLA THUNK statement uses the following syntax:

thunk thunkVar := #{ code sequence }#;

thunkVar is the name of a thunk variable and code_sequence is a sequence of HLA statements (note that the
sequence does not need to contain the thunk entry and exit sequences. Specifically, it doesn’t need the
"push(ebp);" and "mov([esp+8]);" instructions at the beginning of the code, nor does it need to end with the
"pop(ebp);" and "ret(4);" instructions. HLA will automatically supply the thunk’s entry and exit sequences.

Here’s the example from the previous section rewritten to use the THUNK statement:

procedure SomeProc;
var

c: int32;
d: int32;
t: thunk;
Page 1250 © 2001, By Randall Hyde Version: 7/4/01

Thunks
begin SomeProc;

thunk t :=
#{

mov(d, eax);
add(c, eax);

}#;
.
.
.
t(); // Computes the sum of c and d into EAX.

Note how much clearer and easier to read this code sequence becomes when using the THUNK statement.
You don’t have to stick in statements to initialize t, you don’t have to jump over the thunk body, you don’t
have to include the thunk entry/exit sequences, and you don’t wind up with a bunch of statement labels in the
code. Of course, HLA emits the same code sequence as found in the previous section, but this form is much
easier to read and work with.

1.5 Manipulating Thunks

Since a thunk is a 64-bit variable, you can do anything with a thunk that you can do, in general, with any
other qword data object. You can assign one thunk to another, compare thunks, pass thunks a parameters,
return thunks as function results, and so on. That is to say, thunks are first class objects. Since a thunk is a
representation of a sequence of statements, those statements are effectively first class objects. In this section
we’ll explore the various ways we can manipulate thunks and the statements associated with them.

1.5.1 Assigning Thunks

To assign one thunk to another you simply move the two double words from the source thunk to the des-
tination thunk. After the assignment, both thunks specify the same sequence of statements and the same exe-
cution environment; that is, the thunks are now aliases of one another. The order of assignment (H.O.
double word first or L.O. double word first) is irrelevant as long as you assign both double words before
using the thunk’s value. By convention, most programmers assign the L.O. double word first. Here’s an
example of a thunk assignment:

mov((type dword srcThunk), eax);
mov(eax, (type dword destThunk));
mov((type dword srcThunk[4]), eax);
mov(eax, (type dword destThunk[4]));

If you find yourself assigning one thunk to another on a regular basis, you might consider using a macro
to accomplish this task:

macro movThunk(src, dest);

mov((type dword src), eax);
mov(eax, (type dword dest));
mov((type dword src[4]), eax);
mov(eax, (type dword dest[4]));

endmacro;

If the fact that this macro’s side effect of disturbing the value in EAX is a concern to you, you can always
copy the data using a PUSH/POP sequence (e.g., the HLA extended syntax MOV instruction):

macro movThunk(src, dest);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1251

Chapter One Volume Five
mov((type dword src), (type dword dest));
mov((type dword src[4]), (type dword dest[4]));

endmacro;

If you don’t plan on executing any floating point code in the near future, or you’re already using the
MMX instruction set, you can also use the MMX MOVQ instruction to copy these 64 bits with only two
instructions:

movq(src, mm0);
movq(mm0, dest);

Don’t forget, however, to execute the EMMS instruction before calling any routines that might use the FPU
after this sequence.

1.5.2 Comparing Thunks

You can compare two thunks for equality or inequality using the standard 64-bit comparisons (see
“Extended Precision Comparisons” on page 831). If two thunks are equal then they refer to the same code
sequence with the same execution environment; if they are not equal, then they could have different code
sequences or different execution environments (or both) associated with them. Note that it doesn’t make any
sense to compare one thunk against another for less than or greater than. They’re either equal or not equal.

Of course, it’s quite easy to have two thunks with the same environment pointer and different code
pointers. This occurs when you initialize two thunk variables with separate code sequences in the same pro-
cedure, e.g.,

thunk t1 :=
#{

mov(0, eax);
mov(i, ebx);

}#;

thunk t2 :=
#{

mov(4, eax);
mov(j, ebx);

}#;

// At this point, t1 and t2 will have the same environment pointer
// (EBP’s value) but they will have different code pointers.

Note that it is quite possible for two thunks to refer to the same statement sequence yet have different
execution environments. This can occur when you have a recursive function that initializes a pair of thunk
variables with the same instruction sequence on different recursive calls of the function. Since each recur-
sive invocation of the function will have its own activation record, the environment pointers for the two
thunks will be different even though the pointers to the code sequence are the same. However, if the code
that initializes a specific thunk is not recursive, you can sometimes compare two thunks by simply compar-
ing their code pointers (the H.O. double words of the thunks) if you’re careful about never using thunks once
their execution environment goes away (i.e., the procedure in which you originally assigned the thunk value
returns to its caller).

1.5.3 Passing Thunks as Parameters

Since the thunk data type is effectively equivalent to a qword type, there is little you can do with a qword
object that you can’t also do with a thunk object. In particular, since you can pass qwords as parameters you
can certainly pass thunks as parameters to procedures.
Page 1252 © 2001, By Randall Hyde Version: 7/4/01

Thunks
To pass a thunk by value to a procedure is very easy, simply declare a formal parameter using the thunk
data type:

procedure HasThunkParm(t:thunk);
var

i:integer;
begin HasThunkParm;

mov(1, i);
t(); // Invoke the thunk passed as a parameter.
mov(i, eax); // Note that t does not affect our environment.

end HasThunkParm;
.
.
.

thunk thunkParm :=
#{

mov(0, i); // Not the same "i" as in HasThunkParm!
}#;

HasThunkParm(thunkParm);

Although a thunk is a pointer (a pair of pointers, actually), you can still pass thunks by value. Passing a
thunk by value passes the values of those two pointer objects to the procedure. The fact that these values are
the addresses of something else is not relevant, you’re passing the data by value.

HLA automatically pushes the value of a thunk on the stack when passing a thunk by value. Since
thunks are 64-bit objects, you can only pass them on the stack, you cannot pass them in a register1. When
HLA passes a thunk, it pushes the H.O. double word (the code pointer) of the thunk first followed by the
L.O. double word (the environment pointer). This way, the two pointers are situated on the stack in the same
order they normally appear in memory (the environment pointer at the lowest address and the code pointer at
the highest address).

If you decide to manually pass a thunk on the stack yourself, you must push the two halves of the thunk
on the stack in the same order as HLA, i.e., you must push the H.O. double word first and the L.O. double
word second. Here’s the call to HasThunkParm using manual parameter passing:

push((type dword thunkParm[4]));
push((type dword thunkParm));
call HasThunkParm;

You can also pass thunks by reference to a procedure using the standard pass by reference syntax.
Here’s a typical procedure prototype with a pass by reference thunk parameter:

procedure refThunkParm(var t:thunk); forward;

When you pass a thunk by reference, you’re passing a pointer to the thunk itself, not the pointers to the
thunk’s execution environment or code sequence. To invoke such a thunk you must manually dereference
the pointer to the thunk, push the pointer to the thunk’s execution environment, and indirectly call the code
sequence. Here’s an example implementation of the refThunkParm prototype above:

procedure refThunkParm(var t:thunk);
begin refThunkParm;

push(eax);
.
.

1. Technically, you could pass a thunk in two 32-bit registers. However, you will have to do this manually; HLA will not
automatically move the two pointers into two separate registers for you.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1253

Chapter One Volume Five
.
mov(t, eax); // Get pointer to thunk object.
push([eax]); // Push pointer to thunk’s environment.
call((type dword [eax+4])); // Call the code sequence.

.

.

.
pop(eax);

end refThunkParm;

Of course, one of the main reasons for passing an object by reference is so you can assign a value to the
actual parameter value. Passing a thunk by reference provides this same capability – you can assign a new
code sequence address and execution environment pointer to a thunk when you pass it by reference. How-
ever, always be careful when assigning values to thunk reference parameters within a procedure that you
specify an execution environment that will still be valid when the code actually invokes the thunk. We’ll
explore this very problem in a later section of this chapter (see “Activation Record Lifetimes and Thunks” on
page 1256).

Although we haven’t yet covered this, HLA does support several other parameter passing mechanisms
beyond pass by value and pass by reference. You can certainly pass thunks using these other mechanisms.
Indeed, thunks are the basis for two of HLA’s parameter passing mechanisms: pass by name and pass by
evaluation. However, this is getting a little ahead of ourselves; we’ll return to this subject in a later chapter
in this volume.

1.5.4 Returning Thunks as Function Results

Like any other first class data object, we can also return thunks as the result of some function. The only
complication is the fact that a thunk is a 64-bit object and we normally return function results in a register.
To return a full thunk as a function result, we’re going to need to use two registers or a memory location to
hold the result.

To return a 64-bit (non-floating point) value from a function there are about three or four different loca-
tions when can return the value: in a register pair, in an MMX register, on the stack, or in a memory location.
We’ll immediately discount the use of the MMX registers since their use is not general (i.e., you can’t use
them simultaneously with floating point operations). A global memory location is another possible location
for a function return result, but the use of global variables has some well-known deficiencies, especially in a
multi-threaded/multi-tasking environment2. Therefore, we’ll avoid this solution as well. That leaves using a
register pair or using the stack to return a thunk as a function result. Both of these schemes have their advan-
tages and disadvantages, we’ll discuss these two schemes in this section.

Returning thunk function results in registers is probably the most convenient way to return the function
result. The big drawback is obvious – it takes two registers to return a 64-bit thunk value. By convention,
most programmers return 64-bit values in the EDX:EAX register pair. Since this convention is very popular,
we will adopt it in this section. Keep in mind, however, that you may use almost any register pair you like to
return this 64-bit value (though ESP and EBP are probably off limits).

When using EDX:EAX, EAX should contain the pointer to the execution environment and EDX should
contain the pointer to the code sequence. Upon return from the function, you should store these two regis-
ters into an appropriate thunk variable for future use.

To return a thunk on the stack, you must make room on the stack for the 64-bit thunk value prior to
pushing any of the function’s parameters onto the stack. Then, just before the function returns, you store the
thunk result into these locations on the stack. When the function returns it cleans up the parameters it
pushed on the stack but it does not free up the thunk object. This leaves the 64-bit thunk value sitting on the
top of the stack after the function returns.

2. We’ll discuss these problems in a later volume.
Page 1254 © 2001, By Randall Hyde Version: 7/4/01

Thunks
The following code manually creates and destroys the function’s activation record so that it can specify
the thunk result as the first two parameters of the function’s parameter list:

procedure RtnThunkResult
(

ThunkCode:dword; // H.O. dword of return result goes here.
ThunkEnv:dword; // L.O. dword of return result goes here.
selection:boolean; // First actual parameter.
tTrue: thunk; // Return this thunk if selection is true.
tFalse:thunk // Return this thunk if selection is false.

); nodisplay; noframe;
begin RtnThunkResult;

push(ebp); // Set up the activation record.
mov(esp, ebp);
push(eax);

if(selection) then

mov((type dword tTrue), eax);
mov(eax, ThunkEnv);
mov((type dword tTrue[4]), eax);
mov(eax, ThunkCode);

else

mov((type dword tFalse), eax);
mov(eax, ThunkEnv);
mov((type dword tFalse[4]), eax);
mov(eax, ThunkCode);

endif;

// Clean up the activation record, but leave the eight
// bytes of the thunk return result on the stack when this
// function returns.

pop(eax);
pop(ebp);
ret(_parms_ - 8); // _parms_ is total # of bytes of parameters (28).

end RtnThunkResult;
.
.
.

// Example of call to RtnThunkResult and storage of return result.
// (Note passing zeros as the thunk values to reserve storage for the
// thunk return result on the stack):

RtnThunkResult(0, 0, ChooseOne, t1, t2);
pop((type dword SomeThunkVar));
pop((type dword SomeThunkVar[4]));

If you prefer not to list the thunk parameter as a couple of pseudo-parameters in the function’s parame-
ter list, you can always manually allocate storage for the parameters prior to the call and refer to them using
the "[ESP+disp]" or "[EBP+disp]" addressing mode within the function’s body.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1255

Chapter One Volume Five
1.6 Activation Record Lifetimes and Thunks

There is a problem that can occur when using thunks in your applications: it’s quite possible to invoke a
thunk long after the associated execution environment (activation record) is no longer valid. Consider the
following HLA code that demonstrates this problem:

static
BadThunk: thunk;

procedure proc1;
var

i:int32;
begin proc1;

thunk BadThunk :=
#{

stdout.put("i = ", i, nl);
#};

mov(25, i);

end proc1;

procedure proc2;
var

j:int32;
begin proc2;

mov(123, j);
BadThunk();

end proc2;
.
.
.

If the main program in this code fragment calls proc1 and then immediately calls proc2, this code will prob-
ably print "i = 123" although there is no guarantee this will happen (the actual result depends on a couple of
factors, although "i = 123" is the most likely output).

The problem with this code example is that proc1 initializes BadThunk with the address of an execution
environment that is no longer "live" when the program actually executes the thunk’s code later on. The
proc1 procedure constructs its own activation record and initializes the variable i in this activation record
with the value 25. This procedure also initializes BadThunk with the address of the code sequence contain-
ing the stdout.put statement and it initializes BadThunk’s execution environment pointer with the address of
proc1’s activation record. Then proc1 returns to its caller. Unfortunately upon returning to its caller, proc1
also obliterates its activation record even though BadThunk still contains a pointer into this area of memory.
Later, when the main program calls proc2, proc2 builds its own activation record (most likely over the top of
proc1’s old activation record). When proc2 invokes BadThunk, BadThunk uses the original pointer to
proc1’s activation record (which is now invalid and probably points at proc2’s activation record) from which
to fetch i’s value. If nothing extra was pushed or popped between the proc1 invocation and the proc2 invoca-
tion, then j’s value in proc2 is probably at the same memory location as i was in proc1’s invocation. Hence,
the stdout.put statement in the thunk’s code will print j’s value.

This rather trivial example demonstrates an important point about using thunks – you must always
ensure that a thunk’s execution environment is still valid whenever you invoke a thunk. In particular, if you
use HLA’s THUNK statement to automatically initialize a thunk variable with the address of a code
sequence and the execution environment of the current procedure, you must not invoke that thunk once the
procedure returns to its caller; for at that point the thunk’s execution environment pointer will not be valid.
Page 1256 © 2001, By Randall Hyde Version: 7/4/01

Thunks
This discussion does not suggest that you can only use a thunk within the procedure in which you assign
a value to that thunk. You may continue to invoke a thunk, even from outside the procedure whose activation
record the thunk references, until that procedure returns to its caller. So if that procedure calls some other
procedure (or even itself, recursively) then it is legal to call the thunk associated with that procedure.

1.7 Comparing Thunks and Objects

Thunks are very similar to objects insofar as you can easily implement an abstract data type with a
thunk. Remember, an abstract data type is a piece of data and the operation(s) on that data. In the case of a
thunk, the execution environment pointer can point at the data while the code address can point at the code
that operates on the data. Since you can also use objects to implement abstract data types, one might wonder
how objects and thunks compare to one another.

Thunks are somewhat less "structured" than objects. An object contains a set of data values and opera-
tions (methods) on those data values. You cannot change the data values an object operates upon without
fundamentally changing the object (i.e., selecting a different object in memory). It is possible, however, to
change the execution environment pointer in a thunk and have that thunk operate on fundamentally different
data. Although such a course of action is fraught with difficulty and very error-prone, there are some times
when changing the execution environment pointer of a thunk will produce some interesting results. This text
will leave it up to you to discover how you could abuse thunks in this fashion.

1.8 An Example of a Thunk Using the Fibonacci Function

By now, you’re probably thinking "thunks may be interesting, but what good are they?" The code asso-
ciated with creating and invoking thunks is not spectacularly efficient (compared, say, to a straight procedure
call). Surely using thunks must negatively impact the execution time of your code, eh? Well, like so many
other programming constructs, the misuse and abuse of thunks can have a negative impact on the execution
time of your programs. However, in an appropriate situation thunks can dramatically improve the perfor-
mance of your programs. In this section we’ll explore one situation where the use of thunks produces an
amazing performance boost: the calculation of a Fibonacci number.

Earlier in this text there was an example of a Fibonacci number generation program (see “Fibonocci
Number Generation” on page 41). As you may recall, the Fibonacci function fib(n) is defined recursively for
n>= 1 as follows:

 fib(1) = 1;
 fib(2) = 1;
 fib(n) = fib(n-1) + fib(n-2)

One problem with this recursive definition for fib is that it is extremely inefficient to compute. The
number of clock cycles this particular implementation requires to execute is some exponential factor of n.
Effectively, as n increases by one this algorithm takes twice as long to execute.

The big problem with this recursive definition is that it computes the same values over and over again.
Consider the statement "fib(n) = fib(n-1) + fib(n-2)". Note that the computation of fib(n-1) also computes
fib(n-2) (since fib(n-1) = fib(n-2) + fib(n-3) for all n >=4). Although the computation of fib(n-1) computes
the value of fib(n-2) as part of its calculation, this simple recursive definition doesn’t save that result, so it
must recompute fib(n-2) upon returning from fib(n-1) in order to complete the calculation of fib(n).

Since the calculation of Fib(n-1) generally computes Fib(n-2) as well, what would be nice is to have this
function return both results simultaneously; that is, not only should Fib(n-1) return the Fibonacci number
for n-1, it should also return the Fibonacci number for n-2 as well. In this example, we will use a thunk to
store the result of Fib(n-2) into a local variable in the Fibonacci function.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1257

Chapter One Volume Five
Figure 1.1 Using a Thunk to Set the Fib(n-2) Value in a Different Activation Record

The following program provides two versions of the Fibonacci function: one that uses thunks to pass the
Fib(n-2) value back to a previous invocation of the function. Another version of this function computes the
Fibonacci number using the traditional recursive definition. The program computes the running time of both
implementations and displays the results. Without further ado, here’s the code:

program fibThunk;
#include("stdlib.hhf")

// Fibonocci function using a thunk to calculate fib(n-2)
// without making a recursive call.

procedure fib(n:uns32; nm2:thunk); nodisplay; returns("eax");
var
 n2: uns32; // A recursive call to fib stores fib(n-2) here.
 t: thunk; // This thunk actually stores fib(n-2) in n2.

begin fib;

 // Special case for n = 1, 2. Just return 1 as the
 // function result and store 1 into the fib(n-2) result.

 if(n <= 2) then

 mov(1, eax); // Return as n-1 value.
 nm2(); // Store into caller as n-2 value.

 else

 // Create a thunk that will store the fib(n-2) value
 // into our local n2 variable.

 thunk t :=
 #{
 mov(eax, n2);
 }#;

n2 variable

Activation Record for Fib(n)

n2 variable

Activation Record for Fib(n-1)

When Fib(n-1) computes
Fib(n-2) as part of its
calculation, it calls a thunk
to store Fib(n-2) into the
n2 variable of Fib(n)‘s
activation record.
Page 1258 © 2001, By Randall Hyde Version: 7/4/01

Thunks
 mov(n, eax);
 dec(eax);
 fib(eax, t); // Compute fib(n-1).

 // Pass back fib(n-1) as the fib(n-2) value to a previous caller.

 nm2();

 // Compute fib(n) = fib(n-1) [in eax] + fib(n-2) [in n2]:

 add(n2, eax);

 endif;

end fib;

// Standard fibonocci function using the slow recursive implementation.

procedure slowfib(n:uns32); nodisplay; returns("eax");
begin slowfib;

 // For n= 1,2 just return 1.

 if(n <= 2) then

 mov(1, eax);

 else

 // Return slowfib(n-1) + slowfib(n-2) as the function result:

 dec(n);
 slowfib(n); // compute fib(n-1)
 push(eax); // Save fib(n-1);

 dec(n); // compute fib(n-2);
 slowfib(n);

 add([esp], eax); // Compute fib(n-1) [on stack] + fib(n-2) [in eax].
 add(4, esp); // Remove old value from stack.

 endif;

end slowfib;

var
 prevTime:dword[2]; // Used to hold 64-bit result from RDTSC instr.
 qw: qword; // Used to compute difference in timing.
 dummy:thunk; // Used in original calls to fib.

begin fibThunk;

 // "Do nothing" thunk used by the initial call to fib.
 // This thunk simply returns to its caller without doing
 // anything.

 thunk dummy := #{ }#;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1259

Chapter One Volume Five
 // Call the fibonocci routines to "prime" the cache:

 fib(1, dummy);
 slowfib(1);

 // Okay, compute the times for the two fibonocci routines for
 // values of n from 1 to 32:

 for(mov(1, ebx); ebx < 32; inc(ebx)) do

 // Read the time stamp counter before calling fib:
 rdtsc();
 mov(eax, prevTime);
 mov(edx, prevTime[4]);

 fib(ebx, dummy);
 mov(eax, ecx);

 // Read the timestamp counter and compute the approximate running
 // time of the current call to fib:

 rdtsc();
 sub(prevTime, eax);
 sbb(prevTime[4], edx);
 mov(eax, (type dword qw));
 mov(edx, (type dword qw[4]));

 // Display the results and timing from the call to fib:

 stdout.put
 (
 "n=",
 (type uns32 ebx):2,
 " fib(n) = ",
 (type uns32 ecx):7,
 " time="
);
 stdout.putu64size(qw, 5, ' ');

 // Okay, repeat the above for the slowfib implementation:

 rdtsc();
 mov(eax, prevTime);
 mov(edx, prevTime[4]);

 slowfib(ebx);
 mov(eax, ecx);
 rdtsc();
 sub(prevTime, eax);
 sbb(prevTime[4], edx);
 mov(eax, (type dword qw));
 mov(edx, (type dword qw[4]));

 stdout.put(" slowfib(n) = ", (type uns32 ecx):7, " time = ");
 stdout.putu64size(qw, 8, ' ');
 stdout.newln();

 endfor;
Page 1260 © 2001, By Randall Hyde Version: 7/4/01

Thunks
end fibThunk;

Program 1.1 Fibonocci Number Generation Using Thunks

This (relatively) simple modification to the Fibonacci function produces a dramatic difference in the
run-time of the code. The run-time of the thunk implementation is now well within reason. The following
table lists the same run-times of the two functions (thunk implementation vs. standard recursive implementa-
tion). As you can see, this small change to the program has made a very significant difference.

Table 1: Running Time of the FIB and SlowFib Functions

n
Fib Execution Time

(Thunk
Implementation)a

SlowFib Execution
Time (Recursive
Implementation)

1 60 97

2 152 100

3 226 166

4 270 197

5 302 286

6 334 414

7 369 594

8 397 948

9 432 1513

10 473 2421

11 431 3719

12 430 6010

13 467 9763

14 494 15758

15 535 25522

16 564 41288

17 614 66822

18 660 108099

19 745 174920

20 735 283001

21 791 457918

22 886 740894
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1261

Chapter One Volume Five
Note that a thunk implementation of the Fibonacci function is not the only way to improve the perfor-
mance of this function. One could have just as easily (more easily, in fact) passed the address of the local n2
variable by reference and had the recursive call store the Fib(n-2) value directly into the n2 variable. For that
matter, one could have written an interactive (rather than recursive) solution to this problem that computes
the Fibonacci number very efficiently. However, alternate solutions to Fibonacci aside, this example does
clearly demonstrate that the use of a thunk in certain situations can dramatically improve the performance of
an algorithm.

1.9 Thunks and Artificial Intelligence Code

Although the use of thunks to compute the Fibonacci number in the previous section produced a dra-
matic performance boost, thunks clearly were not necessary for this operation (indeed, not too many people
really need to compute Fibonacci numbers, for that matter). Although this example demonstrates that thunks
can improve performance in various situations, it does not demonstrate the need for thunks. After all, there
are even more efficient implementations of the Fibonacci function (though nothing quite so dramatic as the
difference between Fib and SlowFib, which went from exponential to linear execution time) that do not
involve the use of thunks. So although the use of thunks can increase the performance of the Fibonacci func-
tion (over the execution time of the standard recursive implementation), the example in the previous section
does not demonstrate the need for thunks since there are better implementations of the Fibonacci function
that do not use thunks. In this section we will explore some types of calculations for which thunks present a
very good, if not the best, solution.

In the field of Artificial Intelligence (AI from this point forward) researchers commonly use interpreted
programming languages such as LISP or Prolog to implement various algorithms. Although you could write
an AI program in just about any language, these interpreted languages like LISP and Prolog have a couple of
benefits that help make writing AI programs much less difficult. Among a long list of other features, two
important features stand out: (1) statements in these languages are first class objects, (2) these languages can
defer the evaluation of function parameters until the parameters’ values are actually needed (lazy evalua-

23 943 1198802

24 919 1941077

25 966 3138466

26 1015 5094734

27 1094 8217396

28 1101 13297000

29 1158 21592819

30 3576b 34927400

31 1315 56370705

a. All times are in CPU cycles as measured via RDTSC on a Pentium II

processor.

b. This value was not recorded properly because of OS overhead.

Table 1: Running Time of the FIB and SlowFib Functions

n
Fib Execution Time

(Thunk
Implementation)a

SlowFib Execution
Time (Recursive
Implementation)
Page 1262 © 2001, By Randall Hyde Version: 7/4/01

Thunks
tion). Since thunks provide exactly these two features in an HLA program, it should come as no surprise
that you can use thunks to implement various AI algorithm in assembly language.

Before going too much farther, you should realize that AI programs usually take advantage of many
other features in LISP and Prolog besides the two noted above. Automatic dynamic memory allocation and
garbage collection are two big features that many AI programs use, for example. Also, the run-time interpre-
tation of language statements is another big feature (i.e., the user of a program can input a string containing
a LISP or Prolog statement and the program can execute this string as part of the program). Although it is
certainly possible to achieve all this in an assembly language program, such support built into languages like
LISP and Prolog may require (lots of) additional coding in assembly language. So please don’t allow this
section to trivialize the effort needed to write AI programs in assembly language; writing (good) AI pro-
grams is difficult and tools like LISP and Prolog can reduce that effort.

Of course, a major problem with languages like LISP and Prolog is that programs written in these (inter-
preted) languages tend to run very slow. Some people may argue that there isn’t a sufficient difference in
performance between programs written in C/C++ and assembly to warrant the extra effort of writing the
code in assembly; such a claim is difficult to make about LISP or Prolog programs versus an assembly
equivalent. Whereas a well-written assembly program may be only a couple of times faster than a well-writ-
ten C/C++ program, a well-written assembly program will probably be tens, if not hundreds or thousands, of
times faster than the equivalent LISP or Prolog code. Therefore, reworking at least a portion of an AI pro-
gram written in one of these interpreted languages can produce a very big boost in the performance of the AI
application.

Traditionally, one of the big problem areas AI programmers have had when translating their applications
to a lower-level language has been the issue of "function calls (statements) as first class objects and the need
for lazy evaluation." Traditional third generation programming languages like C/C++ and Pascal simply do
not provide these facilities. AI applications that make use of these facilities in languages like LISP or Prolog
often have to be rewritten in order to avoid the use of these features in the lower-level languages. Assembly
language doesn’t suffer from this problem. Oh, it may be difficult to implement some feature in assembly
language, but if it can be done it can be done in assembly language. So you’ll never run into the problem of
assembly language being unable to implement some feature from LISP, Prolog, or some other language.

Thunks are a great vehicle for deferring the execution of some code until a later time (or, possibly, for-
ever). One application area where deferred execution is invaluable is in a game. Consider a situation in
which the current state of a game suggests one of several possible moves a piece could make based on a
decision made by an adversary (e.g., a particular chess piece could make one of several different moves
depending on future moves by the other color). You could represent these moves as a list of thunks and exe-
cuting the move by selecting and executing one of the thunks from the list at some future time. You could
base the selection of the actual thunk to execute on adversarial moves that occur at some later time.

Thunks are also useful for passing results of various calculations back to several different points in your
code. For example, in a multi-player strategy game the activities of one player could be broadcast to a list of
interested players by having those other players "register" a thunk with the player. Then, whenever the
player does something of interest to those other players, the program could execute the list of thunks and
pass whatever data is important to those other players via the thunks.

1.10 Thunks as Triggers

Thunks are also useful as triggers. A trigger is a device that fires whenever a certain condition is met.
Probably the most common example of a trigger is a database trigger that executes some code whenever
some condition occurs in the database (e.g., the entry of an invalid data or the update of some field). Trig-
gers are useful insofar as they allow the use of declarative programming in your assembly code. Declarative
programming consists of some declarations that automatically execute when a certain condition exists. Such
declarations do not execute sequentially or in response to some sort of call. They are simply part of the pro-
gramming environment and automatically execute whenever appropriate. At the machine level, of course,
some sort of call or jump must be made to such a code sequence, but at a higher level of abstraction the code
seems to "fire" (execute) all on its own.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1263

Chapter One Volume Five
To implement declarative programming using triggers you must get in the habit of writing code that
always calls a "trigger routine" (i.e., a thunk) at any given point in the code where you would want to handle
some event. By default, the trigger code would be an empty thunk, e.g.:

procedure DefaultTriggerProc; nodisplay; noframe;
begin DefaultTriggerProc;

// Immediately return to the caller and pop off the environment
// pointer passed to us (probably a NULL pointer).

ret(4);

end DefaultTriggerProc;

static
DefaultTrigger: thunk: nostorage;

dword 0, &DefaultTriggerProc;

The code above consists of two parts: a procedure that corresponds to the default thunk code to execute and
a declaration of a default trigger thunk object. The procedure body consists of nothing more than a return
that pops the EBP value the thunk invocation pushes and then returns back to the thunk invocation. The
default trigger thunk variable contains NULL (zero) for the EBP value and the address of the DefaultTrig-
gerProc code as the code pointer. Note that the value we pass as the environment pointer (EBP value) is
irrelevant since DefaultTriggerProc ignores this value.

To use a trigger, you simply declare a thunk variable like DefaultTrigger above and initialize it with the
address of the DefaultTriggerProc procedure. You will need a separate thunk variable for each trigger event
you wish to process; however, you will only need one default trigger procedure (you can initialize all trigger
thunks with the address of this same procedure). Generally, these trigger thunks will be global variables so
you can access the thunk values throughout your program. Yes, using global variables is often a no-no from
a structured point of view, but triggers tend to be global objects that several different procedures share, so
using global objects is appropriate here. If using global variables for these thunks offends you, then bury
them in a class and provide appropriate accessor methods to these thunks.

Once you have a thunk you want to use as a trigger, you invoke that thunk from the appropriate point in
your code. As a concrete example, suppose you have a database function that updates a record in the data-
base. It is common (in database programs) to trigger an event after the update and, possibly, before the
update. Therefore, a typical database update procedure might invoke two thunks – one before and one after
the body of the update procedure’s code. The following code fragment demonstrates how you code do this:

static
preUpdate: thunk: nostorage;

dword 0, &DefaultTriggerProc;

postUpdate: thunk: nostorage;
dword 0, &DefaultTriggerProc;

.

.

.
procedure databaseUpdate(<< appropriate parameters >>);
 << declarations >>
begin databaseUpdate;

preUpdate(); // Trigger the pre-update event.

<< Body of update procedure >>

postUpdate(); // Trigger the post-update event.

end databaseUpdate;
Page 1264 © 2001, By Randall Hyde Version: 7/4/01

Thunks
As written, of course, these triggers don’t do much. They call the default trigger procedure that imme-
diately returns. Thus far, the triggers are really nothing more than a waste of time and space in the program.
However, since the preUpdate and postUpdate thunks are variables, we can change their values under pro-
gram control and redirect the trigger events to different code.

When changing a trigger’s value, it’s usually a good idea to first preserve the existing thunk data. There
isn’t any guarantee that the thunk points at the default trigger procedure. Therefore, you should save the
value so you can restore it when you’re done handling the trigger event (assuming you are writing an event
handler that shuts down before the program terminates). If you’re setting and restoring a trigger value in a
procedure, you can copy the global thunk’s value into a local variable prior to setting the thunk and you can
restore the thunk from this local variable prior to returning from the procedure:

procedure DemoRestoreTrigger;
var

RestoreTrigger: dword[2];
begin DemoRestoreTrigger;

// The following three statements "register" a thunk as the
// "GlobalEvent" trigger:

mov((type dword GlobalEvent[0]), RestoreTrigger[0]);
mov((type dword GlobalEvent[4]), RestoreTrigger[4]);
thunk GlobalEvent := #{ <<thunk body >> }#;

<< Body of DemoRestoreTrigger procedure >>

// Restore the original thunk as the trigger event:

mov(RestoreTrigger[0], (type dword GlobalEvent[0]));
mov(RestoreTrigger[4], (type dword GlobalEvent[4]));

end DemoRestoreTrigger;

Note that this code works properly even if DemoRestoreTrigger is recursive since the RestoreTrigger vari-
able is an automatic variable. You should always use automatic (VAR) objects to hold the saved values since
static objects have only a single instance (which would fail in a multi-threaded environment or if DemoRe-
storeTrigger is recursive).

One problem with the code in the example above is that it replaces the current trigger with a new trigger.
While this is sometimes desirable, more often you’ll probably want to chain the trigger events. That is,
rather than having a trigger call the most recent thunk, which returns to the original code upon completion,
you’ll probably want to call the original thunk you replaced before or after the current thunk executes. This
way, if several procedures register a trigger on the same global event, they will all "fire" when the event
occurs. The following code fragment shows the minor modifications to the code fragment above needed to
pull this off:

procedure DemoRestoreTrigger;
var

PrevTrigger: thunk;
begin DemoRestoreTrigger;

// The following three statements "register" a thunk as the
// "GlobalEvent" trigger:

mov((type dword GlobalEvent[0]), (type dword PrevTrigger[0]));
mov((type dword GlobalEvent[4]), (type dword PrevTrigger[4]));
thunk GlobalEvent :=

#{
PrevThunk();
<<thunk body >>

}#;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1265

Chapter One Volume Five
<< Body of DemoRestoreTrigger procedure >>

// Restore the original thunk as the trigger event:

mov((type dword PrevTrigger[0]), (type dword GlobalEvent[0]));
mov((type dword PrevTrigger[4]), (type dword GlobalEvent[4]));

end DemoRestoreTrigger;

The principal differences between this version and the last is that PrevTrigger (a thunk) replaces the
RestoreTrigger (two double words) variable and the thunk code invokes PrevTrigger before executing its
own code. This means that the thunk’s body will execute after all the previous thunks in the chain. If you
would prefer to execute the thunks body before all the previous thunks in the chain, then simply invoke the
thunk after the thunk’s body, e.g.,

thunk GlobalEvent :=
#{

<<thunk body >>
PrevThunk();

}#;

In practice, most programs set a trigger event once and let a single, global, trigger handler process
events from that point forward. However, if you’re writing more sophisticated code that enables and dis-
ables trigger events throughout, you might want to write a macro that helps automate saving, setting, and
restore thunk objects. Consider the following HLA macro:

macro EventHandler(Event, LocalThunk);

mov((type dword Event[0]), (type dword LocalThunk[0]));
mov((type dword Event[4]), (type dword LocalThunk[4]));
thunk Event :=

terminator EndEventHandler;

mov((type dword LocalThunk[0]), (type dword Event[0]));
mov((type dword LocalThunk[4]), (type dword Event[4]));

endmacro;

This macro lets you write code like the following:

procedure DemoRestoreTrigger;
var

PrevTrigger: thunk;
begin DemoRestoreTrigger;

EventHandler(GlobalEvent, PrevTrigger) // Note: no semicolon here!

#{
PrevThunk();
<<thunk body >>

}#;

<< Body of DemoRestoreTrigger procedure >>

EndEventHandler;

end DemoRestoreTrigger;
Page 1266 © 2001, By Randall Hyde Version: 7/4/01

Thunks
Especially note the comment stating that no semicolon follows the EventHandler macro invocation. If
you study the EventHandler macro carefully, you’ll notice that macro ends with the first half of a THUNK
statement. The body of the EventHandler..EndEventHandler statement (macro invocation) must begin with
a thunk body declaration that completes the THUNK statement begun in EventHandler. If you put a semico-
lon at the end of the EventHandler statement, this will insert the semicolon into the middle of the THUNK
statement, resulting in a syntax error. If these syntactical gymnastics bother you, you can always remove the
THUNK statement from the macro and require the end user to type the full THUNK statement at the begin-
ning of the macro body. However, saving this extra type is what macros are all about; most users would
probably rather deal with remembering not to put a semicolon at the end of the EventHandler statement
rather than do this extra typing.

1.11 Jumping Out of a Thunk

Because a thunk is a procedure nested within another procedure’s body, there are some interesting situ-
ations that can arise during program execution. One such situation is jumping out of a thunk and into the
surrounding code during the execution of that thunk. Although it is possible to do this, you must exercise
great caution when doing so. This section will discuss the precautions you must take when leaving a thunk
other than via a RET instruction.

Perhaps the best place to start is with a couple of examples that demonstrate various ways to abnormally
exit a thunk. The first thunk in the example below demonstrates a simple JMP instruction while the second
thunk in this example demonstrates leaving a thunk via a BREAK statement.

procedure ExitThunks;
var

jmpFrom:thunk;
breakFrom:thunk;

begin ExitThunks;

thunk jmpFrom :=
#{

// Just jump out of this thunk and back into
// the ExitThunks procedure:

jmp XTlabel;
}#;

// Execute the thunk above (which winds up jumping to the
// XTlabel label below:

jmpFrom();

XTlabel:

// Create a loop inside the ExitThunks procedure and
// define a thunk within this loop. Use a BREAK statement
// within the thunk to exit the thunk (and loop).

forever

thunk breakFrom :=
#{

// Break out of this thunk and the surrounding
// loop via the following BREAK statement:

break;
}#;

// Invoke the thunk (which causes use to exit from the
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1267

Chapter One Volume Five
// surrounding loop):

breakFrom();

endfor;

end ExitThunks;

Obviously, you should avoid constructs like these in your thunks. The control flow in the procedure
above is very unusual, to say the least, and others reading this code will have a difficult time fully compre-
hending what is going on. Of course, like other structured programming techniques that make programs
easier to read, you may discover the need to write code like this under special circumstances. Just don’t
make a habit of doing this gratuitously.

There is a problem with breaking out of the thunks as was done in the code above: this scheme leaves a
bunch of data on the stack (specifically, the thunk’s parameter, the return address, and the saved EBP value
in this particular example). Had ExitThunks pushed some registers on the stack that it needed to preserve,
ESP would not be properly pointing at those register upon reaching the end of the function. Therefore, pop-
ping these registers off the stack would load garbage into the registers. Fortunately, the HLA standard exit
sequence reloads ESP from EBP prior to popping EBP’s value and the return address off the stack; this
resynchronizes ESP prior to returning from the procedure. However, anything you push on the stack after
the standard entry sequence will not be on the top of stack if you prematurely bail out of a thunk as was done
in the previous example.

The only reasonable solution is to save a copy of the stack pointer’s value in a local variable after you
push any important data on the stack. Then restore ESP from this local (automatic) variable before attempt-
ing to pop any of that data off the stack. The following implementation of ExitThunks demonstrates this
principle in action:

procedure ExitThunks;
var

jmpFrom: thunk;
breakFrom: thunk;
ESPsave: dword;

begin ExitThunks;

push(eax); // Registers we wish to preserve.
push(ebx);
push(ecx);
push(edx);
mov(esp, ESPsave); // Preserve ESP’s value for return.

thunk jmpFrom :=
#{

<< Code, as appropriate, for this thunk >>

// Just jump out of this thunk and back into
// the ExitThunks procedure:

jmp XTlabel;
}#;

// Execute the thunk above (which winds up jumping to the
// XTlabel label below:

jmpFrom();

XTlabel:

// Create a loop inside the ExitThunks procedure and
Page 1268 © 2001, By Randall Hyde Version: 7/4/01

Thunks
// define a thunk within this loop. Use a BREAK statement
// within the thunk to exit the thunk (and loop).

forever

thunk breakFrom :=
#{

<< Code, as appropriate, for this thunk >>

// Break out of this thunk and the surrounding
// loop via the following BREAK statement:

break;
}#;

// Invoke the thunk (which causes use to exit from the
// surrounding loop):

breakFrom();

endfor;

<< Any other code required by the procedure >>

// Restore ESP’s value from ESPsave in case one of the thunks (or both)
// above have prematurely exited, leaving garbage on the stack.

mov(ESPsave, esp);

// Restore the registers and leave:

pop(edx);
pop(ecx);
pop(ebx);
pop(eax);

end ExitThunks;

This scheme will work properly because the thunks always set up EBP to point at ExitThunks’ activation
record (this is true even if the program calls these thunks from some other procedures). The ESPsave vari-
able must be an automatic (VAR) variable if this code is to work properly in all cases.

1.12 Handling Exceptions with Thunks

Thunks are also useful for passing exception information back to some code in the calling tree when the
HLA exception handling code would be inappropriate (e.g., if you don’t want to immediately abort the oper-
ation of the current code, you just want to pass data back to some previous code in the current call chain).
Before discussing how to implement some exception handler with a thunk, perhaps we should discuss why
we would want to do this. After all, HLA has an excellent exception handling mechanism – the
TRY..ENDTRY and RAISE statements; why not use those instead of processing exceptions manually with
thunks? There are two reasons for using thunks to handle exceptions – you might want to bypass the normal
exception handling code (i.e., skip over TRY..ENDTRY blocks for a certain event and pass control directly
to some fixed routine) or you might want to resume execution after an exception occurs. We’ll look at these
two mechanisms in this section.

One of these uses for thunks in exception handling code is to bypass any intermediate TRY..ENDTRY
statements between the point of the exception and the handler you’d like to use for the exception. For exam-
ple, suppose you have the following call chain in your program:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1269

Chapter One Volume Five
HasExceptionHandler->MayHaveOne->MayHaveAnother->CausesTheException

In this sequence the procedure CausesTheException encounters some exceptional condition. Were you
to write the code using the standard RAISE and TRY..ENDTRY statements, then the last TRY..ENDTRY
statement (that handles the specific exception) would execute its EXCEPT clause and deal with this excep-
tion. In the current example, that means that MayHaveOne or MayHaveAnother could trap and attempt to
handle this exception. Using the standard exception handling mechanism, it is very difficult to ensure that
HasExceptionHandler is the only procedure that responds to this exception.

One way to avoid this problem is to use a thunk to transfer control to HasExceptionHandler rather than
the RAISE statement. By declaring a global thunk and initializing it within HasExceptionHandler to exe-
cute the exception handler, you can bypass any intermediate procedures in the call chain and jump directly to
HasExceptionHandler from the offending code. Don’t forget to save ESP’s value and restore it if you bail
out of the exception handler code inside the thunk and jump directly into the HasExceptionHandler code
(see “Jumping Out of a Thunk” on page 1267).

Granted, needing to skip over exception handlers is a bit of a synthetic problem that you won’t encoun-
ter very often in real-life programs. However, the second feature raised above, resuming the original code
after handling an exception, is something you may need to do from time to time. HLA’s exceptions do not
allow you to resume the code that raised the exception, so if you need this capability thunks provide a good
solution. To resume the interrupted code when using a thunk, all you have to do is return from the thunk in
the normal fashion. If you don’t want to resume the original code, then you can jump out of the thunk and
into the surrounding procedure code (don’t forget to save and restore ESP in that surrounding code, see
“Jumping Out of a Thunk” on page 1267 for details). The nice thing about a thunk is that you don’t have to
decide whether you’re going to bail out of the thunk or resume the execution of the original code while writ-
ing your program. You can write some code within the thunk to make this decision at run-time.

1.13 Using Thunks in an Appropriate Manner

This chapter presents all sorts of novel uses for thunks. Thunks are really neat and you’ll find all kinds
of great uses for them if you just think about them for a bit. However, it’s also easy to get carried away and
use thunks in an inappropriate fashion. Remember, thunks are not only a pointer to a procedure but a pointer
to an execution environment as well. In many circumstances you don’t need the execution environment
pointer (i.e., the pointer to the activation record). In those cases you should remember that you can use a
simple procedure pointer rather than a thunk to indirectly call the "thunk" code. A simple indirect call is a
bit more efficient than a thunk invocation, so unless you really need all the features of the thunk, just use a
procedure pointer instead.

1.14 Putting It All Together

Although thunks are quite useful, you don’t see them used in many programs. There are two reasons for
this – most high level languages don’t support thunks and, therefore, few programmers have sufficient expe-
rience using thunks to know how to use this appropriately. Most people learning assembly language, for
example, come from a standard imperative programming language background (C/C++, Pascal, BASIC,
FORTRAN, etc.) and have never seen this type of programming construct before. Those who are used to
programming in languages where thunks are available (or a similar construct is available) tend not to be the
ones who learn assembly language.

If you happen to lack the prerequisite knowledge of thunks, you should not write off this chapter as
unimportant. Thunks are definitely a programming tool you should be aware of, like recursion, that’s really
handy in lots of situations. You should watch out for situations where thunks are applicable and use them as
appropriate.

We’ll see additional uses for thunks in the next chapter on iterators and in the chapter on advanced
parameter passing techniques, later in this volume.
Page 1270 © 2001, By Randall Hyde Version: 7/4/01

Iterators
Iterators Chapter Two

2.1 Chapter Overview

This chapter discusses the low-level implementation of iterators. Earlier, this text briefly discussed iter-
ators and the FOREACH loop in the chapter on intermediate procedures (see “Iterators and the FOREACH
Loop” on page 818). This chapter will review that information, discuss some uses for iterators, and then
present the low-level implementation of this interesting control structure.

2.2 Iterators

An iterator is a cross between a control structure and a function. Although common high level languages
do not support iterators, they are present in some very high level languages1. Iterators provide a combination
state machine/function call mechanism that lets a function pick up where it last left off on each new call.
Iterators are also part of a loop control structure, with the iterator providing the value of the loop control
variable on each iteration.

To understand what an iterator is, consider the following for loop from Pascal:

for I := 1 to 10 do <some statement>;

When learning Pascal you were probably taught that this statement initializes i with one, compares i
with 10, and executes the statement if i is less than or equal to 10. After executing the statement, the FOR
statement increments i and compares it with 10 again, repeating the process over and over again until i is
greater than 10.

While this description is semantically correct, and indeed, it’s the way that most Pascal compilers
implement the FOR loop, this is not the only point of view that describes how the for loop operates. Sup-
pose, instead, that you were to treat the TO reserved word as an operator. An operator that expects two
parameters (one and ten in this case) and returns the range of values on each successive execution. That is,
on the first call the TO operator would return one, on the second call it would return two, etc. After the tenth
call, the TO operator would fail which would terminate the loop. This is exactly the description of an itera-
tor.

In general, an iterator controls a loop. Different languages use different names for iterator controlled
loops, this text will just use the name FOREACH as follows:

foreach iterator() do
statements;

endfor;

An iterator returns two values: a boolean success or failure value and a function result. As long as the
iterator returns success, the FOREACH statement executes the statements comprising the loop body. If the
iterator returns failure, the FOREACH loop terminates and executes the next sequential statement following
the FOREACH loop’s body.

Iterators are considerably more complex than normal functions. A typical function call involves two
basic operations: a call and a return. Iterator invocations involve four basic operations:

1) Initial iterator call

2) Yielding a value

3) Resumption of an iterator

1. Ada and PL/I support very limited forms of iterators, though they do not support the type of iterators found in CLU, SETL,
Icon, and other languages.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1271

Chapter Two Volume Five
4) Termination of an iterator.

To understand how an iterator operates, consider the following short example:

iterator range(start:int32; stop:int32);
begin range;

forever

mov(start, eax);
breakif(eax > stop);
yield();
inc(start);

endfor;

end range;

In HLA, iterator calls may only appear in the FOREACH statement. With the exception of the "yield();"
statement above, anyone familiar with HLA should be able to figure out the basic logic of this iterator.

An iterator in HLA may return to its caller using one of two separate mechanisms, it can return to the
caller by exiting through the "end Range;" statement or it may yield a value by executing the "yield();" state-
ment. An iterator succeeds if it executes the "yield();" statement, it fails if it simply returns to the caller.
Therefore, the FOREACH statement will only execute its corresponding statement if you exit an iterator
with a "yield();". The FOREACH statement terminates if you simply return from the iterator. In the example
above, the iterator returns the values start..stop via a "yield();" statement and then the iterator terminates.
The loop

foreach Range(1,10) do

stdout.put((type uns32 eax), nl);

endfor;

is comparable to the code:

for(mov(1, eax); eax <= 10; inc(eax)) do

stdout.put((type uns32 eax), nl);

endfor;

When an HLA program first executes the FOREACH statement, it makes an initial call to the iterator.
The iterator runs until it executes a "yield();" or it returns. If it executes the "yield();" statement, it returns the
value in EAX as the iterator result and it succeeds. If it simply returns, the iterator returns failure and no iter-
ator result. In the current example, the initial call to the iterator returns success and the value one.

Assuming a successful return (as in the current example), the FOREACH statement returns the current
result in EAX and executes the FOREACH loop body. After executing the loop body, the FOREACH state-
ment calls the iterator again. However, this time the FOREACH statement resumes the iterator rather than
making an initial call. An iterator resumption continues with the first statement following the last "yield();" it
executes. In the range example, a resumption would continue execution at the "inc(start);" statement. On
the first resumption, the range iterator would add one to start, producing the value two. Two is less than ten
(stop’s value) so the FOREACH loop would repeat and the iterator would yield the value two. This process
would repeat over and over again until the iterator yields ten. Upon resuming after yielding ten, the iterator
would increment start to eleven and then return, rather than yield, since this new value is not less than or
equal to ten. When the Range iterator returns (fails), the FOREACH loop terminates.
Page 1272 © 2001, By Randall Hyde Version: 7/4/01

Iterators
2.2.1 Implementing Iterators Using In-Line Expansion

The implementation of an iterator is rather complex. To begin with, consider a first attempt at an assem-
bly implementation of the FOREACH statement above:

push(1); // Manually pass 1 and 10 as parameters.
push(10);
call Range_initial;
jc Failure;

ForLp: stdout.put((type uns32 eax), nl);
call Range_Resume;
jnc ForLp;

Failure:

Although this looks like a straight-forward implementation project, there are several issues to consider.
First, the call to Range_Resume above looks simple enough, but there is no fixed address that corresponds to
the resume address. While it is certainly true that this Range example has only one resume address, in gen-
eral you can have as many "yield();" statements as you like in an iterator. For example, the following iterator
returns the values 1, 2, 3, and 4:

iterator OneToFour;
begin OneToFour;

mov(1, eax); yield();
mov(2, eax); yield();
mov(3, eax); yield();
mov(4, eax); yield();

end OneToFour;

The initial call would execute the "mov(1, eax);" and "yield();" statements. The first resumption would exe-
cute the "mov(1, eax);" and "yield();" statements, the second resumption would execute "mov(1, eax);"
and "yield();", etc. Obviously there is no single resume address the calling code can count on.

There are a couple of additional details left to consider. First, an iterator is free to call procedures and
functions2. If such a procedure or function executes the "yield();" statement then resumption by the
FOREACH statement continues execution within the procedure or function that executed the "yield();"3.
Second, the semantics of an iterator require all local variables and parameters to maintain their values until
the iterator terminates. That is, yielding does not deallocate local variables and parameters. Likewise, any
return addresses left on the stack (e.g., the call to a procedure or function that executes the "yield();" state-
ment) must not be lost when a piece of code yields and the corresponding FOREACH statement resumes the
iterator. In general, this means you cannot use the standard call and return sequence to yield from or resume
to an iterator because you have to preserve the contents of the stack.

While there are several ways to implement iterators in assembly language, perhaps the most practical
method is to have the iterator call the loop controlled by the iterator and have the loop return back to the iter-
ator function. Of course, this is counter-intuitive. Normally, one thinks of the iterator as the function that the
loop calls on each iteration, not the other way around. However, given the structure of the stack during the
execution of an iterator, the counter-intuitive approach turns out to be easier to implement.

Some high level languages support iterators in exactly this fashion. For example, Metaware’s Profes-
sional Pascal Compiler for the PC supports iterators4. Were you to create a Professional Pascal code
sequence as follows:

iterator OneToFour:integer;
begin

2. In Panacea an iterator could also call other types of program units, including other iterators, but you can ignore this for
now.
3. This requires the use of nested procedures, a subject we will discuss in a later chapter.
4. Obviously, this is a non-standard extension to the Pascal programming language provided in Professional Pascal.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1273

Chapter Two Volume Five
yield 1;
yield 2;
yield 3;
yield 4;

end;

and call it in the main program as follows:

for i in OneToFour do writeln(i);

Professional Pascal would completely rearrange your code. Instead of turning the iterator into an assembly
language function and calling this function from within the FOR loop body, this code would turn the FOR
loop body into a function, expand the iterator in-line (much like a macro) and call the FOR loop body func-
tion on each yield. That is, Professional Pascal would probably produce assembly language that looks some-
thing like the following:

// The following procedure corresponds to the for loop body
// with a single parameter (I) corresponding to the loop
// control variable:

procedure ForLoopCode(i:int32); nodisplay;
begin ForLoopCode;

mov(i, eax);
stdout.put(i, nl);

end ForLoopCode;

// The follow code would be emitted in-line upon encountering the
// for loop in the main program, it corresponds to an in-line
// expansion of the iterator as though it were a macro,
// substituting a call for the yield instructions:

ForLoopCode(1);
ForLoopCode(2);
ForLoopCode(3);
ForLoopCode(4);

This method for implementing iterators is convenient and produces relatively efficient (fast) code. It
does, however, suffer from a couple drawbacks. First, since you must expand the iterator in-line wherever
you call it, much like a macro, your program could grow large if the iterator is not short and you use it often.
Second, this method of implementing the iterator completely hides the underlying logic of the code and
makes your assembly language programs difficult to read and understand.

2.2.2 Implementing Iterators with Resume Frames

In-line expansion is not the only way to implement iterators. There is another method that preserves the
structure of your program at the expense of a slightly more complex implementation. Several high level lan-
guages, including Icon and CLU, use this implementation.

To start with, you will need another stack frame: the resume frame. A resume frame contains two
entries: a yield return address (that is, the address of the next instruction after the yield statement) and a
dynamic link, that is a pointer to the iterator’s activation record. Typically the dynamic link is just the value
in the EBP register at the time you execute the yield statement. This version implements the four parts of an
iterator as follows:

1) A CALL instruction for the initial iterator call,

2) A CALL instruction for the YIELD statement,

3) A RET instruction for the resume operation, and
Page 1274 © 2001, By Randall Hyde Version: 7/4/01

Iterators
4) A RET instruction to terminate the iterator.

To begin with, an iterator will require two return addresses rather than the single return address you
would normally expect. The first return address appearing on the stack is the termination return address. The
second return address is where the subroutine transfers control on a YIELD operation. The calling code must
push these two return addresses upon initial invocation of the iterator. The stack, upon initial entry into the
iterator, should look something like Figure 2.1.

Figure 2.1 Iterator Activation Record

As an example, consider the Range iterator presented earlier. This iterator requires two parameters, a
starting value and an ending value:

foreach range(1,10) do

stdout.put(i, nl);

endfor;

The code to make the initial call to the range iterator, producing a stack like the one above, could be the
following:

push(1); // Push start parameter value.
push(10); // Push stop parameter value.
push(&ForDone); // Push termination address.
call range; // Call the iterator.

.

.

.
ForDone:

FORDONE is the first statement immediately following the FOREACH loop, that is, the instruction to exe-
cute when the iterator returns failure. The FOREACH loop body must begin with the first instruction follow-
ing the call to range. At the end of the FOREACH loop, rather than jumping back to the start of the loop, or
calling the iterator again, this code should just execute a RET instruction. The reason will become clear in a
moment. So the implementation of the above FOREACH statement could be the following:

push(1); // Push start parameter value.
push(10); // Push stop parameter value.
push(&ForDone); // Push termination address.
call range; // Call the iterator.
push(ebp); // Preserve iterator’s ebp value.
mov([esp+8], ebp); // Get original EBP value passed to us by range.
stdout.put(i, nl); // Display i’s value.

Previous Stack Contents

 SP
Yield Return Address

Parameters for Iterator

Termination Return Address
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1275

Chapter Two Volume Five
pop(ebp); // Restore iterator’s EBP value.
ret(4); // Return and clean EBP value off stack.

ForDone:

Granted, this doesn’t look anything at all like a loop. However, by playing some major tricks with the stack,
you’ll see that this code really does iterate the loop body (stdout.put) as intended.

Now consider the range iterator itself, here’s the (mostly) low-level code to do the job:

iterator range(start:int32; stop:int32); nodisplay; noframe;
begin range;

push(ebp); // Standard Entry Sequence
mov(esp, ebp);

ForEverLbl:

mov(start, eax);
cmp(eax, stop);
jng ForDone;

yield();
inc(start);
jmp ForEverLbl;

ForDone:
pop(ebp);
add(4, esp);
ret(8);

end range;

Although this routine is rather short, don’t let its size deceive you; it’s quite complex. The best way to
describe how this iterator operates is to take it a few instructions at a time. The first two instructions are the
standard entry sequence for a procedure. Upon execution of these two instructions, the stack looks like that
in Figure 2.2.

Figure 2.2 Range Activation Record

Previous Stack Contents

Original EBP Value

 ESP, EBP

0

4

Offset from
EBP

Yield Return Address

Termination Return Address8

12

16

20

Value of Start Parameter (1)

Value of Stop Parameter (10)
Page 1276 © 2001, By Randall Hyde Version: 7/4/01

Iterators
The next three statements in the range iterator, at label ForEverLbl, implement the termination test of
the loop. When the start parameter contains a value greater than the stop parameter, control transfers to the
ForDone label at which point the code pops the value of EBP off the stack, pops the success return address
off the stack (since this code will not return back to the body of the iterator loop) and then returns via the
termination return address that is immediately above the success return address on the stack. The return
instruction also pops the two parameters (eight bytes) off the stack.

The real work of the iterator occurs in the body of the loop. The main question here is "what is this yield
procedure and what is it doing?". To understand what yield is, we must consider what it is that yield does.
Whenever the iterator executes the yield statement, it calls the body of the FOREACH loop that invoked the
iterator. Since the body of the FOREACH loop is the first statement following the call to the iterator, it turns
out that the iterator’s return address points at that body of code. Therefore, the yield statement does the
unusual operation of calling a subroutine pointed at by the iterator’s (success) return address.

Simply calling the body of the FOREACH loop is not all the yield call must do. The body of the
FOREACH loop is in a different procedure with its own activation record. That FOREACH loop body may
very well access variables that are local to the procedure containing that loop body; therefore, the yield
statement must also pass the original procedure’s EBP value as a parameter so that the loop body can restore
EBP to point at the FOREACH loop body’s activation record (while, of course, preserving EBP’s value
within the iterator itself). The caller’s EBP value (also known as the dynamic link) was the value the iterator
pushes on the stack in the standard entry sequence. Therefore, [EBP+0] will point at this dynamic link
value. To properly implement the yield operation, the iterator must emit the following code:

push(ebp); // Save iterator’s activation record pointer.
call((type dword [ebp+4])); // Call the return address.

The PUSH and CALL instructions build the resume frame and then return control to the body of the
FOREACH loop. The CALL instruction is not calling a subroutine. What it is really doing here is finishing
off the resume frame (by storing the YIELD resume address into the resume frame) and then it returns con-
trol back to the body of the FOREACH loop by jumping indirect through the success return address pushed
on the stack by the initial call to the iterator. After the execution of this call, the stack frame looks like that in
Figure 2.3.

Figure 2.3 Range Resume Record

Previous Stack Contents

Original EBP Value

 ESP

Yield Return Address

Termination Return Address

Value of Start Parameter (1)

Value of Stop Parameter (10)

Resume Return Address

Dynamic Link (old EBP)

Iterator
Activation
Record

 EBP

Resume Frame
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1277

Chapter Two Volume Five
By convention, the EAX register contains the return value for the iterator. As with functions, EAX is a
good place to return the iterator return result.

Immediately after yielding back to the FOREACH loop, the code must reload EBP with the original
value prior to the iterator invocation. This allows the calling code to correctly access parameters and local
variables in its own activation record rather than the activation record of the iterator. The FOREACH loop
body begins by preserving EBP’s value (the pointer to iterator’s activation record) and then loading EBP
with the value pushed on the stack by the YIELD statement. Of course, in this example reloading EBP isn’t
necessary because the body of the FOREACH loop does not reference any memory locations off the EBP
register, but in general you will need to save EBP’s value and load EBP with the value pushed on the stack
by the yield statement.

At the end of the FOREACH loop body the "pop(ebp);" and "ret(4);" instructions restore EBP’s value,
cleans up the environment pointer passed as a parameter, and resumes the iterator. The RET instruction pops
the return address off the stack which returns control back to the iterator immediately after the call emitted
by the YIELD statement.

Of course, this is a lot of work to create a piece of code that simply repeats a loop ten times. A simple
FOR loop would have been much easier and quite a bit more efficient that the FOREACH implementation
described in this section. This section used the range iterator because it was easy to show how iterators work
using range, not because actually implementing range as an iterator is a good idea.

Note that HLA does not provide an actual YIELD statement. If you look carefully at this code, and you
think back to the last chapter, you will notice that the YIELD "statement" generates exactly the same code as
a thunk invocation. Indeed, were you to dump the HLA symbol table when compiling a program containing
the range iterator, you’d discover that yield is actually a local variable of type thunk within the range iterator
code. The offset of this thunk is zero (from EBP) in the iterator’s activation record (see Figure 2.4):

Figure 2.4 Yield Thunk in the range Iterator’s Activation Record

This thunk value is somewhat unusual. If you look closely, you’ll realize that this thunk’s value is actu-
ally the return address the original call to range pushes along with the old EBP value that the range iterator
code pushes as part of the standard entry sequence. In other words, the call to range and the standard entry
sequence automatically initializes the yield thunk! How’s that for elegance? All the HLA compiler has to do
to create the yield thunk is to automatically create this "yield" symbol and associate yield with the address of
the old EBP value that the range standard entry sequence pushes on the stack.

As you may recall from the chapter on Thunks, the calling sequence for a thunk is the following:

push(<< Thunk’s Environment Pointer>>);
call(<< Thunk’s Code Pointer >>);

Previous Stack Contents

Original EBP Value

Yield Return Address

Termination Return Address

Value of Start Parameter (1)

Value of Stop Parameter (10)
range
Activation
Record

 EBP

Yield
Thunk
Page 1278 © 2001, By Randall Hyde Version: 7/4/01

Iterators
In the case of the yield thunk in an iterator, the calling sequence looks like this:

pushd([ebp]); // Pass iterator caller’s EBP as parameter.
call((type dword [ebp+4])); // Call the FOREACH loop’s body.

The body of the FOREACH loop, like any thunk, must preserve EBP’s value and load EBP with the
value pushed on the stack in the code sequence above. Prior to returning (resuming) back to the iterator, the
FOREACH loop body must restore the iterator’s EBP value and it must remove the environment pointer
parameter from the stack upon return. The code given earlier for the FOREACH loop does this:

// "FOREACH range(1, 10) do" statement:

push(1); // Push start parameter value.
push(10); // Push stop parameter value.
push(&ForDone); // Push termination address.
call range; // Call the iterator.

// FOREACH loop body (a thunk):

push(ebp); // Preserve iterator’s ebp value.
mov([esp+8], ebp); // Get original EBP value passed to us by range.
stdout.put(i, nl); // Display i’s value.
pop(ebp); // Restore iterator’s EBP value.
ret(4); // Return and clean EBP value off stack.

// endfor;

ForDone:

Of course, HLA does not make you write this low-level code. You can actually use a FOREACH state-
ment in your program. The above code is the low-level implementation of the following high-level HLA
code:

foreach range(1, 10) do

stdout.put(i, nl);

endfor;

The HLA compiler automatically emits the code to preserve and set up EBP at the beginning of the
FOREACH loop’s body; HLA also automatically emits the code to restore EBP and return to the iterator
(removing the environment pointer parameter from the stack).

2.3 Other Possible Iterator Implementations

Thus far, this text has given two different implementations for iterators and the FOREACH loop.
Although the resume frame/thunk implementation of the previous section is probably the most common
implementation in HLA programs (since the HLA compiler automatically generates this type of code for
FOREACH loops and iterators), don’t get the impression that this is the only, or best, way to implement iter-
ators and the FOREACH loop. Other possible implementations certainly exist and in some specialized situ-
ations some other implementation may offer some advantages. In this section we’ll look at a couple of ways
to implement iterators and the FOREACH loop.

The standard HLA implementation of iterators uses two separate return address for an iterator call: a
success/yield address and a failure address. This organization is elegant given the thunk implementation of
HLA’s FOREACH statement, but there are other ways to return success/failure from an iterator. For exam-
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1279

Chapter Two Volume Five
ple, you could use the value of the carry flag upon return from the iterator call to denote success or failure.
Then a call to the iterator might take the following form:

ForEachLoopLbl:
<< Push any Necessary Parameters >>
call iter;
jc iterFails;

<< Code for the body of the iterator >>

jmp ForEachLoopLbl;

iterFails:

One problem with this approach is that the code reenters the iterator on each iteration of the loop. This
means it always passes the same parameters and reconstructs the activation record on each call of the itera-
tor. Clearly, you cannot use this scheme if the iterator needs to maintain state information in its activation
record between calls to the iterator. Furthermore, if the iterator yields from different points, then transferring
control to the first statement after each yield statement will be a problem. There is a trick you can pull to tell
the iterator whether this is the first invocation or some other invocation - pass a special parameter to indicate
the first call of an iterator. You can do this as follows:

pushd(0); // Zero indicates the first call to iter.
ForEachLoopLbl:

<< Push Any Other Necessary Parameters >>
call iter; // iter is a standard HLA procedure, not an iterator.
jc iterFails;

<< Code for the body of the iterator >>

pushd(1); // One indicates a re-entry into the iterator.
jmp ForEachLoopLbl;

iterFails:

Notice how this code pushes a zero as the first parameter on the first call to iter and it pushes a one on each
invocation thereafter.

What if the iterator needs to maintain state information (i.e., local variable values) between calls? Well,
the easiest way to handle this using the current scheme is to pass extra parameters by value and use those
parameters as the local variables. When the iterator returns success, it should not clean up the parameters on
the stack, instead, it will leave them there for the next iteration of the "FOREACH" loop. E.g., consider the
following implementation and invocation of the ArithRange iterator (this iterator returns the sum of all the
values between the start and stop parameters):

// Note: we have to use a procedure, not an iterator, here because we don’t
// want HLA generating funny code for us.
//
// "sum" is actually a local variable in which we maintain state information.
// It must contain zero on the first entry to denote the intial entry into
// this code.

procedure ArithRange(start:uns32; stop:uns32; sum:uns32); nodisplay; noframe;
begin ArithRange;

push(ebp); // Standard entry sequence.
mov(esp, ebp);

mov(start, eax);
if(eax <= stop) then
Page 1280 © 2001, By Randall Hyde Version: 7/4/01

Iterators
add(sum, eax); // Compute arithmetic sum of values.
mov(eax, sum); // Save for the next time through and return in EAX.
pop(ebp); // Restore pointer to caller’s environment.
clc; // Indicate success on return.
ret(); // Note that we don’t pop parameters!

endif;
pop(ebp); // Restore pointer to caller’s environment.
stc; // Indicate return on failure.
ret(12); // On failure, remove the parameters from the stack.

end ArithRange;
.
.
.
pushd(1); // Pass the start parameter value.
pushd(10); // Pass the stop parameter value.
pushd(0); // Must pass zero in for sum value.

ForEachLoop:
call ArithRange; // Call our "iterator".
jc ForEachDone; // Quit on failure, fall through on success.

<< Foreach loop body code >>

jmp ForEachLoop;

ForEachDone:

Notice how this code pushes the parameters on the stack for the first invocation of the ArithRange iterator,
but it does not push the parameters on the stack on successive iterations of the loop. That’s because the code
does not remove these parameter values until it fails. Therefore, on each iteration of the loop, the parameter
values left on the stack by the previous invocation of ArithRange are still on the stack for the next invocation.
When the iterator fails, it pops the parameters off the stack so the stack is clean on exit from the
"FOREACH" loop above.

If you can spare a register, there is a slightly more efficient way to implement iterators and the
FOREACH loop (HLA doesn’t use this scheme by default because it promise not to monkey with your reg-
ister set in the code generation for the high level control structures). Consider the following code that HLA
emits for a yield call:

push([ebp]); // Pass FOREACH loop’s EBP value as a parameter.
call([ebp+4]); // Call the success address.

The FOREACH loop body code looks like the following:

push(ebp); // Save iterator’s EBP value.
mov([esp+8], ebp); // Fetch our EBP value pushed by the iterator.
<< loop body >>
pop(ebp); // Restore iterator’s EBP value.
ret(4); // Resume the iterator and remove EBP value.

This code can be improved slightly by preserving and setting the EBP value within the iterator. Consider the
following yield and FOREACH loop body code:

push(ebp); // Save iterator’s EBP value.
mov([ebp+4], edx); // Put success address into an available register.
mov([ebp], ebp); // Set up FOREACH loop’s EBP value.
call edx; // Call the success address.
pop(ebp); // Restore our EBP value.

Here’s the corresponding FOREACH loop body:

<< Loop Body >>
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1281

Chapter Two Volume Five
ret();

These scheme isn’t amazingly better than the standard resume frame approach (indeed, it is about the same).
But in some situations the fact that the loop body code doesn’t have to mess with the stack may be important.

2.4 Breaking Out of a FOREACH Loop

The BREAK, BREAKIF, CONTINUE, and CONTINUEIF statements are active within a FOREACH
loop, but there are some problems you must consider if you attempt to break out of a FOREACH loop with a
BREAK or BREAKIF statement. In this section we’ll look at the problems of prematurely leaving a
FOREACH loop.

Keep in mind that an iterator leaves some information on the stack during the execution of the
FOREACH loop body. Remember, the iterator doesn’t return back to the FOREACH loop in order to exe-
cute the loop body; it actually calls the FOREACH loop body. That call leaves a resume frame plus all
parameters, local variables, and other information in the iterator’s activation record on the stack when it calls
the FOREACH loop body. If you attempt to bail out of the FOREACH loop using BREAK, BREAKIF, or
(worse still) a conditional or unconditional jump, ESP does not automatically revert back to the value prior
to the execution of the FOREACH statement. The HLA generated code can only clean up the stack properly
if the iterator returns via the failure address.

Although HLA cannot clean up the stack for you, it is quite possible for you to clean up the stack your-
self. The easiest way to do this is to store the value in ESP to a local variable immediately prior to the exe-
cution of the FOREACH statement. Then simply reload ESP from this value prior to prematurely leaving
the FOREACH loop. Here’s some code that demonstrates how to do this:

mov(esp, espSave);
foreach range(1, 10) do

<< foreach loop body >>

if(some_condition) then

mov(espSave, esp);
break;

endif;

<< more loop body code >>

endfor;

By restoring ESP from the espSave variable, this code removes all the activation record information from
the stack prior to leaving the FOREACH loop body. Notice the MOV instruction immediately before the
FOREACH statement that saves the stack position prior to calling the range iterator.

2.5 An Iterator Implementation of the Fibonacci Number Generator

Consider for a moment the Fibonacci number generator from the chapter on Thunks (this is the slow,
non-thunk, implementation):

// Standard fibonocci function using the slow recursive implementation.

procedure slowfib(n:uns32); nodisplay; returns("eax");
begin slowfib;
Page 1282 © 2001, By Randall Hyde Version: 7/4/01

Iterators
 // For n= 1,2 just return 1.

 if(n <= 2) then

 mov(1, eax);

 else

 // Return slowfib(n-1) + slowfib(n-2) as the function result:

 dec(n);
 slowfib(n); // compute fib(n-1)
 push(eax); // Save fib(n-1);

 dec(n); // compute fib(n-2);
 slowfib(n);

 add([esp], eax); // Compute fib(n-1) [on stack] + fib(n-2) [in eax].
 add(4, esp); // Remove old value from stack.

 endif;

end slowfib;

Program 2.1 Recursive Implementation of the Fibonacci Number Generator

This particular function generates the nth Fibonacci number by computing the first through the nth the
Fibonacci number. If you wanted to generate a sequence of Fibonacci numbers, you could use a FOR loop
as follows:

for(mov(1, ebx); ebx < n; inc(ebx)) do

slowfib(ebx);
stdout.put("Fib(", (type uns32 ebx), ") = ", (type uns32 eax), nl);

endfor;

True to its name, this implementation of slowfib runs quite slowly as n gets larger. The reason this func-
tion takes so much time (as pointed out in the chapter on Thunks) is that each recursive call recomputes all
the previous Fibonacci numbers. Given the (n-1)st and (n-2)nd Fibonacci numbers, computing the nth

Fibonacci number is trivial and very efficient – you simply add the previous two values together. The effi-
ciency loss occurs when the recursive implementation computes the same value over and over again. The
chapter on Thunks described how to eliminate this recomputation by passing the computed values to other
invocations of the functions. This allows the Fibonacci function to compute the nth Fibonacci number in n
units of time rather than 2n units of time, a dramatic improvement. However, since each call to the (efficient)
Fibonacci generator requires n units of time to compute its result, the loop above (which repeats n times)
requires approximately n2 units of time to run. This does not seem reasonable since it clearly takes only a
few instructions to compute a new Fibonacci number given the previous two values; that is, we should be
able to compute the nth Fibonacci number in n units of time. Iterators provide a trivial way to implement a
Fibonacci number generator that generates a sequence of n Fibonacci numbers in n units of time. The fol-
lowing program demonstrates how to do this.

program fibIter;
#include("stdlib.hhf")
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1283

Chapter Two Volume Five
// Fibonocci function using a thunk to calculate fib(n-2)
// without making a recursive call.

procedure fib(n:uns32; nm2:thunk); nodisplay; returns("eax");
var
 n2: uns32; // A recursive call to fib stores fib(n-2) here.
 t: thunk; // This thunk actually stores fib(n-2) in n2.

begin fib;

 // Special case for n = 1, 2. Just return 1 as the
 // function result and store 1 into the fib(n-2) result.

 if(n <= 2) then

 mov(1, eax); // Return as n-1 value.
 nm2(); // Store into caller as n-2 value.

 else

 // Create a thunk that will store the fib(n-2) value
 // into our local n2 variable.

 thunk t :=
 #{
 mov(eax, n2);
 }#;

 mov(n, eax);
 dec(eax);
 fib(eax, t); // Compute fib(n-1).

 // Pass back fib(n-1) as the fib(n-2) value to a previous caller.

 nm2();

 // Compute fib(n) = fib(n-1) [in eax] + fib(n-2) [in n2]:

 add(n2, eax);

 endif;

end fib;

// Standard fibonocci function using the slow recursive implementation.

procedure slowfib(n:uns32); nodisplay; returns("eax");
begin slowfib;

 // For n= 1,2 just return 1.

 if(n <= 2) then

 mov(1, eax);

 else

 // Return slowfib(n-1) + slowfib(n-2) as the function result:
Page 1284 © 2001, By Randall Hyde Version: 7/4/01

Iterators
 dec(n);
 slowfib(n); // compute fib(n-1)
 push(eax); // Save fib(n-1);

 dec(n); // compute fib(n-2);
 slowfib(n);

 add([esp], eax); // Compute fib(n-1) [on stack] + fib(n-2) [in eax].
 add(4, esp); // Remove old value from stack.

 endif;

end slowfib;

// FibNum-
//
// Iterator that generates all the fibonacci numbers between 1 and n.

iterator FibNum(n:uns32); nodisplay;
var
 Fibn_1: uns32; // Holds Fib(n-1) for a given n.
 Fibn_2: uns32; // Holds Fib(n-2) for a given n.
 CurFib: uns32; // Current index into fib sequence.

begin FibNum;

 mov(1, Fibn_1); // Initialize these guys upon initial entry.
 mov(1, Fibn_2);
 mov(1, eax); // Fib(0) = 1
 yield();
 mov(1, eax); // Fib(1) = 1;
 yield();
 mov(2, CurFib);
 forever

 mov(CurFib, eax); // Compute sequence up to the nth #.
 breakif(eax > n);
 mov(Fibn_2, eax); // Compute this result.
 add(Fibn_1, eax);

 // Recompute the Fibn_1 and Fibn_2 values:

 mov(Fibn_1, Fibn_2);
 mov(eax, Fibn_1);

 // Return current value:

 yield();

 // Next value in sequence:

 inc(CurFib);

 endfor;

end FibNum;

var
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1285

Chapter Two Volume Five
 prevTime:dword[2]; // Used to hold 64-bit result from RDTSC instr.
 qw: qword; // Used to compute difference in timing.
 dummy:thunk; // Used in original calls to fib.

begin fibIter;

 // "Do nothing" thunk used by the initial call to fib.
 // This thunk simply returns to its caller without doing
 // anything.

 thunk dummy := #{ }#;

 // Call the fibonocci routines to "prime" the cache:

 fib(1, dummy);
 slowfib(1);
 foreach FibNum(1) do
 endfor;

 // Okay, compute the running times for the three fibonocci routines to
 // generate a sequence of n fibonacci numbers where n ranges from
 // 1 to 32:

 for(mov(1, ebx); ebx < 32; inc(ebx)) do

 // Emit the index:

 stdout.put((type uns32 ebx):2, stdio.tab);

 // Compute the # of cycles needed to compute the Fib via iterator:

 rdtsc();
 mov(eax, prevTime);
 mov(edx, prevTime[4]);

 foreach FibNum(ebx) do

 endfor;

 rdtsc();
 sub(prevTime, eax);
 sbb(prevTime[4], edx);
 mov(eax, (type dword qw));
 mov(edx, (type dword qw[4]));

 stdout.putu64Size(qw, 4, ' ');
 stdout.putc(stdio.tab);

 // Read the time stamp counter before calling fib:

 rdtsc();
 mov(eax, prevTime);
 mov(edx, prevTime[4]);

 for(mov(1, ecx); ecx <= ebx; inc(ecx)) do
Page 1286 © 2001, By Randall Hyde Version: 7/4/01

Iterators

 fib(ecx, dummy);

 endfor;

 // Read the timestamp counter and compute the approximate running
 // time of the current call to fib:

 rdtsc();
 sub(prevTime, eax);
 sbb(prevTime[4], edx);
 mov(eax, (type dword qw));
 mov(edx, (type dword qw[4]));

 // Display the results and timing from the call to fib:

 stdout.putu64Size(qw, 10, ' ');
 stdout.putc(stdio.tab);

 // Okay, repeat the above for the slowfib implementation:

 rdtsc();
 mov(eax, prevTime);
 mov(edx, prevTime[4]);

 for(mov(1, ecx); ecx <= ebx; inc(ecx)) do

 slowfib(ebx);

 endfor;

 rdtsc();
 sub(prevTime, eax);
 sbb(prevTime[4], edx);
 mov(eax, (type dword qw));
 mov(edx, (type dword qw[4]));

 stdout.putu64Size(qw, 10, ' ');
 stdout.newln();

 endfor;

end fibIter;

Program 2.2 Fibonacci Iterator Example Program

The important concept here is that the FibNum iterator maintains its state across calls. In particular, it
keeps track of the current iteration and the previous two Fibonacci values. Therefore, the iterator takes very
little time to compute the result of each number in the sequence. This is far more efficient than either
Fibonacci number generator from the chapter on Thunks, as the following table attests.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1287

Chapter Two Volume Five
Table 1: CPU Cycle Times for Various Fibonacci Implementations

n Iterator Implementation Thunk Implementation
Recursive

Implementation

 1 156 233 98

 2 148 98 77

 3 178 221 271

 4 193 376 399

 5 213 509 879

 6 213 712 1758

 7 233 919 3493

 8 252 1166 6531

 9 271 1460 12568

10 290 1759 22871

11 308 2139 40727

12 331 2503 71986

13 349 2938 126443

14 372 3341 220673

15 380 3877 382364

16 402 4326 660506

17 417 4977 1160660

18 452 5528 1954253

19 487 6222 3322819

20 479 6840 5685066

21 524 7691 9621772

22 545 8313 16339720

23 576 9292 27709571

24 599 10029 47036825

25 616 11274 80102556

26 650 12348 132583731

27 653 13172 222580780

28 683 14339 374788752

29 694 15394 627559062
Page 1288 © 2001, By Randall Hyde Version: 7/4/01

Iterators
2.6 Iterators and Recursion

It is completely possible, and sometimes very useful, to recursively call an iterator. In this section we’ll
explore the syntax for this and present a couple of useful recursive iterators.

Although there is nothing stopping you from manually calling an iterator with the CALL instruction, the
only valid (high level syntax) invocation of an iterator is via the FOREACH statement. Therefore, to recur-
sively call an iterator, that iterator must contain a FOREACH loop to recursively call itself.

Iterators are especially useful for traversing tree and graph data structures. Some of the best (and most
efficient) examples of recursive iterators are those that traverse such structures. Unfortunately, this text does
not assume the prerequisite knowledge of such data structures, so it cannot use such examples to demon-
strate recursive iterators. Nevertheless, it’s worth mentioning this fact here because if you are familiar with
graph traversal algorithms (or will be learning them in the future) you should consider using iterators for this
purpose.

One useful iterator that doesn’t require a tremendous amount of prerequisite knowledge is the traversal
of a binary search tree implemented within an array. We won’t go into the details of what a binary search
tree is or why you would use it here other than to describe some properties of that tree. A binary search tree,
implemented as an array, is a data structure that allows one to quickly search for some value within the struc-
ture. The values are arranged in the tree such that after each comparison you can eliminate half of the possi-
ble values with a single comparison. As a result, if the array contains n items, you can locate a particular
item of interest in log2 n units of time. To achieve this efficient search time, you have to arrange the data in
the array in a particular fashion and then use a specific algorithm when searching through the tree. For the
sake of our example, we’ll assume that the data in the array is sorted (that is, a[0] < a[1] < a[2] < ... < a[n-1]
for some definition of "less than"). The binary search algorithm then takes the following form:

1. Set i = n

2. Set j = i / 2 (integer/truncating division)

3. Quit if i=j (failed to find value in the search tree).

4. Compare the key value (the one you’re searching for) against a[i].

5. If key > a[i] then set j = (i - j + 1)/2 + j

else set i = j and then j = i/2

6. Go to step 3.

How this works and what it does is irrelevant here. What is important to this section is the arrangement
of the data in the array that forms the binary search tree (specifically, the sorted nature of the data). Of
course, if we wanted to generate a list of numbers in the sorted order, that would be especially trivial, all we
would have to do is step through the array one element at a time. Suppose, however, that we wanted to gen-
erate a list of median values in this array. That is, the first value to generate would be the median of all the
values, the second and third values would be the two median values of the array "slice" on either side of the
original median. The next four values would be the medians of the array slices around the previous two
medians and so on. If you’re wondering what good such a sequence could be, well, were we to store this
sequence into successive elements of an array, we could develop a binary search algorithm that is a little bit

30 722 16363 1054201515

31 732 17727 1756744511

Table 1: CPU Cycle Times for Various Fibonacci Implementations

n Iterator Implementation Thunk Implementation
Recursive

Implementation
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1289

Chapter Two Volume Five
faster than the algorithm above (faster by some multiplicative constant). Hence, by running this iterator over
the sorted data, we can come up with a slightly faster searching algorithm.

The following is the iterator that generates this particular sequence:

program RecIter;
#include("stdlib.hhf")

const
 MaxData := 17; // # of data items to process.

type
 AryType: uns32[MaxData];

static

 // Here is the sorted data we'll process. For simplicity, we'll just
 // fill the array with 1..MaxData at indices 0..MaxData-1.

 SortedData: AryType :=
 [
 // Fill this table with the values 1..MaxData:

 ?i := 1;
 #while(i < MaxData)

 i,
 ?i := i + 1;

 #endwhile
 i
];

/***/
/* */
/* MedianVal iterator- */
/* */
/* Given a sorted array, this iterator yields the median value, */
/* then it recursively yields a list of median values for the */
/* array slice consisting of the array elements whose index is */
/* less than the median value. Finally, it yields the list of */
/* median values for the array slice built from the array elements */
/* whose indices are greater than the median element. */
/* */
/* Inputs: */
/* Ary- */
/* The array whose elements we are to process. */
/* */
/* start- */
/* Starting index for the array slice. */
/* */
/* last- */
/* Ending index (plus one) for the array slice. */
/* */
/* Yields: */
/* A list of median values in EAX (one median value on */
/* each iteration of the corresponding FOREACH loop). */
/* */
/* Notes: */
/* This iterator wipes out EBX. */
Page 1290 © 2001, By Randall Hyde Version: 7/4/01

Iterators
/* */
/***/

iterator MedianVal(var Ary: AryType; start:uns32; last:uns32); nodisplay;
var
 median: uns32;
begin MedianVal;

 mov(last, eax);
 sub(start, eax);
 if(@a) then

 shr(1, eax); // Compute half the size.
 add(start, eax); // Compute median index.
 mov(eax, median); // Save for later.

 mov(Ary, ebx); // Compute address of median element.
 mov([ebx][eax*4], eax); // Get median element.
 yield();

 // Recursively yield the medians for the elements at indices below
 // the element we just yielded. Do this by recursively calling
 // the iterator to generate the list and then yield whatever value
 // the iterator returns.

 foreach MedianVal(Ary, start, median) do

 yield();

 endfor;

 // Recursively yield the medians for the array slice whose indices
 // are greater than the current array element. Note that we don't
 // include the median value itself in this list as we already
 // returned that value above.

 mov(median, eax);
 inc(eax);
 foreach MedianVal(Ary, eax, last) do

 yield();

 endfor;

 endif;

end MedianVal;

// Main program that tests the functionality of this iterator.

begin RecIter;

 foreach MedianVal(SortedData, 0, MaxData) do

 stdout.put("Value = ", (type uns32 eax), nl);

 endfor;

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1291

Chapter Two Volume Five
end RecIter;

Program 2.3 Recursive Iterator to Rearrange Data for a Binary Search

The program above produces the following output:

Value = 9
Value = 5
Value = 3
Value = 2
Value = 1
Value = 4
Value = 7
Value = 6
Value = 8
Value = 14
Value = 12
Value = 11
Value = 10
Value = 13
Value = 16
Value = 15
Value = 17

2.7 Calling Other Procedures Within an Iterator

It is perfectly legal to call other procedures from an iterator. However, unless that procedure is nested
within the iterator (see “Lexical Nesting” on page 1337), you cannot yield from that procedure using the
iterator’s yield thunk unless you pass the thunk as a parameter to the other procedure. Other than the fact
that you must remember that there is additional information on the stack, calling a procedure from an iterator
is really no different than calling an iterator from any other procedure.

2.8 Iterators Within Classes

You can declare an iterator within a class. Iterators are called via the class’ virtual method table, just
like methods. This means that you can override an iterator at run-time. See the chapter on classes for more
details.

2.9 Putting It Altogether

This chapter provides a brief introduction to the low-level implementation of iterators and then dis-
cusses several different ways that you may use iterators in your programs. Although iterators are not as
familiar as other program units, they are quite useful in many important situations. You should try to use
iterators in your programs wherever appropriate, even if you’re not familiar with iterators from your high
level language experiences.
Page 1292 © 2001, By Randall Hyde Version: 7/4/01

Coroutines and Generators
Coroutines and Generators Chapter Three

3.1 Chapter Overview

This chapter discusses two special types of program units known as coroutines and generators. A
coroutine is similar to a procedure and a generator is similar to a function. The principle difference between
these program units and procedures/functions is that the call/return mechanism is different. Coroutines are
especially useful for multiplayer games and other program flow where sections of code "take turns" execut-
ing. Generators, as their name implies, are useful for generating a sequence of values; in many respects
generators are quite similar to HLA’s iterators without all the restrictions of the iterators (i.e., you can only
use iterators within a FOREACH loop).

3.2 Coroutines

A common programming paradigm is for two sections of code to swap control of the CPU back and
forth while executing. There are two ways to achieve this: preemptive and cooperative. In a preemptive sys-
tem, two or more processes take turns executing with the task switch occurring independently of the execut-
ing code. A later volume in this text will consider preemptive multitasking, where the Operating System
takes responsibility for interrupting one task and transferring control to some other task. In this chapter
we’ll take a look at coroutines that explicitly transfer control to another section of the code1

When discussing coroutines, it is instructive to review how HLA’s iterators work, since there is a strong
correspondence between iterators and coroutines. Like iterators, there are four types of entries and returns
associated with a coroutine:

• Initial entry. During the initial entry, the coroutine’s caller sets up the stack and otherwise ini-
tializes the coroutine.

• Cocall to another coroutine / coreturn to the previous coroutine.
• Coreturn from another coroutine / cocall to the current coroutine.
• Final return from the coroutine (future calls require reinitialization).

A cocall operation transfers control between two coroutines. A cocall is effectively a call and a return
instruction all rolled into one operation. From the point of view of the process executing the cocall, the
cocall operation is equivalent to a procedure call; from the point of view of the processing being called, the
cocall operation is equivalent to a return operation. When the second process cocalls the first, control
resumes not at the beginning of the first process, but immediately after the cocall operation (this is similar to
returning from a FOREACH loop after a YIELD operation). If two processes execute a sequence of mutual
cocalls, control will transfer between the two processes in the following fashion:

1. The term "cooperative" in this chapter doesn’t not imply the use of that oxymoronic term "cooperative multitasking" that
Microsoft and Apple used before they got their operating system acts together. Cooperative in this chapter means that two
blocks of code explicitly pass control between one another. In a multiprogramming system (the proper technical term for
"cooperative multitasking" the operating system still decides which program unit executes after some other thread of execu-
tion voluntarily gives up the CPU.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1293

Chapter Three Volume Five
Figure 13.1 Cocall Sequence

Cocalls are quite useful for games where the “players” take turns, following different strategies. The
first player executes some code to make its first move, then cocalls the second player and allows it to make a
move. After the second player makes its move, it cocalls the first process and gives the first player its second
move, picking up immediately after its cocall. This transfer of control bounces back and forth until one
player wins.

Note, by the way, that a program may contain more than two coroutines. If coroutine one cocalls corou-
tine two, and coroutine two cocalls coroutine three, and then coroutine three cocalls coroutine one, coroutine
one picks up immediately after the cocall it made to coroutine two.

Process #1 Process #2

cocall prcs2

cocall prc

cocall prcs2

cocall prc

cocall prcs2

cocall prc

Cocall Sequence Between
Page 1294 © 2001, By Randall Hyde Version: 7/4/01

Coroutines and Generators
Figure 13.2 Cocalls Between Three Processes

Since a cocall effectively returns to the target coroutine, you might wonder what happens on the first
cocall to any process. After all, if that process has not executed any code, there is no “return address” where
you can resume execution. This is an easy problem to solve, we need only initialize the return address of
such a process to the address of the first instruction to execute in that process.

A similar problem exists for the stack. When a program begins execution, the main program (coroutine
one) takes control and uses the stack associated with the entire program. Since each process must have its
own stack, where do the other coroutines get their stacks? There is also the question of “how much space
should one reserve for each stack?” This, of course, varies with the application. If you have a simple applica-
tion that doesn’t use recursion or allocate any local variables on the stack, you could get by with as little as
256 bytes of stack space for a coroutine. On the other hand, if you have recursive routines or allocate storage
on the stack, you will need considerably more space. But this is getting a little ahead of ourselves, how do
we create and call coroutines in the first place?

HLA does not provide a special syntax for coroutines. Instead, the HLA Standard Library provides a
class with set of procedures and methods (in the coroutines library module) that lets you turn any procedure
(or set of procedures) into a coroutine. The name of this class is coroutine and whenever you want to create
a coroutine object, you need to declare a variable of type coroutine to maintain important state information
about that coroutine’s thread of execution. Here are a couple of typical declarations that might appear within
the VAR section of your main program:

var
FirstPlayer: pointer to coroutine;
OtherPlayer: coroutine;

Note that a coroutine variable is not the coroutine itself. Instead, the coroutine variable keeps track of
the machine state when you switch between the declared coroutine and some other coroutine in the program
(including the main program, which is a special case of a coroutine). The coroutines "body" is a procedure
that you write independently of the coroutine variable and associate with that coroutine object.

The coroutine class contains a constructor that uses the conventional name coroutine.create. This con-
structor requires two parameters and has the following prototype:

procedure coroutine.create(stacksize:dword; body:procedure);

Process #1 Process #2 Process #

cocall prcs2 cocall prcs3

cocall pr

Cocalls Between Three P
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1295

Chapter Three Volume Five
The first parameter specifies the size (in bytes) of the stack to allocate for this coroutine. The construc-
tion will allocate storage for the new coroutine in the system’s heap using dynamic allocation (i.e., malloc).
As a general rule, you should allocate at least 256 bytes of storage for the stack, more if your coroutine
requires it (for local variables and return addressees). Remember, the system allocates all local variables in
the coroutine (and in the procedures that the coroutine calls) on this stack; so you need to reserve sufficient
space to accommodate these needs. Also note that if there are any recursive procedures in the coroutine’s
thread of execution, you will need some additional stack space to handle the recursive calls.

The second parameter is the address of the procedure where execution begins on the first cocall to this
coroutine. Execution begins with the first executable statement of this procedure. If the procedure has some
local variables, the procedure must build a stack frame (i.e., you shouldn’t specify the NOFRAME proce-
dure option). Procedures you execute via a cocall should never have any parameters (the calling code will
not properly set up those parameters and references to the parameter list may crash the machine).

This constructor is a conventional HLA class constructor. On entry, if ESI contains a non-null value, the
constructor assumes that it points at a coroutine class object and the constructor initializes that object. On
the other hand, if ESI contains NULL upon entry into the constructor, then the constructor allocates new
storage for a coroutine object on the heap, initializes that object, and returns a pointer to the object in the ESI
register. The examples in this chapter will always assume dynamic allocation of the coroutine object (i.e.,
we’ll use pointers).

To transfer control from one coroutine (including the main program) to another, you use the corou-
tine.cocall method. This method, which has no parameters, switches the thread of execution from the cur-
rent coroutine to the coroutine object associated with the method. For example, if you’re in the main
program, the following two cocalls transfer control to the FirstPlayer and then the OtherPlayer coroutines:

FirstPlayer.cocall();
OtherPlayer.cocall();

There are two important things to note here. First, the syntax is not quite the same as a procedure call. You
don’t use cocall along with some operand that specifies which coroutine to transfer to (as you would if this
were a CALL instruction); instead, you specify the coroutine object and invoke the cocall method for that
object. The second thing to keep in mind is that these are coroutine transfers, not subroutine calls; there-
fore, the FirstPlayer coroutine doesn’t necessarily return back to this code sequence. FirstPlayer could
transfer control directly to OtherPlayer or some other coroutine once it finishes whatever tasks it’s working
on. Some coroutine has to explicitly transfer control to the thread of execution above in order for it to
(directly) transfer control to OtherPlayer.

Although coroutines are more general than procedures and don’t have to use the call/return semantics, it
is perfectly possible to simulate and call and return exchange between two coroutines. If one coroutine calls
another and that second coroutine cocalls the first, you get semantics that are very similar to a call/return (of
course, on the next call to the second coroutine control resumes after the cocall, not at the start of the corou-
tine, but we will ignore that difference here). The only problem with this approach is that it is not general:
both coroutines have to be aware of the other. Consider a cooperating pair of coroutines, master and slave.
The master coroutine corresponds to the main program and the slave coroutine corresponds to a procedure
that the main program calls. Unfortunately, slave is not general purpose like a standard procedure because
it explicitly calls the master coroutine (at least, using the techniques we’ve seen thus far). Therefore, you
cannot call it from an arbitrary coroutine and expect control to transfer back to that coroutine. If slave con-
tains a cocall to the master coroutine it will transfer control there rather than back to the "calling" coroutine.
Although these are the semantics we expect of coroutines, it would sometimes be nice if a coroutine could
return to whomever invoked it without explicitly knowing who invoked it. While it is possible to set up
some coroutine variables and pass this information between coroutines, the HLA Standard Library Corou-
tines Module provides a better solution: the coret procedure.

On each call to a coroutine, the coroutine run-time support code remembers the last coroutine that made
a cocall. The coret procedure uses this information to transfer control back to the last coroutine that made a
cocall. Therefore, the slave coroutine above can execute the coret procedure to transfer control back to
whomever called it without knowing who that was.

Note that the coret procedure is not a member of the coroutine class. Therefore, you do not preface the
call with "coroutine." You invoke it directly:
Page 1296 © 2001, By Randall Hyde Version: 7/4/01

Coroutines and Generators
coret();

Another important issue to keep in mind with coret is that it only keeps track of the last cocall. It does
not maintain a stack of coroutine "return addresses" (there are several different stacks in use by coroutines,
on which one does it keep this information?). Therefore, you cannot make two cocalls in a row and then
execute two corets to return control back to the original coroutine. If you need this facility, you’re going to
need to create and maintain your own stack of coroutine calls. Fortunately, the need for something like this
is fairly rare. You generally don’t use coroutines as though they were procedures and in the few instances
where this is convenient, a single level of return address is usually sufficient.

By default, every HLA main program is a coroutine. Whenever you compile an HLA program (as
opposed to a UNIT), the HLA compiler automatically inserts two pieces of extra code at the beginning of the
main program. The first piece of extra code initializes the HLA exception handling system, the second sets
up a coroutine variable for the main program. The purpose of this variable is to all other coroutines to trans-
fer control back to the main program; after call, if you transfer control from one coroutine to another using
a statement like VarName.cocall, you’re going to need a coroutine variable associated with the main program
in order to cocall the main program. HLA automatically creates and initializes this variable when execution
of the main program begins. So the only question is, "how do you gain access to this variable?"

The answer is simply, really. Whenever you include the "coroutines.hhf" header file (or "stdlib.hhf"
which automatically includes "coroutines.hhf") HLA declares a static coroutine variable for you that is asso-
ciated with the main program’s coroutine object. That declaration looks something like the following2:

static MainPgm:coroutine; external("<<external name for MainPgm>>");

Therefore, to transfer control from one coroutine to the main program’s coroutine, you’d use a cocall like the
following:

MainPgm.cocall();

The last method of interest to us in the coroutine class is the coroutine.cofree method. This is the
destructor for the coroutine class. Calling this method frees up the stack storage associated with the corou-
tine and cleans up other state information associated with that coroutine. A typical call might look like the
following:

OtherPlayer.cofree();

Warning: do not call the cofree method from within the coroutine you are freeing up. There is no guar-
antee that the stack and coroutine state variables remain valid for a given coroutine after you call cofree.
Generally, it is a good idea to call the cofree method in the same code that originally created the coroutine
via the coroutine.create call. It goes without saying that you must not call a coroutine after you’ve destroyed
it via the cofree method call.

Remember that the coret procedure call is really a special form of cocall. Therefore, you need to be
careful about executing coret after calling the cofree method as you may wind up "returning" to the corou-
tine you just destroyed.

After you call the cofree method, it is perfectly reasonable create a new coroutine using that same
coroutine variable by once again calling the coroutine.create procedure. However, you should always ensure
that you call the cofree method prior to calling coroutine.create or the stack space allocated in the original
call will be lost in the system (i.e., you’ll create a memory leak).

This is very important: you never "return" from a coroutine using a RET instruction (e.g., by "falling
off the end of the procedure) or via the HLA EXIT/EXITIF statement. The only legal ways to "return" from
a coroutine are via the cocall and coret operations. If you RETurn or EXIT from a coroutine, that coroutine
enters a special mode that rejects any future cocalls and immediately returns control back to whomever
cocalled it in the first place. Most coroutines contain an infinite loop that transfers control back to the start
of the coroutine to repeat whatever function they perform once they complete all the code in the coroutine.
You will probably want to implement this functionality in your coroutines as well.

2. The external name doesn’t appear here because it is subject to change. See the coroutines.hhf header file if you need to
know the actual external name for some reason.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1297

Chapter Three Volume Five
3.3 Parameters and Register Values in Coroutine Calls

As you’ve probably noticed, coroutine calls via cocall don’t support generic parameters for transferring
data between two coroutines. There are a couple of reasons for this. First of all, passing parameters to a
coroutine is difficult because we typically use the stack to pass parameters and coroutines all use different
stacks. Therefore, the parameters one coroutine passes to another won’t be on the correct stack (and, there-
fore, inaccessible) when the second coroutine continues execution. Another problem with passing parame-
ters between coroutines is that a typical coroutine has several entry points (immediately after each cocall in
that coroutine). Nevertheless, it is often important to communicate information between coroutines. We
will explore ways to do that in this section.

If we can pass parameters on the stack, that basically leaves registers and global memory locations3.
Registers are the easy and obvious solution. However, keep in mind that you have a limited set of registers
available so you can’t pass much data between coroutines in the registers. On the other hand, you can pass a
pointer to a block of data in a register (see “Passing Parameters via a Parameter Block” on page 1317 for
details).

Another place to pass parameters between coroutines is in global memory locations. Keep in mind that
coroutines each have their own stack. Therefore, one coroutine does not have access to another coroutine’s
automatic variables appearing in a VAR section (this is true even if those VAR objects appear in the main
program). Always use STATIC, STORAGE, or READONLY objects when communicating data between
coroutines using global variables. If you must communicate an automatic or dynamic object, pass the
address of that object in a register or some static global variable.

A bigger problem than where we pass parameters to a coroutine is "How do we deal with parameters we
pass to a coroutine?" Parameters work well in procedures because we always enter the procedure at the
same point and the state of the procedure is usually the same upon entry (with the possible exception of
static variable values). This is not true for coroutines. Consider the following code that executes as a corou-
tine:

procedure IsACoroutine; nodisplay; noframe;
begin IsACoroutine;

//*

<< Do something upon initial entry >>

coret(); // Invoke previous coroutine
//*

<< Do some more stuff upon return >>

forever

OtherCoroutine.cocall(); // Invoke a third coroutine.

<< Do some more stuff here >>

MainPgm.cocall(); // Transfer control back to the main program.
//*

<< do some stuff >>

coret(); // Return to whomever cocalled us.
//*

<< do some more stuff >>

3. The chapter on low-level parameter implementation in this volume discusses different places you can pass parameters
between procedures. Check out that chapter for more details on this subject.
Page 1298 © 2001, By Randall Hyde Version: 7/4/01

Coroutines and Generators
endfor;

end IsACoroutine;

In this code you’ll find several comments of the form "//*". These comments mark the point at which
some other coroutine can reenter this code. Note that, in general, the "calling" coroutine has no idea which
entry point it will invoke and, likewise, this coroutine has no idea who invoked it at any given point. Passing
in meaningful parameters and properly processing them under these conditions is difficult, at best. The only
reasonable solution is to make every invocation pass exactly the same type of data in the same location and
then write your coroutines to handle this data appropriately upon each entry. Even though this solution is
more reasonable than the other possibilities, maintaining code like this is very difficult.

If you’re really dead set on passing parameters to a coroutine, the best solution is to have a single entry
point into the code so you’ve only got the handle the parameter data in one spot. Consider the following pro-
cedure that other threads invoke as a coroutine:

procedure HasAParm; nodisplay;
begin HasAParm;

<< Initialization code goes here, assume no parameter >>
forever

coret(); // Or cocall some other coroutine.

<< deal with parameter data passed into this coroutine >>

endfor;

end HasAParm;

Note that there are two entry points into this code: the first occurs on the initial entry. The other occurs
whenever the coret() procedure returns via a cocall to this coroutine. Immediately after the coret statement,
the code above can process whatever parameter data the calling code has set up. After processing that data,
this code returns to the invoking coroutine and that coroutine (directly or indirectly) can invoke this code
again with more data.

3.4 Recursion, Reentrancy, and Variables

The fact that each coroutine has its own stack impacts access to variables from within coroutines. In
particular, the only automatic (VAR) objects you can normally access are those declared within the coroutine
itself and any procedures it calls. In a later chapter of this volume we’ll take a look at nested procedures and
how one could access local variables outside of the current procedure. For the most part, that discussion
does not apply to procedures that are coroutines.

If you wish to share information between two or more coroutines, the best place to put such information
is in a static object (STATIC, READONLY, and STORAGE variables). Such data does not appear on a stack
and is accessible to multiple coroutines (and other procedures) simultaneously.

Whenever you execute a cocall instruction, the system suspends the current thread of execution and
switches to a different coroutine, effectively by returning to that other coroutine and picking up where it left
off (via a coret or cocall operation). This means that it isn’t really possible to recursively cocall some corou-
tine. Consider the following (vain) attempt to achieve this:

procedure IsACoroutine; nodisplay;
begin IsACoroutine;

<< Do some initial stuff >>

IAC.cocall(); // Note: IAC is initialized with the address of IsACoroutine.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1299

Chapter Three Volume Five
<< Do some more stuff >>

end IsACoroutine;

This code assumes that IAC is a coroutine variable initialized with the address of the IsACoroutine proce-
dure. The IAC.cocall statement, therefore, is an attempt to recursively call this coroutine. However, all that
happens is that this call leaves the IsACoroutine code and then the coroutine system passes control to where
IAC last left off. That just happens to be the IAC.cocall statement that just left the IsACoroutine procedure.
Therefore this code immediately returns back to itself.

Although the idea of a recursive coroutine doesn’t make sense, it is certainly possible to call procedures
from within a coroutine and those procedures can be recursive. You can even make cocalls from those
(recursive) procedures and the coroutine system will automatically return back into the recursive calls when
control transfers back to the coroutine.

Although coroutines are not recursive, it is quite possible for the coroutine run-time system to reenter a
procedure that is a coroutine. This situation can occur when you have two coroutine variables, initialize
them both with the address of the same procedure, and then execute a cocall to each of the coroutine objects.
consider the following simple example:

procedure Reentered; nodisplay;
begin Reentered;

<< do some initialization or other work >>

coret();

<< do some other stuff >>

end Reentered;
.
.
.

CV1.create(256, &Reentered); // Initialize two coroutine variables with
CV2.create(256, &Reentered); // the address of the same procedure.
CV1.cocall(); // Start the first coroutine.
CV2.cocall(); // Start the second coroutine.

<< At this point, both CV1 and CV2 are suspended within Reentered >>

Notice at the end of this code sequence, both the CV1 and CV2 coroutines are executing inside the Reen-
tered procedure. That is, if you cocall either one of them, the cocalled routine will continue execution after
the coret statement. This is not an example of a recursive coroutine call, but it certainly demonstrates that
you can reenter some procedure while some other coroutine is currently executing the code within that pro-
cedure.

Reentering some code (whether you do this via a coroutine call or some other mechanism) is a perfectly
reasonable thing to do. Indeed, recursion is one example of reentrancy. However, there are some special
considerations you must be aware of when it is possible to reenter some code.

The principal issue is the use of variables in reentrant code. Suppose the Reentered procedure above
had the following declarations:

var
i: int32;
j: uns32;

One concern you might have is that the two different coroutines executing in the same procedure would
share these variables. However, keep in mind that HLA allocates automatic variables on the stack. Since
each coroutine has its own stack, they’re going to get their own private copies of the variables. Therefore, if
CV1 stores a value into i and j, CV2 will not see these values. While this may seem to be a problem, this is
Page 1300 © 2001, By Randall Hyde Version: 7/4/01

Coroutines and Generators
actually what you want. You generally don’t want one coroutine’s thread of execution affecting the calcula-
tion in a different thread of execution.

The discussion above applies only to automatic variables. HLA does not allocate static objects (those
you declare in the STATIC, READONLY, and STORAGE sections) on the stack. Therefore, such variables
are not associated with a specific coroutine; instead, all coroutines that are executing in the same procedure
share the same variables. Therefore, you shouldn’t use static variables within a procedure that serves as a
coroutine (especially reentrant coroutines) unless you explicitly want to share that data among other corou-
tines or other procedures.

Coroutines have their own stack and maintain that stack between cocalls to other coroutines. Therefore,
like iterators, coroutines maintain their state (including the value of automatic variables) across cocalls. This
is true even if you leave a coroutine via some other procedure than the main procedure for the coroutine. For
example, suppose coroutine A calls some procedure B and then within procedure B there is a cocall to some
other coroutine C. Whenever coroutine C executes coret or some coroutine (including C) cocalls A, control
transfers back into procedure B and procedure B’s state is maintained (including the values of all local vari-
ables B initialize prior to the cocall). When B executes a return instruction, it will return back to procedure A
who originally called B.

In theory it’s even possible to call a procedure as well as cocall that procedure (it’s hard to imagine why
you would want to do this and it’s probably quite difficult to pull it off correctly, but it’s certainly possible).
This is such a bizarre situation that we won’t consider it any farther here.

3.5 Generators

A generator is to a function what a coroutine is to a procedure. That is, the whole purpose of a generator
is to return a value like a function result. As far as HLA and the Coroutines Library Module is concerned,
there is absolutely no difference between a generator and a coroutine (anymore than there is a syntactical
difference between a function and a procedure to HLA). Clearly, there are some semantic differences; this
section will describe the semantics of a generator and propose a convention for generator implementation.

The best way to describe a generator is to begin with the discussion of a special-purpose generator
object that HLA does support – the iterator. An iterator is a special form of a generator that does not require
its own stack. Iterators share the same stack as the calling code (i.e., the code containing the FOREACH
loop that invokes the iterator). Because of the semantics of the FOREACH loop, iterators can leave their
activation records on the stack and, therefore, maintain their local state between exits to the FOREACH loop
body. The disadvantage to this scheme is that the calling semantics of an iterator are very rigidly defined;
you cannot call an iterator from an arbitrary point in a program and the iterator’s state is preserved only for
the execution of the FOREACH loop.

By using its own stack, a generator removes these restrictions. You can call a generator from any point
in the program (except, of course, within the generator itself – remember, recursive coroutines are not possi-
ble). Also, the state (i.e., the activation record) of a generator is not tied to the execution of some syntactical
item like a FOREACH loop. The generator maintains its local state from the point of its first call to the point
you call cofree on that generator.

One major difference between iterators and generators is the fact that generators don’t use the yield
statement (thunk) to return results back to the calling code. To send a value back to whomever invokes the
generator, the generator must cocall the original coroutine. Since one can call a generator from different
points in the code, and in particular, from different coroutines, the typical way to "return" a value back to the
"caller" is to use the coret procedure call after loading the return result into a register.

A typical generator does not use the cocall operation. The cocall method transfers control to some other
(explicitly defined) coroutine. As a general rule, generators (like functions) return control to whomever
called them. They do not explicitly pass control through to some other coroutine. Keep in mind that the
coret procedure only returns control to the last coroutine. Therefore, if some generator passes control to
another coroutine, there is no way to anonymously return back to whomever called the generator in the first
place. That information is lost at the point of the second cocall operator. Since the main purpose of a gener-
ator is to return a value to whomever cocalled it, finding cocalls in a generator would be unusual indeed.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1301

Chapter Three Volume Five
One problem with generators is that, like the coroutines upon which they are based, you cannot pass
parameters to a generator via the stack. In most cases this is perfectly acceptable. As their name implies,
generators typically generate an independent stream of data once they begin execution. After initialization, a
generator generally doesn’t require any additional information in order to generate its data sequence.
Although this is the typical case, it is not the only case; sometimes you may need to write generators that
need parameter data on each call. So what’s the best way to handle this?

In a previous section (see “Parameters and Register Values in Coroutine Calls” on page 1298) we dis-
cussed a couple of ways to pass parameters to coroutines. While those techniques apply here as well, they
are not particularly convenient (certainly not as convenient as passing parameters to a standard HLA proce-
dure). Because of their function-like nature, it is more common to have to pass parameters to a generator
(versus a generic coroutine) and you’ll probably make more calls to generators that require parameters (ver-
sus similar calls to coroutines). Therefore, it would be nice if there were a "high-level" way of passing
parameters to generators. Well, with a couple of tricks we can easily accomplish this4.

Remember that we cannot pass parameters to a coroutine (or generator) on the stack. The most conve-
nient place to pass coroutine parameters is in registers or in static, global, memory locations. Unfortunately,
writing a sequence of instructions to load up registers with parameter values (or, worse yet, copy the param-
eter data to global variables) prior to invoking a generator is a real pain. Fortunately, HLA’s macros come to
the rescue here; we can easily write a macro that lets us invoke a generator using a high level syntax and the
macro can take care of the dirty work of loading registers (or global memory locations) with the necessary
values. As an example, consider a generator, _MyGen, that expects two parameters in the EAX and EBX
registers. Here’s a macro, MyGen, that sets up the registers and invokes this generator:

macro MyGen(ParmForEAX, ParmForEBX);

mov(ParmForEAX, eax);
mov(ParmForEBX, ebx);
_MyGen.cocall();

endmacro;
.
.
.

MyGen(5, i);

You could, with just a tiny bit more effort, pass the parameters in global memory locations using this same
technique.

In a few situations, you’ll really need to pass parameters to a generator on the stack. We’ll not go into
the reasons or details here, but there are some rare circumstances where this is necessary. In many other cir-
cumstances, it may not be necessary but it’s certainly more convenient to pass the parameters on the stack
because you get to take advantage of HLA’s high level parameter passing syntax when you use this scheme
(i.e., you get to choose the parameter passing mechanism and HLA will automatically handle a lot of the
gory details behind parameter passing for you when you use the stack). The best solution in this situation is
to write a wrapper procedure. A wrapper procedure is a short procedure that reorganizes a parameter list
before calling some other procedure. The macro above is a simple example of a wrapper – it takes two the
(text) parameters and moves their run-time data into EAX and EBX prior to cocalling _MyGen. We could
have just as easily written a procedure to accomplish this same task:

procedure MyGen(ParmForEAX:dword; ParmForEBX:dword); nodisplay;
begin MyGen;

mov(ParmForEAX, eax);
mov(ParmForEBX, ebx);
_MyGen.cocall();

end MyGen;

4. By the way, generators are coroutines, so these tricks apply to generic coroutines as well.
Page 1302 © 2001, By Randall Hyde Version: 7/4/01

Coroutines and Generators
Beyond the obvious time/space trade-offs between macros and procedures, there is one other big differ-
ence between these two schemes: the procedure variation allows you to specify a parameter passing mecha-
nism like pass by reference, pass by value/result, pass by name, etc5. Once HLA knows the parameter
passing mechanism, it can automatically emit code to process the actual parameters for you. Suppose, for
example, you needed pass by value/result semantics. Using the macro invocation, you’d have to explicitly
write a lot of code to pull this off. In the procedure above, about the only change you’d need is to add some
code to store any returned results back into ParmForEAX or ParmForEBX (whichever uses the pass by
value/result mechanism).

Since coroutines and generators share the same memory address space as the calling coroutine, it is not
correct to say that a coroutine or generator does not have access to the stack of the calling code. The stack is
in the same address space as the coroutine/generator; the only problem is that the coroutine doesn’t know
exactly where any parameters may be sitting in that memory space. This is because procedures use the
value in ESP6 to indirectly reference the parameters passed on the stack and, unfortunately, the cocall
method changes the value of the ESP register upon entry into the coroutine/generator. However, were we to
pass the original value of ESP (or some other pointer into an activation record) through to a generator, then it
would have direct access to those values on the stack. Consider the following modification to the MyGen
procedure above:

procedure MyGen(ParmForEAX:dword; ParmForEBX:dword); nodisplay;
begin MyGen;

mov(ebp, ebx);
_MyGen.cocall();

end MyGen;

Notice that this code does not directly copy the two parameters into some locations that are directly accessi-
ble in the generator. Instead, this procedure simply copies the base address of MyGen’s activation record
(the value in EBP) into the EBX register for use in the generator. To gain access to those parameters, the
generator need only index off of EBX using appropriate offsets for the two parameters in the activation
record. Perhaps the easiest way to do this is by declaring an explicit record declaration that corresponds to
MyGen’s activation record:

type
MyGenAR:

record
OldEBP: dword;
RtnAdrs: dword;
ParmForEAX: dword;
ParmForEBX: dword;

endrecord;

Now, within the _MyGen generator code, you can access the parameters on the stack using code like the
following:

mov((type MyGenAR [ebx]).ParmForEAX, eax);
mov((type MyGenAR [ebx]).ParmForEBX, edx);

This scheme works great for pass by value and pass by reference parameters (those we’ve seen up to this
point). There are other parameter passing mechanisms, this scheme doesn’t work as well for those other
parameter passing mechanisms. Fortunately, you won’t use those other parameter passing methods any-
where near as often as pass by value and pass by name.

5. For a discussion of pass by value/result and pass by name parameter passing mechanisms, see the chapter on low-level
parameter implementation in this volume.
6. Okay, a procedure typically uses the value in EBP, but that same procedure also loads EBP with the value of ESP in the
standard entry sequence.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1303

Chapter Three Volume Five
3.6 Exceptions and Coroutines

Exceptions represent a special problem in coroutines. The HLA TRY..ENDTRY statement typically
surrounds a block of statements one wishes to protect from errant code. The TRY.. ENDTRY statement is a
dynamic control structure insofar as this statement also protects any procedures you call from within the
TRY..ENDTRY block. So the obvious question is "does the TRY..ENDTRY statement protect a coroutine
you call from within such a block as well?" The short answer is "no, it does not."

Actually, in the first implementation of the HLA coroutines module, the exception handling system did
pass control from one coroutine to another whenever an exception occurred. However, it became immedi-
ately obvious that this behavior causes non-intuitive results. Coroutines tend to be independent entities and
to have one coroutine transfer control to another without an explicit cocall creates some problems. There-
fore, the HLA compiler and the coroutines module now treat each coroutine as a standalone entity as far as
exceptions are concerned. If an exception occurs within some coroutine and there isn’t an outstanding
TRY..ENDTRY block active for that coroutine, then the system behaves as though there were no active
TRY..ENDTRY at all, even if there is an active TRY..ENDTRY block in another coroutine; in other words,
the program aborts execution. Keep this in mind when using exception handling in your coroutines. For
more details on exception handling, see the chapter on Exception Handling in this volume.

3.7 Putting It All Together

This chapter discusses a novel program unit – the coroutine. Coroutines have many special properties
that make them especially valuable in certain situations. Coroutines are not built into the HLA language.
Rather, HLA implements them via the HLA Coroutines Module in the HLA Standard Library. This chapter
began by discussing the methods found in that library module. Next, this chapter discusses the use of vari-
ables, recursion, reentrancy and machine state in a coroutine. This chapter also discusses how to create gen-
erators using coroutines and pass parameters to a generator in a function-like fashion. Finally, this chapter
briefly discussed the use of the TRY..ENDTRY statement in coroutines.

Coroutines and generators are like iterators insofar as they are control structures that few high level lan-
guages implement. Therefore, most programmers are unfamiliar with the concept of a coroutine. This,
unfortunately, leads to the lack of consideration of coroutines in a program, even where a coroutine is the
most suitable control structure to use. You should avoid this trap and learn how to use coroutines and gener-
ators properly so that you’ll know when to use them when the need arises.
Page 1304 © 2001, By Randall Hyde Version: 7/4/01

 Low-Level Parameter Implementation
Low-level Parameter Implementation Chapter Four

4.1 Chapter Overview

This chapter discusses advanced parameter passing techniques in assembly language. Both low-level
and high-level syntax appears in this chapter. This chapter discusses the more advanced pass by value/result,
pass by result, pass by name, and pass by lazy evaluation parameter passing mechanisms. This chapter also
discusses how to pass parameters in a low-level manner and describes where you can pass such parameters.

4.2 Parameters

Although there is a large class of procedures that are totally self-contained, most procedures require
some input data and return some data to the caller. Parameters are values that you pass to and from a proce-
dure. There are many facets to parameters. Questions concerning parameters include:

• where is the data coming from?
• how do you pass and return data?
• what is the amount of data to pass?

Previous chapters have touched on some of these concepts (see the chapters on beginning and interme-
diate procedures as well as the chapter on Mixed Language Programming). This chapter will consider
parameters in greater detail and describe their low-level implementation.

4.3 Where You Can Pass Parameters

Up to this point we’ve mainly used the 80x86 hardware stack to pass parameters. In a few examples
we’ve used machine registers to pass parameters to a procedure. In this section we explore several different
places where we can pass parameters. Common places are

• in registers,
• in FPU or MMX registers,
• in global memory locations,
• on the stack,
• in the code stream, or
• in a parameter block referenced via a pointer.

Finally, the amount of data has a direct bearing on where and how to pass it. For example, it’s generally a
bad idea to pass large arrays or other large data structures by value because the procedure has to copy that
data onto the stack when calling the procedure (when passing parameters on the stack). This can be rather
slow. Worse, you cannot pass large parameters in certain locations; for example, it is not possible to pass a
16-element int32 array in a register.

Some might argue that the only locations you need for parameters are the register and the stack. Since
these are the locations that high level languages use, surely they should be sufficient for assembly language
programmers. However, one advantage to assembly language programming is that you’re not as constrained
as a high level language; this is one of the major reasons why assembly language programs can be more effi-
cient than compiled high level language code. Therefore, it’s a good idea to explore different places where
we can pass parameters in assembly language.

This section discusses six different locations where you can pass parameters. While this is a fair num-
ber of different places, undoubtedly there are many other places where one can pass parameters. So don’t let
this section prejudice you into thinking that this is the only way to pass parameters.
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 1305

Chapter Four Volume Five
4.3.1 Passing Parameters in (Integer) Registers

Where you pass parameters depends, to a great extent, on the size and number of those parameters. If
you are passing a small number of bytes to a procedure, then the registers are an excellent place to pass
parameters. The registers are an ideal place to pass value parameters to a procedure. If you are passing a sin-
gle parameter to a procedure you should use the following registers for the accompanying data types:

Data Size Pass in this Register

Byte: al

Word: ax

Double Word: eax

Quad Word: edx:eax

This is, by no means, a hard and fast rule. If you find it more convenient to pass 32 bit values in the ESI or
EBX register, by all means do so. However, most programmers use the registers above to pass parameters.

If you are passing several parameters to a procedure in the 80x86’s registers, you should probably use
up the registers in the following order:

First Last

 eax, edx, esi, edi, ebx, ecx

In general, you should avoid using EBP register. If you need more than six parameters, perhaps you should
pass your values elsewhere.

HLA provides a special high level syntax that lets you tell HLA to pass parameters in one or more of the
80x86 integer registers. Consider the following syntax for an HLA parameter declaration:

varname : typename in register

In this example, varname represents the parameter’s name, typename is the type of the parameter, and regis-
ter is one of the 80x86’s eight-, 16-, or 32-bit integer registers. The size of the data type must be the same as
the size of the register (e.g., "int32" is compatible with a 32-bit register). The following is a concrete exam-
ple of a procedure that passes a character value in a register:

procedure swapcase(chToSwap: char in al); nodisplay; noframe;
begin swapcase;

if(chToSwap in ’a’..’z’) then

and($5f, chToSwap); // Convert lower case to upper case.

elseif(chToSwap in ’A’..’Z’) then

or($20, chToSwap);

endif;
ret();

end swapcase;

There are a couple of important issues to note here. First, within the procedure’s body, the parameter’s
name is an alias for the corresponding register if you pass the parameter in a register. In other words,
chToSwap in the previous code is equivalent to "al" (indeed, within the procedure HLA actually defines
chToSwap as a TEXT constant initialized with the string "al"). Also, since the parameter was passed in a
register rather than on the stack, there is no need to build a stack frame for this procedure; hence the absence
of the standard entry and exit sequences in the code above. Note that the code above is exactly equivalent to
the following code:
Page 1306 © 2000, By Randall Hyde Version: 7/4/01

 Low-Level Parameter Implementation
// Actually, the following parameter list is irrelevant and
// you could remove it. It does, however, help document the
// fact that this procedure has a single character parameter.

procedure swapcase(chToSwap: char in al); nodisplay; noframe;
begin swapcase;

if(al in ’a’..’z’) then

and($5f, al); // Convert lower case to upper case.

elseif(al in ’A’..’Z’) then

or($20, al);

endif;
ret();

end swapcase;

Whenever you call the swapcase procedure with some actual (byte sized) parameter, HLA will generate
the appropriate code to move that character value into the AL register prior to the call (assuming you don’t
specify AL as the parameter, in which case HLA doesn’t generate any extra code at all). Consider the fol-
lowing calls that the corresponding code that HLA generates:

// swapcase(’a’);

mov(’a’, al);
call swapcase;

// swapcase(charVar);

mov(charVar, al);
call swapcase;

// swapcase((type char [ebx]));

mov([ebx], al);
call swapcase;

// swapcase(ah);

mov(ah, al);
call swapcase;

// swapcase(al);

call swapcase; // al’s value is already in al!

The examples above all use the pass by value parameter passing mechanism. When using pass by value
to pass parameters in registers, the size of the actual parameter (and formal parameter) must be exactly the
same size as the register. Therefore, you are limited to passing eight, sixteen, or thirty-two bit values in the
registers by value. Furthermore, these object must be scalar objects. That is, you cannot pass composite
(array or record) objects in registers even if such objects are eight, sixteen, or thirty-two bits long.

You can also pass reference parameters in registers. Since pass by reference parameters are four-byte
addresses, you must always specify a thirty-two bit register for pass by reference parameters. For example,
consider the following memfill function that copies a character parameter (passed in AL) throughout some
number of memory locations (specified in ECX), at the memory location specified by the value in EDI:

// memfill- This procedure stores <ECX> copies of the byte in AL starting
// at the memory location specified by EDI:
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 1307

Chapter Four Volume Five
procedure memfill
(

charVal: char in al;
count: uns32 in ecx;

var dest: byte in edi // dest is passed by reference
);

nodisplay; noframe;

begin memfill;

pushfd(); // Save D flag;
push(ecx); // Preserve other registers.
push(edi);

cld(); // increment EDI on string operation.
rep.stosb(); // Store ECX copies of AL starting at EDI.

pop(edi);
pop(ecx);
popfd();
ret(); // Note that there are no parameters on the stack!

end memfill;

It is perfectly possible to pass some parameters in registers and other parameters on the stack to an HLA
procedure. Consider the following implementation of memfill that passes the dest parameter on the stack:

procedure memfill
(

charVal: char in al;
count: uns32 in ecx;

var dest: var
);

nodisplay;

begin memfill;

pushfd(); // Save D flag;
push(ecx); // Preserve other registers.
push(edi);

cld(); // increment EDI on string operation.
mov(dest, edi); // get dest address into EDI for STOSB.
rep.stosb(); // Store ECX copies of AL starting at EDI.

pop(edi);
pop(ecx);
popfd();

end memfill;

Of course, you don’t have to use the HLA high level procedure calling syntax when passing parameters
in the registers. You can manually load the values into registers prior to calling a procedure (with the CALL
instruction) and you can refer directly to those values via registers within the procedure. The disadvantage
to this scheme, of course, is that the code will be a little more difficult to write, read, and modify. The advan-
tage of the scheme is that you have more control and can pass any eight, sixteen, or thirty-two bit value
between the procedure and its callers (e.g., you can load a four-byte array or record into a 32-bit register and
call the procedure with that value in a single register, something you cannot do when using the high level
language syntax for procedure calls). Fortunately, HLA gives you the choice of whichever parameter pass-
Page 1308 © 2000, By Randall Hyde Version: 7/4/01

 Low-Level Parameter Implementation
ing scheme is most appropriate, so you can use the manual passing mechanism when it’s necessary and use
the high level syntax whenever it’s not necessary.

There are other parameter passing mechanism beyond pass by value and pass by reference that we will
explore in this chapter. We will take a look at ways of passing parameters in registers using those parameter
passing mechanisms as we encounter them.

4.3.2 Passing Parameters in FPU and MMX Registers

Since the 80x86’s FPU and MMX registers are also registers, it makes perfect sense to pass parameters
in these locations if appropriate. Although using the FPU and MMX registers is a little bit more work than
using the integer registers, it’s generally more efficient than passing the parameters in memory (e.g., on the
stack). In this section we’ll discuss the techniques and problems associated with passing parameters in these
registers.

The first thing to keep in mind is that the MMX and FPU register sets are not independent. These two
register sets overlap, much like the eight, sixteen, and thirty-two bit integer registers. Therefore, you cannot
pass some parameters in FPU registers and other parameters in MMX registers to a given procedure. For
more details on this issue, please see the chapter on the MMX Instruction Set. Also keep in mind that you
must execute the EMMS instruction after using the MMX instructions before executing any FPU instruc-
tions. Therefore, it’s best to partition your code into sections that use the FPU registers and sections that use
the MMX registers (or better yet, use only one register set throughout your program).

The FPU represents a fairly special case. First of all, it only makes sense to pass real values through the
FPU registers. While it is technically possible to pass other values through the FPU registers, efficiency and
accuracy restrictions severely limit what you can do in this regard. This text will not consider passing any-
thing other than real values in the floating point registers, but keep in mind that it is possible to pass generic
groups of bits in the FPU registers if you’re really careful. Do keep in mind, thought, that you need a very
detailed knowledge of the FPU if you’re going to attempt this (exceptions, rounding, and other issues can
cause the FPU to incorrectly manipulate your data under certain circumstances). Needless to say, you can
only pass objects by value through the FPU registers; pass by reference isn’t applicable here.

Assuming you’re willing to pass only real values through the FPU registers, some problems still remain.
In particular, the FPU’s register architecture does not allow you to load the FPU registers in an arbitrary
fashion. Remember, the FPU register set is a stack; so you have to push values onto this stack in the reverse
order you wish the values to appear in the register file. For example, if you wish to pass the real variables r,
s, and t in FPU registers ST0, ST1, and ST2, you must execute the following code sequence (or something
similar):

fld(t); // t -> ST0, but ultimately winds up in ST2.
fld(s); // s -> ST0, but ultimately winds up in ST1.
fld(r); // r -> ST0.

You cannot load some floating point value into an arbitrary FPU register without a bit of work. Further-
more, once inside the procedure that uses real parameters found on the FPU stack, you cannot easily access
arbitrary values in these registers. Remember, FPU arithmetic operations automatically "renumber" the FPU
registers as the operations push and pop data on the FPU stack. Therefore, some care and thought must go
into the use of FPU registers as parameter locations since those locations are dynamic and change as you
manipulate items on the FPU stack.

By far, the most common use of the FPU registers to pass value parameters to a function is to pass a sin-
gle value parameter (or maybe a pair of parameter values) in the register so the procedure can operate
directly on that parameter (those parameters) via FPU operations. A classic example might be a SIN func-
tion that expects its angle in degrees (rather than radians, and the FSIN instruction expects). The function
could convert the degree to radians and then execute the FSIN instruction to complete the calculation.

Keep in mind the limited size of the FPU stack. This effectively eliminates the possibility of passing
real parameter values through the FPU registers in a recursive procedure. Also keep in mind that it is rather
difficult to preserve FPU register values across a procedure call, so be careful about using the FPU registers
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 1309

Chapter Four Volume Five
to pass parameters since such operations could disturb the values already on the FPU stack (e.g., cause an
FPU stack overflow).

The MMX register set, although it shares the same physical silicon as the FPU, does not suffer from the
all same problems as the FPU register set when it comes to passing parameters. First of all, the MMX regis-
ters are true registers that are individually accessible (i.e., they do not use a stack implementation). You may
pass data in any MMX register and you do not have to use the registers in a specific order. Of course, if you
pass parameter data in an MMX register, the procedure you’re calling must not execute any FPU instructions
before you’re done with the data or you will lose the value(s) in the MMX register(s).

In theory, you can pass any 64-bit data to a procedure in an MMX register. However, you’ll find the use
of the MMX register set most convenient if you’re actually operating on the data in those registers using
MMX instructions.

4.3.3 Passing Parameters in Global Variables

Once you run out of registers, the only other (reasonable) alternative you have is main memory. One of
the easiest places to pass parameters is in global variables in the data segment. The following code provides
an example:

// ThisProc-
//
// Global variable "Ref1Proc1" contains the address of a pass by reference
// parameter. Global variable "Value1Proc1" contains the value of some
// pass by value parameter. This procedure stores the value of the
// "Value1Proc1" parameter into the actual parameter pointed at by
// "Ref1Proc1".

procedure ThisProc; nodisplay; noframe;
begin ThisProc;

mov(Ref1Proc1, ebx); // Get address of reference parameter.
mov(Value1Proc, eax); // Get Value parameter.
mov(eax, [ebx]); // Copy value to actual ref parameter.
ret();

end ThisProc;
.
.
.

// Sample call to the procedure (includes setting up parameters)

mov(xxx, eax); // Pass this parameter by value
mov(eax, Value1Proc1);
lea(eax, yyyy); // Pass this parameter by reference
mov(eax, Ref1Proc1);
call ThisProc;

Passing parameters in global locations is inelegant and inefficient. Furthermore, if you use global vari-
ables in this fashion to pass parameters, the subroutines you write cannot use recursion. Fortunately, there
are better parameter passing schemes for passing data in memory so you do not need to seriously consider
this scheme.

4.3.4 Passing Parameters on the Stack

Most high level languages use the stack to pass parameters because this method is fairly efficient.
Indeed, in most of the examples found in this text up to this chapter, passing parameters on the stack has
Page 1310 © 2000, By Randall Hyde Version: 7/4/01

 Low-Level Parameter Implementation
been the standard solution. To pass parameters on the stack, push them immediately before calling the sub-
routine. The subroutine then reads this data from the stack memory and operates on it appropriately. Con-
sider the following HLA procedure declaration and call:

procedure CallProc(a:dword; b:dword; c:dword);
.
.
.

CallProc(i,j,k+4);

By default, HLA pushes its parameters onto the stack in the order that they appear in the parameter list.
Therefore, the 80x86 code you would typically write for this subroutine call is1

push(i);
push(j);
mov(k, eax);
add(4, eax);
push(eax);
call CallProc;

Upon entry into CallProc, the 80x86’s stack looks like that shown in Figure 13.1

Figure 13.1 Activation Record for CallProc Invocation

Since the chapter on intermediate procedures discusses how to access these parameters, we will not
repeat that discussion here. Instead, this section will attempt to tie together material from the previous chap-
ters on procedures and the chapter on Mixed Language Programming.

As noted in the chapter on intermediate procedures, the HLA compiler automatically associates some
(positive) offset from EBP with each (non-register) parameter you declare in the formal parameter list.
Keeping in mind that the base pointer for the activation record (EBP) points at the saved value of EBP and
the return address is immediately above that, the first double word of parameter data starts at offset +8 from
EBP in the activation record (see Figure 13.2 for one possible arrangement).

1. Actually, you’d probably use the HLA high level calling syntax in the typical case, but we’ll assume the use of the low-level
syntax for the examples appearing in this chapter.

Previous
Stack

Contents

ESPReturn Address

k's value

j's value

i's value
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 1311

Chapter Four Volume Five
Figure 13.2 Offsets into CallProc’s Activation Record

The parameter layout in Figure 13.2 assumes that the caller (as in the previous example) pushes the
parameters in the order (left to right) that they appear in the formal parameter list; that is, this arrangement
assumes that the code pushes i first, j second, and k+4 last. Because this is convenient and easy to do, most
high level languages (and HLA, by default) push their parameters in this order. The only problem with this
approach is that it winds up locating the first parameter at the highest address in memory and the last param-
eter at the lowest address in memory. This non-intuitive organization isn’t much of a problem because you
normally refer to these parameters by their name, not by their offset into the activation record. Hence,
whether i is at offset +16 or +8 is usually irrelevant to you. Of course, you could refer to these parameters
using memory references like "[ebp+16]" or "[ebp+8]" but, in general, that would be exceeding poor pro-
gramming style.

In some rare cases, you may actually need to refer to the parameters’ values using an addressing mode
of the form "[ebp+disp]" (where disp represents the offset of the parameter into the activation record). One
possible reason for doing this is because you’ve written a macro and that macro always emits a memory
operand using this addressing mode. However, even in this case you shouldn’t use literal constants like "8"
and "16" in the address expression. Instead, you should use the @OFFSET compile-time function to have
HLA calculate this offset value for you. I.e., use an address expression of the form:

[ebp + @offset(a)]

There are two reasons you should specify the addressing mode in this fashion: (1) it’s a little more read-
able this way, and, more importantly, (2) this way is easier to maintain. For example, suppose you decide to
add a parameter to the end of the parameter list. This causes all the offsets in CallProc to change. If you’ve
used address expressions like "[ebp+16]" in you code, you’ve got to go locate each instance and manually
change it. On the other hand, if you use the @OFFSET operator to calculate the offset of the variable in the
activation record, then HLA will automatically recompute the current offset of a variable each time you
recompile the program; hence you can make changes to the parameter list and not worry about having to
manually change the address expressions in your programs.

Although pushing the actual parameters on the stack in the order of the formal parameters’ declarations
is very common (and the default case that HLA uses), this is not the only order a program can use. Some
high level languages (most notably, C, C++, Java, and other C-derived languages) push their parameters in
the reverse order, that is, from right to left. The primary reason they do this is to allow variable parameter
lists, a subject we will discuss a little later in this chapter (see “Variable Parameter Lists” on page 1331).
Because it is very common for programmers to interface HLA programs with programs written in C, C++,
Java, and other such languages, HLA provides a mechanism that allows it to process parameters in this order.

The CDECL and STDCALL procedure options tell HLA to reverse the order of the parameters in the
activation record. Consider the previous declaration of CallProc using the CDECL procedure option:

Previous
Stack

Contents

i's value

j's value

k's value

Return Address

Old EBP value EBP+0

-4

+4

+8

+12

+16

Offset from EBP
Page 1312 © 2000, By Randall Hyde Version: 7/4/01

 Low-Level Parameter Implementation
procedure CallProc(a:dword; b:dword; c:dword); cdecl;
.
.
.

CallProc(i,j,k+4);

To implement the call above you would write the following code:

mov(k, eax);
add(4, eax);
push(eax);
push(j);
push(i);
call CallProc;

Compare this with the previous version and note that we’ve pushed the parameter values in the opposite
order. As a general rule, if you’re not passing parameters between routines written in assembly and C/C++
or you’re not using variable parameter lists, you should use the default parameter passing order
(left-to-right). However, if it’s more convenient to do so, don’t be afraid of using the CDECL or STDCALL
options to reverse the order of the parameters.

Note that using the CDECL or STDCALL procedure option immediately changes the offsets of all
parameters in a parameter list that has two or more parameters. This is yet another reason for using the
@OFFSET operator to calculate the offset of an object rather than manually calculating this. If, for some
reason, you need to switch between the two parameter passing schemes, the @OFFSET operator automati-
cally recalculates the offsets.

One common use of assembly language is to write procedures and functions that a high level language
program can call. Since different high level languages support different calling mechanisms, you might ini-
tially be tempted to write separate procedures for those languages (e.g., Pascal) that push their parameters in
a left-to-right order and a separate version of the procedure for those languages (e.g., C) that push their
parameters in a right-to-left order. Strictly speaking, this isn’t necessary. You may use HLA’s conditional
compilation directives to create a single procedure that you can compile for other high level language. Con-
sider the following procedure declaration fragment:

procedure CallProc(a:dword; b:dword; c:dword);
#if(@defined(CLanguage))

cdecl;
#endif

With this code, you can compile the procedure for the C language (and similar languages) by simply defin-
ing the constant CLanguage at the beginning of your code. To compile for Pascal (and similar languages)
you would leave the CLanguage symbol undefined.

Another issue concerning the use of parameters on the stack is "who takes the responsibility for clean-
ing these parameters off the stack?" As you saw in the chapter on Mixed Language Programming, different
languages assign this responsibility differently. For example, in languages like Pascal, it is the procedure’s
responsibility to clean up parameters off the stack before returning control to the caller. In languages like
C/C++, it is the caller’s responsibility to clean up parameters on the stack after the procedure returns. By
default, HLA procedures use the Pascal calling convention, and therefore the procedures themselves take
responsibility for cleaning up the stack. However, if you specify the CDECL procedure option for a given
procedure, then HLA does not emit the code to remove the parameters from the stack when a procedure
returns. Instead, HLA leaves it up to the caller to remove those parameters. Therefore, the call above to
CallProc (the one with the CDECL option) isn’t completely correct. Immediately after the call the code
should remove the 12 bytes of parameters it has pushed on the stack. It could accomplish this using code
like the following:

mov(k, eax);
add(4, eax);
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 1313

Chapter Four Volume Five
push(eax);
push(j);
push(i);
call CallProc;
add(12, esp); // Remove parameters from the stack.

Many C compilers don’t emit an ADD instruction after each call that has parameters. If there are two or
more procedures in a row, and the previous contents of the stack is not needed between the calls, the C com-
pilers may perform a slight optimization and remove the parameter only after the last call in the sequence.
E.g., consider the following:

pushd(5);
call Proc1Parm

push(i);
push(eax);
call Proc2Parms;

add(12, esp); // Remove parameters for Proc1Parm and Proc2Parms.

The STDCALL procedure option is a combination of the CDECL and Pascal calling conventions. STD-
CALL passes its parameters in the right-to-left order (like C/C++) but requires the procedure to remove the
parameters from the stack (like Pascal). This is the calling convention that Windows uses for most API func-
tions. It’s also possible to pass parameters in the left-to-right order (like Pascal) and require the caller to
remove the parameters from the stack (like C), but HLA does not provide a specific syntax for this. If you
want to use this calling convention, you will need to manually build and destroy the activation record, e.g.,

procedure CallerPopsParms(i:int32; j:uns32; r:real64); nodisplay; noframe;
begin CallerPopsParms;

push(ebp);
mov(esp, ebp);

.

.

.
mov(ebp, esp);
pop(ebp);
ret(); // Don’t remove any parameters from the stack.

end CallerPopsParms;
.
.
.

pushd(5);
pushd(6);
pushd((type dword r[4])); // Assume r is an eight-byte real.
pushd((type dword r));
call CallerPopsParms;
add(16, esp); // Remove 16 bytes of parameters from stack.

Notice how this procedure uses the Pascal calling convention (to get parameters in the left-to-right
order) but manually builds and destroys the activation record so that HLA doesn’t automatically remove the
parameters from the stack. Although the need to operate this way is nearly non-existent, it’s interesting to
note that it’s still possible to do this in assembly language.
Page 1314 © 2000, By Randall Hyde Version: 7/4/01

 Low-Level Parameter Implementation
4.3.5 Passing Parameters in the Code Stream

The chapter on Intermediate Procedures introduced the mechanism for passing parameters in the code
stream with a simple example of a Print subroutine. The Print routine is a very space-efficient way to print
literal string constants to the standard output. A typical call to Print takes the following form:

call Print
byte "Hello World", 0 // Strings after Print must end with a zero!

As you may recall, the Print routine pops the return address off the stack and uses this as a pointer to a zero
terminated string, printing each character it finds until it encounters a zero byte. Upon finding a zero byte,
the Print routine pushes the address of the byte following the zero back onto the stack for use as the new
return address (so control returns to the instruction following the zero byte). For more information on the
Print subroutine, see the section on Code Stream Parameters in the chapter on Intermediate Procedures.

The Print example demonstrates two important concepts with code stream parameters: passing simple
string constants by value and passing a variable length parameter. Contrast this call to Print with an equiva-
lent call to the HLA Standard Library stdout.puts routine:

stdout.puts("Hello World");

It may look like the call to stdout.puts is simpler and more efficient. However, looks can be deceiving and
they certainly are in this case. The statement above actually compiles into code similar to the following:

push(HWString);
call stdout.puts;

.

.

.
// In the CONSTs segment:

dword 11 // Maximum string length
dword 11 // Current string length

HWS byte "Hello World", 0
HWString dword HWS

As you can see, the stdout.puts version is a little larger because it has three extra DWORD declarations plus
an extra push instruction. (It turns out that stdout.puts is faster because it prints the whole string at once
rather than a character at a time, but the output operation is so slow anyway that the performance difference
is not significant here.) This demonstrates that if you’re attempting to save space, passing parameters in the
code stream can help.

Note that the stdout.puts procedure is more flexible that Print. The Print procedure only prints string
literal constants; you cannot use it to print string variables (as stdout.puts can). While it is possible to print
string variables with a variant of the Print procedure (passing the variable’s address in the code stream), this
still isn’t as flexible as stdout.puts because stdout.puts can easily print static and local (automatic) variables
whereas this variant of Print cannot easily do this. This is why the HLA Standard Library uses the stack to
pass the string variable rather than the code stream. Still, it’s instructive to look at how you would write such
a version of Print, so we’ll do that in just a few moments.

One problem with passing parameters in the code stream is that the code stream is read-only2. There-
fore, any parameter you pass in the code stream must, necessarily, be a constant. While one can easily
dream up some functions to whom you always pass constant values in the parameter lists, most procedures
work best if you can pass different values (through variables) on each call to a procedure. Unfortunately,
this is not possible when passing parameters by value to a procedure through the code stream. Fortunately,
we can also pass data by reference through the code stream.

When passing reference parameters in the code stream, we must specify the address of the parameter(s)
following the CALL instruction in the source file. Since we can only pass constant data (whose value is

2. Technically, it is possible to make the code segment writable, but we will not consider that possibility here.
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 1315

Chapter Four Volume Five
known at compile time) in the code stream, this means that HLA must know the address of the objects you
pass by reference as parameters when it encounters the instruction. This, in turn, means that you will usually
pass the address of static objects (STATIC, READONLY, and STORAGE) variables in the code stream. In
particular, HLA does not know the address of an automatic (VAR) object at compile time, so you cannot
pass the address of a VAR object in the code stream3.

To pass the address of some static object in the code stream, you would typically use the DWORD
directive and list the object’s name in it’s operand field. Consider the following code that expects three
parameters by reference:

Calling sequence:

static
I:uns32;
J:uns32;
K:uns32;

.

.

.
call AddEm;
dword I,J,K;

Whenever you specify the name of a STATIC object in the operand field of the DWORD directive, HLA
automatically substitutes the four-byte address of that static object for the operand. Therefore, the object
code for the instruction above consists of the call to the AddEm procedure followed by 12 bytes containing
the static addresses of I, J, and K. Assuming that the purpose of this code is to add the values in J and K
together and store the sum into I, the following procedure will accomplish this task:

procedure AddEm; nodisplay;
begin AddEm;

push(eax); // Preserve the registers we use.
push(ebx);
push(ecx);
mov([ebp+4], ebx); // Get the return address.
mov([ebx+4], ecx); // Get J’s address.
mov([ecx], eax); // Get J’s value.
mov([ebx+8], ecx); // Get K’s address.
add([ecx], eax); // Add in K’s value.
mov([ebx], ecx); // Get I’s address.
mov(eax, [ecx]); // Store sum into I.
add(12, ebx); // Skip over addresses in code stream.
mov(ebx, [ebp+4]); // Save as new return address.
pop(ecx);
pop(ebx);
pop(eax);

end AddEm;

This subroutine adds J and K together and stores the result into I. Note that this code uses 32 bit constant
pointers to pass the addresses of I, J, and K to AddEm. Therefore, I, J, and K must be in a static data segment.
Note at the end of this procedure how the code advances the return address beyond these three pointers in the
code stream so that the procedure returns beyond the address of K in the code stream.

The important thing to keep in mind when passing parameters in the code stream is that you must
always advance the procedure’s return address beyond any such parameters before returning from that pro-
cedure. If you fail to do this, the procedure will return into the parameter list and attempt to execute that data
as machine instructions. The result is almost always catastrophic. Since HLA does not provide a high level
syntax that automatically passes parameters in the code stream for you, you have to manually pass these

3. You may, however, pass the offset of that variable in some activation record. However, implementing the code to access
such an object is an exercise that is left to the reader.
Page 1316 © 2000, By Randall Hyde Version: 7/4/01

 Low-Level Parameter Implementation
parameters in your code. This means that you need to be extra careful. For even if you’ve written your pro-
cedure correctly, it’s quite possible to create a problem if the calls aren’t correct. For example, if you leave
off a parameter in the call to AddEm or insert an extra parameter on some particular call, the code that
adjusts the return address will not be correct and the program will probably not function correctly. So take
care when using this parameter passing mechanism.

4.3.6 Passing Parameters via a Parameter Block

Another way to pass parameters in memory is through a parameter block. A parameter block is a set of
contiguous memory locations containing the parameters. Generally, you would use a record object to hold
the parameters. To access such parameters, you would pass the subroutine a pointer to the parameter block.
Consider the subroutine from the previous section that adds J and K together, storing the result in I; the code
that passes these parameters through a parameter block might be

Calling sequence:

type
AddEmParmBlock:

record
i: pointer to uns32;
j: uns32;
k: uns32;

endrecord;

static
a: uns32;
ParmBlock: AddEmParmBlock := AddEmParmBlock: [&a, 2, 3];

procedure AddEm(var pb:AddEmParmBlock in esi); nodisplay;
begin AddEm;

push(eax);
push(ebx);
mov((type AddEmParmBlock [esi]).j, eax);
add((type AddEmParmBlock [esi]).k, eax);
mov((type AddEmParmBlock [esi]).i, ebx);
mov(eax, [ebx]);
pop(ebx);
pop(eax);

end AddEm;

This form of parameter passing works well when passing several static variables by reference or con-
stant parameters by value, because you can directly initialize the parameter block as was done above.

Note that the pointer to the parameter block is itself a parameter. The examples in this section pass this
pointer in a register. However, you can pass this pointer anywhere you would pass any other reference
parameter – in registers, in global variables, on the stack, in the code stream, even in another parameter
block! Such variations on the theme, however, will be left to your own imagination. As with any parameter,
the best place to pass a pointer to a parameter block is in the registers. This text will generally adopt that pol-
icy.

Parameter blocks are mainly useful when you make several different calls to a procedure and in each
instance you pass constant values. Parameter blocks are less useful when you pass variables to procedures,
because you will need to copy the current variable’s value into the parameter block before the call (this is
roughly equivalent to passing the parameter in a global variable. However, if each particular call to a proce-
dure has a fixed parameter list, and that parameter list contains constants (static addresses or constant val-
ues), then using parameter blocks can be a useful mechanism.
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 1317

Chapter Four Volume Five
Also note that class fields are also an excellent place to pass parameters. Because class fields are very
similar to records, we’ll not create a separate category for these, but lump class fields together with parame-
ter blocks.

4.4 How You Can Pass Parameters

There are six major mechanisms for passing data to and from a procedure, they are

• pass by value,
• pass by reference,
• pass by value/returned,
• pass by result,
• pass by name, and
• pass by lazy evaluation

Actually, it’s quite easy to invent some additional ways to pass parameters beyond these six ways, but
this text will concentrate on these particular mechanisms and leave other approaches to the reader to dis-
cover.

Since this text has already spent considerable time discussing pass by value and pass by reference, the
following subsections will concentrate mainly on the last four ways to pass parameters.

4.4.1 Pass by Value-Result

Pass by value-result (also known as value-returned) combines features from both the pass by value and
pass by reference mechanisms. You pass a value-result parameter by address, just like pass by reference
parameters. However, upon entry, the procedure makes a temporary copy of this parameter and uses the copy
while the procedure is executing. When the procedure finishes, it copies the temporary copy back to the orig-
inal parameter.

This copy-in and copy-out process takes time and requires extra memory (for the copy of the data as
well as the code that copies the data). Therefore, for simple parameter use pass by value-result may be less
efficient than pass by reference. Of course, if the program semantics require pass by value-result, you have
no choice but to pay the price for its use.

In some instances, pass by value-returned is more efficient than pass by reference. If a procedure only
references the parameter a couple of times, copying the parameter’s data is expensive. On the other hand, if
the procedure uses this parameter often, the procedure amortizes the fixed cost of copying the data over
many inexpensive accesses to the local copy (versus expensive indirect reference using the pointer to access
the data).

HLA supports the use of value/result parameters via the VALRES keyword. If you prefix a parameter
declaration with VALRES, HLA will assume you want to pass the parameter by value/result. Whenever you
call the procedure, HLA treats the parameter like a pass by reference parameter and generates code to pass
the address of the actual parameter to the procedure. Within the procedure, HLA emits code to copy the data
referenced by this point to a local copy of the variable4. In the body of the procedure, you access the param-
eter as though it were a pass by value parameter. Finally, before the procedure returns, HLA emits code to
copy the local data back to the actual parameter. Here’s the syntax for a typical procedure that uses pass by
value result:

procedure AddandZero(valres p1:uns32; valres p2:uns32); nodisplay;
begin AddandZero;

mov(p2, eax);
add(eax, p1);
mov(0, p2);

4. This statement assumes that you’re not using the NOFRAME procedure option.
Page 1318 © 2000, By Randall Hyde Version: 7/4/01

 Low-Level Parameter Implementation
end AddandZero;

A typical call to this function might look like the following:

AddandZero(j, k);

This call computes "j := j+k;" and "k := 0;" simultaneously.

Note that HLA automatically emits the code within the AddandZero procedure to copy the data from p1
and p2’s actual parameters into the local variables associated with these parameters. Likewise, HLA emits
the code, just before returning, to copy the local parameter data back to the actual parameter. HLA also allo-
cates storage for the local copies of these parameters within the activation record. Indeed, the names p1 and
p2 in this example are actually associated with these local variables, not the formal parameters themselves.
Here’s some code similar to that which HLA emits for the AddandZero procedure above:

procedure AddandZero(var p1_ref: uns32; var p2_ref:uns32); nodisplay; noframe;
var

p1: uns32;
p2: uns32;

begin AddandZero;

push(ebp);
sub(_vars_, esp); // Note: _vars_ is "8" in this example.
push(eax);
mov(p1_ref, eax);
mov([eax], eax);
mov(eax, p1);
mov(p2_ref, eax);
mov([eax], eax);
mov(eax, p2);
pop(eax);

// Actual procedure body begins here:

mov(p2, eax);
add(eax, p1);
mov(0, p2);

// Clean up code associated with the procedure’s return:

push(eax);
push(ebx);
mov(p1_ref, ebx);
mov(p1, eax);
mov(eax, [ebx]);
mov(p2_ref, ebx);
mov(p2, eax);
mov(eax, [ebx]);
pop(ebx);
pop(eax);
ret(8);

end AddandZero;

As you can see from this example, pass by value/result has considerable overhead associated with it in
order to copy the data into and out of the procedure’s activation record. If efficiency is a concern to you, you
should avoid using pass by value/result for parameters you don’t reference numerous times within the proce-
dure’s body.

If you pass an array, record, or other large data structure via pass by value/result, HLA will emit code
that uses a MOVS instruction to copy the data into and out of the procedure’s activation record. Although
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 1319

Chapter Four Volume Five
this copy operation will be slow for larger objects, you needn’t worry about the compiler emitting a ton of
individual MOV instructions to copy a large data structure via value/result.

If you specify the NOFRAME option when you actually declare a procedure with value/result parame-
ters, HLA does not emit the code to automatically allocate the local storage and copy the actual parameter
data into the local storage. Furthermore, since there is no local storage, the formal parameter names refer to
the address passed as a parameter rather than to the local storage. For all intents and purposes, specifying
NOFRAME tells HLA to treat the pass by value/result parameters as pass by reference. The calling code
passes in the address and it is your responsibility to dereference that address and copy the local data into and
out of the procedure. Therefore, it’s quite unusual to see an HLA procedure use pass by value/result param-
eters along with the NOFRAME option (since using pass by reference achieves the same thing).

This is not to say that you shouldn’t use NOFRAME when you want pass by value/result semantics.
The code that HLA generates to copy parameters into and out of a procedure isn’t always the most efficient
because it always preserves all registers. By using NOFRAME with pass by value/result parameters, you
can supply slightly better code in some instances; however, you could also achieve the same effect (with
identical code) by using pass by reference.

When calling a procedure with pass by value/result parameters, HLA pushes the address of the actual
parameter on the stack in a manner identical to that for pass by reference parameters. Indeed, when looking
at the code HLA generates for a pass by reference or pass by value/result parameter, you will not be able to
tell the difference. This means that if you manually want to pass a parameter by value/result to a procedure,
you use the same code you would use for a pass by reference parameter; specifically, you would compute the
address of the object and push that address onto the stack. Here’s code equivalent to what HLA generates
for the previous call to AddandZero5:

// AddandZero(k, j);

lea(eax, k);
push(eax);
lea(eax, j);
push(eax);
call AddandZero;

Obviously, pass by value/result will modify the value of the actual parameter. Since pass by reference
also modifies the value of the actual parameter to a procedure, you may be wondering if there are any seman-
tic differences between these two parameter passing mechanisms. The answer is yes – in some special cases
their behavior is different. Consider the following code that is similar to the Pascal code appearing in the
chapter on intermediate procedures:

procedure uhoh(var i:int32; var j:int32); nodisplay;
begin uhoh;

mov(i, ebx);
mov(4, (type int32 [ebx]));
mov(j, ecx);
mov([ebx], eax);
add([ecx], eax);
stdout.put("i+j=", (type int32 eax), nl);

end uhoh;
.
.
.

var
k: int32;
.
.
.
mov(5, k);

5. Actually, this code is a little more efficient since it doesn’t worry about preserving EAX’s value.
Page 1320 © 2000, By Randall Hyde Version: 7/4/01

 Low-Level Parameter Implementation
uhoh(k, k);
.
.
.

As you may recall from the chapter on Intermediate Procedures, the call to uhoh above prints "8" rather
than the expected value of "9". The reason is because i and j are aliases of one another when you call uhoh
and pass the same variable in both parameter positions.

If we switch the parameter passing mechanism above to value/result, then i and j are not exactly aliases
of one another so this procedure exhibits different semantics when you pass the same variable in both param-
eter positions. Consider the following implementation:

procedure uhoh(valres i:int32; valres j:int32); nodisplay;
begin uhoh;

mov(4, i);
mov(i, eax);
add(j, eax);
stdout.put("i+j=", (type int32 eax), nl);

end uhoh;
.
.
.

var
k: int32;
.
.
.
mov(5, k);
uhoh(k, k);
.
.
.

In this particular implementation the output value is "9" as you would intuitively expect. The reason this
version produces a different result is because i and j are not aliases of one another within the procedure.
These names refer to separate local objects that the procedure happens to initialize with the value of the
same variable upon initial entry. However, when the body of the procedure executes, i and j are distinct so
storing four into i does not overwrite the value in j. Hence, when this code adds the values of i and j
together, j still contains the value 5, so this procedure displays the value nine.

Note that there is a question of what value k will have when uhoh returns to its caller. Since pass by
value/result stores the value of the formal parameter back into the actual parameter, the value of k could
either be four or five (since k is the formal parameter associated with both i and j). Obviously, k may only
contain one or the other of these values. HLA does not make any guarantees about which value k will hold
other than it will be one or the other of these two possible values. Obviously, you can figure this out by writ-
ing a simple program, but keep in mind that future versions of HLA may not respect the current ordering;
worse, it’s quite possible that within the same version of HLA, for some calls it could store i’s value into k
and for other calls it could store j’s value into k (not likely, but the HLA language allows this). The order by
which HLA copies value/result parameters into and out of a procedure is completely implementation depen-
dent. If you need to guarantee the copying order, then you should use the NOFRAME option (or use pass by
reference) and copy the data yourself.

Of course, this ambiguity exists only if you pass the same actual parameter in two value/result parame-
ter positions on the same call. If you pass different actual variables, this problem does not exist. Since it is
very rare for a program to pass the same variable in two parameter slots, particularly two pass by value/result
slots, it is unlikely you will ever encounter this problem.

HLA implements pass by value/result via pass by reference and copying. It is also possible to imple-
ment pass by value/result using pass by value and copying. When using the pass by reference mechanism to
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 1321

Chapter Four Volume Five
support pass by value/result, it is the procedure’s responsibility to copy the data from the actual parameter
into the local copy; when using the pass by value form, it is the caller’s responsibility to copy the data to and
from the local object. Consider the following implementation that (manually) copies the data on the call and
return from the procedure:

procedure DisplayAndClear(val i:int32); nodisplay; noframe;
begin DisplayAndClear;

push(ebp); // NOFRAME, so we have to do this manually.
mov(esp, ebp);

stdout.put("I = ", i, nl);
mov(0, i);

pop(ebp);
ret(); // Note that we don’t clean up the parameters.

end DisplayAndClear;
.
.
.

push(m);
call DisplayAndClear;
pop(m);
stdout.put("m = ", m, nl);

.

.

.

The sequence above displays "I = 5" and "m = 0" when this code sequence runs. Note how this code passes
the value in on the stack and then returns the result back on the stack (and the caller copies the data back to
the actual parameter.

In the example above, the procedure used the NOFRAME option in order to prevent HLA from auto-
matically removing the parameter data from the stack. Another way to achieve this effect is to use the
CDECL procedure option (that tells HLA to use the C calling convention, which also leaves the parameters
on the stack for the caller to clean up). Using this option, we could rewrite the code sequence above as fol-
lows:

procedure DisplayAndClear(val i:int32); nodisplay; cdecl;
begin DisplayAndClear;

stdout.put("I = ", i, nl);
mov(0, i);

end DisplayAndClear;
.
.
.

DisplayAndClear(m);
pop(m);
stdout.put("m = ", m, nl);

.

.

.

The advantage to this scheme is that HLA automatically emits the procedure’s entry and exit sequences so
you don’t have to manually supply this information. Keep in mind, however, that the CDECL calling
sequence pushes the parameters on the stack in the reverse order of the standard HLA calling sequence.
Generally, this won’t make a difference to you code unless you explicitly assume the order of parameters in
memory. Obviously, this won’t make a difference at all when you’ve only got a single parameter.
Page 1322 © 2000, By Randall Hyde Version: 7/4/01

 Low-Level Parameter Implementation
The examples in this section have all assumed that we’ve passed the value/result parameters on the
stack. Indeed, HLA only supports this location if you want to use a high level calling syntax for value/result
parameters. On the other hand, if you’re willing to manually pass the parameters in and out of a procedure,
then you may pass the value/result parameters in other locations including the registers, in the code stream,
in global variables, or in parameter blocks.

Passing parameters by value/result in registers is probably the easiest way to go. All you’ve got to do is
load an appropriate register with the desired value before calling the procedure and then leave the return
value in that register upon return. When the procedure returns, it can use the register’s value however it sees
fit. If you prefer to pass the value/result parameter by reference rather than by value, you can always pass in
the address of the actual object in a 32-bit register and do the necessary copying within the procedure’s body.

Of course, there are a couple of drawbacks to passing value/result parameters in the registers; first, the
registers can only hold small, scalar, objects (though you can pass the address of a large object in a register).
Second, there are a limited number of registers. But if you can live these drawbacks, registers provide a very
efficient place to pass value/result parameters.

It is possible to pass certain value/result parameters in the code stream. However, you’ll always pass
such parameters by their address (rather than by value) to the procedure since the code stream is in read-only
memory (and you can’t write a value back to the code stream). When passing the actual parameters via
value/result, you must pass in the address of the object in the code stream, so the objects must be static vari-
ables so HLA can compute their addresses at compile-time. The actual implementation of value/result
parameters in the code stream is left as an exercise for the end of this volume.

There is one advantage to value/result parameters in the HLA/assembly programming environment.
You get semantics very similar to pass by reference without having to worry about constant dereferencing of
the parameter throughout the code. That is, you get the ability to modify the actual parameter you pass into
a procedure, yet within the procedure you get to access the parameter like a local variable or value parame-
ter. This simplification makes it easier to write code and can be a real time saver if you’re willing to (some-
times) trade off a minor amount of performance for easier to read-and-write code.

4.4.2 Pass by Result

Pass by result is almost identical to pass by value-result. You pass in a pointer to the desired object and
the procedure uses a local copy of the variable and then stores the result through the pointer when returning.
The only difference between pass by value-result and pass by result is that when passing parameters by
result you do not copy the data upon entering the procedure. Pass by result parameters are for returning val-
ues, not passing data to the procedure. Therefore, pass by result is slightly more efficient than pass by
value-result since you save the cost of copying the data into the local variable.

HLA supports pass by result parameters using the RESULT keyword prior to a formal parameter decla-
ration. Consider the following procedure declaration:

procedure HasResParm(result r:uns32); nodisplay;
begin HasResParm;

mov(5, r);

end HasResParm;

Like pass by value/result, modification of the pass by result parameter results (ultimately) in the modifi-
cation of the actual parameter. The difference between the two parameter passing mechanisms is that pass
by result parameters do not have a known initial value upon entry into the code (i.e., the HLA compiler does
not emit code to copy any data into the parameter upon entry to the procedure).

Also like pass by value/result, you may pass result parameters in locations other than on the stack. HLA
does not support anything other than the stack when using the high level calling syntax, but you may cer-
tainly pass result parameters manually in registers, in the code stream, in global variables, and in parameter
blocks.
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 1323

Chapter Four Volume Five
4.4.3 Pass by Name

Some high level languages, such as ALGOL-68 and Panacea, support pass by name parameters. Pass by
name produces semantics that are similar (though not identical) to textual substitution (e.g., like macro
parameters). However, implementing pass by name using textual substitution in a compiled language (like
ALGOL-68) is very difficult and inefficient. Basically, you would have to recompile a function every time
you call it. So compiled languages that support pass by name parameters generally use a different technique
to pass those parameters. Consider the following Panacea procedure (Panacea’s syntax is sufficiently similar
to HLA’s that you should be able to figure out what’s going on):

PassByName: procedure(name item:integer; var index:integer);
begin PassByName;

foreach index in 0..10 do

item := 0;

endfor;

end PassByName;

Assume you call this routine with the statement "PassByName(A[i], i);" where A is an array of integers
having (at least) the elements A[0]..A[10]. Were you to substitute (textually) the pass by name parameter
item you would obtain the following code:

begin PassByName;

foreach index in 0..10 do

A[I] := 0; (* Note that index and I are aliases *)

endfor;

end PassByName;

This code zeros out elements 0..10 of array A.

High level languages like ALGOL-68 and Panacea compile pass by name parameters into functions that
return the address of a given parameter. So in one respect, pass by name parameters are similar to pass by
reference parameters insofar as you pass the address of an object. The major difference is that with pass by
reference you compute the address of an object before calling a subroutine; with pass by name the subrou-
tine itself calls some function to compute the address of the parameter whenever the function references that
parameter.

So what difference does this make? Well, reconsider the code above. Had you passed A[I] by reference
rather than by name, the calling code would compute the address of A[I] just before the call and passed in
this address. Inside the PassByName procedure the variable item would have always referred to a single
address, not an address that changes along with I. With pass by name parameters, item is really a function
that computes the address of the parameter into which the procedure stores the value zero. Such a function
might look like the following:

procedure ItemThunk; nodisplay; noframe;
begin ItemThunk;

mov(i, eax);
lea(eax, A[eax*4]);
ret();

end ItemThunk;

The compiled code inside the PassByName procedure might look something like the following:
Page 1324 © 2000, By Randall Hyde Version: 7/4/01

 Low-Level Parameter Implementation
; item := 0;

call ItemThunk;
mov(0, (type dword [eax]));

Thunk is the historical term for these functions that compute the address of a pass by name parameter. It
is worth noting that most HLLs supporting pass by name parameters do not call thunks directly (like the call
above). Generally, the caller passes the address of a thunk and the subroutine calls the thunk indirectly. This
allows the same sequence of instructions to call several different thunks (corresponding to different calls to
the subroutine). In HLA, of course, we will use HLA thunk variables for this purpose. Indeed, when you
declare a procedure with a pass by name parameter, HLA associates the thunk type with that parameter. The
only difference between a parameter whose type is thunk and a pass by name parameter is that HLA requires
a thunk constant for the pass by name parameter (whereas a parameter whose type is thunk can be either a
thunk constant or a thunk variable). Here’s a typical procedure prototype using a pass by name variable
(note the use of the NAME keyword to specify pass by name):

procedure HasNameParm(name nameVar:uns32);

Since nameVar is a thunk, you call this object rather than treat it as data or as a pointer. Although HLA
doesn’t enforce this, the convention is that a pass by name parameter returns the address of the object when-
ever you invoke the thunk. The procedure then dereferences this address to access the actual data. The fol-
lowing code is the HLA equivalent of the Panacea procedure given earlier:

 procedure passByName(name ary:int32; var ip:int32);
 nodisplay;
 const i:text := "(type int32 [ebx])";
 begin passByName;

 mov(ip, ebx);
 mov(0, i);
 while(i <= 10) do

 ary(); // Get address of "ary[i]" into eax.
 mov(i, ecx);
 mov(ecx, (type int32 [eax]));
 inc(i);

 endwhile;

 end passByName;

Notice how this code assumes that the ary thunk returns a pointer in the EAX register.

Whenever you call a procedure with a pass by name parameter, you must supply a thunk that computes
some address and returns that address in the EAX register (or wherever you expect the address to be sitting
upon return from the thunk; convention dictates the EAX register). Here is some same code that demon-
strates how to pass a thunk constant for a pass by name parameter to the procedure above:

var
index:uns32;
array: uns32[11]; // Has elements 0..10.

.

.

.
 passByName
 (
 thunk
 #{
 push(ebx);
 mov(index, ebx);
 lea(eax, array[ebx*4]);
 pop(ebx);
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 1325

Chapter Four Volume Five
 }#,
 index
);

The "thunk #{...}#" sequence specifies a literal thunk that HLA compiles into the code stream. For the
environment pointer, HLA pushes the current value for EBP, for the procedure pointer, HLA passes in the
address of the code in the "#{...}#" braces. Whenever the passByName procedure actually calls this thunk,
the run-time system restores EBP with the pointer to the current procedure’s activation record and executes
the code in these braces. If you look carefully at the code above, you’ll see that this code loads the EAX reg-
ister with the address of the array[index] variable. Therefore, the passByName procedure will store the next
value into this element of array.

Pass by name parameter passing has garnered a bad name because it is a notoriously slow mechanism.
Instead of directly or indirectly accessing an object, you have to first make a procedure call (which is expen-
sive compared to an access) and then dereference a pointer. However, because pass by name parameters
defer their evaluation until you actually access an object, pass by name effectively gives you a deferred pass
by reference parameter passing mechanism (deferring the calculation of the address of the parameter until
you actually access that parameter). This can be very important in certain situations. As you’ve seen in the
chapter on thunks, the proper use of deferred evaluation can actually improve program performance. Most
of the complaints about pass by name are because someone misused this parameter passing mechanism
when some other mechanism would have been more appropriate. There are times, however, when pass by
name is the best approach.

It is possible to transmit pass by name parameters in some location other than the stack. However, we
don’t call them pass by name parameters anymore; they’re just thunks (that happen to return an address in
EAX) at that point. So if you wish to pass a pass by name parameter in some other location than the stack,
simply create a thunk object and pass your parameter as the thunk.

4.4.4 Pass by Lazy-Evaluation

Pass by name is similar to pass by reference insofar as the procedure accesses the parameter using the
address of the parameter. The primary difference between the two is that a caller directly passes the address
on the stack when passing by reference, it passes the address of a function that computes the parameter’s
address when passing a parameter by name. The pass by lazy evaluation mechanism shares this same rela-
tionship with pass by value parameters – the caller passes the address of a function that computes the param-
eter’s value if the first access to that parameter is a read operation.

Pass by lazy evaluation is a useful parameter passing technique if the cost of computing the parameter
value is very high and the procedure may not use the value. Consider the following HLA procedure header:

procedure PassByEval(lazy a:int32; lazy b:int32; lazy c:int32);

Consider the PassByEval procedure above. Suppose it takes several minutes to compute the values for
the a, b, and c parameters (these could be, for example, three different possible paths in a Chess game). Per-
haps the PassByEval procedure only uses the value of one of these parameters. Without pass by lazy evalua-
tion, the calling code would have to spend the time to compute all three parameters even though the
procedure will only use one of the values. With pass by lazy evaluation, however, the procedure will only
spend the time computing the value of the one parameter it needs. Lazy evaluation is a common technique
artificial intelligence (AI) and operating systems use to improve performance since it provides deferred
parameter evaluation capability.

HLA’s implementation of pass by lazy evaluation parameters is (currently) identical to the implementa-
tion of pass by name parameters. Specifically, pass by lazy evaluation parameters are thunks that you must
call within the body of the procedure and that you must write whenever you call the procedure. The differ-
ence between pass by name and pass by lazy evaluation is the convention surrounding what the thunks
return. By convention, pass by name parameters return a pointer in the EAX register. Pass by lazy evalua-
tion parameters, on the other hand, return a value, not an address. Where the pass by lazy evaluation thunk
returns its value depends upon the size of the value. However, by convention most programmers return
eight, 16-, 32-, and 64-bit values in the AL, AX, EAX, and EDX:EAX registers, respectively. The excep-
Page 1326 © 2000, By Randall Hyde Version: 7/4/01

 Low-Level Parameter Implementation
tions are floating point values (the convention is to use the ST0 register) and MMX values (the convention is
to use the MM0 register for MMX values).

Like pass by name, you only pass by lazy evaluation parameters on the stack. Use thunks if you want to
pass lazy evaluation parameters in a different location.

Of course, nothing is stopping you from returning a value via a pass by name thunk or an address via a
pass by lazy evaluation thunk, but to do so is exceeding poor programming style. Use these parameter pass
mechanisms as they were intended.

4.5 Passing Parameters as Parameters to Another Procedure

When a procedure passes one of its own parameters as a parameter to another procedure, certain prob-
lems develop that do not exist when passing variables as parameters. Indeed, in some (rare) cases it is not
logically possible to pass some parameter types to some other procedure. This section deals with the prob-
lems of passing one procedure’s parameters to another procedure.

Pass by value parameters are essentially no different than local variables. All the techniques in the previ-
ous sections apply to pass by value parameters. The following sections deal with the cases where the calling
procedure is passing a parameter passed to it by reference, value-result, result, name, and lazy evaluation.

4.5.1 Passing Reference Parameters to Other Procedures

Passing a reference parameter though to another procedure is where the complexity begins. Consider the
following HLA procedure skeleton:

procedure ToProc(???? parm:dword);
begin ToProc;

.

.

.
end ToProc;

procedure HasRef(var refparm:dword);

begin HasRef;
 .
 .
 .
ToProc(refParm);
 .
 .
 .

end HasRef;

The “????” in the ToProc parameter list indicates that we will fill in the appropriate parameter passing mech-
anism as the discussion warrants.

If ToProc expects a pass by value parameter (i.e., ???? is just an empty string), then HasRef needs to
fetch the value of the refparm parameter and pass this value to ToProc. The following code accomplishes
this6:

mov(refparm, ebx); // Fetch address of actual refparm value.
pushd([ebx]); // Pass value of refparm variable on the stack.
call ToProc;

6. The examples in this section all assume the use of a display. If you are using static links, be sure to adjust all the offsets and
the code to allow for the static link that the caller must push immediately before a call.
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 1327

Chapter Four Volume Five
To pass a reference parameter by reference, value-result, or result parameter is easy – just copy the
caller’s parameter as-is onto the stack. That is, if the parm parameter in ToProc above is a reference parame-
ter, a value-result parameter, or a result parameter, you would use the following calling sequence:

push(refparm);
call ToProc;

We get away with pass the value of refparm on the stack because refparm currently contains the address of
the actual object that ToProc will reference. Therefore, we need only copy this value (which is an address).

To pass a reference parameter by name is fairly easy. Just write a thunk that grabs the reference parame-
ter’s address and returns this value. In the example above, the call to ToProc might look like the following:

ToProc
(

thunk
#{

mov(refparm, eax);
}#

);

To pass a reference parameter by lazy evaluation is very similar to passing it by name. The only difference
(in ToProc’s calling sequence) is that the thunk must return the value of the variable rather than its address.
You can easily accomplish this with the following thunk:

ToProc
(

thunk
#{

mov(refparm, eax); // Get the address of the actual parameter
mov([eax], eax); // Get the value of the actual parameter.

}#
);

Note that HLA’s high level procedure calling syntax automatically handles passing reference parameters
as value, reference, value/result, and result parameters. That is, when using the high level procedure call
syntax and ToProc’s parameter is pass by value, pass by reference, pass by value/result, or pass by result,
you’d use the following syntax to call ToProc:

ToProc(refparm);

HLA will automatically figure out what data it needs to push on the stack for this procedure call.

Unfortunately, HLA does not automatically handle the case where you pass a reference parameter to a
procedure via pass by name or pass by lazy evaluation. You must explicitly write this thunk yourself.

4.5.2 Passing Value-Result and Result Parameters as Parameters

If you have a pass by value/result or pass by result parameter that you want to pass to another procedure,
and you use the standard HLA mechanism for pass by value/result or pass by result parameters, passing
those parameters on to another procedure is trivial because HLA creates local variables using the parame-
ters’ names. Therefore, there is no difference between a local variable and a pass by value/result or pass by
result parameter in this particular case. Once HLA has made a local copy of the value-result or result param-
eter or allocates storage for it, you can treat that variable just like a value parameter or a local variable with
respect to passing it on to other procedures. In particular, if you’re using the HLA high level calling syntax
in your code, HLA will automatically pass that procedure by value, reference, value/result, or by result to
another procedure. If you’re passing the parameter by name or by lazy evaluation to another procedure, you
must manually write the thunk that computes the address of the variable (pass by name) or obtains the value
of the variable (pass by lazy evaluation) prior to calling the other procedure.
Page 1328 © 2000, By Randall Hyde Version: 7/4/01

 Low-Level Parameter Implementation
Of course, it doesn’t make sense to use the value of a result parameter until you’ve stored a value into
that parameter’s local storage. Therefore, take care when passing result parameters to other procedures that
you’ve initialized a result parameter before using its value.

If you’re manually passing pass by value/result or pass by result parameters to a procedure and then you
need to pass those parameters on to another procedure, HLA cannot automatically generate the appropriate
code to pass those parameters on. This is especially true if you’ve got the parameter sitting in a register or in
some location other than a local variable. Likewise, if the procedure you’re calling expects you to pass a
value/result or result parameter using some mechanism other than passing the address on the stack, you will
also have manually write the code to pass the parameter on through. Since such situations are specific to a
given situation, the only advice this text can offer is to suggest that you carefully think through what you’re
doing.

4.5.3 Passing Name Parameters to Other Procedures

Since a pass by name parameter’s thunk returns the address of a parameter, passing a name parameter to
another procedure is very similar to passing a reference parameter to another procedure. The primary differ-
ences occur when passing the parameter on as a name parameter.

Unfortunately, HLA’s high level calling syntax doesn’t automatically deal with pass by name parame-
ters. The reason is because HLA doesn’t assume that thunks return an address in the EAX register (this is a
convention, not a requirement). A programmer who writes the thunk could return the address somewhere
else, or could even create a thunk that doesn’t return an address at all! Therefore, it is up to you to handle
passing pass by name parameters to other procedures.

When passing a name parameter as a value parameter to another procedure, you first call the thunk,
dereference the address the thunk returns, and then pass the value to the new procedure. The following code
demonstrates such a call when the thunk returns the variable’s address in EAX:

CallThunk(); // Call the thunk which returns an address in EAX.
pushd([eax]); // Push the value of the object as a parameter.
call ToProc; // Call the procedure that expects a value parameter.
 .
 .
 .

Passing a name parameter to another procedure by reference is very easy. All you have to do is push the
address the thunk returns onto the stack. The following code, that is very similar to the code above, accom-
plishes this:

CallThunk(); // Call the thunk which returns an address in EAX.
push(eax); // Push the address of the object as a parameter.
call ToProc; // Call the procedure that expects a value parameter.
 .
 .
 .

Passing a name parameter to another procedure as a pass by name parameter is very easy; all you need
to do is pass the thunk on to the new procedure. The following code accomplishes this:

push((type dword CallThunk));
push((type dword CallThunk[4]));
call ToProc;

To pass a name parameter to another procedure by lazy evaluation, you need to create a thunk for the
lazy-evaluation parameter that calls the pass by name parameter’s thunk, dereferences the pointer, and then
returns this value. The implementation is left as a programming project.
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 1329

Chapter Four Volume Five
4.5.4 Passing Lazy Evaluation Parameters as Parameters

Lazy evaluation are very similar to name parameters except they typically return a value in EAX (or
some other register) rather than an address. This means that you may only pass lazy evaluation parameters
by value or by lazy evaluation to another procedure (since they don’t have an address associated with them).

4.5.5 Parameter Passing Summary

The following table describes how to pass parameters from one procedure as parameters to another pro-
cedure. The rows specify the "input" parameter passing mechanism (how the parameter was passed into the
current procedure) and the rows specify the "output" parameter passing mechanism (how the procedure
passing the parameter on to another procedure as a parameter).

Table 1: Passing Parameters as Parameters to Another Procedure

Pass as Value
Pass as

Reference
Pass as

Value-Result
Pass as Result Pass as Name

Pass as Lazy
Evaluation

Value Pass the value Pass address of
the value
parameter

Pass address of
the value
parameter

Pass address of
the value
parameter

Create a thunk
that returns the
address of the
value parameter

Create a thunk
that returns the
value

Reference Dereference
parameter and
pass the value it
points at

Pass the address
(value of the
reference
parameter)

Pass the address
(value of the
reference
parameter)

Pass the address
(value of the
reference
parameter)

Create a thunk
that passes the
address (value
of the reference
parameter)

Create a thunk
that deferences
the reference
parameter and
returns its value

Value-Result Pass the local
value as the
value parameter

Pass the address
of the local
value as the
parameter

Pass the address
of the local
value as the
parameter

Pass the address
of the local
value as the
parameter

Create a thunk
that returns the
address of the
local value of
the value-result
parameter

Create a thunk
that returns the
value in the
local value of
the value-result
parameter

Result Pass the local
value as the
value parameter

Pass the address
of the local
value as the
parameter

Pass the address
of the local
value as the
parameter

Pass the address
of the local
value as the
parameter

Create a thunk
that returns the
address of the
local value of
the result
parameter

Create a thunk
that returns the
value in the
local value of
the result
parameter

Name Call the thunk,
dereference the
pointer, and
pass the value at
the address the
thunk returns

Call the thunk
and pass the
address it
returns as the
parameter

Call the thunk
and pass the
address it
returns as the
parameter

Call the thunk
and pass the
address it
returns as the
parameter

Pass the address
of the thunk and
any other values
associated with
the name
parameter

Write a thunk
that calls the
name parame-
ter’s thunk,
dereferences the
address it
returns, and
then returns the
value at that
address
Page 1330 © 2000, By Randall Hyde Version: 7/4/01

 Low-Level Parameter Implementation
4.6 Variable Parameter Lists

On occasion you may need the ability to pass a varying number of parameters to a given procedure.
The stdout.put routine in the HLA Standard Library provides a good example of where having a variable
number of parameters is useful. There are two ways to accomplish this: (1) Fake it and use a macro rather
than a procedure (this is what the HLA Standard Library does, for example, with the stdout.put invocation –
stdout.put is a macro not a procedure), and (2) Pass in some information to the procedure the describes how
many parameters in must process and where it can find those parameters. We’ll take a look at both of these
mechanisms in this section.

HLA’s macro facility allows a varying number of parameters by specifying an empty array parameter as
the last formal parameter in the macro list, e.g.,

macro VariableNumOfParms(a, b, c[]);
.
.
.

endmacro;

Whenever HLA processes a macro declaration like the one above, it associates the first two actual
parameters with the formal parameters a and b; any remaining actual parameters becomes strings in the con-
stant string array c. By using the @ELEMENTS compile-time function, you can determine how many addi-
tional parameters appear in the parameter list (which can be zero or more).

Of course, a macro is not a procedure. So the fact that we have a list of text constants and a string array
that represents our actual parameter list does not satisfy the requirements for a varying parameter list at
run-time. However, we can write some compile-time code that parses the parameter list and calls an appro-
priate set of procedures to handle each and every parameter passed to the macro. For example, the stdout.put
macro splits up the parameter list and calls a sequence of routines (like stdout.puts and stdout.puti32) to
handle each parameter individually.

Breaking up a macro’s variable parameter list into a sequence of procedure calls with only one parame-
ter per call may not solve a need you have for varying parameter lists. That being the case, it may still be
possible to use macros to implement varying parameters for a procedure. If the number of parameters is
within some range, then you can use the function overloading trick discussed in the chapter on macros to call
one of several different procedures, each with a different number of parameters. Please see the chapter on
macros for additional details.

Although macros provide a convenient way to implement a varying parameter list, they do suffer from
some limitations that make them unsuitable for all applications. In particular, if you need to call a single
procedure and pass it an indeterminate number of parameters (no limits), then the tricks with macros
employed above won’t work well for you. In this situation you will need to push the parameters on the stack
(or pass them somewhere else) and include some information that tells the procedure how many parameters

Lazy
Evaluation

If necessary,
call the thunk to
obtain the Lazy
Eval parame-
ter’s value.
Pass the local
value as the
value parameter

Not possible.
Lazy Eval
parameters
return a value
which does not
have an address.

Not possible.
Lazy Eval
parameters
return a value
which does not
have an address.

Not possible.
Lazy Eval
parameters
return a value
which does not
have an address.

Not possible.
Lazy Eval
parameters
return a value
which does not
have an address.

Create a thunk
that calls the
caller’s Lazy
Eval parameter.
This new thunk
returns that
result as its
result.

Table 1: Passing Parameters as Parameters to Another Procedure

Pass as Value
Pass as

Reference
Pass as

Value-Result
Pass as Result Pass as Name

Pass as Lazy
Evaluation
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 1331

Chapter Four Volume Five
you’re passing (and, perhaps, their size). The most common way to do this is to push the parameters onto
the stack and then, as the last parameter, push the parameter count (or size) onto the stack.

Most procedures that push a varying number of parameters on the stack use the C/C++ calling conven-
tion. There are two reasons for this: (1) the parameters appear in memory in a natural order (the number of
parameters followed by the first parameter, followed by the second parameter, etc.), (2) the caller will need
to remove the parameters from the stack since each call can have a different number of parameters and the
80x86 RET instruction can only remove a fixed (constant) number of parameter bytes.

One drawback to using the C/C++ calling convention to pass a variable number of parameters on the
stack is that you must manually push the parameters and issue a CALL instruction; HLA does not provide a
high-level language syntax for declaring and calling procedures with a varying number of parameters.

Consider, as an example, a simple MaxUns32 procedure that computes the maximum of n uns32 values
passed to it. The caller begins by pushing n uns32 values and then, finally, it also pushes n. Upon return, the
caller removes the n+1 uns32 values (including n) from the stack. The function, presumably, returns the
maximum value in the EAX register. Here’s a typical call to MaxUns32:

push(i);
push(j);
push(k);
pushd(10);

push(4); // n=4, number of parameters passed to this code.
call MaxUns32; // Compute the maximum of the above.
add(20, esp); // Remove the parameters from the stack.

The MaxUns32 procedure itself must first fetch the value for n from a known location (in this case, it
will be just above the return address on the stack). The procedure can then use this value to step through
each of the other parameters found on the stack above the value for n. Here’s some sample code that accom-
plishes this:

procedure MaxUns32; nodisplay; noframe;
const n:text := "(type uns32 [ebp+8])";
const first:text := "(type uns32 [ebp+12])";
begin MaxUns32;

push(ebp);
mov(esp, ebp);
push(ebx);
push(ecx);

mov(n, ecx);
if(ecx > 0) then

lea(ebx, first);
mov(first, eax); // Use this as the starting Max value.
repeat

if(eax < [ebx]) then

mov([ebx], eax);

endif;
add(4, ebx);
dec(ecx);

until(ecx = 0);

else

// There were no parameter values to try, so just return zero.
Page 1332 © 2000, By Randall Hyde Version: 7/4/01

 Low-Level Parameter Implementation
xor(eax, eax);

endif;
pop(ecx);
pop(ebx);
pop(ebp);
ret(); // Can’t remove the parameters!

end MaxUns32;

This code assumes that n is at location [ebp+8] (which it will be if n is the last parameter pushed onto
the stack) and that n uns32 values appear on the stack above this point. It steps through each of these values
searching for the maximum, which the function returns in EAX. If n contains zero upon entry, this function
simply returns zero in EAX.

Passing a single parameter count, as above, works fine if all the parameters are the same type and size.
If the size and/or type of each parameter varies, you will need to pass information about each individual
parameter on the stack. There are many ways to do this, a typical mechanism is to simply preface each
parameter on the stack with a double word containing its size in bytes. Another solution is that employed by
the printf function in the C standard library - pass an array of data (a string in the case of printf) that contains
type information that the procedure can interpret at run-time to determine the type and size of the parame-
ters. For example, the C printf function uses format strings like "%4d" to determine the size (and count, via
the number of formatting options that appear within the string) of the parameters.

4.7 Function Results

Functions return a result, which is nothing more than a result parameter. In assembly language, there are
very few differences between a procedure and a function. That is probably why there isn’t a “function”
directive. Functions and procedures are usually different in high level languages, function calls appear only
in expressions, subroutine calls as statements7. Assembly language doesn’t distinguish between them.

You can return function results in the same places you pass and return parameters. Typically, however, a
function returns only a single value (or single data structure) as the function result. The methods and loca-
tions used to return function results is the subject of the next four sections.

4.7.1 Returning Function Results in a Register

Like parameters, the 80x86’s registers are the best place to return function results. The getc routine in
the HLA Standard Library is a good example of a function that returns a value in one of the CPU’s registers.
It reads a character from the keyboard and returns the ASCII code for that character in the AL register. By
convention, most programmers return function results in the following registers:

Use First Last

Bytes: al, ah, dl, dh, cl, ch, bl, bh

Words: ax, dx, cx, si, di, bx

Double words: eax, edx, ecx, esi, edi, ebx

Quad words: edx:eax

Real Values: ST0

MMX Values: MM0

7. “C” is an exception to this rule. C’s procedures and functions are all called functions. PL/I is another exception. In PL/I,
they’re all called procedures.
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 1333

Chapter Four Volume Five
Once again, this table represents general guidelines. If you’re so inclined, you could return a double
word value in (CL, DH, AL, BH). If you’re returning a function result in some registers, you shouldn’t save
and restore those registers. Doing so would defeat the whole purpose of the function.

4.7.2 Returning Function Results on the Stack

Another good place where you can return function results is on the stack. The idea here is to push some
dummy values onto the stack to create space for the function result. The function, before leaving, stores its
result into this location. When the function returns to the caller, it pops everything off the stack except this
function result. Many HLLs use this technique (although most HLLs on the IBM PC return function results
in the registers). The following code sequences show how values can be returned on the stack:

procedure RtnOnStack(RtnResult: dword; parm1: uns32; parm2:uns32);
nodisplay;
noframe;

var
LocalVar: uns32;

begin RtnOnStack;

push(ebp); // The standard entry sequence
mov(esp, ebp);
sub(_vars_, esp);

<< code that leaves a value in RtnResult >>

mov(ebp, esp); // Not quite standard exit sequence.
pop(ebp);
ret(__parms_-4); // Don’t pop RtnResult off stack on return!

end RtnOnStack;

Calling sequence:

RtnOnStack(0, p1, p2); // "0" is a dummy value to reserve space.
pop(eax); // Retrieve return result from stack.

Although the caller pushed 12 bytes of data onto the stack, RtnOnStack only removes eight bytes. The
first “parameter” on the stack is the function result. The function must leave this value on the stack when it
returns.

4.7.3 Returning Function Results in Memory Locations

Another reasonable place to return function results is in a known memory location. You can return func-
tion values in global variables or you can return a pointer (presumably in a register or a register pair) to a
parameter block. This process is virtually identical to passing parameters to a procedure or function in global
variables or via a parameter block.

Returning parameters via a pointer to a parameter block is an excellent way to return large data struc-
tures as function results. If a function returns an entire array, the best way to return this array is to allocate
some storage, store the data into this area, and leave it up to the calling routine to deallocate the storage.
Most high level languages that allow you to return large data structures as function results use this technique.

Of course, there is very little difference between returning a function result in memory and the pass by
result parameter passing mechanism. See “Pass by Result” on page 1323 for more details.
Page 1334 © 2000, By Randall Hyde Version: 7/4/01

 Low-Level Parameter Implementation
4.7.4 Returning Large Function Results

Returning small scalar values in the registers or on the stack makes a lot of sense. However, mechanism
for returning function results does not scale very well to large data structures. The registers are too small to
return large records or arrays and returning such data on the stack is a lot of work (not to mention that you’ve
got to copy the data from the stack to it’s final resting spot upon return from the function). In this section
we’ll take a look at a couple of methods for returning large objects from a function.

The traditional way to return a large function result is to pass the location where one is to store the result
as a pass by reference parameter. The advantage to this scheme is that it is relatively efficient (speed-wise)
and doesn’t require any extra space; the procedure uses the final destination location as scratch pad memory
while it is building up the result. The disadvantage to this scheme is that it is very common to pass the des-
tination variable as an input parameter (thus creating an alias). Since, in a high level language, you don’t
have the problems of aliases with function return results, this is a non-intuitive semantic result that can cre-
ate some unexpected problems.

A second solution, though a little bit less efficient, is to use a pass by result parameter to return the func-
tion result. Pass by result parameters get their own local copy of the data that the system copies back over
the destination location once the function is complete (thus avoiding the problem with aliases). The draw-
back to using pass by result, especially with large return values, is the fact that the program must copy the
data from the local storage to the destination variable when the function completes. This data copy opera-
tion can take a significant amount of time for really large objects.

Another solution for returning large objects, that is relatively efficient, is to allocate storage for the
object in the function, place whatever data you wish to return in the allocated storage, and then return a
pointer to this storage. If the calling code references this data indirectly rather than copying the data to a dif-
ferent location upon return, this mechanism and run significantly faster than pass by result. Of course, it is
not as general as using pass by result parameters, but with a little planning it is easy to arrange you code so
that it works with pointers to large objects. String functions are probably the best example of this function
result return mechanism in practice. It is very common for a function to allocate storage for a string result
on the heap and then return a "string variable" in EAX (remember that strings in HLA are pointers).

4.8 Putting It All Together

This chapter discusses how and where you can pass parameters in an assembly language program. It
continues the discussion of parameter passing that appears in earlier chapters in this text. This chapter dis-
cusses, in greater detail, several of the different places that a program can pass parameters to a procedure
including registers, FPU/MMX register, on the stack, in the code stream, in global variables, and in parame-
ters blocks. While this is not an all-inclusive list, it does cover the more common places where programs
pass parameters.

In addition to where, this chapter discusses how programs can pass parameters. Possible ways include
pass by value, pass by reference, pass by value/result, pass by result, pass by name, and pass by lazy evalua-
tion. Again, these don’t represent all the possible ways one could think of, but it does cover (by far) the most
common ways programs pass parameters between procedures.

Another parameter-related issue this chapter discusses is how to pass parameters passed into one proce-
dure as parameters to another procedure. Although HLA’s high level calling syntax can take care of the
grungy details for you, it’s important to know how to pass these parameters manually since there are many
instances where you will be forced to write the code that passes these parameters (not to mention, it’s a good
idea to know how this works, just on general principles).

This chapter also touches on passing a variable number of parameters between procedures and how to
return function results from a procedure.

This chapter will not be the last word on parameters. We’ll take another look at parameters in the very
next chapter when discussing lexical scope.
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 1335

Chapter Four Volume Five
Page 1336 © 2000, By Randall Hyde Version: 7/4/01

Lexical Nesting
Lexical Nesting Chapter Five

5.1 Chapter Overview

This chapter discusses nested procedures and the issues associated with calling such procedure and
accessing local variables in nested procedures. Nesting procedures offers HLA users a modicum of built-in
information hiding support. Therefore, the material in this chapter is very important for those wanting to
write highly structured code. This information is also important to those who want to understand how block
structured high level languages like Pascal and Ada operate.

5.2 Lexical Nesting, Static Links, and Displays

In block structured languages like Pascal1 it is possible to nest procedures and functions. Nesting one
procedure within another limits the access to the nested procedure; you cannot access the nested procedure
from outside the enclosing procedure. Likewise, variables you declare within a procedure are visible inside
that procedure and to all procedures nested within that procedure2. This is the standard block structured lan-
guage notion of scope that should be quite familiar to anyone who has written Pascal or Ada programs.

There is a good deal of complexity hidden behind the concept of scope, or lexical nesting, in a block
structured language. While accessing a local variable in the current activation record is efficient, accessing
global variables in a block structured language can be very inefficient. This section will describe how a high
level language like Pascal deals with non-local identifiers and how to access global variables and call
non-local procedures and functions.

5.2.1 Scope

Scope in most high level languages is a static, or compile-time concept3. Scope is the notion of when a
name is visible, or accessible, within a program. This ability to hide names is useful in a program because it
is often convenient to reuse certain (non-descriptive) names. The i variable used to control most FOR loops
in high level languages is a perfect example.

The scope of a name limits its visibility within a program. That is, a program has access to a variable
name only within that name’s scope. Outside the scope, the program cannot access that name. Many pro-
gramming languages, like Pascal and C++, allow you to reuse identifiers if the scopes of those multiple uses
do not overlap. As you’ve seen, HLA provides scoping features for its variables. There is, however, another
issue related to scope: address binding and variable lifetime. Address binding is the process of associating a
memory address with a variable name. Variable lifetime is that portion of a program’s execution during
which a memory location is bound to a variable. Consider the following Pascal procedures:

procedure One(Entry:integer);
var

i,j:integer;

procedure Two(Parm:integer);
var j:integer;
begin

for j:= 0 to 5 do writeln(i+j);

1. Note that C and C++ are not block structured languages. Other block structured languages include Algol, Ada, and Mod-
ula-2.
2. Subject, of course, to the limitation that you not reuse the identifier within the nested procedure.
3. There are languages that support dynamic, or run-time, scope; this text will not consider such languages.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1337

Chapter Five Volume Five
if Parm < 10 then One(Parm+1);

end;

begin {One}
for i := 1 to 5 do Two(Entry);

end;

Figure 5.1 shows the scope of identifiers One, Two, Entry, i, j, and Parm. The local variable j in proce-
dure Two masks the identifier j in procedure One for statement inside procedure Two.

Figure 5.1 Lexical Scope for Variables in Nested Pascal Procedures

5.2.2 Unit Activation, Address Binding, and Variable Lifetime

Unit activation is the process of calling a procedure or function. The combination of an activation
record and some executing code is considered an instance of a routine. When unit activation occurs a routine
binds machine addresses to its local variables. Address binding (for local variables) occurs when the routine
adjusts the stack pointer to make room for the local variables. The lifetime of those variables is from that
point until the routine destroys the activation record eliminating the local variable storage.

Although scope limits the visibility of a name to a certain section of code and does not allow duplicate
names within the same scope, this does not mean that there is only one address bound to a name. It is quite
possible to have several addresses bound to the same name at the same time. Consider a recursive procedure
call. On each activation the procedure builds a new activation record. Since the previous instance still exists,
there are now two activation records on the stack containing local variables for that procedure. As additional
recursive activations occur, the system builds more activation records each with an address bound to the
same name. To resolve the possible ambiguity (which address do you access when operating on the vari-
able?), the system always manipulates the variable in the most recent activation record.

Note that procedures One and Two in the previous section are indirectly recursive. That is, they both call
routines which, in turn, call themselves. Assuming the parameter to One is less than 10 on the initial call, this
code will generate multiple activation records (and, therefore, multiple copies of the local variables) on the
stack. For example, were you to issue the call One(9), the stack would look like Figure 5.2 upon first
encountering the end associated with the procedure Two.

One:

Two:

locals in Two: J, Parm
Globals in Two: I, Entry, One

Locals in One: Entry, I, J, Two
Page 1338 © 2001, By Randall Hyde Version: 7/4/01

Lexical Nesting
Figure 5.2 Activation Records for a Series of Recursive Calls of One and Two

As you can see, there are several copies of I and J on the stack at this point. Procedure Two (the cur-
rently executing routine) would access J in the most recent activation record that is at the bottom of Figure
5.2. The previous instance of Two will only access the variable J in its activation record when the current
instance returns to One and then back to Two.

The lifetime of a variable’s instance is from the point of activation record creation to the point of activa-
tion record destruction. Note that the first instance of J above (the one at the top of the diagram above) has
the longest lifetime and that the lifetimes of all instances of J overlap.

5.2.3 Static Links

Pascal will allow procedure Two access to I in procedure One. However, when there is the possibility of
recursion there may be several instances of I on the stack. Pascal, of course, will only let procedure Two
access the most recent instance of I. In the stack diagram in Figure 5.2, this corresponds to the value of I in
the activation record that begins with "One(9+1) parameter.” The only problem is how do you know where to
find the activation record containing I?

A quick, but poorly thought out answer, is to simply index backwards into the stack. After all, you can easily
see in the diagram above that I is at offset eight from Two’s activation record. Unfortunately, this is not

10

Return Address

Saved EBP Value

"I" Local Variable

"J" Local Variable

Previous Stack Content

9
One(9) parameter

Two(9) parameter

One Activation Record

Two Activation Record

One(9+1) parameter

One Activation Record

Return Address

Saved EBP Value

"I" Local Variable

"J" Local Variable

9

Return Address

Saved EBP Value

"J" Local Variable

Two(9+1) parameter

Two Activation Record

10

Return Address

Saved EBP Value

"J" Local Variable
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1339

Chapter Five Volume Five
always the case. Assume that procedure Three also calls procedure Two and the following statement appears
within procedure One:

If (Entry <5) then Three(Entry*2) else Two(Entry);

With this statement in place, it’s quite possible to have two different stack frames upon entry into proce-
dure Two: one with the activation record for procedure Three sandwiched between One and Two’s activation
records and one with the activation records for procedures One and Two adjacent to one another. Clearly a
fixed offset from Two’s activation record will not always point at the I variable on One’s most recent activa-
tion record.

The astute reader might notice that the saved bp value in Two’s activation record points at the caller’s
activation record. You might think you could use this as a pointer to One’s activation record. But this scheme
fails for the same reason the fixed offset technique fails. EBP’s old value, the dynamic link, points at the
caller’s activation record. Since the caller isn’t necessarily the enclosing procedure the dynamic link might
not point at the enclosing procedure’s activation record.

What is really needed is a pointer to the enclosing procedure’s activation record. Many compilers for
block structured languages create such a pointer, the static link. Consider the following Pascal code:

procedure Parent;
var i,j:integer;

procedure Child1;
var j:integer;
begin

for j := 0 to 2 do writeln(i);

end {Child1};

procedure Child2;
var i:integer;
begin

for i := 0 to 1 do Child1;

end {Child2};

begin {Parent}

Child2;
Child1;

end;

Just after entering Child1 for the first time, the stack would look like Figure 5.3. When Child1 attempts
to access the variable i from Parent, it will need a pointer, the static link, to Parent’s activation record.
Unfortunately, there is no way for Child1, upon entry, to figure out on it’s own where Parent’s activation
record lies in memory. It will be necessary for the caller (Child2 in this example) to pass the static link to
Child1. In general, the callee can treat the static link as just another parameter; usually pushed on the stack
immediately before executing the CALL instruction.
Page 1340 © 2001, By Randall Hyde Version: 7/4/01

Lexical Nesting
Figure 5.3 Activation Records After Several Nested Calls

To fully understand how to pass static links from call to call, you must first understand the concept of a
lexical level. Lexical levels in Pascal correspond to the static nesting levels of procedures and functions.
Most compiler writers specify lex level zero as the main program. That is, all symbols you declare in your
main program exist at lex level zero. Procedure and function names appearing in your main program define
lex level one, no matter how many procedures or functions appear in the main program. They all begin a new
copy of lex level one. For each level of nesting, Pascal introduces a new lex level. Figure 5.4 shows this.

Figure 5.4 Procedure Schematic Showing Lexical Levels

During execution, a program may only access variables at a lex level less than or equal to the level of the
current routine. Furthermore, only one set of values at any given lex level are accessible at any one time4 and
those values are always in the most recent activation record at that lex level.

 SP

Previous Stack Contents

Activation record for Parent

Activation record for Child2

Activation record for Child1

Lex Level Zero

Lex Level One

Lex Level Two

Note: Each rectangle
represents a procedure
or function.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1341

Chapter Five Volume Five
Before worrying about how to access non-local variables using a static link, you need to figure out how
to pass the static link as a parameter. When passing the static link as a parameter to a program unit (proce-
dure or function), there are three types of calling sequences to worry about:

• A program unit calls a child procedure or function. If the current lex level is n, then a child
procedure or function is at lex level n+1 and is local to the current program unit. Note that most
block structured languages do not allow calling procedures or functions at lex levels greater
than n+1.

• A program unit calls a peer procedure or function. A peer procedure or function is one at the
same lexical level as the current caller and a single program unit encloses both program units.

• A program unit calls an ancestor procedure or function. An ancestor unit is either the parent
unit, a parent of an ancestor unit, or a peer of an ancestor unit.

Calling sequences for the first two types of calls above are very simple. For the sake of this example,
assume the activation record for these procedures takes the generic form in Figure 5.5.

Figure 5.5 Generic Activation Record

When a parent procedure or function calls a child program unit, the static link is nothing more than the
value in the EBP register immediately prior to the call. Therefore, to pass the static link to the child unit, just
push EBP before executing the call instruction:

<Push Other Parameters onto the stack>
push(ebp);
call ChildUnit;

Of course the child unit can process the static link off the stack just like any other parameter. In this case,
that the static and dynamic links are exactly the same. In general, however, this is not true.

If a program unit calls a peer procedure or function, the current value in EBP is not the static link. It is a
pointer to the caller’s local variables and the peer procedure cannot access those variables. However, as
peers, the caller and callee share the same parent program unit, so the caller can simply push a copy of its

4. There is one exception. If you have a pointer to a variable and the pointer remains accessible, you can access the data it
points at even if the variable actually holding that data is inaccessible. Of course, in (standard) Pascal you cannot take the
address of a local variable and put it into a pointer. However, certain dialects of Pascal (e.g., Turbo) and other block structured
languages will allow this operation.

 SP

Previous Stack Contents

Parameters

Static Link

Local variables

Any Registers Saved on Stack

Return Address

Dynamic Link (Old BP)
Page 1342 © 2001, By Randall Hyde Version: 7/4/01

Lexical Nesting
static link onto the stack before calling the peer procedure or function. The following code will do this
assuming the current procedure’s static link is on the stack immediately above the return address:

<Push Other Parameters onto the Stack>
pushd([ebp+8]);
call PeerUnit;

Calling an ancestor is a little more complex. If you are currently at lex level n and you wish to call an
ancestor at lex level m (m < n), you will need to traverse the list of static links to find the desired activation
record. The static links form a list of activation records. By following this chain of activation records until it
ends, you can step through the most recent activation records of all the enclosing procedures and functions
of a particular program unit. The stack diagram in Figure 5.6 shows the static links for a sequence of proce-
dure calls statically nested five lex levels deep.

Figure 5.6 Static Links

If the program unit currently executing at lex level five wishes to call a procedure at lex level three, it
must push a static link to the most recently activated program unit at lex level two. In order to find this static
link you will have to traverse the chain of static links. If you are at lex level n and you want to call a proce-
dure at lex level m you will have to traverse (n-m)+1 static links. The code to accomplish this is

// Current lex level is 5. This code locates the static link for,
// and then calls a procedure at lex level 2. Assume all calls are
// near:

<Push necessary parameters>

mov([ebp+8], ebx); // Traverse static link to LL 4.
mov([ebx+8], ebx); // To Lex Level 3.
mov([ebx+8], ebx); // To Lex Level 2.
pushd([ebx+8]); // Ptr to most recent LL 1 activation record.
call ProcAtLL2;

5.2.4 Accessing Non-Local Variables Using Static Links

In order to access a non-local variable, you must traverse the chain of static links until you get a pointer
to the desired activation record. This operation is similar to locating the static link for a procedure call out-

Lex Level 0

Eac h box represents an
activation record.
Each arrow represents
a static link.

Lex Level 1

Lex Level 2

Lex Level 3

Lex Level 3

Lex Level 4

Lex Level 5

Lex Level 5

Lex Level 5
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1343

Chapter Five Volume Five
lined in the previous section, except you traverse only n-m static links rather than (n-m)+1 links to obtain a
pointer to the appropriate activation record. Consider the following Pascal code:

procedure Outer;
var i:integer;

procedure Middle;
var j:integer;

procedure Inner;
var k:integer;
begin

k := 3;
writeln(i+j+k);

end;

begin {middle}

j := 2;
writeln(i+j);
Inner;

end; {middle}

begin {Outer}

i := 1;
Middle;

end; {Outer}

The Inner procedure accesses global variables at lex level n-1 and n-2 (where n is the lex level of the Inner
procedure). The Middle procedure accesses a single global variable at lex level m-1 (where m is the lex
level of procedure Middle). The following HLA code could implement these three procedures:

procedure Inner; nodisplay; noframe;
var

k:int32;
begin Inner;

push(ebp);
mov(esp, ebp);
sub(_vars_, esp); // Make room for k.

mov(3, k); // Initialize k.
mov([ebp+8], ebx); // Static link to previous lex level.
mov([ebx-4], eax); // Get j’s value.
add(k, eax); // Add in k’s value.
mov([ebx+8], ebx); // Get static link to Outer’s activation record.
add([ebx-4], eax); // Add in i’s value to sum.
stdout.puti(eax); // Display the sum.
stdout.newln();

mov(ebp, esp); // Standard exit sequence.
pop(ebp);
ret(4); // Removes the stack link from the stack.

end Inner;

procedure Middle; nodisplay; noframe;
Page 1344 © 2001, By Randall Hyde Version: 7/4/01

Lexical Nesting
var
j:int32;

begin Middle;

push(ebp);
mov(esp, ebp);
sub(_vars_, esp); // Make room for j.

mov(2, j); // Initialize j.
mov([ebp+8], ebx); // Get the static link.
mov([ebx-4], eax); // Get i’s value.
add(j, eax); // Compute i+j.
stdout.put(eax, nl); // Display their sum.

push(ebp); // Static link for inner.
call Inner;

mov(ebp, esp); // Standard exit sequence
pop(ebp);
ret(4); // Removes static link from stack.

end Middle;

procedure Outer; nodisplay; noframe;
var

i:int32;
begin Outer;

push(ebp);
mov(esp, ebp);
sub(_vars_, esp); // Make room for i.

mov(1, i); // Give i an initial value.
push(ebp); // Static link for middle.
call Middle;

mov(ebp, esp); // Remove local variables
pop(ebp);
ret(4); // Removes static link.

end Outer;

Note that as the difference between the lex levels of the activation records increases, it becomes less and
less efficient to access global variables. Accessing global variables in the previous activation record requires
only one additional instruction per access, at two lex levels you need two additional instructions, etc. If you
analyze a large number of Pascal programs, you will find that most of them do not nest procedures and func-
tions and in the ones where there are nested program units, they rarely access global variables. There is one
major exception, however. Although Pascal procedures and functions rarely access local variables inside
other procedures and functions, they frequently access global variables declared in the main program. Since
such variables appear at lex level zero, access to such variables would be as inefficient as possible when
using the static links. To solve this minor problem, most 80x86 based block structured languages allocate
variables at lex level zero directly in the STATIC segment and access them directly.

5.2.5 Nesting Procedures in HLA

The example in the previous treats the procedures, syntactically, as non-nested procedures and relies
upon the programmer to manual handle the lexical nesting. A severe drawback to this mechanism is that it
forces the programmer to manual compute the offsets of non-local variables. Although HLA does not pro-
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1345

Chapter Five Volume Five
vide automatic support for static links, HLA does allow us to nest procedures and provides some com-
pile-time functions to help us calculate offsets into non-global activation records. Furthermore, we can treat
the static link as a parameter to the procedures, so we don’t have to refer to the static link using address
expressions like "[ebx+8]".

Like Pascal, HLA lets you nest procedures. You may insert a procedure in the declaration section of
another procedure. The Inner, Middle, and Outer procedures of the previous section could have been written
in a fashion like the following:

procedure Outer; nodisplay; noframe;
var

i:int32;

procedure Middle; nodisplay; noframe;
var

j:int32;

procedure Inner; nodisplay; noframe;
var

k:int32;
begin Inner;

<< Code for the Inner procedure >>

end Inner;

begin Middle;

<< code for the Middle procedure >>

end Middle;

begin Outer;

<< code for the Outer procedure >>

end Outer;

There are two advantages to this scheme:

1. The identifier Inner is local to the Middle procedure and is not accessible outside Middle (not even to
Outer); similarly, the identifier Middle is local to Outer and is not accessible outside Outer. This infor-
mation hiding feature lets you prevent other code from accidentally accessing these nested procedures,
just as for local variables.

2. The local identifiers i and j are accessible to the nested procedures.

Before discussing how to use this feature to access non-local variables in a more reasonable fashion
using static links, let’s also consider the issue of the static link itself. The static link is really nothing more
than a special parameter to these functions, therefore we can declare the static link as a parameter using
HLA’s high level procedure declaration syntax. Since the static link must always be at a fixed offset in the
activation record for all procedures, the most reasonable thing to do is always make the stack link the first
parameter in the list5; this ensures that the static link is always found at offset "+8" in the activation record.
Here’s the declarations above with the static links added as parameters:

procedure Outer(outerStaticLink:dword); nodisplay; noframe;
var

i:int32;

procedure Middle(middleStaticLink:dword); nodisplay; noframe;

5. Assuming, of course, that you’re using the default Pascal calling convention. If you were using the CDECL or STDCALL
calling convention, you would always make the static link the last parameter in the parameter list.
Page 1346 © 2001, By Randall Hyde Version: 7/4/01

Lexical Nesting
var
j:int32;

procedure Inner(innerStaticLink:dword); nodisplay; noframe;
var

k:int32;
begin Inner;

<< Code for the Inner procedure >>

end Inner;

begin Middle;

<< code for the Middle procedure >>

end Middle;

begin Outer;

<< code for the Outer procedure >>

end Outer;

All that remains is to discuss how one references non-local (automatic) variables in this code. As you
may recall from the chapter on Intermediate Procedures in Volume Four, HLA references local variables and
parameters using an address expression of the form "[ebp±offset]" where offset represents the offset of the
variable into the activation record (parameters typically have a positive offset, local variables have a negative
offset). Indeed, we can use the HLA compile-time @offset function to access the variables without having
to manually figure out the variable’s offset in the activation record, e.g.,

mov([ebp+@offset(i)], eax);

The statement above is semantically equivalent to

mov(i, eax);

assuming, of course, that i is a local variable in the current procedure.

Because HLA automatically associates the EBP register with local variables, HLA will not allow you to
use a non-local variable reference in a procedure. For example, if you tried to use the statement
"mov(i, eax);" in procedure Inner in the example above, HLA would complain that you cannot access
non-local in this manner. The problem is that HLA associates EBP with automatic variables and outside the
procedure in which you declare the local variable, EBP does not point at the activation record holding that
variable. Hence, the instruction "mov(i, eax);" inside the Inner procedure would actually load k into EAX,
not i (because k is at the same offset in Inner’s activation record as i in Outer’s activation record).

While it’s nice that HLA prevents you from making the mistake of such an illegal reference, the fact
remains that there needs to be some way of referring to non-local identifiers in a procedure. HLA uses the
following syntax to reference a non-local, automatic, variable:

reg32::identifier

reg32 represents any of the 80x86’s 32-bit general purpose registers and identifier is the non-local identifier
you wish to access. HLA substitutes an address expression of the form "[reg32+@offset(identifier)]" for this
expression. Given this syntax, we can now rewrite the Inner, Middle, and Outer example in a high level
fashion as follows:

procedure Outer(outerStaticLink:dword); nodisplay;
var

i:int32;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1347

Chapter Five Volume Five
procedure Middle(middleStaticLink:dword); nodisplay;
var

j:int32;

procedure Inner(innerStaticLink:dword); nodisplay;
var

k:int32;
begin Inner;

mov(3, k); // Initialize k.
mov(innerStaticLink, ebx); // Static link to previous lex level.
mov(ebx::j, eax); // Get j’s value.
add(k, eax); // Add in k’s value.

// Get static link to Outer’s activation record and
// add in i’s value:

mov(ebx::outerStaticLink ebx);
add(ebx::i, eax);

// Display the results:

stdout.puti(eax); // Display the sum.
stdout.newln();

end Inner;

begin Middle;

mov(2, j); // Initialize j.
mov(middleStaticLink, ebx); // Get the static link.
mov(ebx::i, eax); // Get i’s value.
add(j, eax); // Compute i+j.
stdout.put(eax, nl); // Display their sum.

Inner(ebp); // Inner’s static link is EBP.

end Middle;

begin Outer;

mov(1, i); // Give i an initial value.
Middle(ebp); // Static link for middle.

end Outer;

This example provides only a small indication of the work needed to access variables using static links.
In particular, accessing @ebx::i in the Inner procedure was simplified by the fact that EBX already con-
tained Middle’s static link. In the typical case, it’s going to take one instruction for each lex level the code
traverses in order to access a given non-local automatic variable. While this might seem bad, in typical pro-
grams you rarely access non-local variables, so the situation doesn’t arrive often enough to worry about.

HLA does not provide built-in support for static links. If you are going to use static links in your pro-
grams, then you must manually pass the static links as parameters to your procedures (i.e., HLA will not take
care of this for you). While it is possible to modify HLA to automatically handle static links for you, HLA
provides a different mechanism for accessing non-local variables - the display. To learn about displays, keep
reading...
Page 1348 © 2001, By Randall Hyde Version: 7/4/01

Lexical Nesting
5.2.6 The Display

After reading the previous section you might get the idea that one should never use non-local variables,
or limit non-local accesses to those variables declared at lex level zero. After all, it’s often easy enough to put
all shared variables at lex level zero. If you are designing a programming language, you can adopt the C lan-
guage designer’s philosophy and simply not provide block structure. Such compromises turn out to be
unnecessary. There is a data structure, the display, that provides efficient access to any set of non-local vari-
ables.

A display is simply an array of pointers to activation records. Display[0] contains a pointer to the most
recent activation record for lex level zero, Display[1] contains a pointer to the most recent activation record
for lex level one, and so on. Assuming you’ve maintained the Display array in the current STATIC segment
it only takes two instructions to access any non-local variable. Pictorially, the display works as shown in Fig-
ure 5.7.

Figure 5.7 The Display

Note that the entries in the display always point at the most recent activation record for a procedure at
the given lex level. If there is no active activation record for a particular lex level (e.g., lex level six above),
then the entry in the display contains garbage.

The maximum lexical nesting level in your program determines how many elements there must be in the
display. Most programs have only three or four nested procedures (if that many) so the display is usually
quite small. Generally, you will rarely require more than 10 or so elements in the display.

Another advantage to using a display is that each individual procedure can maintain the display infor-
mation itself, the caller need not get involved. When using static links the calling code has to compute and
pass the appropriate static link to a procedure. Not only is this slow, but the code to do this must appear
before every call. If your program uses a display, the callee, rather than the caller, maintains the display so
you only need one copy of the code per procedure.

Although maintaining a single display in the STATIC segment is easy and efficient, there are a few situ-
ations where it doesn’t work. In particular, when passing procedures as parameters, the single level display
doesn’t do the job. So for the general case, a solution other than a static array is necessary. Therefore, this
chapter will not go into the details of how to maintain a static display since there are some problems with
this approach.

Intel, when designing the 80286 microprocessor, studied this problem very carefully (because Pascal
was popular at the time and they wanted to be able to efficiently handle Pascal constructs). They came up

Lex Level 0

0
1
2
3
4
5
6

Display

Lex Level 1

Lex Level 2

Lex Level 3

Lex Level 3

Lex Level 4

Lex Level 5

Lex Level 5

Lex Level 5

????
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1349

Chapter Five Volume Five
with a generalized solution that works for all cases. Rather than using a single display in a static segment,
Intel’s designers decided to have each procedure carry around its own local copy of the display. The HLA
compiler automatically builds an Intel-compatible display at the beginning of each procedure, assuming you
don’t use the NODISPLAY procedure option. An Intel-compatible display is part of a procedure’s activation
record and takes the form shown in Figure 5.8:

Figure 5.8 Intel-Compatible Display in an Activation Record

If we assume that the lex level of the main program is zero, then the display for a given procedure at lex
level n will contain n+1 double word elements. Display[0] is a pointer to the activation record for the main
program, Display[1] is a pointer to the activation record of the most recently activated procedure at lex level
one. Etc. Display[n] is a pointer to the current procedure’s activation record (i.e., it contains the value
found in EBP while this procedure executes). Normally, the procedure would never access element n of Dis-
play since the procedure can index off EBP directly; However, as you’ll soon see, we’ll need the Display[n]
entry to build displays for procedures at higher lex levels.

One important fact to note about the Intel-compatible display array: it’s elements appear backwards in
memory. Remember, the stack grows downwards from high addresses to low addresses. If you study Figure
5.8 for a moment you’ll discover that Display[0] is at the highest memory address and Display[n] is at the
lowest memory address, exactly the opposite for standard array organization. It turns out that we’ll always
access the display using a constant offset, so this reversal of the array ordering is no big deal. We’ll just use
negative offsets from Display[0] (the base address of the array) rather than the usual positive offsets.

If the NODISPLAY procedure option is not present, HLA treats the display as a predeclared local vari-
able in the procedure and inserts the name "_display_" into the symbol table. The offset of the _display_
variable in the activation record is the offset of the Display[0] entry in Figure 5.8. Therefore, you can easily
access an element of this array at run-time using a statement like:

mov(_display_[-lexLevel*4], ebx);

Previous Stack Contents

Parameters (if any)

Return Address

Dynamic Link
(previous EBP value)

Display[0]

Display[1]

Display[n]

.

.

.

Local Variables (if any)

EBP

ESP
Page 1350 © 2001, By Randall Hyde Version: 7/4/01

Lexical Nesting
The "*4" component appears because _display_ is an array of double words. lexLevel must be a constant
value that specifies the lex level of the procedure whose activation record you’d like to obtain. The minus
sign prefixing this expression causes HLA to index downwards in memory as appropriate for the display
object.

Although it’s not that difficult to figure out the lex level of a procedure manually, the HLA compile-time
language provides a function that will compute the lex level of a given procedure for you – the @lex func-
tion. This function accepts a single parameter that must be the name of an HLA procedure (that is currently
in scope). The @lex function returns an appropriate value for that function that you can use as an index into
the _display_ array. Note that @lex returns one for the main program, two for procedures you declare in the
main program, three for procedures you declare in procedures you declare in the main program, etc. If you
are writing a unit, all procedures you declare in that unit exist at lex level two.

The following program is a variation of the Inner/Middle/Outer example you’ve seen previously in this
chapter. This example uses displays and the @lex function to access the non-local automatic variables:

program DisplayDemo;
#include("stdlib.hhf")

 macro Display(proc);

 display[-@lex(proc) * 4]

 endmacro;

 procedure Outer;
 var
 i:int32;

 procedure Middle;
 var
 j:int32;

 procedure Inner;
 var
 k:int32;
 begin Inner;

 mov(4, k);
 mov(Display(Middle), ebx);
 mov(ebx::j, eax); // Get j's value.
 add(k, eax); // Add in k's value.

 // Get static link to Outer's activation record and
 // add in i's value:

 mov(Display(Outer), ebx);
 add(ebx::i, eax);

 // Display the results:

 stdout.puti32(eax); // Display the sum.
 stdout.newln();

 end Inner;

 begin Middle;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1351

Chapter Five Volume Five
 mov(2, j); // Initialize j.
 mov(Display(Outer), ebx); // Get the static link.
 mov(ebx::i, eax); // Get i's value.
 add(j, eax); // Compute i+j.
 stdout.puti32(eax); // Display their sum.
 stdout.newln();

 Inner();

 end Middle;

 begin Outer;

 mov(1, i); // Give i an initial value.
 Middle(); // Static link for middle.

 end Outer;

begin DisplayDemo;

 Outer();

end DisplayDemo;

Program 5.1 Demonstration of Displays in an HLA Program

Assuming you do not attach the NODISPLAY procedure option to a procedure you write in HLA, HLA
will automatically emit the code (as part of the standard entry sequence) to build a display for that proce-
dure. Up to this chapter, none of the programs in this text have used nested procedures6, therefore there has
been no need for a display. For that reason, most programs appearing in this text (since the introduction of
the NODISPLAY option) have attached NODISPLAY to the procedure. It doesn’t make a program incorrect
to build a display if you never use it, but it does make the procedure a tiny bit slower and a tiny bit larger,
hence the use of the NODISPLAY option up to this point.

5.2.7 The 80x86 ENTER and LEAVE Instructions

When designing the 80286, Intel’s CPU designers decided to add two instructions to help maintain dis-
plays. This was done because Pascal was the popular high level language at the time and Pascal was a block
structured language that could benefit from having a display. Since then, C/C++ has replaced Pascal as the
most common implementation language, so these two instructions have fallen into disuse since C/C++ is not
a block structured language. Still, you can take advantage of these instructions when writing assembly code
with nested procedures.

Unfortunately, these two instructions, ENTER and LEAVE, are quite slow. The problem with these
instructions is that C/C++ became popular shortly after Intel designed these instructions, so Intel never both-
ered to optimize them since few high-performance compilers actually used these instructions. On today’s
processors, it’s actually faster to execute a sequence of instructions that do the same job than it is to actually
use these instructions; hence most compilers that build displays (like HLA) emit a discrete sequence of
instructions to build the display. Do keep in mind that, although these two instructions are slower than their

6. Technically, this statement is not true. Every procedure you’ve written has been nested inside the main program. However,
none of the sample programs to date have considered the possibility of accessing the main program’s automatic (VAR) vari-
ables. Hence there has been no need for a display until now).
Page 1352 © 2001, By Randall Hyde Version: 7/4/01

Lexical Nesting
discrete counterparts, they are generally shorter. So if you’re trying to save code space rather than write the
fastest possible code, using ENTER and LEAVE can help.

The LEAVE instruction is very simple to understand. It performs the same operation as the two instruc-
tions:

mov(ebp, esp);
pop(ebp);

Therefore, you may use the instruction for the standard procedure exit code. On an 80386 or earlier proces-
sor, the LEAVE instruction is faster than the equivalent move and pop sequence. However, the LEAVE
instruction is slower on 80486 and later processors.

The ENTER instruction takes two operands. The first is the number of bytes of local storage the current
procedure requires, the second is the lex level of the current procedure. The enter instruction does the follow-
ing:

// enter(Locals, LexLevel);

push(ebp); // Save dynamic link
mov(esp, tempreg); // Save for later.
cmp(LexLevel, 0); // Done if this is lex level zero.
je Lex0;

lp: dec(LexLevel);
jz Done;

sub(4, ebp); // Index into display in previous activation record
pushd([ebp]); // and push the element there.
jmp lp;

Done:
push(tempreg); // Add entry for current lex level.

Lex0:
mov(tempreg, ebp); // Pointer to current activation record.
sub(_vars_, esp); // Allocate storage for local variables.

As you can see from this code, the ENTER instruction copies the display from activation record to activation
record. This can get quite expensive if you nest the procedures to any depth. Most high level languages, if
they use the ENTER instruction at all, always specify a nesting level of zero to avoid copying the display
throughout the stack.

The ENTER instruction puts the value for the _display_[n] entry at location EBP-(n*4). The ENTER
instruction does not copy the value for display[0] into each stack frame. Intel assumes that you will keep the
main program’s global variables in the data segment. To save time and memory, they do not bother copying
the _display_[0] entry. This is why HLA uses lex level one for the main program – in HLA the main pro-
gram can have automatic variables and, therefore, requires a display entry.

The ENTER instruction is very slow, particularly on 80486 and later processors. If you really want to
copy the display from activation record to activation record it is probably a better idea to push the items
yourself. The following code snippets show how to do this:

// enter(n, 0); (n bytes of local variables, lex level zero.)

push(ebp); // As you can see, "enter(n, 0);" corresponds to
mov(esp, ebp); // the standard entry sequence for non-nested
sub(n, esp); // procedures.

// enter(n, 1);

push(ebp); // Save dynamic link (current EBP value).
pushd([ebp-4]); // Push display[1] entry from previous act rec.
lea(ebp, [esp-4]); // Point EBP at the base of new act rec.
sub(n, esp); // Allocate local variables.

// enter(n, 2);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1353

Chapter Five Volume Five
push(ebp); // Save dynamic link (current EBP value).
pushd([ebp-4]); // Push display[1] entry from previous act rec.
pushd([ebp-8]); // Push display[2] entry from previous act rec.
lea(ebp, [esp-8]); // Point EBP at the base of new act rec.
sub(n, esp); // Allocate local variables.

// enter(n, 3);

push(ebp); // Save dynamic link (current EBP value).
pushd([ebp-4]); // Push display[1] entry from previous act rec.
pushd([ebp-8]); // Push display[2] entry from previous act rec.
pushd([ebp-12]); // Push display[3] entry from previous act rec.
lea(ebp, [esp-12]); // Point EBP at the base of new act rec.
sub(n, esp); // Allocate local variables.

// enter(n, 4);

push(ebp); // Save dynamic link (current EBP value).
pushd([ebp-4]); // Push display[1] entry from previous act rec.
pushd([ebp-8]); // Push display[2] entry from previous act rec.
pushd([ebp-12]); // Push display[3] entry from previous act rec.
pushd([ebp-16]); // Push display[3] entry from previous act rec.
lea(ebp, [esp-16]); // Point EBP at the base of new act rec.
sub(n, esp); // Allocate local variables.

// etc.

If you are willing to believe Intel’s cycle timings, you’ll find that the ENTER instruction is almost never
faster than a straight line sequence of instructions that accomplish the same thing. If you are interested in
saving space rather than writing fast code, the ENTER instruction is generally a better alternative. The same
is generally true for the LEAVE instruction as well. It is only one byte long, but it is slower than the corre-
sponding "mov(esp, ebp);" and "pop(ebp);" instructions. The following sample program demonstrates
how to access non-local variables using a display. This code does not use the @lex function in the interest of
making the lex level access clear; normally you would use the @lex function rather than the literal constants
appearing in this example.

program EnterLeaveDemo;
#include("stdlib.hhf")

procedure LexLevel2;

 procedure LexLevel3a;
 begin LexLevel3a;

 stdout.put(nl "LexLevel3a:" nl);
 stdout.put("esp = ", esp, " ebp = ", ebp, nl);
 mov(_display_[0], eax);
 stdout.put("display[0] = ", eax, nl);
 mov(_display_[-4], eax);
 stdout.put("display[-1] = ", eax, nl);

 end LexLevel3a;

 procedure LexLevel3b; noframe;
 begin LexLevel3b;

Page 1354 © 2001, By Randall Hyde Version: 7/4/01

Lexical Nesting
 enter(0, 3);

 stdout.put(nl "LexLevel3b:" nl);
 stdout.put("esp = ", esp, " ebp = ", ebp, nl);
 mov(_display_[0], eax);
 stdout.put("display[0] = ", eax, nl);
 mov(_display_[-4], eax);
 stdout.put("display[-1] = ", eax, nl);

 leave;
 ret();

 end LexLevel3b;

begin LexLevel2;

 stdout.put("LexLevel2: esp=", esp, " ebp = ", ebp, nl nl);
 LexLevel3a();
 LexLevel3b();

end LexLevel2;

begin EnterLeaveDemo;

 stdout.put("main: esp = ", esp, " ebp= ", ebp, nl);
 LexLevel2();

end EnterLeaveDemo;

Program 5.2 Demonstration of Enter and Leave in HLA

5.3 Passing Variables at Different Lex Levels as Parameters.

Accessing variables at different lex levels in a block structured program introduces several complexities
to a program. The previous section introduced you to the complexity of non-local variable access. This prob-
lem gets even worse when you try to pass such variables as parameters to another program unit. The follow-
ing subsections discuss strategies for each of the major parameter passing mechanisms.

For the purposes of discussion, the following sections will assume that “local” refers to variables in the
current activation record, “global” refers to static variables in a static segment, and “intermediate” refers to
automatic variables in some activation record other than the current activation record (this includes auto-
matic variables in the main program). These sections will pass all parameters on the stack. You can easily
modify the details to pass these parameters elsewhere, should you choose.

5.3.1 Passing Parameters by Value

Passing value parameters to a program unit is no more difficult than accessing the corresponding vari-
ables; all you need do is push the value on the stack before calling the associated procedure.

To (manually) pass a global variable by value to another procedure, you could use code like the follow-
ing:

push(GlobalVariable); // Assume "GlobalVariable" is a static object.
call proc;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1355

Chapter Five Volume Five
To pass a local variable by value to another procedure, you could use the following code7:

push(LocalVariable);
call proc;

To pass an intermediate variable as a value parameter, you must first locate that intermediate variable’s
activation record and then push its value onto the stack. The exact mechanism you use depends on whether
you are using static links or a display to keep track of the intermediate variable’s activation records. If using
static links, you might use code like the following to pass a variable from two lex levels up from the current
procedure:

mov([ebp+8], ebx); // Assume static link is at offset 8 in Act Rec.
mov([ebx], ebx); // Traverse the second static link.
push(ebx::IntVar); // Push the intermediate variable’s value.
call proc;

Passing an intermediate variable by value when you are using a display is somewhat easier. You could
use code like the following to pass an intermediate variable from lex level one:

mov(_display_[-1*4], ebx); // Remember each _display_ entry is 4 bytes.
push(ebx::IntVar); // Pass the intermediate variable.
call proc;

It is possible to use the HLA high level procedure calling syntax when passing intermediate variables as
parameters by value. The following code demonstrates this:

mov(_display_[-1*4], ebx);
proc(ebx::IntVar);

This example uses a display because HLA automatically builds the display for you. If you decide to use
static links, you’ll have to modify this code appropriately.

5.3.2 Passing Parameters by Reference, Result, and Value-Result

The pass by reference, result, and value-result parameter mechanisms generally pass the address of
parameter on the stack8. In an earlier chapter, you’ve seen how to pass global and local parameters using
these mechanisms. In this section we’ll take a look at passing intermediate variables by reference,
value/result, and by result.

To pass an intermediate variable by reference, value/result, or by result, you must first locate the activa-
tion record containing the variable so you can compute the effective address into the stack segment. When
using static links, the code to pass the parameter’s address might look like the following:

mov([ebp+8], ebx); // Assume static link is at offset 8 in Act Rec.
mov([ebx], ebx); // Traverse the second static link.
lea(eax, ebx::IntVar); // Get the intermediate variable’s address.
push(eax); // Pass the address on the stack.
call proc;

When using a display, the calling sequence might look like the following:

mov(_display_[-1*4], ebx); // Remember each _display_ entry is 4 bytes.
lea(eax, ebx::IntVar); // Pass the intermediate variable.
push(eax);
call proc;

7. The non-global examples all assume the variable is at offset -2 in their activation record. Change this as appropriate in your
code.
8. As you may recall, pass by reference, value-result, and result all use the same calling sequence. The differences lie in the
procedures themselves.
Page 1356 © 2001, By Randall Hyde Version: 7/4/01

Lexical Nesting
It is possible to use the HLA high level procedure calling syntax when passing parameters by reference,
by value/result, or by result. The following code demonstrates this:

mov(_display_[-1*4], ebx);
proc(ebx::IntVar);

The nice thing about the high level syntax is that it is identical whether you’re passing parameters by value,
reference, value/result, or by result.

As you may recall from the chapter on Low-Level Parameter Implementation, there is a second way to
pass a parameter by value/result. You can push the value onto the stack and then, when the procedure returns,
pop this value off the stack and store it back into the variable from whence it came. This is just a special case
of the pass by value mechanism described in the previous section.

5.3.3 Passing Parameters by Name and Lazy-Evaluation in a Block Structured
Language

Since you pass a thunk when passing parameters by name or by lazy-evaluation, the presence of global,
intermediate, and local variables does not affect the calling sequence to the procedure. Instead, the thunk has
to deal with the differing locations of these variables. Since HLA thunks already contain the pointer to the
activation record for that thunk, returning a local (to the thunk) variable’s address or value is especially triv-
ial. About the only catch is what happens if you pass an intermediate variable by name or by lazy evaluation
to a procedure. However, the calculation of the ultimate address (pass by name) or retrieval of the value
(pass by lazy evaluation) is nearly identical to the code in the previous two sections. Hence, this code will be
left as an exercise at the end of this volume.

5.4 Passing Procedures as Parameters

Many programming languages let you pass a procedure or function name as a parameter. This lets the
caller pass along various actions to perform inside a procedure. The classic example is a plot procedure that
graphs some generic math function passed as a parameter to plot.

HLA lets you pass procedures and functions by declaring them as follows:

procedure DoCall(x:procedure);
begin DoCall;

x();

end DoCall;

The statement "DoCall(xyz);" calls DoCall that, in turn, calls procedure xyz.

Whenever you pass a procedure’s address in this manner, HLA only passes the address of the procedure
as the parameter value. Upon entry into procedure x via the DoCall invocation, the x procedure first creates
its own display by copying appropriate entries from DoCall’s display. This gives x access to all intermediate
variables that HLA allows x to access.

Keep in mind that thunks are special cases of functions that you call indirectly. However, there is a
major difference between a thunk and a procedure – thunks carry around the pointer to the activation record
they intend to use. Therefore, the thunk does not copy the calling procedure’s display; instead, it uses the
display of an existing procedure to access intermediate variables.

5.5 Faking Intermediate Variable Access

As you’ve probably noticed by now, accessing non-local (intermediate) variables is a bit less efficient
than accessing local or global (static) variables. High level languages like Pascal that support intermediate
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1357

Chapter Five Volume Five
variable access hide a lot of effort from the programmer that becomes painfully visible when attempting the
same thing in assembly language. When attempting to write maintainable and readable code, you may want
to break up a large procedure into a sequence of smaller procedures and make those smaller procedures local
to a surrounding procedure that simply calls these smaller routines. Unfortunately, if the original procedure
you’re breaking up contains lots of local variables that code throughout the procedure shares, short of
restructuring your code you will have to leave those variables in the outside procedure and access them as
intermediate variables. Using the techniques of this chapter may make this task a bit unpleasant, especially
if you access those variables a large number of times. This may dissuade you from attempting to break up
the procedure into smaller units. Fortunately, under certain special circumstances, you can avoid the head-
aches of intermediate variable access in situations like this.

Consider the following short code sequence:

procedure MainProc;
var

ALocalVar: dword;

procedure proc; nodisplay; noframe;
begin proc;

mov(ebp::ALocalVar, eax);
ret();

end proc;

begin MainProc;

mov(5, ALocalVar);
proc();

// EAX now contains five...

end MainProc;

Notice that the proc procedure has the NOFRAME option, so HLA does not emit the standard entry
sequence to build an activation record. This means that upon entry to proc, EBP still points at MainProc’s
activation record. Therefore, this code can access the ALocalVar variable by using the syntax ebp::ALocal-
Var. No other code is necessary.

The drawback to this scheme is that proc may not contain any parameters or local variables (which
would require setting EBP to point at proc’s activation record). However, if you can live with this limitation,
then this is a useful trick for accessing local variables one lex level up from the current procedure.

5.6 Putting It All Together

This chapter introduces the concept of lexical nesting commonly found in block structured languages
like Pascal, Ada, and Modula-2. This chapter introduces the notion of scope, static procedure nesting, bind-
ing, variable lifetime, static links, the display, intermediate variables, and passing intermediate variables as
parameters. Although few assembly programs use these features, they are occasionally useful, especially
when writing code that interfaces with a high level language that supports static nesting.
Page 1358 © 2001, By Randall Hyde Version: 7/4/01

Volume Five Questions, Projects, and Lab Exercises
Questions, Projects, and Labs Chapter Six

6.1 Questions

1) What is a First Class Object?

2) What is the difference between deferred and eager evaluation?

3) What is a thunk?

4) How does HLA implement thunk objects?

5) What is the purpose of the HLA THUNK statement?

6) What is the difference between a thunk and procedure variable?

7) What is the syntax for declaring a thunk as a formal parameter?

8) What is the syntax for passing a thunk constant as an actual parameter?

9) Explain how an activation record’s lifetime can affect the correctness of a thunk invocation.

10) What is a trigger and how can you use a thunk to create a trigger?

11) The yield statement in an iterator isn’t a true HLA statement. It’s actually equivalent to something else.
What is it equivalent to?

12) What is a resume frame?

13) What is the problem with breaking out of a FOREACH loop using the BREAK or BREAKIF statement?

14) What is the difference between a coroutine and a procedure?

15) What is the difference between a coroutine and a generator?

16) What is the purpose of the coret call in the coroutines class?

17) What is the limitation of a coret operation versus a standard RET instruction?

18) What is the lifetime of the automatic variables declared in a coroutine procedure?

19) Where is the easiest place to pass parameters between two coroutines?

20) Why is it difficult to pass parameters between coroutines on the stack?

21) State seven places you can pass parameters between two procedures.

22) State at least six different ways you can pass parameters.

23) Where is the most efficient place to pass parameters?

24) Where do most high level languages pass their parameters?

25) What some problems with passing parameters in global variables?

26) What is the difference between the Pascal/HLA and the CDECL parameter passing mechanisms?

27) What is the difference between the Pascal/HLA and the STDCALL parameter passing mechanisms?

28) What is the difference between the STDCALL and the CDECL parameter passing mechanisms?

29) Provide one reason why some assembly code might require the caller to remove the parameters from the
stack.

30) What is the disadvantage of having the caller remove procedure parameters from the stack?

31) Explain how to pass parameters in the code stream.

32) Describe how you might pass a reference parameter in the code stream. What is the limitation on such
reference parameters?
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1359

Chapter Six
33) Explain how you might pass a “pass by value/result” or “pass by result” parameter in the code stream.

34) What is a parameter block?

35) What is the difference between pass by value/result and pass by result?

36) What is the difference between pass by name and pass by lazy evaluation?

37) What parameter passing mechanism does pass by name most closely resemble?

38) What parameter passing mechanism does pass by lazy evaluation most closely resemble?

39) When passing a parameter by name or lazy evaluation, what does HLA actually pass on the stack.

40) What is the difference in the calling sequence between pass by reference, pass by value/result, and pass by
result (assuming the standard implementation)?

41) Give an example where pass by value/result produces different semantics than pass by reference.

42) What parameter passing mechanism(s) support(s) deferred execution?

For each of the following subquestions, assume that a parameter (in) is passed into one procedure and that
procedure passes the parameter on to another procedure (out). Specify how to do this given the following in
and out parameter passing mechanisms (if possible):

43) Parameter is passed into the first procedure by value and passed on to the second procedure by:

a. value

b. reference

c. result

d. result

e: name

f: lazy evaluation

44) Parameter is passed into the first procedure by reference and passed on to the second procedure by:

a. value

b. reference

c. result

d. result

e: name

f: lazy evaluation

45) Parameter is passed into the first procedure by value/result and passed on to the second procedure by:

a. value

b. reference

c. result

d. result

e: name

f: lazy evaluation

46) Parameter is passed into the first procedure by result and passed on to the second procedure by:

a. value
Page 1360 © 2001, By Randall Hyde Beta Draft - Do not distribute

Volume Five Questions, Projects, and Lab Exercises
b. reference

c. result

d. result

e: name

f: lazy evaluation

47) Parameter is passed into the first procedure by name and passed on to the second procedure by:

a. value

b. reference

c. result

d. result

e: name

f: lazy evaluation

48) Parameter is passed into the first procedure by lazy evaluation and passed on to the second procedure by:

a. value

b. reference

c. result

d. result

e: name

f: lazy evaluation

49) Describe how to pass a variable number of parameters to some procedure. Describe at least two different
ways to do this.

50) How can you return a function’s result on the stack?

51) What’s the best way to return a really large function result?

52) What is a lex level?

53) What is a static link?

54) What does the term “scope” mean?

55) What is a “display”?

56) What does the term “address binding” mean?

57) What is the “lifetime” of a variable?

58) What is an intermediate variable?

59) How do you access intermediate variables using static links? Give an example.

60) How do you access intermediate variables using a display? Give an example.

61) How do you nest procedures in HLA?

62) What does the @lex function return?

63) What is one major difference between the _display_ array and standard arrays?

64) What does the ENTER instruction do? Provide an algorithm that describes its operation.

65) What does the LEAVE instruction do? Provide an equivalent machine code sequence.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1361

Chapter Six
66) Why does HLA not emit the ENTER and LEAVE instructions in those procedures that have a display?

67) Provide a short code example that demonstrates how to pass an intermediate variable by value to another
procedure.

68) Provide a short code example that demonstrates how to pass an intermediate variable by reference to
another procedure.

69) Provide a short code example that demonstrates how to pass an intermediate variable by value/result to
another procedure.

70) Provide a short code example that demonstrates how to pass an intermediate variable by result to another
procedure.

71) Provide a short code example that demonstrates how to pass an intermediate variable by name to another
procedure.

72) Provide a short code example that demonstrates how to pass an intermediate variable by lazy evaluation to
another procedure.

6.2 Programming Problems

1) Rewrite Program 1.1 in Chapter One (Fibonacci number generation) to use a pass by reference parameter
rather than a thunk parameter.

2) Write a function ifx that has the following prototype:

procedure ifx(expr:boolean; lazy trueVal:dword; lazy falseVal:dword);

The function should test expr’s value; if true, it should evaluate and return trueVal, else it should evaluate
and return falseVal. Write a main program that tests the execution of this function.

3) Write an iterator that returns all “words” of a given length. The iterator should have the following proto-
type:

iterator wordOfLength(length:uns32); // returns(“eax”);

The iterator should allocate a string with length characters on the heap, initialize this string, and return a
pointer to the string in the EAX register. On each call to this iterator, it should return the next string of
alphabetic characters using a lexicographical ordering. E.g., for strings of length three, the iterator would
return aaa, aab , aac, aad, ..., aaz, aba, abb, abc, ..., zzz. Write a main program to test this word generator.
Don’t forget to free the storage associated with each string in the main program when you’re done with
the string.

4) Modify the program in programming project (3) so that it only returns strings that have a maximum of
two consenants in a row and a maximum of three vowels in a row.

5) Write a “Tic-Tac-Toe” game that uses coroutines to make each move. One coroutine should prompt the
“X” player for a move, the second coroutine should prompt the “O” player for a move (note that the
moves are made by players, not by the computer). The main program/coroutine should call the other two
coroutines and determine if there was a win/loss/draw after each move.

6) Modify programming project (5) so that the computer makes the moves for the “O” player.

7) Write a factorial function (n!) that passes a real80 parameter on the FPU stack and returns the real80
result on the FPU stack. (note: n! = 1*2*3*...*n).

8) Write the equivalent of cs.difference that passes the two character sets to the function in the MMX regis-
ters MM0 / MM1 and MM2 / MM3. Return the character sets’ difference in MM0 / MM1.

9) Write a “printstr” procedure that expects a pointer to a zero-terminated sequence of characters to follow
the call to printstr in the code stream. This procedure should print the string to the standard output device.
A typcial call will look like the following:
Page 1362 © 2001, By Randall Hyde Beta Draft - Do not distribute

Volume Five Questions, Projects, and Lab Exercises
static
staticStrVar: char; nostorage;

byte “Hello world”, 0;
.
.
.

call printstr
dword staticStrVar

Note that this function must work with any zero terminated string; don’t assume the string is an HLA
string. Write a main program that makes several calls to printstr and tests this function.

6.3 Laboratory Exercises
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1363

Chapter Six
Page 1364 © 2001, By Randall Hyde Beta Draft - Do not distribute

Answers to Selected Exercises
Answers to Selected Exercises Appendix A

To be written.

My apologies that this isn’t ready yet, but other chapters and appendices in this text have a higher prior-
ity. I will get around to this appendix eventually.

In the meantime, if you have some questions about the answers to any exercises in this text, please feel
free to post a question to one of the internet newsgroups like “comp.lang.asm.x86” or “alt.lang.asm”.
Because of the high volume of email I receive daily, I will not answer questions sent to me via email. Note
that posting the message to the net is very efficient because others get to share the solution. So please post
your questions there.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1365

AppendixA
Page 1366 © 2001, By Randall Hyde Beta Draft - Do not distribute

Console Graphic Characters
Console Graphic Characters Appendix B

$DA
21 8

$C2
194

$BF
19 1

$C3
195

$C0
192

$C1
19 3

$D9
217

$B4
180

$C5
19 7 $C4

196

$B3
179

$C9
201

$CB
203

$BB
187

$CC
204

$C8
200

$CA
202

$BC
188

$B9
185

$CD
205

$BA
186

$CE
206
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1367

AppendixB
$DA
21 8

$D2
21 0

$BF
19 1

$C6
198

$C0
192

$D0
20 8

$D9
21 7

$B5
18 1

$CE
206 $CD

205

$B3
179

$BA
186

$C4
196

$C9
20 1

$D1
209

$BB
18 7

$C7
199

$C8
200

$CF
20 7

$BC
188

$B6
182

$C4
195

$BA
186

$C5
19 7

$B3
179

$CD
205
Page 1368 © 2001, By Randall Hyde Beta Draft - Do not distribute

Console Graphic Characters
$D6
21 4

$D2
210

$B7
18 3

$C7
199

$D3
211

$D0
20 8

$BD
189

$B6
182

$D7
21 5 $C4

196

$BA
186

$D5
21 3

$D1
209

$B8
18 4

$C6
198

$D4
212

$CF
20 7

$BE
190

$B5
181

$D8
21 6 $CD

205

$B3
179
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1369

AppendixB
Page 1370 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
HLA Programming Style Guidelines Appendix C

1.1 Introduction

Most people consider assembly language programs difficult to read. While there are a multitude of rea-
sons why people feel this way, the primary reason is that assembly language does not make it easy for pro-
grammers to write readable programs. This doesn’t mean it’s impossible to write readable programs, only
that it takes an extra effort on the part of an assembly language programmer to produce readable code.

One of the design goals of the High Level Assembler (HLA) was to make it possible for assembly lan-
guage programmers to write readable assembly language programs. Nevertheless, without discipline, pande-
monium will result in any program of any decent size. Even if you adhere to a fixed set of style guidelines,
others may still have trouble reading and understanding your code. Equally important to following a set of
style guidelines is that you following a generally accepted set of style guidelines; guidelines that others are
familiar and agree with. The purpose of this appendix, written by the designer of the HLA language, is to
provide a consistent set of guidelines that HLA programmers can use consistently. Unless you can show a
good reason to violate these rules, you should following them carefully when writing HLA programs; other
HLA programmers will thank you for this.

1.1.1 Intended Audience

Of course, an assembly language program is going to be nearly unreadable to someone who doesn’t
know assembly language. This is true for almost any programming language. Other than burying a tutorial
on 80x86 assembly language in a program’s comments, there is no way to address this problem1 other than
to assume that the reader is familiar with assembly language programming and specifically HLA.

In view of the above, it makes sense to define an "intended audience" that we intend to have read our
assembly language programs. Such a person should:

• Be a reasonably competent 80x86 assembly language/HLA programmer.
• Be reasonably familiar with the problem the assembly language program is attempting to

solve.

• Fluently read English2.
• Have a good grasp of high level language concepts.
• Possess appropriate knowledge for someone working in the field of Computer Science (e.g.,

understands standard algorithms and data structures, understands basic machine architecture,
and understands basic discrete mathematics).

1.1.2 Readability Metrics

One has to ask "What is it that makes one program more readable than another?" In other words, how
do we measure the "readability" of a program? The usual metric, "I know a well-written program when I see
one" is inappropriate; for most people, this translates to "If your programs look like my better programs
then they are readable, otherwise they are not." Obviously, such a metric is of little value since it changes
with every person.

To develop a metric for measuring the readability of an assembly language program, the first thing we
must ask is "Why is readability important?" This question has a simple (though somewhat flippant) answer:

1. Doing so (inserting an 80x86 tutorial into your comments) would wind up making the program less readable to those who
already know assembly language since, at the very least, they’d have to skip over this material; at the worst they’d have to
read it (wasting their time).
2. Or whatever other natural language is in use at the site(s) where you develop, maintain, and use the software.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1371

Appendix C Appendices
Readability is important because programs are read (furthermore, a line of code is typically read ten times
more often than it is written). To expand on this, consider the fact that most programs are read and main-
tained by other programmers (Steve McConnell claims that up to ten generations of maintenance program-
mers work on a typical real world program before it is rewritten from scratch; furthermore, they spend up to
60% of their effort on that code simply figuring out how it works). The more readable your programs are,
the less time these other people will have to spend figuring out what your program does. Instead, they can
concentrate on adding features or correcting defects in the code.

For the purposes of this document, we will define a "readable" program as one that has the following
trait:

• A "readable" program is one that a competent programmer (one who is familiar with the prob-
lem the program is attempting to solve) can pick up, without ever having seen the program
before, and fully comprehend the entire program in a minimal amount of time.

That’s a tall order! This definition doesn’t sound very difficult to achieve, but few non-trivial programs
ever really achieve this status. This definition suggests that an appropriate programmer (i.e., one who is
familiar with the problem the program is trying to solve) can pick up a program, read it at their normal read-
ing pace (just once), and fully comprehend the program. Anything less is not a "readable" program.

Of course, in practice, this definition is unusable since very few programs reach this goal. Part of the
problem is that programs tend to be quite long and few human beings are capable of managing a large num-
ber of details in their head at one time. Furthermore, no matter how well-written a program may be, "a com-
petent programmer" does not suggest that the programmer’s IQ is so high they can read a statement a fully
comprehend its meaning without expending much thought. Therefore, we must define readability, not as a
boolean entity, but as a scale. Although truly unreadable programs exist, there are many "readable" pro-
grams that are less readable than other programs. Therefore, perhaps the following definition is more realis-
tic:

• A readable program is one that consists of one or more modules. A competent program should
be able to pick a given module in that program and achieve an 80% comprehension level by
expending no more than an average of one minute for each statement in the program.

An 80% comprehension level means that the programmer can correct bugs in the program and add new
features to the program without making mistakes due to a misunderstanding of the code at hand.

1.1.3 How to Achieve Readability

The "I’ll know one when I see one" metric for readable programs provides a big hint concerning how
one should write programs that are readable. As pointed out early, the "I’ll know it when I see it" metric sug-
gests that an individual will consider a program to be readable if it is very similar to (good) programs that
this particular person has written. This suggests an important trait that readable programs must possess:
consistency. If all programmers were to write programs using a consistent style, they’d find programs writ-
ten by others to be similar to their own, and, therefore, easier to read. This single goal is the primary purpose
of this appendix - to suggest a consistent standard that everyone will follow.

Of course, consistency by itself is not good enough. Consistently bad programs are not particularly
easy to read. Therefore, one must carefully consider the guidelines to use when defining an all-encompass-
ing standard. The purpose of this paper is to create such a standard. However, don’t get the impression that
the material appearing in this document appears simply because it sounded good at the time or because of
some personal preferences. The material in this paper comes from several software engineering texts on the
subject (including Elements of Programming Style, Code Complete, and Writing Solid Code), nearly 20
years of personal assembly language programming experience, and research that led to the development of a
set of generic programming guidelines for industrial use.

This document assumes consistent usage by its readers. Therefore, it concentrates on a lot of mechani-
cal and psychological issues that affect the readability of a program. For example, uppercase letters are
harder to read than lower case letters (this is a well-known result from psychology research). It takes longer
Page 1372 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
for a human being to recognize uppercase characters, therefore, an average human being will take more time
to read text written all in upper case. Hence, this document suggests that one should avoid the use of upper-
case sequences in a program. Many of the other issues appearing in this document are in a similar vein; they
suggest minor changes to the way you might write your programs that make it easier for someone to recog-
nize some pattern in your code, thus aiding in comprehension.

1.1.4 How This Document is Organized

This document follows a top-down discussion of readability. It starts with the concept of a program.
Then it discusses modules. From there it works its way down to procedures. Then it talks about individual
statements. Beyond that, it talks about components that make up statements (e.g., instructions, names, and
operators). Finally, this paper concludes by discussing some orthogonal issues.

Section Two discusses programs in general. It primarily discusses documentation that must accompany
a program and the organization of source files. It also discusses, briefly, configuration management and
source code control issues. Keep in mind that figuring out how to build a program (make, assemble, link,
test, debug, etc.) is important. If your reader fully understands the "heapsort" algorithm you are using, but
cannot build an executable module to run, they still do not fully understand your program.

Section Three discusses how to organize modules in your program in a logical fashion. This makes it
easier for others to locate sections of code and organizes related sections of code together so someone can
easily find important code and ignore unimportant or unrelated code while attempting to understand what
your program does.

Section Four discusses the use of procedures within a program. This is a continuation of the theme in
Section Three, although at a lower, more detailed, level.

Section Five discusses the program at the level of the statement. This (large) section provides the meat
of this proposal. Most of the rules this paper presents appear in this section.

Section Six discusses comments and other documentation appearing within the source code.

Section Seven discusses those items that make up a statement (labels, names, instructions, operands,
operators, etc.) This is another large section that presents a large number of rules one should follow when
writing readable programs. This section discusses naming conventions, appropriateness of operators, and so
on.

Section Eight discusses data types and other related topics.

1.1.5 Guidelines, Rules, Enforced Rules, and Exceptions

Not all rules are equally important. For example, a rule that you check the spelling of all the words in
your comments is probably less important than suggesting that the comments all be in English3. Therefore,
this paper uses three designations to keep things straight: Guidelines, Rules, and Enforced Rules.

A Guideline is a suggestion. It is a rule you should follow unless you can verbally defend why you
should break the rule. As long as there is a good, defensible, reason, you should feel no apprehension vio-
lated a guideline. Guidelines exist in order to encourage consistency in areas where there are no good rea-
sons for choosing one methodology over another. You shouldn’t violate a Guideline just because you don’t
like it -- doing so will make your programs inconsistent with respect to other programs that do follow the
Guideline (and, therefore, harder to read), however, you shouldn’t lose any sleep because you violated a
Guideline.

Rules are much stronger than Guidelines. You should never break a rule unless there is some external
reason for doing so (e.g., making a call to a library routine forces you to use a bad naming convention).
Whenever you feel you must violate a rule, you should verify that it is reasonable to do so in a peer review
with at least two peers. Furthermore, you should explain in the program’s comments why it was necessary

3. You may substitute the local language in your area if it is not English.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1373

Appendix C Appendices
to violate the rule. Rules are just that -- rules to be followed. However, there are certain situations where it
may be necessary to violate the rule in order to satisfy external requirements or even make the program more
readable.

Enforced Rules are the toughest of the lot. You should never violate an enforced rule. If there is ever a
true need to do this, then you should consider demoting the Enforced Rule to a simple Rule rather than treat-
ing the violation as a reasonable alternative.

An Exception is exactly that, a known example where one would commonly violate a Guideline, Rule,
or (very rarely) Enforced Rule. Although exceptions are rare, the old adage "Every rule has its exceptions..."
certainly applies to this document. The Exceptions point out some of the common violations one might
expect.

Of course, the categorization of Guidelines, Rules, Enforced Rules, and Exceptions herein is one man’s
opinion. At some organizations, this categorization may require reworking depending on the needs of that
organization.

1.1.6 Source Language Concerns

This document will assume that the entire program is written in 80x86 assembly language using the
HLA assembler/compiler. Although this organization is rare in commercial applications, this assumption
will, in no way, invalidate these guidelines. Other guidelines exist for various high level languages (includ-
ing a set written by this paper’s author). You should adopt a reasonable set of guidelines for the other lan-
guages you use and apply these guidelines to the 80x86 assembly language modules in the program.

1.2 Program Organization

A source program generally consists of one or more source, object, and library files. As a project gets
larger and the number of files increases, it becomes difficult to keep track of the files in a project. This is
especially true if a number of different projects share a common set of source modules. This section will
address these concerns.

1.2.1 Library Functions

A library, by its very nature, suggests stability. Ignoring the possibility of software defects, one would
rarely expect the number or function of routines in a library to vary from project to project. A good example
is the "HLA Standard Library." One would expect "stdout.put" to behave identically in two different pro-
grams that use the Standard Library. Contrast this against two programs, each of which implement their own
version of stdout.put. One could not reasonably assume both programs have identical implementations4.
This leads to the following rule:

Rule: Library functions are those routines intended for common reuse in many different assembly
language programs. All assembly language (callable) libraries on a system should exist as
".lib" files and should appear in a "\lib" or "\hlalib" subdirectory.

Guideline: "\hlalib" is probably a better choice if you’re using multiple languages since those other lan-
guages may need to put files in a "\lib" directory.

Exception: It’s probably reasonable to leave the HLA Standard Library’s "hlalib.lib" file in the "\hla\hla-
lib" directory since most people expect it there.

The rule above ensures that the library files are all in one location so they are easy to find, modify, and
review. By putting all your library modules into a single directory, you avoid configuration management

4. In fact, just the opposite is true. One should get concerned if both implementations are identical. This would suggest poor
planning on the part of the program’s author(s) since the same routine must now be maintained in two different programs.
Page 1374 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
problems such as having outdated versions of a library linking with one program and up-to-date versions
linking with other programs.

1.2.2 Common Object Modules

This document defines a library as a collection of object modules that have wide application in many
different programs. The HLA Standard Library is a typical example of a library. Some object modules are
not so general purpose, but still find application in two or more different programs. Two major configuration
management problems exist in this situation: (1) making sure the ".obj" file is up-to-date when linking it
with a program; (2) Knowing which modules use the module so one can verify that changes to the module
won’t break existing code.

The following rules takes care of case one:

Rule: If two different program share an object module, then the associated source, object, and make-
files for that module should appear in a subdirectory that is specific to that module (i.e., no
other files in the subdirectory). The subdirectory name should be the same as the module
name. If possible, you should create a set of link/alias/shortcuts to this subdirectory and place
these links in the main directory of each of the projects that utilize the module. If links are not
possible, you should place the module’s subdirectory in a "\common" subdirectory.

Enforced Rule: Every subdirectory containing one or more modules should have a make file that will automat-
ically generate the appropriate, up-to-date, ".obj" files. An individual, a batch file, or another
make file should be able to automatically generate new object modules (if necessary) by sim-
ply executing the make program.

Guideline: Use Microsoft’s nmake program. At the very least, use nmake acceptable syntax in your make-
files.

The other problem, noting which projects use a given module is much more difficult. The obvious solu-
tion, commenting the source code associated with the module to tell the reader which programs use the mod-
ule, is impractical. Maintaining these comments is too error-prone and the comments will quickly get out of
phase and be worse than useless -- they would be incorrect. A better solution is to create alias and place this
alias in the main subdirectory of each program that links the module.

Guideline: If a project uses a module that is not local to the project’s subdirectory, create an alias to the file
in the project’s subdirectory. This makes locating the file very easy.

1.2.3 Local Modules

Local modules are those that a single program/project uses. Typically, the source and object code for
each module appears in the same directory as the other files associated with the project. This is a reasonable
arrangement until the number of files increases to the point that it is difficult to find a file in a directory list-
ing. At that point, most programmers begin reorganizing their directory by creating subdirectories to hold
many of these source modules. However, the placement, name, and contents of these new subdirectories can
have a big impact on the overall readability of the program. This section will address these issues.

The first issue to consider is the contents of these new subdirectories. Since programmers rummaging
through this project in the future will need to easily locate source files in a project, it is important that you
organize these new subdirectories so that it is easy to find the source files you are moving into them. The
best organization is to put each source module (or a small group of strongly related modules) into its own
subdirectory. The subdirectory should bear the name of the source module minus its suffix (or the main
module if there is more than one present in the subdirectory). If you place two or more source files in the
same directory, ensure this set of source files forms a cohesive set (meaning the source files contain code
that solve a single problem). A discussion of cohesiveness appears later in this document.

Rule: If a project directory contains too many files, try to move some of the modules to subdirecto-
ries within the project directory; give the subdirectory the same name as the source file with-
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1375

Appendix C Appendices
out the suffix. This will nearly reduce the number of files in half. If this reduction is
insufficient, try categorizing the source modules (e.g., FileIO, Graphics, Rendering, and
Sound) and move these modules to a subdirectory bearing the name of the category.

Enforced Rule: Each new subdirectory you create should have its own make file that will automatically assem-
ble all source modules within that subdirectory, as appropriate.

Enforced Rule: Any new subdirectories you create for these source modules should appear within the directory
containing the project. The only excepts are those modules that are, or you anticipate, sharing
with other projects. See “Common Object Modules” on page 1375 for more details.

Stand-alone assembly language programs generally contain a "main" procedure – the first program unit
that executes when the operating system loads the program into memory. For any programmer new to a
project, this procedure is the anchor where one first begins reading the code and the point where the reader
will continually refer. Therefore, the reader should be able to easily locate this source file. The following
rule helps ensure this is the case:

Rule: The source module containing the main program should have the same name as the executable
(obviously the suffix will be different). For example, if the "Simulate 886" program’s execut-
able name is "Sim886.exe" then you should find the main program in the "Sim886.hla" source
file.

Finding the source file that contains the main program is one thing. Finding the main program itself can
be almost as hard. Assembly language lets you give the main program any name you want. However, to
make the main procedure easy to find (both in the source code and at the O/S level), you should actually
name this program "main". See “Module Organization” on page 1377 for more details about the placement
of the main program. An alternative is to give the main program’s source file the name of the project.

Guideline: The name of the main procedure in an assembly language program should be "main" or the
name of the entire project.

1.2.4 Program Make Files

Every project, even if it contains only a single source module, should have an associated make file. If
someone want to assemble your program, they should not have to worry about what program (e.g., HLA) to
use to compile the program, what command line options to use, what library modules to use, etc. They
should be able to type "nmake"5 and wind up with an executable program. Even if assembling the program
consists of nothing more than typing the name of the assembler and the source file, you should still have a
make file. Someone else may not realize that’s all that is necessary.

Enforced Rule: The main project directory should contain a make file that will automatically generate an exe-
cutable (or other expected object module) in response to a simple make/nmake command.

Rule: If your project uses object modules that are not in the same subdirectory as the main program’s
module, you should test the ".obj" files for those modules and execute the corresponding make
files in their directories if the object code is out of date. You can assume that library files are up
to date.

Guideline: Avoid using fancy "make" features. Most programmers only learn the basics about make and
will not be able to understand what your make file is doing if you fully exploit the make lan-
guage. Especially avoid the use of default rules since this can create havoc if someone arbi-
trarily adds or removes files from the directory containing the make file.

5. Or whatever make program you normally use.
Page 1376 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
1.3 Module Organization

A module is a collection of objects that are logically related. Those objects may include constants, data
types, variables, and program units (e.g., functions, procedures, etc.). Note that objects in a module need not
be physically related. For example, it is quite possible to construct a module using several different source
files. Likewise, it is quite possible to have several different modules in the same source file. However, the
best modules are physically related as well as logically related; that is, all the objects associated with a mod-
ule exist in a single source file (or directory if the source file would be too large) and nothing else is present.

Modules contain several different objects including constants, types, variables, and program units (rou-
tines). Modules shares many of the attributes with routines (program units); this is not surprising since rou-
tines are the major component of a typical module. However, modules have some additional attributes of
their own. The following sections describe the attributes of a well-written module.

Note: Unit and package are both synonyms for the term module.

1.3.1 Module Attributes

A module is a generic term that describes a set of program related objects (program units as well as data
and type objects) that are somehow coupled. Good modules share many of the same attributes as good pro-
gram units as well as the ability to hide certain details from code outside the module.

1.3.1.1 Module Cohesion

Modules exhibit the following different kinds of cohesion (listed from good to bad):

• Functional or logical cohesion exists if the module accomplishes exactly one (simple) task.
• Sequential or pipelined cohesion exists when a module does several sequential operations that

must be performed in a certain order with the data from one operation being fed to the next in
a “filter-like” fashion.

• Global or communicational cohesion exists when a module performs a set of operations that
make use of a common set of data, but are otherwise unrelated.

• Temporal cohesion exists when a module performs a set of operations that need to be done at
the same time (though not necessarily in the same order). A typical initialization module is an
example of such code.

• Procedural cohesion exists when a module performs a sequence of operations in a specific
order, but the only thing that binds them together is the order in which they must be done.
Unlike sequential cohesion, the operations do not share data.

• State cohesion occurs when several different (unrelated) operations appear in the same module
and a state variable (e.g., a parameter) selects the operation to execute. Typically such modules
contain a case (switch) or if..elseif..elseif... statement.

• No cohesion exists if the operations in a module have no apparent relationship with one
another.

The first three forms of cohesion above are generally acceptable in a program. The fourth (temporal) is
probably okay, but you should rarely use it. The last three forms should almost never appear in a program.
For some reasonable examples of module cohesion, you should consult “Code Complete”.

Guideline: Design good modules! Good modules exhibit strong cohesion. That is, a module should offer a
(small) group of services that are logically related. For example, a “printer” module might pro-
vide all the services one would expect from a printer. The individual routines within the mod-
ule would provide the individual services.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1377

Appendix C Appendices
1.3.1.2 Module Coupling

Coupling refers to the way that two modules communicate with one another. There are several criteria
that define the level of coupling between two modules:

• Cardinality- the number of objects communicated between two modules. The fewer objects
the better (i.e., fewer parameters).

• Intimacy- how “private” is the communication? Parameter lists are the most private form; pri-
vate data fields in a class or object are next level; public data fields in a class or object are next,
global variables are even less intimate, and passing data in a file or database is the least inti-
mate connection. Well-written modules exhibit a high degree of intimacy.

• Visibility- this is somewhat related to intimacy above. This refers to how visible the data is to
the entire system that you pass between two modules. For example, passing data in a parame-
ter list is direct and very visible (you always see the data the caller is passing in the call to the
routine); passing data in global variables makes the transfer less visible (you could have set up
the global variable long before the call to the routine). Another example is passing simple (sca-
lar) variables rather than loading up a bunch of values into a structure/record and passing that
structure/record to the callee.

• Flexibility- This refers to how easy it is to make the connection between two routines that may
not have been originally intended to call one another. For example, suppose you pass a struc-
ture containing three fields into a function. If you want to call that function but you only have
three data objects, not the structure, you would have to create a dummy structure, copy the
three values into the field of that structure, and then call the function. On the other hand, had
you simply passed the three values as separate parameters, you could still pass in structures (by
specifying each field) as well as call the function with separate values. The module containing
this later function is more flexible.

A module is loosely coupled if its functions exhibit low cardinality, high intimacy, high visibility, and
high flexibility. Often, these features are in conflict with one another (e.g., increasing the flexibility by
breaking out the fields from a structures [a good thing] will also increase the cardinality [a bad thing]). It is
the traditional goal of any engineer to choose the appropriate compromises for each individual circumstance;
therefore, you will need to carefully balance each of the four attributes above.

A module that uses loose coupling generally contains fewer errors per KLOC (thousands of lines of
code). Furthermore, modules that exhibit loose coupling are easier to reuse (both in the current and future
projects). For more information on coupling, see the appropriate chapter in “Code Complete”.

Guideline: Design good modules! Good modules exhibit loose coupling. That is, there are only a few,
well-defined (visible) interfaces between the module and the outside world. Most data is pri-
vate, accessible only through accessor functions (see information hiding below). Furthermore,
the interface should be flexible.

Guideline: Design good modules! Good modules exhibit information hiding. Code outside the module
should only have access to the module through a small set of public routines. All data should
be private to that module. A module should implement an abstract data type. All interface to
the module should be through a well-defined set of operations.

1.3.1.3 Physical Organization of Modules

Many languages provide direct support for modules (e.g., units in HLA, packages in Ada, modules in
Modula-2, and units in Delphi/Pascal). Some languages provide only indirect support for modules (e.g., a
source file in C/C++). Others, like BASIC, don’t really support modules, so you would have to simulate
them by physically grouping objects together and exercising some discipline. The primary mechanism in
HLA for hiding names from other modules is to implement a module as an individual source file and publish
only those names that are part of the module’s interface to the outside world (i.e., EXTERNAL directives in
a header file.

Rule: Each module should completely reside in a single source file. If size considerations prevent
Page 1378 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
this, then all the source files for a given module should reside in a subdirectory specifically des-
ignated for that module.

Some people have the crazy idea that modularization means putting each function in a separate source
file. Such physical modularization generally impairs the readability of a program more than it helps. Strive
instead for logical modularization, that is, defining a module by its actions rather than by source code syntax
(e.g., separating out functions).

This document does not address the decomposition of a problem into its modular components. Presum-
ably, you can already handle that part of the task. There are a wide variety of texts on this subject if you feel
weak in this area.

1.3.1.4 Module Interface

In any language system that supports modules, there are two primary components of a module: the
interface component that publicizes the module visible names and the implementation component that con-
tains the actual code, data, and private objects. HLA (like most assemblers) uses a scheme that is very simi-
lar to the one C/C++ uses. There are directives that let you import and export names. Like C/C++, you
could place these directives directly in the related source modules. However, such code is difficult to main-
tain (since you need to change the directives in every file whenever you modify a public name). The solu-
tion, as adopted in the HLA programming language, is to use header files. Header files contain all the public
definitions and exports (as well as common data type definitions and constant definitions). The header file
provides the interface to the other modules that want to use the code present in the implementation module.

The HLA EXTERNAL attribute is perfect for creating interface/header files. When you use EXTER-
NAL within a source module that defines a symbol, EXTERNAL behaves like a public directive, exporting
the name to other modules. When you use EXTERNAL within a source modules that refers to an external
name, EXTERNAL declares the object to be supplied in a different module. This lets you place an EXTER-
NAL declaration of an object in a single header file and include this file into both the modules that import
and export the public names.

Rule: Keep all module interface directives (EXTERNAL) in a single header file for a given module.
Place any other common data type definitions and constant definitions in this header file as
well.

Guideline: There should only be a single header file associated with any one module (even if the module
has multiple source files associated with it). If, for some reason, you feel it is necessary to
have multiple header files associated with a module, you should create a single file that
includes all of the other interface files. That way a program that wants to use all the header
files need only include the single file.

When designing header files, make sure you can include a file more than once without ill effects (e.g.,
duplicate symbol errors). The traditional way to do this is to put a #IF statement like the following around
all the statements in a header file:

; Module: MyHeader.hhf

#if(@defined(MyHeader_hhf))
?MyHeader_hhf:=true; // Actual type and value doesn’t really matter.
 .
 . ;Statements in this header file.
 .
#endif

The first time a source file includes "MyHeader.hhf" the symbol "MyHeader_hhf" is undefined. There-
fore, the assembler will process all the statements in the header file. In successive include operations (during
the same assembly) the symbol "MyHeader_hhf" is already defined, so the assembler ignores the body of the
include file.

My would you ever include a file twice? Easy. Some header files may include other header files. By
including the file "YourHeader.hhf" a module might also be including "MyHeader.hhf" (assuming "Your-
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1379

Appendix C Appendices
Header.hhf" contains the appropriate include directive). Your main program, that includes "YourHeader.hhf"
might also need "MyHeader.hhf" so it explicitly includes this file not realizing "YourHeader.hhf" has already
processed "MyHeader.hhf" thereby causing symbol redefinitions.

Rule: Always put an appropriate #IF statement around all the definitions in a header file to allow
multiple inclusion of the header file without ill effect.

Guideline: Use the ".hhf" suffix for HLA header/interface files.

Rule: Include files for library functions on a system should exist as ".hhf" files and should appear in
the "\include" or "\hla\include" subdirectory.

Guideline: "\hla\include" is probably a better choice if you’re using multiple languages since those other
languages may need to put files in a "\include" directory.

Exception: It’s probably reasonable to leave the HLA Standard Library’s "stdlib.hhf" file in the
"\hla\include" directory since most people expect it there.

You can also prevent multiple inclusion of a file by using the #INCLUDEONCE directive. However, it’s
safer to use the #IF..#ENDIF approach since that doesn’t rely on the user of your include file to use the right
directive.

1.4 Program Unit Organization

A program unit is any procedure, function, coroutine, iterator, subroutine, subprogram, routine, or other
term that describes a section of code that abstracts a set of common operations on the computer. This text
will simply use the term procedure or routine to describe these concepts.

Routines are closely related to modules, since they tend to be the major component of a module (along
with data, constants, and types). Hence, many of the attributes that apply to a module also apply to routines.
The following paragraphs, at the expense of being redundant, repeat the earlier definitions so you don’t have
to flip back to the previous sections.

1.4.1 Routine Cohesion

Routines exhibit the following kinds of cohesion (listed from good to bad and are mostly identical to
the kinds of cohesion that modules exhibit):

• Functional or logical cohesion exists if the routine accomplishes exactly one (simple) task.
• Sequential or pipelined cohesion exists when a routine does several sequential operations that

must be performed in a certain order with the data from one operation being fed to the next in
a “filter-like” fashion.

• Global or communicational cohesion exists when a routine performs a set of operations that
make use of a common set of data, but are otherwise unrelated.

• Temporal cohesion exists when a routine performs a set of operations that need to be done at
the same time (though not necessarily in the same order). A typical initialization routine is an
example of such code.

• Procedural cohesion exists when a routine performs a sequence of operations in a specific
order, but the only thing that binds them together is the order in which they must be done.
Unlike sequential cohesion, the operations do not share data.

• State cohesion occurs when several different (unrelated) operations appear in the same routine
and a state variable (e.g., a parameter) selects the operation to execute. Typically such routines
contain a case (switch) or if..elseif..elseif... statement.

• No cohesion exists if the operations in a routine have no apparent relationship with one
another.

The first three forms of cohesion above are generally acceptable in a program. The fourth (temporal) is
probably okay, but you should rarely use it. The last three forms should almost never appear in a program.
For some reasonable examples of routine cohesion, you should consult “Code Complete”.
Page 1380 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
Guideline: All routines should exhibit good cohesiveness. Functional cohesiveness is best, followed by
sequential and global cohesiveness. Temporal cohesiveness is okay on occasion. You should
avoid the other forms.

1.4.2 Routine Coupling

Coupling refers to the way that two routines communicate with one another. There are several criteria
that define the level of coupling between two routines; again these are identical to the types of coupling that
modules exhibit:

• Cardinality- the number of objects communicated between two routines. The fewer objects the
better (i.e., fewer parameters).

• Intimacy- how “private” is the communication? Parameter lists are the most private form; pri-
vate data fields in a class or object are next level; public data fields in a class or object are next,
global variables are even less intimate, and passing data in a file or database is the least inti-
mate connection. Well-written routines exhibit a high degree of intimacy.

• Visibility- this is somewhat related to intimacy above. This refers to how visible the data is to
the entire system that you pass between two routines. For example, passing data in a parameter
list is direct and very visible (you always see the data the caller is passing in the call to the rou-
tine); passing data in global variables makes the transfer less visible (you could have set up the
global variable long before the call to the routine). Another example is passing simple (scalar)
variables rather than loading up a bunch of values into a structure/record and passing that struc-
ture/record to the callee.

• Flexibility- This refers to how easy it is to make the connection between two routines that may
not have been originally intended to call one another. For example, suppose you pass a struc-
ture containing three fields into a function. If you want to call that function but you only have
three data objects, not the structure, you would have to create a dummy structure, copy the
three values into the field of that structure, and then call the routine. On the other hand, had
you simply passed the three values as separate parameters, you could still pass in structures (by
specifying each field) as well as call the routine with separate values.

A function is loosely coupled if it exhibits low cardinality, high intimacy, high visibility, and high flexi-
bility. Often, these features are in conflict with one another (e.g., increasing the flexibility by breaking out
the fields from a structures [a good thing] will also increase the cardinality [a bad thing]). It is the traditional
goal of any engineer to choose the appropriate compromises for each individual circumstance; therefore,
you will need to carefully balance each of the four attributes above.

A program that uses loose coupling generally contains fewer errors per KLOC (thousands of lines of
code). Furthermore, routines that exhibit loose coupling are easier to reuse (both in the current and future
projects). For more information on coupling, see the appropriate chapter in “Code Complete”.

Guideline: Coupling between routines in source code should be loose.

1.4.3 Routine Size

Sometime in the 1960’s, someone decided that programmers could only look at one page in a listing at a
time, therefore routines should be a maximum of one page long (66 lines, at the time). In the 1970’s, when
interactive computing became popular, this was adjusted to 24 lines -- the size of a terminal screen. In fact,
there is very little empirical evidence to suggest that small routine size is a good attribute. In fact, several
studies on code containing artificial constraints on routine size indicate just the opposite -- shorter routines
often contain more bugs per KLOC6.

6. This happens because shorter functions invariably have stronger coupling, leading to integration errors.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1381

Appendix C Appendices
A routine that exhibits functional cohesiveness is the right size, almost regardless of the number of lines
of code it contains. You shouldn’t artificially break up a routine into two or more subroutines (e.g., sub_partI
and sub_partII) just because you feel a routine is getting to be too long. First, verify that your routine exhib-
its strong cohesion and loose coupling. If this is the case, the routine is not too long. Do keep in mind, how-
ever, that a long routine is probably a good indication that it is performing several actions and, therefore,
does not exhibit strong cohesion.

Of course, you can take this too far. Most studies on the subject indicate that routines in excess of
150-200 lines of code tend to contain more bugs and are more costly to fix than shorter routines. Note, by
the way, that you do not count blank lines or lines containing only comments when counting the lines of
code in a program.

Also note that most studies involving routine size deal with HLLs. A comparable HLA routine will con-
tain more lines of code than the corresponding HLL routine. Therefore, you can expect your routines in
assembly language to be a little longer.

Guideline: Do not let artificial constraints affect the size of your routines. If a routine exceeds about
200-250 lines of code, make sure the routine exhibits functional or sequential cohesion. Also
look to see if there aren’t some generic subsequences in your code that you can turn into stand
alone routines.

Rule: Never shorten a routine by dividing it into n parts that you would always call in the appropriate
sequence as a way of shortening the original routine.

1.5 Statement Organization

In an assembly language program, the author must work extra hard to make a program readable. By fol-
lowing a large number of rules, you can produce a program that is readable. However, by breaking a single
rule no matter how many other rules you’ve followed, you can render a program unreadable. Nowhere is
this more true than how you organize the statements within your program.

1.5.1 Writing “Pure” Assembly Code

Consider the following example taken from "The Art of Assembly Language Programming/DOS Edi-
tion" and converted to HLA:

The Microsoft Macro Assembler is a free form assembler. The various fields of an assembly
language statement may appear in any column (as long as they appear in the proper order).
Any number of spaces or tabs can separate the various fields in the statement. To the assem-
bler, the following two code sequences are identical:

__
mov(0, ax);
mov(ax, bx);
add(dx, ax);
mov(ax, cx);

__
mov(0, ax);
 mov(ax, bx);
 add(ad, ax);
 mov(ax, cx);
__

The first code sequence is much easier to read than the second (if you don't think so, perhaps you
should go see a doctor!). With respect to readability, the judicial use of spacing within your pro-
gram can make all the difference in the world.
Page 1382 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
While this is an extreme example, do note that it only takes a few mistakes to have a large impact on the
readability of a program.

HLA is a free-form assembler insofar as it does not place stringent formatting requirements on its state-
ments. For example, you can put multiple statements on a single line as well as spread a single statement
across multiple lines. However, the freedom to arrange these statements in any manner is one of the primary
contributors to hard to read assembly language programs. Although HLA lets you enter your programs in
free-form, there is absolutely no reason you cannot adopt a fixed format. Doing so generally helps make an
assembly language program much easier to read. Here are the rules you should use:

Guideline: Only place one statement per source line.

Rule: Within a given block of code, all mnemonics should start in the same column.

Exception: See the indentation rules appearing later in this documentation.

Guideline: Try to always start the comment fields on adjacent source lines in the same column (note that it
is impractical to always start the comment field in the same column throughout a program).

Most people learn a high level language prior to learning assembly language. They have been firmly
taught that readable (HLL) programs have their control structures properly indented to show the structure of
the program. Indentation works great when you have a block structured language. In old-fashioned assem-
bly language this scheme doesn’t work; one of the principle benefits to HLA is that it lets you continue to
use the indentation schemes you’re familiar with in HLLs like C/C++ and Pascal. However, this assumes that
you’re using the HLA high level control structures. If you choose to work in “pure” assembly language, then
these rules don’t apply. The following discussion assumes the use of “pure” assembly language code; we’ll
address HLA’s high level control statements later.

If you need to set off a sequence of statements from surrounding code, the best thing you can do is use
blank lines in your source code. For a small amount of detachment, to separate one computation from
another for example, a single blank line is sufficient. To really show that one section of code is special, use
two, three, or even four blank lines to separate one block of statements from the surrounding code. To sepa-
rate two totally unrelated sections of code, you might use several blank lines and a row of dashes or asterisks
to separate the statements. E.g.,

mov(FileSpec, eax);
mov(0, cl);
call MyFunction;
jc Error;

//***

mov(&fileRecords, edi);
mov(&files, ebx);
sub(2, ebx);

Guideline: Use blank lines to separate special blocks of code from the surrounding code. Use an aesthetic
looking row of asterisks or dashes if you need a stronger separation between two blocks of
code (do not overdo this, however).

If two sequences of assembly language statements correspond to roughly two HLL statements, it’s gen-
erally a good idea to put a blank line between the two sequences. This helps clarify the two segments of
code in the reader’s mind. Of course, it is easy to get carried away and insert too much white space in a pro-
gram, so use some common sense here.

Guideline: If two sequences of code in assembly language correspond to two adjacent statements in a
HLL, then use a blank line to separate those two assembly sequences (assuming the sequences
are real short).

A common problem in any language (not just assembly language) is a line containing a comment that is
adjacent to one or two lines containing code. Such a program is very difficult read because it is hard to
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1383

Appendix C Appendices
determine where the code ends and the comment begins (or vice-versa). This is especially true when the
comments contain sample code. It is often quite difficult to determine if what you’re looking at is code or
comments; hence the following enforced rule:

Enforced Rule: Always put at least one blank line between code and comments (assuming, of course, the com-

ment is sitting only a line by itself; that is, it is not an endline comment7).

1.5.2 Using HLA’s High Level Control Statements

Since HLA’s high level control statements are so similar to high level language control statements, it’s
not surprising to discover that you’ll use the same formatting for HLA’s statements as you would with those
other HLLs. Most of these statements compile to very efficient machine code (usually matching what you’d
write yourself if you were writing “pure” assembly code). Since their use can make your programs more
readable, you should use them whenever practical.

Guideline: Use the HLA high level control structures when they are appropriate in your programs.

There are two problems advanced assembly programmers have with high level control structures: (1)
the compiler for such statements (e.g., HLA) doesn’t always generate the best code, and (2) the use of such
statements encourages inefficient coding on the programmer’s part.

HLA’s control structures are relatively limited, so point (1) above isn’t as big a problem as you might
expect. Nevertheless, there will certainly be situations where HLA does not generate the same exact instruc-
tion sequence you would for a given control construct. Therefore, it’s a good idea to become familiar with
the low-level code that HLA emits for each of the control structures so that you can intelligently choose
whether to use a high level or low level control structure in a given situation. A later appendix explains how
HLA generates code for the high level control structures; you should study this material. Also note that
HLA emits MASM compatible assembly code, so you can certainly study HLA’s output if you’ve got any
questions about the code HLA generates.

Point (2) above is something that HLA has no control over. It is quite true that if you write “C code with
MOV instructions” in HLA, the code probably isn’t going to be as efficient as pure assembly code. How-
ever, with a little discipline you can prevent this problem from occurring.

One of the benefits to using the high level control structures HLA provides is that you can now use
indentation of your statements to better show the structure of the program. Since HLA’s high level control
structures are very similar to those found in traditional high level languages, you can use well-established
programming conventions when indenting statements in your HLA programs. Here are some suggestions:

Rule: Indent statements within a high-level control block four space. The ENDxxxx clause that
matches the statement should begin in the same column as the statement that starts a block.

// Example of nesting an IF..THEN..ENDIF statement:

if(eax = 0) then

<< Indent these statements four spaces >>

endif; // endif should be at the same level as the if statement.

Guideline: Avoid putting multiple statements on the same line.

The HLA programming language contains eight flow-of-control statements: two conditional selection
statements (IF..THEN..ELSEIF..ELSE and SWITCH..CASE..DEFAULT..ENDSWITCH), five loops
(WHILE..ENDWHILE, REPEAT..UNTIL, FOR..ENDFOR, FOREACH..ENDFOR, and FOREVER..END-
FOR), a program unit invocation (i.e., procedure call), and the statement sequence.

7. See the next section concerning comments for more information.
Page 1384 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
Rule: If your code contains a chain of if..elseif..elseif.......elseif..... statements, do not use the final
else clause to handle a remaining case. Only use the final else to catch an error condition. If
you need to test for some value in an if..elseif..elseif.... chain, always test the value in an if or
elseif statement.

The HLA Standard Library implements the multi-way selection statements (SWITCH) using a jump
table. This means that the order of the cases within the selection statement is usually irrelevant. Placing the
statements in a particular order rarely improves performance. Since the order is usually irrelevant to the
compiler, you should organize the cases so that they are easy to read. There are two common organizations
that make sense: sorted (numerically or alphabetically) or by frequency (the most common cases first).
Either organization is readable; one drawback to this approach is that it is often difficult to predict which
cases the program will execute most often.

Guideline: When using multi-way selection statements (case/switch) sort the cases numerically (alphabet-
ically) or by frequency of expected occurrence.

There are three general categories of looping constructs available in common high-level languages-
loops that test for termination at the beginning of the loop (e.g., WHILE), loops that test for loop termination
at the bottom of the loop (e.g., REPEAT..UNTIL), and those that test for loop termination in the middle of
the loop (e.g., FOREVER..ENDFOR). It is possible simulate any one of these loops using any of the others.
This is particularly trivial with the FOREVER..ENDFOR construct:

/* Test for loop termination at beginning of FOREVER..ENDFOR */

forever
 breakif(ax = y);
 .
 .
 .

endfor;

/* Test for loop termination in the middle of FOREVER..ENDFOR */

forever
 .
 .
 .
 breakif(ax = y);
 .
 .
 .
 endfor;

/* Test for loop termination at the end of FOREVER..ENDFOR */

 forever
 .
 .
 .
 breakif(x = y);
 endfor;

Given the flexibility of the FOREVER..ENDFOR control structure, you might question why one would
even burden a compiler with the other loop statements. However, using the appropriate looping structure
makes a program far more readable, therefore, you should never use one type of loop when the situation
demands another. If someone reading your code sees a FOREVER..ENDFOR construct, they may think it’s
okay to insert statements before or after the exit statement in the loop. If your algorithm truly depends on
WHILE..ENDWHILE or REPEAT..UNTIL semantics, the program may now malfunction.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1385

Appendix C Appendices
Rule: Always use the most appropriate type of loop (categorized by termination test position). Never
force one type of loop to behave like another.

Many languages provide a special case of the while loop that executes some number of times specified
upon first encountering the loop (a definite loop rather than an indefinite loop). This is the “for” loop in most
languages. The vast majority of the time a for loop sequences through a fixed range of value incrementing or
decrementing the loop control variable by one. Therefore, most programmers automatically assume this is
the way a for loop will operate until they take a closer look at the code. Since most programmers immedi-
ately expect this behavior, it makes sense to limit FOR loops to these semantics. If some other looping
mechanism is desirable, you should use a WHILE loop to implement it (since the for loop is just a special
case of the while loop). There are other reasons behind this decision as well.

Rule: “FOR” loops should always use an ordinal loop control variable (e.g., integer, char, boolean,
enumerated type) and should always increment or decrement the loop control variable by one.

Most people expect the execution of a loop to begin with the first statement at the top of the loop, there-
fore,

Rule: All loops should have one entry point. The program should enter the loop with the instruction
at the top of the loop.

Likewise, most people expect a loop to have a single exit point, especially if it’s a WHILE or
REPEAT..UNTIL loop. They will rarely look closely inside a loop body to determine if there are “break”
statements within the loop once they find one exit point. Therefore,

Guideline: Loops with a single exit point are more easily understood.

Whenever a programmer sees an empty loop, the first thought is that something is missing. Therefore,

Guideline: Avoid empty loops. If testing the loop termination condition produces some side effect that is
the whole purpose of the loop, move that side effect into the body of the loop. If a loop truly
has an empty body, place a comment like "/* nothing */" within your code.

Even if the loop body is not empty, you should avoid side effects in a loop termination expression.
When someone else reads your code and sees a loop body, they may skim right over the loop termination
expression and start reading the code in the body of the loop. If the (correct) execution of the loop body
depends upon the side effect, the reader may become confused since s/he did not notice the side effect ear-
lier. The presence of side effects (that is, having the loop termination expression compute some other value
beyond whether the loop should terminate or repeat) indicates that you’re probably using the wrong control
structure. Consider the following WHILE loop in HLA that is easily corrected:

while(mov(stdin.geti32(), ecx) != 0) do

 << statements >>

endwhile;

A better implementation of this code fragment would be to use a FOREVER..ENDFOR construct:

forever

stdin.geti32();
mov(eax, ecx);
breakif(eax = 0);

.

.

.

Page 1386 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
endfor;

Rule: Avoid side-effects in the computation of the loop termination expression (others may not be
expecting such side effects). Also see the guideline about empty loops.

Like functions, loops should exhibit functional cohesion. That is, the loop should accomplish exactly
one thing. It’s very tempting to initialize two separate arrays in the same loop. You have to ask yourself,
though, “what do you really accomplish by this?” You save about four machine instructions on each loop
iteration, that’s what. That rarely accounts for much. Furthermore, now the operations on those two arrays
are tied together, you cannot change the size of one without changing the size of the other. Finally, someone
reading your code has to remember two things the loop is doing rather than one.

Guideline: Make each loop perform only one function.

Programs are much easier to read if you read them from left to right, top to bottom (beginning to end).
Programs that jump around quite a bit are much harder to read. Of course, the jmp (goto) statement is
well-known for its ability to scramble the logical flow of a program, but you can produce equally hard to
read code using other, structured, statements in a language. For example, a deeply nested set of if state-
ments, some with and some without ELSE clauses, can be very difficult to follow because of the number of
possible places the code can transfer depending upon the result of several different boolean expressions.

Rule: Code, as much as possible, should read from top to bottom.

Rule: Related statements should be grouped together and separated from unrelated statements with
whitespace or comments.

In theory, a line of source code can be arbitrarily long. In practice, there are several practical limitations
on source code lines. Paramount is the amount of text that will fit on a given terminal display device (we
don’t all have 21” high resolution monitors!) and what can be printed on a typical sheet of paper. Even with
small fonts and wide carriage printers, keep in mind that many people like to print listings two-up or
three-up in order to save paper. If this isn’t enough to suggest an 80 character limit on source lines, McCo-
nnell suggests that longer lines are harder to read (remember, people tend to look at only the left side of the
page while skimming through a listing).

Enforced Rule: Source code lines will not exceed 80 characters in length.

If a statement approaches the maximum limit of 80 characters, it should be broken up at a reasonable
point and split across two lines. If the line is a control statement that involves a particularly long logical
expression, the expression should be broken up at a logical point (e.g., at the point of a low-precedence oper-
ator outside any parentheses) and the remainder of the expression placed underneath the first part of the
expression. E.g., (note that the following involves constant expressions, run-time expressions generally
aren’t very long):

 #if
 (

((x + y * z) < (ComputeProfits(1980,1990) / 1.0775))
&& (ValueOfStock[ThisYear] >= ValueOfStock[LastYear])

)

 << statements >>

 #endif
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1387

Appendix C Appendices
Many statements (e.g., IF, WHILE, FOR, and function or procedure calls) contain a keyword followed
by a parenthesis. If the expression appearing between the parentheses is too long to fit on one line, consider
putting the opening and closing parentheses in the same column as the first character of the start of the state-
ment and indenting the remaining expression elements. The example above demonstrates this for the "IF"
statement. The following examples demonstrate this technique for other statements:

 while
 (

SomeFunctionReturningAValueInEAX(with, lots, of, parameters)
<= AFunctionReturningAValueInEBX(also, has, lots, of, parameters)

) do

 << Statements to execute >>

 endwhile;

 fileio.put
 (

outputFileHandle,
"Error in module “,
ModuleName,
“ at line #”,
LineNumber,
“, encountered illegal value",
nl

);

Guideline: For statements that are too long to fit on one physical 80-column line, you should break the
statement into two (or more) lines at points in the statement that will have the least impact on
the readability of the statement. This situation usually occurs immediately after low-prece-
dence operators or after commas.

If a procedure, function, or other program unit has a particularly long actual or formal parameter list,
each parameter should be placed on a separate line. The following examples demonstrate a procedure decla-
ration and call using this technique:

 procedure MyFunction
 (
 NumberOfDataPoints: int32,
 X1Root: real32,
 X2Root: real32,
 var YIntercept: real32
);

MyFunction
(

GetNumberOfPoints(RootArray), // Assume “RETURNS” value is EAX.
RootArray[EBX*4],
RootArray[ECX*4],
Solution

);

Rule: If an actual or formal parameter list is too long to fit a function call or definition on a single
line, then place each parameter on a separate line and align them so they are easy to read.

Guideline: If a boolean expression exceeds the length of the source line (usually 80 characters), then break
the source line into pieces and align the parentheses associated with the statement underneath
Page 1388 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
the start of the statement.

This usually isn’t a problem in HLA since expressions are very limited. However, if you call a function
with a long parameter list you could run into this problem. One area where this problem does occur is when
you’re using HLA’s hybrid control structures. For such sequences you should always place the statements
associated with the boolean expression on separate lines and align the braces with the high level control
structure, e.g.,

if
{

cmp(ax, bx);;
jne true;
cmp(ax, 5);
jl false;
cmp(bx, 0);
je false;

}

<< statements to execute on TRUE >>

endif;

Rule: Always put a blank line between a high level control statement and the nested statements asso-
ciated with that statement. Likewise, put a blank line between the end of the nested statements
and the corresponding ENDxxx clause of the statement. E.g.,

if(ax = 0) then
<-- Blank line.

<< Nested Statements >>
<-- Blank line.

endif;

HLA provides special symbols like “@c” and “@s” to denote flag bits within boolean expressions.
Using statements like “if(@c) then endif;” is semantically equivalent to using a conditional jump (JNC
in this case) to jump around the THEN code. Not only is this statement semantically equivalent, it is exactly
equivalent since it simply generates the JNC (or whatever) instruction to transfer control to the statement fol-
lowing the ENDIF. The difference between the two, from a readability point of view, is that JNC requires a
statement label. As it turns out, the large number of statement labels that appear in an assembly language
program contribute to the lack of readability. Hence, anything you can do to legitimately reduce the number
of statement labels will improve the readability of your program. So,

Guideline: Try to use statements like “if(@c) then...endif;” rather than “jnc label; ... label:” in your pro-
grams to reduce the number of statement labels in the code. Combined with indentation, this
will make your programs easier to read since the user doesn’t have to search for a specific label
associated with the branch (searching for the end of indentation is a much easier task).

1.6 Comments

Comments in an assembly language program generally come in two forms: endline comments and
standalone comments8. As their names suggest, endline lines comments always occur at the end of a source
statement and standalone comments sit on a line by themselves9. These two types of comments have distinct
purposes, this section will explore their use and describe the attributes of a well-commented program.

8. This document will simply use the term comments when referring to standalone comments.
9. Since the label, mnemonic, and operand fields are all optional, it is legal to have a comment on a line by itself.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1389

Appendix C Appendices
1.6.1 What is a Bad Comment?

It is amazing how many programmers claim their code is well-commented. Were you to count charac-
ters between (or after) the comment delimiters, they might have a point. Consider, however, the following
comment:

 mov(0, ax); //Set AX to zero.

Quite frankly, this comment is worse than no comment at all. It doesn’t tell the reader anything the
instruction itself doesn’t tell and it requires the reader to take some of his or her precious time to figure out
that the comment is worthless. If someone cannot tell that this instruction is setting AX to zero, they have no
business reading an assembly language program. This brings up the first guideline of this section:

Guideline: Choose an intended audience for your source code and write the comments to that audience.
For HLA source code, you can usually assume that the target audience are those who know a
reasonable amount of HLA and assembly language.

Don’t explain the actions of an assembly language instruction in your code unless that instruction is
doing something that isn’t obvious (and most of the time you should consider changing the code sequence if
it isn’t obvious what is going on). Instead, explain how that instruction is helping to solve the problem at
hand. The following is a much better comment for the instruction above:

 mov(0, ax); //AX is the resulting sum. Initialize it.

Note that the comment does not say "Initialize it to zero." Although there would be nothing intrinsically
wrong with saying this, the phrase "Initialize it" remains true no matter what value you assign to AX. This
makes maintaining the code (and comment) much easier since you don’t have to change the comment when-
ever you change the constant associated with the instruction.

Guideline: Write your comments in such a way that minor changes to the instruction do not require that
you change the corresponding comment.

Note: Although a trivial comment is bad (indeed, worse than no comment at all), the worst comment a
program can have is one that is wrong. Consider the following statement:

 mov(1, ax); //Set AX to zero.

It is amazing how long a typical person will look at this code trying to figure out how on earth the pro-
gram sets AX to zero when it’s obvious it does not do this. People will always believe comments over code.
If there is some ambiguity between the comments and the code, they will assume that the code is tricky and
that the comments are correct. Only after exhausting all possible options is the average person likely to con-
cede that the comment must be incorrect.

Enforced Rule: Never allow incorrect comments in your program.

This is another reason not to put trivial comments like "Set AX to zero" in your code. As you modify
the program, these are the comments most likely to become incorrect as you change the code and fail to keep
the comments in sync. However, even some non-trivial comments can become incorrect via changes to the
code. Therefore, always follow this rule:

Enforced Rule: Always update all comments affected by a code change immediately after making the code
change.

Undoubtedly you’ve heard the phrase "make sure you comment your code as though someone else
wrote it for you; otherwise in six months you’ll wish you had." This statement encompasses two concepts.
First, don’t ever think that your understanding of the current code will last. While working on a given sec-
tion of a program you’re probably investing considerable thought and study to figure out what’s going on.
Six months down the road, however, you will have forgotten much of what you figured out and the com-
ments can go a long way to getting you back up to speed quickly. The second point this code makes is the
implication that others read and write code too. You will have to read someone else’s code, they will have to
read yours. If you write the comments the way you would expect others to write it for you, chances are
pretty good that your comments will work for them as well.
Page 1390 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
Rule: Never use racist, sexist, obscene, or other exceptionally politically incorrect language in your
comments. Undoubtedly such language in your comments will come back to embarrass you in
the future. Furthermore, it’s doubtful that such language would help someone better under-
stand the program.

It’s much easier to give examples of bad comments than it is to discuss good comments. The following
list describes some of the worst possible comments you can put in a program (from worst up to barely toler-
able):

• The absolute worst comment you can put into a program is an incorrect comment. Consider
the following assembly statement:
mov(10, ax); // Set AX to 11
It is amazing how many programmers will automatically assume the comment is correct and
try to figure out how this code manages to set the variable “A” to the value 11 when the code so
obviously sets it to 10.

• The second worst comment you can place in a program is a comment that explains what a
statement is doing. The typical example is something like “mov(10, ax); // Set ‘A’ to 10”.
Unlike the previous example, this comment is correct. But it is still worse than no comment at
all because it is redundant and forces the reader to spend additional time reading the code
(reading time is directly proportional to reading difficulty). This also makes it harder to main-
tain since slight changes to the code (e.g., "mov(9, ax);") requires modifications to the com-
ment that would not otherwise be required.

• The third worst comment in a program is an irrelevant one. Telling a joke, for example, may
seem cute, but it does little to improve the readability of a program; indeed, it offers a distrac-
tion that breaks concentration.

• The fourth worst comment is no comment at all.
• The fifth worst comment is a comment that is obsolete or out of date (though not incorrect).

For example, comments at the beginning of the file may describe the current version of a mod-
ule and who last worked on it. If the last programmer to modify the file did not update the
comments, the comments are now out of date.

1.6.2 What is a Good Comment?

Steve McConnell provides a long list of suggestions for high-quality code. These suggestions include:

• Use commenting styles that don’t break down or discourage modification. Essentially,
he’s saying pick a commenting style that isn’t so much work people refuse to use it. He gives
an example of a block of comments surrounded by asterisks as being hard to maintain. This is
a poor example since modern text editors will automatically “outline” the comments for you.
Nevertheless, the basic idea is sound.

• Comment as you go along. If you put commenting off until the last moment, then it seems
like another task in the software development process always comes along and management is
likely to discourage the completion of the commenting task in hopes of meeting new deadlines.

• Avoid self-indulgent comments. Also, you should avoid sexist, profane, or other insulting
remarks in your comments. Always remember, someone else will eventually read your code.

• Avoid putting comments on the same physical line as the statement they describe. Such
comments are very hard to maintain since there is very little room. McConnell suggests that
endline comments are okay for variable declarations. For some this might be true but many
variable declarations may require considerable explanation that simply won’t fit at the end of a
line. One exception to this rule is “maintenance notes.” Comments that refer to a defect track-
ing entry in the defect database are okay (note that the CodeWright text editor provides a much
better solution for this -- buttons that can bring up an external file). Of course, endline com-
ments are marginally more useful in assembly language than in the HLLs that McConnell
addresses, but the basic idea is sound.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1391

Appendix C Appendices
• Write comments that describe blocks of statements rather than individual statements.
Comments covering single statements tend to discuss the mechanics of that statement rather
than discussing what the program is doing.

• Focus paragraph comments on the why rather than the how. Code should explain what the
program is doing and why the programmer chose to do it that way rather than explain what
each individual statement is doing.

• Use comments to prepare the reader for what is to follow. Someone reading the comments
should be able to have a good idea of what the following code does without actually looking at
the code. Note that this rule also suggests that comments should always precede the code to
which they apply.

• Make every comment count. If the reader wastes time reading a comment of little value, the
program is harder to read; period.

• Document surprises and tricky code. Of course, the best solution is not to have any tricky
code. In practice, you can’t always achieve this goal. When you do need to restore to some
tricky code, make sure you fully document what you’ve done.

• Avoid abbreviations. While there may be an argument for abbreviating identifiers that appear
in a program, no way does this apply to comments.

• Keep comments close to the code they describe. The prologue to a program unit should give
its name, describe the parameters, and provide a short description of the program. It should not
go into details about the operation of the module itself. Internal comments should to that.

• Comments should explain the parameters to a function, assertions about these parameters,
whether they are input, output, or in/out parameters.

• Comments should describe a routine’s limitations, assumptions, and any side effects.

Rule: All comments will be high-quality comments that describe the actions of the surrounding code
in a concise manner

1.6.3 Endline vs. Standalone Comments

Guideline: Adjacent lines of comments should not have any interspersed blank lines. At least lead off the
comment with the HLA comment character sequence (e.g., “//”).

The guideline above suggests that your code should look like this:

// This is a comment with a blank line between it and the next comment.
//
// This is another line with a comment on it.

Rather than like this:

// This is a comment with a blank line between it and the next comment.

// This is another line with a comment on it.

The “//” appearing between the two statements suggest continuity that is not present when you remove
the “//”. If two blocks of comments are truly separate and whitespace between them is appropriate, you
should consider separating them by a large number of blank lines to completely eliminate any possible asso-
ciation between the two.

Standalone comments are great for describing the actions of the code that immediately follows. So
what are endline comments useful for? Endline comments can explain how a sequence of instructions are
implementing the algorithm described in a previous set of standalone comments. Consider the following
code:

// Compute the transpose of a matrix using the algorithm:
//
// for i := 0 to 3 do
// for j := 0 to 3 do
Page 1392 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
// swap(a[i][j], b[j][i]);

for(mov(0, i); i < 3; inc(i)) do

for(mov(0, j); j < 3; inc(j)) do

mov(i, ebx); // Compute address of a[i][j] using
shl(2, ebx); // row major ordering (i*4 + j)*4.
add(j, ebx);
lea(ebx, a[ebx*4]);
push(ebx); // Push address of a[i][j] onto stack.

mov(j, ebx); // Compute address of b[j][i] using
shl(2, ebx); // row major ordering (j*4 + i)*4.
add(i, ebx);
lea(ebx, b[ebx*4]);
push(ebx); // Push address of b[j][i] onto stack.
call swap; // Swap objects pointed at by [esp] and [esp+4].

endfor;

endfor;

Note that the block comments before this sequence explain, in high level terms, what the code is doing.
The endline comments explain how the statement sequence implements the general algorithm. Note, how-
ever, that the endline comments do not explain what each statement is doing (at least at the machine level).
Rather than claiming "lea(ebx, b[ebx*4])" also multiplies the quantity in EBX by four, this code
assumes the reader can figure that out for themselves (any reasonable assembly programmer would know
this). Once again, keep in mind your audience and write your comments for them.

1.6.4 Unfinished Code

Often it is the case that a programmer will write a section of code that (partially) accomplishes some
task but needs further work to complete a feature set, make it more robust, or remove some known defect in
the code. It is common for such programmers to place comments into the code like "This needs more work,"
"Kludge ahead," etc. The problem with these comments is that they are often forgotten. It isn’t until the
code fails in the field that the section of code associated with these comments is found and their problems
corrected.

Ideally, one should never have to put such code into a program. Of course, ideally, programs never have
any defects in them, either. Since such code inevitably finds its way into a program, it’s best to have a policy
in place to deal with it, hence this section.

Unfinished code comes in five general categories: non-functional code, partially functioning code, sus-
pect code, code in need of enhancement, and code documentation. Non-functional code might be a stub or
driver that needs to be replaced in the future with actual code or some code that has severe enough defects
that it is useless except for some small special cases. This code is really bad, fortunately its severity prevents
you from ignoring it. It is unlikely anyone would miss such a poorly constructed piece of code in early test-
ing prior to release.

Partially functioning code is, perhaps, the biggest problem. This code works well enough to pass some
simple tests yet contains serious defects that should be corrected. Moreover, these defects are known. Soft-
ware often contains a large number of unknown defects; it’s a shame to let some (prior) known defects ship
with the product simply because a programmer forgot about a defect or couldn’t find the defect later.

Suspect code is exactly that- code that is suspicious. The programmer may not be aware of a quantifi-
able problem but may suspect that a problem exists. Such code will need a later review in order to verify
whether it is correct.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1393

Appendix C Appendices
The fourth category, code in need of enhancement, is the least serious. For example, to expedite a
release, a programmer might choose to use a simple algorithm rather than a complex, faster algorithm. S/he
could make a comment in the code like "This linear search should be replaced by a hash table lookup in a
future version of the software." Although it might not be absolutely necessary to correct such a problem, it
would be nice to know about such problems so they can be dealt with in the future.

The fifth category, documentation, refers to changes made to software that will affect the corresponding
documentation (user guide, design document, etc.). The documentation department can search for these
defects to bring existing documentation in line with the current code.

This standard defines a mechanism for dealing with these five classes of problems. Any occurrence of
unfinished code will be preceded by a comment that takes one of the following forms (where "_" denotes a
single space):

//_#defect#severe_//
//_#defect#functional_//
//_#defect#suspect_//
//_#defect#enhancement_//
//_#defect#documentation_//

It is important to use all lower case and verify the correct spelling so it is easy to find these comments
using a text editor search or a tool like grep. Obviously, a separate comment explaining the situation must
follow these comments in the source code.

Examples:

// #defect#suspect //
// #defect#enhancement //
// #defect#documentation //

Notice the use of comment delimiters (the “//”) on both sides even though HLA doesn’t require them.

Enforced Rule: If a module contains some defects that cannot be immediately removed because of time or
other constraints, the program will insert a standardized comment before the code so that it is
easy to locate such problems in the future. The five standardized comments are
"//_#defect#severe_//”, “//_#defect#functional_//”, “//_#defect#suspect_//”,
“//_#defect#enhancement_//”, and “//_#defect#documentation_//” where “_” denotes a single
space. The spelling and spacing should be exact so it is easy to search for these strings in the
source tree.

1.6.5 Cross References in Code to Other Documents

In many instances a section of code might be intrinsically tied to some other document. For example,
you might refer the reader to the user document or the design document within your comments in a program.
This document proposes a standard way to do this so that it is relatively easy to locate cross references
appearing in source code. The technique is similar to that for defect reporting, except the comments take the
form:

// text #link#location text //
"Text" is optional and represents arbitrary text (although it is really intended for embedding html com-

mands to provide hyperlinks to the specified document). "Location" describes the document and section
where the associated information can be found.

Examples:

// #link#User’s Guide Section 3.1 //
// #link#Program Design Document, Page 5 //
// #link#Funcs.pas module, "xyz" function //
Page 1394 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
// #link#xyzfunc //

Guideline: If a module contains some cross references to other documents, there should be a comment that
takes the form "// text #link#location text //" that provides the reference to that other document.
In this comment "text" represents some optional text (typically reserved for html tags) and
"location" is some descriptive text that describes the document (and a position in that docu-
ment) related to the current section of code in the program.

1.7 Names, Instructions, Operators, and Operands

Although program features like good comments, proper spacing of statements, and good modularization
can help yield programs that are more readable; ultimately, a programmer must read the instructions in a
program to understand what it does. Therefore, do not underestimate the importance of making your state-
ments as readable as possible. This section deals with this issue.

1.7.1 Names

According to studies done at IBM, the use of high-quality identifiers in a program contributes more to
the readability of that program than any other single factor, including high-quality comments. The quality
of your identifiers can make or break your program; program with high-quality identifiers can be very easy
to read, programs with poor quality identifiers will be very difficult to read. There are very few “tricks” to
developing high-quality names; most of the rules are nothing more than plain old-fashion common sense.
Unfortunately, programmers (especially C/C++ programmers) have developed many arcane naming conven-
tions that ignore common sense. The biggest obstacle most programmers have to learning how to create
good names is an unwillingness to abandon existing conventions. Yet their only defense when quizzed on
why they adhere to (existing) bad conventions seems to be “because that’s the way I’ve always done it and
that’s the way everybody else does it.”

The aforementioned researchers at IBM developed several programs with the following set of
attributes:

• Bad comments, bad names
• Bad comments, good names
• Good comments, bad names
• Good comments, good names

As should be obvious, the programs that had bad comments and names were the hardest to read; like-
wise, those programs with good comments and names were the easiest to read. The surprising results con-
cerned the other two cases. Most people assume good comments are more important than good names in a
program. Not only did IBM find this to be false, they found it to be really false.

As it turns out, good names are even more important that good comments in a program. This is not to
say that comments are unimportant, they are extremely important; however, it is worth pointing out that if
you spend the time to write good comments and then choose poor names for your program’s identifiers,
you’ve damaged the readability of your program despite the work you’ve put into your comments. Quickly
read over the following code:

 mov(SignedValue, ax);
 cwd();
 add(-1, ax);
 rcl(1, dx);
 mov(dx, AbsoluteValue);

Question: What does this code compute and store in the AbsoluteValue variable?
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1395

Appendix C Appendices
• The sign extension of SignedValue.
• The negation of SignedValue.
• The absolute value of SignedValue.
• A boolean value indicating that the result is positive or negative.
• Signum(SignedValue) (-1, 0, +1 if neg, zero, pos).
• Ceil(SignedValue)
• Floor(SignedValue)

The obvious answer is the absolute value of SignedValue. This is also incorrect. The correct answer is
signum:

 mov(SignedValue, ax); // Get value to check.
 cwd(); // DX = FFFF if neg, 0000 otherwise.
 add($ffff, ax); // Carry=0 if ax is zero, one otherwise.
 rcl(1, dx); // DX = FFFF if AX is neg, 0 if ax=0,
 mov(dx, Signum); // 1 if ax>0.

Granted, this is a tricky piece of code10. Nonetheless, even without the comments you can probably fig-
ure out what the code sequence does even if you can’t figure out how it does it:

 mov(SignedValue, ax);
 cwd();
 add($ffff, ax);
 rcl(1, dx);
 mov(dx, Signum);

Based on the names alone you can probably figure out that this code computes the signum function
(even if understanding how it does it remains a mystery). This is the "understanding 80% of the code"
referred to earlier. Note that you don’t need misleading names to make this code unfathomable. Consider
the following code that doesn’t trick you by using misleading names:

 mov(x, ax);
 cwd();
 add($ffff, ax);
 rcl(1, dx);
 mov(dx, y);

This is a very simple example. Now imagine a large program that has many names. As the number of
names increase in a program, it becomes harder to keep track of them all. If the names themselves do not
provide a good clue to the meaning of the name, understanding the program becomes very difficult.

Enforced Rule: All identifiers appearing in an assembly language program must be descriptive names whose
meaning and use are clear.

Since labels (i.e., identifiers) are the target of jump and call instructions, a typical assembly language
program may have a large number of identifiers, especially if you write in “pure” assembly and forego the
HLA high level control structures. Therefore, it is tempting to begin using names like "label1, label2, label3,
..." Avoid this temptation! There is always a reason you are jumping to some spot in your code. Try to
describe that reason and use that description for your label name.

Rule: Never use names like "Lbl0, Lbl1, Lbl2, ..." in your program. Always use meaningful names!

10. It could be worse, you should see what the "superoptimizer" outputs for the signum function. It’s even shorter and harder
to understand than this code.
Page 1396 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
1.7.1.1 Naming Conventions

Naming conventions represent one area in Computer Science where there are far too many divergent
views (program layout is the other principle area). The primary purpose of an object’s name in a program-
ming language is to describe the use and/or contents of that object. A secondary consideration may be to
describe the type of the object. Programmers use different mechanisms to handle these objectives. Unfortu-
nately, there are far too many “conventions” in place, it would be asking too much to expect any one pro-
grammer to follow several different standards. Therefore, this standard will apply across all languages as
much as possible.

The vast majority of programmers know only one language - English. Some programmers know
English as a second language and may not be familiar with a common non-English phrase that is not in their
own language (e.g., rendezvous). Since English is the common language of most programmers, all identifi-
ers should use easily recognizable English words and phrases.

Rule: All identifiers that represent words or phrases must be English words or phrases.

1.7.1.2 Alphabetic Case Considerations

A case-neutral identifier will work properly whether you compile it with a compiler that has case sensi-
tive identifiers or case insensitive identifiers. In practice, this means that all uses of the identifiers must be
spelled exactly the same way (including case) and that no other identifier exists whose only difference is the
case of the letters in the identifier. For example, if you declare an identifier “ProfitsThisYear” in Pascal (a
case-insensitive language), you could legally refer to this variable as “profitsThisYear” and “PROFITSTHI-
SYEAR”. However, this is not a case-neutral usage since a case sensitive language would treat these three
identifiers as different names. Conversely, in case-sensitive languages like C/C++, it is possible to create
two different identifiers with names like “PROFITS” and “profits” in the program. This is not case-neutral
since attempting to use these two identifiers in a case insensitive language (like Pascal) would produce an
error since the case-insensitive language would think they were the same name.

Enforced Rule: All identifiers must be “case-neutral.”

Fortunately, HLA enforces case neutrality in its identifiers; so HLA doesn’t allow you to violate this
rule. However, if you are linking assembly and high level language code together, it’s a good idea to follow
this rule in the HLL code to prevent problems when linking with the HLA code.

Different programmers (especially in different languages) use alphabetic case to denote different
objects. For example, a common C/C++ coding convention is to use all upper case to denote a constant,
macro, or type definition and to use all lower case to denote variable names or reserved words. Prolog pro-
grammers use an initial lower case alphabetic to denote a variable. Other comparable coding conventions
exist. Unfortunately, there are so many different conventions that make use of alphabetic case, they are
nearly worthless, hence the following rule:

Rule: You should never use alphabetic case to denote the type, classification, or any other pro-
gram-related attribute of an identifier.

There are going to be some obvious exceptions to the above rule, this document will cover those excep-
tions a little later. Alphabetic case does have one very useful purpose in identifiers - it is useful for separat-
ing words in a multi-word identifier; more on that subject in a moment.

To produce readable identifiers often requires a multi-word phrase. Natural languages typically use
spaces to separate words; we can not, however, use this technique in identifiers.

Unfortunatelywritingmultiwordidentifiers makesthemalmostimpossibletoreadifyoudonotdosomething-
todistiguishtheindividualwords (Unfortunately writing multiword identifiers makes them almost impossible
to read if you do not do something to distinguish the individual words).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1397

Appendix C Appendices
There are a couple of good conventions in place to solve this problem. This standard’s convention is to
capitalize the first alphabetic character of each word in the middle of an identifier.

Rule: Capitalize the first letter of interior words in all multi-word identifiers.

Note that the rule above does not specify whether the first letter of an identifier is upper or lower case.
Subject to the other rules governing case, you can elect to use upper or lower case for the first symbol,
although you should be consistent throughout your program. The second convention is to use an underscore
to separate words in a multi-word document. This is also acceptable, though the capitalization rule probably
produces identifiers that are to read and write.

Lower case characters are easier to read than upper case. Identifiers written completely in upper case
take almost twice as long to recognize and, therefore, impair the readability of a program. Yes, all upper
case does make an identifier stand out. Such emphasis is rarely necessary in real programs. Yes, common
C/C++ coding conventions dictate the use of all upper case identifiers. Forget them. They not only make
your programs harder to read, they also violate the first rule above.

Rule: Avoid using all upper case characters in an identifier.

Some programmers prefer to begin all identifiers with a lower case letter. Others prefer to begin them
with an upper case alphabetic character. Either scheme is fine as long as you apply it consistently through-
out your program. Under no circumstances should you use the presence of an upper or lower case character
to denote different things in your code (see the earlier rule about this).

1.7.1.3 Abbreviations

The primary purpose of an identifier is to describe the use of, or value associated with, that identifier.
The best way to create an identifier for an object is to describe that object in English and then create a vari-
able name from that description. Variable names should be meaningful, concise, and non-ambiguous to an
average programmer fluent in the English language. Avoid short names. Some research has shown that pro-
grams using identifiers whose average length is 10-20 characters are generally easier to debug than programs
with substantially shorter or longer identifiers.

Avoid abbreviations as much as possible. What may seem like a perfectly reasonable abbreviation to
you may totally confound someone else. Consider the following variable names that have actually appeared
in commercial software:

NoEmployees, NoAccounts, pend

The “NoEmployees” and “NoAccounts” variables seem to be boolean variables indicating the presence
or absence of employees and accounts. In fact, this particular programmer was using the (perfectly reason-
able in the real world) abbreviation of “number” to indicate the number of employees and the number of
accounts. The “pend” name referred to a procedure’s end rather than any pending operation.

Programmers often use abbreviations in two situations: they’re poor typists and they want to reduce the
typing effort, or a good descriptive name for an object is simply too long. The former case is an unaccept-
able reason for using abbreviations. The second case, especially if care is taken, may warrant the occasional
use of an abbreviation.

Guideline: Avoid all identifier abbreviations in your programs. When necessary, use standardized abbre-
viations or ask someone to review your abbreviations. Whenever you use abbreviations in
your programs, create a “data dictionary” in the comments near the names’ definition that pro-
vides a full name and description for your abbreviation.

The variable names you create should be pronounceable. “NumFiles” is a much better identifier than
“NmFls”. The first can be spoken, the second you must generally spell out. Avoid homonyms and long
names that are identical except for a few syllables. If you choose good names for your identifiers, you
should be able to read a program listing over the telephone to a peer without overly confusing that person.

Rule: All identifiers should be pronounceable (in English) without having to spell out more than one
letter.
Page 1398 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
1.7.1.4 The Position of Components Within an Identifier

When scanning through a listing, most programmers only read the first few characters of an identifier. It
is important, therefore, to place the most important information (that defines and makes this identifier
unique) in the first few characters of the identifier. So, you should avoid creating several identifiers that all
begin with the same phrase or sequence of characters since this will force the programmer to mentally pro-
cess additional characters in the identifier while reading the listing. Since this slows the reader down, it
makes the program harder to read.

Guideline: Try to make most identifiers unique in the first few character positions of the identifier. This
makes the program easier to read.

Corollary: Never use a numeric suffix to differentiate two names.

Many C/C++ Programmers, especially Microsoft Windows programmers, have adopted a formal nam-
ing convention known as “Hungarian Notation.” To quote Steve McConnell from Code Complete: “The
term ‘Hungarian’ refers both to the fact that names that follow the convention look like words in a foreign
language and to the fact that the creator of the convention, Charles Simonyi, is originally from Hungary.”
One of the first rules given concerning identifiers stated that all identifiers are to be English names. Do we
really want to create “artificially foreign” identifiers? Hungarian notation actually violates another rule as
well: names using the Hungarian notation generally have very common prefixes, thus making them harder to
read.

Hungarian notation does have a few minor advantages, but the disadvantages far outweigh the advan-
tages. The following list from Code Complete and other sources describes what’s wrong with Hungarian
notation:

• Hungarian notation generally defines objects in terms of basic machine types rather than in
terms of abstract data types.

• Hungarian notation combines meaning with representation. One of the primary purposes of
high level language is to abstract representation away. For example, if you declare a variable to
be of type integer, you shouldn’t have to change the variable’s name just because you changed
its type to real.

• Hungarian notation encourages lazy, uninformative variable names. Indeed, it is common to
find variable names in Windows programs that contain only type prefix characters, without an
descriptive name attached.

• Hungarian notation prefixes the descriptive name with some type information, thus making it
harder for the programming to find the descriptive portion of the name.

Guideline: Avoid using Hungarian notation and any other formal naming convention that attaches
low-level type information to the identifier.

Although attaching machine type information to an identifier is generally a bad idea, a well thought-out
name can successfully associate some high-level type information with the identifier, especially if the name
implies the type or the type information appears as a suffix. For example, names like “PencilCount” and
“BytesAvailable” suggest integer values. Likewise, names like “IsReady” and “Busy” indicate boolean val-
ues. “KeyCode” and “MiddleInitial” suggest character variables. A name like “StopWatchTime” probably
indicates a real value. Likewise, “CustomerName” is probably a string variable. Unfortunately, it isn’t
always possible to choose a great name that describes both the content and type of an object; this is particu-
larly true when the object is an instance (or definition of) some abstract data type. In such instances, some
additional text can improve the identifier. Hungarian notation is a raw attempt at this that, unfortunately,
fails for a variety of reasons.

A better solution is to use a suffix phrase to denote the type or class of an identifier. A common UNIX/C
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1399

Appendix C Appendices
convention, for example, is to apply a “_t” suffix to denote a type name (e.g., size_t, key_t, etc.). This con-
vention succeeds over Hungarian notation for several reasons including (1) the “type phrase” is a suffix and
doesn’t interfere with reading the name, (2) this particular convention specifies the class of the object
(const, var, type, function, etc.) rather than a low level type, and (3) It certainly makes sense to change the
identifier if it’s classification changes.

Guideline: If you want to differentiate identifiers that are constants, type definitions, and variable names,
use the suffixes “_c”, “_t”, and “_v”, respectively (generally, the lack of a suffix denotes a
variable).

Rule: The classification suffix should not be the only component that differentiates two identifiers.

Can we apply this suffix idea to variables and avoid the pitfalls? Sometimes. Consider a high level data
type “button” corresponding to a button on a Visual BASIC or Delphi form. A variable name like “Cancel-
Button” makes perfect sense. Likewise, labels appearing on a form could use names like “ETWWLabel”
and “EditPageLabel”. Note that these suffixes still suffer from the fact that a change in type will require that
you change the variable’s name. However, changes in high level types are far less common than changes in
low-level types, so this shouldn’t present a big problem.

HLA provides a special operator, “‘” (grave accent) that separates an identifier name from an attached
comment. For example, the legal HLA identifier “Hello‘world” is really just “Hello”. The characters fol-
lowing the grave accent (to the end of the identifier) are treated as a comment by the compiler. So if you
want to attach a comment concerning the variable’s type or use to the identifier, you can use this feature in
HLA.

GuideLine: If you must attach low level type information to an identifier, use the HLA identifier comment
(“‘”, grave accent) and append the information to the end of the identifier.

1.7.1.5 Names to Avoid

Avoid using symbols in an identifier that are easily mistaken for other symbols. This includes the sets
{“1” (one), “I” (upper case “I”), and “l” (lower case “L”)}, {“0” (zero) and “O” (upper case “O”)}, {“2”
(two) and “Z” (upper case “Z”)}, {“5” (five) and “S” (upper case “S”)}, and (“6” (six) and “G” (upper case
“G”)}.

Guideline: Avoid using symbols in identifiers that are easily mistaken for other symbols (see the list
above).

Avoid misleading abbreviations and names. For example, FALSE shouldn’t be an identifier that stands
for “Failed As a Legitimate Software Engineer.” Likewise, you shouldn’t compute the amount of free mem-
ory available to a program and stuff it into the variable “Profits”.

Rule: Avoid misleading abbreviations and names.

 You should avoid names with similar meanings. For example, if you have two variables “InputLine”
and “InputLn” that you use for two separate purposes, you will undoubtedly confuse the two when writing
or reading the code. If you can swap the names of the two objects and the program still makes sense, you
should rename those identifiers. Note that the names do not have to be similar, only their meanings. “Input-
Line” and “LineBuffer” are obviously different but you can still easily confuse them in a program.

Rule: Do not use names with similar meanings for different objects in your programs.

In a similar vein, you should avoid using two or more variables that have different meanings but similar
names. For example, if you are writing a teacher’s grading program you probably wouldn’t want to use the
name “NumStudents” to indicate the number of students in the class along with the variable “StudentNum”
to hold an individual student’s ID number. “NumStudents” and “StudentNum” are too similar.
Page 1400 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
Rule: Do not use similar names that have different meanings.

Avoid names that sound similar when read aloud, especially out of context. This would include names
like “hard” and “heart”, “Knew” and “new”, etc. Remember the discussion in the section above on abbrevi-
ations, you should be able to discuss your problem listing over the telephone with a peer. Names that sound
alike make such discussions difficult.

Guideline: Avoid homonyms in identifiers.

Avoid misspelled words in names and avoid names that are commonly misspelled. Most programmers
are notoriously bad spellers (look at some of the comments in our own code!). Spelling words correctly is
hard enough, remembering how to spell an identifier incorrectly is even more difficult. Likewise, if a word
is often spelled incorrectly, requiring a programer to spell it correctly on each use is probably asking too
much.

Guideline: Avoid misspelled words and names that are often misspelled in identifiers.

If you redefine the name of some library routine in your code, another program will surely confuse your
name with the library’s version. This is especially true when dealing with standard library routines and
APIs.

Enforced Rule: Do not reuse existing standard library routine names in your program unless you are specifi-
cally replacing that routine with one that has similar semantics (i.e., don’t reuse the name for a
different purpose).

Corollary: Use Namespaces to prevent name space pollution!

1.7.1.6 Special Identifers

By convention, HLA programmers use certain identifiers for special purposes. Any identifier beginning
with an underscore falls into this category. HLA defines five such conventions. The HLA compiler does not
enforce these conventions, but if you violate them you may run into problems. The following paragraphs
describe each of these conventions.

HLA reserves for its own use (and the use of the HLA Standard Library) all identifiers that begin and
end with a single underscore. You should never define any identifiers in your programs that take this form
since your identifiers may conflict with HLA’s use. These reserveration effectively reserves an “HLA
namespace” of identifiers that the compiler and Standard Library can draw from without fear of breaking
any existing code (that follows this convention).

Identifiers that begin and end with two underscores are reserved for use as local symbols in user-defined
macros. To avoid conflicts with such symbols (especially in context-free/multi-part macros) you should
never use symbols that begin and end with two underscores outside of a macro. Within a macro, you should
use the convention for all symbols that are local to that macro.

By convention, HLA programmers reserve all identifiers beginning with two underscores for defining
private data in classes, records, and other declaration sections. If you’re using a class (or other structure) and
some if its identifiers begin with two underscores, this is your hint that these fields are private to that class
and subject to change. You should never directly access such fields. When you’re defining your own classes,
you should employ this convention to warn others when you’re defining private data to that class.

Identifiers that begin with a single underscore have two uses. First, some languages and calling conven-
tions (most notably, C) prepend an underscore to all external names. Therefore, it is common to use reserve
symbols that begin with a single underscore for external linkage. The second use is closely related to the
first – HLA programmers conventionally use identifiers beginning with a single underscore as a shadow
name. Consider the following linkage to an external procedure written in C:

procedure _externalCFunc(parm2:int32; parm1:int32); external;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1401

Appendix C Appendices
macro externalCFunc(p1, p2);

_externalCFunc(p2, p1);

endmacro;

The C compiler exports the name “_externalCFunc” for the C function that is actually named “external-
CFunc” inside the C code. Of course, inside our HLA code we would like to use the C name, not the
exported name. We could easily achieve this using the following external definition:

procedure externalCFunc(parm2:int32; parm1:int32); external(“_externalCFunc”);

The only catch is that we’d have to always remember to put the parameters in the reverse order (to match C’s
calling convention). Savvy HLA programmers use a macro to swap the parameters as in the previous exam-
ple. They use the exported C name as a shadow name of the function and then write the macro that swaps
the function’s parameters as the real name.

You can use shadow names for all sorts of different purposes, not just for linkage to C functions. For
example, the chapter on macros in this text has given examples of function overloading that uses a macro
with the overloaded function name and shadow names for the actual functions that implement each of the
overloaded calls. The convention is to use a leading underscore on all the shadow function (and other
object) names.

1.7.2 Instructions, Directives, and Pseudo-Opcodes

Your choice of assembly language sequences, the instructions themselves, and your choice of directives
and pseudo-opcodes can have a big impact on the readability of your programs. The following subsections
discuss these problems.

1.7.2.1 Choosing the Best Instruction Sequence

Like any language, you can solve a given problem using a wide variety of solutions involving different
instruction sequences. As a continuing example, consider (again) the following code sequence:

 mov(SignedValue, ax); // Get value to check.
 cwd(); // DX = FFFF if neg, 0000 otherwise.
 add($ffff, ax); // Carry=0 if ax is zero, one otherwise.
 rcl(1, dx); // DX = FFFF if AX is neg, 0 if ax=0,
 mov(dx, Signum); // 1 if ax>0.

Now consider the following code sequence that also computes the signum function:

 mov(SignedValue, ax); // Get value to check.
 cmp(ax, 0); // Check the sign.
 je GotSigum; // We’re done if it’s zero
 mov(1, ax); // Assume it’s positive.
 jns GotSignum; // We’re done if it was positive.
 neg(ax); // 1 -> -1, we’ve got a negative value.
GotSignum: mov(ax, Signum);

Yes, the second version is longer and slower. However, an average person can read the instruction
sequence and figure out what it’s doing; hence the second version is much easier to read than the first.
Which sequence is best? Unless speed or space is an extremely critical factor and you can show that this
routine is in the critical execution path, then the second version is obviously better. There is a time and a
place for tricky assembly code; however, it’s rare that you would need to pull tricks like this throughout
your code.
Page 1402 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
So how does one choose appropriate instruction sequences when there are many possible ways to
accomplish the same task? The best way is to ensure that you have a choice. Although there are many dif-
ferent ways to accomplish an operation, few people bother to consider any instruction sequence other than
the first one that comes to their mind. Unfortunately, the "best" instruction sequence is rarely the first
instruction sequence that comes to most people’s minds11. In order to make a choice, you have to have a
choice to make. That means you should create at least two different code sequences for a given operation if
there is ever a question concerning the readability of your code. Once you have at least two versions, you
can choose between them based on your needs at hand. While it is impractical to "write your program
twice" so that you’ll have a choice for every sequence of instructions in the program, you should apply this
technique to particularly bothersome code sequences.

Guideline: For particularly difficult to understand sections of code, try solving the problem several differ-
ent ways. Then choose the most easily understood solution for actual incorporation into your
program.

One problem with the above suggestion is that you’re often too close to your own work to make deci-
sions like "this code isn’t too hard to understand, I don’t have to worry about it." It is often a good idea to
have someone else review your code and point out those sections they find hard to understand12.

Guideline: Take advantage of reviews to determine those sections of code in your program that may need
to be rewritten to make them easier to understand.

1.7.2.2 Control Structures

Ralph Griswold13 once said (roughly) the following about C, Pascal, and Icon: "C makes it easy to write
hard to read programs14, Pascal makes it hard to write hard to read programs, and Icon makes it easy to write
easy to read programs." Assembly language can be summed up like this: "Assembly language makes it hard
to write easy to read programs and easy to write hard to read programs." It takes considerable discipline to
write readable assembly language programs; but it can be done. Sadly, most assembly code you find today
is extremely poorly written. Indeed, that state of affairs is the whole reason for this document. Once you get
past issues like comments and naming conventions, issues like program control flow and data structure
design have among the largest impacts on program readability. One need look no farther than the public
domain code on the Internet, or at Microsoft’s sample code for that matter15, to see abundant examples of
poorly written assembly language code.

Fortunately, with a little discipline it is possible to write readable assembly language programs. Partic-
ularly in HLA which was designed from the beginning to allow the easy creation of readable code. How you
design your control structures can have a big impact on the readability of your programs. The best way to do
this can be summed up in two words: avoid spaghetti.

Spaghetti code is the name given to a program that has a large number of intertwined branches and
branch targets within a code sequence. Consider the following example:

 jmp L1;
L1: mov(0, ax ;
 jmp L2;
L3: mov(1, ax);
 jmp L2;
L4: mov(-1, ax);
 jmp L2;
L0: mov(x, ax);
 cmp(ax, 0);

11. This is true regardless of what metric you use to determine the "best" code sequence.
12. Of course, if the program is a class assignment, you may want to check your instructor’s cheating policy before showing
your work to your classmates!
13. The designer of the SNOBOL4 and Icon programming languages.
14. Note that this does not infer that it is hard to write easy to read C programs. Only that if one is sloppy, one can easily
write something that is near impossible to understand.
15. Okay, this is a cheap shot. In fact, most of the assembly code on this planet is poorly written.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1403

Appendix C Appendices
 je L1;
 jns L3;
 jmp L4;
L2: mov(ax, y);

This code sequence, by the way, is our good friend the Signum function. It takes a few moments to fig-
ure this out because as you manually trace through the code you find yourself spending more time following
jumps around than you do looking at code that computes useful results. Now this is a rather extreme exam-
ple, but it is also fairly short. A longer code sequence code become just as obfuscated with even fewer
branches all over the place.

Spaghetti code is given this name because it resembles a bowl of spaghetti. That is, if we consider a
control path in the program a spaghetti noodle, spaghetti code contains lots of intertwined branches into and
out of different sections of the program. Needless to say, most spaghetti programs are difficult to under-
stand, generally contain lots of bugs, and are often inefficient (don’t forget that branches are among the slow-
est executing instructions on most modern processors).

So how to we resolve this? Easy by physically adopting structured programming techniques in assem-
bly language code. Of course, “pure” 80x86 assembly language doesn’t provide IF..THEN..ELSE..ENDIF,
WHILE..ENDWHILE, REPEAT..UNTIL, and other such statements, but we can certainly simulate them if
you insist on writing “pure” assembly code16. Consider the following high level sequence:

 if(expression) then

 << statements to execute if expression is true >>

 else

 << statements to execute if expression is false >>

 endif;

Almost any high level language programmer can figure out what this type of statement will do. Assem-
bly language programmers should leverage this knowledge by attempting to organize their code so it takes
this same form. Specifically, the assembly language version should look something like the following:

 << Assembly code to compute value of expression >>

 JNxx ElsePart ;xx is the opposite condition we want to check.

 << Assembly code corresponding to the then portion >>

 jmp AroundElsePart

ElsePart:
 << Assembly code corresponding to the else portion >>

AroundElsePart:

For an concrete example, consider the following:

 if(ax = y) then

 write(’ax = y’);

 else

 write(’ax <> y’);

16. We’ll consider the HLA high level control statements elsewhere in this appendix.
Page 1404 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
 endif;

; Corresponding Assembly Code:

 mov(x, ax);
 cmp(ax, y);
 jne ElsePart;

 stdout.put("x = y",nl);
 jmp IfDone;

ElsePart: stdout.put("x<>y",nl);
IfDone:

While this may seem like the obvious way to organize an IF..THEN.ELSE..ENDIF statement, it is sur-
prising how many people would naturally assume they’ve got to place the ELSE part somewhere else in the
program as follows:

 mov(x, ax);
 cmp(ax, y);
 jne ElsePart;

 stdout.put("x = y", nl);
IfDone:
 .
 .
 .
ElsePart: stdout.put("x <> y", nl);
 jmp IfDone;

This code organization makes the program more difficult to follow. Most programmers have a HLL
background and despite a current assignment, they still work mostly in HLLs. Assembly language programs
will be more readable if they mimic the HLL control constructs17.

For similar reasons, you should attempt to organize your assembly code that simulates WHILE loops,
REPEAT..UNTIL loops, FOR loops, etc., so that the code resembles the HLL code (for example, a WHILE
loop should physically test the condition at the beginning of the loop with a jump at the bottom of the loop).

Rule: Attempt to design your programs using HLL control structures. The organization of the
assembly code that you write should physically resemble the organization of some correspond-
ing HLL program.

Assembly language offers you the flexibility to design arbitrary control structures. This flexibility is
one of the reasons good assembly language programmers can write better code than that produced by a com-
piler (that can only work with high level control structures). However, keep in mind that a fast program
doesn’t have to contain the tightest possible code in every sequence. Execution speed is nearly irrelevant in
most parts of the program. Sacrificing readability for speed isn’t a big win in most of the program.

Guideline: Avoid control structures that don’t easily map to well-known high level language control struc-
tures in your assembly language programs. Deviant control structures should only appear in
small sections of code when efficiency demands their use.

1.7.2.3 Instruction Synonyms

HLA defines several synonyms for common instructions. This is especially true for the conditional
jump and "set on condition code" instructions. For example, JA and JNBE are synonyms for one another.

17. Sometimes, for performance reasons, the code sequence above is justified since straight-line code executes faster than
code with jumps. If the program rarely executes the ELSE portion of an if statement, always having to jump over it could be
a waste of time. But if you’re optimizing for speed, you will often need to sacrifice readability.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1405

Appendix C Appendices
Logically, one could use either instruction in the same context. However, the choice of synonym can have an
impact on the readability of a code sequence. To see why, consider the following:

 if(x <= y) then
 << true statements>>
 else
 << false statements>>
 endif

// Assembly code:

 mov(x, ax);
 cmp(ax, y);
 ja ElsePart;

 << true code >>

 jmp IfDone;

ElsePart: << false code >>
IfDone:

When someone reads this program, the "JA" statement skips over the true portion. Unfortunately, the
"JA" instruction gives the illusion we’re checking to see if something is greater than something else; in actu-
ality, we’re testing to see if some condition is less than or equal, not greater than. As such, this code
sequence hides some of the original intent of high level algorithm. One solution is to swap the false and true
portions of the code:

 mov(x, ax);
 cmp(ax, y
 jbe ThenPart;

 << false code >>

 jmp IfDone;

ThenPart: << true code >>
IfDone:

This code sequence uses the conditional jump that matches the high level algorithm’s test (less than or
equal). However, this code is now organized in a non-standard fashion (it’s an IF..ELSE..THEN..ENDIF
statement). This hurts the readability more than using the proper jump helped it. Now consider the follow-
ing solution:

 mov(x, ax);
 cmp(ax, y);
 jnbe ElsePart;

 << true code >>

 jmp IfDone;

ElsePart: << false code >>
IfDone:

This code is organized in the traditional IF..THEN..ELSE..ENDIF fashion. Instead of using JA to skip
over the then portion, it uses JNBE to do so. This helps indicate, in a more readable fashion, that the code
falls through on below or equal and branches if it is not below or equal. Since the instruction (JNBE) is eas-
ier to relate to the original test (<=) than JA, this makes this section of code a little more readable.

Rule: When skipping over some code because some condition has failed (e.g., you fall into the code
because the condition is successful), always use a conditional jump of the form "JNxx" to skip
Page 1406 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
over the code section. For example, to fall through to a section of code if one value is less than
another, use the JNL or JNB instruction to skip over the code. Of course, if you are testing a
negative condition (e.g., testing for equality) then use an instruction of the form Jx to skip over
the code.

1.8 Data Types

Prior to the arrival of MASM from Microsoft for the 80x86, most assemblers provided very little capa-
bility for declaring and allocated complex data types. Generally, you could allocate bytes, words, and other
primitive machine structures. You could also set aside a block of bytes. As high level languages improved
their ability to declare and use abstract data types, assembly language fell farther and farther behind. Then
MASM came along and changed all that18. HLA expands the ability to declare abstract data types even far-
ther than MASM. Unfortunately, man new assembly language programmers don’t bother learning and using
these data typing facilities because they’re already overwhelmed by assembly language and want to mini-
mize the number of things they’ve got to learn. This is really a shame because HLA’s data typing is one of
the biggest improvements to assembly language since using mnemonics rather than binary opcodes for
machine level programming.

Note that HLA is a "high-level" assembler. It does things assemblers for other chips won’t do like
checking the types of operands and reporting errors if there are mismatches. Some people, who are used to
assemblers on other machines find this annoying. However, it’s a great idea in assembly language for the
same reason it’s a great idea in HLLs19. These features have one other beneficial side-effect: they help other
understand what you’re trying to do in your programs. It should come as no surprise, then, that this style
guide will encourage the use of these features in your assembly language programs.

1.8.1 Declaring Structures in Assembly Language

HLA provides an excellent facility for declaring and using records and unions; for some reason, many
assembly language programmers ignore them and manually compute offsets to fields within structures in
their code. Not only does this produce hard to read code, the result is nearly unmaintainable as well.

Rule: When a structure data type is appropriate in an assembly language program, declare the corre-
sponding structure in the program and use it. Do not compute the offsets to fields in the struc-
ture manually, use the standard structure "dot-notation" to access fields of the structure.

One problem with using structures occurs when you access structure fields indirectly (i.e., through a
pointer). Indirect access always occurs through a register. Once you load a pointer value into a register, the
program doesn’t readily indicate what pointer you are using. This is especially true if you use the indirect
access several times in a section of code without reloading the register(s). One solution is to use a text con-
stant to create a special symbol that expands as appropriate. Consider the following code:

type
s:record

a: int32;
b: int32;

endrecord;
.
.
.

static
r: s;

18. Okay, MASM wasn’t the first, but such techniques were not popularized until MASM appeared.
19. Of course, MASM gives you the ability to override this behavior when necessary. Therefore, the complaints from
"old-hand" assembly language programmers that this is insane are groundless.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1407

Appendix C Appendices
ptr2r: pointer to s;
.
.
.

mov(ptr2r, edi);
mov((type s [edi]).a, eax); // No indication this is ptr2r!

.

.

.
mov(ebx, (type s [edi).b); // Still no indication.

Now consider the following:

type
s:record

a: int32;
b: int32;

endrecord;

sptr : pointer to s;
.
.
.

static
r: s;
ptr2r: sptr := q;
?_r:text := (type s [edi])”;

.

.

.
mov(ptr2r, edi);
mov(_r.a, eax); // Now it’s a lot more clear that we’re using r.

.

.

.
mov(ebx, _r.b); // It’s still clear that we’re using r!

Note that the "_" symbol is a legal identifier character to HLA, hence "_r" is just another symbol. Of
course, you must always make sure to load the pointer into EDI when using the text constant above. If you
use several different registers to access the data that "r" points at, this trick may not make the code anymore
readable since you will need several text constants that all mean the same thing.
Page 1408 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set
The 80x86 Instruction Set Appendix D

The following three tables discuss the integer/control, floating point, and MMX instruction sets. This document uses the fol-
lowing abbreviations:

imm- A constant value, must be appropriate for the operand size.
imm8- An eight-bit immediate constant. Some instructions limit the range of this value to less than 0..255.
immL- A 16- or 32-bit immediate constant.
immH- A 16- or 32-bit immediate constant.
reg- A general purpose integer register.
reg8- A general purpose eight-bit register
reg16- A general purpose 16-bit register.
reg32- A general purpose 32-bit register.
mem- An arbitrary memory location using any of the available addressing modes.
mem16- A word variable using any legal addressing mode.
mem32- A dword variable using any legal addressing mode.
mem64- A qword variable using any legal addressing mode.
label- A statement label in the program.
ProcedureName-The name of a procedure in the program.

Instructions that have two source operands typically use the first operand as a source operand and the second operand as a
destination operand. For exceptions and other formats, please see the description for the individual instruction.

Table 1: 80x86 Integer and Control Instruction Set

Instruction Syntax Description

aaa() ASCII Adjust after Addition. Adjusts value in AL after a decimal addition operation.

aad() ASCII Adjust before Division. Adjusts two unpacked values in AX prior to a decimal division.

aam() ASCII Adjust AX after Multiplication. Adjusts the result in AX for a decimal mulitply.

aas() ASCII Adjust AL after Subtraction. Adjusts the result in AL for a decimal subtraction.

adc(imm, reg);
adc(imm, mem);
adc(reg, reg);
adc(reg, mem);
adc(mem, reg);

Add with carry. Adds the source operand plus the carry flag to the destination operand.

add(imm, reg);
add(imm, mem);
add(reg, reg);
add(reg, mem);
add(mem, reg);

Add. Adds the source operand to the destination operand.

and(imm, reg);
and(imm, mem);
and(reg, reg);
and(reg, mem);
and(mem, reg);

Bitwise AND. Logically ANDs the source operand into the destination operand. Clears the carry and
overflow flags and sets the sign and zero flags according to the result.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1409

AppendixD
bound(reg, mem);
bound(reg, immL, immH);

Bounds check. Reg and memory operands must be the same size and they must be 16 or 32-bit values.
This instruction compares the register operand against the value at the specified memory location and
raises an exception if the register’s value is less than the value in the memory location. If greater or
equal, then this instruction compares the register to the next word or dword in memory and raises an
exception if the register’s value is greater.

The second form of this instruction is an HLA extended syntax instruction. HLA encodes the constants
as two memory locations and then emits the first form of this instruction using these newly created
memory locations.
For the second form, the constant values must not exceed the 16-bit or 32-bit register size.

bsf(reg, reg);
bsr(mem, reg);

Bit Scan Forward. The two operands must be the same size and they must be 16-bit or 32-bit operands.
This instruction locates the first set bit in the source operand and stores the bit number into the destina-
tion operand and clears the zero flag. If the source operand does not have any set bits, then this instruc-
tion sets the zero flag and the dest register value is undefined.

bsr(reg, reg);
bsr(mem, reg);

Bit Scan Reverse. The two operands must be the same size and they must be 16-bit or 32-bit operands.
This instruction locates the last set bit in the source operand and stores the bit number into the destina-
tion operand and clears the zero flag. If the source operand does not have any set bits, then this instruc-
tion sets the zero flag and the dest register value is undefined.

bswap(reg32); Byte Swap. This instruction reverses the order of the bytes in a 32-bit register. It swaps bytes zero and
three and it swaps bytes one and two. This effectively converts data between the little endian (used by
Intel) and big endian (used by some other CPUs) formats.

bt(reg, mem);
bt(reg, reg);
bt(imm8, reg);
bt(imm8, mem);

Register and memory operands must be 16- or 32-bit values. Eight bit immediate values must be in the
range 0..15 for 16-bit registers, 0..31 for 32-bit registers, and 0..255 for memory operands. Source reg-
ister must be in the range 0..15 or 0..31 for registers. Any value is legal for the source register if the des-
tination operand is a memory location. This instruction copies the bit in the second operand, whose bit
position the first operand specifies, into the carry flag.

btc(reg, mem);
btc(reg, reg);
btc(imm8, reg);
btc(imm8, mem);

Bit test and complement. As above, except this instruction also complements the value of the specified
bit in the second operand. Note that this instruction first copies the bit to the carry flag, then comple-
ments it. To support atomic operations, the memory-based forms of this instruction are always “mem-
ory locked” and they always directly access main memory; the CPU does not use the cache for this
result. Hence, this instruction always operates at memory speeds (i.e., slow).

btr(reg, mem);
btr(reg, reg);
btr(imm8, reg);
btr(imm8, mem);

Bit test and reset. Same as BTC except this instruction tests and resets (clears) the bit.

bts(reg, mem);
bts(reg, reg);
bts(imm8, reg);
bts(imm8, mem);

Bit test and set. Same as BTC except this instructions tests and sets the bit.

call label;
call(label);
call(reg32);
call(mem32);

Pushes a return address onto the stack and calls the subroutine at the address specified. Note that the
first two forms are the same instruction. The other two forms provide indirect calls via a register or a
pointer in memory.

cbw(); Convert Byte to Word. Sign extends AL into AX.

cdq(); Convert double word to quadword. Sign extends EAX into EDX:EAX.

Table 1: 80x86 Integer and Control Instruction Set

Instruction Syntax Description
Page 1410 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set
clc(); Clear Carry.

cld(); Clear direction flag. When the direction flag is clear the string instructions increment ESI and/or EDI
after each operation.

cli(); Clear the interrupt enable flag.

cmc(); Complement (invert) Carry.

cmova(mem, reg);
cmova(reg, reg);
cmova(reg, mem);

Conditional Move (if above). Copies the source operand to the destination operand if the previous com-
parison found the left operand to be greater than (unsigned) the right operand (c=0, z=0). Register and
memory operands must be 16-bit or 32-bit values, eight-bit operands are illegal. Does not affect the
destination operand if the condition is false.

cmovae(mem, reg);
cmovae(reg, reg);
cmovae(reg, mem);

Conditional move if above or equal (see cmova for details).

cmovb(mem, reg);
cmovb(reg, reg);
cmovb(reg, mem);

Conditional move if below (see cmova for details).

cmovbe(mem, reg);
cmovbe(reg, reg);
cmovbe(reg, mem);

Conditional move if below or equal (see cmova for details).

cmovc(mem, reg);
cmovc(reg, reg);
cmovc(reg, mem);

Conditional move if carry set (see cmova for details).

cmove(mem, reg);
cmove(reg, reg);
cmove(reg, mem);

Conditional move if equal (see cmova for details).

cmovg(mem, reg);
cmovg(reg, reg);
cmovg(reg, mem);

Conditional move if (signed) greater (see cmova for details).

cmovge(mem, reg);
cmovge(reg, reg);
cmovge(reg, mem);

Conditional move if (signed) greater or equal (see cmova for details).

cmovl(mem, reg);
cmovl(reg, reg);
cmovl(reg, mem);

Conditional move if (signed) less than (see cmova for details).

cmovle(mem, reg);
cmovle(reg, reg);
cmovle(reg, mem);

Conditional move if (signed) less than or equal (see cmova for details).

cmovna(mem, reg);
cmovna(reg, reg);
cmovna(reg, mem);

Conditional move if (unsigned) not greater (see cmova for details).

cmovnae(mem, reg);
cmovnae(reg, reg);
cmovnae(reg, mem);

Conditional move if (unsigned) not greater or equal (see cmova for details).

Table 1: 80x86 Integer and Control Instruction Set

Instruction Syntax Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1411

AppendixD
cmovnb(mem, reg);
cmovnb(reg, reg);
cmovnb(reg, mem);

Conditional move if (unsigned) not less than (see cmova for details).

cmovnbe(mem, reg);
cmovnbe(reg, reg);
cmovnbe(reg, mem);

Conditional move if (unsigned) not less than or equal (see cmova for details).

cmovnc(mem, reg);
cmovnc(reg, reg);
cmovnc(reg, mem);

Conditional move if no carry/carry clear (see cmova for details).

cmovne(mem, reg);
cmovne(reg, reg);
cmovne(reg, mem);

Conditional move if not equal (see cmova for details).

cmovng(mem, reg);
cmovng(reg, reg);
cmovng(reg, mem);

Conditional move if (signed) not greater (see cmova for details).

cmovnge(mem, reg);
cmovnge(reg, reg);
cmovnge(reg, mem);

Conditional move if (signed) not greater or equal (see cmova for details).

cmovnl(mem, reg);
cmovnl(reg, reg);
cmovnl(reg, mem);

Conditional move if (signed) not less than (see cmova for details).

cmovnle(mem, reg);
cmovnle(reg, reg);
cmovnle(reg, mem);

Conditional move if (signed) not less than or equal (see cmova for details).

cmovno(mem, reg);
cmovno(reg, reg);
cmovno(reg, mem);

Conditional move if no overflow / overflow flag = 0 (see cmova for details).

cmovnp(mem, reg);
cmovnp(reg, reg);
cmovnp(reg, mem);

Conditional move if no parity / parity flag = 0 / odd parity (see cmova for details).

cmovns(mem, reg);
cmovns(reg, reg);
cmovns(reg, mem);

Conditional move if no sign / sign flag = 0 (see cmova for details).

cmovnz(mem, reg);
cmovnz(reg, reg);
cmovnz(reg, mem);

Conditional move if not zero (see cmova for details).

cmovo(mem, reg);
cmovo(reg, reg);
cmovo(reg, mem);

Conditional move if overflow / overflow flag = 1 (see cmova for details).

cmovp(mem, reg);
cmovp(reg, reg);
cmovp(reg, mem);

Conditional move if parity flag = 1 (see cmova for details).

Table 1: 80x86 Integer and Control Instruction Set

Instruction Syntax Description
Page 1412 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set
cmovpe(mem, reg);
cmovpe(reg, reg);
cmovpe(reg, mem);

Conditional move if even parity / parity flag = 1(see cmova for details).

cmovpo(mem, reg);
cmovpo(reg, reg);
cmovpo(reg, mem);

Conditional move if odd parity / parity flag = 0 (see cmova for details).

cmovs(mem, reg);
cmovs(reg, reg);
cmovs(reg, mem);

Conditional move if sign flag = 1 (see cmova for details).

cmovz(mem, reg);
cmovz(reg, reg);
cmovz(reg, mem);

Conditional move if zero flag = 1 (see cmova for details).

cmp(imm, reg);
cmp(imm, mem);
cmp(reg, reg);
cmp(reg, mem);
cmp(mem, reg);

Compare. Compares the first operand against the second operand. The two operands must be the same
size. This instruction sets the condition code flags as appropriate for the condition jump and set instruc-
tions. This instruction does not change the value of either operand.

cmpsb();
repe.cmpsb();
repne.cmpsb();

Compare string of bytes. Compares the byte pointed at byte ESI with the byte pointed at by EDI and
then adjusts ESI and EDI by ±1 depending on the value of the direction flag. Sets the flags according to
the result. With the REPNE (repeat while not equal) flag, this instruction compares up to ECX bytes
until all the first byte it finds in the two string that are equal. With the REPE (repeat while equal) prefix,
this instruction compares two strings up to the first byte that is different. See the chapter on the String
Instructions for more details.

cmpsw()
repe.cmpsw();
repne.cmpsw();

Compare a string of words. Like cmpsb except this instruction compares words rather than bytes and
adjusts ESI/EDI by ±2.

cmpsd()
repe.cmpsd();
repne.cmpsd();

Compare a string of double words. Like cmpsb except this instruction compares double words rather
than bytes and adjusts ESI/EDI by ±4.

cmpxchg(reg, mem);
cmpxchg(reg, reg);

Reg and mem must be the same size. They can be eight, 16, or 32 bit objects. This instruction compares
the value in the accumulator (al, ax, or eax) against the second operand. If the two values are equal, this
instruction copies the source (first) operand to the destination (second) operand. Otherwise, this
instruction copies the second operand into the accumulator.

cmpxchg8b(mem64); Compares the 64-bit value in EDX:EAX with the memory operand. If the values are equal, then this
instruction stores the 64-bit value in ECX:EBX into the memory operand and sets the zero flag. Other-
wise, this instruction copies the 64-bit memory operand into the EDX:EAX registers and clears the
zero flag.

cpuid(); CPU Identification. This instruction identifies various features found on the different Pentium proces-
sors. See the Intel documentation on this instruction for more details.

cwd(); Convert Word to Double. Sign extends AX to DX:AX.

cwde(); Convert Word to Double Word Extended. Sign extends AX to EAX.

daa(); Decimal Adjust after Addition. Adjusts value in AL after a decimal addition.

Table 1: 80x86 Integer and Control Instruction Set

Instruction Syntax Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1413

AppendixD
das(); Decimal Adjust after Subtraction. Adjusts value in AL after a decimal subtraction.

dec(reg);
dec(mem);

Decrement. Subtracts one from the destination memory location or register.

div(reg);
div(reg8, ax);
div(reg16, dx:ax);
div(reg32, edx:eax);
div(mem);
div(mem8, ax);
div(mem16, dx:ax);
div(mem32, edx:eax);
div(imm8, ax);
div(imm16, dx:ax);
div(imm32, edx:eax);

Divides accumulator or extended accumulator (dx:ax or edx:eax) by the source operand. Note that the
instructions involving an immediate operand are HLA extensions. HLA creates a memory object hold-
ing these constants and then divides the accumulator or extended accumulator by the contents of this
memory location. Note that the accumulator operand is twice the size of the source (divisor) operand.
This instruction computes the quotient and places it in AL, AX, or EAX and it computes the remainder
and places it in AH, DX, or EDX (depending on the divisor’s size). This instruction raises an exception
if you attempt to divide by zero or if the quotient doesn’t fit in the destination register (AL, AX, or
EAX).

This instruction performs an unsigned division.

enter(imm16, imm8); Enter a procedure. Creates an activation record for a procedure. The first constant specifies the number
of bytes of local variables. The second parameter (in the range 0..31) specifies the static nesting level
(lex level) of the procedure.

idiv(reg);
idiv(reg8, ax);
idiv(reg16, dx:ax);
idiv(reg32, edx:eax);
idiv(mem);
idiv(mem8, ax);
idiv(mem16, dx:ax);
idiv(mem32, edx:eax);
idiv(imm8, ax);
idiv(imm16, dx:ax);
idiv(imm32, edx:eax);

Divides accumulator or extended accumulator (dx:ax or edx:eax) by the source operand. Note that the
instructions involving an immediate operand are HLA extensions. HLA creates a memory object hold-
ing these constants and then divides the accumulator or extended accumulator by the contents of this
memory location. Note that the accumulator operand is twice the size of the source (divisor) operand.
This instruction computes the quotient and places it in AL, AX, or EAX and it computes the remainder
and places it in AH, DX, or EDX (depending on the divisor’s size). This instruction raises an exception
if you attempt to divide by zero or if the quotient doesn’t fit in the destination register (AL, AX, or
EAX).

This instruction performs a signed division. The condition code bits are undefined after executing this
instruction.

imul(reg);
imul(reg8, al);
imul(reg16, ax);
imul(reg32, eax);
imul(mem);
imul(mem8, al);
imul(mem16, ax);
imul(mem32, eax);
imul(imm8, al);
imul(imm16, ax);
imul(imm32, eax);

Multiplies the accumulator (AL, AX, or EAX) by the source operand. The source operand will be the
same size as the accumulator. The product produces an operand that is twice the size of the two oper-
ands with the product winding up in AX, DX:AX, or EDX:EAX. Note that the instructions involving
an immediate operand are HLA extensions. HLA creates a memory object holding these constants and
then multiplies the accumulator by the contents of this memory location.

This instruction performs a signed multiplication. Also see INTMUL.
This instruction sets the carry and overflow flag if the H.O. portion of the result (AH, DX, EDX) is not
a sign extension of the L.O. portion of the product. The sign and zero flags are undefined after the exe-
cution of this instruction.

in(imm8, al);
in(imm8, ax);
in(imm8, eax);
in(dx, al);
in(dx, ax);
in(dx, eax);

Input data from a port. These instructions read a byte, word, or double word from an input port and
place the input data into the accumulator register. Immediate port constants must be in the range 0..255.
For all other port addresses you must use the DX register to hold the 16-bit port number. Note that this
is a privileged instruction that will raise an exception in many Win32 Operating Systems.

inc(reg);
inc(mem);

Increment. Adds one to the specified memory or register operand. Does not affect the carry flag. Sets
the overflow flag if there was signed overflow. Sets the zero and sign flags according to the result. Note
that Z=1 indicates an unsigned overflow.

Table 1: 80x86 Integer and Control Instruction Set

Instruction Syntax Description
Page 1414 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set
int(imm8); Call an interrupt service routine specified by the immediate operand. Note that Windows does not use
this instruction for system calls, so you will probably never use this instruction under Windows. Note
that INT(3); is the user breakpoint instruction (that raises an appropriate exception). INT(0) is the
divide error exception. INT(4) is the overflow exception. However, it’s better to use the HLA RAISE
statement than to use this instruction for these exceptions.

intmul(imm, reg);
intmul(imm, reg, reg);
intmul(imm, mem, reg);
intmul(reg, reg);
intmul(mem, reg);

Integer mutiply. Multiplies the destination (last) operand by the source operand (if there are only two
operands; or it multiplies the two source operands together and stores the result in the destination oper-
and (if there are three operands). The operands must all be 16 or 32-bit operands and they must all be
the same size.

This instruction computes a signed product. This instruction sets the overflow and carry flags if there
was a signed arithmetic overflow; the zero and sign flags are undefined after the execution of this
instruction.

into(); Raises an exception if the overflow flag is set. Note: the HLA pseudo-variable “@into” controls the
code generation for this instruction. If @into is false, HLA ignores this instruction; if @into is true
(default), then HLA emits the object code for this instruction. Note that if the overflow flag is set, this
instruction behaves like the “INT(4);” instruction.

iret(); Return from an interrupt. This instruction is not generally usable from an application program. It is for
use in interrupt service routines only.

ja label; Conditional jump if (unsigned) above. You would generally use this instruction immediately after a
CMP instruction to test to see if one operand is greater than another using an unsigned comparison.
Control transfers to the specified label if this condition is true, control falls through to the next instruc-
tion if the condition is false.

jae label; Conditional jump if (unsigned) above or equal. See JA above for details.

jb label; Conditional jump if (unsigned) below. See JA above for details.

jbe label; Conditional jump if (unsigned) below or equal. See JA above for details.

jc label; Conditional jump if carry is one. See JA above for details.

je label; Conditional jump if equal. See JA above for details.

jg label; Conditional jump if (signed) greater. See JA above for details.

jge label; Conditional jump if (signed) greater or equal. See JA above for details.

jl label; Conditional jump if (signed) less than. See JA above for details.

jle label; Conditional jump if (signed) less than or equal. See JA above for details.

jna label; Conditional jump if (unsigned) not above. See JA above for details.

jnae label; Conditional jump if (unsigned) not above or equal. See JA above for details.

jnb label; Conditional jump if (unsigned) below. See JA above for details.

jnbe label; Conditional jump if (unsigned) below or equal. See JA above for details.

jnc label; Conditional jump if carry flag is clear (no carry). See JA above for details.

jne label; Conditional jump if not equal. See JA above for details.

jng label; Conditional jump if (signed) not greater. See JA above for details.

Table 1: 80x86 Integer and Control Instruction Set

Instruction Syntax Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1415

AppendixD
jnge label; Conditional jump if (signed) not greater or equal. See JA above for details.

jnl label; Conditional jump if (signed) not less than. See JA above for details.

jnle label; Conditional jump if (signed) not less than or equal. See JA above for details.

jno label; Conditional jump if no overflow (overflow flag = 0). See JA above for details.

jnp label; Conditional jump if no parity/parity odd (parity flag = 0). See JA above for details.

jns label; Conditional jump if no sign (sign flag = 0). See JA above for details.

jnz label; Conditional jump if not zero (zero flag = 0). See JA above for details.

jo label; Conditional jump if overflow (overflow flag = 1). See JA above for details.

jp label; Conditional jump if parity (parity flag = 1). See JA above for details.

jpe label; Conditional jump if parity even (parity flag = 1). See JA above for details.

jpo label; Conditional jump if parity odd (parity flag = 0). See JA above for details.

js label; Conditional jump if sign (sign flag = 0). See JA above for details.

jz label; Conditional jump if zero (zero flag = 0). See JA above for details.

jcxz label; Conditional jump if CX is zero. See JA above for details. Note: the range of this branch is limited to
±128 bytes around the instruction. HLA does not check for this (MASM reports the error when it
assembles HLA’s output). Since this instruction is slower than comparing CX to zero and using JZ, you
probably shouldn’t even use this instruction. If you do, be sure that the target label is nearby in your
code.

jecxz label; Conditional jump if ECX is zero. See JA above for details. Note: the range of this branch is limited to
±128 bytes around the instruction. HLA does not check for this (MASM reports the error when it
assembles HLA’s output). Since this instruction is slower than comparing ECX to zero and using JZ,
you probably shouldn’t even use this instruction. If you do, be sure that the target label is nearby in
your code.

jmp label;
jmp(label);
jmp ProcedureName;
jmp(mem32);
jmp(reg32);

Jump Instruction. This instruction unconditionally transfers control to the specified destination oper-
and. If the operand is a 32-bit register or memory location, the JMP instruction transfers control to the
instruction whose address appears in the register or the memory location.

Note: you should execise great care when jumping to a procedure label. The JMP instruction does not
push a return address or any other data associated with a procedure’s activation record. Hence, when
the procedure attempts to return it will use data on the stack that was pushed prior to the execution of
the JMP instruction; it is your responsibility to ensure such data is present on the stack when using JMP
to transfer control to a procedure.

lahf(); Load AH from FLAGs. This instruction loads the AH register with the L.O. eight bits of the FLAGs
register. See SAHF for the flag layout.

lea(reg32, mem);
lea(mem, reg32);

Load Effective Address. These instructions, which are both semantically identical, load the 32-bit reg-
ister with the address of the specified memory location. The memory location does not need to be a
double word object. Note that there is never any ambiguity in this instruction since the register is
always the destination operand and the memory location is always the source.

Table 1: 80x86 Integer and Control Instruction Set

Instruction Syntax Description
Page 1416 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set
leave(); Leave procedure. This instruction cleans up the activation record for a procedure prior to returning
from the procedure. You would normally use this instruction to clean up the activation record created
by the ENTER instruction.

lock prefix The lock prefix assets a special pin on the processor during the execution of the following instruction.
In a multiprocessor environment, this ensures that the processor has exclusive use of a shared memory
object while the instruction executes. The lock prefix may only precede one of the folowing instruc-
tions:
ADD, ADC, AND BTC, BTR, BTS, CMPXCHG, DEC, INC NEG, NOT, OR, SBB, SUB, XOR,
XADD, and XCHG. Furthermore, this prefix is only valid for the forms that have a memory operand as
their destination operand. Any other instruction or addressing mode will raise an undefined opcode
exception.

HLA does not directly support the LOCK prefix on these instructions (if it did, you would normally
write instructions like “lock.add();” and “lock.bts();” However, you can easily add this instruction to
HLA’s instruction set through the use of the following macro:

macro lock;
byte $F0; // $F0 is the opcode for the lock prefix.
endmacro;

To use this macro, simply precede the instruction you wish to lock with an invocation of the macro,
e.g.,

lock add(al, mem);

Note that a LOCK prefix will dramatically slow an instruction down since it must access main memory
(i.e., no cache) and it must negotiate for the use of that memory location with other processors in a mul-
tiprocessor system. The LOCK prefix has very little value in single processor systems.

lodsb(); Load String Byte. Loads AL with the byte whose address appears in ESI. Then it increments or decre-
ments ESI by one depending on the value of the direction flag. See the chapter on string instructions for
more details. Note: HLA does not allow the use of any repeat prefix with this instruction.

lodsw(); Load String Word. Loads AX from [ESI] and adds ±2 to ESI. See LODSB for more details.

loadsd(); Load String Double Word. Loads EAX from [ESI] and adds ±4 to ESI. See LODSB for more details.

loop label; Decrements ECX and jumps to the target label if ECX is not zero. See JA for more details. Like JECX,
this instruction is limited to a range of ±128 bytes around the instruction and only MASM will catch
the range error. Since this instruction is actually slower than a DEC/JNZ pair, you should probably
avoid using this instruction.

loope label; Check the zero flag, decrement ECX, and branch if the zero flag was set and ECX did not become zero.
Same limitations as LOOP. See LOOP above for details.

loopne label; Check the zero flag, decrement ECX, and branch if the zero flag was clear and ECX did not become
zero. Same limitations as LOOP. See LOOP above for details.

loopnz label; Same instruction at LOOPNE.

loopz label; Same instruction as LOOPZ.

Table 1: 80x86 Integer and Control Instruction Set

Instruction Syntax Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1417

AppendixD
mov(imm, reg);
mov(imm, mem);
mov(reg, reg);
mov(reg, mem);
mov(mem, reg);

mov(mem16, mem16);
mov(mem32, mem32);

Move. Copies the data from the source (first) operand to the destination (second) operand. The oper-
ands must be the same size. Note that the memory to memory moves are an HLA extension. HLA com-
piles these statements into a push(source)/pop(dest) instruction pair.

movsb();
rep.movsb();

Move string of bytes. Copies the byte pointed at byte ESI to the byte pointed at by EDI and then adjusts
ESI and EDI by ±1 depending on the value of the direction flag. With the REP (repeat) prefix, this
instruction moves ECX bytes. See the chapter on the String Instructions for more details.

movsw();
rep.movsw();

Move string of words. Like MOVSB above except it copies words and adjusts ESI/EDI by ±2.

movsd();
rep.movsd();

Move string of words. Like MOVSB above except it copies double words and adjusts ESI/EDI by ±4.

movsx(reg, reg);
movsx(mem, reg);

Move with sign extension. Copies the (smaller) source operand to the (larger) destination operand and
sign extends the value to the size of the larger operand. The source operand must be smaller than the
destination operand.

movzx(reg, reg);
movzx(mem, reg);

Move with zero extension. Copies the (smaller) source operand to the (larger) destination operand and
zero extends the value to the size of the larger operand. The source operand must be smaller than the
destination operand.

mul(reg);
mul(reg8, al);
mul(reg16, ax);
mul(reg32, eax);
mul(mem);
mul(mem8, al);
mul(mem16, ax);
mul(mem32, eax);
mul(imm8, al);
mul(imm16, ax);
mul(imm32, eax);

Multiplies the accumulator (AL, AX, or EAX) by the source operand. The source operand will be the
same size as the accumulator. The product produces an operand that is twice the size of the two oper-
ands with the product winding up in AX, DX:AX, or EDX:EAX. Note that the instructions involving
an immediate operand are HLA extensions. HLA creates a memory object holding these constants and
then multiplies the accumulator by the contents of this memory location.

This instruction performs a signed multiplication. Also see INTMUL. The carry and overflow flags are
cleared if the H.O. portion of the result is zero, they are set otherwise. The sign and zero flags are unde-
fined after this instruction.

neg(reg);
neg(mem);

Negate. Computes the two’s complement of the operand and leaves the result in the operand. This
instruction clears the carry flag if the result is zero, it sets the carry flag otherwise. It sets the overflow
flag if the original value was the smallest possible negative value (which has no positive counterpart). It
sets the sign and zero flags according to the result obtained.

nop(); No Operation. Consumes space and time but does nothing else. Same instruction as “xchg(eax, eax);”

not(reg);
not(mem);

Bitwise NOT. Inverts all the bits in its operand. Note: this instruction does not affect any flags.

or(imm, reg);
or(imm, mem);
or(reg, reg);
or(reg, mem);
or(mem, reg);

Bitwise OR. Logically ORs the source operand with the destination operand and leaves the result in the
destination. The two operands must be the same size. Clears the carry and overflow flags and sets the
sign and zero flags according to the result.

Table 1: 80x86 Integer and Control Instruction Set

Instruction Syntax Description
Page 1418 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set
out(al, imm8);
out(ax, imm8);
out(eax, imm8);
out(al, dx);
out(ax, dx);
out(eax, dx);

Outputs the accumulator to the specified port. See the IN instruction for limitations under Win32.

pop(reg);
pop(mem);

Pop a value off the stack. Operands must be 16 or 32 bits.

popa(); Pops all the 16-bit registers off the stack. The popping order is DI, SI, BP, SP, BX, DX, CX, AX.

popad(); Pops all the 32-bit registers off the stack. The popping order is EDI, ESI, EBP, ESP, EBX, EDX, ECX,
EAX.

popf(); Pops the 16-bit FLAGS register off the stack. Note that in user (application) mode, this instruction
ignores the interrupt disable flag value it pops off the stack.

popfd(); Pops the 32-bit EFLAGS register off the stack. Note that in user (application) mode, this instruction
ignores many of the bits it pops off the stack.

push(reg);
push(mem);

Pushes the specified 16-bit or 32-bit register or memory location onto the stack. Note that you cannot
push eight-bit objects.

pusha(); Pushes all the 16-bit general purpose registers onto the stack in the roder AX, CX, DX, BX, SP, BP, SI,
DI.

pushad(); Pushes all the 32-bit general purpose registers onto the stack in the roder EAX, ECX, EDX, EBX, ESP,
EBP, ESI, EDI.

pushd(imm);
pushd(reg);
pushd(mem);

Pushes the 32-bit operand on to the stack. Generally used to push constants or anonymous variables.
Note that this is a synonym for PUSH if you specify a register or typed memory operand.

pushf(); Pushes the value of the 16-bit FLAGS register onto the stack.

pushfd(); Pushes the value of the 32-bit FLAGS register onto the stack.

pushw(imm);
pushw(reg);
pushw(mem);

Pushes the 16-bit operand on to the stack. Generally used to push constants or anonymous variables.
Note that this is a synonym for PUSH if you specify a register or typed memory operand.

rcl(imm, reg);
rcl(imm, mem);
rcl(cl, reg);
rcl(cl, mem);

Rotate through carry, left. Rotates the destination (second) operand through the carry the number of
bits specified by the first operand, shifting the bits from the L.O. to the H.O. position (i.e., rotate left).
The carry flag contains the last bit shifted into it. The overflow flag, which is valid only when the shift
count is one, is set if the sign changes as a result of the rotate. This instruction does not affect the other
flags. In particular, note that this instruction does not affect the sign or zero flags.

rcr(imm, reg);
rcr(imm, mem);
rcr(cl, reg);
rcr(cl, mem);

Rotate through carry, right. Rotates the destination (second) operand through the carry the number of
bits specified by the first operand, shifting the bits from the H.O. to the L.O. position (i.e., rotate right).
The carry flag contains the last bit shifted into it. The overflow flag, which is valid only when the shift
count is one, is set if the sign changes as a result of the rotate. This instruction does not affect the other
flags. In particular, note that this instruction does not affect the sign or zero flags.

rdtsc(); Read Time Stamp Counter. Returns in EDX:EAX the number of clock cycles that have transpired since
the last reset of the processor. You can use this instruction to time events in your code (i.e., to determine
whether one instruction sequence takes more time than another).

Table 1: 80x86 Integer and Control Instruction Set

Instruction Syntax Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1419

AppendixD
ret();
ret(imm16);

Return from subroutine. Pops a return address off the stack and transfers control to that location. The
second form of the instruction adds the immediate constant to the ESP register to remove the proce-
dure’s parameters from the stack.

rol(imm, reg);
rol(imm, mem);
rol(cl, reg);
rol(cl, mem);

Rotate left. Rotates the destination (second) operand the number of bits specified by the first operand,
shifting the bits from the L.O. to the H.O. position (i.e., rotate left). The carry flag contains the last bit
shifted into it. The overflow flag, which is valid only when the shift count is one, is set if the sign
changes as a result of the rotate. This instruction does not affect the other flags. In particular, note that
this instruction does not affect the sign or zero flags.

ror(imm, reg);
ror(imm, mem);
ror(cl, reg);
ror(cl, mem);

Rotate right. Rotates the destination (second) operand the number of bits specified by the first operand,
shifting the bits from the H.O. to the L.O. position (i.e., rotate right). The carry flag contains the last bit
shifted into it. The overflow flag, which is valid only when the shift count is one, is set if the sign
changes as a result of the rotate. This instruction does not affect the other flags. In particular, note that
this instruction does not affect the sign or zero flags.

sahf(); Store AH into FLAGs. Copies the value in AH into the L.O. eight bits of the FLAGs register. Note that
this instruction will not affect the interrupt disable flag when operating in user (application) mode.
Bit #7 of AH goes into the Sign flag, bit #6 goes into the zero flag, bit #4 goes into the auxilary carry
(BCD carry) flag, bit #2 goes into the parity flag, and bit #0 goes into the carry flag. This instruction
also clears bits one, three, and five of the FLAGs register. It does not affect any other bits in FLAGs or
EFLAGs.

sal(imm, reg);
sal(imm, mem);
sal(cl, reg);
sal(cl, mem);

Shift Arithmetic Left. Same instruction as SHL. See SHL for details.

sar(imm, reg);
sar(imm, mem);
sar(cl, reg);
sar(cl, mem);

Shift Arithmetic Right. Shifts the destination (second) operand to the right the specified number of bits
using an arithmetic shift right algorithm. The carry flag contains the value of the last bit shifted out of
the second operand. The overflow flag is only defined when the bit shift count is one, this instruction
always clears the overflow flag. The sign and zero flags are set according to the result.

sbb(imm, reg);
sbb(imm, mem);
sbb(reg, reg);
sbb(reg, mem);
sbb(mem, reg);

Subtract with borrow. Subtracts the source (first) operand and the carry from the destination (second)
operand. Sets the condition code bits according to the result it computes. This instruction sets the flags
the same way as the SUB instruction. See SUB for details.

scasb();
repe.scasb();
repne.scasb();

Scan string byte. Compares the value in AL against the byte that EDI points at and sets the flags accord-
ingly (same as the CMP instruction). Adds ±1 to EDI after the comparison (based on the setting of the
direction flag). With the REPE (repeat while equal) prefix, this instruction will scan through as many as
ECX bytes in memory as long as each byte that EDI points at is equal to the value in AL (i.e., it scans
for the first value not equal to the value in AL). With the REPNE prefix, this instruction scans through
as many as ECX bytes as long as the value that EDI points at is not equal to AL (i.e., it scans for the
first byte matching AL’s value). See the chapter on string instructions for more details.

scasw();
repe.scasw();
repne.scasw();

Scan String Word. Compares the value in AX against the word that EDI points at and set the flags. Adds
±2 to EDI after the operation. Also supports the REPE and REPNE prefixes (see SCASB above).

scasd();
repe.scasd();
repne.scasd();

Scan String Double word. Compares the value in EAX against the double word that EDI points at and
set the flags. Adds ±4 to EDI after the operation. Also supports the REPE and REPNE prefixes (see
SCASB above).

Table 1: 80x86 Integer and Control Instruction Set

Instruction Syntax Description
Page 1420 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set
seta(reg);
seta(mem);

Conditional set if (unsigned) above (Carry=0 and Zero=0). Stores a one in the destination operand if
the result of the previous comparison found the first operand to be greater than the second using an
unsigned comparison. Stores a zero into the destination operand otherwise.

setae(reg);
setae(mem);

Conditional set if (unsigned) above or equal (Carry=0). See SETA for details.

setb(reg);
setb(mem);

Conditional set if (unsigned) below (Carry=1). See SETA for details.

setbe(reg);
setbe(mem);

Conditional set if (unsigned) below or equal (Carry=1 or Zero=1). See SETA for details.

setc(reg);
setc(mem);

Conditional set if carry set (Carry=1). See SETA for details.

sete(reg);
sete(mem);

Conditional set if equal (Zero=1). See SETA for details.

setg(reg);
setg(mem);

Conditional set if (signed) greater (Sign=Overflow and Zero=0). See SETA for details.

setge(reg);
setge(mem);

Conditional set if (signed) greater or equal (Sign=Overflow or Zero=1). See SETA for details.

setl(reg);
setl(mem);

Conditional set if (signed) less than (Sign<>Overflow). See SETA for details.

setle(reg);
setle(mem);

Conditional set if (signed) less than or equal (Sign<>Overflow or Zero = 1). See SETA for details.

setna(reg);
setna(mem);

Conditional set if (unsigned) not above (Carry=1 or Zero=1). See SETA for details.

setnae(reg);
setnae(mem);

Conditional set if (unsigned) not above or equal (Carry=1). See SETA for details.

setnb(reg);
setnb(mem);

Conditional set if (unsigned) not below (Carry=0). See SETA for details.

setnbe(reg);
setnbe(mem);

Conditional set if (unsigned) not below or equal (Carry=0 and Zero=0). See SETA for details.

setnc(reg);
setnc(mem);

Conditional set if carry clear (Carry=0). See SETA for details.

setne(reg);
setne(mem);

Conditional set if not equal (Zero=0). See SETA for details.

setng(reg);
setng(mem);

Conditional set if (signed) not greater (Sign<>Overflow or Zero = 1). See SETA for details.

setnge(reg);
setnge(mem);

Conditional set if (signed) not greater than (Sign<>Overflow). See SETA for details.

setnl(reg);
setnl(mem);

Conditional set if (signed) not less than (Sign=Overflow or Zero=1). See SETA for details.

Table 1: 80x86 Integer and Control Instruction Set

Instruction Syntax Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1421

AppendixD
setnle(reg);
setnle(mem);

Conditional set if (signed) not less than or equal (Sign=Overflow and Zero=0). See SETA for details.

setno(reg);
setno(mem);

Conditional set if no overflow (Overflow=0). See SETA for details.

setnp(reg);
setnp(mem);

Conditional set if no parity (Parity=0). See SETA for details.

setns(reg);
setns(mem);

Conditional set if no sign (Sign=0). See SETA for details.

setnz(reg);
setnz(mem);

Conditional set if not zero (Zero=0). See SETA for details.

seto(reg);
seto(mem);

Conditional set if Overflow (Overflow=1). See SETA for details.

setp(reg);
setp(mem);

Conditional set if Parity (Parity=1). See SETA for details.

setpe(reg);
setpe(mem);

Conditional set if Parity even (Parity=1). See SETA for details.

setpo(reg);
setpo(mem);

Conditional set if Parity odd (Parity=0). See SETA for details.

sets(reg);
sets(mem);

Conditional set if sign set(Sign=1). See SETA for details.

setz(reg);
setz(mem);

Conditional set if zero (Zero=1). See SETA for details.

shl(imm, reg);
shl(imm, mem);
shl(cl, reg);
shl(cl, mem);

Shift left. Shifts the destination (second) operand to the left the number of bit positions specified by the
first operand. The carry flag contains the value of the last bit shifted out of the second operand. The
overflow flag is only defined when the bit shift count is one, this instruction sets overflow flag if the
sign changes as a result of this instruction’s execution. The sign and zero flags are set according to the
result.

shld(imm8, reg, reg);
shld(imm8, reg, mem);
shld(cl, reg, reg);
shld(cl, reg, mem);

Shift Left Double precision. The first operand is a bit count. The second operand is a source and the
third operand is a destination. These operands must be the same size and they must be 16- or 32-bit val-
ues (no eight bit operands). This instruction treats the second and third operands as a double precision
value with the second operand being the L.O. word or double word and the third operand being the
H.O. word or double word. The instruction shifts this double precision value the specified number of
bits and sets the flags in a manner identical to SHL. Note that this instruction does not affect the source
(second) operand’s value.

shr(imm, reg);
shr(imm, mem);
shr(cl, reg);
shr(cl, mem);

Shift right. Shifts the destination (second) operand to the right the number of bit positions specified by
the first operand. The last bit shifted out goes into the carry flag. The overflow flag is set if the H.O. bit
originally contained one. The sign flag is cleared and the zero flag is set if the result is zero.

Table 1: 80x86 Integer and Control Instruction Set

Instruction Syntax Description
Page 1422 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set
shrd(imm8, reg, reg);
shrd(imm8, reg, mem);
shrd(cl, reg, reg);
shrd(cl, reg, mem);

Shift Right Double precision. The first operand is a bit count. The second operand is a source and the
third operand is a destination. These operands must be the same size and they must be 16- or 32-bit val-
ues (no eight bit operands). This instruction treats the second and third operands as a double precision
value with the second operand being the H.O. word or double word and the third operand being the
L.O. word or double word. The instruction shifts this double precision value the specified number of
bits and sets the flags in a manner identical to SHR. Note that this instruction does not affect the source
(second) operand’s value.

stc(); Set Carry. Sets the carry flag to one.

std(); Set Direction. Sets the direction flag to one. If the direction flag is one, the string instructions decre-
ment ESI and/or EDI after each operation.

sti(); Set interrupt enable flag. Generally this instruction is not usable in user (application) mode. In kernel
mode it allows the CPU to begin processing interrupts.

stosb();
rep.stosb();

Store String Byte. Stores the value in AL at the location whose address EDI contains. Then in adds ±1
to EDI. If the REP prefix is present, this instruction repeats the number of times specified in the ECX
register. This instruction is useful for quickly clearing out byte arrays.

stosw();
rep.stosw();

Store String Word. Stores the value in AX at location [EDI] and then adds ±2 to EDI. See STOSB for
details.

stosd();
rep.stosd();

Store String Double word. Stores the value in EAX at location [EDI] and then adds ±4 to EDI. See
STOSB for details.

sub(imm, reg);
sub(imm, mem);
sub(reg, reg);
sub(reg, mem);
sub(mem, reg);

Subtract. Subtracts the first operand from the second operand and leaves the difference in the destina-
tion (second) operand. Sets the zero flag if the two values were equal (which produces a zero result),
sets the carry flag if there was unsigned overflow or underflow; sets the overflow if there was signed
overflow or underflow; sets the sign flag if the result is negative (H.O. bit is one). Note that SUB sets
the flags identically to the CMP instruction, so you can use conditional jump or set instructions after
SUB the same way you would use them after a CMP instruction.

test(imm, reg);
test(imm, mem);
test(reg, reg);
test(reg, mem);
test(mem, reg);

Test operands. Logically ANDs the two operands together and sets the flags but does not store the com-
puted result (i.e., it does not disturb the value in either operand). Always clears the carry and overflow
flags. Sets the sign flag if the H.O. bit of the computed result is one. Sets the zero flag if the computed
result is zero.

xadd(mem, reg);
xadd(reg, reg);

Adds the first operand to the second operand and then stores the original value of the second operand
into the first operand:

xadd(source, dest);

temp := dest
dest := dest + source
source := temp

This instruction sets the flags in a manner identical to the ADD instruction.

xchg(reg, reg);
xchg(reg, mem);
xchg(mem, reg);

Swaps the values in the two operands which must be the same size. Does not affect any flags.

xlat(); Translate. Computes AL := [EBX + AL]; That is, it uses the value in AL as an index into a lookup table
whose base address is in EBX. It copies the specified byte from this table into AL.

Table 1: 80x86 Integer and Control Instruction Set

Instruction Syntax Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1423

AppendixD
xor(imm, reg);
xor(imm, mem);
xor(reg, reg);
xor(reg, mem);
xor(mem, reg);

Exclusive-OR. Logically XORs the source operand with the destination operand and leaves the result
in the destination. The two operands must be the same size. Clears the carry and overflow flags and sets
the sign and zero flags according to the result.

Table 2: Floating Point Instruction Set

Instruction Description

f2xm1(); Compute 2x-1 in ST0, leaving the result in ST0.

fabs(); Computes the absolute value of ST0.

fadd(mem);
fadd(sti, st0);
fadd(st0, sti);

Add operand to st0 or add st0 to destination register (sti, i=0..7). If the operand is a memory operand, it
must be a real32 or real64 object.

faddp();
faddp(st0, sti);

With no operands, this instruction adds st0 to st1 and then pops st0 off the FPU stack.

fbld(mem80); This instruction loads a ten-byte (80-bit) packed BCD value from memory and converts it to a real80
object. This instruction does not check for an invalid BCD value. If the BCD number contains illegal
digits, the result is undefined.

fbstp(mem80); This instruction pops the real80 object off the top of the FPU stack, converts it to an 80-bit BCD value,
and stores the result in the specified memory location (tbyte).

fchs(); This instruction negates the floating point value on the top of the stack (st0).

fclex(); This instruction clears the floating point exception flags.

fcmova(sti, st0);a Floating point conditional move if above. Copies sti to st0 if c=0 and z=0 (unsigned greater than after a
CMP).

fcmovae(sti, st0); Floating point conditional move if above or equal. Copies sti to st0 if c=0 (unsigned greater or equal
after a CMP).

fcmovb(sti, st0); Floating point conditional move if below. Copies sti to st0 if c=1 (unsigned less than after a CMP).

fcmovbe(sti, st0); Floating point conditional move if below or equal. Copies sti to st0 if c=1 or z=1 (unsigned less than or
equal after a CMP).

fcmove(sti, st0); Floating point conditional move if equal. Copies sti to st0 if z=1 (equal after a CMP).

fcmovna(sti, st0); Floating point conditional move if not above. Copies sti to st0 if c=1 or z=1 (unsigned not above after a
CMP).

fcmovnae(sti, st0); Floating point conditional move if not above or equal. Copies sti to st0 if c=1 (unsigned not above or
equal after a CMP).

fcmovnb(sti, st0); Floating point conditional move if not below. Copies sti to st0 if c=0 (unsigned not below after a CMP).

Table 1: 80x86 Integer and Control Instruction Set

Instruction Syntax Description
Page 1424 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set
fcmovnbe(sti, st0); Floating point conditional move if not below or equal. Copies sti to st0 if c=0 and z=0 (unsigned not
below or equal after a CMP).

fcmovne(sti, st0); Floating point conditional move if not equal. Copies sti to st0 if z=0 (not equal after a CMP).

fcmovnu(sti, st0); Floating point conditional move if not unordered. Copies sti to st0 if the last floating point comparison
did not produce an unordered result (parity flag = 0).

fcmovu(sti, st0); Floating point conditional move if not unordered. Copies sti to st0 if the last floating point comparison
produced an unordered result (parity flag = 1).

fcom();
fcom(mem);
fcom(st0, sti);

Compares the value of ST0 with the operand and sets the floating point condition bits based on the
comparison. If the operand is a memory operand, it must be a real32 or real64 value. Note that to test
the condition codes you will have to copy the floating point status word to the FLAGs register; see the
chapter on floating point arithmetic for details.

fcomi(st0, sti);b Compares the value of ST0 with the second operand and sets the appropriate bits in the FLAGs register.

fcomip(st0, sti); Compares the value of ST0 with the second operand, sets the appropriate bits in the FLAGs register,
and then pops ST0 off the FPU stack.

fcomp();
fcomp(mem);
fcomp(sti);

Compares the value of ST0 with the operand, sets the floating point status bits, and then pops ST0 off
the floating point stack. With no operands, this instruction compares ST0 to ST1. Memory operands
must be real32 or real64 objects.

fcompp(); Compares ST0 to ST1 and then pops both values off the stack. Leaves the result of the comparison in
the floating point status register.

fcos(); Computes ST0 = cos(ST0).

fdecstp(); Rotates the items on the FPU stack.

fdiv(mem);
fdiv(sti, st0);
fdiv(st0, sti);

Floating point division. If a memory operand is present, it must be a real32 or real64 object; FDIV will
divide ST0 by the memory operand and leave the quotient in ST0. If the FDIV operands are registers,
FDIV diviides the destination (second) operand by the source (first) operand and leaves the result in the
destination operand.

fdivp();
fdivp(sti);

With no operands, this instruction divides ST1 by ST0, pops ST0, and replaces the new top of stack
with the quotient (replacing the previous ST1 value).

fdivr(mem);
fdivr(sti, st0);
fdivr(st0, sti);

Floating point divide with reversed operands. Like FDIV, but computes operand/ST0 rather than
ST0/operand.

fdivrp();
fdivrp(sti);

Floating point divide and pop, reversed. Like FDIVP except it computes operand/ST0 rather than
ST0/operand.

ffree(sti); Frees the specified floating point register.

fiadd(mem); Memory operand must be a 16-bit or 32-bit signed integer. This instruction converts the integer to a
real, pushes the value, and then executes FADDP();

ficom(mem); Floating point compare to integer. Memory operand must be an int16 or int32 object. This instruction
converts the memory operand to a real80 value and compares ST0 to this value and sets the status bits
in the floating point status register.

Table 2: Floating Point Instruction Set

Instruction Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1425

AppendixD
ficomp(mem); Floating point compare to integer and pop. Memory operand must be an int16 or int32 object. This
instruction converts the memory operand to a real80 value and compares ST0 to this value and sets the
status bits in the floating point status register. After the comparison, this instructions pop ST0 from the
FPU stack.

fidiv(mem); Floating point divide by integer. Memory operand must be an int16 or int32 object. These instructions
convert their integer operands to a real80 value and then divide ST0 by this value, leaving the result in
ST0.

fidivr(mem); Floating point divide by integer, reversed. Like FIDIV above, except this instruction computes
mem/ST0 rather than ST0/mem.

fild(mem); Floating point load integer. Mem operand must be an int16 or int32 object. This instructions converts
the integer to a real80 object and pushes it onto the FPU stack.

fimul(mem); Floating point multiply by integer. Converts int16 or int32 operand to a real80 value and multiplies ST0
by this result. Leaves product in ST0.

fincstp(); Rotates the registers on the FPU stack.

finit(); Initializes the FPU for use.

fist(mem); Converts ST0 to an integer and stores the result in the specified memory operand. Memory operand
must be an int16 or int32 object.

fistp(mem); Floating point integer store and pop. Pops ST0 value off the stack, converts it to an integer, and stores
the integer in the specified location. Memory operand must be a word, double word, or quad word
(64-bit integer) object.

fisub(mem); Floating point subtract integer. Converts int16 or int32 operand to a real80 value and subtracts it from
ST0. Leaves the result in ST0.

fisubr(mem); Floating point subtract integer, reversed. Like FISUB except this instruction compute mem-ST0 rather
than ST0-mem. Still leaves the result in ST0.

fld(mem);
fld(sti);

Floating point load. Loads (pushes) the specified operand onto the FPU stack. Memory operands must
be real32, real64, or real80 objects. Note that FLD(ST0) duplicates the value on the top of the floating
point stack.

fld1(); Floating point load 1.0. This instruction pushes 1.0 onto the FPU stack.

fldcw(mem16); Load floating point control word. This instruction copies the word operand into the floating point con-
trol register.

fldenv(mem28); This instruction loads the FPU status from the block of 28 bytes specified by the operand. Generally,
only an operating system would use this instruction.

fldl2e(); Floating point load constant. Loads log2(e) onto the stack.

fldl2t(); Floating point load constant. Loads log2(10) onto the stack.

fldlg2(); Floating point load constant. Loads log10(2) onto the stack.

fldln2(); Floating point load constant. Loads loge(2) onto the stack.

fldpi(); Floating point load constant. Loads the value of pi (π) onto the stack.

fldz(); Floating point load constant. Pushes the value 0.0 onto the stack.

Table 2: Floating Point Instruction Set

Instruction Description
Page 1426 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set
fmul(mem);
fmul(sti, st0);
fmul(st0, sti);

Floating point multiply. If the operand is a memory operand, it must be a real32 or real64 value; in this
case, FMUL multiplies the memory operand and ST0, leaving the product in ST0. For the other two
forms, the FMUL instruction multiplies the first operand by the second and leaves the result in the sec-
ond operand.

fmulp();
fmulp(st0, sti);

Floating point multiply and pop. With no operands this instruction computes ST1:=ST0*ST1 and then
pops ST0. With two register operands, this instruction computes ST0 times the destination register and
then pops ST0.

fnop(); Floating point no-operation.

fpatan(); Floating point partial arctangent. Computes ATAN(ST1/ST0), pops ST0, and then stores the result in
the new TOS value (previous ST1 value).

fprem(); Floating point remainder. This instruction is retained for compatibility with older programs. Use the
FPREM1 instruction instead.

fprem1(); Floating point partial remainder. This instruction computes the remainder obtained by dviding ST0 by
ST1, leaving the result in ST0 (it does not pop either operand). If the C2 flag in the FPU status register
is set after this instruction, then the computation is not complete; you must repeatedly execute this
instruction until C2 is cleared.

fptan(); Floating point partial tangent. This instruction computes TAN(ST0) and replaces the value in ST0
with this result. Then it pushes 1.0 onto the stack. This instruction sets the C2 flag if the input value is
outside the acceptable range of ±263.

frndint(); Floating point round to integer. This instruction rounds the value in ST0 to an integer using the round-
ing control bits in the floating point control register. Note that the result left on TOS is still a real value.
It simply doesn’t have a fractional component. You may use this instruction to round or truncate a float-
ing point value by setting the rounding control bits appropriately. See the chapter on floating point
arithmetic for details.

frstor(mem108); Restores the FPU status from a 108-byte memory block.

fsave(mem108); Writes the FPU status to a 108-bye memory block.

fscale(); Floating point scale by power of two. ST1 contains a scaling value. This instruction multiplies ST0 by
2st1.

fsin(); Floating point sine. Replaces ST0 with sin(ST0).

fsincos(); Simultaneously computes the sin and cosine values of ST0. Replaces ST0 with the sine of ST0 and then
it pushes the cosine of (the original value of) ST0 onto the stack. Original ST0 value must be in the
range ±263.

fsqrt(); Floating point square root. Replaces ST0 with the square root of ST0.

fst(mem);
fst(sti);

Floating point store. Stores a copy of ST0 in the destination operand. Memory operands must be real32
or real64 objects. When storing the value to memory, FST converts the value to the smaller format
using the rounding control bits in the floating point control register to determine how to convert the
real80 value in ST0 to a real32 or real64 value.

fstcw(mem16); Floating point store control word. Stores a copy of the floating point control word in the specified word
memory location.

fstenv(mem28); Floating point store FPU environment. Stores a copy of the 28-byte floating point environment in the
specified memory location. Normally, an OS would use this when switch contexts.

Table 2: Floating Point Instruction Set

Instruction Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1427

AppendixD
fstp(mem);
fstp(sti);

Floating point store and pop. Stores ST0 into the destination operand and then pops ST0 off the stack.
If the operand is a memory object, it must be a real32, real64, or real80 object.

fstsw(ax);
fstsw(mem16);

Stores a copy of the 16-bit floating point status register into the specified word operand. Note that this
instruction automatically places the C1, C2, C3, and C4 condition bits in appropriate places in AH so
that a following SAHF instruction will set the processor flags to allow the use of a conditional jump or
conditional set instruction after a floating point comparison. See the chapter on floating point arith-
metic for more details.

fsub(mem);
fsub(st0, sti);
fsub(sti, st0);

Floating point subtract. With a single memory operand (which must be a real32 or real64 object), this
instruction subtracts the memory operand from ST0. With two register operands, this instruction com-
putes dest := dest - src (where src is the first operand and dest is the second operand).

fsubp();
fsubp(st0, sti);

Floating point subtract and pop. With no operands, this instruction computes ST1 := ST0 - ST1 and
then pops ST0 off the stack. With two operands, this instruction computes STi := STi - ST0 and then
pops ST0 off the stack.

fsubr(mem);
fsubr(st0, sti);
fsubr(sti, st0);

Floating point subtract, reversed, With a real32 or real64 memory operand, this instruction computes
ST0 := mem - ST0. For the other two forms, this instruction computes dest := src - dest where src is the
first operand and dest is the second operand.

fsubrp();
fsubrp(st0, sti);

Floating point subtract and pop, reversed. With no operands, this instruction computes ST1 := ST0 -
ST1 and then pops ST0. With two operands, this instruction computes STi := ST0 - STi and then pops
ST0 from the stack.

ftst(); Floating point test against zero. Compares ST0 with 0.0 and sets the floating point condition code bits
accordingly.

fucom(sti);
fucom();

Floating point unordered comparison. With no operand, this instruction compares ST0 to ST1. With an
operand, this instruction compares ST0 to STi and sets floating point status bits accordingly. Unlike
FCOM, this instruction will not generate an exception if either of the operands is an illegal floating
point value; instead, this sets a special status value in the FPU status register.

fucomi(sti, st0); Floating point unordered comparison.

fucomp();
fucomp(sti);

Floating point unorder comparison and pop. With no operands, compares ST0 to ST1 using an unor-
dered comparsion (see FUCOM) and then pops ST0 off the stack. With an FPU operand, this instruc-
tion compares ST0 to the specified register and then pops ST0 off the stack. See FUCOM for more
details.

fucompp();
fucompp(sti);

Floating point unordered compare and double pop. Compares ST0 to ST1, sets the condition code bits
(without raising an exception for illegal values, see FUCOM), and then pops both ST0 and ST1.

fwait(); Floating point wait. Waits for current FPU operation to complete. Generally an obsolete instruction.
Used back in the days when the FPU was on a different chip than the CPU.

fxam(); Floating point Examine ST0. Checks the value in ST0 and sets the condition code bits according to the
type of the value in ST0. See the chapter on floating point arithmetic for details.

fxch();
fxch(sti);

Floating point exchange. With no operands this instruction exchanges ST0 and ST1 on the FPU stack.
With a single register operand, this instruction swaps ST0 and STi.

fxtract(); Floating point exponent/mantissa extraction. This instruction breaks the value in ST0 into two pieces. It
replaces ST0 with the real representation of the binary exponent (e.g. 25

 becomes 5.0) and then it
pushes the mantissa of the value with an exponent of zero.

fyl2x(); Floating point partial logarithm computation. Computes ST1 := ST1 * log2(ST0); and then pops ST0.

Table 2: Floating Point Instruction Set

Instruction Description
Page 1428 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set
The following table uses these abbreviations:

Reg32- A 32-bit general purpose (integer) register.
mmi- One of the eight MMX registers, MM0..MM7.
imm8- An eight-bit constant value; some instructions have smaller ranges that 0..255. See the particular instruction for

details.
mem64- A memory location (using an arbitrary addressing mode) that references a qword value.

Note: Most instructions have two operands. Typically the first operand is a source operand and the second operand is a desti-
nation operand. For exceptions, see the description of the instruction.

fyl2xp1(); Floating point partial logarithm computation. Computes ST1 := ST1 * log2(ST0 + 1.0) and then pops
ST0 off the stack. Original ST0 value must be in the range

a. Floating point conditional move instructions are only available on Pentium Pro and later processors.
b. FCOMIx instructions are only available on Pentium Pro and later processors.

Table 3: MMX Instruction Set

Instruction Description

emms(); Empty MMX State. You must execute this instruction when you are finished using MMX instructions
and before any following floating point instructions.

movd(reg32, mmi);
movd(mem32, mmi);
movd(mmi, reg32);
movd(mmi, mem32);

Moves data between a 32-bit integer register or dword memory location and an MMX register
(mm0..mm7). If the destination operand is an MMX register, then the source operand is
zero-extended to 64 bits during the transfer. If the destination operand is a dword memory location or
32-bit register, this instruction copies only the L.O. 32 bits of the MMX register to the destination.

movq(mem64, mmi);
movq(mmi, mem64);
movq(mmi, mmi);

This instruction moves 64 bits between an MMX register and a qword variable in memory or
between two MMX registers.

Table 2: Floating Point Instruction Set

Instruction Description

1
2

2
-------–

 – 1
2

2
-------–

 (,)
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1429

AppendixD
packssdw(mem64, mmi);
packssdw(mmi, mmi);

Pack and saturate two signed double words from source and two signed double words from destina-
tion and store result into destination MMX register. This process involves taking these four double
words and “saturating” them. This means that if the value is in the range -32768..32768 the value is
left unchanged, but if it’s greater than 32767 the value is set to 32767 or if it’s less than -32768 the
value is clipped to -32768. The four double words are packed into a single 64-bit MMX register. The
source operand supplies the upper two words and the destination operand supplies the lower two
words of the packed 64-bit result. See the chapter on the MMX instructions for more details.

packsswb(mem64, mmi);
packsswb(mmi, mmi);

Pack and saturate four signed words from source and four signed words from destination and store
the result as eight signed bytes into the destination MMX register. See the chapter on the MMX
instructions for more details. The bytes obtained from the destination register wind up in the L.O.
four bytes of the destination; the bytes computed from the signed saturation of the source register
wind up in the H.O. four bytes of the destination register.

packusdw(mem64, mmi);
packusdw(mmi, mmi);

Pack and saturate two unsigned double words from source and two unsigned double words from des-
tination and store result into destination MMX register. This process involves taking these four dou-
ble words and “saturating” them. This means that if the value is in the range 0..65535 the value is left
unchanged, but if it’s greater than 65535 the value is clipped to 65535. The four double words are
packed into a single 64-bit MMX register. The source operand supplies the upper two words and the
destination operand supplies the lower two words of the packed 64-bit result. See the chapter on the
MMX instructions for more details.

packuswb(mem64, mmi);
packuswb(mmi, mmi);

Pack and saturate four unsigned words from source and four unsigned words from destination and
store the result as eight unsigned bytes into the destination MMX register. Word values greater than
255 are clipped to 255 during the saturation operation. See the chapter on the MMX instructions for
more details. The bytes obtained from the destination register wind up in the L.O. four bytes of the
destination; the bytes computed from the signed saturation of the source register wind up in the H.O.
four bytes of the destination register.

paddb(mem64, mmi);
paddb(mmi, mmi);

Packed Add of Bytes. This instruction adds together the individual bytes of the two operands. The
addition of each byte is independent of the other eight bytes; there is no carry from byte to byte. If an
overflow occurs in any byte, the value simply wraps around to zero with no indication of the over-
flow. This instruction does not affect any flags.

paddd(mem64, mmi);
paddd(mmi, mmi);

Packed Add of Double Words. This instruction adds together the individual dwords of the two oper-
ands. The addition of each dword is independent of the other two dwords; there is no carry from
dword to dword. If an overflow occurs in any dword, the value simply wraps around to zero with no
indication of the overflow. This instruction does not affect any flags.

paddsb(mem64, mmi);
paddsb(mmi, mmi);

Packed Add of Bytes, signed saturated. This instruction adds together the individual bytes of the two
operands. The addition of each byte is independent of the other eight bytes; there is no carry from
byte to byte. If an overflow or underflow occurs in any byte, then the value saturates at -128 or +127.
This instruction does not affect any flags.

paddsw(mem64, mmi);
paddsw(mmi, mmi);

Packed Add of Words, signed saturated. This instruction adds together the individual words of the
two operands. The addition of each word is independent of the other four words; there is no carry
from word to word. If an overflow or underflow occurs in any word, the value saturates at either
-32768 or +32767. This instruction does not affect any flags.

paddusb(mem64, mmi);
paddusb(mmi, mmi);

Packed Add of Bytes, unsigned saturated. This instruction adds together the individual bytes of the
two operands. The addition of each byte is independent of the other eight bytes; there is no carry
from byte to byte. If an overflow or underflow occurs in any byte, then the value saturates at 0 or 255.
This instruction does not affect any flags.

Table 3: MMX Instruction Set

Instruction Description
Page 1430 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set
paddusw(mem64, mmi);
paddusw(mmi, mmi);

Packed Add of Words, unsigned saturated. This instruction adds together the individual words of the
two operands. The addition of each word is independent of the other four words; there is no carry
from word to word. If an overflow or underflow occurs in any word, the value saturates at either 0 or
65535. This instruction does not affect any flags.

paddw(mem64, mmi);
paddw(mmi, mmi);

Packed Add of Words. This instruction adds together the individual words of the two operands. The
addition of each word is independent of the other four words; there is no carry from word to word. If
an overflow occurs in any word, the value simply wraps around to zero with no indication of the
overflow. This instruction does not affect any flags.

pand(mem64, mmi);
pand(mmi, mmi);

Packed AND. This instruction computes the bitwise AND of the source and the destination values,
leaving the result in the destination. This instruction does not affect any flags.

pandn(mem64, mmi);
pandn(mmi, mmi);

Packed AND NOT. This instruction makes a temporary copy of the first operand and inverts all of the
bits in this copy; then it ANDs this value with the destination MMX register. This instruction does
not affect any flags.

pavgb(mem64, mmi);
pavgb(mmi, mmi);

Packed Average of Bytes. This instruction computes the average of the eight pairs of bytes in the two
operands. It leaves the result in the destination (second) operand.

pavgw(mem64, mmi);
pavgw(mmi, mmi);

Packed Average of Words. This instruction computes the average of the four pairs of words in the two
operands. It leaves the result in the destination (second) operand.

pcmpeqb(mem64, mmi);
pcmpeqb(mmi, mmi);

Packed Compare for Equal Bytes. This instruction compares the individual bytes in the two oper-
ands. If they are equal this instruction sets the corresponding byte in the destination (second) register
to $FF (all ones); if they are not equal, this instruction sets the corresponding byte to zero.

pcmpeqd(mem64, mmi);
pcmpeqd(mmi, mmi);

Packed Compare for Equal Double Words. This instruction compares the individual double wordsin
the two operands. If they are equal this instruction sets the corresponding double wordin the destina-
tion (second) register to $FFFF_FFFF (all ones); if they are not equal, this instruction sets the corre-
sponding dword to zero.

pcmpeqw(mem64, mmi);
pcmpeqw(mmi, mmi);

Packed Compare for Equal Words. This instruction compares the individual words in the two oper-
ands. If they are equal this instruction sets the corresponding word in the destination (second) regis-
ter to $FFFF (all ones); if they are not equal, this instruction sets the corresponding word to zero.

pcmpgtb(mem64, mmi);
pcmpgtb(mmi, mmi);

Packed Compare for Greater Than, Bytes. This instruction compares the individual bytes in the two
operands. If the destination (second) operand byte is greater than the source (first) operand byte, then
this instruction sets the corresponding byte in the destination (second) register to $FF (all ones); if
they are not equal, this instruction sets the corresponding byte to zero. Note that there is no PCM-
PLEB instruction. You can simulate this instruction by swapping the operands in the PCMPGTB
instruction (i.e., compare in the opposite direction). Also note that these operands are, in a sense,
backwards compared with the standard CMP instruction. This instruction compares the second oper-
and to the first rather than the other way around. This was done because the second operand is always
the destination operand and, unlike the CMP instruction, this instruction writes data to the destina-
tion operand.

Table 3: MMX Instruction Set

Instruction Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1431

AppendixD
pcmpgtd(mem64, mmi);
pcmpgtd(mmi, mmi);

Packed Compare for Greater Than, Double Words. This instruction compares the individual dwords
in the two operands. If the destination (second) operand dword is greater than the source (first) oper-
and dword, then this instruction sets the corresponding dword in the destination (second) register to
$FFFF_FFFF (all ones); if they are not equal, this instruction sets the corresponding dword to zero.
Note that there is no PCMPLED instruction. You can simulate this instruction by swapping the oper-
ands in the PCMPGTD instruction (i.e., compare in the opposite direction). Also note that these oper-
ands are, in a sense, backwards compared with the standard CMP instruction. This instruction
compares the second operand to the first rather than the other way around. This was done because the
second operand is always the destination operand and, unlike the CMP instruction, this instruction
writes data to the destination operand.

pcmpgtw(mem64, mmi);
pcmpgtw(mmi, mmi);

Packed Compare for Greater Than,Words. This instruction compares the individual words in the two
operands. If the destination (second) operand word is greater than the source (first) operand word,
then this instruction sets the corresponding word in the destination (second) register to $FFFF (all
ones); if they are not equal, this instruction sets the corresponding dword to zero. Note that there is
no PCMPLEW instruction. You can simulate this instruction by swapping the operands in the
PCMPGTW instruction (i.e., compare in the opposite direction). Also note that these operands are, in
a sense, backwards compared with the standard CMP instruction. This instruction compares the sec-
ond operand to the first rather than the other way around. This was done because the second operand
is always the destination operand and, unlike the CMP instruction, this instruction writes data to the
destination operand.

pextrw(imm8, mmi, reg32); Packed Extraction of a word. The imm8 value must be a constant in the range 0..3. This instruction
copies the specified word from the MMX register into the L.O. word of the destination 32-bit integer
register. This instruction zero extends the 16-bit value to 32 bits in the integer register. Note that there
are no extraction instructions for bytes or dwords. However, you can easily extract a byte using PEX-
TRW and an AND or XCHG instruction (depending on whether the byte number is even or odd). You
can use MOVD to extract the L.O. dword. to extract the H.O. dword of an MMX register requires a
bit more work; either extract the two words and merge them or move the data to memory and grab
the dword you’re interested in.

pinsw(imm8, reg32, mmi); Packed Insertion of a word. The imm8 value must be a constant in the range 0..3. This instruction
copies the L.O. word from the 32-bit integer register into the specified word of the destination MMX
register. This instruction ignores the H.O. word of the integer register.

pmaddwd(mem64, mmi);
pmaddwd(mmi, mmi);

Packed Multiple and Accumulate (Add). This instruction multiplies together the corresponding
words in the source and destination operands. Then it adds the two double word products from the
multiplication of the two L.O. words and stores this double word sum in the L.O. dword of the desti-
nation MMX register. Finally, it adds the two double word products from the multiplication of the
H.O. words and stores this double word sum in the H.O. dword of the destination MMX register.

pmaxw(mem64, mmi);
pmaxw(mmi, mmi);

Packed Signed Integer Word Maximum. This instruction compares the four words between the two
operands and stores the signed maximum of each corresponding word in the destination MMX regis-
ter.

pmaxub(mem64, mmi);
pmaxub(mmi, mmi);

Packed Unsigned Byte Maximum. This instruction compares the eight bytes between the two oper-
ands and stores the unsigned maximum of each corresponding byte in the destination MMX register.

pminw(mem64, mmi);
pminw(mmi, mmi);

Packed Signed Integer Word Minimum. This instruction compares the four words between the two
operands and stores the signed minimum of each corresponding word in the destination MMX regis-
ter.

pminub(mem64, mmi);
pminub(mmi, mmi);

Packed Unsigned Byte Minimum. This instruction compares the eight bytes between the two oper-
ands and stores the unsigned minimum of each corresponding byte in the destination MMX register.

Table 3: MMX Instruction Set

Instruction Description
Page 1432 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set
pmovmskb(mmi, reg32); Move Byte Mask to Integer. This instruction creates a byte by extracting the H.O. bit of the eight
bytes from the MMX source register. It zero extends this value to 32 bits and stores the result in the
32-bit integer register.

pmulhuw(mem64, mmi);
pmulhuw(mmi, mmi);

Packed Multiply High, Unsigned Words. This instruction multiplies the four unsigned words of the
two operands together and stores the H.O. word of the resulting products into the corresponding
word of the destination MMX register.

pmulhw(mem64, mmi);
pmulhw(mmi, mmi);

Packed Multiply High, Signed Words. This instruction multiplies the four signed words of the two
operands together and stores the H.O. word of the resulting products into the corresponding word of
the destination MMX register.

pmullw(mem64, mmi);
pmullw(mmi, mmi);

Packed Multiply Low, Signed Words. This instruction multiplies the four signed words of the two
operands together and stores the L.O. word of the resulting products into the corresponding word of
the destination MMX register.

por(mem64, mmi);
por(mmi, mmi);

Packed OR. Computes the bitwise OR of the two operands and stores the result in the destination
(second) MMX register.

psadbw(mem64, mmi);
psadbw(mmi, mmi);

Packed Sum of Absolute Differences. This instruction computes the absolute value of the difference
of each of the unsigned bytes between the two operands. Then it adds these eight results together to
form a word sum. Finally, the instruction zero extends this word to 64 bits and stores the result in the
destination (second) operand.

pshufw(imm8,mem64,mmi); Packed Shuffle Word. This instruction treats the imm8 value as an array of four two-bit values. These
bits specify where the destination (third) operand’s words obtain their values. Bits zero and one tell
this instruction where to obtain the L.O. word, bits two and three specify where word #1 comes from,
bits four and five specify the source for word #2, and bits six and seven specify the source of the H.O.
word in the destination operand. Each pair of bytes specifies a word number in the source (second)
operand. For example, an immediate value of %00011011 tells this instruction to grab word #3 from
the source and place it in the L.O. word of the destination; grab word #2 from the source and place it
in word #1 of the destination; grab word #1 from the source and place it in word #2 of the destina-
tion; and grab the L.O. word of the source and place it in the H.O. word of the destination (i.e., swap
all the words in a manner similar to the BSWAP instruction).

pslld(mem, mmi);
pslld(mmi, mmi);
pslld(imm8, mmi);

Packed Shift Left Logical, Double Words. This instruction shifts the destination (second) operand to
the left the number of bits specified by the first operand. Each double word in the destination is
treated as an independent entity. Bits are not carried over from the L.O. dword to the H.O. dword.
Bits shifted out are lost and this instruction always shifts in zeros.

psllq(mem, mmi);
psllq(mmi, mmi);
psllq(imm8, mmi);

Packed Shift Left Logical, Quad Word. This instruction shifts the destination operand to the left the
number of bits specified by the first operand.

psllw(mem, mmi);
psllw(mmi, mmi);
psllw(imm8, mmi);

Packed Shift Left Logical,Words. This instruction shifts the destination (second) operand to the left
the number of bits specified by the first operand. Bits shifted out are lost and this instruction always
shifts in zeros. Each word in the destination is treated as an independent entity. Bits are not carried
over from the L.O. words into the next higher word. Bits shifted out are lost and this instruction
always shifts in zeros.

psard(mem, mmi);
psard(mmi, mmi);
psard(imm8, mmi);

Packed Shift Right Arithmetic, Double Word. This instruction treats the two halves of the 64-bit reg-
ister as two double words and performs separate arithmetic shift rights on them. The bit shifted out of
the bottom of the two double words is lost.

Table 3: MMX Instruction Set

Instruction Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1433

AppendixD
psarw(mem, mmi);
psarw(mmi, mmi);
psarw(imm8, mmi);

Packed Shift Right Arithmetic, Word. This instruction operates independently on the four words of
the 64-bit destination register and performs separate arithmetic shift rights on them. The bit shifted
out of the bottom of the four words is lost.

psrld(mem, mmi);
psrld(mmi, mmi);
psrld(imm8, mmi);

Packed Shift Right Logical, Double Words. This instruction shifts the destination (second) operand
to the right the number of bits specified by the first operand. Each double word in the destination is
treated as an independent entity. Bits are not carried over from the H.O. dword to the L.O. dword.
Bits shifted out are lost and this instruction always shifts in zeros.

pslrq(mem, mmi);
pslrq(mmi, mmi);
pslrq(imm8, mmi);

Packed Shift Right Logical, Quad Word. This instruction shifts the destination operand to the right
the number of bits specified by the first operand.

pslrw(mem, mmi);
pslrw(mmi, mmi);
pslrw(imm8, mmi);

Packed Shift Right Logical,Words. This instruction shifts the destination (second) operand to the
right the number of bits specified by the first operand. Bits shifted out are lost and this instruction
always shifts in zeros. Each word in the destination is treated as an independent entity. Bits are not
carried over from the H.O. words into the next lower word. Bits shifted out are lost and this instruc-
tion always shifts in zeros.

psubb(mem64, mmi);
psubb(mmi, mmi);

Packed Subtract of Bytes. This instruction subtracts the individual bytes of the source (first) operand
from the corresponding bytes of the destination (second) operand. The subtraction of each byte is
independent of the other eight bytes; there is no borrow from byte to byte. If an overflow or under-
flow occurs in any byte, the value simply wraps around to zero with no indication of the overflow.
This instruction does not affect any flags.

psubd(mem64, mmi);
psubd(mmi, mmi);

Packed Subtract of Double Words. This instruction subtracts the individual dwords of the source
(first) operand from the corresponding dwords of the destination (second) operand. The subtraction
of each dword is independent of the other; there is no borrow from dword to dword. If an overflow or
underflow occurs in any dword, the value simply wraps around to zero with no indication of the over-
flow. This instruction does not affect any flags.

psubsb(mem64, mmi);
psubsb(mmi, mmi);

Packed Subtract of Bytes, signed saturated. This instruction subracts the individual bytes of the
source operand from the corresponding bytes of the destination operand, saturating to -128 or +127 if
overflow or underflow occurs. The subtraction of each byte is independent of the other seven bytes;
there is no carry from byte to byte. This instruction does not affect any flags.

psubsw(mem64, mmi);
psubsw(mmi, mmi);

Packed Subtract of Words, signed saturated. This instruction subracts the individual words of the
source operand from the corresponding words of the destination operand, saturating to -32768 or
+32767if overflow or underflow occurs. The subtraction of each word is independent of the other
three words; there is no carry from word to word. This instruction does not affect any flags.

psubusb(mem64, mmi);
psubusb(mmi, mmi);

Packed Subtract of Bytes, unsigned saturated. This instruction subracts the individual bytes of the
source operand from the corresponding bytes of the destination operand, saturating to 0 if underflow
occurs. The subtraction of each byte is independent of the other seven bytes; there is no carry from
byte to byte. This instruction does not affect any flags.

psubusw(mem64, mmi);
psubusw(mmi, mmi);

Packed Subtract of Words, unsigned saturated. This instruction subracts the individual words of the
source operand from the corresponding words of the destination operand, saturating to 0 if underflow
occurs. The subtraction of each word is independent of the other three words; there is no carry from
word to word. This instruction does not affect any flags.

psubw(mem64, mmi);
psubw(mmi, mmi);

Packed Subtract of Words. This instruction subtracts the individual words of the source (first) oper-
and from the corresponding words of the destination (second) operand. The subtraction of each word
is independent of the others; there is no borrow from word to word. If an overflow or underflow
occurs in any word, the value simply wraps around to zero with no indication of the overflow. This
instruction does not affect any flags.

Table 3: MMX Instruction Set

Instruction Description
Page 1434 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set
punpckhbw(mem64, mmi);
punpckhbw(mmi, mmi);

Unpack high packed data, bytes to words. This instruction unpacks and interleaves the high-order
four bytes of the source (first) and destination (second) operands. It places the H.O. four bytes of the
destination operand at the even byte positions in the destination and it places the H.O. four bytes of
the source operand in the odd byte positions of the destination operand.

punpckhdq(mem64, mmi);
punpckhdq(mmi, mmi);

Unpack high packed data, dwords to qword. This instruction copies the H.O. dword of the source
operand to the H.O. dword of the destination operand and it copies the (original) H.O. dword of the
destination operand to the L.O. dword of the destination.

punpckhwd(mem64, mmi);
punpckhwd(mmi, mmi);

Unpack high packed data, words to dwords. This instruction unpacks and interleaves the high-order
two words of the source (first) and destination (second) operands. It places the H.O. two words of the
destination operand at the even word positions in the destination and it places the H.O. words of the
source operand in the odd word positions of the destination operand.

punpcklbw(mem64, mmi);
punpcklbw(mmi, mmi);

Unpack low packed data, bytes to words. This instruction unpacks and interleaves the low-order four
bytes of the source (first) and destination (second) operands. It places the L.O. four bytes of the des-
tination operand at the even byte positions in the destination and it places the L.O. four bytes of the
source operand in the odd byte positions of the destination operand.

punpckldq(mem64, mmi);
punpckldq(mmi, mmi);

Unpack low packed data, dwords to qword. This instruction copies the L.O. dword of the source oper-
and to the H.O. dword of the destination operand and it copies the (original) L.O. dword of the desti-
nation operand to the L.O. dword of the destination (i.e., it doesn’t change the L.O. dword of the
destination).

punpcklwd(mem64, mmi);
punpcklwd(mmi, mmi);

Unpack low packed data, words to dwords. This instruction unpacks and interleaves the low-order
two words of the source (first) and destination (second) operands. It places the L.O. two words of the
destination operand at the even word positions in the destination and it places the L.O. words of the
source operand in the odd word positions of the destination operand.

pxor(mem64, mmi);
pxor(mmi, mmi);

Packed Exclusive-OR. This instruction exclusive-ORs the source operand with the destination oper-
and leaving the result in the destination operand.

Table 3: MMX Instruction Set

Instruction Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1435

AppendixD
Page 1436 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix E: The HLA Language Reference
The HLA Language Reference Appendix E

To be written when the HLA language settles down a little bit.

In the meantime, please consult the HLA Language Reference Manual (a separate document that is part
of the HLA distribution).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1437

AppendixE
Page 1438 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix F: The HLA Standard Library Reference
The HLA Standard Library Reference Appendix F

To be written when the HLA language settles down a bit. See the HLA Standard Library documentation
in the meantime.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1439

AppendixF
Page 1440 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix G: HLA Exceptions
HLA Exceptions Appendix G

The HLA Standard Library provides the following exception types1:

ex.StringOverflow

HLA raises this exception if you attempt to store too many characters into preallocated string variable.
The following standard library routines can raise this exception:

pat.extract, strrealloc, stdin.gets, str.cpy, str.setstr, str.cat, str.substr, str.insert, console.gets, cStrToStr,
dToStr, e80ToStr, hToStr, u64ToStr, i64ToStr, qToStr, r80ToStr, tbToStr, wToStr, date.print, date.toString,
and date.a_toString.

ex.StringIndexError

HLA raises this exception if a routine attempts to use an index that is beyond the last valid character in a
string. The following standard library routines can raise this exception:

str.span2, str.rspan2, str.brk2, str.rbrk2, str.substr, str.a_substr, strToFlt, StrToi8, StrToi16, StrToi32,
StrToi64, StrTou8, StrTou16, StrTou32, StrTou64, StrToh, StrTow, StrTod, and StrToq.

ex.ValueOutOfRange

HLA raises this exception if an arithmetic overflow occurs, if an input parameter is out of range, or if
user input is too great for the destination variable. The following standard library routines can raise this
exception:

arg.v, arg.delete, rand.urange, rand.range, stdin.geti8, stdin.geti16, stdin.geti32, stdin.geti64,
stdin.getu8, stdin.getu16, stdin.getu32, stdin.getu64, stdin.geth, stdin.getw, stdin.getd, stdin.getq, stdin.getf,
table.create, console.a_getRect, console.fillRect, console.fillRectAttr, console.getc, console.getRect, con-
sole.gets, console.gotoxy, console.putRect, console.scrollDnRect, console.scrololUpRect, atof, atoh, atoi8,
atoi16, atoi32, atoi64, atou8, atou16, atou32, atou64, e80ToStr, r80ToStr, StrToi8, StrToi16, StrToi32,
StrToi64, StrTou8, StrTou16, StrTou32, StrTou64, StrToh, StrTow, StrTod, StrToq, fileio.getd, fileio.geth,
fileio.getw, fileio.getq, fileio.geti8, fileio.geti16, fileio.geti32, fileio.geti64, fileio.getu8, fileio.getu16,
fileio.getu32, fileio.getu64, fileio.pute80pad, fileio.pute64pad, fileio.pute32pad, fileio.putr32Pad,
fileio.putr64Pad, and fileio.putr80Pad.

ex.IllegalChar

Several HLA routines raise this exception if they encounter a non-ASCII character (character code
$80..$FF) where a delimiter character is expected. Generally, you can treat this error as though it were a
conversion error. Routines that raise this exception include:

atoh, atoi8, atoi16, atoi32, atoi64, atou8, atou16, atou32, and atou64.

ex.ConversionError

Routines in the HLA Standard Library raise this exception if there is an error convertion data from one
format to another. Typically this occurs when converting strings to numeric data. Routines that raise this
exception include:

1. Please note that the HLA Standard Library is under constant revision and the list appearing in this chapter may be slightly
out of date. Please consult the HLA Standard Library documentation for an up-to-date listing of exceptions and the routines
that raise them.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1441

AppendixG
stdin.geti8, stdin.geti16, stdin.geti32, stdin.geti64, stdin.getu8, stdin.getu16, stdin.getu32, stdin.getu64,
stdin.geth, stdin.getw, stdin.getd, stdin.getq, stdin.getf, atof, atoh, atoi8, atoi16, atoi32, atoi64, atou8,
atou16, atou32, atou64, fgetf, fileio.geti8, fileio.geti16, fileio.geti32, fileio.geti64, fileio.getu8, fileio.getu16,
fileio.getu32, fileio.getu64, fileio.geth, fileio.getw, fileio.getd, and fileio.getq.

ex.BadFileHandle

The file class method file.handle raises this exception if the handle associated with a file class object is
illegal (has not been initialized).

ex.FileOpenFailure

The fileio.Open, fileio.OpenNew, file.Open, and file.OpenNew procedures raise this exception is there is
an error opening a file.

ex.FileCloseError

The fileio.Close and file.Close procedures raise this exception if there is some sort of error when
attempting to close a file.

ex.FileWriteError

Those routines that write data to a file (e.g., fputi8) raise this exception if there is an error writing data to
the output file.

ex.FileReadError

Those routines that read data from a file (e.g., fileio.geti8) raise this exception if there is a physical error
reading the data from the file.

ex.DiskFullError

Those routines that write data to a file will raise this exception if an attempt is made to write data to a
full disk.

ex.EndOfFile

Those routines that read data from a file will raise this exception if your program attempts to read data
beyond the end of the file.

ex.MemoryAllocationFailure

 Routines that allocation storage (e.g., malloc and realloc) will raise this exception if Windows cannot
satisify the memory allocaiton requestion. Several routines in the standard library may raise this exception
since they indirectly call the HLA malloc routine. Examples include stdin.a_gets and almost any other Stan-
dard Library routine that has “a_” as a prefix to the name.

ex.AttemptToDerefNULL

Several routines in the Standard Library that expect a string pointer will raise this exception if the string
pointer (or other pointer) contains NULL (zero). Examples include:

getf, str.cpy, str.a_cpy, str.setstr, str.cat, str.a_cat, str.index, str.rindex, str.chpos, str.rchpos, str.span,
str.span2, str.rspan, str.rspan2, str.brk, str.brk2, str.rbrk, str.rbrk2, str.eq, str,ne, str.lt, str.le, str,gt, str.ge,
str.substr, str.a_substr, str.insert, str.a_insert, str.delete, str.a_delete, str.ieq, str.ine, str.ilt, str.ile, str.igt, str.ige,
Page 1442 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix G: HLA Exceptions
str.upper, str.a_upper, str.lower, str.a_lower, str.delspace, str.a_delspace, str.trim, str.a_trim, str.tokenize,
str.tokenize2, atof, atoi8, atoi16, atoi32, atoi64, atou8, atou16, atou32, atou64, dtostr, htostr, wtostr, qtostr,
strToFlt, StrToi8, StrToi16, StrToi32, StrToi64, StrTou8, StrTou16, StrTou64, StrToh, StrTow, StrTod, Str-
Toq, and tbtostr.

ex.WidthTooBig

HLA routines that print a numeric value within a field width will raise this exception if the specified
width exceeds 1,024 characters. Routines that raise this exception include stdout.put, stdout.puti8Size,
fputu32Size, and all other xxxxSize output routines.

ex.TooManyCmdLnParms

The arg.CmdLn procedure raises this exception if it determines that there are more than 256 command
line parameters on the command line (a virtual impossibility since command lines are generally limited to
128 characters). Since all of the other routines in the args module can call arg.CmdLn, it is possible for any
of the routines in this module to raise this exception.

ex.ArrayShapeViolation

Routines in the arrays module raise this exception if the dimension on some array are inappropriate for
the specified operation. For example, the array.cpy code will raise this exception if you attempt to copy a
source array to a destination whose dimensions don’t exactly match the source array.

ex.InvalidDate

The routines in the datetime module will raise this exception if you pass them an illegal date value as a
parameter.

ex.InvalidDateFormat

The date output routines (date.print and date.toString) raise this exception if you attempt convert a date
to a string but the current (internal) date format variable contains an invalid value. This usually implies that
you’ve passed an incorrect parameter to the date.SetFormat procedure.

ex.TimeOverflow

The time.secsToHMS procedure raises this overflow if there is an error converting time in seconds to
hours, minutes, and seconds (very rare, only occurs above two billion seconds).

ex.AccessViolation

This is a hardware exception that Windows raise if your program attempts to access an illegal memory
location (generally a NULL reference or an uninitialized pointer).

ex.Breakpoint

This exception is raised by Windows for debugger programs; you should never see this exception
unless you are writing a debugger program.

ex.SingleStep

This is another exception that is raised by Windows for debugger programs; you should never see this
exception unless you are writing a debugger program.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1443

AppendixG
ex.PrivInstr

Windows raises this instruction if you attempt to execute a special instruction that is illegal in “user
mode” (that is, can only be executed by Windows). Since HLA only compiles a few priviledged instruc-
tions, and this book doesn’t discuss them at all, the only way you’ll probably see this exception occur is if
your program jumps off into (non-code) memory somewhere and begins executing data as instructions.

ex.IllegalInstr

Windows raises this exception if the CPU attempts to execute some code that is not a valid instruction.
This generally implies that your program has jumped off into data memory and is attempting to execute data
as machine instructions.

ex.BoundInstr

Windows raises this exception if you execute the BOUND instruction (see “Some Additional Instruc-
tions: INTMUL, BOUND, INTO” on page 377) and the register value is outside the specified range.

ex.IntoInstr

Windows raises this exception if you execute the INTO instruction and the overflow flag is set (see
“Some Additional Instructions: INTMUL, BOUND, INTO” on page 377).

ex.DivideError

Windows raises this exception if you attempt an integer division by zero, or if the quotient of a division
is too large to fit within the destination operand(AL, AX, or EAX).

ex.fDenormal

ex.fDivByZero

ex.fInexactResult

ex.fInvalidOperation

ex.fOverflow

ex.fStackCheck

ex.fUnderflow

Windows raises one of these exceptions if you’ve enabled exceptions on the FPU and one of the speci-
fied conditions occurs (e.g., a floating point division by zero will raise the ex.fDivByZero exception).

InvalidHandle

Windows will raise this exception if you pass an uninitialized or otherwise invalid handle value to a
Windows API (application programmer’s interface) routine. Many of the HLA Standard Library routines
pass handles to Windows, so this exception could occur as a result of a call to an input/output routine.

StackOverflow

Windows raises this exception if the stack exceeds the storage allocated to it (16Mbytes in a typical
HLA program).

ControlC

HLA raises this exception if the user presses control-C or control-Break during program execution.
Page 1444 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix G: HLA Exceptions
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1445

AppendixG
Page 1446 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
HLA Compile-Time Functions Appendix H

H.1 Conversion Functions

The conversion functions translate data from one format to another. For example, functions in this
group can convert integers to strings or strings to integers. These routines provide the compile-time equiva-
lent of the HLA Standard Library CONV module.

The compile-time conversion routines are unusual in the set of compile-time function insofar as they do
not require a leading "@" symbol. Instead, the conversion routines use the names of several of the built-in
data types. The following table describes each of these functions:

Table 1: Compile-Time Data Conversion Functions

Function Parametersa Description

boolean boolean(constExpr)

ConstExpr can be a boolean,
integer, character, or string
operand.

If constExpr is numeric, this function returns false for
zero and true for any other value. For characters, "t" or
"f" returns true or false (respectively), anything else is
an error. For strings, the operands must be "true" or
"false" (else an error occurs). The boolean function
returns boolean values unchanged and returns an error
for any other type.

int8 xxxx(constExpr)

Note: xxxx represents one of
the function names to the left.

constExpr can be any constant
expression that evaluates to a
numeric, character, boolean, or
string operand.

These functions will convert their operand to the speci-
fied data type. These functions generate an error if the
resulting value will not fit in the specified data type
(e.g., int8(-1000) will generate an error). Note that
HLA treats byte, word, and dword functions identically
to uns8, uns16, and uns32 (respectively).

For boolean operands, true returns one and false returns
zero.

If the operand is a real value, then these functions trun-
cate the value to obtain the corresponding integer return
value.

For character operands, these function return the corre-
sponding ASCII code of the character.

For string operands, the string must be a legal sequence
of characters that form a decimal number.

int16

int32

uns8

uns16

uns32

byte

word

dword

real32 xxxxxx(constExpr)

Note: xxxxxx represents one of
the function names to the left.

constExpr can be any constant
expression that evaluates to a
numeric or string operand.

These functions convert their specified operand to the
corresponding real value. These functions convert inte-
ger operands to the corresponding real value. If the
operand is a string expression, it must be a valid
sequence of characters that corresponds to an HLA
floating point value. These functions convert that string
to the corresponding real value.

real64

real80
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1447

AppendixH
Internally, HLA generally maintains all numeric constant values as int32, uns32, dword, or real80.
Therefore, it is unlikely that you would want to use the int8, int16, uns8, uns16, real32, or real64 com-
pile-time functions in your program unless you want to force an error if a value is out of range.

Of these conversion functions, the string function is, perhaps, the most useful. Many compile-time
functions and statements accept only string operands. You can use the string function to translate other data
types to a string in a situation where you wish to use one of these other data types. For example, the
#ERROR statement only allows a single string parameter. However, you can construct complex error mes-
sages by using the string concatentation operator ("+") with the string function, e.g.,

#error("Constant value i32=" + string(i32) + " and that is out of range")

char char(constExpr)

constExpr must be a positive
integer value, a character, or a
string.

If the parameter is an integer value, this function
returns the character with that ASCII code. If the
parameter is a string, this function returns the first char-
acter of that string. If the operand is a character, this
function simply returns that character value.

string string(constExpr)

constExpr can be any legal
constant data type.

This function returns the string representation of the
specified parameter. For real values, this function
returns the scientific notation format for the value. For
boolean expressions, this function returns the value
"true" or "false". For character operands, this function
returns a string containing the single character specified
as the operand. For integer parameters, this function
returns a string containing the decimal equivalent of
that value. For character set operands, this function
returns a string listing all the characters in the character
set. If the operand is a string expression, this function
simply returns that string.

cset cset(constExpr)

constExpr can be a character,
string, or a cset.

This function returns a character set containing the
characters specified by the operand. If the operand is a
character, then this function returns the singleton set
containing that single character. If the operand is a
string, this function returns the union of all the charac-
ters in that string. If the operand is a character set, this
function returns that character set.

text text(constExpr)

constExpr: same as for string.

This function takes the same parameters as the string
function. Instead of returning a string constant, how-
ever, this function expands the text in-line at the point
of the function. This function is equivalent to the @text
function.

@odd @odd(constExpr)

constExpr must be an integer
value.

This function returns true if the integer operand is an
odd number, it returns false otherwise.

a. Integer operands can be any of the intXX, unsXX, byte, word, or dword types.

Table 1: Compile-Time Data Conversion Functions

Function Parametersa Description
Page 1448 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
H.2 Numeric Functions

These functions provide common mathematical functions. Remember, these functions compute their
values at compile-time. Their parameters are constants and they return constant values. These functions are
not useable with variables at run-time. See the HLA Standard Library for comparable functions you can call
from your assembly language programs while they are running.

Table 2: Numeric Compile-Time Functions

Function Parametersa Description

@abs @abs(constExpr)

constExpr must be a numeric
value.

Returns the absolute value of the parameter. The
return type is the same as the parameter type.

@byte @byte(Expr, select)

Expr must be a 32-bit ordinal
expression, a real expression
(32, 64, or 80 bits), or a cset
expression.

select must be less than the
size of Expr’s data type.

This function exacts the specified byte from the value
of Expr as selected via the select parameter. If select
is zero, this function returns the L.O. byte, higher val-
ues for select return the corrsponding higher-order
bytes of the object.

Note that HLA usually extends literal constants to the
largest representation possible, e.g., HLA treats 1.234
as a real80 value. Use coercion to change this, if nec-
essary (e.g., @byte(real32(1.234), 3))

@ceil @ceil(constExpr)

constExpr must be a numeric
value.

If the parameter is an integer value, this function sim-
ply converts it to a real value and returns that value. If
the parameter is a real value, then this function returns
the smallest integer value larger than or equal to the
parameter’s value (i.e., this function rounds a real
value to the next highest integer if the real value con-
tains a fractional part).

@cos @cos(constExpr)

constExpr must be a numeric
value expressing an angle in
radians.

This function returns the cosine of the specified
parameter value.

@exp @exp(constExpr)

constExpr must be a numeric
value.

This function return e raised to the specified power.

@floor @floor(constExpr)

constExpr must be a numeric
value.

This function returns the largest integer value that is
less than or equal to the numeric value passed as a
parameter. For positive real numbers this is equivalent
to truncation (for negative numbers, it rounds towards
negative infinity).

@log @log(constExpr)

constExpr is a non-negative
numeric value.

This function computes the natural (base e) logarithm
of its operand.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1449

AppendixH
H.3 Date/Time Functions

The Date/Time compile-time functions return strings holding the current date and time.

@log10 @log10(constExpr)

constExpr is a non-negative
numeric value.

This function computes the base-10 logarithm of its
operand.

@max @max(list)

list is a list of two or more
comma separated numeric
expressions.

This function returns the maximum of a set of numeric
values. The values in the list must all be the same
type.

@min @min(list)

list is a list of two or more
comma separated numeric
expressions.

This function returns the minimum of a set of numeric
values. The values in the list must all be the same
type.

@random @random(intExpr)

intExpr must be a positive
integer value.

This function returns a pseudo-random number
between zero and intExpr-1. Currently HLA uses the
random function provided by the C standard library;
so don’t expect a high quality random number genera-
tor here. In particular, if intExpr is a small value, the
quality of the random number generator is very low.

@randomize @randomize(intExpr)

intExpr must be a positive
integer value.

This function attempts to "randomize" the random
number generator seed. Then it returns a random
number between zero and intExpr-1. You should not
call this function multiple times in your source file.

@sin @sin(constExpr)

constExpr must be a numeric
value expressing an angle in
radians.

This function returns the sine of the specified parame-
ter value.

@sqrt @sqrt(constExpr)

constExpr m ust be a non-neg-
ative numeric value.

This function returns the square root of the specified
operand value.

@tan @tan(constExpr)

constExpr must be a numeric
value expressing an angle in
radians.

This function returns the tangent of the specified
parameter value.

a. Numeric parameters are intX, unsX, byte, word, dword, or realX values.

Table 2: Numeric Compile-Time Functions

Function Parametersa Description
Page 1450 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
H.4 Classification Functions

These functions test a character or string to see if the characters belong to a certain class (e.g., alpha-
betic characters). This functions return true or false depending upon the result of the comparison.

If the operand is a character expression, these functions return true if that character belongs to the spec-
ified class. If the operand is a string, these functions return true if all characters in the string belong to the
specified class.

Also see the HLA Compile-Time Pattern Matching Functions for some different ways to test characters
in a string. Remember, these are compile-time functions. The HLA Standard Library contains comparable
routines for use at run-time in your programs. See the HLA Standard Library documentation for more
details.

Table 3: HLA Compile-Time Date/Time Functions

Function Parameters Description

@date @date This function returns a string specifying the current date.
This string typically takes the form "year/month/day", e.g.,
"2000/12/31".

@time @time This function returns a string specifying the current time.
This string typically takes the form "HH:MM:SS xM" (x=
A or P).

Table 4: HLA Compile-Time Character Classification Functions.

Function Parameters Description

@isalpha @isalpha(constExpr)

constExpr must be a character or a
string expression.

This function returns true if the character oper-
and is an alphabetic character.

If the parameter is a string, this function returns
true if all characters in the string are alphabetic.

@isalphanum @isalphanum(constExpr)

constExpr must be a character or a
string expression.

This function returns true if the character oper-
and is an alphanumeric character.

If the parameter is a string, this function returns
true if all characters in the string are alphanu-
meric.

@isdigit @isdigit(constExpr)

constExpr must be a character or a
string expression.

This function returns true if the character oper-
and is a decimal digit character.

If the parameter is a string, this function returns
true if all characters in the string are digits.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1451

AppendixH
H.5 String and Character Set Functions

The following functions provide a very powerful set of string manipulation functions to the HLA com-
pile-time language. These functions let you easily maniipulate data like macro parameters and #text..#end-
text blocks.

Remember, these are compile-time functions. The HLA Standard Library contains comparable routines
for use at run-time in your programs. See the HLA Standard Library documentation for more details.

The @extract function behaves a little differently than the cs.extract function in the HLA Standard
Library. @extract does not actually remove the specified character from the character set. Keep this in mind
if you use both @extract and cs.extract frequently.

@islower @islower(constExpr)

constExpr must be a character or a
string expression.

This function returns true if the character oper-
and is a lower case alphabetic character.

If the parameter is a string, this function returns
true if all characters in the string are lower case
alphabetic characters.

@isspace @isspace(constExpr)

constExpr must be a character or a
string expression.

This function returns true if the character oper-
and is a space charactera.

If the parameter is a string, this function returns
true if all characters in the string are spaces.

@isupper @isupper(constExpr)

constExpr must be a character or a
string expression.

This function returns true if the character oper-
and is an upper case alphabetic character.

If the parameter is a string, this function returns
true if all characters in the string are upper case
alphabetic characters

@isxdigit @isxdigit(constExpr)

constExpr must be a character or a
string expression.

This function returns true if the character oper-
and is a hexadecimal digit character {0-9, a-f,
A-F}.

If the parameter is a string, this function returns
true if all characters in the string are hexadeci-
mal digits.

a. "Space" means any white space character. This includes tabs, newlines, etc.

Table 4: HLA Compile-Time Character Classification Functions.

Function Parameters Description
Page 1452 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
Table 5: HLA Compile-Time String Functions

Function Parameters Description

@delete @delete(strExpr, start, len)

strExpr must be a string expression.

start and len must be positive integer expres-
sions.

This function returns a string consisting of
the strExpr parameter with len characters
removed starting at position start in the
string. The first character in the string is at
position zero. Therefore, @delete(
"Hello", 2, 3) returns the string "He".

@extract @extract(csetExpr)

csetExpr must be a character set value.

This function returns an arbitrary character
from the specified character set. Note that
this function does not remove that character
from the set. You must manually remove
the character if you do not want the next
call to @extract (with the same parameter)
to return the same character, e.g.,

val
 c := @extract(someSet);
 someSet := someSet - {c};

@index @index(strExpr, start, findStr)

strExpr and findStr must be string expressions.

start must be a non-negative integer value.

This function searches for the string speci-
fied by findStr within the strExpr string
starting at character position start. If this
function finds the string, it returns the index
into strExpr where it located findStr. If it
does not find the string, it returns -1.

@insert @insert(destStr, start, strToIns)

destStr and strToIns must be string expres-
sions.

start must be a non-negative integer expres-
sion.

This function returns a string consisting of
the combination of the destStr and strToIns
strings. This function inserts strToIns into
destStr at the position specified by start.

@length @length(strExpr)

strExpr must be a string expression.

This function returns the length of the spec-
ified string as an integer result.

@lowercase @lowercase(strExpr, start)

strExpr must be a string expression.

start must be a non-negative integer expres-
sion.

This function translates all characters from
position start to the end of the string to
lower case (if they were previously upper
case alphabetic characters).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1453

AppendixH
@rindex @rindex(strExpr, start, findStr)

strExpr and findStr must be string expressions.

start must be a non-negative integer value.

This function searches backwards to find
the last occurrence of the string specified by
findStr within the strExpr string. This func-
tion will only search back to position start.
If this function finds the string, it returns the
index into strExpr where it located findStr.
If it does not find the string, it returns -1.

@strbrk @strbrk(strExpr, start, csetExpr)

strExpr must be a string expression.

start must be a non-negative integer expres-
sion.

csetExpr must be a character set expression.

Starting at position start within strExpr, this
function searches for the first character of
strExpr that is a member of the csetExpr
character set. It returns -1 if no such char-
acters exist.

@strset @strset(charExpr, len)

charExpr must be a character value.

len must be a non-negative integer value.

This function returns the string consisting
of len copies of charExpr concatenated
together.

@strspan @strspan(strExpr, start, csetExpr)

strExpr must be a string expression.

start must be a non-negative integer expres-
sion.

csetExpr must be a character set expression.

Starting at position start within strExpr, this
function searches for the first character of
strExpr that is not a member of the csetExpr
character set. It returns the length of the
string if all remaining characters are in the
specified character set.

@substr @substr(strExpr, start, len)

strExpr must be a string expression.

start and len must be non-negative integer val-
ues.

This function returns the sequence of len
characters (the "substring") starting at posi-
tion start in the strExpr string.

Table 5: HLA Compile-Time String Functions

Function Parameters Description
Page 1454 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
H.6 Pattern Matching Functions

The HLA compile-time language provides a large set of pattern matching functions similar to the
run-time functions available in the PATTERNS.HHF module of the HLA Standard Library. These pattern
matching functions, combined with the string processing functions of the previous section, provide you with

@tokenize @tokenize(strExpr, start, Delims, Quotes)

strExpr must be a string expression.

start must be a non-negative integer value.

Delims and Quotes must be character set
expressions.

This function returns an array of strings
consisting of the various substrings in str-
Expr obtained by separating the substrings
using the Delims character set.

This "lexical scan" operation begins at posi-
tion start in strExpr. The function first
skips over all characters in Delims and the
collects all characters until it finds another
delimiter character from the Delims set. It
repeats this process, adding each scanned
string to the array it returns, until it reaches
the end of the string.

The fourth parameter, Quotes, specifies spe-
cial quoting characters. Typically, this char-
acter set is the empty set. However, if it
contains a character, then that character is a
quote character and all characters between
two occurrences of the quote symbol consti-
tute a single string, even if delimiters appear
within that string. Typical characters in the
Quotes character set would be apostrophes
or quotation marks. If "(", "[", or "{"
appears in the Quotes set, then the corre-
sponding closing symbol must also appear
and tokenize uses the pair of quote objects
to surround a quoted item.

This function is unusual insofar as it returns
an array constant as its result. Typically
you would assign this to a VAL or CONST
object so you can gain access to the individ-
ual items in the array. To determine the
number of elements in this array, use the
@elements function.

@trim @trim(strExpr)

strExpr must be a string expression.

This function returns the specified string
operand with leading and trailing spaces
removed.

@uppercase @uppercase(strExpr)

strExpr must be a string expression.

The function returns a copy of its string
operand with any lower case alphabetic
characters converted to upper case.

Table 5: HLA Compile-Time String Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1455

AppendixH
the ability to write your own scanners and parsers (i.e., compilers) within the HLA compile-time language.
Indeed, one of the primary purposes of the HLA compile-time language is to let you expand the HLA lan-
guage to suit your needs. The pattern matching functions, along with macros, provide the backbone for this
capability in HLA.

Note that there are some pretty serious differences between the HLA compile-time pattern matching
functions and the routines in the PATTERNS.HHF module. Perhaps the biggest difference is the fact that the
compile-time functions do not support backtracking while the run-time routines do. Fortunately, it is not
that difficult to simulate backtracking on your own within the compile-time language.

Another difference between the comile-time functions and their run-time counterparts is the parameter
list. The compile-time functions typically have a couple of optional parameters that let you extract informa-
tion about the pattern match if it was successful. Consider, for a moment, the @matchStr function:

@matchStr(Str, tstStr)

When you call this function using the syntax above, this function will return true if the string expression
Str begins with the sequence of characters found in tstStr. It returns false otherwise. Now consider the fol-
lowing invocation:

@matchStr(Str, tstStr, remainder)

This call to the function also returns true if Str begins with the characters found in the tstStr string. If
this function returns true, then this function also copies the remaining charactes (i.e., those characters in Str
that following the tstStr characters at the beginning of Str) to the remainder VAL object. If @matchStr
returns false, the value of remainder is undefined (with the single exception noted below).

It is perfectly legal to specify the same string as the Str and remainder parameters. For example, con-
sider the following invocation:

@matchStr(str, "Hello ", str)

If str begins with the string "Hello " then this function will return true and replace str’s value with the string
containing all characters beyond the sixth character of the string. If str does not begin with "Hello " then this
function does not modify str’s value.

Most of the HLA compile-time pattern matching functions also allow a second optional parameter.
Consider the following invocation of the @oneOrMoreCset function:

@oneOrMoreCset(str, {’0’..’9’}, remainder, matched)

If this function returns true it will copied the sequence of characters at the beginning of str that are members
of the specified character set (i.e., digits) to the matched VAL object. This function returns all characters
beyond the digits in the remainder VAL object. If this function returns false, then remainder and matched
will contain undefined values and this function will not affect str.

H.6.1 String/Cset Pattern Matching Functions

Among the most useful of the pattern matching functions are those that checking the leading characters
of a string to see if they are members of a particular character set. The following rich set of functions pro-
vides this capability in the compile-time language.
Page 1456 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
Table 6: HLA Compile-time Cset Pattern Matching Functions

Function Parameters Description

@peekCset @peekCset(str, cset, rem, matched)

str must be a string expression.
cset must be a character set expression.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result
into these two objects.

This function returns true if the
first character of str is a member
of cset; it returns false other-
wise.

If rem is present, this function
copies str to rem upon return. If
matched is present and the func-
tion returns true, this function
stores a copy of the first charac-
ter into the matched VAL object.
The value of matched is unde-
fined if this function returns
false.

@oneCset @oneCset(str, cset, rem, matched)

str must be a string expression.
cset must be a character set expression.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result
into these two objects.

This function returns true if the
first character of str is a member
of cset; it returns false other-
wise.

If rem is present, this function
copies all characters of str
beyond the first character to rem
upon return. If matched is
present and the function returns
true, this function stores a copy
of the first character into the
matched VAL object. The value
of matched is undefined if this
function returns false.

@uptoCset @uptoCset(str, cset, rem, matched)

str must be a string expression.
cset must be a character set expression.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result
into these two objects.

This function copies all charac-
ters up to, but not including, a
single character from the cset
parameter. If the str parameter
does not contain a character in
the cset set, this function returns
false. If it succeeds, and the
matched parameter is present, it
copies all characters it matches
to the matched parameter and it
copies all remaining characters
to the rem parameter (if
present).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1457

AppendixH
@zeroOrOneCset @zeroOrOneCset(str, cset, rem, matched)

str must be a string expression.
cset must be a character set expression.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result
into these two objects.

This function always returns
true. This function copies the
single character it matches (if
any) to the matched string and
any remaining characters in the
string to the rem object (assum-
ing rem and matched appear in
the parameter list).

@exactlyNCset @exactlyNCset(str, cset, n, rem, matched)

str must be a string expression.
cset must be a character set expression.

n must be a non-negative integer value.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result
into these two objects.

This function returns true if the
first n characters of str are mem-
bers of cset. The character at
position n+1 must not be a
member of cset.

If this function returns true, it
copies the first n characters of
str to matched and copies any
remaining characters to rem
(assuming rem and matched are
present).

@firstNCset @firstNCset(str, cset, n, rem, matched)

str must be a string expression.
cset must be a character set expression.

n must be a non-negative integer value.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result
into these two objects.

This function returns true if the
first n characters of str are mem-
bers of cset. The character at
position n+1 may or may not be
a member of cset.

If this function returns true, it
copies the first n characters of
str to matched and copies any
remaining characters to rem
(assuming rem and matched are
present).

Table 6: HLA Compile-time Cset Pattern Matching Functions

Function Parameters Description
Page 1458 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
@nOrLessCset @nOrLessCset(str, cset, n, rem, matched)

str must be a string expression.
cset must be a character set expression.

n must be a non-negative integer value.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result
into these two objects.

This function always returns
true. This function matches up
to the first n characters of str are
members of cset. The character
at position n+1 may or may not
be a member of cset.

If this function returns true, it
copies the matching (up to n)
characters of str to matched and
copies any remaining charac-
ters to rem (assuming rem and
matched are present).

@nOrMoreCset @nOrMoreCset(str, cset, n, rem, matched)

str must be a string expression.
cset must be a character set expression.

n must be a non-negative integer value.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result
into these two objects.

This function returns true if it
matches at least n characters
from str in cset.

If rem and matched appear in
the parameter list, this function
will copy all characters it
matches to matched and copy
any remaining characters into
rem.

@nToMCset @nToMCset(str, cset, n, m, rem, matched)

str must be a string expression.
cset must be a character set expression.

n and m must be non-negative integer values.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result
into these two objects.

This function returns true if
there are at least n characters in
cset at the beginning of str. If
rem and matched are present,
this function will copy all the
characters it matches (up to the
mth position) into the matched
string and copy any remaining
characters into the rem string.
The character at position m+1
may or may not be a member of
cset.

Table 6: HLA Compile-time Cset Pattern Matching Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1459

AppendixH
H.6.2 String/Character Pattern Matching Functions

Though not always as useful as the character set pattern matching functions, the HLA compile-time
character matching functions are more efficent than the character set routines when matching single charac-
ters.

@exactlyNToMCset @ExactlyNToMCset(str, cset, n, m, rem, matched)

str must be a string expression.
cset must be a character set expression.

n and m must be non-negative integer values.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result
into these two objects.

This function returns true if
there are at least n characters in
cset at the beginning of str. If
rem and matched are present,
this function will copy all the
characters it matches (up to the
mth position) into the matched
string and copy any remaining
characters into the rem string. If
this function matches m charac-
ters, the character at position
m+1 must not be a member of
cset or else this function will
return false.

@zeroOrMoreCset @zeroOrMoreCset(str, cset, rem, matched)

str must be a string expression.
cset must be a character set expression.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result
into these two objects.

This function always returns
true. If rem and matched are
present, this function will copy
all characters from the begin-
ning of str that are members of
cset to the matched string. It
will copy all remaining charac-
ters to the rem string.

@oneOrMoreCset @OneOrMoreCset(str, cset, rem, matched)

str must be a string expression.
cset must be a character set expression.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result
into these two objects.

This function returns true if the
first character of set is a member
of cset. If rem and matched are
present, this function will copy
all characters from the begin-
ning of str that are members of
cset to the matched string. It
will copy all remaining charac-
ters to the rem string.

Table 6: HLA Compile-time Cset Pattern Matching Functions

Function Parameters Description
Page 1460 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
Table 7: HLA Compile-time Character Matching Functions

Function Parameters Description

@peekChar @peekChar(str, char, rem, matched)

str must be a string expression.
char must be a character expression.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result into
these two objects.

This function returns true if the
first character of str is equal to
char. If rem and matched are
present and this function
returns true, it also returns str
in rem and char in matched.

@oneChar @oneChar(str, char, rem, matched)

str must be a string expression.
char must be a character expression.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result into
these two objects.

This function returns true if the
first character of str is equal to
char. If rem and matched are
present and this function
returns true, it also returns all
the characters str beyond the
first character in rem and char
in matched.

@uptoChar @uptoChar(str, char, rem, matched)

str must be a string expression.
char must be a character expression.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result into
these two objects.

This function returns true if the
char exists somewhere in str. If
rem and matched are present
and this function returns true, it
also returns, in rem, all the
characters in str starting with
the first instance of char. It also
returns all the characters up to
(but not including) the first
instance of char in matched.

@zeroOrOneChar @zeroOrOneChar(str, char, rem, matched)

str must be a string expression.
char must be a character expression.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result into
these two objects.

This function always returns
true. If rem and matched are
present, it sets matched to the
matched string (i.e., an empty
string or the single character
char) and it sets rem to the
characters after the matched
character value (the whole
string if the first character of str
is not equal to char).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1461

AppendixH
@zeroOrMoreChar @zeroOrMoreChar(str, char, rem, matched)

str must be a string expression.
char must be a character expression.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result into
these two objects.

This function always returns
true. If the first character of str
does not match char, then this
function returns the empty
string in matched and it returns
str in rem. If str begins with a
sequence of characters all equal
to char, then this function
returns that sequence in
matched and it returns the
remaining characters in rem.

@oneOrMoreChar @oneOrMoreChar(str, char, rem, matched)

str must be a string expression.
char must be a character expression.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result into
these two objects.

This function returns true if the
first character in str is equal to
char; otherwise it returns false.

If this function returns true, it
copies all leading occurrences
of char into matched and any
remaining characters from str
into rem.

@exactlyNChar @exactlyNChar(str, char, n, rem, matched)

str must be a string expression.
cset must be a character set expression.

n must be a non-negative integer value.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result into
these two objects.

This function returns true if the
first n characters of str all
match char. The n+1th charac-
ter must not be equal to char.

If this function returns true, it
returns a string of n copies of
char in matched and all remain-
ing characters (position n and
beyond) in rem.

@firstNChar @firstNChar(str, char, n, rem, matched)

str must be a string expression.
cset must be a character set expression.

n must be a non-negative integer value.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result into
these two objects.

This function returns true if the
first n characters of str all
match char. The n+1th charac-
ter may or may not be equal to
char.

If this function returns true, it
returns a string of n copies of
char in matched and all remain-
ing characters (position n and
beyond) in rem.

Table 7: HLA Compile-time Character Matching Functions

Function Parameters Description
Page 1462 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
@nOrLessChar @nOrLessChar(str, char, n, rem, matched)

str must be a string expression.
cset must be a character set expression.

n must be a non-negative integer value.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result into
these two objects.

This function returns true as
long as str begins with n or
fewer (including zero) copies of
char. It fails if str begins with
more than n copies of char.

If this function returns true, it
returns a string, in matched,
containing all copies of char
that appear at the beginning of
str. It returns all remaining
characters in rem.

@nOrMoreChar @nOrMoreChar(str, char, n, rem, matched)

str must be a string expression.
cset must be a character set expression.

n must be a non-negative integer value.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result into
these two objects.

This function returns true if str
begins with at least n copies of
char. It returns false otherwise.

If this function returns true,
then it returns the leading char-
acters that match char in
matched and all following char-
acters in rem.

@nToMChar @nToMChar(str, char, n, m, rem, matched)

str must be a string expression.
cset must be a character set expression.

n and m must be non-negative integer values.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result into
these two objects.

This function matches any
string that has at least n copies
of char at the beginning of str.
It will match up to m copies of
char. The character at position
m+1 may be equal to char, but
this function will not match that
character. If this function
returns true, it returns the string
of matched characters in
matched and any remaining
characters in rem.

Table 7: HLA Compile-time Character Matching Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1463

AppendixH
H.6.3 String/Case Insenstive Character Pattern Matching Functions

HLA provides two sets of character matching routines: the previous section described the standard char-
acter matching routines, this section presents the case insensitive versions of those same routines.

@exactlyNToMChar @exactlyNToMChar(str, char, n, m, rem, matched)

str must be a string expression.
cset must be a character set expression.

n and m must be non-negative integer values.

rem and matched are optional arguments (both are
optional, but if matched is present, rem must also be
present).
The types of rem and matched are irrelevant but they
must be VAL objects. This function stores a result into
these two objects.

This function matches any
string that has at least n copies
of char at the beginning of str.
It will match up to m copies of
char. The character at position
m+1 must not be equal to char.
If this function returns true, it
returns the string of matched
characters in matched and any
remaining characters in rem.

Table 8: HLA Compile-time Case Insensitive Character Matching Functions

Function Parameters Description

@peekiChar @peekiChar(str, char, rem, matched)
See @peekChar for details.

Case insensitive version of
@peekChar. See @peekChar
for details.

@oneiChar @oneiChar(str, char, rem, matched)
See @oneChar for details.

Case insensitive version of
@oneChar. See @oneChar
for details.

@uptoiChar @uptoiChar(str, char, rem, matched)
See @uptoChar for details.

Case insensitive version of
@uptoChar. See @uptoChar
for details.

@zeroOrOneiChar @zeroOrOneiChar(str, char, rem, matched)
See @zeroOrOneChar for details.

Case insensitive version of
@zeroOrOneChar. See
@zeroOrOneChar for details.

@zeroOrMoreiChar @zeroOrMoreiChar(str, char, rem, matched)
See @zeroOrMoreChar for details.

Case insensitive version of
@zeroOrMoreChar. See
@zeroOrMoreChar for
details.

@oneOrMoreiChar @OneOrMoreiChar(str, char, rem, matched)
See @OneOrMoreChar for details.

Case insensitive version of
@OneOrMoreChar. See
@OneOrMoreChar for
details.

Table 7: HLA Compile-time Character Matching Functions

Function Parameters Description
Page 1464 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
H.6.4 String/String Pattern Matching Functions

Another set of popular pattern matching routines in the compile-time function set are the string match-
ing routines. These routines check to see if a string begins with some specified sequence of characters. Next
to the character set matching functions, these are probably the most commonly used pattern matching func-
tions.

@exactlyNiChar @exactlyNiChar(str, char, n, rem, matched)
See @exactlyNChar for details.

Case insensitive version of
@exactlyNChar. See
@exactlyNChar for details.

@firstNiChar @firstNiChar(str, char, n, rem, matched)
See @firstNChar for details.

Case insensitive version of
@firstNChar. See @first-
NChar for details.

@nOrLessiChar @nOrLessiChar(str, char, n, rem, matched)
See @nOrLessChar for details.

Case insensitive version of
@nOrLessChar. See @nOr-
LessChar for details.

@nOrMoreiChar @nOrMoreiChar(str, char, n, rem, matched)
See @nOrMoreChar for details.

Case insensitive version of
@nOrMoreChar. See @nOr-
MoreChar for details.

@nToMiChar @nToMiChar(str, char, n, m, rem, matched)
See @nToMChar for details.

Case insensitive version of
@nToMChar. See @nToM-
Char for details.

@exactlyNToMiChar @exactlyNToMiChar(str, char, n, m, rem, matched)
See @exactlyNToMChar for details.

Case insensitive version of
@exactlyNToMChar. See
@exactlyNToMChar for
details.

Table 9: Compile-Time String Matching Functions

Function Parameters Description

@matchStr @matchStr(str, tstStr, rem, matched)

str must be a string expression.
tstStr must be a string expression.

rem and matched are optional arguments (both
are optional, but if matched is present, rem
must also be present).
The types of rem and matched are irrelevant
but they must be VAL objects. This function
stores a result into these two objects.

This function returns true if str
begins with the characters found in
tstStr.

If this function returns true, it also
returns tstStr in matched and all char-
acters in str following the tstStr char-
acters in rem.

Table 8: HLA Compile-time Case Insensitive Character Matching Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1465

AppendixH
H.6.5 String/Misc Pattern Matching Functions

This last group of compile-time pattern matching functions check for certain special types of strings,
such as HLA identifiers, numeric constants, whitespace, and the end of the string.

@matchiStr @matchiStr(str, tstStr, rem, matched)

Same parameters as matchStr, see that func-
tion for details.

This is a case insensitive version of
@matchStr.

@uptoStr @uptoStr(str, tstStr, rem, matched)

Same parameters as matchStr, see that func-
tion for details.

This function returns true if tstStr
appears somewhere within str, it
returns false otherwise.

If this function returns true, then it
returns all characters up to, but not
including, the characters from tstStr
in matched. It returns all following
characters (including the tstStr sub-
string) in rem.

@uptoiStr @uptoiStr(str, tstStr, rem, matched)

Same parameters as matchStr, see that func-
tion for details.

This is a case insensitive version of
@uptoStr.

@matchToStr @matchToStr(str, tstStr, rem, matched)

Same parameters as matchStr, see that func-
tion for details.

This function is similar to @uptoStr
except if it returns true it will copy all
characters up to and including tstStr
to matched and all following charac-
ters to rem.

@matchToiStr @matchToiStr(str, tstStr, rem, matched)

Same parameters as matchStr, see that func-
tion for details.

This is a case insensitive version of
@matchToStr.

Table 9: Compile-Time String Matching Functions

Function Parameters Description
Page 1466 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
Table 10: Miscellaneous Compile-time Pattern Matching Functions

Function Parameters Description

@matchID @matchID(str, rem, matched)

str must be a string expression.

rem and matched are optional arguments (both
are optional, but if matched is present, rem must
also be present).
The types of rem and matched are irrelevant but
they must be VAL objects. This function stores a
result into these two objects.

This function returns true if the
first sequence of characters in
str match the definition of an
HLA identifier.

An HLA identifier is any
sequence of characters that
begins with an underscore or an
alphabetic character that is fol-
lowed by zero or more under-
score or alphanumeric
characters.

If this function returns true, it
copies the identifier to matched
and all following characters to
rem.

@matchIntConst @matchIntConst(str, rem, matched)

str must be a string expression.

rem and matched are optional arguments (both
are optional, but if matched is present, rem must
also be present).
The type of rem is irrelevant but it must be a VAL
object. If matched is present, it must be an int32
or uns32 object.

Note: unlike most pattern matching functions,
matched is not a string object.

This function returns true if the
leading characters of str are
decimal digits (as per HLA,
underscores are legal in the inte-
rior of the integer string).

If this function returns true, it
converts the matched integer
string to integer form and stores
this value in matched. This
function returns the remaining
characters after the numeric dig-
its in rem.

@matchRealConst @matchRealConst(str, rem, matched)

str must be a string expression.

rem and matched are optional arguments (both
are optional, but if matched is present, rem must
also be present).
The type of rem is irrelevant but it must be a VAL
object. If matched is present, it must be an
real80 object.

Note: unlike most pattern matching functions,
matched is not a string object.

This function returns true if the
leading characters of str corre-
spond to the HLA definition of a
real literal constant.

If this function returns true, it
also returns the remaining char-
acters in rem and it converts the
real string to real80 format and
stores this value in matched.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1467

AppendixH
@matchNumericConst @matchNumericConst(str, rem, matched)

Same parameters as @matchIntConst or
@matchRealConst; see those functions for
details.

This is a combination of
@matchIntConst and @match-
RealConst. If this function
matches a string at the begin-
ning of str that is a legal
numeric constant, it will convert
that value to numeric form
(int32 or real80) and store the
value into matched. This func-
tion returns any following char-
acters in rem.

@matchStrConst @matchStrConst(str, rem, matched)

Same parameters as @matchID; see @matchID
for details.

This function returns true if str
begins with an HLA compati-
ble literal string constant. If this
function matches such a con-
stant, it will store the matched
string, minus the delimiting
quotes, into the matched vari-
able. It will also store any fol-
lowing charcters into rem.

@zeroOrMoreWS @zeroOrMoreWS(str, rem)

str must be a string expression.

rem is an optional argument.
The type of rem is irrelevant but it must be a VAL
object.

This function always returns
true. It matches zero or more
"whitespace" characters at the
beginning of str.

Whitespace includes spaces,
newlines, tabs, and certain other
special characters.

Note that this function does not
return the matched string. To
return matched whitespace
characters, use @zeroOr-
MoreCset.

@oneOrMoreWS @oneOrMoreWS(str, rem)

str must be a string expression.

rem is an optional argument.
The type of rem is irrelevant but it must be a VAL
object. This function stores a result into this
object.

This function returns true if it
matches at least one whitespace
character. If it returns true, it
also returns any characters fol-
lowing the leading whitespace
characters in the rem variable.

Table 10: Miscellaneous Compile-time Pattern Matching Functions

Function Parameters Description
Page 1468 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
H.7 HLA Information and Symbol Table Functions

The symbol table functions provide access to information in HLA’s internal symbol table database.
These functions are particularly useful within macros to determine how to generate code for a particular
macro parameter.

@wsOrEOS @wsOrEOS(str, rem)

str must be a string expression.

rem is an optional argument.
The type of rem is irrelevant but it must be a VAL
object. This function stores a result into this
object.

This function succeeds if there
is whitespace at the beginning
of str or if str is the empty
string. If it succeeds and there
is leading whitespace, this func-
tion returns the remaining char-
acters in rem. If this function
succeeds and the string was
empty, this function returns the
empty string in rem. This func-
tion fails if the string is not
empty and it begins with
non-whitespace characters.

@wsThenEOS @wsThenEOS(str)

str must be a string expression.

This function returns true if str
contains zero or more
whitespace characters followed
by the end of the string. If fails
if there are any other characters
in the string.

@peekWS @peekWS(str, rem)

str must be a string expression.

rem is an optional argument.
The type of rem is irrelevant but it must be a VAL
object. This function stores a result into this
object.

This function returns true if the
next character in str is a
whitespace character. This
function returns a copy of str in
rem if it is successful.

@eos @eos(str)

str must be a string expression.

This function returns true if and
only if str is the empty string.

Table 10: Miscellaneous Compile-time Pattern Matching Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1469

AppendixH
Table 11: HLA Information and Compile-time Symbol Table Information Functions

Function Parameters Description

@name @name(identifier)

identifier must be a defined symbol in
the HLA program.

This function returns a string specifying
the name of the specified identifier. The
name this function returns is computed
after macro and text constant expansion.
This function is useful mainly in macros to
determine the name of a macro parameter.

@type @type(identifier)

identifier must be a defined symbol in
the HLA program.

This function returns a dword constant that
should be unique for any given type in the
program. You can use this to compare the
types of two different objects. For guaran-
teed uniqueness, see @typeName.

@typeName @typeName(identifier)

identifier must be a defined symbol in
the HLA program.

This function returns a string that specifies
the type of of the parameter.

@pType @pType(identifierOrExpression)

identifierOrExpression may be a
defined symbol in the HLA program or
a constant expression.

This function returns a small numeric con-
stant that specifies the primitive type of the
object. See the ptXXXXX constants in the
HLA.HHF header file for the actual values
this function returns.

@class @class(identifierOrExpression)

identifierOrExpression may be a
defined symbol in the HLA program or
a constant expression.

This function returns a small numeric con-
stant that classifies the identifier or expres-
sion as to whether it is a constant, VAL,
variable, parameter, static object, proce-
dure, etc. See the cXXXX constants in the
HLA.HHF header file for a list of the pos-
sible return values.

@size @size(identifierOrExpression)

identifierOrExpression may be a
defined symbol in the HLA program or
a constant expression.

This function returns the size, in bytes of
the specified object.

@offset @offset(identifier)

identifier must be a defined VAR or
parameter symbol in the HLA program.

This function returns a numeric constant
providing the offset into a procedure’s acti-
vation record for a VAR or parameter
object.

@staticName @staticName(identifier)

identifier must be a defined static, pro-
cedure, method, iterator, or external
symbol in the HLA program.

This function returns a string that specifies
the internal name that HLA uses for the
object.
Page 1470 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
@lex @lex(identifier)

identifier must be a defined symbol in
the HLA program.

This function returns a small integer con-
stant the specifies the static nesting level
for the specified symbol. All symbols
appearing in the main program have a lex
level of zero. Symbols you define in pro-
cedures within the main program have a
lex level of one. Higher lex level values
are possible if you define procedures inside
procedures.

@isExternal @isExternal(identifier)

identifier must be a defined symbol in
the HLA program.

This function returns true if the specified
identifier is an external symbol. Note that
this function will return true if the symbol
is defined external and a declaration for the
symbol appears later in the code.

@arity @arity(identifier)

identifier must be a defined symbol in
the HLA program.

This function returns zero if the specified
symbol is not an array. It returns a small
integer constant denoting the number of
dimensions if the identifier is an array
object.

@dim @dim(identifier)

identifier must be a defined symbol in
the HLA program.

If the specified identifier is an array object,
this function returns an array constant with
one element for each dimension in the
array. Each element of this array constant
specifies the number of elements for each
dimension of the array. If the identifier is
not an array object, this function returns an
array with a single element and that ele-
ment’s value will be zero.

@elements @elements(identifier)

identifier must be a defined symbol in
the HLA program.

This function returns the number of ele-
ments in an array object. If the specified
identifier is not an array object, this func-
tion returns zero. For multi-dimensional
arrays, this function returns the product of
each of the dimensions.

@elementSize @elementSize(identifier)

identifier must be a defined symbol in
the HLA program.

This function returns the size, in bytes, of
an element of the specified array.

@defined @defined(identifier)

identifier must be a defined symbol in
the HLA program.

This function returns true if the specified
symbol is defined prior to that point in the
program.

@pClass @pClass(identifier)

identifier must be a parameter in the
current procedure of an HLA program.

This function returns a small integer con-
stant specifying the parameter passing
mechanism for the specified parameter.
The HLA.HHF header file defines the
return values for this function (see the
XXXX_pc constant declarations).

Table 11: HLA Information and Compile-time Symbol Table Information Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1471

AppendixH
@isConst @isConst(identifierOrExpression)

identifierOrExpression may be a
defined symbol in the HLA program or
a constant expression.

This function returns true if the expression
is a constant expression that HLA can eval-
uate at that point in the program.

@isReg @isReg(Expression)

Expression may be arbitrary text, but it
is typically a register object.

This function returns true if the operand
corresponds to an 80x86 general purpose
register.

@isReg8 @isReg8(Expression)

Expression may be arbitrary text, but it
is typically a register object.

This function returns true if the operand
corresponds to an eight-bit 80x86 general
purpose register.

@isReg16 @isReg16(Expression)

Expression may be arbitrary text, but it
is typically a register object.

This function returns true if the operand
corresponds to a 16-bit 80x86 general pur-
pose register.

@isReg32 @isReg32(Expression)

Expression may be arbitrary text, but it
is typically a register object.

This function returns true if the operand
corresponds to a 32-bit 80x86 general pur-
pose register.

@isFReg @isFReg(Expression)

Expression may be arbitrary text, but it
is typically a register object.

This function returns true if the operand
corresponds to an FPU register.

@isMem @isMem(Expression)

Expression may be arbitrary text, but it
is typically a memory object (including
various addressing modes).

This function returns true if the specified
parameter corresponds to a legal 80x86
memory address.

@isClass @isClass(Text)

Text may be arbitrary text, but it is typi-
cally a class object.

This function returns true if the text param-
eter is a class name or a class object.

@isType @isClass(Text)

Text may be arbitrary text, but it is typi-
cally a type name.

This function returns true if the specified
text is a type identifier.

Table 11: HLA Information and Compile-time Symbol Table Information Functions

Function Parameters Description
Page 1472 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
@section @section This function returns a 32-bit value that
specifies which portion of the program
HLA is currently processing. This infor-
mation is mainly useful in macros to deter-
mine where a macro expansion is taking
place. This function returns the following
bit values:

Bit 0: Currently in the CONST section.
Bit 1: Currently in the VAL section.
Bit 2: Currently in the TYPE section.
bit 3: Currently in the VAR section.
bit 4: Currently in the STATIC section.
bit 5: In the READONLY section.
Bit 6: In the STORAGE section.
Bit 7: Currently in the DATA section.

Bits 8-11: reserved.

Bit 12: Processing statements in main.
Bit 13: Statements in a procedure.
Bit 14: Statements in a method.
Bit 15: Statements in an iterator.
Bit 16: Statements in a macro.
Bit 17: Statements in a keyword macro.
Bit 18: In a Terminator macro.
Bit 19: Statements in a Thunk.

Bits 20-22: reserved.

Bit 23: Processing statements in a Unit.
Bit 24: Statements in a Program.

Bit 25: Processing a Record declaration.
Bit 26: Processing a Union declaration.
Bit 27: Processing a Class declaration.
Bit 28: Processing a Namespace declara-
tion.

Bits 29-31: reserved.

@curLex @curLex Returns the current lex level of this state-
ment within the program.

@curOffset @curOffset Returns the current offset into the activa-
tion record. This is the offset of the last
VAR object declared in the current pro-
gram/procedure.

Table 11: HLA Information and Compile-time Symbol Table Information Functions

Function Parameters Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1473

AppendixH
H.8 Compile-Time Variables

The HLA compile-time variables are special symbols that not only return values, but allow you to mod-
ify their internal values as well. You may use these symbols exactly like any VAL object in your program
with the exception that you cannot change the type (generally int32 or boolean) of these objects. By chang-
ing the values of these pseudo-variables, you can affect the way HLA generates code in your programs.

@curDir @curDir Returns +1 if processing parameters, -1
otherwise. This corresponds to whether
offsets are increasing or decreasing in an
activation record during compilation. This
function also returns +1 when processing
fields in a record or class; it returns zero
when processing fields of a union.

@addofs1st @addofs1st This function returns true when processing
local variables, it returns false when pro-
cessing parameters and record/class/union
declarations.

@lastObject @lastObject This function returns a string containing
the name of the last macro object pro-
cessed.

@lineNumber @lineNumber This function returns an uns32 value speci-
fying the current line number in the file.

Table 12: HLA Compile-time Variables

Pseudo-Variable Description

@parmOffset This variable specifies the starting offset for parameters in a function. This should
be eight for most procedures. If you change this value, HLA’s automatic code gen-
eration for procedure calls may fail.

@localOffset This variable specifies the starting offset for local variables in a procedure. This is
typically zero. If you change this value, it will affect the offsets of all local sym-
bols in the activation record, hence you should modify this value only if you really
know what you’re doing (and have a good reason for doing it).

@enumSize This variable specifies the size (in bytes) of enum objects in your program. By
default, this value is one. If you want word or dword sized enum objects you can
change this variable to two or four. Other values may create problems for the com-
piler.

@minParmSize This variable specifies the minimum number of bytes for each parameter. Under
Windows, this should always be four.

Table 11: HLA Information and Compile-time Symbol Table Information Functions

Function Parameters Description
Page 1474 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix H: HLA Compile-time Functions
H.9 Miscellaneous Compile-Time Functions

This last category contains various functions and objects that are quite useful in compile-time programs.

@bound This boolean variable, whose default value is true, controls the compilation of the
BOUND instruction. If this variable contains false, HLA does not compile
BOUND instructions. You can set this value to true or false throughout your pro-
gram to control the emission of bound instructions.

@into This boolean variable, whose default value is false, controls the compilation of the
INTO instruction. If this variable contains false, HLA does not compile INTO
instructions. You can set this value to true or false throughout your program to
control the emission of INTO instructions.

@trace Enables HLA’s statement tracing facilities. See the separate appendix for details.

@exceptions If true (the default) then HLA uses the full exception handling package in the HLA
Standard Library. If false, HLA uses a truncated version. This allows programmers
to write their own exception handling code.

Table 13: Miscellaneous HLA Compile-time Functions and Objects

Function Parameters Description

@text @text(str)

str must be a string constant expression.

This function expands the string constant
in-line as text, replacing this function
invocation with the specified text.

@eval @eval(text)

text is an arbitrary sequence of textual char-
acters.

This function is useable only within
macro invocation parameter lists. It
immediately evaluates the text object
and passes the resulting text as the
parameter to the macro. This provides
eager evaluation capabilities for macro
parameters.

@string:identifier @string:identifier

identifier must be a text constant.

This function returns a string constant
corresponding to the string data in the
specified identifer. It does not otherwise
affect the value or type of identifier.

@toString:identifier @string:identifier

identifier must be a text constant.

This function converts the type of identi-
fier from text to string and then returns
the value of that string object.

@global:identifier @string:identifier

identifier must be an HLA identifier
declared outside the current namespace.

@global is legal only within a
namespace declaration. It provides
access to identifiers outside the
namespace.

Table 12: HLA Compile-time Variables

Pseudo-Variable Description
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1475

AppendixH
Page 1476 © 2001, By Randall Hyde Beta Draft - Do not distribute

Installing HLA on Your System
Installing HLA on Your System Appendix I

The latest version of HLA is available from the Webster web server at

http://webster.cs.ucr.edu

Go to this web site and following the HLA links to the “HLA Download” page. From here you should
select the latest version of HLA for download to your computer. The HLA distribution is provided in a “Zip
File” compressed format. You will need a decompressor program like PKUNZIP or WinZip in order to
extract the HLA files from this zipped archive file. The use of these decompression products is beyond the
scope of this appendix, please consult the software vendor’s documentation or their web page for informa-
tion concerning the use of these products. There are several files you can download associated with HLA.
For this text, you’ll need at least the executables and the examples downloads. You may download other files
at your own discretion.

This text assumes that you have unzipped the HLA distribution into the root directory of your C: drive.
You can certainly install HLA anywhere you want, but you will have to adjust the following descriptions if
you install HLA somewhere else. Note: if you are using computers in a school laboratory, your system
administor or instructor may have already installed HLA on the system; please consult the adminstrator or
instructor for details.

HLA is a command window/console application. In order to run the HLA compiler you must run the
command window program (this is “command.com” on Windows 95 and 98, “cmd.exe” on Windows NT
and Windows 2000). Most Windows distributions let you run the command prompt windows from the Start
menu or from a submenu hanging off the start menu. Otherwise, you can find the executable in the “C:\Win-
dows” directory or in the “C:\WinNT\System32” directory1. This text assumes that you are familiar with the
Windows command window and you know how to use some basic command window commands (e.g., dir,
del, rename, etc.). If you have never before used the Windows command line interpreter, you should consult
an appropriate text to learn a few basic commands.

Before you can actually run the HLA compiler, you must set the system execution path and set up vari-
ous environment variables. Some versions of Windows (e.g., NT) let you permanently set up these values.
However, an easy and universal way to set up the path and environment variables is to use a batch file. A
batch file is a sequence of command window commands that you store into a file (with a “.BAT” extension)
to quickly execute by typing the filename (sans extension). This is the method we will use to initialize the
system.

The following text provides a suitable “ihla.bat” (initialize HLA) file that sets up the important vari-
ables, assuming you’ve installed HLA on your “C:” drive in the “C:\HLA” subdirectory:

path=c:\hla;%path%
set lib=c:\hla\hlalib;%lib%
set include=c:\hla\include;%include%
set hlainc=c:\hla\include
set hlalib=c:\hla\hlalib\hlalib.lib

Enter these lines of text into a suitable text editor (not a word processor) and save them as “ihla.bat” in the
“c:\hla” subdirectory. For your convenience, this batch file also appears in the “AoA_Software” directory of
the HLA distribution.

The first line in this batch file tells the system to execute the HLA.EXE and HLAPARSE.EXE files
directly from the HLA subdirectory without your having to specify the full pathname. That is, you can type
“hla” rather than “c:\hla\hla” in order to run the HLA compiler. Obviously, this saves a lot of typing and is
quite worthwhile2. The second and third lines of this batch file insert the HLA include directory and HLA
Standard Library directory into the search list used by compilers on the system. HLA doesn’t actually use
these variables, but other tools might, hence their inclusion in the batch file. The last two entries in the batch

1. Assuming you’ve installed Windows on your “C:” drive. Adjust the drive letter appropriately if you’ve installed Windows
on a different drive.
2. Alternately, you can move the HLA.EXE and HLAPARSE.EXE files to a subdirectory already in the execution path.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1477

Appendix I
file set up the HLA-specific environment variables that provide the paths to the HLA include file directory
and the HLA standard library file (hlalib.lib). The HLA compiler expects to find these variables in the sys-
tem environment. Compilation will probably fail if you haven’t set up these environment variables.

In addition to the HLA distribution files, you will also need some additional Microsoft tools in order to
use the HLA system. Specifically, you will need a copy of Microsoft’s Macro Assembler (MASM) and a
copy of the Microsoft Linker in order to use HLA. Fortunately, you may download these programs for free
from the internet. Instructions on how to do so are available on the net. The Webster web site (see the “Ran-
dall Hyde’s Assembly Page” link) maintains a link to a site that explains how to download MASM and LINK
from Microsoft’s web page. You will need to obtain the ml.exe, ml.err, link.exe, and the MspdbX0.dll (x=5,
6, or some other integer) files. Place these files in the HLA directory along with the HLA.EXE and HLA-
PARSE.EXE files3. In addition to these files, you will need a copy of Microsoft’s “kernel32.lib” library
package. This comes with Visual C++ and other Microsoft tools and compilers. If this file is not in the cur-
rent path specified by the “lib” environment variable, put a copy in the “c:\hla\hlalib” subdirectory.

Getting HLA up and running is a complex process because there are so many different files that have to
all be located in the right spot. If you are having trouble getting HLA running on your system, be sure that:

• HLA.EXE and HLAPARSE.EXE are in the “c:\hla” subdirectory.
• ml.exe, ml.err, and link.exe are in the “c:\hla” subdirectory.
• mspdbX0.dll (x=5, 6, or greater) is in the “c:\hla” subdirectory (win95 and win98 users).
• msvcrt.dll is in the c:\hla” subdirectory (Win NT and Win 2000 users).
• kernel32.lib is in the path specified by the “set lib=...” statement (e.g., the “c:\hla\hlalib” subdi-

rectory).

To verify the proper operation of HLA, open up a command window (i.e., from the START button in Win-
dows), type “c:\hla\ihla” to run the “ihla.bat” file to initialize the path and important environment variables.
Then type “hla -?” at the command line. HLA should display the current version number along with a list of
legal command line parameters. If you get this display, the system can find the HLA compiler, so go on to
the next step. If you do not get this message, then type “SET” at the command line prompt and verify that
the path is correct and that the lib, include, hlalib, and hlainc environment variables are set correctly. If not,
rerun the ihla.bat file and try again4.

Once you’ve verified the proper operation of the HLA compiler, the next step is to verify the proper
operation of the MASM assembler. You can do this by typing “ML -?” at the Windows command line
prompt. MASM should display its current version number and all the command line parameters it supports.
You will not directly run MASM, so you can ignore all this information. The important issue is whether the
information appears. If it does not, an HLA compile will fail. If the ML command does not bring up this
information, verify that ml.exe and ml.err are in an execution path (e.g., in the “c:\hla” subdirectory).

The next step is to verify that the Microsoft linker is operational. You can do this by typing “link -?” at
the Windows command line prompt. The program should display a message like “Microsoft (R) Incremen-
tal Linker Version 6.00.xxxx”. If you do not get a linker message at all, verify that the link.exe program is
installed in a subdirectory in the execution path (e.g., “c:\hla”). Also make sure that the mspdbX0.dll (X=5
or greater, this should match the version of the linker) and msvcrt.dll files appear in this same directory.
Warning: depending on where you got your copy of MASM, it may have come with a 16-bit linker. 16-bit
linkers are not compatible with HLA. You must use the newer 32-bit linkers that come with Visual C++ and
other Microsoft languages.

Note: most of the Microsoft tools and libraries you will need can be found that the following WEB
address:

http://www.pbq.com.au/home/hutch/masm.htm

There is also a link on Webster (http://webster.cs.ucr.edu) to a page that explains how to extract MASM
and other tools from the Microsoft site.

3. Actually, you may install these files in any directory that is in the execution path. So if you’ve purchased a commercial ver-
sion of MASM, or have installed the linker via Visual C++, there is no need to move or copy these files to the HLA directory.
4. Be sure the ihla.bat file contains appropriate drive letters in front of the pathnames if you are having problems.
Page 1478 © 2001, By Randall Hyde Beta Draft - Do not distribute

Installing HLA on Your System
At this point, you should have successfully installed the HLA system and it should be ready to use. After
a description of the HLA distribution in the next section, you’ll get an opportunity to test out your installa-
tion.

I.1 What’s Included in the HLA Distribution Package

Although HLA is relatively flexible about where you put it on your system, this text assumes you’ve
installed HLA on your C: drive under a Win32 operating system (e.g., Windows 95, 98, NT, 2000, and later
versions that are 32-bit compatible). This text also assumes the standard directory placement for the HLA
files, which has the following layout

• HLA directory
• Doc directory
• Examples directory
• AoA_Software directory
• Volume1
• Ch01 directory
• Ch02 directory
• etc.
• Volume2
• Ch01 directory
• Ch02 directory
• etc.
• etc.
• hlalib directory
• include directory
• Tests directory

The main HLA directory contains the executable code for the compiler. This consists of two files,
HLA.EXE and HLAPARSE.EXE. These two programs must be in the current execution path in order to run
the compiler (the “path” command in the ihla.bat file sets the execution path). It wouldn’t hurt to put the
ml.exe, ml.err, link.exe, mspdbX0.dll (x=5, 6, or greater), and msvcrt.dll files in this directory as well.

The Doc directory contains reference material for HLA in PDF and HTML formats. If you have a copy
of Adobe Acrobat Reader, you will probably want to read the PDF versions since they are much nicer than
the HTML versions. These documents contain the most up-to-date information about the HLA language;
you should consult them if you have a question about the HLA language or the HLA Standard Library. Gen-
erally, material in this documentation supersedes information appearing in this text since the HLA document
is electronic and is probably more up to date.

The Examples directory contains a large set of HLA programs that demonstrate various features in the
HLA language. If you have a question about an HLA feature, you can probably find an example program
that demonstrates that feature in the Examples directory. Such examples provide invaluable insight that is
often superior to a written description of the feature.

The AoA_Software directory contains the code specific to this textbook. This directory contains all the
source code to (complete) programs appearing in this text. It also contains the programs appearing in the
Laboratory Exercises section of each chapter. Therefore, this directory is very important to you. Within this
subdirectory, the information is further divided up by chapter. The material for Chapter One appears in the
AoA_Software\Volume1\Ch01 subdirectory, the material for Chapter Two appears in the
AoA_Software\Volume1\Ch02 subdirectory, etc..

The hlalib directory contains the source and object code for the HLA Standard Library. As you become
more competent with HLA, you may want to take a look at how HLA implements various library functions.
In the meantime, this directory contains the hlalib.lib file which you must link with your own programs that
make calls to the standard library. Linking instructions appear a little later in this chapter.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1479

Appendix I
The include directory contains the HLA Standard Library include files. These special files (that end with
a “.hhf” suffix, for HLA Header File) are needed during assembly to provide prototype and other informa-
tion to your program. The example programs in this chapter all include the HLA header file “stdlib.hhf” that,
in turn, includes all the other HLA header files in the standard library.

The Tests directory contains various test files that test the correct operation of the HLA system. HLA
includes these files as part of the distribution package because they provide additional examples of HLA
coding.

I.2 Using the HLA Compiler

If you’ve made it through the previous two sections, it’s now time to test out your installation and verify
that it is correct. In this section you’ll also learn how to run the compiler and the executables it produces.

To begin with, open a command prompt window. This is usually accomplished by selecting the “com-
mand prompt” program from the Windows Start menu (or one of its submenus). You can also use the “run”
command (from the Start button) and type “command” for Windows 95 & 98 or “cmd” for Windows NT &
2000. Once you are faced with the command prompt window, type the following (boldfaced) commands to
initialize the HLA system:5

c:> cd c:\hla
c:> ihla

If your command prompt opens up a drive other than C:, you may need to switch to the “C:” drive (or what-
ever drive contains the HLA subdirectory) before issuing these commands. You can switch the default drive
by simply typing the drive letter followed by a colon. For example, to switch to the C: drive, you would use
the following command:

x:> c:

After running the “ihla” batch file to initialize the system, you can test for the presence of the HLA com-
piler by entering the following command:

c:\hla> hla -?

This should display some internal information about HLA along with a description of the syntax for the
HLA command. If you get an error message complaining about a missing command, you’ve probably not
installed HLA properly or the path hasn’t been properly set. If you believe you’ve installed HLA properly,
try running the ihla.bat file again, and check to be sure that the batch file contains the correct data.

Warning: every time you start a new command prompt window, you will need to re-run the ihla.bat file.
Generally, you should only have to open a command prompt window once per programming session. How-
ever, if you close the window for some reason, keep in mind that you must rerun ihla.bat before you can run
HLA.

I.3 Compiling Your First Program

Once HLA is operational, the next step is to compile an actual working program. The HLA distribution
contains lots of example HLA programs, including the HLA programs appearing in this text. Since these
examples are already written, tested, and ready to compile and run, it makes sense to work with one of these
example files when compiling your first program.

5. This text typically displays the entire command line text when showing the execution of a command window command.
The non-boldfaced text is printed by the command line processor, the boldfaced text is user input. Note that this text assumes
that you are working on the “C:” disk drive. If you’re working on a different drive (e.g., a network drive containing your per-
sonal account), you will see a slightly different prompt and you will need to adjust the drive letters in the commands pre-
sented in this text.
Page 1480 © 2001, By Randall Hyde Beta Draft - Do not distribute

Installing HLA on Your System
A good first program is the “Hello World” program appearing in program Volume One (repeated
below):

program helloWorld;
#include(“stdlib.hhf”);

begin helloWorld;

stdout.put(“Hello, World of Assembly Language”, nl);

end helloWorld;

The source code for this program appears in the “C:\hla\AoA_Software\Volume1\Ch02\Hel-
loWorld.hla” file. To compile this program, type the following at the command prompt:

c:\lab1> hla HelloWorld

After a few moments, the Windows command prompt (“C:>”) should reappear. At this point, your pro-
gram has been successfully compiled. To run the executable (HelloWorld.exe) that HLA has produced, you
would use the following command:

C:\hla\AoA_Software\Volume1\Ch02> HelloWorld

The program should run, display “Hello World”, and then terminate. At that time the command window
should be waiting for another command.

If you have not successfully completed the previous steps, return to the previous section and repeat the
steps to verify that HLA is operational on your system. Remember, each time you start a new command
window, you must execute the “ihla.bat” file (or otherwise set up the environment) in order to make HLA
accessible in that command window.

I.4 Win 2000 Installation Notes Taken from comp.lang.asm.x86

Here’s some installation information I’ve received from “Sam” on the internet. You can obtain more
information from his web site at http://www.idmcomp.com/discus/messages/11/327.html.

I.4.1 To Install HLA

How to get HLA running conveniently in Win2000; and also how to configure Ultraedit32 to save file,
pass to HLA compiler, and run program, all with a UE keyboard shortcut. Reply here in group if any prob-
lems.

This is the way *I* have set things up in Win2k Pro, and so I can only say that if you set up exactly like
I did, it may have a good chance of working. WARNING: Have your Win2k CD on hand to repair damaged
installation if anything goes wrong....

1.-- Go to http://webster.cs.ucr.edu/Page_hla/hla.html and read the first few paragraphs, down to "Once
that above is achieved, you can run the HLA compiler...." This will tell you what we're trying to do, and
what you need to run HLA, but is necessarily vague (for legal reasons I presume) on WHERE to get some of
these files...you can get MASM 615 by following instructions at

http://www.easystreet.com/~jkirwan/pctools.html
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1481

Appendix I
2.-- The only way I have found to get sufficiently recent versions of link.exe, kernel32.lib, user32.lib
and gdi32.lib (plus all needed DLLs) is to have a friend with VC++ 6.0. (RLH note: version 5 of the 32-bit
linker is okay. You can get the files from the MASM32 home page on the Internet; just search for MASM32
in Altavista or some other search engine [this is still vague for legal reasons]).

3.-- Once you have all needed files, create c:\hla and make sure it includes the subdirectories and files in
the list at the end of this text.

4.-- Open System Properties (Winkey-Break is a convenient shortcut) and go to Advanced tab, then
Environment Variables. Add "c:\hla" to the Path in SYSTEM VARIABLES, not in "User variables for <your
win2k login name>". Click OK, but keep the Environment Variables window open, we're not done.

5.-- Look at the contents of ihla.bat, reproduced here for your convenience:

path=c:\hla;%path%
set lib=c:\hla\hlalib;%lib%
set include=c:\hla\include;%include%
set hlainc=c:\hla\include
set hlalib=c:\hla\hlalib\hlalib.lib

In "User Variables for <your login name>", you must end up with each of these settings.
For example, to create hlainc, you click the "New..." button, type "hlainc" as the name of the variable, and
type "c:\hla\include" as the Variable value (all without quotes of course). If there is already a path set, and it
already has some value, add this immediately to the end: ";c:\hla;%path%" and that will preserve your exist-
ing User and System paths as well as adding c:\hla.

For example, suppose you opened up your User Variables for <login name> and it already said "C:\Pri-
vate

Files\PantiePix;c:\winnt\system32;c:\winnt;c:\winnt\System32\Wbem;d:\lcc\bin;D:\PROGRA~1\ULTR
AE~1;D:\4NT300;C:\msoffice\Office;c:/hla",

you would click on Edit and type "C:\Private Files\PantiePix;c:\hla;%path%"

(Same advice for preserving existing lib and include settings)

6.-- Once you reboot the computer, you should be all set for "Hello world of assembly language"!

I.4.2 SETTING UP UEDIT32

In Uedit32's Advanced/Tool Configuration, create a new item called HLA.

Command line:

c:\HLA\hla.exe "%f" & "%n" & echo. & echo. & echo. & echo. & pause

 -- You can read all about these switches in the Help, but basically what this command does is start
hla.exe, pass it the current UE file (the .hla program you're building), run it once HLA has finished with it,
and pause at the end, so you can examine the output before you press the "any" key which will close the con-
sole. (I haven't figured out a way to keep one console constantly open and simply run every new build of the
program in it, as of yet....)

Working directory:
Page 1482 © 2001, By Randall Hyde Beta Draft - Do not distribute

Installing HLA on Your System
c:\hla

Menu Item Name:

HLA

Check "Save All Files First" if you like. Close and restart UEDIT32.

To run this baby, edit your .hla file as usual, then when you wish to \make it go, press the appropriate
key combination for "HLA" (It's in the Advanced menu in case you forget; it will default to Ctrl-Shift-<0 or
1 or whatever>.

The program will echo compiler/linker messages to a console which will pop up (hit Alt-spacebar, then
Properties, to set up that console window the way you like it)....

SYNTAX HIGHLIGHTING: Study ultraedit/wordfile.txt to see how Syntax Highlighting is handled,
then create a new language, HLA. I simply copied and edited the Assembly x86 syntax highlighting (you
may have to download this file from www.ultraedit.com, I forget) but I'm a beginning programmer and not
sure of the different categories of HLA tokens to be highlighted, so I will spare you my clumsy efforts. It
works fine though.

WHAT YOU SHOULD HAVE ON YOUR HARD DRIVE

C:\HLA\

ADVPACK.DLL
C1.DLL
C1XX.DLL
c2.dll
DMW0.DLL
EED1CXX.DLL
EEW0CXX.DLL
EMD1D1.DLL
EMD1W0.DLL
EMW0W0.DLL
h2inc.err
hla.exe
hlaparse.exe
LINK.EXE
makefile
MASM.EXE
ml.err
ml.exe
NMAKE.ERR
NMAKE.EXE
NMAKER.EXE
QH.EXE
SHD1.DLL
SHW0.DLL
TLD1COM.DLL
TLD1LOC.DLL
TLW0LOC.DLL
TOOLHELP.DLL
W95INF16.DLL
W95INF32.DLL
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1483

Appendix I
C:\HLA\hlalib\

Gdi32.lib
hlalib.lib
Kernel32.lib
User32.lib

C:\HLA\include\

args.hhf
arrays.hhf
bits.hhf
chars.hhf
console.hhf
conv.hhf
coroutines.hhf
cset.hhf
datetime.hhf
dtClass.hhf
excepts.hhf
fileclass.hhf
fileio.hhf
hla.hhf
hll.hhf
lists.hhf
math.hhf
memory.hhf
misctypes.hhf
patterns.hhf
rand.hhf
stdin.hhf
stdio.hhf
stdlib.hhf
stdout.hhf
strings.hhf
Tables.hhf
timer.hhf
vssver.scc
win32.hhf
x86.hhf

I.4.3 Wordfile.txt Contents (for UEDIT)

/L1"C/C++" Line Comment = // Block Comment On = /* Block Comment Off = */ Escape Char =
\ String Chars = "' File Extensions = C CPP CC CXX H HPP AWK
/Delimiters = ~!@%^&*()-+=|\/{}[]:;"'<> ,.?
/Function String = "%[a-zA-Z_]*)[~;]"
/Indent Strings = "{"
/Unindent Strings = "}"
/C1"Keywords"
auto
break
case char const continue
default do double defined
else enum extern
float for
goto
Page 1484 © 2001, By Randall Hyde Beta Draft - Do not distribute

Installing HLA on Your System
if int
long
register return
short signed sizeof static struct switch
typedef
union unsigned
void volatile
while
__asm __fastcall __self __segment __based __segname __fortran __cdecl __huge __far
__saveregs __export __pascal __near __loadds __interrupt __inline
#define #error #include #elif #if #line #else #ifdef #pragma #endif #ifndef #undef
/C2"C++ Keywords"
class
delete
explicit
friend
inline
new namespace
operator
private protected public
this try template
virtual
__multiple_inheritance __single_inheritance __virtual_inheritance
/C4"Operators"
+
-
=
// /
%
&
>
<
^
!
|

/L2"Visual Basic" Line Comment = ' File Extensions = BAS FRM CLS VBS
/Function String = "%[PF]*)$"
/Indent Strings = "Then"
/Unindent Strings = "End" "Next" "End If" "End Select"
/C1"Functions"
Abs Array Asc AscB AscW Atn Avg
CBool CByte CCur CDate CDbl Cdec Choose Chr ChrB ChrW CInt CLng Command Cos Count
CreateObject CSng CStr CurDir CVar CVDate CVErr
Date DateAdd DateDiff DatePart DateSerial DateValue Day DDB Dir DoEvents
Environ EOF Error Exp
FileAttr FileDateTime FileLen Fix Format FreeFile FV
GetAllStrings GetAttr GetAutoServerSettings GetObject GetSetting
Hex Hour
IIf IMEStatus Input InputB InputBox InStr InstB Int IPmt IsArray IsDate IsEmpty IsError
IsMissing IsNull IsNumeric IsObject
LBound LCase Left LeftB Len LenB LoadPicture Loc LOF Log LTrim
Max Mid MidB Min Minute MIRR Month MsgBox
Now NPer NPV
Oct
Partition Pmt PPmt PV
QBColor
Rate RGB Right RightB Rnd RTrim
Second Seek Sgn Shell Sin SLN Space Spc Sqr StDev StDevP Str StrComp StrConv String
Switch Sum SYD
Tab Tan Time Timer TimeSerial TimeValue Trim TypeName
UBound UCase
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1485

Appendix I
Val Var VarP VarType
Weekday
Year
/C2"Methods"
Accept Activate Add AddCustom AddFile AddFromFile AddFromTemplate AddItem AddNew
AddToAddInToolbar AddToolboxProgID Append AppendChunk Arrange Assert AsyncRead
BatchUpdate BeginTrans Bind
Cancel CancelAsyncRead CancelBatch CancelUpdate CanPropertyChange CaptureImage CellText
CellValue Circle Clear ClearFields ClearSel ClearSelCols Clone Close Cls ColContaining
ColumnSize CommitTrans CompactDatabase Compose Connect Copy CopyQueryDef CreateDatabase
CreateDragImage CreateEmbed CreateField CreateGroup CreateIndex CreateLink
CreatePreparedStatement CreatePropery CreateQuery CreateQueryDef CreateRelation
CreateTableDef CreateUser CreateWorkspace Customize
Delete DeleteColumnLabels DeleteColumns DeleteRowLabels DeleteRows DoVerb Drag Draw
Edit EditCopy EditPaste EndDoc EnsureVisible EstablishConnection Execute ExtractIcon
Fetch FetchVerbs Files FillCache Find FindFirst FindItem FindLast FindNext FindPrevious
Forward
GetBookmark GetChunk GetClipString GetData GetFirstVisible GetFormat GetHeader
GetLineFromChar GetNumTicks GetRows GetSelectedPart GetText GetVisibleCount GoBack
GoForward
Hide HitTest HoldFields
Idle InitializeLabels InsertColumnLabels InsertColumns InsertObjDlg InsertRowLabels
InsertRows Item
KillDoc
Layout Line LinkExecute LinkPoke LinkRequest LinkSend Listen LoadFile LoadResData
LoadResPicture LoadResString LogEvent
MakeCompileFile MakeReplica MoreResults Move MoveData MoveFirst MoveLast MoveNext
MovePrevious
NavigateTo NewPage NewPassword NextRecordset
OLEDrag OnAddinsUpdate OnConnection OnDisconnection OnStartupComplete Open
OpenConnection OpenDatabase OpenQueryDef OpenRecordset OpenResultset OpenURL Overlay
PaintPicture Paste PastSpecialDlg PeekData Play Point PopulatePartial PopupMenu Print
PrintForm PropertyChanged PSet
Quit
Raise RandomDataFill RandomFillColumns RandomFillRows rdoCreateEnvironment
rdoRegisterDataSource ReadFromFile ReadProperty Rebind ReFill Refresh RefreshLink
RegisterDatabase Reload Remove RemoveAddInFromToolbar RemoveItem Render RepairDatabase
Reply ReplyAll Requery ResetCustom ResetCustomLabel ResolveName RestoreToolbar Resync
Rollback RollbackTrans RowBookmark RowContaining RowTop
Save SaveAs SaveFile SaveToFile SaveToolbar SaveToOle1File Scale ScaleX ScaleY Scroll
Select SelectAll SelectPart SelPrint Send SendData Set SetAutoServerSettings SetData
SetFocus SetOption SetSize SetText SetViewport Show ShowColor ShowFont ShowHelp
ShowOpen ShowPrinter ShowSave ShowWhatsThis SignOff SignOn Size Span SplitContaining
StartLabelEdit StartLogging Stop Synchronize
TextHeight TextWidth ToDefaults TwipsToChartPart TypeByChartType
Update UpdateControls UpdateRecord UpdateRow Upto
WhatsThisMode WriteProperty
ZOrder
/C3"Events"
AccessKeyPress AfterAddFile AfterChangeFileName AfterCloseFile AfterColEdit
AfterColUpdate AfterDelete AfterInsert AfterLabelEdit AfterRemoveFile AfterUpdate
AfterWriteFile AmbienChanged ApplyChanges Associate AsyncReadComplete AxisActivated
AxisLabelActivated AxisLabelSelected AxisLabelUpdated AxisSelected AxisTitleActivated
AxisTitleSelected AxisTitleUpdated AxisUpdated
BeforeClick BeforeColEdit BeforeColUpdate BeforeConnect BeforeDelete BeforeInsert
BeforeLabelEdit BeforeLoadFile BeforeUpdate ButtonClick ButtonCompleted ButtonGotFocus
ButtonLostFocus
Change ChartActivated ChartSelected ChartUpdated Click ColEdit Collapse ColResize
ColumnClick Compare ConfigChageCancelled ConfigChanged ConnectionRequest
Page 1486 © 2001, By Randall Hyde Beta Draft - Do not distribute

Installing HLA on Your System
DataArrival DataChanged DataUpdated DblClick Deactivate DeviceArrival DeviceOtherEvent
DeviceQueryRemove DeviceQueryRemoveFailed DeviceRemoveComplete DeviceRemovePending
DevModeChange Disconnect DisplayChanged Dissociate DoGetNewFileName Done DonePainting
DownClick DragDrop DragOver DropDown
EditProperty EnterCell EnterFocus Event ExitFocus Expand
FootnoteActivated FootnoteSelected FootnoteUpdated
GotFocus
HeadClick
InfoMessage Initialize IniProperties ItemActivated ItemAdded ItemCheck ItemClick
ItemReloaded ItemRemoved ItemRenamed ItemSeletected
KeyDown KeyPress KeyUp
LeaveCell LegendActivated LegendSelected LegendUpdated LinkClose LinkError LinkNotify
LinkOpen Load LostFocus
MouseDown MouseMove MouseUp
NodeClick
ObjectMove OLECompleteDrag OLEDragDrop OLEDragOver OLEGiveFeedback OLESetData
OLEStartDrag OnAddNew OnComm
Paint PanelClick PanelDblClick PathChange PatternChange PlotActivated PlotSelected
PlotUpdated PointActivated PointLabelActivated PointLabelSelected PointLabelUpdated
PointSelected PointUpdated PowerQuerySuspend PowerResume PowerStatusChanged
PowerSuspend
QueryChangeConfig QueryComplete QueryCompleted QueryTimeout QueryUnload
ReadProperties Reposition RequestChangeFileName RequestWriteFile Resize ResultsChanged
RowColChange RowCurrencyChange RowResize RowStatusChanged
SelChange SelectionChanged SendComplete SendProgress SeriesActivated SeriesSelected
SeriesUpdated SettingChanged SplitChange StateChanged StatusUpdate SysColorsChanged
Terminate TimeChanged TitleActivated TitleSelected TitleActivated
UnboundAddData UnboundDeleteRow UnboundGetRelativeBookmark UnboundReadData
UnboundWriteData Unload UpClick Updated
Validate ValidationError
WillAssociate WillChangeData WillDissociate WillExecute WillUpdateRows WithEvents
WriteProperties
/C4"Statements"
AppActivate
Base Beep
Call Case ChDir ChDrive Const
Declare DefBool DefByte DefCur DefDate DefDbl DefDec DefInt DefLng DefObj DefSng DefStr
Deftype DefVar DeleteSetting Dim Do
Else ElseIf End Enum Erase Event Exit Explicit
FileCopy For ForEach Friend Function
Get GoSub GoTo
If Implements
Kill
Let LineInput Lock LSet
MkDir
Name Next
OnError On Option
Private Property Public Put
RaiseEvent Randomize ReDim Rem Reset Resume Return RmDir RSet
SavePicture SaveSetting SendKeys SetAttr Static Sub
Then Type
Unlock
Wend While Width With Write

/L3"HTML" Nocase Noquote HTML_LANG Block Comment On = <!-- Block Comment Off = -->
Block Comment On Alt = <% Block Comment Off Alt = %> String Chars = "' File Extensions
= HTM HTML ASP SHTML HTT JSP
/Delimiters = ~!@$%^&*()+=|\{}[]:;"'<> ,.?
/Function String = "name=*">"
/C1"Tags"
<A <ABBR> <ABBR </ABBR> <ABOVE> <ACRONYM> <ACRONYM </ACRONYM> <ADDRESS> <ADDRESS
</ADDRESS> <APPLET </APPLET> <ARRAY> <AREA </AREA
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1487

Appendix I
 <B <BASE <BASEFONT <BDO> <BDO </BDO> <BGSOUND <BIG> <BIG </BIG> <BLINK>
</BLINK> <BLOCKQUOTE> <BLOCKQUOTE </BLOCKQUOTE> <BODY <BODY> </BODY> <BOX> <BR

<BIG <BLINK <BUTTON> </BUTTON>
<CAPTION> <CAPTION </CAPTION> <CENTER> <CENTER </CENTER> <CITE> <CITE </CITE> <CODE>
<CODE </CODE> <COL> <COL <COLGROUP <COLGROUP> </COLGROUP> <COMMENT> </COMMENT>
<DD> <DD </DD> <DEL <DFN> <DFN </DFN> <DIR> <DIR </DIR> <DIV> <DIV </DIV>
<DL> <DL </DL> <DT> <DT </DT>
 <EM <EMBED
<FIELDSET> <FIELDSET </FIELDSET> <FIG> <FONT <FORM> <FORM </FORM> <FRAME
<FRAMESET </FRAMESET>
<H1> <H1 </H1> <H2> <H2 </H2> <H3> <H3 </H3> <H4> <H4 </H4> <H5> <H5 </H5> <H6> <H6
</H6> <HEAD> <HEAD </HEAD> <HR> <HR <HTML> <HTML </HTML>
<I> <I </I> <IFRAME> </IFRAME> <ILAYER> </ILAYER> <IMG <INPUT> <INPUT <INS> <INS </INS>
<ISINDEX> <ISINDEX
<KBD> <KBD </KBD>
<LABEL> <LABEL </LABEL> <LAYER> <LAYER </LAYER> <LEGEND> <LEGEND </LEGEND> <LI
 <LINK <LISTING> </LISTING>
<MAP </MAP> <MARQUEE </MARQUEE> <MENU> <MENU </MENU> <META <MULTICOL> </MULTICOL>
<NEXTID <NOBR> </NOBR> <NOFRAMES> </NOFRAMES> <NOLAYER> </NOLAYER> <NOTE> </NOTE>
<NOSCRIPT> </NOSCRIPT>
<OBJECT> <OBJECT <OL <OPTION> <OPTION </OPTION> <OPTGROUP> <OPTGROUP
</OPTGROUP>
<P <P> </P> <PARAM <PRE> <PRE </PRE>
<Q> <Q </Q> <QUOTE>
<RANGE> <ROOT>
<S> <S </S> <SAMP> <SAMP </SAMP> <SCRIPT <SCRIPT> </SCRIPT> <SELECT <SELECT> </SELECT>
<SMALL> <SMALL </SMALL> <SOUND <SPACER> <SPAN <SQRT> <STRIKE> <STRIKE
</STRIKE> <STRONG <STYLE> <STYLE </STYLE> <SUB> <SUB </SUB> <SUP>
<SUP </SUP>
<TABLE> <TABLE </TABLE> <TBODY> <TBODY </TBODY> <TD <TD> </TD> <TEXT> <TEXTAREA
<TEXTAREA> </TEXTAREA> <TFOOT> <TFOOT </TFOOT> <TH <TH> </TH> <THEAD> <THEAD </THEAD>
<TITLE> </TITLE> <TR <TR> </TR> <TT> </TT> <TT
<U> <U </U> <UL
<VAR> </VAR> <VAR
<WBR>
<XMP> </XMP>
/C2"Attributes"
ABBR= ACCEPT-CHARSET= ACCEPT= ACCESSKEY= ACTION= ALIGN= ALINK= ALT= ARCHIVE= AXIS=
BACKGROUND= BEHAVIOR BELOW BGCOLOR= BORDER=
CELLPADDING= CELLSPACING= CHAR= CHAROFF= CHARSET= CHECKED CITE= CLASS= CLASSID= CLEAR=
CODE= CODEBASE= CODETYPE= COLOR= COLS= COLSPAN= COMPACT CONTENT= COORDS=
DATA= DATETIME= DECLARE DEFER DIR= DISABLED
ENCTYPE=
FACE= FOR= FRAME= FRAMEBORDER= FRAMESPACING=
HEADERS= HEIGHT= HIDDEN= HREF= HREFLANG= HSPACE= HTTP-EQUIV=
ID= ISMAP=
LABEL= LANG= LANGUAGE= LINK= LOOP= LONGDESC=
MAILTO= MARGINHEIGHT= MARGINWIDTH= MAXLENGTH= MEDIA= METHOD= MULTIPLE
NAME= NOHREF NORESIZE NOSHADE
OBJECT= ONBLUR= ONCHANGE= ONFOCUS= ONKEYDOWN= ONKEYPRESS= ONKEYUP= ONLOAD= ONRESET=
ONSELECT= ONSUBMIT= ONUNLOAD= ONCLICK= ONDBLCLICK= ONMOUSEDOWN= ONMOUSEMOVE=
ONMOUSEOUT= ONMOUSEOVER= ONMOUSEUP=
PROFILE= PROMPT=
READONLY REL= REV= ROWS= ROWSPAN= RULES=
SCHEME= SCOPE= SCROLLING= SELECTED SHAPE= SIZE= SPAN= SRC= STANDBY= START= STYLE=
SUMMARY=
TABINDEX= TARGET= TEXT= TITLE= TOPMARGIN= TYPE=
URL= USEMAP=
VALIGN= VALUE= VALUETYPE= VERSION= VLINK= VSPACE=
WIDTH=
=

Page 1488 © 2001, By Randall Hyde Beta Draft - Do not distribute

Installing HLA on Your System
/L4"Java" Line Comment = // Block Comment On = /* Block Comment Off = */ Escape Char =
\ File Extensions = JAV JAVA JS
/Delimiters = ~!@%^&*()-+=|\/{}[]:;"'<> ,.?
/Function String = "%[^t]+[ps]*([~;^p]+$"
/Indent Strings = "{"
/Unindent Strings = "}"
/C1
abstract
break byte boolean
catch case class char continue
default double do
else extends
false final float for finally
if import implements int interface instanceof
long length
native new null
package private protected public
return
switch synchronized short static super
try true this throw throws threadsafe transient
void
while
/C2
AbstractMethodError AccessException Acl AclEntry AclNotFoundException ActionEvent
ActionListener Adjustable AdjustmentEvent AdjustmentListener Adler32
AlreadyBoundException Applet AppletContext AppletStub AreaAveragingScaleFilter
ArithmeticException Array ArrayIndexOutOfBoundsException ArrayStoreException AudioClip
AWTError AWTEvent AWTEventMulticaster AWTException
BeanDescriptor BeanInfo Beans BigDecimal BigInteger BindException BitSet Boolean
BorderLayout BreakIterator BufferedInputStream BufferedOutputStream BufferedReader
BufferedWriter Button ButtonPeer Byte ByteArrayInputStream ByteArrayOutputStream
Calendar CallableStatement Canvas CanvasPeer Certificate Character CharacterIterator
CharArrayReader CharArrayWriter CharConversionException Checkbox CheckboxGroup
CheckboxMenuItem CheckboxMenuItemPeer CheckboxPeer CheckedInputStream
CheckedOutputStream Checksum Choice ChoiceFormat ChoicePeer Class ClassCastException
ClassCircularityError ClassFormatError ClassLoader ClassNotFoundException Clipboard
ClipboardOwner Cloneable CloneNotSupportedException CollationElementIterator
CollationKey Collator Color ColorModel Compiler Component ComponentAdapter
ComponentEvent ComponentListener ComponentPeer ConnectException ConnectIOException
Connection Constructor Container ContainerAdapter ContainerEvent ContainerListener
ContainerPeer ContentHandler ContentHandlerFactory CRC32 CropImageFilter Cursor
Customizer CardLayout
DatabaseMetaData DataFlavor DataFormatException DatagramPacket DatagramSocket
DatagramSocketImpl DataInput DataInputStream DataOutput DataOutputStream
DataTruncation Date DateFormat DateFormatSymbols DecimalFormat DecimalFormatSymbols
Deflater DeflaterOutputStream DGC Dialog DialogPeer Dictionary DigestException
DigestInputStream DigestOutputStream Dimension DirectColorModel Double Driver
DriverManager DriverPropertyInfo DSAKey DSAKeyPairGenerator DSAParams DSAPrivateKey
DSAPublicKey
EmptyStackException Enumeration EOFException Error Event EventListener EventObject
EventQueue EventSetDescriptor Exception ExceptionInInitializerError ExportException
FeatureDescriptor Field FieldPosition File FileDescriptor FileDialog FileDialogPeer
FileInputStream FilenameFilter FileNameMap FileNotFoundException FileOutputStream
FileReader FileWriter FilteredImageSource FilterInputStream FilterOutputStream
FilterReader FilterWriter Float FlowLayout FocusAdapter FocusEvent FocusListener Font
FontMetrics FontPeer Format Frame FramePeer
Graphics GregorianCalendar GridBagConstraints GridBagLayout GridLayout Group
GZIPInputStream GZIPOutputStream
Hashtable HttpURLConnection
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1489

Appendix I
Identity IdentityScope IllegalAccessError IllegalAccessException
IllegalArgumentException IllegalComponentStateException IllegalMonitorStateException
IllegalStateException IllegalThreadStateException Image ImageConsumer ImageFilter
ImageObserver ImageProducer IncompatibleClassChangeError IndexColorModel
IndexedPropertyDescriptor IndexOutOfBoundsException InetAddress Inflater
InflaterInputStream InputEvent InputStream InputStreamReader Insets InstantiationError
InstantiationException Integer InternalError InterruptedException
InterruptedIOException IntrospectionException Introspector InvalidClassException
InvalidKeyException InvalidObjectException InvalidParameterException
InvocationTargetException IOException ItemEvent ItemListener ItemSelectable
Key KeyAdapter KeyEvent KeyException KeyListener KeyManagementException KeyPair
KeyPairGenerator
Label LabelPeer LastOwnerException LayoutManager LayoutManager2 Lease LightweightPeer
LineNumberInputStream LineNumberReader LinkageError List ListPeer ListResourceBundle
LoaderHandler Locale LocateRegistry LogStream Long
MalformedURLException MarshalException Math MediaTracker Member MemoryImageSource Menu
MenuBar MenuBarPeer MenuComponent MenuComponentPeer MenuContainer MenuItem MenuItemPeer
MenuPeer MenuShortcut MessageDigest MessageFormat Method MethodDescriptor
MissingResourceException Modifier MouseAdapter MouseEvent MouseListener
MouseMotionAdapter MouseMotionListener MulticastSocket
Naming NegativeArraySizeException NoClassDefFoundError NoRouteToHostException
NoSuchAlgorithmException NoSuchElementException NoSuchFieldError NoSuchFieldException
NoSuchMethodError NoSuchMethodException NoSuchObjectException NoSuchProviderException
NotActiveException NotBoundException NotOwnerException NotSerializableException
NullPointerException Number NumberFormat NumberFormatException
Object ObjectInput ObjectInputStream ObjectInputValidation ObjectOutput
ObjectOutputStream ObjectStreamClass ObjectStreamException ObjID Observable Observer
Operation OptionalDataException OutOfMemoryError OutputStream OutputStreamWriter Owner
PaintEvent Panel PanelPeer ParameterDescriptor ParseException ParsePosition Permission
PipedInputStream PipedOutputStream PipedReader PipedWriter PixelGrabber Point Polygon
PopupMenu PopupMenuPeer PreparedStatement Principal PrintGraphics PrintJob PrintStream
PrintWriter PrivateKey Process Properties PropertyChangeEvent PropertyChangeListener
PropertyChangeSupport PropertyDescriptor PropertyEditor PropertyEditorManager
PropertyEditorSupport PropertyResourceBundle PropertyVetoException ProtocolException
Provider ProviderException PublicKey PushbackInputStream PushbackReader
Random RandomAccessFile Reader Rectangle Registry RegistryHandler Remote RemoteCall
RemoteException RemoteObject RemoteRef RemoteServer RemoteStub ReplicateScaleFilter
ResourceBundle ResultSet ResultSetMetaData RGBImageFilter RMIClassLoader
RMIFailureHandler RMISecurityException RMISecurityManager RMISocketFactory
RuleBasedCollator Runnable Runtime RuntimeException
Scrollbar ScrollbarPeer ScrollPane ScrollPanePeer SecureRandom Security
SecurityException SecurityManager SequenceInputStream Serializable
ServerCloneException ServerError ServerException ServerNotActiveException ServerRef
ServerRuntimeException ServerSocket Shape Short Signature SignatureException Signer
SimpleBeanInfo SimpleDateFormat SimpleTimeZone Skeleton SkeletonMismatchException
SkeletonNotFoundException Socket SocketException SocketImpl SocketImplFactory
SocketSecurityException SQLException SQLWarning Stack StackOverflowError Statement
StreamCorruptedException StreamTokenizer String StringBuffer StringBufferInputStream
StringCharacterIterator StringIndexOutOfBoundsException StringReader StringSelection
StringTokenizer StringWriter StubNotFoundException SyncFailedException System
SystemColor
TextArea TextAreaPeer TextComponent TextComponentPeer TextEvent TextField TextFieldPeer
TextListener Thread ThreadDeath ThreadGroup Throwable Time Timestamp TimeZone Toolkit
TooManyListenersException Transferable Types
UID UnexpectedException UnicastRemoteObject UnknownError UnknownHostException
UnknownServiceException UnmarshalException Unreferenced UnsatisfiedLinkError
UnsupportedEncodingException UnsupportedFlavorException URL URLConnection URLEncoder
URLStreamHandler URLStreamHandlerFactory UTFDataFormatException
Vector VerifyError VetoableChangeListener VetoableChangeSupport VirtualMachineError
Visibility VMID Void
Window WindowAdapter WindowEvent WindowListener WindowPeer WriteAbortedException Writer
ZipEntry ZipException ZipFile ZipInputStream ZipOutputStream
Page 1490 © 2001, By Randall Hyde Beta Draft - Do not distribute

Installing HLA on Your System
/L6"Perl" Line Comment Num = 2# Escape Char = \ File Extensions = CGI PL PM
/Delimiters = ~!@$%^&*()+=|\/{}[]:;"'<> ,.?/
/Indent Strings = "{"
/Unindent Strings = "}"
/Function String = "%[^t]++^(sub[^t][a-z_]+^)[^t]{"
/C1
-A -B -C -M -O -R -S -T -W -X -b -c -d -e -f -g -k -l -o -p -r -s -t -u -w -x -z
__DATA__ __END__ __FILE__ __LINE__
continue
do
else elsif
for foreach
goto
if
last local
my
next no
package
redo return require
sub
until unless use
while
/C2
accept alarm atan2
bind binmode bless
caller chdir chmod chomp chop chown chr chroot close closedir connect cos crypt
dbmclose dbmopen defined delete die dump
each endgrent endhostent endnetent endprotoent endpwent endservent eof eval exec exit
exp exists
fcntl fileno flock fork formline format
getc getgrent getgrgid getgrname gethostbyaddr gethostbyname gethostent getlogin
getnetbyaddr getnetbyname getnetent getpeername getpgrp getppid getpriority
getprotobyname getprotobynumber getprotoent getpwent getpwnam getpwuid getservbyname
getservbyport getservent getsockname getsockopt glob gmtime grep
hex
index int ioctl
join
keys kill
lc lcfirst length link listen localtime log lstat
map mkdir msgctl msgget msgrcv msgsnd
oct open opendir ord
pack pipe pop pos print printf push
quotemeta
rand read readdir readline readlink recv ref rename reset reverse rewinddir rindex
rmdir
scalar seek seekdir select semctl semgett semop send setgrent sethostent setnetent
setpgrp setpriority setprotoent setpwent setservent setsockopt shift shmctl shmget
shmread shmwrite shutdown sin sleep socket socketpair sort splice split sprintf sqrt
srand stat study substr symlink syscall sysopen sysread system syswrite
tell telldir tie tied time times truncate
uc ucfirst umask undef unlink unpack unshift utime
values vec
wait waitpid wantarray warn write
/C3
AUTOLOAD
BEGIN
CORE
DESTROY
eq
END
ge gt
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1491

Appendix I
le lt
ne not
m
or
q qq qw qx
SUPER
s
tr
UNIVERSAL
x xor
y

/L7"Assembler x86" Nocase Line Comment = ; File Extensions = ASM MAC
/C1
aaa aad aam aas adc add and arpl
bound bsf bsr bswap bt btc btr bts
call cbw cdq clc cld cli clts cmc cmov cmp cmps cmpsb cmpsd cmpsw cmpxchg cmpxchg8b
cpuid cwd cwde
daa das dec div
emms enter esc
fcmov fcomi fwait
hlt
idiv imul in inc ins insb insd insw int into invd invlpg iret iretd
ja jae jb jbe jc jcxz je jecxz jg jge jl jle jmp jna jnae jnb jnbe jnc jne jng jnge jnl
jnle jno jnp jns jnz jo jp jpe jpo js jz
lahf lar lds lea leave les lfs lgdt lgs lidt lldt lmsw lock lods lodsb lodsd lodsw loop
loope loopne loopnz loopz lsl lss ltr
mov movd movq movs movsb movsd movsw movsx movzx msw mul
neg nop not
or out outs outsb outsd outsw
packsswb packssdw paddb paddw paddd paddsb paddsw paddusb paddusw pand pandn pcmpeqb
pcmpeqw pcmpeqd pcmpgtb pcmpgtw pcmpgtd pmulhw pmullw pmaddwd pop popa popad popf popfd
por psllw pslld psllq psrlw psrld psrlq psraw psrad psubb psubw psubd psubsb psubsw
psubusb psubusw punpckhbw punpckhwd punpckhdq punpcklbw punpcklwd punpckldq push pusha
pushad pushf pushfd pxor
rcl rcr rdmsr rdpmc rdtsc rep repe repne repnz repz ret retf retn rol ror rsm
sahf sal sar sbb scas scasb scasd scasw setae setb setbe setc sete setg setge setl
setle setna setnae setnb setnc setne setng setnge setnl setnle setno setnp setns setnz
seto setp setpe setpo sets setz sgdt shl shld shr shrd sidt sldt smsw stc std sti stos
stosb stosd stosw str sub
test
verr verw
wbinvd wrmsr
xadd xchg xlat xlatb xor
/C2
%out
.186 .286 .286c .286p .287 .386 .386p .387 .8086 .8087 .alpha .seq .code .const .cref
.data .data? .err .err1 .err2 .errb .errdef .errdif .erre .fardata .fardata? .lall
.lfcond .list .model .msfloat .radix .sall .sfcond .stack .type .xall .xcref .xlist
@curseg @filename @code @codesize @datasize @const @data @data? @fardata @fardata?
@stack
align and assume at
b byte
comm comment common compact
d db dd df dosseg dup fq dt dw dword
else end endif endm endp ends eq equ even exitm extrn
far
ge group
h high huge
ifdef include includelib irp irpc
label large le length low local lt
macro mask medium memory
Page 1492 © 2001, By Randall Hyde Beta Draft - Do not distribute

Installing HLA on Your System
name near not
o offset or org
page para proc public purge
q
record rept
seg segment shl short size shr small stack struc subttl
this tiny title type
use16 use32
width word
xor
/C3
ah al ax
bh bl bp bx
ch cl cs cx
dh di dl ds dx
eax ebx ecx edi edx esi es
ip
si sp

/L8"HLA" Nocase Line Comment = // Block Comment On = /* Block Comment Off = */ String
Chars = "' File Extensions = HLA
/Delimiters = */+-()[]{}<>'":;,.=&|^!?
/C1"Keywords"
#asm
#endasm
#emit
#error
#print
#if
#elseif
#else
#endif
#while
#endwhile
#endtext
#include
#text
abstract
align
begin
boolean
break
breakif
byte
char
class
const
context
cseg
cset
data
do
dseg
dup
dword
else
elseif
end
endclass
endcontext
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1493

Appendix I
endfor
endif
endmacro
endreadonly
endrecord
endstatic
endtry
endunion
endwhile
enum
exception
exitexitif
external
foreach
forever
forward
if
in
inherits
int16
int32
int8
iterator
keyword
lazy
macro
method
mod
name
namespace
noalignstk
nodisplay
noframe
nostorage
override
pointer
procedure
program
qword
raise
readonly
real32
real64
real80
record
repeat
result
returns
setthunk
static
storage
string
tbyte
terminator
text
then
this
thunk
to
try
type
union
Page 1494 © 2001, By Randall Hyde Beta Draft - Do not distribute

Installing HLA on Your System
unit
uns16
uns32
uns8
until
val
valres
var
while
word
/C2"Machine Instructions"
aaa
aad
aam
aas
adc
add
and
bound
bsf
bsr
bswap
bt
btc
btr
bts
call
cbw
cdq
clc
cld
cli
cmc
cmp
cmpsb
cmpsd
cmpsw
cmpxchg
cwd
cwde
daa
das
dec
div
enter
f2xm1
fabs
fadd
faddp
fbld
fbstp
fchs
fclex
fcom
fcomp
fcompp
fcos
fdecstp
fdiv
fdivp
fdivr
fdivrp
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1495

Appendix I
ffree
fiadd
ficom
ficomp
fidiv
fidivr
fild
fimul
fincstp
finit
fist
fistp
fisub
fisubr
fld
fld1
fldcw
fldenv
fldl2e
fldl2t
fldlg2
fldln2
fldpi
fldz
fmul
fmulp
fnop
fpatan
fprem
fprem1
fptan
frndint
frstor
fsave
fscale
fsin
fsincos
fsqrt
fst
fstcw
fstenv
fstp
fstsw
fsub
fsubp
fsubr
fsubrp
ftst
fucom
fucomp
fucompp
fwait
fxam
fxch
fxtract
fyl2x
fyl2xp1
idiv
imod
imul
in
inc
Page 1496 © 2001, By Randall Hyde Beta Draft - Do not distribute

Installing HLA on Your System
insb
insd
insw
int
intmul
into
iret
iretd
ja
jae
jb
jbe
jc
jcxz
je
jecxz
jg
jge
jl
jle
jmp
jna
jnae
jnb
jnbe
jnc
jne
jng
jnge
jnl
jnle
jno
jnp
jns
jnz
jo
jp
jpe
jpo
js
jz
lahf
lds
lea
leave
les
lfs
lgs
lodsb
lodsd
lodsw
loop
loope
loopne
loopnz
loopz
lss
mov
movsb
movsd
movsw
movsx
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1497

Appendix I
movzx
mul
neg
nop
not
or
out
outsb
outsd
outsw
pea
pop
popa
popad
popf
popfd
push
pusha
pushad
pushd
pushf
pushfd
pushw
rcl
rcr
rdtsc
rep
repe
repne
repnz
repz
ret
rol
ror
sahf
sal
sar
sbb
scasb
scasd
scasw
set
seta
setae
setb
setbe
setc
sete
setg
setge
setl
setle
setna
setnae
setnb
setnbe
setnc
setne
setng
setnge
setnl
setnle
Page 1498 © 2001, By Randall Hyde Beta Draft - Do not distribute

Installing HLA on Your System
setno
setnp
setns
setnz
seto
setp
setpe
setpo
sets
setz
shl
shld
shr
shrd
stc
std
sti
stosb
stosd
stosw
sub
test
wait
xadd
xchg
xlat
xor

/C3"Registers"
ah
al
ax
bh
bl
bp
bx
ch
cl
cx
dh
di
dl
dx
dx:ax
eax
ebp
ebx
ecx
edi
edx
edx:eax
esi
esp
si
sp
st0
st1
st2
st3
st4
st5
st6
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1499

Appendix I
st7
@a @ae @b @be @c @e @g @ge @l @le @na @nae @nb @nbe @nc @ne @ne @nge @nl @nle @no @ns
@nz @o @s @z

/C4"Built-in Functions"
@IsExternal @abs @addofs1st @arity @bound @byte @ceil @class @cos @curdir @curlex
@curobject @curoffset @date @defined @delete @dim @elements @elementsize @enumsize @eos
@eval @exactlynchar @exactlyncset @exactlynichar @exactlyntomchar @exactlyntomcset
@exactlyntomichar @exp @extract @firstnchar @firstncset @firstnichar @floor @index
@insert @into @isalpha @isalphanum @isclass @isconst @isdigit @isfreg @islower @ismem
@isreg @isreg16 @isreg32 @isreg8 @isspace @istype @isupper @isxdigit @lastobject
@length @lex @linenumber @localoffset @log @log10 @lowercase @matchintconst @matchistr
@matchrealconst @matchstr @matchstrconst @matchtoistr@matchid @matchtostr @max @min
@minparmsize @name @norlesschar @norlesscset @norlessichar @normorechar @normorecset
@normoreichar @ntomchar @ntomcset @ntomichar @odd @offset @onechar @onecset @oneichar
@oneormorechar @oneormorecset @oneormoreichar @oneormorews @parmoffset @pclass
@peekchar @peekcset @peekichar @peekws @ptype @random @randomize @rindex @section @sin
@size @sqrt @staticname @strbrk @string:identifier @strset @strspan @substr @tan @text
@time @tokenize @tostring:identifier @trim @type @typename @uppercase @uptochar
@uptocset @uptoichar @uptoistr @uptostr @wsoreos @wstheneos @zeroormorechar
@zeroormorecset @zeroormoreichar @zeroormorews @zerooronechar @zerooronecset
@zerooroneichar
Page 1500 © 2001, By Randall Hyde Beta Draft - Do not distribute

Debugging HLA Programs
Debugging HLA Programs Appendix J

1.1 The @TRACE Pseudo-Variable

HLA v1.x has a few serious defects in its design. One major issue is debugging support. HLA v1.x
emits MASM code that it runs through MASM in order to produce executable object files. Unfortunately,
while this scheme makes the development, testing, and debugging of HLA easier, it effectively eliminates
the possibility of using existing source level debugging tools to locate defects in an HLA program1. Starting
with v1.24, HLA began supporting a new feature to help you debug your programs: the “@trace”
pseudo-variable. This appendix will explain the purpose of this compile-time variable and how you can use
it to locate defects in your programs.

By default, the compile-time variable @trace contains false. You can change its value with any variation
of the following statement:

?@trace := <<boolean constant expression>>;

Generally, “<<boolean constant expression>>” is either true or false, but you could use any compile-time
constant expression to set @trace’s value.

Once you set @trace to true, HLA begins generating extra code in your program In fact, before almost
every executable statement HLA injects the following code:

traceLine(filename, linenumber);

The filename parameter is a string specifying the name of the current source file, the linenumber parameter is
an uns32 value that is the current line number of the file. The _traceLine_ procedure uses this information to
display an appropriate trace value while the program is running.

HLA will automatically emit the above procedure call in between almost all instructions appearing in
your program2. Assuming that the _traceLine_ procedure simply prints the filename and line number, when
you run your application it will create a log of each statement it executes.

You can control the emission of the _traceLine_ procedure calls in your program by alternately setting
@trace to true or false throughout your code. This lets you selectively choose which portions of your code
will provide trace information during program execution. This feature is very important because if you’re
displaying the trace information to the console, your program runs thousands, if not millions, of times
slower during the trace operation. It wouldn’t do to have to trace through a really long loop in order to trace
through following code that you’re concerned about. By setting @trace to false prior to the long loop and
setting it to true immedately after the loop, you can execute the loop at full speed and then begin tracing the
code you want to check once the loop completes execution.

HLA does not supply the _traceLine_ procedure; it is your responsibility to write the code for this pro-
cedure. The following is a typical implementation:

procedure trace(filename:string; linenum:uns32); external(“_traceLine_”);
procedure trace(filename:string; linenum:uns32); nodisplay;
begin trace;

pushfd();
stdout.put(filename, “: #”, linenum, nl);
popfd();

end trace;

1. Of course, you can also debug the MASM output using a source level debugger, but this is not a very pleasant experience.
2. HLA does not emit this procedure call between statements that are composed and a few other miscellaneous statements.
However, your programs probably get better than 95% coverage so this will be sufficient for most purposes.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1501

Appendix J
This particular procedure simply prints the filename and line number each time HLA calls it. Therefore,
you’ll get a trace sent to the standard output device that looks something like the following:

t.hla: #19
t.hla: #20
t.hla: #21
t.hla: #22
etc.

A very important thing to note about this sample implementation of _traceLine_ is that it preserves the
FLAGs register. The _traceLine_ procedure must preserve all registers including the flags. The example
code above only preserves the FLAGS because the stdout.put macro always preserves all the registers. How-
ever, were this code to modify other registers or call some procedure that modifies some registers, you would
want to preserve those register values as well. Remember, HLA calls this procedure between most instruc-
tions, if you do not preserve the registers and flags within this procedure, it will adversely affect the running
of your program.

This is very important: the @trace variable must contain false while HLA is compiling your
traceLine procedure. If HLA emits trace code inside the trace procedure, this will create an infinite loop
via infinite recursion which will crash your program. Always make sure @trace is false across the compila-
tion of your _traceLine_ procedure.

Here’s a sample program using the @trace variable and sample output for the program:

program t;
#includeOnce("stdlib.hhf")

procedure trace(filename:string; linenum:uns32); external("_traceLine_");

?@trace := false; // Must be false for TRACE routine.

procedure trace(filename:string; linenum:uns32); nodisplay;
begin trace;

 stdout.put(filename, ": #", linenum, nl);

end trace;

?@trace := true;

begin t;

 mov(0, ecx); // Line 22
 if(ecx == 0) then // Line 23

 mov(10, ecx); // Line 25

 else

 mov(5, ecx);

 endif;
 while(ecx > 0) do // Line 32

 dec(ecx); // Line 34

 endwhile;
 for(mov(0, ecx); ecx < 5; inc(ecx)) do // Line 37

Page 1502 © 2001, By Randall Hyde Beta Draft - Do not distribute

Debugging HLA Programs
 add(1, eax); // Line 39

 endfor;

end t;

Sample Output:

t.hla: #22
t.hla: #23
t.hla: #25
t.hla: #32
t.hla: #34
t.hla: #34
t.hla: #34
t.hla: #34
t.hla: #34
t.hla: #34
t.hla: #34
t.hla: #34
t.hla: #34
t.hla: #34
t.hla: #37
t.hla: #39
t.hla: #39
t.hla: #39
t.hla: #39
t.hla: #39

Although the _traceLine_ procedure in this example is very simple, you can write as sophisticated a
procedure as you like. However, do keep in mind that this code executes between almost every pair of state-
ments your program has, so you should attempt to keep this procedure as short and as fast as possible.
However, if desired you can stop the program, request user input, and let the user specify how program con-
trol is to proceed.

One very useful purpose for HLA’s trace capabilities is tracking down bad pointer references in your
program. If you program aborts with an “Illegal memory access” exception, you can pinpoint the offending
instruction by turning on the trace option and letting the program run until the exception occurs. The last
line number in the trace will be (approximately, within one or two statements) the line number of the offend-
ing instruction.

You can also display (global) values within the _traceLine_ procedure. Printing local values, unfortu-
nately, is problematic since external procedures must appear at lex level one in your program (i.e., you can-
not nest the function within some other procedure). It is possible to set up a pointer to a local procedure and
call that procedure indirectly from within _traceLine_, but this effort is worth it only on rare occasions.
Usually it’s just easier to stick a “stdout.put” statement directly in the code where you wish to view the out-
put. However, if some variable is being overwritten by some unknown statement in your program, and you
don’t know where the program is modifying the variable, printing the variables value from the _traceLine_
procedure can help you pinpoint the statement that overwrites the variable.

Of course, another way to debug HLA programs is to stick a whole bunch of “print” statements in your
code. The problem with such statements, however, is that you’ve got to remember to remove them before
you ship your final version of the program. There are few things more embarrasing than having your cus-
tomer ask you why your program is printing debug messages in the middle of the reports your program is
producing for them. You can use conditional compilation (#IF statements) to control the compilation of such
statements, but conditional compilation statements tend to clutter up your source code (even more so than
the debugging print statements). One solution to this problem is to create a macro, let’s call it myDebugMsg,
that hides all the nasty details. Consider the following code:

macro myDebugMsg(runTimeFlag, msg);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1503

Appendix J
#if(@defined(DEBUG)) // If DEBUG is not defined, then don’t emit code.

#if(DEBUG) // DEBUG has to be a boolean const equal to true.

#if(@isConst(runTimeFlag))

#if(runTimeFlag)

stdout.put(msg, nl);

#endif

#else // runTimeFlag is a run-time variable

if(runTimeFlag) then

stdout.put(msg, nl);

endif;

#endif // runTimeFlag is/is not Constant

#endif // DEBUG

#endif // DEBUG is defined

endmacro;

With this macro defined, you can write a statement like the following to print/not print a message at
run-time:

myDebugMsg(BooleanValue, “This is a debug message”);

The BooleanValue expression is either a boolean constant expression, a boolean variable, or a register.
If this value is true, then the program will print the message; if this value is false, the program does not print
the message. Since this is a variable, you can control debugging output at run-time by changing the value of
the BooleanValue parameter.

As myDebugMsg is written, you must define the boolean constant DEBUG and set it to true or the pro-
gram will not compile the debugging statements. If DEBUG is a VAL object, you can actually

You can certainly expand upon this macro by providing support for a variable number of parameters.
This would allow you to specify an list of values to display in the stdout.put macro invocation. See the chap-
ter on Macros for more information about variable parameter lists in macros if you want to do this.

1.2 The Assert Macro

1.3 RATASM

1.4 The HLA Standard Library DEBUG Module
Page 1504 © 2001, By Randall Hyde Beta Draft - Do not distribute

Comparing HLA and MASM
Comparing HLA and MASM Appendix K

To be written... Until then, check the output HLA proceduces to see the code that HLA emits for various
statements.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1505

Appendix K
Page 1506 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements
HLA Code Generation for HLL Statements Appendix L

One of the principal advantages of using assembly language over high level languages is the control that
assembly provides. High level languages (HLLs) represent an abstraction of the underlying hardware.
Those who write HLL code give up this control in exchange for the engineering efficiencies enjoyed by HLL
programmers. Some advanced HLL programmers (who have a good mastery of the underlying machine
architecture) are capable of writing fairly efficient programs by recognizing what the compiler does with
various high level control constructs and choosing the appropriate construct to emit the machine code they
want. While this “low-level programming in a high level language” does leave the programmer at the mercy
of the compiler-writer, it does provide a mechanism whereby HLL programmers can write more efficient
code by chosing those HLL constructs that compile into efficient machine code.

Although the High Level Assembler (HLA) allows a programmer to work at a very low level, HLA also
provides structured high-level control constructs that let assembly programmers use higher-level code to
help make their assembly code more readable. Those assembly language programmers who need (or want)
to exercise maximum control over their programs will probably want to avoid using these statements since
they tend to obscure what is happening at a really low level. At the other extreme, those who would always
use these high-level control structures might question if they really want to use assembly language in their
applications; after all, if they’re writing high level code, perhaps they should use a high level language and
take advantage of optimizing technology and other fancy features found in modern compilers. Between
these two extremes lies the typical assembly language programmer. The one who realizes that most code
doesn’t need to be super-efficient and is more interested in productively producing lots of software rather
than worrying about how many CPU cycles the one-time initialization code is going to consume. HLA is
perfect for this type of programmer because it lets you work at a high level of abstraction when writing code
whose performance isn’t an issue and it lets you work at a low level of abstraction when working on code
that requires special attention.

Between code whose performance doesn’t matter and code whose performance is critical lies a big gray
region: code that should be reasonably fast but speed isn’t the number one priority. Such code needs to be
reasonably readable, maintainable, and as free of defects as possible. In other words, code that is a good
candidate for using high level control and data structures if their use is reasonably efficient.

Unlike various HLL compilers, HLA does not (yet!) attempt to optimize the code that you write. This
puts HLA at a disadvantage: it relies on the optimizer between your ears rather than the one supplied with
the compiler. If you write sloppy high level code in HLA then a HLL version of the same program will
probably be more efficient if it is compiled with a decent HLL compiler. For code where performance mat-
ters, this can be a disturbing revelation (you took the time and bother to write the code in assembly but an
equivalent C/C++ program is faster). The purpose of this appendix is to describe HLA’s code generation in
detail so you can intelligently choose when to use HLA’s high level features and when you should stick with
low-level assembly language.

L.1 The HLA Standard Library

The HLA Standard Library was designed to make learning assembly language programming easy for
beginning programmers. Although the code in the library isn’t terrible, very little effort was made to write
top-performing code in the library. At some point in the future this may change as work on the library
progresses, but if you’re looking to write very high-performance code you should probably avoid calling
routines in the HLA Standard Library from (speed) critical sections of your program.

Don’t get the impression from the previous paragraph that HLA’s Standard Library contains a bunch of
slow-poke routines, however. Many of the HLA Standard Library routines use decent algorithms and data
structures so they perform quite well in typical situations. For example, the HLA string format is far more
efficient than strings in C/C++. The world’s best C/C++ strlen routine is almost always going to be slower
than HLA str.len function. This is because HLA uses a better definition for string data than C/C++, it has lit-
tle to do with the actual implementation of the str.len code. This is not to say that HLA’s str.len routine can-
not be improved; but the routine is very fast already.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1507

Appendix L
One problem with using the HLA Standard Library is the frame of mind it fosters during the develop-
ment of a program. The HLA Standard Library is strongly influenced by the C/C++ Standard Library and
libraries common in other high level languages. While the HLA Standard Library is a wonderful tool that
can help you write assembly code faster than ever before, it also encourages you to think at a higher level.
As any expert assembly language programmer can tell you, the real benefits of using assembly language
occur only when you “think in assembly” rather than in a high level language. No matter how efficient the
routines in the Standard Library happen to be, if you’re “writing C++ programs with MOV instructions” the
result is going to be little better than writing the code in C++ to begin with.

One unfortunate aspect of the HLA Standard Library is that it encourages you to think at a higher level
and you’ll often miss a far more efficient low-level solution as a result. A good example is the set of string
routines in the HLA Standard Library. If you use those routines, even if they were written as efficiently as
possible, you may not be writing the fastest possible program you can because you’ve limited your thinking
to string objects which are a higher level abstraction. If you did not have the HLA Standard Library laying
around and you had to do all the character string manipulation yourself, you might choose to treat the objects
as character arrays in memory. This change of perspective can produce dramatic performance improvement
under certain circumstances.

The bottom line is this: the HLA Standard Library is a wonderful collection of routines and they’re not
particularly inefficient. They’re very easy and convenient to use. However, don’t let the HLA Standard
Library lull you into choosing data structures or algorithms that are not the most appropriate for a given sec-
tion of your program.

L.2 Compiling to MASM Code -- The Final Word

The remainder of this document will discuss, in general, how HLA translates various HLL-style state-
ments into assembly code. Sometimes a general discussion may not provide specific answers you need
about HLA’s code generation capabilities. Should you have a specific question about how HLA generates
code with respect to a given code sequence, you can always run the compiler and observe the output it pro-
duces. To do this, it is best to create a simple program that contains only the construct you wish to study and
compile that program to assembly code. For example, consider the following very simple HLA program:

program t;

begin t;

 if(eax = 0) then

 mov(1, eax);

 endif;

end t;

If you compile this program using the command window prompt “hla -s t.hla” then HLA produces a
(MASM) file similar to the following1:

 if @Version lt 612
 .586
 else
 .686
 .mmx
 .xmm

1. Because the code generator in HLA is changing all the time, this file may not reflect an accurate compilation of the above
HLA code. However, the concepts will be the same.
Page 1508 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements
 endif
 .model flat, syscall
offset32 equ <offset flat:>
 assume fs:nothing
?ExceptionPtr equ <(dword ptr fs:[0])>
 externdef ??HWexcept:near32
 externdef ??Raise:near32

std_output_hndl equ -11

 externdef __imp__ExitProcess@4:dword
 externdef __imp__GetStdHandle@4:dword
 externdef __imp__WriteFile@20:dword

cseg segment page public 'code'
cseg ends
readonly segment page public 'data'
readonly ends
strings segment page public 'data'
strings ends
dseg segment page public 'data'
dseg ends
bssseg segment page public 'data'
bssseg ends

strings segment page public 'data'

?dfltmsg byte "Unhandled exception error.",13,10
?dfltmsgsize equ 34
?absmsg byte "Attempted call of abstract procedure or method.",13,10
?absmsgsize equ 55
strings ends
dseg segment page public 'data'
?dfmwritten word 0
?dfmStdOut dword 0

 public ?MainPgmCoroutine
?MainPgmCoroutine byte 0 dup (?)
 dword ?MainPgmVMT
 dword 0 ;CurrentSP
 dword 0 ;Pointer to stack
 dword 0 ;ExceptionContext
 dword 0 ;Pointer to last caller
?MainPgmVMT dword ?QuitMain
dseg ends
cseg segment page public 'code'

?QuitMain proc near32
 pushd 1
 call dword ptr __imp__ExitProcess@4

?QuitMain endp

cseg ends

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1509

Appendix L
cseg segment page public 'code'

??DfltExHndlr proc near32

 pushd std_output_hndl
 call __imp__GetStdHandle@4
 mov ?dfmStdOut, eax
 pushd 0 ;lpOverlapped
 pushd offset32 ?dfmwritten ;BytesWritten
 pushd ?dfltmsgsize ;nNumberOfBytesToWrite
 pushd offset32 ?dfltmsg ;lpBuffer
 pushd ?dfmStdOut ;hFile
 call __imp__WriteFile@20

 pushd 0
 call dword ptr __imp__ExitProcess@4

??DfltExHndlr endp

 public ??Raise
??Raise proc near32
 jmp ??DfltExHndlr
??Raise endp

 public ??HWexcept
??HWexcept proc near32
 mov eax, 1
 ret
??HWexcept endp

?abstract proc near32

 pushd std_output_hndl
 call __imp__GetStdHandle@4
 mov ?dfmStdOut, eax
 pushd 0 ;lpOverlapped
 pushd offset32 ?dfmwritten ;BytesWritten
 pushd ?absmsgsize ;nNumberOfBytesToWrite
 pushd offset32 ?absmsg ;lpBuffer
 pushd ?dfmStdOut ;hFile
 call __imp__WriteFile@20

 pushd 0
 call dword ptr __imp__ExitProcess@4

?abstract endp

 public ?HLAMain
?HLAMain proc near32

; Set up the Structured Exception Handler record
; for this program.

 push offset32 ??DfltExHndlr
 push ebp
Page 1510 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements
 push offset32 ?MainPgmCoroutine
 push offset32 ??HWexcept
 push ?ExceptionPtr
 mov ?ExceptionPtr, esp
 mov dword ptr ?MainPgmCoroutine+12, esp

 pushd 0 ;No Dynamic Link.
 mov ebp, esp ;Pointer to Main's locals
 push ebp ;Main's display.
 mov [ebp+16], esp
 cmp eax, 0
 jne ?1_false
 mov eax, 1
?1_false:
 push 0
 call dword ptr __imp__ExitProcess@4
?HLAMain endp
cseg ends
 end

The code of interest in this example is at the very end, after the comment “;Main’s display” appears in
the text. The actual code sequence that corresponds to the IF statement in the main program is the following:

 cmp eax, 0
 jne ?1_false
 mov eax, 1
?1_false:

Note: you can verify that this is the code emitted by the IF statement by simply removing the IF, recom-
piling, and comparing the two assembly outputs. You’ll find that the only difference between the two assem-
bly output files is the four lines above. Another way to “prove” that this is the code sequence emitted by the
HLA IF statement is to insert some comments into the assembly output file using HLA’s #ASM..#ENDASM
directives. Consider the following modification to the “t.hla” source file:

program t;

begin t;

 #asm
 ; Start of IF statement:
 #endasm

 if(eax = 0) then

 mov(1, eax);

 endif;

 #asm
 ; End if IF statement.
 #endasm

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1511

Appendix L
end t;

HLA’s #asm directive tells the compiler to simply emit everything between the #asm and #endasm key-
words directly to the assembly output file. In this example the HLA program uses these directives to emit a
pair of comments that will bracket the code of interest in the output file. Compiling this to assembly code
(and stripping out the irrelevant stuff before the HLA main program) yields the following:

 public ?HLAMain
?HLAMain proc near32

; Set up the Structured Exception Handler record
; for this program.

 push offset32 ??DfltExHndlr
 push ebp
 push offset32 ?MainPgmCoroutine
 push offset32 ??HWexcept
 push ?ExceptionPtr
 mov ?ExceptionPtr, esp
 mov dword ptr ?MainPgmCoroutine+12, esp

 pushd 0 ;No Dynamic Link.
 mov ebp, esp ;Pointer to Main's locals
 push ebp ;Main's display.
 mov [ebp+16], esp

;#asm

 ; Start of IF statement:
 ;#endasm

 cmp eax, 0
 jne ?1_false
 mov eax, 1
?1_false:

;#asm

 ; End if IF statement.
 ;#endasm

 push 0
 call dword ptr __imp__ExitProcess@4
?HLAMain endp
cseg ends
 end

This technique (embedding bracketing comments into the assembly output file) is very useful if it is not
possible to isolate a specific statement in its own source file when you want to see what HLA does during
compilation.
Page 1512 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements
L.3 The HLA if..then..endif Statement, Part I

Although the HLA IF statement is actually one of the more complex statements the compiler has to deal
with (in terms of how it generates code), the IF statement is probably the first statement that comes to mind
when something thinks about high level control structures. Furthermore, you can implement most of the
other control structures if you have an IF and a GOTO (JMP) statement, so it makes sense to discuss the IF
statement first. Nevertheless, there is a bit of complexity that is unnecessary at this point, so we’ll begin our
discussion with a simplified version of the IF statement; for this simplified version we’ll not consider the
ELSEIF and ELSE clauses of the IF statement.

The basic HLA IF statement uses the following syntax:

if(simple_boolean_expression) then

 << statements to execute if the expression evaluates true >>

endif;

At the machine language level, what the compiler needs to generate is code that does the following:

<< Evaluate the boolean expression >>

<< Jump around the following statements if the expression was false >>

<< statements to execute if the expression evaluates true >>

<< Jump to this point if the expression was false >>

The example in the previous section is a good demonstration of what HLA does with a simple IF state-
ment. As a reminder, the HLA program contained

 if(eax = 0) then

 mov(1, eax);

 endif;

and the HLA compiler generated the following assembly language code:

 cmp eax, 0
 jne ?1_false
 mov eax, 1
?1_false:

Evaluation of the boolean expression was accomplished with the single “cmp eax, 0” instruction. The
“jne ?1_false” instruction jumps around the “mov eax, 1” instruction (which is the statement to execute if the
expression evaluates true) if the expression evaluates false. Conversely, if EAX is equal to zero, then the
code falls through to the MOV instruction. Hence the semantics are exactly what we want for this high level
control structure.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1513

Appendix L
HLA automatically generates a unique label to branch to for each IF statement. It does this properly
even if you nest IF statements. Consider the following code:

program t;

begin t;

 if(eax > 0) then

 if(eax < 10) then

 inc(eax);

 endif;

 endif;

end t;

The code above generates the following assembly output:

 cmp eax, 0
 jna ?1_false
 cmp eax, 10
 jnb ?2_false
 inc eax
?2_false:
?1_false:

As you can tell by studying this code, the INC instruction only executes if the value in EAX is greater
than zero and less than ten.

Thus far, you can see that HLA’s code generation isn’t too bad. The code it generates for the two exam-
ples above is roughly what a good assembly language programmer would write for approximately the same
semantics.

L.4 Boolean Expressions in HLA Control Structures

The HLA IF statement and, indeed, most of the HLA control structures rely upon the evaluation of a
boolean expression in order to direct the flow of the program. Unlike high level languages, HLA restricts
boolean expressions in control structures to some very simple forms. This was done for two reasons: (1)
HLA’s design frowns upon side effects like register modification in the compiled code, and (2) HLA is
intended for use by beginning assembly language students; the restricted boolean expression model is closer
to the low level machine architecture and it forces them to start thinking in these terms right away.

With just a few exceptions, HLA’s boolean expressions are limited to what HLA can easily compile to a
CMP and a condition jump instruction pair or some other simple instruction sequence. Specifically, HLA
allows the following boolean expressions:
Page 1514 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements
operand1 relop operand2

relop is one of:

= or == (either one, both are equivalent)
<> or != (either one, both are equivalent)
<
<=
>
>=

In the expressions above operand1 and operand2 are restricted to those operands that are legal in a CMP
instruction. This is because HLA translates expressions of this form to the two instruction sequence:

cmp(operand1, operand2);

jXX someLabel;

where “jXX” represents some condition jump whose sense is the opposite of that of the expression (e.g.,
“eax > ebx” generates a “JNA” instruction since “NA” is the opposite of “>”).

Assuming you want to compare the two operands and jump around some sequence of instructions if the
relationship does not hold, HLA will generate fairly efficient code for this type of expression. One thing
you should watch out for, though, is that HLA’s high level statements (e.g., IF) make it very easy to write
code like the following:

if(i = 0) then

 ...

elseif(i = 1) then

 ...

elseif(i = 2) then

 ...
.
.
.
endif;

This code looks fairly innocuous, but the programmer who is aware of the fact that HLA emits the fol-
lowing would probably not use the code above:

 cmp(i, 0);
 jne lbl;
 .
 .
 .
lbl: cmp(i, 1);
 jne lbl2;
 .
 .
 .
lbl2: cmp(i, 2);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1515

Appendix L
 .
 .
 .

A good assembly language programmer would realize that it’s much better to load the variable “i” into a
register and compare the register in the chain of CMP instructions rather than compare the variable each
time. The high level syntax slightly obscures this problem; just one thing to be aware of.

HLA’s boolean expressions do not support conjunction (logical AND) and disjunction (logical OR).
The HLA programmer must manually synthesize expressions involving these operators. Doing so forces the
programmer to link in lower level terms, which is usually more efficient. However, there are many common
expressions involving conjunction that HLA could efficiently compile into assembly language. Perhaps the
most common example is a test to see if an operand is within (or outside) a range specified by two constants.
In a HLL like C/C++ you would typically use an expression like “(value >= low_constant && value <=
high_constant)” to test this condition. HLA allows four special boolean expressions that check to see if a
register or a memory location is within a specified range. The allowable expressions take the following
forms:

register in constant .. constant
register not in constant .. constant

memory in constant .. constant
memory not in constant .. constant

Here is a simple example of the first form with the code that HLA generates for the expression:

 if(eax in 1..10) then

 mov(1, ebx);

 endif;

Resulting (MASM) assembly code:

 cmp eax, 1
 jb ?1_false
 cmp eax, 10
 ja ?1_false
 mov ebx, 1
?1_false:

Once again, you can see that HLA generates reasonable assembly code without modifying any register
values. Note that if modifying the EAX register is okay, you can write slightly better code by using the fol-
lowing sequence:

 dec eax
 cmp eax, 9
 ja ?1_false
 mov ebx, 1
?1_false:

While, in general, a simplification like this is not possible you should always remember how HLA gen-
erates code for the range comparisons and decide if it is appropriate for the situation.

By the way, the “not in” form of the range comparison does generate slightly different code that the
form above. Consider the following:
Page 1516 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements
 if(eax not in 1..10) then

 mov(1, eax);

 endif;

HLA generates the following (MASM) assembly language code for the sequence above:

 cmp eax, 1
 jb ?2_true
 cmp eax, 10
 jna ?1_false
?2_true:
 mov eax, 1
?1_false:

As you can see, though the code is slightly different it is still exactly what you would probably write if
you were writing the low level code yourself.

HLA also allows a limited form of the boolean expression that checks to see if a character value in an
eight-bit register is a member of a character set constant or variable. These expressions use the following
general syntax:

reg8 in CSet_Constant

reg8 in CSet_Variable

reg8 not in CSet_Constant

reg8 not in CSet_Variable

These forms were included in HLA because they are so similar to the range comparison syntax. How-

ever, the code they generate may not be particularly efficient so you should avoid using these expression
forms if code speed and size need to be optimal. Consider the following:

 if(al in {'A'..'Z','a'..'z', '0'..'9'}) then

 mov(1, eax);

 endif;

This generates the following (MASM) assembly code:

strings segment page public 'data'
?1_cset byte 00h,00h,00h,00h,00h,00h,0ffh,03h
 byte 0feh,0ffh,0ffh,07h,0feh,0ffh,0ffh,07h
strings ends

 push eax
 movzx eax, al
 bt dword ptr ?1_cset, eax
 pop eax
 jnc ?1_false
 mov eax, 1
?1_false:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1517

Appendix L
This code is rather lengthy because HLA never assumes that it can disturb the values in the CPU regis-
ters. So right off the bat this code has to push and pop EAX since it disturbs the value in EAX. Next, HLA
doesn’t assume that the upper three bytes of EAX already contain zero, so it zero fills them. Finally, as you
can see above, HLA has to create a 16-byte character set in memory in order to test the value in the AL reg-
ister. While this is convenient, HLA does generate a lot of code and data for such a simple looking expres-
sion. Hence, you should be careful about using boolean expressions involving character sets if speed and
space is important. At the very least, you could probably reduce the code above to something like:

 movzx(charToTest, eax);
 bt(eax, {'A'..'Z','a'..'z', '0'..'9'});
 jnc SkipMov;
 mov(1, eax);
SkipMov:

This generates code like the following:

strings segment page public 'data'
?cset_3 byte 00h,00h,00h,00h,00h,00h,0ffh,03h
 byte 0feh,0ffh,0ffh,07h,0feh,0ffh,0ffh,07h
strings ends

 movzx eax, byte ptr ?1_charToTest[0] ;charToTest
 bt dword ptr ?cset_3, eax
 jnc ?4_SkipMov
 mov eax, 1

?4_SkipMov:

As you can see, this is slightly more efficient. Fortunately, testing an eight-bit register to see if it is
within some character set (other than a simple range, which the previous syntax handles quite well) is a
fairly rare operation, so you generally don’t have to worry about the code HLA generates for this type of
boolean expression.

HLA lets you specify a register name or a memory location as the only operand of a boolean expression.
For registers, HLA will use the TEST instruction to see if the register is zero or non-zero. For memory loca-
tions, HLA will use the CMP instruction to compare the memory location’s value against zero. In either
case, HLA will emit a JNE or JE instruction to branch around the code to skip (e.g., in an IF statement) if the
result is zero or non-zero (depending on the form of the expression).

register
!register

memory
!memory

You should not use this trick as an efficient way to test for zero or not zero in your code. The resulting
code is very confusing and difficult to follow. If a register or memory location appears as the sole operand of
a boolean expression, that register or memory location should hold a boolean value (true or false). Do not
think that “if(eax) then...” is any more efficient than “if(eax<>0) then...” because HLA will actually emit
the same exact code for both statements (i.e., a TEST instruction). The second is a lot easier to understand if
you’re really checking to see if EAX is not zero (rather than it contains the boolean value true), hence it is
always preferable even if it involves a little extra typing.

Example:
Page 1518 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements
 if(eax != 0) then

 mov(1, ebx);

 endif;

 if(eax) then

 mov(2, ebx);

 endif;

The code above generates the following assembly instruction sequence:

 test eax,eax ;Test for zero/false.
 je ?2_false
 mov ebx, 1
?2_false:
 test eax,eax ;Test for zero/false.
 je ?3_false
 mov ebx, 2
?3_false:

Note that the pertinent code for both sequences is identical. Hence there is never a reason to sacrifice
readability for efficiency in this particular case.

The last form of boolean expression that HLA allows is a flag designation. HLA uses symbols like @c,
@nc, @z, and @nz to denote the use of one of the flag settings in the CPU FLAGS register. HLA supports
the use of the following flag names in a boolean expression:

@c, @nc, @o, @no, @z, @nz, @s, @ns,
@a, @na, @ae, @nae, @b, @nb, @be, @nbe,
@l, @nl, @g, @ne, @le, @nle, @ge, @nge,
@e, @ne

Whenever HLA encounters a flag name in a boolean expression, it efficiently compiles the expression
into a single conditional jump instruction. So the following IF statement’s expression compiles to a single
instruction:

if(@c) then

 << do this if the carry flag is set >>

endif;

The above code is completely equivalent to the sequence:

 jnc SkipStmts;

 << do this if the carry flag is set >>

SkipStmts:

The former version, however, is more readable so you should use the IF form wherever practical.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1519

Appendix L
L.5 The JT/JF Pseudo-Instructions

The JT (jump if true) and JF (jump if false) pseudo-instructions take a boolean expression and a label.
These instructions compile into a conditional jump instruction (or sequence of instructions) that jump to the
target label if the specified boolean expression evaluates false. The compilation of these two statements is
almost exactly as described for boolean expressions in the previous section.

The following are a couple of examples that show the usage and code generation for these two state-
ments.

lbl2:
 jt(eax > 10) label;
label:
 jf(ebx = 10) lbl2;

; Translated Code:

?2_lbl2:

cmp eax, 10
ja ?4_label

?4_label:

cmp ebx, 10
jne ?2_lbl2

L.6 The HLA if..then..elseif..else..endif Statement, Part II

With the discussion of boolean expressions out of the way, we can return to the discussion of the HLA
IF statement and expand on the material presented earlier. There are two main topics to consider: the inclu-
sion of the ELSEIF and ELSE clauses and the HLA hybrid IF statement. This section will discuss these
additions.

The ELSE clause is the easiest option to describe, so we’ll start there. Consider the following short
HLA code fragment:

 if(eax < 10) then

 mov(1, ebx);

 else

 mov(0, ebx);

 endif;

HLA’s code generation algorithm emits a JMP instruction upon encountering the ELSE clause; this
JMP transfers control to the first statement following the ENDIF clause. The other difference between the
IF/ELSE/ENDIF and the IF/ENDIF statement is the fact that a false expression evaluation transfers control
to the ELSE clause rather than to the first statement following the ENDIF. When HLA compiles the code
above, it generates machine code like the following:
Page 1520 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements
 cmp eax, 10
 jnb ?2_false ;Branch to ELSE section if false

 mov ebx, 1
 jmp ?2_endif ;Skip over ELSE section

; This is the else section:

?2_false:
 mov ebx, 0
?2_endif:

About the only way you can improve upon HLA’s code generation sequence for an IF/ELSE statement
is with knowledge of how the program will operate. In some rare cases you can generate slightly better per-
forming code by moving the ELSE section somewhere else in the program and letting the THEN section fall
straight through to the statement following the ENDIF (of course, the ELSE section must jump back to the
first statement after the ENDIF if you do this). This scheme will be slightly faster if the boolean expression
evaluates true most of the time. Generally, though, this technique is a bit extreme.

The ELSEIF clause, just as its name suggests, has many of the attributes of an ELSE and and IF clause
in the IF statement. Like the ELSE clause, the IF statement will jump to an ELSEIF clause (or the previous
ELSEIF clause will jump to the current ELSEIF clause) if the previous boolean expression evaluates false.
Like the IF clause, the ELSEIF clause will evaluate a boolean expression and transfer control to the follow-
ing ELSEIF, ELSE, or ENDIF clause if the expression evaluates false; the code falls through to the THEN
section of the ELSEIF clause if the expression evaluates true. The following examples demonstrate how
HLA generates code for various forms of the IF..ELSEIF.. statement:

Single ELSEIF clause:

 if(eax < 10) then

 mov(1, ebx);

 elseif(eax > 10) then

 mov(0, ebx);

 endif;

; Translated code:

 cmp eax, 10
 jnb ?2_false
 mov ebx, 1
 jmp ?2_endif
?2_false:
 cmp eax, 10
 jna ?3_false
 mov ebx, 0
?3_false:
?2_endif:

Single ELSEIF clause with an ELSE clause:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1521

Appendix L
 if(eax < 10) then

 mov(1, ebx);

 elseif(eax > 10) then

 mov(0, ebx);

 else

 mov(2, ebx);

 endif;

; Converted code:

 cmp eax, 10
 jnb ?2_false
 mov ebx, 1
 jmp ?2_endif
?2_false:
 cmp eax, 10
 jna ?3_false
 mov ebx, 0
 jmp ?2_endif
?3_false:
 mov ebx, 2
?2_endif:

IF statement with two ELSEIF clauses:

 if(eax < 10) then

 mov(1, ebx);

 elseif(eax > 10) then

 mov(0, ebx);

 elseif(eax = 5) then

 mov(2, ebx);

 endif;

; Translated code:

 cmp eax, 10
 jnb ?2_false
 mov ebx, 1
 jmp ?2_endif
?2_false:
 cmp eax, 10
 jna ?3_false
 mov ebx, 0
 jmp ?2_endif
Page 1522 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements
?3_false:
 mov ebx, 2
?2_endif:

IF statement with two ELSEIF clauses and an ELSE clause:

 if(eax < 10) then

 mov(1, ebx);

 elseif(eax > 10) then

 mov(0, ebx);

 elseif(eax = 5) then

 mov(2, ebx);

 else

 mov(3, ebx);

 endif;

; Translated code:

 cmp eax, 10
 jnb ?2_false
 mov ebx, 1
 jmp ?2_endif
?2_false:
 cmp eax, 10
 jna ?3_false
 mov ebx, 0
 jmp ?2_endif
?3_false:
 cmp eax, 5
 jne ?4_false
 mov ebx, 2
 jmp ?2_endif
?4_false:
 mov ebx, 3
?2_endif:

This code generation algorithm generalizes to any number of ELSEIF clauses. If you need to see an
example of an IF statement with more than two ELSEIF clauses, feel free to run a short example through the
HLA compiler to see the result.

In addition to processing boolean expressions, the HLA IF statement supports a hybrid syntax that lets
you combine the structured nature of the IF statement with the unstructured nature of typical assembly lan-
guage control flow. The hybrid form gives you almost complete control over the code generation process
without completely sacrificing the readability of an IF statement. The following is a typical example of this
form of the IF statement:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1523

Appendix L
 if
 {
 cmp(eax, 10);
 jna false;
 }

 mov(0, eax);

 endif;

; The above generates the following assembly code:

 cmp eax, 10
 jna ?2_false
?2_true:
 mov eax, 0
?2_false:

Of course, the hybrid IF statement fully supports ELSE and ELSEIF clauses (in fact, the IF and ELSEIF
clauses can have a potpourri of hybrid or traditional boolean expression forms). The hybrid forms, since
they let you specify the sequence of instructions to compile, put the issue of efficiency squarely in your lap.
About the only contribution that HLA makes to the inefficiency of the program is the insertion of a JMP
instruction to skip over ELSEIF and ELSE clauses.

Although the hybrid form of the IF statement lets you write very efficient code that is more readable
than the traditional “compare and jump” sequence, you should keep in mind that the hybrid form is defi-
nitely more difficult to read and comprehend than the IF statement with boolean expressions. Therefore, if
the HLA compiler generates reasonable code with a boolean expression then by all means use the boolean
expression form; it will probably be easier to read.

L.7 The While Statement

The only difference between an IF statement and a WHILE loop is a single JMP instruction. Of course,
with an IF and a JMP you can simulate most control structures, the WHILE loop is probably the most typical
example of this. The typical translation from WHILE to IF/JMP takes the following form:

while(expr) do

 << statements >>

endwhile;

// The above translates to:

label:
 if(expr) then

 << statements >>
 jmp label;

 endif;

Experienced assembly language programmers know that there is a slightly more efficient implementa-
tion if it is likely that the boolean expression is true the first time the program encounters the loop. That
translation takes the following form:
Page 1524 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements
 jmp testlabel;
label:

 << statements >>

testlabel:
 JT(expr) label; // Note: JT means jump if expression is true.

This form contains exactly the same number of instructions as the previous translation. The difference
is that a JMP instruction was moved out of the loop so that it executes only once (rather than on each itera-
tion of the loop). So this is slightly more efficient than the previous translation. HLA uses this conversion
algorithm for WHILE loops with standard boolean expressions.

If you look at HLA’s output code, you’ll discover that it is really complex and messy. The reason has to
do with HLA’s code generation algorithm. In order to move code around in the program (required in order to
move the test of the boolean expression below the statements that comprise the body of the loop) HLA
writes a MASM macro at the top of the loop and then expands that macro at the bottom of the loop. The fol-
lowing short example demonstrates how HLA transforms WHILE statements:

 while(eax > 0) do

 mov(0, eax);

 endwhile;

; Translated code:

 jmp ?2_continue

?2_true:
?2_while:

?2_macro macro
?2_continue:
 cmp eax, 0
 ja ?2_while
 endm

 mov eax, 0
 ?2_macro
?2_exitloop:

As you’ll find by carefully studying this code, HLA emits a macro definition at the point it encounters
the WHILE statement. Then it emits an expansion of that macro at the bottom of the loop. This effectively
moves the code associated with the computation of the boolean expression to the bottom of the loop.

Because of this code motion, there is very little overhead associated with a WHILE loop that you
haven’t already seen (i.e., the IF statement). Therefore, with one exception, the WHILE and IF statements
share the same efficiency concerns. The single exception is the hybrid WHILE statement. For technical rea-
sons, HLA cannot move the code associated with the termination check of a hybrid WHILE loop to the bot-
tom of the loop. Therefore, whenever you use the hybrid form of the WHILE statement HLA compiles the
code you supply at the top of the loop, it adds a JMP instruction to the bottom of the loop, and that JMP
instruction executes on each iteration. If this is a problem for your code, you should probably consider a dif-
ferent implementation of the loop.

Example of the compilation of a hybrid WHILE loop:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1525

Appendix L
 while
 {
 cmp(eax, 0);
 jne false;

 }

 mov(0, eax);

 endwhile;

; Translated code:

?2_while:
?2_continue:
 cmp eax, 0
 jne ?2_false
?2_true:
 mov eax, 0
 jmp ?2_while
?2_exitloop:
?2_false:

L.8 repeat..until

L.9 for..endfor

L.10 forever..endfor

L.11 break, breakif

L.12 continue, continueif

L.13 begin..end, exit, exitif

L.14 foreach..endfor

L.15 try..unprotect..exception..anyexception..endtry, raise

Editorial Note: This document is a work in progress. At some future date I will finish the sections above.
Until then, use the HLA “-s” compiler option to emit MASM code and study the MASM output as described
in this appendix.
Page 1526 © 2001, By Randall Hyde Beta Draft - Do not distribute

Index
Index

(numeric character constant prefix) 90
character literal constants 386
#(and)# (macro parameter brackets) 948
#{ (Hybrid parameter passing syntax) 812
#asm 1119
#emit 1119
#endasm 1119
#ERROR statement 922
#include 12
#includeonce directive 551
#PRINT statement 922
? Compile-time operator 390
@c 21
@ELEMENTS compile-time function 946
@Elements compile-time function 461
@EVAL function 952
@global operator (in name spaces) 479
@nc 21
@no 22
@ns 22
@nz 22
@o 22
@offset compile-time function 1121
@s 22
@size compile time function 469
@Size compile-time function 461
@size function 180
@size function (applied to UNIONs) 475
@StaticName function 1120
@STRING

name operator 947
@TYPENAME function 964
@z 21
finalize strings 1055
initialize strings 1055
pVMT 1049, 1053
vars constant 792
VMT 1044

16-bit registers 16
32016 microprocessor 226
32-bit registers 16
4004 microprocessor 225
4040 microprocessor 225
64-bit constant expressions 1089
6502 microprocessor 225
6800 microprocessor 225
68000 microprocessor 225
8008 microprocessor 225

8080 microprocessor 225
8085 microprocessor 225
8088 microprocessor 226
8-bit registers 16

A

AAA instruction 873
AAD instruction 873
AAM instruction 873
AAS instruction 873
Absolute value (floating point) 607
Abstract base classes 1060
Abstract data types 1030
ABSTRACT keyword 1062
Abstract method declarations 1060
Accessing a word in byte addressable memory 136
Accessing an element of a single dimension array 446
Accessing data on the stack. 178
Accessing data via a pointer 394
Accessing data with a 16-bit bus 139
Accessing double words in memory 139
Accessing elements of 3 & 4 dimensional arrays 452
Accessing elements of a two-dimensional array 452
Accessing elements of an array 447
Accessing elements of multidimensional arrays 457
Accessing fields of a structure 466
Accessing local variables 791
Accessing names outside a namespace 478
Accessing reference parameters 806
Accessing the characters within a string 407
Accessing the fields of a class 1039
Accessing the fields of a UNION 474
Accessing value parameters 800
Accessing words at odd addresses 139
Accessor methods 1030
Activation records 786
Active high logic 217
Active low logic 217
Actual parameters 811
ADC instruction 829
ADD 19
Adders 215
Addition (extended precision) 827
Addition table 822
Address binding 1337, 1338
Address bus 133
Address expressions 164
Address of operator 154
Address spaces 135
Addressable memory 134
Addressing modes 151
Addressing modes (Y86) 269
Address-of operator 183
Affine closure 593
AGP Bus 323
AH 16
Page 1

AL 16
Algorithm 521
Aliases 411, 475, 537
Aligning fields within a record 472
Allocating objects dynamically 1049
Allocating storage for arrays 455
AND 584
AND instruction 58, 882
AND operation 55, 196
Anonymous unions 476
Anonymous variables 154
Anyexception (try..endtry) 713
Arbitrary text as macro parameters 948
Arc cosecant 617
Arc cosine 617
Arc cotangent 617
Arc secant 617
Arc sin 617
Architecture 131
Arctangent 610
arg.c function 619
arg.v function 619
Arithmetic expressions 577, 579
Arithmetic idioms 586
Arithmetic logical systems 585
Arithmetic operators within a constant expression 387
Arithmetic shift right 67
Arity 459, 461
Array access 446
Array variables 446
array.cpy function 462
array.daAlloc function 461
array.daFree function 462
array.dArray declaration 460
array.index function 461
Arrays 445
Arrays as structure fields 468
Arrays of arrays 453
Arrays of records 468
Arrays of two or more dimensions 450
ASCII character set 48, 87, 93
Assembly language newsgroups 8
Assert Macro 1220
Assigning a constant to a variable 577
Assigning one variable to another 577
Assignment by reference 410
Assignments 577
Associativity 195, 580
Audio and video data 1087
Automatic storage allocation 531
Automatic variables 162
AX 16

B

Background colors on the text display 188
backspace 31

Base address (of an array) 445
Base classes 1045
Based indexed addressing mode 157
Basic System Components 131
BCD 77
BCD arithmetic 870
BCD numbers 46
BCD values 381
BEGIN..END statement 718
bell character 31
BH 16
Biased (excess) exponents 81
Big-endian data format 900
binary 43
Binary Coded Decimal 77
Binary coded decimal arithmetic 871
Binary coded decimal numbers 46
binary data types 46
Binary Formats 45
Binary Numbering System 44
Binary operator 195
Binding an address to a variable 1338
Bit data 881
Bit fields and packed data 71
Bit masks 881
Bit offset 881
Bit runs 881
Bit scanning 895
Bit sets 881
Bit strings 881
Bits 46
bits.cnt function 904
bits.coalese function 905
bits.distribute function 904
bits.extract function 905
bits.merge8, bits.merg16, and bits.merge32 functions 905
bits.nibbles8, bits.nibbles16, and bits.nibbles32 functions

905
bits.reverse8, bits.reverse16, and bits.reverse32 functions

905
Bitwise logical operators within a constant expression

388
Bitwise operations 57
BL 16
Boolean Algebra 195
Boolean algebra theorems 196
Boolean expression canonical form 201
Boolean expressions 21, 584
Boolean function equivalence to electronic circuits 213
Boolean function names 199
Boolean function numbers 200
Boolean function simplification 206
Boolean functions 197
Boolean functions of n variables 199
Boolean logical systems 585
Boolean map simplification 206
Boolean term 201
Boolean values 46
Page 2

Index
BOUND instruction 377
BP 16
Branch out of range 735
BREAK 767
BREAK statement 27
BREAKIF statement 27
bs 31
BSF and BSR instructions 895
BSWAP instruction 900
BT, BTC, BTR, and BTS instructions 887
Buffering data to improve I/O performance 323
Bus contention 251
Bus interface unit 246
BX 16
Byte 47
Byte addressable memory array 138
Byte enable lines 135, 140
Byte strings 907
Bytes 46

C

Cache and I/O devices 336
Cache Architecture 297
Cache associativity 298
Cache coherency 260
Cache hit 148
Cache hit ratio 149
Cache line replacement policy 300
Cache memory 147
Cache miss 148
Cache write policies 301
Cache, two level 149
CALL Instruction 781
CALL instruction 521, 781
Callee register preservation 524
Caller register preservation 524
Calling Base Class Methods 1064
Canonical form of boolean expressions 200
Canonical forms 201
Carriage return 31
carry 17
Carry flag 17, 888
carry flag 572
Case insenstive string comparisons 418
Case labels (non-contiguous) 759
Case neutral 11
CASE statement 725
Case Statement 752
Case statement 737
cbw instruction 64
cdq instruction 64
CD-Quality recording 103
Celeron microprocessor 229
Central Processing Unit 131
Central processing unit 15
CH 16

Change sign (floating point) 607
Changing the value of a VAL constant at different points

in your program 390
Char data type 91
Character classification compile-time functions 929
Character constants 385
Character literal constants 90
Character strings 401
Characters 86
Circular queues 329
Circular queues and output transfers 334
CL 16
CL register in rotate operations 70
CL register in SHL instruction 66
Class Methods, Iterators, and Procedures 1037
Classes 1031
clc instruction 74
cld instruction 74
Clearing the FPU exception bits 611
Clearing the Screen 184
CLI instruction 333
cli instruction 74
Clipping (saturation) 65
Clock 144
Clock frequency 144
Clock period 144
Clocked logic 220
Closure 195
Closure of an operator 195
cls (clear screen) routine 184
CMC instruction 888
cmc instruction 74
CMPS 907, 915
Coalescing bit sets 892
Coarse-grained parallelism 259
Code reuse 560
Code stream parameters 1305
Coercion 166
Color depth 99
Colors on a video display 98
Column major ordering 450, 454
Combinatorial circuits 215
Command line arguments 619
Command line parameters 619
Comments 14
Commutative operators 583
Commutativity 195
comp.lang.asm.x86 newsgroup 8
Compare strings 907
Comparing dates 73
Comparing floating point numbers 79
Comparing registers with signed integer values 168
Comparing two strings 417
Comparison Instructions (MMX) 1103
Comparison operators in a constant expression 388
Compile-Time Constants and Variables 924
Compile-Time Expressions and Operators 924
Compile-Time Functions 927
Page 3

Compile-Time Language 921
Compile-time loops 937
Compile-Time Pattern Matching Functions 929
Compile-time procedures 941, 957
Compile-time programs 967
Compile-time string functions 929
Compile-time symbol information 930
Compile-time variables 932
Complete boolean evaluation 745
Complex arithmetic expressions 579
Complex string functions 919
Composite data types 401
Computer Architecture 131
Computing 2**x 609
Computing MOD using an AND instruction 330
Concatenating two string literals 385
Concatenation 415
Condition codes 17
Condition jump instructions (opposite conditions). 735
Conditional compilation 934
Conditional jump aliases 735
Conditional Jump Instructions 733
Conditional jumps (x86) 272
Conditional statements 737
Console application 12
CONSOLE Module (Standard Library) 184
console.cls routine 184
console.fillRect routine (standard library) 190
console.getX 186
console.getY 186
console.gotoxy routine 185
console.puts routine (standard library) 191
console.putsx routine (standard library) 191
console.setOutputAttr routine (standard library) 188
CONST declarations 381
Constant expressions 165, 387
Constructing a truth map 207
Constructing data tables at compile time 968
Constructing logic functions using only NAND opera-

tions 213
Constructing truth tables from the canonical form 202
Constructors 1048, 1050
Constructors and Inheritance 1051
Contention (for the bus) 251
Context-free macros 957
CONTINUE 767
CONTINUE and CONTINUEIF statements 723
Control bus 134
Control characters 88
Control characters within string constants 386
Controlling field offsets within a record 471
conv.strToFlt function 619
Converting Arithmetic Expressions to Postfix Notation

613
Converting BCD to floating point 602
Converting between canonical forms 205
Converting between HLA time format and seconds 494
Converting binary to hex 51

Converting Floating Point Expressions to Assembly Lan-
guage 612

Converting hex to binary 51
Converting IF statements to assembly language 738
Converting Postfix Notation to Assembly Language 615
Converting UNICODE to ASCII 1094
Copy by reference 411
cosecant 617
Cosine 610
cot function 617
Cotangent 617
Count (string elements) 908
Counters 222
Counting bits 897
CPI (clocks per instruction) 255
CPU 15, 131
CPUID instruction 1083
cr 31
Create procedure for an object 1050
Creating libraries 561
Creating lookup tables 629
cs.difference function 1102, 1110
CTL (compile time language) 921
Current string length 402
Cursor location on the screen (standard library) 186
Cursor positioning 185
cwd instruction 64
cwde instruction 64
CX 16
CYMK color space 100

D

D (data) flip-flop 221
DAA instruction 872
Dangling pointers 398
DAS instruction 872
Data bus 132
Data Transfer Rates 321
data.pack function 491
Date arithmetic 492
Date comparison 73
Date to string conversions 489
date.a_toString function 490
date.datePlusDays function 492
date.datePlusMonths function 492
date.dayNumber function 493
date.dayOfWeek function 493
date.daysBetween function 492
date.daysLeft function 493
date.fromJulian function 492
date.IsValid function 485
date.Julian function 492
date.OutputFormat values 489
date.Print function 490
date.today function 489
date.toString function 490
Page 4

Index
date.unpack function 491
date.validate function 485
Deadlock 334
DEC instruction 183
decimal 43
Decimal arithmetic 86, 870
Decisions 736
Declarations

static 13
Declaring arrays 446
Decoder circuits 216
Decoding instruction opcodes 217
DEFAULT section of a SWITCH statement 726
Deferring macro parameter text expansion 949
delete memory deallocation operator (C++) 180
DeMorgan’s Theorems 197
Denormalized exception (FPU) 594
Denormalized floating point values 599
Denormalized values 82
Destination index 908
Destroy procedure in a class 1055
Destructors 1055
Destructuring 750
Device Drivers 338
DH 16
DI 16
Digital video 105
Direct addressing mode 152
Direct jump instructions 731
Direct mapped caches 298
Direct Memory Access 320
Direct memory access 318
Direction flag 908, 909
Dirty bits 302
Disassembly 365
Displacement only addressing mode 152
Display (in an activation record) 782
Display (lexical nesting data structure) 1337
dispose memory deallocation operator (Pascal) 180
Distributed Shared Memory 294
Distributing bit strings 892
Distributive law 195
div (within a constant expression) 387
DIV simulation 587
DL 16
DMA 318
Domain conditioning 628
Domain of a function 626
Dope vector 459
Dot operator 466
Double precision floating point format 81
Double word storage in byte addressable memory 136
Double word strings 907
Double words 49
double words 46
Downloading MASM 9
Dual I/O ports 317
Duality 197

DUP operator 446
dwords 46
DX 16
Dynamic Arrays 458
Dynamic link 1274, 1340
Dynamic memory allocation 180, 396
Dynamic nesting of control structures 709
Dynamic Object Allocation 1049
Dynamic type systems 477

E

Eager macro parameter text expansion 949
Eager vs. deferred macro parameter evaluation 949
EAX 16
EBP 16
EBX 16
ECX 16
EDI 16
EDX 16
Effective addresses 154
EFLAGS 17
EFLAGS register 74
EFLAGs register 176
EIP register 17
EISA bus 321
Electronic circuit equivalence to boolean functions 213
ELSE 21, 23, 738
ELSEIF 21, 23
Embedding control characters in string constants 386
EMMS Instruction 1108
EMMS instruction 1085
Encoding instructions 262
ENDFOR 25, 27
ENDIF 21, 23
ENDTRY 28
ENDWHILE 21, 24
ENUM 392
Enumerated data types 392
eoln 31
Errors when using pointers 182
Escape character sequences 385
ESI 16
ESP 16
ex.DivisionError exception 570
ex.FileOpenFailure exception 502
ex.IntoInstr exception 570
ex.InvalidDate exception 485
ex.MemoryAllocationFailure exception 181
ex.StringIndexError exception 409
ex.StringOverflow exception 405, 415
EXCEPTION 28
Exception flags (FPU) 596
Exception handling 28
Exception masks (FPU) 594
Exception values 713
Exclusive-or 55
Page 5

Exclusive-OR operation 199
Exclusive-or operation 56
Executing a loop backwards 774
Execution units 256
EXIT 718
EXIT and EXITF statements 526
EXITIF 718
exp function 618
Exponent 78
Expression classification functions 931
Expressions 579
Expressions and temporary values 583
Extended precision (80 bit) floating point values 381
Extended precision addition 827
Extended precision AND 847
Extended precision comparisons 831
Extended precision division 838
Extended precision floating point format 82
Extended precision formatted I/O 857
Extended precision I/O 852
Extended precision input routines 858
Extended precision multiplication 834
Extended precision NEG 846
Extended precision NOT 848
Extended precision OR 848
Extended Precision Rotates 852
Extended precision shifts 848
Extended precision XOR 848
EXTERNAL directive 551, 555
Extracting bit sets 892
Extracting bit strings 891, 901

F

F2XM1 instruction 609
FABS instruction 607
FADD/FADDP instructions 603
Falling edge of a clock 145
False (representation) 584
FBLD instruction 602, 875
FBLD/FBSTP instructions 602
FBSTP Instruction 602
FBSTP instruction 875
FCHS instruction 607
FCLEX/FNCLEX instructions 611
FCOM, FCOMP, and FCOMPP instructions 607
FCOM/FCOMP/FCOMPP instructions 608
FCOMI and FCOMIP instructions 607
FCOS instruction 610
FDIV/FDIVP/FDIVR/FDIVRP instructions 605
FIADD instruction 612
Fibonacci sequence 820
FICOM instruction 612
FICOMP instruction 612
FIDIV instruction 612
FIDIVR instruction 612
Field alignment within a record 472

Field Offsets Within a Record 471
Field width 32
FILD Instruction 601
File handles 501
File Storage (in the memory hierarchy) 294
fileio.getf function 617
Filling a Rectangular Section of the Screen 190
fillRect routine (standard library) 190
FIMUL instruction 612
Fine-grained parallelism 259
FINIT/FNINIT instructions 611
First-in, First-out (FIFO) cache replacement policy 301
FIST instruction 602
FISTP Instruction 602
FISUB instruction 612
FISUBR instruction 612
FLAG register 74
Flags 17
Flags (and CMP) 572
FLD Instruction 599
FLD1 instruction (load 1.0) 609
FLDCW instruction 611
FLDL2E instruction (load lg(e)) 609
FLDL2T instruction (load lg(10)) 609
FLDLG2 instruction (load log(2)) 609
FLDLN2 instruction (load ln(2)) 609
FLDPI instruction (load pi) 609
FLDZ instruction (load 0.0) 609
Flip-flops 220
Floating point arithmetic 591
Floating point comparisons 79, 607
Floating point data types 598
Floating point registers as procedure parameters 1305
Floating point unit 227
Floating point values 50
Flushing the pipeline 252
FMUL/FMULP instructions 604
for 895
For loops 766
FOR statement 25
Forcing bits to one 58
Forcing bits to zero 58
Forcing bits to zero (MMX) 1102
Forcing selected bits to one. 883
FOREACH..ENDFOR 818
Foreground colors on the text display 188
FOREVER loops 764
FOREVER statement 27
Formal parameters 811
FORWARD (variable and type declarations) 1058
Forward procedure declarations 546
Four-way set associative caches 300
FPATAN instruction 610
FPREM/FPREM1 instructions 606
FPTAN instruction 610
FPU busy bit 598
FPU condition code bits 596
FPU Control Register 592
Page 6

Index
FPU control word 611
FPU exception bits 611
FPU exception flags 596
FPU exception masks 594
FPU interrupt enable mask 595
FPU precision control 594
FPU Registers 591
FPU rounding control 593
FPU stack fault flag 596
FPU Status Register 595
FPU Status register 612
FPU top of stack pointer 598
free 180
Free function 396
FRNDINT instruction 606
FSIN instruction 610
FSINCOS instruction 610
FSQRT instruction 605
FST instruction 600
FSTCW instruction 611
FSTP Instruction 600
FSTSW instruction 595, 607
FSTSW/FNSTSW instructions 612
FSUB/FSUBP/FSUBR/FSUBRP instructions 603
FTST instruction 609
Full adders 215
Function Computation via Table Look-up 625
Function instance 1338
Function numbers 200
Function overloading 962
Function results 537, 1333
Functional units 245
FXCH Instruction 601
FYL2X instruction 610
FYL2XP1 instruction 610

G

General protection fault 158
General purpose registers 16
Generating a unique label in an HLA program 956
Get routine 37
Getc routine 34
Getting an integer value 35
getY routine (standard library) 186
Global memory locations as parameters 1305
gotoxy routine (standard library) 185
Guard digits/bits 78

H

H.O. 45
Half adder 215
Handshaking 324
Hard Copy storage (in the memory hierarchy) 295
Harvard architecture 252
Header files 556

heap 180
Hello World 12
Hertz (Hz) 144
Hexadecimal 46
hexadecimal 43
Hexadecimal Calculators 52
Hexadecimal calculators 52
Hexadecimal input (extended precision) 861
Hexadecimal numbering system 50
Hexadecimal output (extended precision) 853
High order bit 45, 47
High order byte 48
High order nibble 47
High order word 50
High-speed devices 320
History of the 80x86 CPU 225
HLA 4

Identifiers 11
HLA pointers 394
HLA Standard Library 29
HLA stdlib

stdin.get 14
stdout.put 12

HLA strings 403
Hybrid control structures 778
Hybrid parameter passing facilities 812

I

I/O 15, 318
I/O address bus 135
I/O and the cache 336
I/O mapped input/output 318
I/O port 315
I/O Speed Hierarchy 320
I/O subsystem 141
I/O-mapped input/output 319
iAPX432 microprocessor 226
Icon programming language 409
Identifiers 11
Identity element for boolean operations 196
Identity elements 196
IEEE floating point standard (754 & 854) 80
IF 21
IF statement 23
IF..THEN..ELSE 736, 738
Implementation section of an abstract data type 1030
IN instruction 319
IN operator 22
INC instruction 183
INCLUDE directive 549
Include files 12
Indexed addressing mode 154
Indexed addressing mode (x86) 269
Indirect addressing mode 269
Indirect calls 814
Indirect jump 763
Page 7

Indirect jump instructions 731
Indirect Jumps 761
Indirect jumps 737
Induction variables 777
Industry Standard Architecture (ISA) 321
Infinite loops 764
Infinite precision arithmetic 77
Infix notation 612
Information hiding 1030
Inheritance 1034, 1045
INHERITS keyword (classes) 1034
Inhibition function 1102
Inhibition operation 199
Initializing a string 907
Initializing strings and arrays 918
Input conditioning 628
Input/output 15
Inserting a bit field into some other value 883
Instance 1338
Instances (of a class) 1033
Instruction composition 538
Instruction pointer register 236
Instruction set architecture 261
int16 13
int32 13
int8 13
Integer input 35
Integer output 32
Interface section of an abstract data type 1030
Interrupt enable mask (FPU) 595
Interrupt service routine 328
Interrupt service routine (x86) 272
Interrupt vector 329
Interrupts 327
INTMUL instruction 377
INTO instruction 377
Invalid operation exception (FPU) 594
Invariant computations 775
Inverse element 196
Inverse element for boolean operations 196
Inverting bits 58
Inverting selected bits 885
IRET instruction 328
IS operator (object IS someType) 1063
ISA bus 321
ISR 328
Iterators 818

J

JA instruction 734
JAE instruction 734
JB instruction 734
JBE instruction 734
JC instruction 734
JE instruction 734, 735
JF Instruction 736

JG instruction 735
JGE instruction 735
JL instruction 735
JLE instruction 735
JMP instruction 731
JNA instruction 734
JNAE instruction 734
JNB instruction 734
JNBE instruction 734
JNC instruction 734
JNE instruction 734, 735
JNG instruction 735
JNGE instruction 735
JNL instruction 735
JNLE instruction 735
JNO instruction 734
JNP instruction 734
JNS instruction 734
JNZ instruction 240, 734
JO instruction 734
JP instruction 734
JPE instruction 734
JPO instruction 734
JS instruction 734
JT instruction 736
Julian day numbers 492
JZ instruction 734

K

Karnaugh Maps 195
KEYWORD section in a macro 961
Kost significant bit 47

L

L.O. 45
Labels 729
LAHF instruction 74
lahf instruction 74
Large parameters 807
Large programs 549
Last-in, first-out data structures 172
Latency (of a cache access) 297
Lazy evaluation 1318
LEA instruction 184
Leap years 486
Least recently used (LRU) cache replacement 301
Least significant bit 47
Left associative 196
Left associative operators 580
Left shift operation 66
Length (field of an HLA string) 404
Length-prefixed strings 402
Level One Cache 294
Level Two Cache 294
Lexical Nesting 1337
Page 8

Index
Lexical scope 527
Lexicographical ordering 418, 916
lf 31
LIB (library) files 561
LIB.EXE program 561
Libraries 561
Lifetime 163
Lifetime (of a variable) 527, 531
Lifetime of a variable 1338
LIFO 172
Linefeed 31
LINK.EXE program 561
Linker 549
Literal record constants 467
Literals (boolean) 201
Little endian data format 900
ln function 618
Local symbols in a macro 952
Local variables 527, 791
Locality of reference 147, 296
Locating the Cursor (standard library) 186
LOCK prefix 1417
LODS 907, 919
log function 618
Logic Instructions (MMX) 1102
Logical AND 196
Logical AND operation 55
Logical complement 196
Logical exclusive-OR 199
Logical exclusive-or operation 55, 56
Logical inhibition 199
Logical NAND 199
Logical NOR 199
Logical NOT 199
Logical NOT operation 55, 57
Logical Operations on Binary Numbers 57
Logical Operations on Bits 55
Logical operators within a constant expression 388
Logical OR 196
Logical OR operation 55, 56
Logical shift right 67
Logical XOR operation 55
Loop control variables 764
LOOP instruction 240
Loop invariant computations 775
Loop register usage 771
Loop termination 772
Loop termination test 764
Loop unraveling 776
Loops 763
LOOPZ and LOOPNZ instructions 327
Low Level Control Structures 729
Low order bit 45, 47
Low order byte 48
Low order nibble 47
Low order word 50
Low-speed devices 320

M

Machine idioms 586
Machine state, saving the 523
Macro parameter brackets 948
Macro parameter expansion 943
Macro parameters 943
Macros 941
Make files 557
malloc 180
Malloc function 396
Managing large programs 549
Managing libraries 561
Manifest constants 381
Mantissa 78
Map method for boolean function simplification 206
mask 881
Masking 58
Masking in bits 58
Masking out 47
Masking out bits 58
Masking out bits (setting them to zero) 882
MASM 9
Maximum addressable memory 134
Maximum string length 403
MaxStrLen 404
Medium-level control structures 736
Medium-speed devices 320
Megahertz (Mhz) 144
Memory 15
Memory access 145
Memory access time 145
Memory access violation exception 398
Memory banks 138
Memory cells 220
Memory Hierarchy 293, 295
Memory mapped files 304
Memory protection 302
Memory subsystem 135
MemoryAllocationFailure exception 181
Memory-mapped I/O 318
Merging bit strings 901
Merging source files during assembly 549
Metaware Professional Pascal 1273
Methods 1031
Microprocessor clock 144
MIDI 104
MIMD (Multiple Instruction, Multiple Data) 259
Minimum field width 32
Mixed Integer and Floating Point Arithmetic 616
MM0, MM1, MM2, MM3, MM4, MM5, MM6, and MM7

(MMX Registers) 1084
MMU (memory management unit) 304
MMX (multimedia extensions) 229
MMX arithmetic instructions 1100
MMX Comparison Instructions 1103
MMX Data Types 1086
MMX Instruction Operands 1088
Page 9

MMX Logic Instructions 1102
MMX Programming Paradigm 1109
MMX Registers 1084
MMX Shift Instructions 1107
mod (within a constant expression) 387
MOD calculation using AND 330
Modulo (floating point remainder) 606
Monochrome displays 100
MOV instruction 151
Mov instruction 18
MOVD instruction 1093
Move strings 907
MOVQ instruction 1093
MOVS 907, 910
Movsx instruction 64
movzx instruction 64
MP3 files 100
Muilti-precision Division 838
MUL simulation 586
Multidimensional arrays 450
Multi-level page tables 303
Multi-part macros 957
Multiplication table 822
Multiprecision addition 827
Multi-precision comparisons 831
Multiprecision operations 827
Multiprecision subtraction 830
Multiprocessing 259

N

Name space pollution 477, 563
Names of boolean functions 199
NAMESPACE declarations 563
Namespaces 477
NAND gates 213
NAND operation 199
Near-Line Storage subsystems 295
NEG instruction 61
Negation (floating point) 607
Negative numbers 59
Nesting record definitions 470
Nesting TRY..ENDTRY statements 708
Network Storage (in the memory hierarchy) 294
New line 31
NEW memory allocation operator (C++ or Pascal) 180
newln 31
Newsgroups 8
Nibble 46
Nibbles 46
nl 12, 30
nl (newline) constant 387
NOALIGNSTK option 781, 789
NODISPLAY option 781
NOFRAME option 781
Nonuniform Memory Access (NUMA) 294
NOR operation 199

Normalized floating point numbers 599
Normalized values 82
NOSTORAGE 162
NOT 584
NOT IN operator 22
NOT instruction 58
NOT operation 55, 57, 196, 199
NuBus bus 321
NULL pointer references 158
NUMA 294, 305
Number of boolean functions 199
Numeric Input 35
Numeric output 32
Numeric representation 53
N-way set associative caches 299

O

OBJ files 561
Object Initialization 1048
Objects 1033
Off-Line storage subsystems 295
One-way set associative cache 298
On-line and memory subsystems 294
Opcodes 236
Operation codes 236
Operator precedence 580
Operator Precedence and Associativity (compile-time op-

erators) 926
Opposite condition jump conditions 735
Opposite jumps 735
Optional macro parameters 947
OR 55, 584
OR instruction 58, 883
OR Operation 56
OR operation 196
OUT instruction 319
Out of Order Execution 257
Outer product 822
Outputting register values 168
Overflow exception (FPU) 594
Overflow flag 17
overflow flag 572
Overlapping blocks (string operations) 912
Overloading 962
Overriding a method 1035

P

Packed arithmetic instructions 1100
Packed arrays of bit strings 893
Packed data 71
Packed decimal arithmetic 874
Packing and unpacking bit strings 889
PACKSSDW instruction 1093
PACKSSWB instruction 1093
PACKUSDW instruction 1093
Page 10

Index
PACKUSWB instruction 1093
PADDB, PADDW, and PADDD instructions 1100
Padding a record to some number of bytes 473
Padding parameter data 803
PADDSB and PADDSW instructions 1100
PADDUSB and PADDUSW instructions 1100
Paging 302
Palette (video card) 99
PAND instruction 1102
PANDN instruction 1102
Parallel computation with MMX instructions 1087
Parallel execution of instructions 242
Parallel printer port 324
Parameter expansion in macros 943
Parameters 532, 792, 1305
Parameters (macros) 943
Parameters, variable length 797
Parity flag 886
Parse 276
Pass by lazy evaluation 1318, 1357
Pass by name 1357
Pass by name parameters 1318
Pass by reference 1356
Pass by reference parameters 535, 793, 1318
Pass by result 1356
Pass by value 1355
Pass by value parameters 532, 793, 1318
Pass by value/returned 1318
Pass by value/returned parameters 1318
Pass by value-result 1356
Passing HLA parameters to a C function 967
Passing large objects as parameters 807
Passing parameters as parameters 811
Passing parameters by name 1324
Passing parameters by result 1323
Passing parameters by value 1355
Passing parameters from one procedure as parameters to

another 1327
Passing parameters in a parameter block 1305, 1317
Passing parameters in global memory locations 1305
Passing parameters in global variables 1310
Passing parameters in registers 794, 1305, 1306
Passing parameters in the code stream 796, 1305, 1315
Passing parameters on the stack 798, 1305, 1310
Passing reference parameters 808
Passing value parameters 801
Passing variables from different lex levels as parameters

1355
Patch panel programming 236
Pattern matching functions (compile-time) 929
PCI bus 321
PCMPEQB, PCMPEQW, and PCMPEQD instructions

1103
PCMPGTB, PCMPGTW, and PCMPGTD instructions

1103
PCMPLTx instructions 1105
Pentium™ Processor 228
Performance improvements for loops 772

Performance of Memory Subsystems 296
Peripheral Connection Interface (PCI) 321
Pipeline flush 252
Pipeline stalls 251
Pipelined instruction execution 227
Pipelining 249
PMADDWD instruction 1101
PMULHUW instruction 1101
PMULHW instruction 1101
PMULLW instruction 1101
Pointer constants and pointer constant expressions 395
Pointer errors 182
Pointer problems 397
POINTER TO type declaration 395
Pointers 393
Polled I/O 327
polymorphism 1036
POP instruction 170
POPA and POPAD instructions 176
POPF and POPFD instructions 176
POR instruction 1102
Port 315
Positioning the Cursor 185
Postfix notation 613
Pound sign operator ("#") 90
Precedence 196, 580
Precision exception (FPU) 594
Prefetch Queue 245
Prefetch queue 246
Preserving registers 172, 523
Priming the pump (for output devices) 335
Principle of duality 197
Private fieldsd in a class 1032
Procedural parameters (passing procedures as parameters)

816
Procedure call syntax 522
Procedure instance 1338
Procedure invocation 521, 781
Procedure Overloading in classes 1054
Procedure pointers 814
Procedures and the Stack 783
Processor size 133
Product of maxterms representation 201
Professional Pascal 1273
Program unit 1342
Programming in the large 549
PSARW and PSARD instructions 1107
Pseudo-opcode 160
PSLLW, PSLLD, and PSLLQ instructions 1107
PSLRW, PSLRD, and PSLRQ instructions 1107
PSUBB, PSUBW, and PSUBD instructions 1100
PSUBSB and PSUBSW instructions 1100
PSUBUSB and PSUBUSW instructions 1100
PUNPCKHBW instruction 1093
PUNPCKHDQ instruction 1093
PUNPCKHWD instruction 1093
PUNPCKLBW instruction 1093
PUNPCKLDQ instruction 1093
Page 11

PUNPCKLWD instruction 1093
PUSH instruction 169
PUSHA instruction 175
PUSHAD instruction 175
PUSHD instruction 169
PUSHF and PUSHFD instructions 176
PUSHW instruction 169
Put routine 33
putiXsize 32
PXOR instruction 1102

Q

Quicksort 544
Quicktime 105
QWORD data type 381
qwords 46

R

radix 51
RAISE statement 409, 713
Range of a function 627
RCL instruction 70
RCR instruction 70
Read control line 134
Read/write input/output ports 315
Read/write ports 317
Reading from memory 136
Reading integer values 35
Read-only (input) ports 315
READONLY declaration section 160
Read-only ports 316
READONLY variables as constants 382
Realloc function 396
Rearranging expressions to make them more efficient 750
Record constants 467
Record field alignment 472
Record offsets 471
Records 465
Records as record fields 468
Recursion 543
Reference parameters 806, 808
Register addressing modes 151
Register indirect addressing mode 153
Register indirect jump instruction 731
Register preservation 523
Register preservation in a TRY..ENDTRY statement 717
Register Renaming 257
Register type coercion 168
Register usage in loops 771
Registers 16
Registers (electronic implementation) 221
Registers (in the memory hierarchy) 293
Registers as procedure parameters 794, 1305, 1306
Registers as signed integer values 168
Relational operators 22

Remainder (floating point) 606
Removing unwanted data from the stack 176
REPEAT 21
Repeat Until loop 765
REPEAT..UNTIL loops 764
REPEAT..UNTIL statement 26
Replacement policy (for caches) 300
Representing audio information 100
Required macro parameters 947
Resume frame (for iterators) 1274
RET instruction 521, 781
RETURNS Option 540
Reverse polish notation 612
Reversing a bit string 899
RGB color space 98
Right associative operators 196, 580
Right shift operation 67
Rising edge of a clock 145
ROL instruction 69
ROR instruction 69
Rotate left 68
Rotate right 68
Rounding a floating point value to an integer 606
Rounding control 593
Rounding control (FPU) 593
Row major ordering 450, 451
RPN 612
Run of ones 881
Run of zeros 881
Run-time language 921
Run-time Type Information 1062

S

SAHF instruction 74, 607
sahf instruction 74
SAR instruction 68
Saturation 63
Saturation arithmetic 1087
Saving the machine state 523
SBB instruction 830
Scanning for bits 895
SCAS 907, 918
Schematic Symbols 213
Scope 1337
Scope (of a name) 527
Searching for a bit 895
Searching for a bit pattern 903
Searching for data within a string 907
secant 617
Self-modifying code 371
Separate compilation 549
Sequential logic 220
Set/reset flip-flop (SR flip-flop) 220
SETcc Instructions 573
setOutputAttr routine (standard library) 188
Setting selected bits 883
Page 12

Index
Seven segment decoder 215
Shift arithmetic right operation 68
Shift Instructions (MMX) 1107
Shift registers 221
SHL instruction 66
SHLD and SHRD instructions 850
Short circuit boolean evaluation 746
SHR instruction 67
SI 16
Side effects 542
Sign bit 59
Sign extension 63, 570
Sign flag 17
sign flag 572
Signed 59
Signed and unsigned numbers 59
Signed comparisons 574
Signed decimal input (extended precision) 869
Signed decimal output (extended precision) 856
Signed division 570
Signed integer output 32
Significant digits 78
SIMD 1087
SIMD (Single Instruction, Multiple Data) 259
Simplification of boolean functions 206
Simulating DIV 587
Simulating MUL 586
Sine 610
Single Instruction Multiple Data model 1087
Single Instruction, Single Data execution model 259
Single precision floating point format 80
SISD (single instruction, single data) 259
Sixteen-bit bus data access 139
Size of a processor 133
SNOBOL4 programming language 409
Source index 908
SP 16
Spaghetti code 763
Spatial locality of reference 147
Square root 605
SR (set/reset) flip flop 220
ST0..ST7 (FPU registers) aliasing with MMX registers

1084
Stack fault flag (FPU) 596
Stack frame 786, 1274
Stack manipulation by procedure calls 783
Stack Segment 169
Stack-based parameters for procedures 1305
Stalls 251
Standard entry sequence (to a procedure) 789
Standard exit sequence (from a procedure) 790
Standard input 31
Standard Library 29
Standard Macros 941
Standard output 31
State machine 761
State machines 223
State variable 761

Statement Labels 729
Static data objects in a class 1033
STATIC declaration section 161
Static declaration section 13
Static link 1340
Static Procedures (in a class) 1036
std instruction 74
Stdin.a_gets function 407
stdin.eoln 93
Stdin.FlushInput 36
stdin.FlushInput 93
stdin.get 14, 55, 92
Stdin.Get routine 37
Stdin.getc 34
stdin.getdw 55
stdin.getf function 617
stdin.geth 55
Stdin.gets function 406
stdin.getu16 62
stdin.getu32 62
stdin.getu8 62
stdin.getw 55
Stdin.ReadLn 36
stdio.bell 31
stdio.bs 31
stdio.cr 31
stdio.lf 31
stdio.tab 31
stdlib.hhf 12
stdout.newln 31, 521
stdout.newln function 781
stdout.put 12, 33, 55, 91
stdout.putc 91
stdout.putcsize 91
stdout.putdw 55
stdout.puth 55
stdout.puti16 31
stdout.puti32 31
stdout.puti8 31
stdout.putiXsize 32
stdout.putr32 84
stdout.putr64 84
stdout.putr80 84
stdout.putu16 62
stdout.putu16size 62
stdout.putu32 62
stdout.putu32size 62
stdout.putu8 62
stdout.putu8size 62
stdout.putw 55
STI instruction 333
sti instruction 74
STORAGE declaration section 161
Stored program computer systems 236
Storing double words in byte addressable memory 136
Storing words in byte addressable memory 136
STOS 907, 918, 919
str.a_cat function 415
Page 13

Str.a_cpy function 413
str.a_delete function 416
str.a_insert function 416
str.a_substr function 417
str.cat function 415
str.cpy function 411
str.delete function 416
str.eq function 417
str.ge function 417
str.gt function 417
str.ieq function 418
str.ige function 418
str.igt function 418
str.ile function 418
str.ilt function 418
str.index function 418
str.ine function 418
str.insert function 416
str.le function 417
str.length function 415
str.lt function 417
str.ne function 417
str.strRec data type 404
str.strRec definition 471
str.substr function 417
str.uppercase function 1111
Stralloc function 405
Strfree function 406
String assignment by reference 410
String comparisons 417
String concatenation 385, 415
String constant initializers in the CONST section 386
String constants 385
String constants containing control characters 386
String Functions (compile-time functions) 929
String instructions 907
String Operators within a constant expression 388
String pointers 403
String primitives 907
String representation 471
STRUCT assembler directive 465
Structure, accessing fields of... 466
Structured gotos 718
Structures 465
Structures as structure fields 468
SUB 19
Subroutine instance 1338
Substring operation 417
Subtraction table 822
Sum of minterms representation 201
Superscalar CPUs 227, 256
SWITCH Statement 752
SWITCH statement 725
Symbol tables 276
Symbols reserved by HLA 954
Symbols that begin and end with a single underscore 954
Synthesizing a While loop 764
System bus 15, 132

System Busses 321
System clock 144
System clock frequency 144
System clock period 144
System date function 489
System time 494
System timing 144

T

tab 31
Tables 625
Tag field 477
Taking the address of a statement label 729
Tangent 610
TBYTE data type 381
Tbyte values (BCD) 875
Temporal locality of reference 147
Temporary values in an expression 583
TenToX function 618
Term (boolean) 201
Termination test (for loops) 764
Termination test for loops 772
TERMINATOR section in a macro 960
Test for zero (floating point) 609
TEST Instruction 576
TEST instruction 325, 886
Text Attributes (on the display) 188
Text constants 386, 474
THEN 21
Theorems of boolean algebra 196
THIS 1039
Thrashing 304
Thunk 1325
Time 493
Time Input/Output 495
time.curTime function 494
time.hmsToSecs function 494
time.secstoHMS function 494
time.timerec definition 493
Time-outs on peripheral devices 326
Translation Lookaside Buffer (TLB) 303
Treating registers as signed integer values 168
True (representation) 584
Truth maps 206, 207
truth table 55
Truth tables 197
TRY..ENDTRY statement 28, 707
TTL logic levels 132
Two level caching system 149
Two’s complement 49
Two’s complement representation 59
TwoToX function 618
Two-way set associative caches 299
Type coercion 166, 473
Type conversion 928
TYPE declaration section 391
Page 14

Index
Type operator 167

U

UCR Standard Library for 80x86 Assembly Language
Programmers 3

Underflow exception (FPU) 594
UNICODE 49, 98, 1094
Uninitialized pointers 397
Unions 474
Unique boolean functions 199
Unit activation 1338
UNITs 552
Universal boolean function (NAND) 213
Universal boolean functions (NOR) 214
Unpacking bit strings 889
Unprotected (try..endtry) 710
Unraveling loops 776
Unravelling loops 971
Unrolling loops 971
Uns16 62
Uns32 62
Uns8 62
Unsigned comparisons 574
Unsigned decimal input (extended precision) 865
Unsigned Decimal Output (extended precision) 853
Unsigned division 570
unsigned multiplication 568
Unsigned numbers 59
Unsigned variable declarations 62
UNTIL 21, 26
Untyped Reference Parameters 817
Upper case conversion (MMX) 1112
User-defined exceptions 713

V

VAL (value parameter specification) 534
VAL declaration section 389
VAL declarations 381
Value parameters 800
VAR (pass by reference parameters) 535
VAR declarations 162
Variable length parameters 797
Variable lifetime 163, 1337, 1338
Variable number of macro parameters 946
Variable-length instructions 265
Variant types 477
Vars (_vars_) constant in a procedure 792
Veitch Diagrams 195
Very Long Instruction Word 258
Video and audio data 1087
Video display 98
Virtual Memory 294, 302
Virtual method calls 1036
Virtual method table 1042
Virtual Method Tables 1043

Virtual Methods 1036
VMT 1042, 1044
Von Neuman Architecture 15
Von Neumann, John 131

W

Wait states 146
WAV files 100
WHILE 21
While loop 764
WHILE loops 764
WHILE statement 24
Word access in byte addressable memory 136
Word strings 907
Words 46, 48
Words stored at odd addresses 139
Working sets 304
Wraparound arithmetic 1087
Write control line 134
Write-back cache write policy 301
Write-only ports 317
Write-through cache write policy 301
Writing to memory 135

X

x86 conditional jumps 272
XLAT instruction 626
XOR 584
XOR instruction 58, 885
XOR operation 55, 56

Y

Y2K 73
Y86 Addressing modes 269
Y86 Hypothetical Processor 267
Y86 opcodes 270
Yield 818
YtoX function 618

Z

Z80 microprocessor 225
Z8000 microprocessor 225
Zero divide exception (FPU) 594
Zero extension 570
Zero flag 17
zero flag 572
Zero terminating byte (in HLA strings) 403
Zeroing selected bits 882
Zero-terminated strings 401
Page 15

Page 16

	The Art of Assembly Language
	(Brief Contents)
	The Art of Assembly Language
	(Full Contents)

	Volume One:
	Data Representation
	Foreward Chapter One
	• Foreward to the HLA Version of “The Art of Assembly...”
	• Intended Audience
	• Teaching From This Text
	• Copyright Notice
	• How to Get a Hard Copy of This Text
	• Obtaining Program Source Listings and Other Materials in This Text
	• Where to Get Help
	• Other Materials You Will Need

	Hello, World of Assembly Language Chapter Two
	2.0 Chapter Overview
	2.1 The Anatomy of an HLA Program
	Figure 2.1 Basic HLA Program Layout
	Program 2.1 The Hello World Program

	2.2 Some Basic HLA Data Declarations
	Figure 2.2 Static Variable Declarations
	Figure 2.3 Static Variable Initialization
	Program 2.2 Variable Declaration and Use

	2.3 Boolean Values
	2.4 Character Values
	2.5 An Introduction to the Intel 80x86 CPU Family
	Figure 2.4 Von Neumann Computer System Block Diagram
	EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP
	AX, BX, CX, DX, SI, DI, BP, and SP
	AL, AH, BL, BH, CL, CH, DL, and DH
	Figure 2.5 80x86 (Intel CPU) General Purpose Registers
	Figure 2.6 Layout of the FLAGS Register (Lower 16 bits of EFLAGS)

	2.6 Some Basic Machine Instructions
	mov(source_operand, destination_operand);
	Table 1: Legal 80x86 MOV Instruction Operands

	Source
	Destination
	Reg8
	Reg8
	Reg8
	Mem8
	Mem8
	Reg8
	constant
	Reg8
	constant
	Mem8
	Reg16
	Reg16
	Reg16
	Mem16
	Mem16
	Reg16
	constant
	Reg16
	constant
	Mem16
	Reg32
	Reg32
	Reg32
	Mem32
	Mem32
	Reg32
	constant
	Reg32
	constant
	Mem32
	add(source_operand, destination_operand);
	sub(source_operand, destination_operand);
	Program 2.3 Demonstration of MOV, ADD, and SUB Instructions

	2.7 Some Basic HLA Control Structures
	2.7.1 Boolean Expressions in HLA Statements
	flag_specification
	!flag_specification
	register
	!register
	Boolean_variable
	!Boolean_variable
	mem_reg relop mem_reg_const
	register in LowConst..HiConst
	register not in LowConst..HiConst
	Table 2: Legal Boolean Expressions

	Memory Variable
	or
	Register
	= or ==
	Memory Variable,
	Register,
	or
	Constant
	<> or !=
	<
	<=
	>
	>=
	@c
	Bool_var
	al
	ESI
	EAX < EBX
	EBX > 5
	i32 < -2
	i8 > 128
	al < i8
	eax in 1..100
	ch not in ‘a’..’z’
	2.7.2 The HLA IF..THEN..ELSEIF..ELSE..ENDIF Statement
	Figure 2.7 HLA IF Statement Syntax

	2.7.3 The WHILE..ENDWHILE Statement
	Figure 2.8 HLA While Statement Syntax

	2.7.4 The FOR..ENDFOR Statement
	2.7.5 The REPEAT..UNTIL Statement
	Figure 2.9 HLA Repeat..Until Statement Syntax

	2.7.6 The BREAK and BREAKIF Statements
	Figure 2.10 HLA Break and Breakif Syntax

	2.7.7 The FOREVER..ENDFOR Statement
	Figure 2.11 HLA Forever Loop Syntax

	2.7.8 The TRY..EXCEPTION..ENDTRY Statement
	Figure 2.12 HLA Try..Except..Endtry Statement Syntax

	2.8 Introduction to the HLA Standard Library
	Table 3: HLA Standard Library Modules
	args
	Command line parameter parsing support routines.
	conv
	Various conversions between strings and other values.
	cset
	Character set functions.
	DateTime
	Calendar, date, and time functions.
	excepts
	Exception handling routines.
	fileio
	File input and output routines
	hla
	Special HLA constants and other values.
	math
	Transcendental and other mathematical functions.
	memory
	Memory allocation, deallocation, and support code.
	misctypes
	Miscellaneous data types.
	patterns
	The HLA pattern matching library.
	rand
	Pseudo-random number generators and support code.
	stdin
	User input routines
	stdout
	Provides user output and several other support routines.
	stdlib
	A special include file that links in all HLA standard library modules.
	strings
	HLA’s powerful string library.
	tables
	Table (associative array) support routines.
	win32
	Constants used in Windows calls (HLA Win32 version, only)
	x86
	Constants and other items specific to the 80x86 CPU.
	2.8.1 Predefined Constants in the STDIO Module
	stdout.put(“Hello World”, nl);

	2.8.2 Standard In and Standard Out
	testpgm <input.data
	testpgm >output.txt
	testpgm <in.txt >output.txt

	2.8.3 The stdout.newln Routine
	stdout.newln();

	2.8.4 The stdout.putiX Routines
	stdout.puti8(123);
	stdout.puti16(DX);
	stdout.puti32(i32Var);

	2.8.5 The stdout.putiXSize Routines
	Program 2.4 Columnar Output Demonstration Using stdio.Puti32Size

	2.8.6 The stdout.put Routine
	value
	value:width
	Program 2.5 Demonstration of stdout.put Field Width Specification

	2.8.7 The stdin.getc Routine.
	Program 2.6 Demonstration of the stdin.getc() Routine

	2.8.8 The stdin.getiX Routines
	Program 2.7 stdin.getiX Example Code

	2.8.9 The stdin.readLn and stdin.flushInput Routines
	2.8.10 The stdin.get Macro

	2.9 Putting It All Together
	2.10 Sample Programs
	2.10.1 Powers of Two Table Generation
	Program 2.8 Powers of Two Table Generator Program

	2.10.2 Checkerboard Program
	Program 2.9 Checkerboard Generation Program

	2.10.3 Fibonocci Number Generation
	Program 2.10 Fibonocci Sequence Generator

	Data Representation Chapter Three
	3.1 Chapter Overview
	3.2 Numbering Systems
	3.2.1 A Review of the Decimal System
	3.2.2 The Binary Numbering System
	1*27 + 1*26 + 0*25 + 0*24 + 1*23 + 0*22 + 1*21 + 0*20
	=
	128 + 64 + 8 + 2
	=
	20210

	3.2.3 Binary Formats

	3.3 Data Organization
	3.3.1 Bits
	3.3.2 Nibbles
	0000
	0001
	0010
	0011
	0100
	0101
	0110
	0111
	1000
	1001
	1010
	1011
	1100
	1101
	1110
	1111

	3.3.3 Bytes
	Figure 3.1 Bit Numbering
	Figure 3.2 The Two Nibbles in a Byte

	3.3.4 Words
	Figure 3.3 Bit Numbers in a Word
	Figure 3.4 The Two Bytes in a Word
	Figure 3.5 Nibbles in a Word

	3.3.5 Double Words
	Figure 3.6 Bit Numbers in a Double Word
	Figure 3.7 Nibbles, Bytes, and Words in a Double Word

	3.4 The Hexadecimal Numbering System
	$1234��$DEAD��$BEEF��$AFB��$FEED��$DEAF
	Table 4: Binary/Hex Conversion

	%0000
	$0
	%0001
	$1
	%0010
	$2
	%0011
	$3
	%0100
	$4
	%0101
	$5
	%0110
	$6
	%0111
	$7
	%1000
	$8
	%1001
	$9
	%1010
	$A
	%1011
	$B
	%1100
	$C
	%1101
	$D
	%1110
	$E
	%1111
	$F

	3.5 Arithmetic Operations on Binary and Hexadecimal Numbers
	3.6 A Note About Numbers vs. Representation
	Program 3.1 Decimal to Hexadecimal Conversion Program
	Program 3.2 Hexadecimal to Decimal Conversion Program
	Program 3.3 Variable-less Hexadecimal to Decimal Converter
	Program 3.4 Demonstration of stdin.getd and stdout.putd

	3.7 Logical Operations on Bits
	Table 5: AND Truth Table
	0
	0
	0
	1
	0
	1
	Table 6: OR Truth Table

	0
	0
	1
	1
	1
	1
	Table 7: XOR Truth Table

	0
	0
	1
	1
	1
	0
	Table 8: NOT Truth Table

	1
	0

	3.8 Logical Operations on Binary Numbers and Bit Strings
	and(source, dest);
	or(source, dest);
	xor(source, dest);
	dest = dest operator source
	not(dest);

	dest = NOT(dest)
	Program 3.5 AND, OR, XOR, and NOT Example

	3.9 Signed and Unsigned Numbers
	neg(dest);
	Program 3.6 The Two’s Complement Operation
	Program 3.7 Unsigned I/O

	3.10 Sign Extension, Zero Extension, Contraction, and Saturation
	movsx(source, dest);
	Program 3.8 Sign Extension Instructions

	3.11 Shifts and Rotates
	Figure 3.8 Shift Left Operation
	shl(count, dest);
	Figure 3.9 Operation of the SHL(1, Dest) Instruction
	Figure 3.10 Shift Right Operation

	SHR(count, dest);
	Figure 3.11 SHR(1, Dest) Operation
	Figure 3.12 Arithmetic Shift Right Operation

	SAR(count, dest);
	Figure 3.13 SAR(1, dest) Operation
	Figure 3.14 Rotate Left Operation
	Figure 3.15 Rotate Right Operation

	rol(count, dest);
	ror(count, dest);
	Figure 3.16 ROL(1, Dest) Operation
	Figure 3.17 ROR(1, Dest) Operation

	RCL(count, dest);
	RCR(count, dest);
	Figure 3.18 RCL(1, Dest) Operation
	Figure 3.19 RCR(1, Dest) Operation

	3.12 Bit Fields and Packed Data
	Figure 3.20 Short Packed Date Format (Two Bytes)
	Program 3.9 Packing and Unpacking Date Data

	Figure 3.21 Long Packed Date Format (Four Bytes)
	Figure 3.22 The FLAGs Register as a Packed Data Type

	3.13 Putting It All Together

	More Data Representation Chapter Four
	4.1 Chapter Overview
	4.2 An Introduction to Floating Point Arithmetic
	Figure 4.1 Simple Floating Point Format
	4.2.1 IEEE Floating Point Formats
	1.mmmmmmm mmmmmmmm mmmmmmmm
	Figure 4.2 Single Precision (32-bit) Floating Point Format
	Figure 4.3 64-Bit Double Precision Floating Point Format
	Figure 4.4 80-bit Extended Precision Floating Point Format

	4.2.2 HLA Support for Floating Point Values
	stdout.putr32(pi, 10, 4);
	stdout.put(“XPVar2 = “, XPVar2);
	stdout.put(“XPVar2 = “, XPVar2:10);
	Variable_Name : Width : DecPts
	stdout.put(“Pi = “, pi:5:3);
	3.142

	4.3 Binary Coded Decimal (BCD) Representation
	Figure 4.5 BCD Data Representation in Memory

	4.4 Characters
	4.4.1 The ASCII Character Encoding
	Figure 4.6 ASCII Codes for “E” and “e”
	Table 9: ASCII Groups

	0
	0
	Control Characters
	0
	1
	Digits & Punctuation
	1
	0
	Upper Case & Special
	1
	1
	Lower Case & Special
	Table 10: ASCII Codes for Numeric Digits

	Character
	Decimal
	Hexadecimal
	“0”
	48
	$30
	“1”
	49
	$31
	“2”
	50
	$32
	“3”
	51
	$33
	“4”
	52
	$34
	“5”
	53
	$35
	“6”
	54
	$36
	“7”
	55
	$37
	“8”
	56
	$38
	“9”
	57
	$39
	4.4.2 HLA Support for ASCII Characters
	’’’’
	‘A’ � “A”
	Program 4.1 Character Input Sample
	Program 4.2 Stdin.get Character Input Sample
	Program 4.3 Testing for End of Line Using Stdin.eoln

	4.4.3 The ASCII Character Set
	Table 11: ASCII Character Set

	NULL
	0000_0001
	01
	1
	ctrl A
	0000_0010
	02
	2
	ctrl B
	0000_0011
	03
	3
	ctrl C
	0000_0100
	04
	4
	ctrl D
	0000_0101
	05
	5
	ctrl E
	0000_0110
	06
	6
	ctrl F
	0000_0111
	07
	7
	bell
	0000_1000
	08
	8
	backspace
	0000_1001
	09
	9
	tab
	0000_1010
	0A
	10
	line feed
	0000_1011
	0B
	11
	ctrl K
	0000_1100
	0C
	12
	form feed
	0000_1101
	0D
	13
	return
	0000_1110
	0E
	14
	ctrl N
	0000_1111
	0F
	15
	ctrl O
	0001_0000
	10
	16
	ctrl P
	0001_0001
	11
	17
	ctrl Q
	0001_0010
	12
	18
	ctrl R
	0001_0011
	13
	19
	ctrl S
	0001_0100
	14
	20
	ctrl T
	0001_0101
	15
	21
	ctrl U
	0001_0110
	16
	22
	ctrl V
	0001_0111
	17
	23
	ctrl W
	0001_1000
	18
	24
	ctrl X
	0001_1001
	19
	25
	ctrl Y
	0001_1010
	1A
	26
	ctrl Z
	0001_1011
	1B
	27
	ctrl [
	0001_1100
	1C
	28
	ctrl \
	0001_1101
	1D
	29
	Esc
	0001_1110
	1E
	30
	ctrl ^
	0001_1111
	1F
	31
	ctrl _
	0010_0000
	20
	32
	space
	0010_0001
	21
	33
	!
	0010_0010
	22
	34
	"
	0010_0011
	23
	35
	#
	0010_0100
	24
	36
	$
	0010_0101
	25
	37
	%
	0010_0110
	26
	38
	&
	0010_0111
	27
	39
	'
	0010_1000
	28
	40
	(
	0010_1001
	29
	41
)
	0010_1010
	2A
	42
	*
	0010_1011
	2B
	43
	+
	0010_1100
	2C
	44
	,
	0010_1101
	2D
	45
	-
	0010_1110
	2E
	46
	.
	0010_1111
	2F
	47
	/
	0011_0000
	30
	48
	0
	0011_0001
	31
	49
	1
	0011_0010
	32
	50
	2
	0011_0011
	33
	51
	3
	0011_0100
	34
	52
	4
	0011_0101
	35
	53
	5
	0011_0110
	36
	54
	6
	0011_0111
	37
	55
	7
	0011_1000
	38
	56
	8
	0011_1001
	39
	57
	9
	0011_1010
	3A
	58
	:
	0011_1011
	3B
	59
	;
	0011_1100
	3C
	60
	<
	0011_1101
	3D
	61
	=
	0011_1110
	3E
	62
	>
	0011_1111
	3F
	63
	?
	0100_0000
	40
	64
	@
	0100_0001
	41
	65
	A
	0100_0010
	42
	66
	B
	0100_0011
	43
	67
	C
	0100_0100
	44
	68
	D
	0100_0101
	45
	69
	E
	0100_0110
	46
	70
	F
	0100_0111
	47
	71
	G
	0100_1000
	48
	72
	H
	0100_1001
	49
	73
	I
	0100_1010
	4A
	74
	J
	0100_1011
	4B
	75
	K
	0100_1100
	4C
	76
	L
	0100_1101
	4D
	77
	M
	0100_1110
	4E
	78
	N
	0100_1111
	4F
	79
	O
	0101_0000
	50
	80
	P
	0101_0001
	51
	81
	Q
	0101_0010
	52
	82
	R
	0101_0011
	53
	83
	S
	0101_0100
	54
	84
	T
	0101_0101
	55
	85
	U
	0101_0110
	56
	86
	V
	0101_0111
	57
	87
	W
	0101_1000
	58
	88
	X
	0101_1001
	59
	89
	Y
	0101_1010
	5A
	90
	Z
	0101_1011
	5B
	91
	[
	0101_1100
	5C
	92
	\
	0101_1101
	5D
	93
]
	0101_1110
	5E
	94
	^
	0101_1111
	5F
	95
	_
	0110_0000
	60
	96
	`
	0110_0001
	61
	97
	a
	0110_0010
	62
	98
	b
	0110_0011
	63
	99
	c
	0110_0100
	64
	100
	d
	0110_0101
	65
	101
	e
	0110_0110
	66
	102
	f
	0110_0111
	67
	103
	g
	0110_1000
	68
	104
	h
	0110_1001
	69
	105
	i
	0110_1010
	6A
	106
	j
	0110_1011
	6B
	107
	k
	0110_1100
	6C
	108
	l
	0110_1101
	6D
	109
	m
	0110_1110
	6E
	110
	n
	0110_1111
	6F
	111
	o
	0111_0000
	70
	112
	p
	0111_0001
	71
	113
	q
	0111_0010
	72
	114
	r
	0111_0011
	73
	115
	s
	0111_0100
	74
	116
	t
	0111_0101
	75
	117
	u
	0111_0110
	76
	118
	v
	0111_0111
	77
	119
	w
	0111_1000
	78
	120
	x
	0111_1001
	79
	121
	y
	0111_1010
	7A
	122
	z
	0111_1011
	7B
	123
	{
	0111_1100
	7C
	124
	|
	0111_1101
	7D
	125
	}
	0111_1110
	7E
	126
	~
	0111_1111
	7F
	127
	�

	4.5 The UNICODE Character Set
	4.6 Other Data Representations
	4.6.1 Representing Colors on a Video Display
	Figure 4.7 Extending the Number of Colors Using a Palette

	4.6.2 Representing Audio Information
	Figure 4.8 Operation of a Speaker
	Figure 4.9 An Audible Sound Wave
	Figure 4.10 A Typical Audio Waveform

	4.6.3 Representing Musical Information
	4.6.4 Representing Video Information
	4.6.5 Where to Get More Information About Data Types

	4.7 Putting It All Together
	Program 4.4 Interpreting a Single Value as Several Different Data Types

	Chapter Five
	Questions, Projects, and Lab Exercises
	5.1 Questions
	5.2 Programming Projects for Chapter Two
	5.3 Programming Projects for Chapter Three
	5.4 Programming Projects for Chapter Four
	5.5 Laboratory Exercises for Chapter Two
	5.5.1 A Short Note on Laboratory Exercises and Lab Reports
	5.5.2 Installing the HLA Distribution Package
	http://webster.cs.ucr.edu
	5.5.3 What’s Included in the HLA Distribution Package
	5.5.4 Using the HLA Compiler
	5.5.5 Compiling Your First Program
	c:> copy c:\AoA_Software\Volume1\CH02\HelloWorld.hla c:\lab1
	c:> cd \lab1
	c:\lab1> hla HelloWorld
	c:\lab1> HelloWorld
	c:> hla -v HelloWorld
	c:> hla -test -v HelloWorld >capture.txt
	5.5.6 Compiling Other Programs Appearing in this Chapter
	5.5.7 Creating and Modifying HLA Programs
	c:> edit HelloWorld.hla
	stdout.put(“Hello, World of Assembly Language”, nl);
	stdout.put(“Hello Randall Hyde”, nl);
	c:> HelloWorld >out.txt
	5.5.8 Writing a New Program
	c:> edit newfile.hla
	Program 5.1 OnePlusOne Program

	5.5.9 Correcting Errors in an HLA Program
	Program 5.2 Sample Program With a Syntax Error

	c:> hla -test HasAnError >err1.txt
	5.5.10 Write Your Own Sample Program

	5.6 Laboratory Exercises for Chapter Three and Chapter Four
	5.6.1 Data Conversion Exercises
	5.6.2 Logical Operations Exercises
	5.6.3 Sign and Zero Extension Exercises
	5.6.4 Packed Data Exercises
	5.6.5 Running this Chapter’s Sample Programs
	5.6.6 Write Your Own Sample Program

	Volume Two:
	Machine Architecture
	System Organization Chapter One
	1.1 Chapter Overview
	1.2 The Basic System Components
	Figure 1.1 Typical Von Neumann Machine
	1.2.1 The System Bus
	1.2.1.1 The Data Bus
	Table 12: 80x86 Processor Data Bus Sizes

	���8088
	8
	���80188
	8
	���8086
	16
	���80186
	16
	���80286
	16
	���80386sx
	16
	���80386dx
	32
	���80486
	32
	���80586 class / Pentium family
	64
	1.2.1.2 The Address Bus
	Table 13: 80x86 Family Address Bus Sizes

	8088
	20
	1,048,576
	One Megabyte
	8086
	20
	1,048,576
	One Megabyte
	80188
	20
	1,048,576
	One Megabyte
	80186
	20
	1,048,576
	One Megabyte
	80286
	24
	16,777,216
	Sixteen Megabytes
	80386sx
	24
	16,777,216
	Sixteen Megabytes
	80386dx
	32
	4,294,976,296
	Four Gigabytes
	80486
	32
	4,294,976,296
	Four Gigabytes
	80586 / Pentium
	32
	4,294,976,296
	Four Gigabytes
	Pentium Pro
	36
	68,719,476,736
	64 Gigabytes
	Pentium II
	36
	68,719,476,736
	64 Gigabytes
	Pentium III
	36
	68,719,476,736
	64 Gigabytes
	1.2.1.3 The Control Bus

	1.2.2 The Memory Subsystem
	Figure 1.2 Memory Write Operation
	Figure 1.3 Memory Read Operation
	Figure 1.4 Byte, Word, and DWord Storage in Memory
	Figure 1.5 Eight-Bit CPU <-> Memory Interface
	Figure 1.6 Byte Addressing in Word Memory
	Figure 1.7 Sixteen-Bit Processor (8086, 80186, 80286, 80386sx) Memory Organization
	Figure 1.8 32-Bit Processor (80386, 80486, Pentium Overdrive) Memory Organization
	Figure 1.9 Accessing a Word at (Address mod 4) = 3.

	1.2.3 The I/O Subsystem

	1.3 HLA Support for Data Alignment
	align(integer_constant);

	1.4 System Timing
	1.4.1 The System Clock
	Figure 1.10 The System Clock

	1.4.2 Memory Access and the System Clock
	Figure 1.11 The 80x86 Memory Read Cycle
	Figure 1.12 The 80x86 Memory Write Cycle

	1.4.3 Wait States
	Figure 1.13 Decoding and Buffer Delays
	Figure 1.14 Inserting a Wait State into a Memory Read Operation

	1.4.4 Cache Memory
	Figure 1.15 A Two Level Caching System

	1.5 Putting It All Together

	Memory Access and Organization Chapter Two
	2.1 Chapter Overview
	2.2 The 80x86 Addressing Modes
	2.2.1 80x86 Register Addressing Modes
	2.2.2 80x86 32-bit Memory Addressing Modes
	2.2.2.1 The Displacement Only Addressing Mode
	Figure 2.1 Displacement Only (Direct) Addressing Mode
	Figure 2.2 Accessing a Word or DWord Using the Displacement Only Addressing Mode

	2.2.2.2 The Register Indirect Addressing Modes
	2.2.2.3 Indexed Addressing Modes
	Figure 2.3 Indexed Addressing Mode

	2.2.2.4 Variations on the Indexed Addressing Mode
	Figure 2.4 Indexed Addressing Mode Using a Register Plus a Constant
	Figure 2.5 Indexed Addressing Mode Using a Register Minus a Constant

	mov(VarName[ebx + constant], al);
	mov(constant1[ebx + constant2], al);
	mov([ebx + (constant1 + constant2)], al);
	mov([ebx + constant_sum], al);
	2.2.2.5 Scaled Indexed Addressing Modes
	Figure 2.6 The Scaled Indexed Addressing Mode

	mov(VarName[ebx + esi*4 + 4], al);
	2.2.2.6 Addressing Mode Wrap-up

	2.3 Run-Time Memory Organization
	Figure 2.7 Win32 Typical Run-Time Memory Organization
	2.3.1 The Code Section
	byte comma_separated_list_of_byte_constants ;

	2.3.2 The Read-Only Data Section
	2.3.3 The Storage Section
	2.3.4 The Static Sections
	2.3.5 The NOSTORAGE Attribute
	2.3.6 The Var Section
	2.3.7 Organization of Declaration Sections Within Your Programs

	2.4 Address Expressions
	VarName[Reg32]
	VarName[Reg32 + offset]
	VarName[RegNotESP32*Scale]
	VarName[Reg32 + RegNotESP32*Scale]
	VarName[RegNotESP32*Scale + offset]
	and
	VarName[Reg32 + RegNotESP32*Scale + offset]
	VarName[offset]
	Figure 2.8 Using an Address Expression to Access Data Beyond a Variable

	[Reg32 + offset]
	[Reg32 + RegNotESP32*Scale + offset]
	[Reg32]
	[Reg32 + RegNotESP32*Scale]
	mov(X[2*4+1], al);
	Program 3.1 Demonstration of Address Expressions

	2.5 Type Coercion
	mov((type word byte_values), ax);
	not([ebx]);
	mov(eax, (type dword byteVar));

	2.6 Register Type Coercion
	2.7 The Stack Segment and the Push and Pop Instructions
	push(reg16);
	push(reg32);
	push(memory16);
	push(memory32);
	pushw(constant);
	pushd(constant);
	2.7.1 The Basic PUSH Instruction
	Figure 2.9 Stack Segment Before “PUSH(EAX);” Operation
	Figure 2.10 Stack Segment After “PUSH(EAX);” Operation

	2.7.2 The Basic POP Instruction
	Figure 2.11 Memory Before a “POP(EAX);” Operation
	Figure 2.12 Memory After the “POP(EAX);” Instruction

	2.7.3 Preserving Registers With the PUSH and POP Instructions
	2.7.4 The Stack is a LIFO Data Structure
	Figure 2.13 Stack After Pushing EAX
	Figure 2.14 Stack After Pushing EBX
	Figure 2.15 Stack After Popping EAX
	Figure 2.16 Stack After Popping EBX

	2.7.5 Other PUSH and POP Instructions
	ax
	cx
	dx
	bx
	sp
	bp
	si
	di
	eax
	ecx
	edx
	ebx
	esp
	ebp
	esi
	edi

	2.7.6 Removing Data From the Stack Without Popping It
	Figure 2.17 Removing Data from the Stack, Before ADD(8, ESP)
	Figure 2.18 Removing Data from the Stack, After ADD(8, ESP);

	2.7.7 Accessing Data You’ve Pushed on the Stack Without Popping It
	Figure 2.19 Stack After Pushing EAX and EBX

	2.8 Dynamic Memory Allocation and the Heap Segment
	malloc(Number_of_Bytes_Requested);
	malloc(4);
	@size(variable_or_type_name)
	Figure 2.20 Call to Malloc Returns a Pointer in the EAX Register
	Figure 2.21 Allocating a Sequence of Eight Character Objects Using Malloc

	2.9 The INC and DEC Instructions
	inc(mem/reg);
	dec(mem/reg);

	2.10 Obtaining the Address of a Memory Object
	lea(reg32, Memory_operand);

	2.11 Bonus Section: The HLA Standard Library CONSOLE Module
	2.11.1 Clearing the Screen
	Program 3.2 The console.cls() Routine

	2.11.2 Positioning the Cursor
	console.gotoxy(RowPosition, ColumnPosition);
	Program 3.3 The console.gotoxy(row,column) Routine

	2.11.3 Locating the Cursor
	Program 3.4 The console.GetX() and console.GetY() Routines

	2.11.4 Text Attributes
	Program 3.5 The console.setOutputAttr Routine

	2.11.5 Filling a Rectangular Section of the Screen
	console.fillRect(ULrow, ULcol, LRrow, LRcol, character, attr);
	Program 3.6 The console.fillRect Procedure

	2.11.6 Console Direct String Output
	Program 3.7 Demonstration of console.puts and console.putsx

	2.11.7 Other Console Module Routines

	2.12 Putting It All Together

	Introduction to Digital Design Chapter Three
	3.1 Chapter Overview
	3.2 Boolean Algebra
	A °(B % C) = (A ° B) % (A ° C)

	3.3 Boolean Functions and Truth Tables
	Table 14: AND Truth Table
	0
	0
	0
	1
	0
	1
	Table 15: OR Truth Table

	0
	0
	1
	1
	1
	1
	Table 16: Truth Table for a Function with Three Variables
	Table 17: Truth Table for a Function with Four Variables
	Table 18: Another Format for Truth Tables
	Table 19: The 16 Possible Boolean Functions of Two Variables

	3.4 Algebraic Manipulation of Boolean Expressions
	3.5 Canonical Forms
	Table 20: Minterms for Three Input Variables
	Table 21: Creating a Truth Table from Minterms, Step One
	Table 22: Creating a Truth Table from Minterms, Step Two
	Table 23: Creating a Truth Table with Four Variables from Minterms
	Table 24: F7 (OR) Truth Table for Two Variables
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	1
	1

	3.6 Simplification of Boolean Functions
	Figure 3.1 Two, Three, and Four Dimensional Truth Tables
	Figure 3.2 A Simple Truth Map
	Figure 3.3 Surrounding Rectangular Groups of Ones in a Truth Map
	Figure 3.4 Truth Map for F=C’B’A’ + C’BA’ + CB’A’ + CBA’
	Figure 3.5 First Attempt at Surrounding Rectangles Formed by Ones
	Figure 3.6 Correct Rectangle for the Function
	Figure 3.7 Truth Map for F = C'B'A' + C'BA' + CB'A' + C'AB + CBA' + CBA
	Figure 3.8 Obvious Choices for Rectangles
	Figure 3.9 Correct Set of Rectangles for F = C'B'A' + C'BA' + CB'A' + C'AB + CBA' + CBA
	Figure 3.10 Partial Pattern List for 4x4 Truth Map
	Figure 3.11 Truth Map for F = D’C’B’A’ + D’C’B’A + D’C’BA + D’C’BA’ + D’CB’A + D’CBA + DCB’A + DC...
	Figure 3.12 Two Combinations of Surrounded Values Yielding Three Terms

	3.7 What Does This Have To Do With Computers, Anyway?
	3.7.1 Correspondence Between Electronic Circuits and Boolean Functions
	Figure 3.13 AND, OR, and Inverter (NOT) Gates
	Figure 3.14 The NAND Gate
	Figure 3.15 Inverter Built from a NAND Gate
	Figure 3.16 Constructing an AND Gate From Two NAND Gates
	Figure 3.17 Constructing an OR Gate from NAND Gates

	3.7.2 Combinatorial Circuits
	Figure 3.18 Building an N-Bit Adder Using Half and Full Adders
	Figure 3.19 Seven Segment Display
	Figure 3.20 Seven Segment Values for “0” Through “9”
	Figure 3.21 Adding Four 256 MByte Memory Modules to a System
	Figure 3.22 Instruction (opcode) Format for a Very Simple CPU
	Figure 3.23 Encoding the MOV(EAX, EBX); Instruction
	Figure 3.24 Decoding Simple Machine Instructions

	3.7.3 Sequential and Clocked Logic
	Figure 3.25 Set/Reset Flip Flop Constructed from NAND Gates
	Figure 3.26 Implementing a D flip-flop with NAND Gates
	Figure 3.27 An Eight-bit Register Implemented with Eight D Flip-flops
	Figure 3.28 A Four-bit Shift Register Built from D Flip-flops
	Figure 3.29 Four-bit Counter Built from D Flip-flops
	Figure 3.30 A Simple 16-State Sequencer

	3.8 Okay, What Does It Have To Do With Programming, Then?
	3.9 Putting It All Together

	CPU Architecture Chapter Four
	4.1 Chapter Overview
	4.2 The History of the 80x86 CPU Family
	Table 25: 80x86 CPU Family
	8086
	1978
	29K
	0.8
	8 MHz
	1 MB
	80286
	1982
	134K
	2.7
	12.5 MHz
	16 MB
	80386
	1985
	275K
	6
	20 MHz
	4 GB
	80486
	1989
	1.2M
	20
	25 MHz
	8K Level 1
	4 GB
	Pentium
	1993
	3.1M
	100
	60MHz
	16K Level 1
	4 GB
	Pentium Pro
	1995
	5.5M
	440
	200 MHz
	16K Level 1, 256K/512K Level 2
	64 GB
	Pentium II
	1997
	7M
	466
	266 MHz
	32K Level 1, 256/512K Level 2
	64 GB
	Pentium III
	1999
	8.2M
	1,000
	500 MHz
	32K Level 1, 512K Level 2
	64 GB

	4.3 A History of Software Development for the x86
	4.4 Basic CPU Design
	Figure 4.1 Patch Panel Programming
	Figure 4.2 Encoding Instructions
	Figure 4.3 Encoding Instructions with Source and Destination Fields

	4.5 Decoding and Executing Instructions: Random Logic Versus Microcode
	4.6 RISC vs. CISC vs. VLIW
	4.7 Instruction Execution, Step-By-Step
	4.8 Parallelism – the Key to Faster Processors
	4.8.1 The Prefetch Queue – Using Unused Bus Cycles
	Figure 4.4 CPU Design with a Prefetch Queue

	4.8.2 Pipelining – Overlapping the Execution of Multiple Instructions
	4.8.2.1 A Typical Pipeline
	Figure 4.5 A Pipelined Implementation of Instruction Execution
	Figure 4.6 Instruction Execution in a Pipeline

	4.8.2.2 Stalls in a Pipeline
	Figure 4.7 A Pipeline Stall

	4.8.3 Instruction Caches – Providing Multiple Paths to Memory
	Figure 4.8 A Typical Harvard Machine
	Figure 4.9 Using Separate Code and Data Caches

	4.8.4 Hazards
	Figure 4.10 A Data Hazard
	Figure 4.11 How the 80x86 Handles a Data Hazard

	4.8.5 Superscalar Operation– Executing Instructions in Parallel
	Figure 4.12 A CPU that Supports Superscalar Operation

	4.8.6 Out of Order Execution
	4.8.7 Register Renaming
	4.8.8 Very Long Instruction Word Architecture (VLIW)
	4.8.9 Parallel Processing
	4.8.10 Multiprocessing

	4.9 Putting It All Together

	Instruction Set Architecture Chapter Five
	5.1 Chapter Overview
	5.2 The Importance of the Design of the Instruction Set
	5.3 Basic Instruction Design Goals
	Figure 5.1 Separating an Opcode into Separate Fields to Ease Decoding
	Figure 5.2 Encoding Instructions Using a Variable-Length Opcode

	5.4 The Y86 Hypothetical Processor
	5.4.1 Addressing Modes on the Y86
	5.4.2 Encoding Y86 Instructions
	Figure 5.3 Basic Y86 Instruction Encoding
	Figure 5.4 Single Operand Instruction Encodings
	Figure 5.5 Zero Operand Instruction Encodings
	Figure 5.6 Jump Instruction Encodings

	5.4.3 Hand Encoding Instructions
	Figure 5.7 Encoding ADD(cx, dx);
	Figure 5.8 Encoding ADD(5, ax);
	Figure 5.9 Encoding ADD([$2ff+bx], cx);
	Figure 5.10 Encoding ADD([1000], ax);
	Figure 5.11 Encoding the ADD([bx], bx); Instruction
	Figure 5.12 Encoding the NOT(ax); Instruction

	5.4.4 Using an Assembler to Encode Instructions
	5.4.5 Extending the Y86 Instruction Set
	Figure 5.13 Using a Prefix Byte to Extend the Instruction Set

	5.5 Encoding 80x86 Instructions
	Figure 5.14 80x86 Instruction Encoding
	Figure 5.15 80x86 ADD Opcode
	5.5.1 Encoding Instruction Operands
	Figure 5.16 MOD-REG-R/M Byte
	Table 26 REG Field Encoding

	%000
	al
	ax
	eax
	%001
	cl
	cx
	ecx
	%010
	dl
	dx
	edx
	%011
	bl
	bx
	ebx
	%100
	ah
	sp
	esp
	%101
	ch
	bp
	ebp
	%110
	dh
	si
	esi
	%111
	bh
	di
	edi
	Table 27 Meaning of the MOD Field

	%00
	Register indirect addressing mode or SIB with no displacement (when R/M=%100) or Displacement onl...
	%01
	One-byte signed displacement follows addressing mode byte(s).
	%10
	Four-byte signed displacement follows addressing mode byte(s).
	%11
	Register addressing mode.
	Table 28 MOD and R/M Addressing Modes

	%00
	%000
	[eax]
	%01
	%000
	[eax+disp8]
	%10
	%000
	[eax+disp32]
	%11
	%000
	register (al/ax/eax)
	%00
	%001
	[ecx]
	%01
	%001
	[ecx+disp8]
	%10
	%001
	[ecx+disp32]
	%11
	%001
	register (cl/cx/ecx)
	%00
	%010
	[edx]
	%01
	%010
	[edx+disp8]
	%10
	%010
	[edx+disp32]
	%11
	%010
	register (dl/dx/edx)
	%00
	%011
	[ebx]
	%01
	%011
	[ebx+disp8]
	%10
	%011
	[ebx+disp32]
	%11
	%011
	register (bl/bx/ebx)
	%00
	%100
	SIB Mode
	%01
	%100
	SIB + disp8 Mode
	%10
	%100
	SIB + disp32 Mode
	%11
	%100
	register (ah/sp/esp)
	%00
	%101
	Displacement Only Mode
	(32-bit displacement)
	%01
	%101
	[ebp+disp8]
	%10
	%101
	[ebp+disp32]
	%11
	%101
	register (ch/bp/ebp)
	%00
	%110
	[esi]
	%01
	%110
	[esi+disp8]
	%10
	%110
	[esi+disp32]
	%11
	%110
	register (dh/si/esi)
	%00
	%111
	[edi]
	%01
	%111
	[edi+disp8]
	%10
	%111
	[edi+disp32]
	%11
	%111
	register (bh/di/edi)
	Figure 5.17 SIB (Scaled Index Byte) Layout
	Table 29 SIB Scale Field Values

	%00
	Index*1
	%01
	Index*2
	%10
	Index*4
	%11
	Index*8
	Table 30 Index Field Values

	%000
	EAX
	%001
	ECX
	%010
	EDX
	%011
	EBX
	%100
	Illegal
	%101
	EBP
	%110
	ESI
	%111
	EDI
	Table 31 Base Field Values

	%000
	EAX
	%001
	ECX
	%010
	EDX
	%011
	EBX
	%100
	ESP
	%101
	Displacement-only if MOD = %00, EBP if MOD = %01 or %10
	%110
	ESI
	%111
	EDI
	5.5.2 Encoding the ADD Instruction: Some Examples
	Figure 5.18 Encoding the ADD(al, cl); Instruction
	Figure 5.19 Encoding the ADD(eax, ecx); instruction
	Figure 5.20 Encoding the ADD(disp, edx); Instruction
	Figure 5.21 Encoding the ADD([ebx], edi); Instruction
	Figure 5.22 Encoding the ADD([esi+disp8], eax); Instruction
	Figure 5.23 Encoding the ADD ([ebp+disp32], ebx); Instruction
	Figure 5.24 Encoding the ADD([disp32 +eax*1], ebp); Instruction
	Figure 5.25 Encoding the ADD([ebx + edi * 4], ecx); Instruction

	5.5.3 Encoding Immediate Operands
	Figure 5.26 Encoding an ADD Immediate Instruction

	5.5.4 Encoding Eight, Sixteen, and Thirty-Two Bit Operands
	5.5.5 Alternate Encodings for Instructions

	5.6 Putting It All Together

	Memory Architecture Chapter Six
	6.1 Chapter Overview
	6.2 The Memory Hierarchy
	Figure 6.1 The Memory Hierarchy

	6.3 How the Memory Hierarchy Operates
	6.4 Relative Performance of Memory Subsystems
	6.5 Cache Architecture
	Figure 6.2 Possible Organization of an 8 Kilobyte Cache
	Figure 6.3 Selecting a Cache Line in a Direct-mapped Cache
	Figure 6.4 A Two-Way Set Associative Cache

	6.6 Virtual Memory, Protection, and Paging
	Figure 6.5 Translating a Virtual Address to a Physical Address

	6.7 Thrashing
	6.8 NUMA and Peripheral Devices
	6.9 Segmentation
	6.10 Segments and HLA
	6.11 User Defined Segments in HLA
	6.12 Controlling the Placement and Attributes of Segments in Memory
	6.13 Putting it All Together

	The I/O Subsystem Chapter Seven
	7.1 Chapter Overview
	7.2 Connecting a CPU to the Outside World
	Figure 7.1 A Typical Output Port
	Figure 7.2 An Output Port that Supports Read/Write Access

	7.3 Read-Only, Write-Only, Read/Write, and Dual I/O Ports
	Figure 7.3 An Input and an Output Device That Share the Same Address (a Dual I/O Port)
	Figure 7.4 Outputting Data to a Port by Simply Accessing That Port
	Figure 7.5 Outputting Data Using the Read/Write Control as the Data to Output

	7.4 I/O (Input/Output) Mechanisms
	7.4.1 Memory Mapped Input/Output
	7.4.2 I/O Mapped Input/Output
	7.4.3 Direct Memory Access

	7.5 I/O Speed Hierarchy
	7.6 System Busses and Data Transfer Rates
	Figure 7.6 Connection of the PCI and ISA Busses in a Typical PC

	7.7 The AGP Bus
	Figure 7.7 AGP Bus Interface

	7.8 Buffering
	7.9 Handshaking
	Figure 7.8 The Parallel Port Status Port
	Figure 7.9 The Parallel Port Command Register

	7.10 Time-outs on an I/O Port
	7.11 Interrupts and Polled I/O
	7.12 Using a Circular Queue to Buffer Input Data from an ISR
	Figure 7.10 Interrupt Service Routine as a Data Produce/Application as a Data Consumer

	7.13 Using a Circular Queue to Buffer Output Data for an ISR
	7.14 I/O and the Cache
	7.15 Windows and Protected Mode Operation
	7.16 Device Drivers
	7.17 Putting It All Together

	Questions, Projects, and Labs Chapter Eight
	8.1 Questions
	Table 32: Memory Cycles for Word Accesses
	8088
	80286
	80386
	Table 33: Memory Cycles for Doubleword Accesses

	8088
	80286
	80386

	8.2 Programming Projects
	8.3 Chapters One and Two Laboratory Exercises
	8.3.1 Memory Organization Exercises
	Program 8.1 Demonstration of Memory Sections

	8.3.2 Data Alignment Exercises
	Program 8.2 Data Alignment Exercise

	8.3.3 Readonly Segment Exercises
	Program 8.3 READONLY Variable Demonstration

	8.3.4 Type Coercion Exercises
	Program 8.4 Type Coercion Exercise

	8.3.5 Dynamic Memory Allocation Exercises
	Program 8.5 MALLOC and FREE Exercise

	8.4 Chapter Three Laboratory Exercises
	8.4.1 Truth Tables and Logic Equations Exercises
	8.4.2 Canonical Logic Equations Exercises
	8.4.3 Optimization Exercises
	8.4.4 Logic Evaluation Exercises

	8.5 Laboratory Exercises for Chapters Four, Five, Six, and Seven
	8.5.1 The SIMY86 Program – Some Simple Y86 Programs
	8.5.2 Simple I/O-Mapped Input/Output Operations
	8.5.3 Memory Mapped I/O
	8.5.4 DMA Exercises
	8.5.5 Interrupt Driven I/O Exercises
	8.5.6 Machine Language Programming & Instruction Encoding Exercises
	Figure 8.1 A Simple Program to Convert to Machine Code

	8.5.7 Self Modifying Code Exercises
	8.5.8 Virtual Memory Exercise

	Volume Three:
	Basic Assembly Language
	Constants, Variables, and Data Types Chapter One
	1.1 Chapter Overview
	1.2 Some Additional Instructions: INTMUL, BOUND, INTO
	lower_bound <= register <= upper_bound
	Mem16[0] <= register <= Mem16[2]
	Mem32[0] <= register <= Mem32[4]
	Program 1.1 Demonstration of the BOUND Instruction
	Program 1.2 Demonstration of the INTO Instruction

	1.3 The QWORD and TBYTE Data Types
	1.4 HLA Constant and Value Declarations
	Program 1.3 Data Alignment Program Rewritten Using CONST Definitions
	1.4.1 Constant Types
	1.4.2 String and Character Literal Constants
	#integer_constant

	1.4.3 String and Text Constants in the CONST Section
	1.4.4 Constant Expressions
	1.4.5 Multiple CONST Sections and Their Order in an HLA Program
	1.4.6 The HLA VAL Section
	1.4.7 Modifying VAL Objects at Arbitrary Points in Your Programs
	? ValIdentifier := constant_expression ;
	Program 1.4 Demonstration of VAL Redefinition Using “?” Operator

	1.5 The HLA TYPE Section
	1.6 ENUM and HLA Enumerated Data Types
	1.7 Pointer Data Types
	1.7.1 Using Pointers in Assembly Language
	1.7.2 Declaring Pointers in HLA
	1.7.3 Pointer Constants and Pointer Constant Expressions
	Program 1.5 Pointer Constant Expressions in an HLA Program

	1.7.4 Pointer Variables and Dynamic Memory Allocation
	realloc(ExistingPointer, NewSize);

	1.7.5 Common Pointer Problems
	Program 1.6 Uninitialized Pointer Demonstration
	Program 1.7 Type-Unsafe Pointer Access Example

	1.8 Putting It All Together

	Introduction to Character Strings Chapter Two
	2.1 Chapter Overview
	2.2 Composite Data Types
	2.3 Character Strings
	2.4 HLA Strings
	Program 2.1 Accessing the Length and Maximum Length Fields of a String
	Program 2.2 Correct Way to Access Length and MaxStrLen Fields of a String
	Program 2.3 Reading a String from the User
	Program 2.4 Corrected Program that Reads a String from the User
	Program 2.5 Reading a String from the User with stdin.a_gets

	2.5 Accessing the Characters Within a String
	Figure 2.1 Incorrectly Indexing Off a String Variable
	Figure 2.2 Correctly Indexing Off the Value of a String Variable
	raise(integer_constant);
	raise(reg32);

	2.6 The HLA String Module and Other String-Related Routines
	Program 2.6 Problem with String Assignment by Copying Pointers
	str.cpy(source_string, destination_string);
	Program 2.7 Copying Strings using str.cpy

	str.a_cpy(source_string);
	Program 2.8 Copying Strings using str.a_cpy

	str.length(Reg32);
	str.length(string_variable);
	str.cat(srcStr, destStr);
	str.a_cat(src1Str, src2Str);
	Program 2.9 Demonstration of str.cat and str.a_cat Routines

	str.delete(str, StartIndex, Length);
	str.a_delete(str, StartIndex, Length);
	str.substr(src, dest, StartIndex, Length);
	str.a_substr(src, StartIndex, Length);
	str.eq(src1, src2);
	str.ne(src1, src2);
	str.lt(src1, src2);
	str.le(src1, src2);
	str.gt(src1, src2);
	str.ge(src1, src2);
	str.ieq(src1, src2);
	str.ine(src1, src2);
	str.ilt(src1, src2);
	str.ile(src1, src2);
	str.igt(src1, src2);
	str.ige(src1, src2);
	str.index(StrToSearch, SubstrToSearchFor);

	2.7 In-Memory Conversions
	2.8 Putting It All Together

	Characters and Character Sets Chapter Three
	3.1 Chapter Overview
	3.2 The HLA Standard Library CHARS.HHF Module
	3.3 Character Sets
	3.4 Character Set Implementation in HLA
	Figure 3.1 Bit Layout of a Character Set Object
	bt(BitNumber, BitsToTest);
	bt(reg16, reg16);
	bt(reg32, reg32);
	bt(constant, reg16);
	bt(constant, reg32);
	bt(reg16, mem16);
	bt(reg32, mem32);
	bt(constant, mem16);
	bt(constant, mem32);

	3.5 HLA Character Set Constants and Character Set Expressions
	{ Comma_separated_list_of_characters_and_character_ranges }
	{ ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’ }
	{ ‘0’..’9’ }
	{ ‘0’..’9’, ‘a’..’z’, ‘A’..’Z’ }

	3.6 The IN Operator in HLA HLL Boolean Expressions
	reg8 in CSetConstant
	reg8 not in CSetConstant
	reg8 in CSetVariable
	reg8 not in CSetVariable

	3.7 Character Set Support in the HLA Standard Library
	cs.empty(CSvar);
	cs.cpy(srcCsetValue, destCsetVar);
	cs.unionChar(CharVar, CSvar);
	cs.charToCset(CharValue, CSvar);
	cs.removeChar(CharValue, CSVar);
	cs.rangeChar(LowerBoundChar, UpperBoundChar, CSVar);
	cs.strToCset(StringValue, CSVar);
	cs.unionStr(StringValue, CSVar);
	cs.setunion(srcCset, destCset);
	cs.intersection(srcCset, destCset);
	cs.difference(srcCset, destCset);
	cs.IsEmpty(CSetValue);
	cs.member(CharValue, CsetValue);
	cs.subset(CsetValue1, CsetValue2);
	cs.psubset(CsetValue1, CsetValue2);
	cs.superset(CsetValue1, CsetValue2);
	cs.psuperset(CsetValue1, CsetValue2);
	cs.eq(CsetValue1, CsetValue2);
	cs.ne(CsetValue1, CsetValue2);
	cs.extract(CsetVar);

	3.8 Using Character Sets in Your HLA Programs
	3.9 Low-level Implementation of Set Operations
	3.9.1 Character Set Functions That Build Sets
	Program 3.1 cs.empty Implementation
	Program 3.2 cs.cpy Implementation
	Program 3.3 cs.charToCset Implementation
	Program 3.4 cs.unionChar Implementation
	Program 3.5 cs.removeChar Implementation
	Program 3.6 cs.rangeChar Implementation
	Program 3.7 cs.strToCset Implementation
	Program 3.8 cs.unionStr Implementation

	3.9.2 Traditional Set Operations
	Program 3.9 cs.setunion Implementation
	Program 3.10 cs.intersection Implementation
	Program 3.11 cs.difference Implementation

	3.9.3 Testing Character Sets
	Program 3.12 Implementation of cs.IsEmpty
	Program 3.13 Implementation of cs.ne and cs.eq

	3.10 Putting It All Together

	Arrays Chapter Four
	4.1 Chapter Overview
	4.2 Arrays
	Figure 4.1 Array Layout in Memory
	Element_Address = Base_Address + ((Index - Initial_Index) * Element_Size)

	4.3 Declaring Arrays in Your HLA Programs
	4.4 HLA Array Constants
	[1, 2, 3, 4]
	[2.0, 3.14159, 1.0, 0.5]
	[‘a’, ‘b’, ‘c’, ‘d’]
	[“Hello”, “world”, “of”, “assembly”]
	BigArray: uns32[1000] := 1000 dup [1];
	SixteenInts: int32[16] := 4 dup [1,2,3,4];

	4.5 Accessing Elements of a Single Dimension Array
	Element_Address = Squares + index*4
	4.5.1 Sorting an Array of Values

	4.6 Multidimensional Arrays
	Figure 4.2 Mapping a 4x4 Array to Sequential Memory Locations
	4.6.1 Row Major Ordering
	Figure 4.3 Row Major Array Element Ordering
	Figure 4.4 Another View of Row-Major Ordering for a 4x4 Array
	Element_Address = Base_Address + (colindex * row_size + rowindex) * Element_Size
	Address = Base + ((depthindex*col_size+colindex) * row_size + rowindex) * Element_Size
	Figure 4.5 Viewing a 4x4 Array as an Array of Arrays

	4.6.2 Column Major Ordering
	Figure 4.6 Column Major Array Element Ordering

	4.7 Allocating Storage for Multidimensional Arrays
	GameGrid: char[4, 4];
	NameItems: string[2, 3, 3];
	StateValue: byte[256, 64] := 256*64 dup [$ff];
	[[0, 1, 2], [3, 4], [10, 11, 12, 13]]
	[0, 1, 2, 3, 4, 10, 11, 12, 13]

	4.8 Accessing Multidimensional Array Elements in Assembly Language
	4.9 Large Arrays and MASM
	4.10 Dynamic Arrays in Assembly Language
	4.11 HLA Standard Library Array Support
	variableName: array.dArray(elementType, Arity);
	ScreenBuffer: array.dArray(char, 2);
	array.daAlloc(arrayName, comma_separated_list_of_array_bounds);
	array.daAlloc(ScreenBuffer, 20, 40);
	array.index(reg32, arrayName, comma_separated_list_of_index_values);
	array.cpy(sourceArrayName, destArrayName);

	4.12 Putting It All Together

	Records, Unions, and Name Spaces Chapter Five
	5.1 Chapter Overview
	5.2 Records
	Figure 5.1 Student Data Structure Storage in Memory
	mov(ax, (type word John[65]));

	5.3 Record Constants
	5.4 Arrays of Records
	5.5 Arrays/Records as Record Fields
	5.6 Controlling Field Offsets Within a Record
	5.7 Aligning Fields Within a Record
	5.8 Pointers to Records
	5.9 Unions
	Figure 5.2 Layout of a UNION versus a RECORD Variable

	5.10 Anonymous Unions
	5.11 Variant Types
	5.12 Namespaces
	5.13 Putting It All Together

	Dates and Times Chapter Six
	6.1 Chapter Overview
	6.2 Dates
	6.3 A Brief History of the Calendar
	6.4 HLA Date Functions
	6.4.1 date.IsValid and date.validate
	Program 6.1 Date Validation Example

	6.4.2 Checking for Leap Years
	Program 6.2 Calling the date.IsLeapYear Function

	6.4.3 Obtaining the System Date
	Program 6.3 Reading the System Date

	6.4.4 Date to String Conversions and Date Output
	Program 6.4 Date <-> String Conversion and Date Output Routines

	6.4.5 date.unpack and data.pack
	6.4.6 date.Julian, date.fromJulian
	6.4.7 date.datePlusDays, date.datePlusMonths, and date.daysBetween
	6.4.8 date.dayNumber, date.daysLeft, and date.dayOfWeek

	6.5 Times
	6.5.1 time.curTime
	6.5.2 time.hmsToSecs and time.secstoHMS
	6.5.3 Time Input/Output

	6.6 Putting It All Together

	Files Chapter Seven
	7.1 Chapter Overview
	7.2 File Organization
	7.2.1 Files as Lists of Records
	7.2.2 Binary vs. Text Files
	Figure 4.1 Fixed-lengthFormat for Person Record
	Figure 4.2 Variable-length Format for Person Record

	7.3 Sequential Files
	fileio.open(“filename”, access);
	fileio.openNew(“filename”);
	fileio.close(file_handle);
	fileio.eof(file_handle);
	Program 7.1 A Simple File Output Program
	Program 7.2 A Sample File Input Program
	Program 7.3 Another Sample File Input Program
	Program 7.4 Demonstration of the fileio.Append Routine
	Program 7.5 fileio.eoln Demonstration Program.

	7.4 Random Access Files
	Program 7.6 Random Access File I/O Example

	7.5 ISAM (Indexed Sequential Access Method) Files
	7.6 Truncating a File
	Program 7.7 Using fileio.truncate to Eliminate Old Data From a File

	7.7 File Utility Routines
	7.7.1 Copying, Moving, and Renaming Files
	Program 7.8 Demonstration of a fileio.copy Operation
	Program 7.9 Using fileio.move to Rename a File

	7.7.2 Computing the File Size
	Program 7.10 Sample Program That Demonstrates the fileio.size Function

	7.7.3 Deleting Files
	Program 7.11 Example Usage of the fileio.delete Procedure

	7.8 Directory Operations
	7.9 Putting It All Together

	Introduction to Procedures Chapter Eight
	8.1 Chapter Overview
	8.2 Procedures
	call stdout.newln;
	Program 8.1 Example of a Simple Procedure

	call stdout.newln;
	stdout.newln();
	call zeroBytes;
	zeroBytes();

	8.3 Saving the State of the Machine
	Program 8.2 Program with an Unintended Infinite Loop
	Program 8.3 Demonstration of Caller Register Preservation
	Program 8.4 Demonstrating that Caller Preservation Need not Save All Registers

	8.4 Prematurely Returning from a Procedure
	8.5 Local Variables
	Program 8.5 Demonstration of Global Scope
	Program 8.6 Example of a Local Variable in a Procedure
	Program 8.7 Local Variables Need Not Have Globally Unique Names

	8.6 Other Local and Global Symbol Types
	8.7 Parameters
	8.7.1 Pass by Value
	parameter_identifier : type_identifier

	8.7.2 Pass by Reference
	Program 8.8 Accessing Pass by Reference Parameters

	8.8 Functions and Function Results
	8.8.1 Returning Function Results
	8.8.2 Instruction Composition in HLA
	8.8.3 The HLA RETURNS Option in Procedures

	8.9 Side Effects
	8.10 Recursion
	Program 8.9 Recursive Quicksort Program

	8.11 Forward Procedures
	8.12 Putting It All Together

	Managing Large Programs Chapter Nine
	9.1 Chapter Overview
	9.2 Managing Large Programs
	9.3 The #INCLUDE Directive
	Program 9.1 The stdlib.hhf Header File, as of 01/01/2000

	9.4 Ignoring Duplicate Include Operations
	9.5 UNITs and the EXTERNAL Directive
	Program 9.2 Example of a Simple HLA Unit
	Program 9.3 Main Program that References External Objects
	Program 9.4 Modified Main Program with EXTERNAL Declarations
	Program 9.5 Correct Number1 Unit with External Declarations
	HLA main2.hla
	HLA unit2.hla
	HLA main2.hla unit2.hla
	HLA -c main2.hla
	HLA -c unit2.hla
	HLA main2.obj unit2.obj
	HLA main2.hla unit2.obj
	9.5.1 Behavior of the EXTERNAL Directive
	9.5.2 Header Files in HLA
	Figure 9.1 Using Header Files in HLA Programs

	9.6 Make Files
	9.7 Code Reuse
	9.8 Creating and Managing Libraries
	9.9 Name Space Pollution
	9.10 Putting It All Together

	Integer Arithmetic Chapter Ten
	10.1 Chapter Overview
	10.2 80x86 Integer Arithmetic Instructions
	10.2.1 The MUL and IMUL Instructions
	10.2.2 The DIV and IDIV Instructions
	10.2.3 The CMP Instruction
	Table 1: Condition Code Settings After CMP

	Z: equality/inequality
	Z: equality/inequality
	C: Left < Right (C=1)
	����Left >= Right (C=0)
	C: no meaning
	S: no meaning
	S: see below
	O: no meaning
	O: see below
	10.2.4 The SETcc Instructions
	Table 2: SETcc Instructions That Test Flags

	SETC
	Set if carry
	Carry = 1
	Same as SETB, SETNAE
	SETNC
	Set if no carry
	Carry = 0
	Same as SETNB, SETAE
	SETZ
	Set if zero
	Zero = 1
	Same as SETE
	SETNZ
	Set if not zero
	Zero = 0
	Same as SETNE
	SETS
	Set if sign
	Sign = 1
	SETNS
	Set if no sign
	Sign = 0
	SETO
	Set if overflow
	Ovrflw=1
	SETNO
	Set if no overflow
	Ovrflw=0
	SETP
	Set if parity
	Parity = 1
	Same as SETPE
	SETPE
	Set if parity even
	Parity = 1
	Same as SETP
	SETNP
	Set if no parity
	Parity = 0
	Same as SETPO
	SETPO
	Set if parity odd
	Parity = 0
	Same as SETNP
	Table 3: SETcc Instructions for Unsigned Comparisons

	SETA
	Set if above (>)
	Carry=0, Zero=0
	Same as SETNBE
	SETNBE
	Set if not below or equal (not <=)
	Carry=0, Zero=0
	Same as SETA
	SETAE
	Set if above or equal (>=)
	Carry = 0
	Same as SETNC, SETNB
	SETNB
	Set if not below (not <)
	Carry = 0
	Same as SETNC, SETAE
	SETB
	Set if below (<)
	Carry = 1
	Same as SETC, SETNAE
	SETNAE
	Set if not above or equal (not >=)
	Carry = 1
	Same as SETC, SETB
	SETBE
	Set if below or equal (<=)
	Carry = 1 or Zero = 1
	Same as SETNA
	SETNA
	Set if not above (not >)
	Carry = 1 or Zero = 1
	Same as SETBE
	SETE
	Set if equal (=)
	Zero = 1
	Same as SETZ
	SETNE
	Set if not equal (�)
	Zero = 0
	Same as SETNZ
	Table 4: SETcc Instructions for Signed Comparisons

	SETG
	Set if greater (>)
	Sign = Ovrflw and Zero=0
	Same as SETNLE
	SETNLE
	Set if not less than or equal (not <=)
	Sign = Ovrflw or Zero=0
	Same as SETG
	SETGE
	Set if greater than or equal (>=)
	Sign = Ovrflw
	Same as SETNL
	SETNL
	Set if not less than (not <)
	Sign = Ovrflw
	Same as SETGE
	SETL
	Set if less than (<)
	Sign � Ovrflw
	Same as SETNGE
	SETNGE
	Set if not greater or equal (not >=)
	Sign � Ovrflw
	Same as SETL
	SETLE
	Set if less than or equal (<=)
	Sign � Ovrflw or
	Zero = 1
	Same as SETNG
	SETNG
	Set if not greater than (not >)
	Sign � Ovrflw or
	Zero = 1
	Same as SETLE
	SETE
	Set if equal (=)
	Zero = 1
	Same as SETZ
	SETNE
	Set if not equal (�)
	Zero = 0
	Same as SETNZ
	10.2.5 The TEST Instruction
	test(operand1, operand2);

	10.3 Arithmetic Expressions
	10.3.1 Simple Assignments
	10.3.2 Simple Expressions
	10.3.3 Complex Expressions
	10.3.4 Commutative Operators
	Table 5: Some Common Commutative Binary Operators

	+
	+
	Addition
	*
	*
	Multiplication
	AND
	&& or &
	Logical or bitwise AND
	OR
	|| or |
	Logical or bitwise OR
	XOR
	^
	(Logical or) Bitwise exclusive-OR
	=
	==
	Equality
	<>
	!=
	Inequality
	Table 6: Some Common Noncommutative Binary Operators

	-
	-
	Subtraction
	/ or DIV
	/
	Division
	MOD
	%
	Modulo or remainder
	<
	<
	Less than
	<=
	<=
	Less than or equal
	>
	>
	Greater than
	>=
	>=
	Greater than or equal

	10.4 Logical (Boolean) Expressions
	10.5 Machine and Arithmetic Idioms
	10.5.1 Multiplying without MUL, IMUL, or INTMUL
	10.5.2 Division Without DIV or IDIV
	10.5.3 Implementing Modulo-N Counters with AND
	10.5.4 Careless Use of Machine Idioms

	10.6 The HLA (Pseudo) Random Number Unit
	Program 10.1 Screen Plot Test of the HLA Random Number Generators

	10.7 Putting It All Together

	Real Arithmetic Chapter Eleven
	11.1 Chapter Overview
	11.2 Floating Point Arithmetic
	11.2.1 FPU Registers
	11.2.1.1 FPU Data Registers
	Figure 11.1 FPU Floating Point Register Stack

	11.2.1.2 The FPU Control Register
	Figure 11.2 FPU Control Register
	Table 1: Rounding Control
	Table 2: Mantissa Precision Control Bits

	fldcw(mem16);
	fstcw(mem16);
	11.2.1.3 The FPU Status Register
	Figure 11.3 The FPU Status Register
	Table 3: FPU Condition Code Bits
	Table 4: Condition Code Interpretations

	fcom, fcomp, fcmpp, ftst, fucom, fucomp, fucompp, ficom, ficomp
	Result of comparison. See previous table.
	Result of comparison. See previous table.
	Operands are not comparable
	Result of comparison. See previous table.
	Also denotes stack overflow/underflow if stack exception bit is set.
	11.2.2 FPU Data Types
	Figure 11.4 FPU Floating Point Formats
	Figure 11.5 FPU Integer Formats
	Figure 11.6 FPU Packed Decimal Format

	11.2.3 The FPU Instruction Set
	11.2.4 FPU Data Movement Instructions
	11.2.4.1 The FLD Instruction
	11.2.4.2 The FST and FSTP Instructions
	11.2.4.3 The FXCH Instruction

	11.2.5 Conversions
	11.2.5.1 The FILD Instruction
	11.2.5.2 The FIST and FISTP Instructions
	11.2.5.3 The FBLD and FBSTP Instructions

	11.2.6 Arithmetic Instructions
	11.2.6.1 The FADD and FADDP Instructions
	11.2.6.2 The FSUB, FSUBP, FSUBR, and FSUBRP Instructions
	11.2.6.3 The FMUL and FMULP Instructions
	11.2.6.4 The FDIV, FDIVP, FDIVR, and FDIVRP Instructions
	11.2.6.5 The FSQRT Instruction
	11.2.6.6 The FPREM and FPREM1 Instructions
	11.2.6.7 The FRNDINT Instruction
	11.2.6.8 The FABS Instruction
	11.2.6.9 The FCHS Instruction

	11.2.7 Comparison Instructions
	11.2.7.1 The FCOM, FCOMP, and FCOMPP Instructions
	11.2.7.2 The FTST Instruction

	11.2.8 Constant Instructions
	11.2.9 Transcendental Instructions
	11.2.9.1 The F2XM1 Instruction
	11.2.9.2 The FSIN, FCOS, and FSINCOS Instructions
	11.2.9.3 The FPTAN Instruction
	11.2.9.4 The FPATAN Instruction
	11.2.9.5 The FYL2X Instruction
	11.2.9.6 The FYL2XP1 Instruction

	11.2.10 Miscellaneous instructions
	11.2.10.1 The FINIT and FNINIT Instructions
	11.2.10.2 The FLDCW and FSTCW Instructions
	11.2.10.3 The FCLEX and FNCLEX Instructions
	11.2.10.4 The FSTSW and FNSTSW Instructions

	11.2.11 Integer Operations

	11.3 Converting Floating Point Expressions to Assembly Language
	11.3.1 Converting Arithmetic Expressions to Postfix Notation
	x = ((y-z)*a) - (a + b * c)/3.14159
	x = ([y z -] * a) - (a + b * c)/3.14159
	x = [y z - a *] - (a + b * c)/3.14159
	x = [y z - a *] - (a + [b c *])/3.14159
	x = [y z - a *] - [a b c * +]/3.14159
	x = [y z - a *] - [a b c * + 3.14159 /]
	x = [y z - a *] [a b c * + 3.14159 /] -
	x = y z - a * a b c * + 3.14159 / -
	a = (x * y - z + t)/2.0
	a = ([x y *] - z + t)/2.0
	a = ([x y * z -] + t)/2.0
	a = [x y * z - t +]/2.0
	a = [x y * z - t + 2.0 /]
	a = x y * z - t + 2.0 /

	11.3.2 Converting Postfix Notation to Assembly Language
	x = y z - a * a b c * + 3.14159 / -
	a = x y * z - t + 2.0 /

	11.3.3 Mixed Integer and Floating Point Arithmetic

	11.4 HLA Standard Library Support for Floating Point Arithmetic
	11.4.1 The stdin.getf and fileio.getf Functions
	11.4.2 Trigonometric Functions in the HLA Math Library
	11.4.3 Exponential and Logarithmic Functions in the HLA Math Library

	11.5 Sample Program
	procedure conv.strToFlt(s:string; index:dword);
	procedure arg.v(index:uns32);
	Program 11.1 A Floating Point Calculator Program

	11.6 Putting It All Together

	Calculation Via Table Lookups Chapter Twelve
	12.1 Chapter Overview
	12.2 Tables
	12.2.1 Function Computation via Table Look-up
	mov([ebx+al*1], al);
	X:=Posn mod 80
	Y:=Posn div 80
	function F(x:dword):word;

	12.2.2 Domain Conditioning
	12.2.3 Generating Tables
	Program 12.1 An HLA Program that Generates a Table of Sines

	12.3 High Performance Implementation of cs.rangeChar
	Program 12.2 Table Lookup Implementation of cs.rangeChar
	Program 12.3 Table Generation Program for the csRangeChar Program

	Questions, Projects, and Labs Chapter Thirteen
	13.1 Questions
	13.2 Programming Projects
	procedure MsgBoxInput(prompt:string; row:word; col:word; result:string);

	13.3 Laboratory Exercises
	13.3.1 Using the BOUND Instruction to Check Array Indices
	Program 13.1 Using the BOUND Instruction to Check Array Indicies
	?@bound := false;

	13.3.2 Using TEXT Constants in Your Programs
	Program 13.2 TEXT Constant Laboratory Exercise Code

	13.3.3 Constant Expressions Lab Exercise
	Program 13.3 Constant Expressions Laboratory Exercise

	13.3.4 Pointers and Pointer Constants Exercises
	Program 13.4 Pointers and Pointer Constants Laboratory Exercise Code

	13.3.5 String Exercises
	Program 13.5 String Exercises Code

	13.3.6 String and Character Set Exercises
	NonAlphaChars: cset := -AlphabeticChars - {#0};
	Program 13.6 String and Character Set Exercises Code
	Program 13.7 Character Classification Program

	13.3.7 Console Array Exercise
	Program 13.8 Console Matrix Program

	13.3.8 Multidimensional Array Exercises
	Program 13.9 Addition Table Generator

	13.3.9 Console Attributes Laboratory Exercise
	Program 13.10 Displaying Console Attributes

	13.3.10 Records, Arrays, and Pointers Laboratory Exercise
	Program 13.11 Student Database Program

	13.3.11 Separate Compilation Exercises
	Program 13.12 The MAIN Program for this Laboratory Exercise (mainPgm.hla)
	Program 13.13 The sepCompDemo.hhf Header File for this Laboratory Exercise
	Program 13.14 The First UNIT Associated with this Lab (the Database File)
	Program 13.15 The Second Unit Need by this Lab Exercise (DBunit.hla)

	13.3.12 The HLA (Pseudo) Random Number Unit
	Program 13.16 Screen Plot Test of the HLA Random Number Generators

	13.3.13 File I/O in HLA
	Program 13.17 HLA File I/O Demonstration

	13.3.14 Timing Various Arithmetic Instructions
	Program 13.18 Instruction Timing Code (TimeArithmetic.hla)

	13.3.15 Using the RDTSC Instruction to Time a Code Sequence
	Program 13.19 Timing Code Using RDTSC

	13.3.16 Timing Floating Point Instructions
	Program 13.20 Timing FADD, FSUB, FMUL, and FDIV

	13.3.17 Table Lookup Exercise
	Program 13.21 FSIN vs. Table Lookup

	Volume Four:
	Intermediate Assembly Language
	Advanced High Level Control Structures Chapter One
	1.1 Chapter Overview
	1.2 Conjunction, Disjunction, and Negation in Boolean Expressions
	1.3 TRY..ENDTRY
	Program 1.1 TRY..ENDTRY Example
	1.3.1 Nesting TRY..ENDTRY Statements
	Program 1.2 Nested TRY..ENDTRY Statements
	Program 1.3 Dynamic Nesting of TRY..ENDTRY Statements

	1.3.2 The UNPROTECTED Clause in a TRY..ENDTRY Statement
	Program 1.4 Improperly Exiting a TRY..ENDTRY Statement
	Program 1.5 The TRY..ENDTRY UNPROTECTED Section

	1.3.3 The ANYEXCEPTION Clause in a TRY..ENDTRY Statement
	1.3.4 Raising User-Defined Exceptions
	Program 1.6 User-Defined Exceptions and the RAISE Statement

	1.3.5 Reraising Exceptions in a TRY..ENDTRY Statement
	1.3.6 A List of the Predefined HLA Exceptions
	1.3.7 How to Handle Exceptions in Your Programs
	Program 1.7 Repeating Code via a Loop to Handle an Exception

	1.3.8 Registers and the TRY..ENDTRY Statement

	1.4 BEGIN..EXIT..EXITIF..END
	Program 1.8 Demonstration of BEGIN..EXIT..END Sequence
	Figure 1.1 Nesting BEGIN..END Blocks
	Program 1.9 Breaking Out of Nested Loops Using EXIT/EXITIF

	1.5 CONTINUE..CONTINUEIF
	Figure 1.2 Behavior of CONTINUE in a WHILE Loop
	Figure 1.3 Behavior of CONTINUE in a FOREVER Loop
	Figure 1.4 Behavior of CONTINUE in a FOR Loop
	Figure 1.5 Behavior of CONTINUE in a REPEAT..UNTIL Loop

	1.6 SWITCH..CASE..DEFAULT..ENDSWITCH
	Figure 1.6 Syntax for the SWITCH..CASE..DEFAULT..ENDSWITCH Statement

	1.7 Putting It All Together

	Low-Level Control Structures Chapter Two
	2.1 Chapter Overview
	2.2 Low Level Control Structures
	2.3 Statement Labels
	Program 2.1 Displaying the Address of Statement Labels in a Program
	Program 2.2 Initializing DWORD Variables with the Address of Statement Labels

	2.4 Unconditional Transfer of Control (JMP)
	Program 2.3 Using Register Indirect JMP Instructions
	Program 2.4 Using Memory Indirect JMP Instructions

	2.5 The Conditional Jump Instructions
	Jcc label;
	js ValueIsNegative;
	Table 1: Jcc Instructions That Test Flags
	Table 2: Jcc Instructions for Unsigned Comparisons
	Table 3: Jcc Instructions for Signed Comparisons

	2.6 “Medium-Level” Control Structures: JT and JF
	jt(boolean_expression) target_label;
	jf(boolean_expression) target_label;

	2.7 Implementing Common Control Structures in Assembly Language
	2.8 Introduction to Decisions
	2.8.1 IF..THEN..ELSE Sequences
	Figure 2.1 IF..THEN..ELSE..ENDIF and IF..ENDIF Statement Flow
	if(expr1 && expr2) stmt;
	if(expr1) if(expr2) stmt;
	if(expr1 || expr2) stmt;
	if(expr1) stmt;
	else if(expr2) stmt;

	2.8.2 Translating HLA IF Statements into Pure Assembly Language
	Table 4: IF Statement Conditional Jump Instructions

	2.8.3 Implementing Complex IF Statements Using Complete Boolean Evaluation
	2.8.4 Short Circuit Boolean Evaluation
	2.8.5 Short Circuit vs. Complete Boolean Evaluation
	2.8.6 Efficient Implementation of IF Statements in Assembly Language
	if((x % 10 = 0) && (x != y) ++x;

	2.8.7 SWITCH/CASE Statements

	2.9 State Machines and Indirect Jumps
	2.10 Spaghetti Code
	2.11 Loops
	2.11.1 While Loops
	2.11.2 Repeat..Until Loops
	2.11.3 FOREVER..ENDFOR Loops
	2.11.4 FOR Loops
	2.11.5 The BREAK and CONTINUE Statements
	Figure 2.2 CONTINUE Destination for the FOREVER Loop
	Figure 2.3 CONTINUE Destination and the WHILE Loop
	Figure 2.4 CONTINUE Destination and the FOR Loop
	Figure 2.5 CONTINUE Destination and the REPEAT..UNTIL Loop

	2.11.6 Register Usage and Loops

	2.12 Performance Improvements
	2.12.1 Moving the Termination Condition to the End of a Loop
	2.12.2 Executing the Loop Backwards
	2.12.3 Loop Invariant Computations
	2.12.4 Unraveling Loops
	2.12.5 Induction Variables

	2.13 Hybrid Control Structures in HLA
	if(eax >= J && eax <= K) then sub(J, eax); endif;

	2.14 Putting It All Together

	Intermediate Procedures Chapter Three
	3.1 Chapter Overview
	3.2 Procedures and the CALL Instruction
	Program 3.1 Effect of Missing RET Instruction in a Procedure

	3.3 Procedures and the Stack
	Figure 3.1 Stack Contents Before RET in “MessedUp” Procedure
	Figure 3.2 Stack Contents Before RET in MessedUpToo
	Program 3.2 Effect of Popping Too Much Data Off the Stack

	3.4 Activation Records
	Figure 3.3 Stack Organization Immediately Upon Entry into ARDemo
	Figure 3.4 Activation Record for ARDemo
	Figure 3.5 Offsets of Objects in the ARDemo Activation Record

	3.5 The Standard Entry Sequence
	3.6 The Standard Exit Sequence
	3.7 HLA Local Variables
	Figure 3.6 Activation Record for LocalVars Procedure

	3.8 Parameters
	3.8.1 Pass by Value
	3.8.2 Pass by Reference
	3.8.3 Passing Parameters in Registers
	3.8.4 Passing Parameters in the Code Stream
	Program 3.3 Print Procedure Implementation (Using Code Stream Parameters)

	3.8.5 Passing Parameters on the Stack
	Figure 3.7 Stack Layout Upon Entry into CallProc
	Figure 3.8 Activation Record for CallProc After Standard Entry Sequence Execution
	3.8.5.1 Accessing Value Parameters on the Stack
	Program 3.4 Demonstration of Value Parameters

	3.8.5.2 Passing Value Parameters on the Stack
	Program 3.5 Manually Passing Parameters on the Stack
	Program 3.6 Passing the Result of Some Arithmetic Expression as a Parameter

	procedure OneByteParm(b:byte);
	Figure 3.9 OneByteParm Activation Record

	3.8.5.3 Accessing Reference Parameters on the Stack
	Program 3.7 Accessing a Reference Parameter
	Program 3.8 Passing an Array of Records by Referencing

	3.8.5.4 Passing Reference Parameters on the Stack
	3.8.5.5 Passing Formal Parameters as Actual Parameters
	3.8.5.6 HLA Hybrid Parameter Passing Facilities
	3.8.5.7 Mixing Register and Stack Based Parameters

	3.9 Procedure Pointers
	3.10 Procedural Parameters
	3.11 Untyped Reference Parameters
	3.12 Iterators and the FOREACH Loop
	3.13 Sample Programs
	3.13.1 Generating the Fibonacci Sequence Using an Iterator
	3.13.2 Outer Product Computation with Procedural Parameters

	3.14 Putting It All Together

	Advanced Arithmetic Chapter Four
	4.1 Chapter Overview
	4.2 Multiprecision Operations
	4.2.1 Multiprecision Addition Operations
	Figure 4.1 Adding Two 96-bit Objects Together
	adc(source, dest); // dest := dest + source + C

	4.2.2 Multiprecision Subtraction Operations
	4.2.3 Extended Precision Comparisons
	4.2.4 Extended Precision Multiplication
	Figure 4.2 Extended Precision Multiplication
	Program 4.1 Extended Precision Multiplication

	4.2.5 Extended Precision Division
	Program 4.2 Unsigned 128/32 Bit Extended Precision Division
	Figure 4.3 Manual Digit-by-digit Division Operation
	Figure 4.4 Longhand Division in Binary
	Program 4.3 Extended Precision Division

	4.2.6 Extended Precision NEG Operations
	4.2.7 Extended Precision AND Operations
	4.2.8 Extended Precision OR Operations
	4.2.9 Extended Precision XOR Operations
	4.2.10 Extended Precision NOT Operations
	4.2.11 Extended Precision Shift Operations
	Figure 4.5 64-bit Shift Left Operation
	Figure 4.6 SHLD Operation
	Figure 4.7 SHRD Operation

	4.2.12 Extended Precision Rotate Operations
	4.2.13 Extended Precision I/O
	4.2.13.1 Extended Precision Hexadecimal Output
	4.2.13.2 Extended Precision Unsigned Decimal Output
	Program 4.4 128-bit Extended Precision Decimal Output Routine

	4.2.13.3 Extended Precision Signed Decimal Output
	4.2.13.4 Extended Precision Formatted I/O
	4.2.13.5 Extended Precision Input Routines
	4.2.13.6 Extended Precision Hexadecimal Input
	Program 4.5 Extended Precision Hexadecimal Input

	4.2.13.7 Extended Precision Unsigned Decimal Input
	Program 4.6 Extended Precision Unsigned Decimal Input

	4.2.13.8 Extended Precision Signed Decimal Input

	4.3 Operating on Different Sized Operands
	4.4 Decimal Arithmetic
	Table 1: Binary Code Decimal (BCD) Representation
	4.4.1 Literal BCD Constants
	4.4.2 The 80x86 DAA and DAS Instructions
	4.4.3 The 80x86 AAA, AAS, AAM, and AAD Instructions
	4.4.4 Packed Decimal Arithmetic Using the FPU
	Program 4.7 Mixed Mode FPU Arithmetic

	4.5 Sample Program
	Program 4.8 BCD I/O Sample Program

	4.6 Putting It All Together

	Bit Manipulation Chapter Five
	5.1 Chapter Overview
	5.2 What is Bit Data, Anyway?
	5.3 Instructions That Manipulate Bits
	Figure 5.1 Isolating a Bit String Using the AND Instruction
	Figure 5.2 Inserting Bits 0..12 of EAX into Bits 12..24 of EBX

	5.4 The Carry Flag as a Bit Accumulator
	5.5 Packing and Unpacking Bit Strings
	Figure 5.3 Inserting a Bit String Into a Destination Operand

	5.6 Coalescing Bit Sets and Distributing Bit Strings
	5.7 Packed Arrays of Bit Strings
	Element_Address_in_bits = Base_address_in_bits + index * element_size_in_bits

	5.8 Searching for a Bit
	5.9 Counting Bits
	5.10 Reversing a Bit String
	5.11 Merging Bit Strings
	5.12 Extracting Bit Strings
	5.13 Searching for a Bit Pattern
	5.14 The HLA Standard Library Bits Module
	5.15 Putting It All Together

	The String Instructions Chapter Six
	6.1 Chapter Overview
	6.2 The 80x86 String Instructions
	6.2.1 How the String Instructions Operate
	6.2.2 The REP/REPE/REPZ and REPNZ/REPNE Prefixes
	6.2.3 The Direction Flag
	6.2.4 The MOVS Instruction
	Figure 6.1 Copying Data Between Two Overlapping Arrays (forward direction)
	Figure 6.2 Using a Backwards Copy to Copy Data in Overlapping Arrays

	6.2.5 The CMPS Instruction
	“String1”
	“String1”
	6.2.6 The SCAS Instruction
	6.2.7 The STOS Instruction
	6.2.8 The LODS Instruction
	6.2.9 Building Complex String Functions from LODS and STOS

	6.3 Putting It All Together

	The HLA Compile-Time Language Chapter Seven
	6.1 Chapter Overview
	6.2 Introduction to the Compile-Time Language (CTL)
	Figure 6.1 Compile-Time vs. Run-Time Execution

	6.3 The #PRINT and #ERROR Statements
	Program 6.1 The CTL "Hello World" Program
	Hello, World of HLA/CTL

	6.4 Compile-Time Constants and Variables
	6.5 Compile-Time Expressions and Operators
	Table 1: Compile-Time Operators
	Table 2: Operator Precedence and Associativity

	6.6 Compile-Time Functions
	6.6.1 Type Conversion Compile-time Functions
	int8("-128")

	6.6.2 Numeric Compile-Time Functions
	6.6.3 Character Classification Compile-Time Functions
	6.6.4 Compile-Time String Functions
	@length(string_expression)

	6.6.5 Compile-Time Pattern Matching Functions
	6.6.6 Compile-Time Symbol Information
	6.6.7 Compile-Time Expression Classification Functions
	6.6.8 Miscellaneous Compile-Time Functions
	6.6.9 Predefined Compile-Time Variables
	6.6.10 Compile-Time Type Conversions of TEXT Objects

	6.7 Conditional Compilation (Compile-Time Decisions)
	Figure 6.1 Operation of HLA Compile-Time #IF Statement

	6.8 Repetitive Compilation (Compile-Time Loops)
	Figure 6.1 HLA Compile-Time #WHILE Statement Operation
	Program 6.2 #WHILE..#ENDWHILE Demonstration
	Program 6.3 Program Equivalent to the Code in Program 6.2

	6.9 Putting It All Together

	Macros Chapter Eight
	7.1 Chapter Overview
	7.2 Macros (Compile-Time Procedures)
	7.2.1 Standard Macros
	7.2.2 Macro Parameters
	7.2.2.1 Standard Macro Parameter Expansion
	7.2.2.2 Macros with a Variable Number of Parameters
	7.2.2.3 Required Versus Optional Macro Parameters
	7.2.2.4 The "#(" and ")#" Macro Parameter Brackets
	7.2.2.5 Eager vs. Deferred Macro Parameter Evaluation
	Program 7.1 Eager vs. Deferred Macro Parameter Evaluation
	Program 7.2 Deferred Macro Parameter Expansion
	Program 7.3 An Example Where Deferred Evaluation Fails to Work Properly
	Program 7.4 Demonstration of @EVAL Compile-time Function

	7.2.3 Local Symbols in a Macro
	Program 7.5 Local Macro Symbols as Macro Parameters
	Program 7.6 A Macro That Generates Unique Symbols for a Program

	7.2.4 Macros as Compile-Time Procedures
	7.2.5 Multi-part (Context-Free) Macros
	7.2.6 Simulating Function Overloading with Macros
	Program 7.7 Simple Procedure Overloading Based on Operand Size
	Program 7.8 Procedure Overloading Based on Operand Type
	Program 7.9 Using the Number of Parameters to Resolve Overloaded Procedures

	7.3 Writing Compile-Time "Programs"
	7.3.1 Constructing Data Tables at Compile Time
	Program 7.10 Generating a SINE Lookup Table with the Compile-time Language
	Program 7.11 Generating Case Conversion Tables with the Compile-Time Language

	7.3.2 Unrolling Loops

	7.4 Using Macros in Different Source Files
	7.5 Putting It All Together

	Domain Specific Embedded Languages Chapter Nine
	9.1 Chapter Overview
	9.2 Introduction to DSELs in HLA
	9.2.1 Implementing the Standard HLA Control Structures
	9.2.1.1 The FOREVER Loop
	Program 9.1 Macro Implementation of the FOREVER..ENDFOR Loop

	9.2.1.2 The WHILE Loop
	Program 9.2 Macro Implementation of the WHILE..ENDWHILE Loop

	9.2.1.3 The IF Statement
	Program 9.3 Macro Implementation of the IF..ENDIF Statement

	9.2.2 The HLA SWITCH/CASE Statement
	Program 9.4 Macro Implementation of the SWITCH..ENDSWITCH Statement

	9.2.3 A Modified WHILE Loop
	Program 9.5 The Implementation of _while.._onbreak.._endwhile

	9.2.4 A Modified IF..ELSE..ENDIF Statement
	Program 9.6 Using Macros to Create a New IF Statement

	9.3 Sample Program: A Simple Expression Compiler
	u32expr(reg32, uns32_expression);
	reg32 := uns32_expression;
	<, <=, >, >=, <>, !=, =, ==
	+, -
	*, /
	(,)
	macro u32expr(reg, expr):sexpr;
	?sexpr := @string:expr;
	X * 5
	returns({ statements }, string_expression)
	Program 9.7 Uns32 Expression Compiler

	9.4 Putting It All Together

	Classes and Objects Chapter Ten
	10.1 Chapter Overview
	10.2 General Principles
	10.3 Classes in HLA
	10.4 Objects
	10.5 Inheritance
	10.6 Overriding
	10.7 Virtual Methods vs. Static Procedures
	10.8 Writing Class Methods, Iterators, and Procedures
	(type point2D [esi].x
	this.distance(5.0, 6.0);
	fld(point2D.UnitDistance);

	10.9 Object Implementation
	Figure 10.1 Student RECORD Implementation in Memory
	Figure 10.2 Student CLASS Implementation in Memory
	Figure 10.3 Object Allocation with Static Data Fields
	10.9.1 Virtual Method Tables
	Figure 10.4 Virtual Method Table Organization
	Figure 10.5 All Objects That are the Same Class Type Share the Same VMT

	10.9.2 Object Representation with Inheritance
	Figure 10.6 Layout of Base and Child Class Objects in Memory
	Figure 10.7 Virtual Method Table References from Objects
	Figure 10.8 Virtual Method Tables for Inherited Classes

	10.10 Constructors and Object Initialization
	mov(&tBaseClass._VMT_, bc._pVMT_);
	10.10.1 Dynamic Object Allocation Within the Constructor
	10.10.2 Constructors and Inheritance
	10.10.3 Constructor Parameters and Procedure Overloading

	10.11 Destructors
	10.12 HLA’s “_initialize_” and “_finalize_” Strings
	10.13 Abstract Methods
	10.14 Run-time Type Information (RTTI)
	ObjectPointerOrVar is ClassType

	10.15 Calling Base Class Methods
	10.16 Sample Program
	Program 10.1 Shapes.hhf - The Shape Class Header Files
	Program 10.2 Shapes.hla - The Implementation of the Shape Class
	Program 10.3 ShapeMain.hla - The Main Program That Demonstrates Using Shape Objects

	10.17 Putting It All Together

	The MMX Instruction Set Chapter Eleven
	11.1 Chapter Overview
	11.2 Determining if a CPU Supports the MMX Instruction Set
	11.3 The MMX Programming Environment
	11.3.1 The MMX Registers
	Figure 11.1 MMX and FPU Register Aliasing

	11.3.2 The MMX Data Types
	Figure 11.2 The MMX Data Types

	11.4 The Purpose of the MMX Instruction Set
	11.5 Saturation Arithmetic and Wraparound Mode
	Table 1:

	11.6 MMX Instruction Operands
	Program 11.1 qword16 Macro to Process 64-bit Hexadecimal Constants

	11.7 MMX Technology Instructions
	11.7.1 MMX Data Transfer Instructions
	11.7.2 MMX Conversion Instructions
	Figure 11.3 PACKSSDW Instruction
	Figure 11.4 PACKSSWB Instruction
	Figure 11.5 UNPCKLBW Instruction
	Figure 11.6 The PUNPCKLWD Instruction
	Figure 11.7 PUNPCKLDQ Instruction
	Figure 11.8 PUNPCKHBW Instruction
	Figure 11.9 PUNPCKHWD Instruction
	Figure 11.10 PUNPCKDQ Instruction

	11.7.3 MMX Packed Arithmetic Instructions
	11.7.4 MMX Logic Instructions
	11.7.5 MMX Comparison Instructions
	Figure 11.11 PCMPEQB and PCMPGTB Instructions
	Figure 11.12 PCMPEQW and PCMPGTW Instructions
	Figure 11.13 PCMPEQD and PCMPGTD Instructions

	11.7.6 MMX Shift Instructions

	11.8 The EMMS Instruction
	11.9 The MMX Programming Paradigm
	Program 11.2 HLA Standard Library cs.cpy Routine
	Program 11.3 HLA Standard Library cs.difference Routine
	Program 11.4 MMX Implementation of the HLA Standard Library str.upper Procedure

	11.10 Putting It All Together

	Mixed Language Programming Chapter Twelve
	12.1 Chapter Overview
	12.2 Mixing HLA and MASM Code in the Same Program
	12.2.1 In-Line (MASM) Assembly Code in Your HLA Programs
	Program 12.1 Using the @StaticName Function
	Program 12.2 Using the @Offset Compile-Time Function

	12.2.2 Linking MASM-Assembled Modules with HLA Modules
	Program 12.3 Main HLA Program to Link with a MASM Program
	Program 12.4 Calling a MASM Procedure from an HLA Program: MASM Module

	12.3 Programming in Delphi and HLA
	12.3.1 Linking HLA Modules With Delphi Programs
	Program 12.5 CalledFromDelphi.HLA Module Containing the Assembly Code
	Program 12.6 DelphiEx1– Delphi Source Code that Calls an Assembly Procedure

	12.3.2 Register Preservation
	12.3.3 Function Results
	Program 12.7 DelphiEx2: Pascal Code for Assembly Return Results Example
	Program 12.8 ReturnBoolean: Demonstrates Returning a Byte Value in AL
	Program 12.9 ReturnWord: Demonstrates Returning a Word Value in AX
	Program 12.10 ReturnDWord: Demonstrates Returning a DWord Value in EAX
	Program 12.11 ReturnPtr: Demonstrates Returning a 32-bit Address in EAX
	Program 12.12 ReturnReal: Demonstrates Returning a Real Value in ST0

	12.3.4 Calling Conventions
	Program 12.13 DelphiEx3 – Sample Program that Demonstrates the pascal Calling Convention
	Program 12.14 UsesPascal – HLA Function the Previous Delphi Code Will Call
	Program 12.15 DelphiEx4 – Using the register Calling Convention
	Program 12.16 HLA Code to support the DelphiEx4 Program

	12.3.5 Pass by Value, Reference, CONST, and OUT in Delphi
	12.3.6 Scalar Data Type Correspondence Between Delphi and HLA
	Table 1: Delphi and HLA Integer Types
	Table 2: Non-integer Ordinal Types in Delphi and HLA
	Table 3: Real Types in Delphi and HLA

	12.3.7 Passing String Data Between Delphi and HLA Code
	12.3.8 Passing Record Data Between HLA and Delphi
	Table 4: Alignment of Record Fields

	12.3.9 Passing Set Data Between Delphi and HLA
	12.3.10 Passing Array Data Between HLA and Delphi
	12.3.11 Delphi Limitations When Linking with (Non-TASM) Assembly Code
	12.3.12 Referencing Delphi Objects from HLA Code
	Program 12.17 DelphiEx5 – Static Data and Delphi Public Symbols Demonstration
	Program 12.18 HLA Code for DelphiEx5 Example

	12.4 Programming in C/C++ and HLA
	12.4.1 Linking HLA Modules With C/C++ Programs
	Program 12.19 Cex1 - A Simple Example of a Call to an Assembly Function from C++
	Program 12.20 RetHW.hla - Assembly Code that Cex1 Calls

	12.4.2 Register Preservation
	12.4.3 Function Results
	12.4.4 Calling Conventions
	12.4.5 Pass by Value and Reference in C/C++
	12.4.6 Scalar Data Type Correspondence Between Delphi and HLA
	Table 5: Delphi and HLA Integer Types
	Table 6: Non-integer Ordinal Types in C/C++ and HLA
	Table 7: Real Types in C/C++ and HLA

	12.4.7 Passing String Data Between C/C++ and HLA Code
	12.4.8 Passing Record/Structure Data Between HLA and C/C++
	12.4.9 Passing Array Data Between HLA and C/C++

	12.5 Putting It All Together

	Questions, Projects, and Labs Chapter Thirteen
	13.1 Questions
	13.2 Programming Problems
	13.3 Laboratory Exercises
	13.3.1 Dynamically Nested TRY..ENDTRY Statements
	Program 13.1 Dynamically Nested TRY..ENDTRY Statements

	13.3.2 The TRY..ENDTRY Unprotected Section
	Program 13.2 The TRY..ENDTRY Unprotected Section

	13.3.3 Performance of SWITCH Statement
	Program 13.3 Performance of SWITCH Statement.

	13.3.4 Complete Versus Short Circuit Boolean Evaluation
	Program 13.4 Complete vs. Short Circuit Boolean Evaluation

	13.3.5 Conversion of High Level Language Statements to Pure Assembly
	13.3.6 Activation Record Exercises
	13.3.6.1 Automatic Activation Record Generation and Access
	Program 13.5 Computing the Size of a Procedure’s Activation Record

	13.3.6.2 The _vars_ and _parms_ Constants
	Program 13.6 Demonstration of the _vars_ and _parms_ Constants

	13.3.6.3 Manually Constructing an Activation Record
	Program 13.7 Manual Construction and Destruction of an Activation Record

	13.3.7 Reference Parameter Exercise
	Program 13.8 Parameter Passing Demonstration

	13.3.8 Procedural Parameter Exercise
	Program 13.9 A CALL-based SWITCH Statement

	13.3.9 Iterator Exercises
	Program 13.10 Card Shuffle/Deal Program that uses the rand.deal Iterator

	13.3.10 Performance of Multiprecision Multiplication and Division Operations
	13.3.11 Performance of the Extended Precision NEG Operation
	13.3.12 Testing the Extended Precision Input Routines
	13.3.13 Illegal Decimal Operations
	13.3.14 MOVS Performance Exercise #1
	Program 13.11 MOVS Demonstration Program

	13.3.15 MOVS Performance Exercise #2
	Program 13.12 MOVS Demonstration Program #2

	13.3.16 Memory Performance Exercise
	Program 13.13 MOVS Demonstration Program #3

	13.3.17 The Performance of Length-Prefixed vs. Zero-Terminated Strings
	Program 13.14 Performance Evaluation of String Formats

	13.3.18 Introduction to Compile-Time Programs
	Program 13.15 A Simple Compile-Time Program

	13.3.19 Conditional Compilation and Debug Code
	Program 13.16 Using Conditional Compilation to Control Debugging Code

	13.3.20 The Assert Macro
	Program 13.17 Demonstration of the Assert Macro

	13.3.21 Demonstration of Compile-Time Loops (#while)
	Program 13.18 #While Loop Demonstration

	13.3.22 Writing a Trace Macro
	Program 13.19 Trace Macro

	13.3.23 Overloading
	Program 13.20 Procedure Overloading Demonstration

	13.3.24 Multi-part Macros and RatASM (Rational Assembly)
	Program 13.21 Demonstration of RatASM _WHILE and _FOR Loops

	13.3.25 Virtual Methods vs. Static Procedures in a Class
	Program 13.22 Polymorphism Demonstration

	13.3.26 Using the _initialize_ and _finalize_ Strings in a Program
	Program 13.23 Code for _initialize_/_finialize_ Laboratory Exercise

	13.3.27 Using RTTI in a Program
	Program 13.24 Code for RTTI Laboratory Exercise

	Section Five
	Advanced Assembly Language Programming
	Thunks Chapter One
	1.1 Chapter Overview
	1.2 First Class Objects
	1.3 Thunks
	1.4 Initializing Thunks
	1.5 Manipulating Thunks
	1.5.1 Assigning Thunks
	1.5.2 Comparing Thunks
	1.5.3 Passing Thunks as Parameters
	1.5.4 Returning Thunks as Function Results

	1.6 Activation Record Lifetimes and Thunks
	1.7 Comparing Thunks and Objects
	1.8 An Example of a Thunk Using the Fibonacci Function
	Figure 1.1 Using a Thunk to Set the Fib(n-2) Value in a Different Activation Record
	Program 1.1 Fibonocci Number Generation Using Thunks

	Table 1: Running Time of the FIB and SlowFib Functions

	1.9 Thunks and Artificial Intelligence Code
	1.10 Thunks as Triggers
	1.11 Jumping Out of a Thunk
	1.12 Handling Exceptions with Thunks
	1.13 Using Thunks in an Appropriate Manner
	1.14 Putting It All Together

	Iterators Chapter Two
	2.1 Chapter Overview
	2.2 Iterators
	2.2.1 Implementing Iterators Using In-Line Expansion
	2.2.2 Implementing Iterators with Resume Frames
	Figure 2.1 Iterator Activation Record
	Figure 2.2 Range Activation Record
	Figure 2.3 Range Resume Record
	Figure 2.4 Yield Thunk in the range Iterator’s Activation Record

	2.3 Other Possible Iterator Implementations
	2.4 Breaking Out of a FOREACH Loop
	2.5 An Iterator Implementation of the Fibonacci Number Generator
	Program 2.1 Recursive Implementation of the Fibonacci Number Generator
	Program 2.2 Fibonacci Iterator Example Program
	Table 1: CPU Cycle Times for Various Fibonacci Implementations

	2.6 Iterators and Recursion
	Program 2.3 Recursive Iterator to Rearrange Data for a Binary Search

	2.7 Calling Other Procedures Within an Iterator
	2.8 Iterators Within Classes
	2.9 Putting It Altogether

	Coroutines and Generators Chapter Three
	3.1 Chapter Overview
	3.2 Coroutines
	Figure 13.1 Cocall Sequence
	Figure 13.2 Cocalls Between Three Processes

	3.3 Parameters and Register Values in Coroutine Calls
	3.4 Recursion, Reentrancy, and Variables
	3.5 Generators
	3.6 Exceptions and Coroutines
	3.7 Putting It All Together

	Low-level Parameter Implementation Chapter Four
	4.1 Chapter Overview
	4.2 Parameters
	4.3 Where You Can Pass Parameters
	4.3.1 Passing Parameters in (Integer) Registers
	4.3.2 Passing Parameters in FPU and MMX Registers
	4.3.3 Passing Parameters in Global Variables
	4.3.4 Passing Parameters on the Stack
	Figure 13.1 Activation Record for CallProc Invocation
	Figure 13.2 Offsets into CallProc’s Activation Record

	4.3.5 Passing Parameters in the Code Stream
	4.3.6 Passing Parameters via a Parameter Block

	4.4 How You Can Pass Parameters
	4.4.1 Pass by Value-Result
	4.4.2 Pass by Result
	4.4.3 Pass by Name
	4.4.4 Pass by Lazy-Evaluation

	4.5 Passing Parameters as Parameters to Another Procedure
	4.5.1 Passing Reference Parameters to Other Procedures
	4.5.2 Passing Value-Result and Result Parameters as Parameters
	4.5.3 Passing Name Parameters to Other Procedures
	4.5.4 Passing Lazy Evaluation Parameters as Parameters
	4.5.5 Parameter Passing Summary
	Table 1: Passing Parameters as Parameters to Another Procedure

	4.6 Variable Parameter Lists
	4.7 Function Results
	4.7.1 Returning Function Results in a Register
	4.7.2 Returning Function Results on the Stack
	4.7.3 Returning Function Results in Memory Locations
	4.7.4 Returning Large Function Results

	4.8 Putting It All Together

	Lexical Nesting Chapter Five
	5.1 Chapter Overview
	5.2 Lexical Nesting, Static Links, and Displays
	5.2.1 Scope
	Figure 5.1 Lexical Scope for Variables in Nested Pascal Procedures

	5.2.2 Unit Activation, Address Binding, and Variable Lifetime��������
	Figure 5.2 Activation Records for a Series of Recursive Calls of One and Two

	5.2.3 Static Links
	Figure 5.3 Activation Records After Several Nested Calls
	Figure 5.4 Procedure Schematic Showing Lexical Levels
	Figure 5.5 Generic Activation Record
	Figure 5.6 Static Links

	5.2.4 Accessing Non-Local Variables Using Static Links
	5.2.5 Nesting Procedures in HLA
	5.2.6 The Display
	Figure 5.7 The Display
	Figure 5.8 Intel-Compatible Display in an Activation Record
	Program 5.1 Demonstration of Displays in an HLA Program

	5.2.7 The 80x86 ENTER and LEAVE Instructions
	Program 5.2 Demonstration of Enter and Leave in HLA

	5.3 Passing Variables at Different Lex Levels as Parameters.
	5.3.1 Passing Parameters by Value
	5.3.2 Passing Parameters by Reference, Result, and Value-Result
	5.3.3 Passing Parameters by Name and Lazy-Evaluation in a Block Structured Language

	5.4 Passing Procedures as Parameters
	5.5 Faking Intermediate Variable Access
	5.6 Putting It All Together

	Questions, Projects, and Labs Chapter Six
	6.1 Questions
	6.2 Programming Problems
	6.3 Laboratory Exercises

	Answers to Selected Exercises Appendix A
	Console Graphic Characters Appendix B
	HLA Programming Style Guidelines Appendix C
	1.1 Introduction
	1.1.1 Intended Audience
	1.1.2 Readability Metrics
	1.1.3 How to Achieve Readability
	1.1.4 How This Document is Organized
	1.1.5 Guidelines, Rules, Enforced Rules, and Exceptions
	1.1.6 Source Language Concerns

	1.2 Program Organization
	1.2.1 Library Functions
	1.2.2 Common Object Modules
	1.2.3 Local Modules
	1.2.4 Program Make Files

	1.3 Module Organization
	1.3.1 Module Attributes
	1.3.1.1 Module Cohesion
	1.3.1.2 Module Coupling
	1.3.1.3 Physical Organization of Modules
	1.3.1.4 Module Interface

	1.4 Program Unit Organization
	1.4.1 Routine Cohesion
	1.4.2 Routine Coupling
	1.4.3 Routine Size

	1.5 Statement Organization
	1.5.1 Writing “Pure” Assembly Code
	1.5.2 Using HLA’s High Level Control Statements

	1.6 Comments
	1.6.1 What is a Bad Comment?
	1.6.2 What is a Good Comment?
	1.6.3 Endline vs. Standalone Comments
	1.6.4 Unfinished Code
	1.6.5 Cross References in Code to Other Documents

	1.7 Names, Instructions, Operators, and Operands
	1.7.1 Names
	1.7.1.1 Naming Conventions
	1.7.1.2 Alphabetic Case Considerations
	1.7.1.3 Abbreviations
	1.7.1.4 The Position of Components Within an Identifier
	1.7.1.5 Names to Avoid
	1.7.1.6 Special Identifers

	1.7.2 Instructions, Directives, and Pseudo-Opcodes
	1.7.2.1 Choosing the Best Instruction Sequence
	1.7.2.2 Control Structures
	1.7.2.3 Instruction Synonyms

	1.8 Data Types
	1.8.1 Declaring Structures in Assembly Language

	The 80x86 Instruction Set Appendix D
	Table 1: 80x86 Integer and Control Instruction Set
	aaa()
	ASCII Adjust after Addition. Adjusts value in AL after a decimal addition operation.
	aad()
	ASCII Adjust before Division. Adjusts two unpacked values in AX prior to a decimal division.
	aam()
	ASCII Adjust AX after Multiplication. Adjusts the result in AX for a decimal mulitply.
	aas()
	ASCII Adjust AL after Subtraction. Adjusts the result in AL for a decimal subtraction.
	adc(imm, reg);
	adc(imm, mem);
	adc(reg, reg);
	adc(reg, mem);
	adc(mem, reg);
	Add with carry. Adds the source operand plus the carry flag to the destination operand.
	add(imm, reg);
	add(imm, mem);
	add(reg, reg);
	add(reg, mem);
	add(mem, reg);
	Add. Adds the source operand to the destination operand.
	and(imm, reg);
	and(imm, mem);
	and(reg, reg);
	and(reg, mem);
	and(mem, reg);
	Bitwise AND. Logically ANDs the source operand into the destination operand. Clears the carry and...
	bound(reg, mem);
	bound(reg, immL, immH);
	Bounds check. Reg and memory operands must be the same size and they must be 16 or 32-bit values....
	The second form of this instruction is an HLA extended syntax instruction. HLA encodes the consta...
	For the second form, the constant values must not exceed the 16-bit or 32-bit register size.
	bsf(reg, reg);
	bsr(mem, reg);
	Bit Scan Forward. The two operands must be the same size and they must be 16-bit or 32-bit operan...
	bsr(reg, reg);
	bsr(mem, reg);
	Bit Scan Reverse. The two operands must be the same size and they must be 16-bit or 32-bit operan...
	bswap(reg32);
	Byte Swap. This instruction reverses the order of the bytes in a 32-bit register. It swaps bytes ...
	bt(reg, mem);
	bt(reg, reg);
	bt(imm8, reg);
	bt(imm8, mem);
	Register and memory operands must be 16- or 32-bit values. Eight bit immediate values must be in ...
	btc(reg, mem);
	btc(reg, reg);
	btc(imm8, reg);
	btc(imm8, mem);
	Bit test and complement. As above, except this instruction also complements the value of the spec...
	btr(reg, mem);
	btr(reg, reg);
	btr(imm8, reg);
	btr(imm8, mem);
	Bit test and reset. Same as BTC except this instruction tests and resets (clears) the bit.
	bts(reg, mem);
	bts(reg, reg);
	bts(imm8, reg);
	bts(imm8, mem);
	Bit test and set. Same as BTC except this instructions tests and sets the bit.
	call label;
	call(label);
	call(reg32);
	call(mem32);
	Pushes a return address onto the stack and calls the subroutine at the address specified. Note th...
	cbw();
	Convert Byte to Word. Sign extends AL into AX.
	cdq();
	Convert double word to quadword. Sign extends EAX into EDX:EAX.
	clc();
	Clear Carry.
	cld();
	Clear direction flag. When the direction flag is clear the string instructions increment ESI and/...
	cli();
	Clear the interrupt enable flag.
	cmc();
	Complement (invert) Carry.
	cmova(mem, reg);
	cmova(reg, reg);
	cmova(reg, mem);
	Conditional Move (if above). Copies the source operand to the destination operand if the previous...
	cmovae(mem, reg);
	cmovae(reg, reg);
	cmovae(reg, mem);
	Conditional move if above or equal (see cmova for details).
	cmovb(mem, reg);
	cmovb(reg, reg);
	cmovb(reg, mem);
	Conditional move if below (see cmova for details).
	cmovbe(mem, reg);
	cmovbe(reg, reg);
	cmovbe(reg, mem);
	Conditional move if below or equal (see cmova for details).
	cmovc(mem, reg);
	cmovc(reg, reg);
	cmovc(reg, mem);
	Conditional move if carry set (see cmova for details).
	cmove(mem, reg);
	cmove(reg, reg);
	cmove(reg, mem);
	Conditional move if equal (see cmova for details).
	cmovg(mem, reg);
	cmovg(reg, reg);
	cmovg(reg, mem);
	Conditional move if (signed) greater (see cmova for details).
	cmovge(mem, reg);
	cmovge(reg, reg);
	cmovge(reg, mem);
	Conditional move if (signed) greater or equal (see cmova for details).
	cmovl(mem, reg);
	cmovl(reg, reg);
	cmovl(reg, mem);
	Conditional move if (signed) less than (see cmova for details).
	cmovle(mem, reg);
	cmovle(reg, reg);
	cmovle(reg, mem);
	Conditional move if (signed) less than or equal (see cmova for details).
	cmovna(mem, reg);
	cmovna(reg, reg);
	cmovna(reg, mem);
	Conditional move if (unsigned) not greater (see cmova for details).
	cmovnae(mem, reg);
	cmovnae(reg, reg);
	cmovnae(reg, mem);
	Conditional move if (unsigned) not greater or equal (see cmova for details).
	cmovnb(mem, reg);
	cmovnb(reg, reg);
	cmovnb(reg, mem);
	Conditional move if (unsigned) not less than (see cmova for details).
	cmovnbe(mem, reg);
	cmovnbe(reg, reg);
	cmovnbe(reg, mem);
	Conditional move if (unsigned) not less than or equal (see cmova for details).
	cmovnc(mem, reg);
	cmovnc(reg, reg);
	cmovnc(reg, mem);
	Conditional move if no carry/carry clear (see cmova for details).
	cmovne(mem, reg);
	cmovne(reg, reg);
	cmovne(reg, mem);
	Conditional move if not equal (see cmova for details).
	cmovng(mem, reg);
	cmovng(reg, reg);
	cmovng(reg, mem);
	Conditional move if (signed) not greater (see cmova for details).
	cmovnge(mem, reg);
	cmovnge(reg, reg);
	cmovnge(reg, mem);
	Conditional move if (signed) not greater or equal (see cmova for details).
	cmovnl(mem, reg);
	cmovnl(reg, reg);
	cmovnl(reg, mem);
	Conditional move if (signed) not less than (see cmova for details).
	cmovnle(mem, reg);
	cmovnle(reg, reg);
	cmovnle(reg, mem);
	Conditional move if (signed) not less than or equal (see cmova for details).
	cmovno(mem, reg);
	cmovno(reg, reg);
	cmovno(reg, mem);
	Conditional move if no overflow / overflow flag = 0 (see cmova for details).
	cmovnp(mem, reg);
	cmovnp(reg, reg);
	cmovnp(reg, mem);
	Conditional move if no parity / parity flag = 0 / odd parity (see cmova for details).
	cmovns(mem, reg);
	cmovns(reg, reg);
	cmovns(reg, mem);
	Conditional move if no sign / sign flag = 0 (see cmova for details).
	cmovnz(mem, reg);
	cmovnz(reg, reg);
	cmovnz(reg, mem);
	Conditional move if not zero (see cmova for details).
	cmovo(mem, reg);
	cmovo(reg, reg);
	cmovo(reg, mem);
	Conditional move if overflow / overflow flag = 1 (see cmova for details).
	cmovp(mem, reg);
	cmovp(reg, reg);
	cmovp(reg, mem);
	Conditional move if parity flag = 1 (see cmova for details).
	cmovpe(mem, reg);
	cmovpe(reg, reg);
	cmovpe(reg, mem);
	Conditional move if even parity / parity flag = 1(see cmova for details).
	cmovpo(mem, reg);
	cmovpo(reg, reg);
	cmovpo(reg, mem);
	Conditional move if odd parity / parity flag = 0 (see cmova for details).
	cmovs(mem, reg);
	cmovs(reg, reg);
	cmovs(reg, mem);
	Conditional move if sign flag = 1 (see cmova for details).
	cmovz(mem, reg);
	cmovz(reg, reg);
	cmovz(reg, mem);
	Conditional move if zero flag = 1 (see cmova for details).
	cmp(imm, reg);
	cmp(imm, mem);
	cmp(reg, reg);
	cmp(reg, mem);
	cmp(mem, reg);
	Compare. Compares the first operand against the second operand. The two operands must be the same...
	cmpsb();
	repe.cmpsb();
	repne.cmpsb();
	Compare string of bytes. Compares the byte pointed at byte ESI with the byte pointed at by EDI an...
	cmpsw()
	repe.cmpsw();
	repne.cmpsw();
	Compare a string of words. Like cmpsb except this instruction compares words rather than bytes an...
	cmpsd()
	repe.cmpsd();
	repne.cmpsd();
	Compare a string of double words. Like cmpsb except this instruction compares double words rather...
	cmpxchg(reg, mem);
	cmpxchg(reg, reg);
	Reg and mem must be the same size. They can be eight, 16, or 32 bit objects. This instruction com...
	cmpxchg8b(mem64);
	Compares the 64-bit value in EDX:EAX with the memory operand. If the values are equal, then this ...
	cpuid();
	CPU Identification. This instruction identifies various features found on the different Pentium p...
	cwd();
	Convert Word to Double. Sign extends AX to DX:AX.
	cwde();
	Convert Word to Double Word Extended. Sign extends AX to EAX.
	daa();
	Decimal Adjust after Addition. Adjusts value in AL after a decimal addition.
	das();
	Decimal Adjust after Subtraction. Adjusts value in AL after a decimal subtraction.
	dec(reg);
	dec(mem);
	Decrement. Subtracts one from the destination memory location or register.
	div(reg);
	div(reg8, ax);
	div(reg16, dx:ax);
	div(reg32, edx:eax);
	div(mem);
	div(mem8, ax);
	div(mem16, dx:ax);
	div(mem32, edx:eax);
	div(imm8, ax);
	div(imm16, dx:ax);
	div(imm32, edx:eax);
	Divides accumulator or extended accumulator (dx:ax or edx:eax) by the source operand. Note that t...
	This instruction performs an unsigned division.
	enter(imm16, imm8);
	Enter a procedure. Creates an activation record for a procedure. The first constant specifies the...
	idiv(reg);
	idiv(reg8, ax);
	idiv(reg16, dx:ax);
	idiv(reg32, edx:eax);
	idiv(mem);
	idiv(mem8, ax);
	idiv(mem16, dx:ax);
	idiv(mem32, edx:eax);
	idiv(imm8, ax);
	idiv(imm16, dx:ax);
	idiv(imm32, edx:eax);
	Divides accumulator or extended accumulator (dx:ax or edx:eax) by the source operand. Note that t...
	This instruction performs a signed division. The condition code bits are undefined after executin...
	imul(reg);
	imul(reg8, al);
	imul(reg16, ax);
	imul(reg32, eax);
	imul(mem);
	imul(mem8, al);
	imul(mem16, ax);
	imul(mem32, eax);
	imul(imm8, al);
	imul(imm16, ax);
	imul(imm32, eax);
	Multiplies the accumulator (AL, AX, or EAX) by the source operand. The source operand will be the...
	This instruction performs a signed multiplication. Also see INTMUL.
	This instruction sets the carry and overflow flag if the H.O. portion of the result (AH, DX, EDX)...
	in(imm8, al);
	in(imm8, ax);
	in(imm8, eax);
	in(dx, al);
	in(dx, ax);
	in(dx, eax);
	Input data from a port. These instructions read a byte, word, or double word from an input port a...
	inc(reg);
	inc(mem);
	Increment. Adds one to the specified memory or register operand. Does not affect the carry flag. ...
	int(imm8);
	Call an interrupt service routine specified by the immediate operand. Note that Windows does not ...
	intmul(imm, reg);
	intmul(imm, reg, reg);
	intmul(imm, mem, reg);
	intmul(reg, reg);
	intmul(mem, reg);
	Integer mutiply. Multiplies the destination (last) operand by the source operand (if there are on...
	This instruction computes a signed product. This instruction sets the overflow and carry flags if...
	into();
	Raises an exception if the overflow flag is set. Note: the HLA pseudo-variable “@into” controls t...
	iret();
	Return from an interrupt. This instruction is not generally usable from an application program. I...
	ja label;
	Conditional jump if (unsigned) above. You would generally use this instruction immediately after ...
	jae label;
	Conditional jump if (unsigned) above or equal. See JA above for details.
	jb label;
	Conditional jump if (unsigned) below. See JA above for details.
	jbe label;
	Conditional jump if (unsigned) below or equal. See JA above for details.
	jc label;
	Conditional jump if carry is one. See JA above for details.
	je label;
	Conditional jump if equal. See JA above for details.
	jg label;
	Conditional jump if (signed) greater. See JA above for details.
	jge label;
	Conditional jump if (signed) greater or equal. See JA above for details.
	jl label;
	Conditional jump if (signed) less than. See JA above for details.
	jle label;
	Conditional jump if (signed) less than or equal. See JA above for details.
	jna label;
	Conditional jump if (unsigned) not above. See JA above for details.
	jnae label;
	Conditional jump if (unsigned) not above or equal. See JA above for details.
	jnb label;
	Conditional jump if (unsigned) below. See JA above for details.
	jnbe label;
	Conditional jump if (unsigned) below or equal. See JA above for details.
	jnc label;
	Conditional jump if carry flag is clear (no carry). See JA above for details.
	jne label;
	Conditional jump if not equal. See JA above for details.
	jng label;
	Conditional jump if (signed) not greater. See JA above for details.
	jnge label;
	Conditional jump if (signed) not greater or equal. See JA above for details.
	jnl label;
	Conditional jump if (signed) not less than. See JA above for details.
	jnle label;
	Conditional jump if (signed) not less than or equal. See JA above for details.
	jno label;
	Conditional jump if no overflow (overflow flag = 0). See JA above for details.
	jnp label;
	Conditional jump if no parity/parity odd (parity flag = 0). See JA above for details.
	jns label;
	Conditional jump if no sign (sign flag = 0). See JA above for details.
	jnz label;
	Conditional jump if not zero (zero flag = 0). See JA above for details.
	jo label;
	Conditional jump if overflow (overflow flag = 1). See JA above for details.
	jp label;
	Conditional jump if parity (parity flag = 1). See JA above for details.
	jpe label;
	Conditional jump if parity even (parity flag = 1). See JA above for details.
	jpo label;
	Conditional jump if parity odd (parity flag = 0). See JA above for details.
	js label;
	Conditional jump if sign (sign flag = 0). See JA above for details.
	jz label;
	Conditional jump if zero (zero flag = 0). See JA above for details.
	jcxz label;
	Conditional jump if CX is zero. See JA above for details. Note: the range of this branch is limit...
	jecxz label;
	Conditional jump if ECX is zero. See JA above for details. Note: the range of this branch is limi...
	jmp label;
	jmp(label);
	jmp ProcedureName;
	jmp(mem32);
	jmp(reg32);
	Jump Instruction. This instruction unconditionally transfers control to the specified destination...
	Note: you should execise great care when jumping to a procedure label. The JMP instruction does n...
	lahf();
	Load AH from FLAGs. This instruction loads the AH register with the L.O. eight bits of the FLAGs ...
	lea(reg32, mem);
	lea(mem, reg32);
	Load Effective Address. These instructions, which are both semantically identical, load the 32-bi...
	leave();
	Leave procedure. This instruction cleans up the activation record for a procedure prior to return...
	lock prefix
	The lock prefix assets a special pin on the processor during the execution of the following instr...
	ADD, ADC, AND BTC, BTR, BTS, CMPXCHG, DEC, INC NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG. Furth...
	HLA does not directly support the LOCK prefix on these instructions (if it did, you would normall...
	To use this macro, simply precede the instruction you wish to lock with an invocation of the macr...
	Note that a LOCK prefix will dramatically slow an instruction down since it must access main memo...
	lodsb();
	Load String Byte. Loads AL with the byte whose address appears in ESI. Then it increments or decr...
	lodsw();
	Load String Word. Loads AX from [ESI] and adds ±2 to ESI. See LODSB for more details.
	loadsd();
	Load String Double Word. Loads EAX from [ESI] and adds ±4 to ESI. See LODSB for more details.
	loop label;
	Decrements ECX and jumps to the target label if ECX is not zero. See JA for more details. Like JE...
	loope label;
	Check the zero flag, decrement ECX, and branch if the zero flag was set and ECX did not become ze...
	loopne label;
	Check the zero flag, decrement ECX, and branch if the zero flag was clear and ECX did not become ...
	loopnz label;
	Same instruction at LOOPNE.
	loopz label;
	Same instruction as LOOPZ.
	mov(imm, reg);
	mov(imm, mem);
	mov(reg, reg);
	mov(reg, mem);
	mov(mem, reg);
	mov(mem16, mem16);
	mov(mem32, mem32);
	Move. Copies the data from the source (first) operand to the destination (second) operand. The op...
	movsb();
	rep.movsb();
	Move string of bytes. Copies the byte pointed at byte ESI to the byte pointed at by EDI and then ...
	movsw();
	rep.movsw();
	Move string of words. Like MOVSB above except it copies words and adjusts ESI/EDI by ±2.
	movsd();
	rep.movsd();
	Move string of words. Like MOVSB above except it copies double words and adjusts ESI/EDI by ±4.
	movsx(reg, reg);
	movsx(mem, reg);
	Move with sign extension. Copies the (smaller) source operand to the (larger) destination operand...
	movzx(reg, reg);
	movzx(mem, reg);
	Move with zero extension. Copies the (smaller) source operand to the (larger) destination operand...
	mul(reg);
	mul(reg8, al);
	mul(reg16, ax);
	mul(reg32, eax);
	mul(mem);
	mul(mem8, al);
	mul(mem16, ax);
	mul(mem32, eax);
	mul(imm8, al);
	mul(imm16, ax);
	mul(imm32, eax);
	Multiplies the accumulator (AL, AX, or EAX) by the source operand. The source operand will be the...
	This instruction performs a signed multiplication. Also see INTMUL. The carry and overflow flags ...
	neg(reg);
	neg(mem);
	Negate. Computes the two’s complement of the operand and leaves the result in the operand. This i...
	nop();
	No Operation. Consumes space and time but does nothing else. Same instruction as “xchg(eax, eax);”
	not(reg);
	not(mem);
	Bitwise NOT. Inverts all the bits in its operand. Note: this instruction does not affect any flags.
	or(imm, reg);
	or(imm, mem);
	or(reg, reg);
	or(reg, mem);
	or(mem, reg);
	Bitwise OR. Logically ORs the source operand with the destination operand and leaves the result i...
	out(al, imm8);
	out(ax, imm8);
	out(eax, imm8);
	out(al, dx);
	out(ax, dx);
	out(eax, dx);
	Outputs the accumulator to the specified port. See the IN instruction for limitations under Win32.
	pop(reg);
	pop(mem);
	Pop a value off the stack. Operands must be 16 or 32 bits.
	popa();
	Pops all the 16-bit registers off the stack. The popping order is DI, SI, BP, SP, BX, DX, CX, AX.
	popad();
	Pops all the 32-bit registers off the stack. The popping order is EDI, ESI, EBP, ESP, EBX, EDX, E...
	popf();
	Pops the 16-bit FLAGS register off the stack. Note that in user (application) mode, this instruct...
	popfd();
	Pops the 32-bit EFLAGS register off the stack. Note that in user (application) mode, this instruc...
	push(reg);
	push(mem);
	Pushes the specified 16-bit or 32-bit register or memory location onto the stack. Note that you c...
	pusha();
	Pushes all the 16-bit general purpose registers onto the stack in the roder AX, CX, DX, BX, SP, B...
	pushad();
	Pushes all the 32-bit general purpose registers onto the stack in the roder EAX, ECX, EDX, EBX, E...
	pushd(imm);
	pushd(reg);
	pushd(mem);
	Pushes the 32-bit operand on to the stack. Generally used to push constants or anonymous variable...
	pushf();
	Pushes the value of the 16-bit FLAGS register onto the stack.
	pushfd();
	Pushes the value of the 32-bit FLAGS register onto the stack.
	pushw(imm);
	pushw(reg);
	pushw(mem);
	Pushes the 16-bit operand on to the stack. Generally used to push constants or anonymous variable...
	rcl(imm, reg);
	rcl(imm, mem);
	rcl(cl, reg);
	rcl(cl, mem);
	Rotate through carry, left. Rotates the destination (second) operand through the carry the number...
	rcr(imm, reg);
	rcr(imm, mem);
	rcr(cl, reg);
	rcr(cl, mem);
	Rotate through carry, right. Rotates the destination (second) operand through the carry the numbe...
	The carry flag contains the last bit shifted into it. The overflow flag, which is valid only when...
	rdtsc();
	Read Time Stamp Counter. Returns in EDX:EAX the number of clock cycles that have transpired since...
	ret();
	ret(imm16);
	Return from subroutine. Pops a return address off the stack and transfers control to that locatio...
	rol(imm, reg);
	rol(imm, mem);
	rol(cl, reg);
	rol(cl, mem);
	Rotate left. Rotates the destination (second) operand the number of bits specified by the first o...
	ror(imm, reg);
	ror(imm, mem);
	ror(cl, reg);
	ror(cl, mem);
	Rotate right. Rotates the destination (second) operand the number of bits specified by the first ...
	sahf();
	Store AH into FLAGs. Copies the value in AH into the L.O. eight bits of the FLAGs register. Note ...
	Bit #7 of AH goes into the Sign flag, bit #6 goes into the zero flag, bit #4 goes into the auxila...
	sal(imm, reg);
	sal(imm, mem);
	sal(cl, reg);
	sal(cl, mem);
	Shift Arithmetic Left. Same instruction as SHL. See SHL for details.
	sar(imm, reg);
	sar(imm, mem);
	sar(cl, reg);
	sar(cl, mem);
	Shift Arithmetic Right. Shifts the destination (second) operand to the right the specified number...
	sbb(imm, reg);
	sbb(imm, mem);
	sbb(reg, reg);
	sbb(reg, mem);
	sbb(mem, reg);
	Subtract with borrow. Subtracts the source (first) operand and the carry from the destination (se...
	scasb();
	repe.scasb();
	repne.scasb();
	Scan string byte. Compares the value in AL against the byte that EDI points at and sets the flags...
	scasw();
	repe.scasw();
	repne.scasw();
	Scan String Word. Compares the value in AX against the word that EDI points at and set the flags....
	scasd();
	repe.scasd();
	repne.scasd();
	Scan String Double word. Compares the value in EAX against the double word that EDI points at and...
	seta(reg);
	seta(mem);
	Conditional set if (unsigned) above (Carry=0 and Zero=0). Stores a one in the destination operand...
	setae(reg);
	setae(mem);
	Conditional set if (unsigned) above or equal (Carry=0). See SETA for details.
	setb(reg);
	setb(mem);
	Conditional set if (unsigned) below (Carry=1). See SETA for details.
	setbe(reg);
	setbe(mem);
	Conditional set if (unsigned) below or equal (Carry=1 or Zero=1). See SETA for details.
	setc(reg);
	setc(mem);
	Conditional set if carry set (Carry=1). See SETA for details.
	sete(reg);
	sete(mem);
	Conditional set if equal (Zero=1). See SETA for details.
	setg(reg);
	setg(mem);
	Conditional set if (signed) greater (Sign=Overflow and Zero=0). See SETA for details.
	setge(reg);
	setge(mem);
	Conditional set if (signed) greater or equal (Sign=Overflow or Zero=1). See SETA for details.
	setl(reg);
	setl(mem);
	Conditional set if (signed) less than (Sign<>Overflow). See SETA for details.
	setle(reg);
	setle(mem);
	Conditional set if (signed) less than or equal (Sign<>Overflow or Zero = 1). See SETA for details.
	setna(reg);
	setna(mem);
	Conditional set if (unsigned) not above (Carry=1 or Zero=1). See SETA for details.
	setnae(reg);
	setnae(mem);
	Conditional set if (unsigned) not above or equal (Carry=1). See SETA for details.
	setnb(reg);
	setnb(mem);
	Conditional set if (unsigned) not below (Carry=0). See SETA for details.
	setnbe(reg);
	setnbe(mem);
	Conditional set if (unsigned) not below or equal (Carry=0 and Zero=0). See SETA for details.
	setnc(reg);
	setnc(mem);
	Conditional set if carry clear (Carry=0). See SETA for details.
	setne(reg);
	setne(mem);
	Conditional set if not equal (Zero=0). See SETA for details.
	setng(reg);
	setng(mem);
	Conditional set if (signed) not greater (Sign<>Overflow or Zero = 1). See SETA for details.
	setnge(reg);
	setnge(mem);
	Conditional set if (signed) not greater than (Sign<>Overflow). See SETA for details.
	setnl(reg);
	setnl(mem);
	Conditional set if (signed) not less than (Sign=Overflow or Zero=1). See SETA for details.
	setnle(reg);
	setnle(mem);
	Conditional set if (signed) not less than or equal (Sign=Overflow and Zero=0). See SETA for details.
	setno(reg);
	setno(mem);
	Conditional set if no overflow (Overflow=0). See SETA for details.
	setnp(reg);
	setnp(mem);
	Conditional set if no parity (Parity=0). See SETA for details.
	setns(reg);
	setns(mem);
	Conditional set if no sign (Sign=0). See SETA for details.
	setnz(reg);
	setnz(mem);
	Conditional set if not zero (Zero=0). See SETA for details.
	seto(reg);
	seto(mem);
	Conditional set if Overflow (Overflow=1). See SETA for details.
	setp(reg);
	setp(mem);
	Conditional set if Parity (Parity=1). See SETA for details.
	setpe(reg);
	setpe(mem);
	Conditional set if Parity even (Parity=1). See SETA for details.
	setpo(reg);
	setpo(mem);
	Conditional set if Parity odd (Parity=0). See SETA for details.
	sets(reg);
	sets(mem);
	Conditional set if sign set(Sign=1). See SETA for details.
	setz(reg);
	setz(mem);
	Conditional set if zero (Zero=1). See SETA for details.
	shl(imm, reg);
	shl(imm, mem);
	shl(cl, reg);
	shl(cl, mem);
	Shift left. Shifts the destination (second) operand to the left the number of bit positions speci...
	shld(imm8, reg, reg);
	shld(imm8, reg, mem);
	shld(cl, reg, reg);
	shld(cl, reg, mem);
	Shift Left Double precision. The first operand is a bit count. The second operand is a source and...
	shr(imm, reg);
	shr(imm, mem);
	shr(cl, reg);
	shr(cl, mem);
	Shift right. Shifts the destination (second) operand to the right the number of bit positions spe...
	shrd(imm8, reg, reg);
	shrd(imm8, reg, mem);
	shrd(cl, reg, reg);
	shrd(cl, reg, mem);
	Shift Right Double precision. The first operand is a bit count. The second operand is a source an...
	stc();
	Set Carry. Sets the carry flag to one.
	std();
	Set Direction. Sets the direction flag to one. If the direction flag is one, the string instructi...
	sti();
	Set interrupt enable flag. Generally this instruction is not usable in user (application) mode. I...
	stosb();
	rep.stosb();
	Store String Byte. Stores the value in AL at the location whose address EDI contains. Then in add...
	stosw();
	rep.stosw();
	Store String Word. Stores the value in AX at location [EDI] and then adds ±2 to EDI. See STOSB fo...
	stosd();
	rep.stosd();
	Store String Double word. Stores the value in EAX at location [EDI] and then adds ±4 to EDI. See ...
	sub(imm, reg);
	sub(imm, mem);
	sub(reg, reg);
	sub(reg, mem);
	sub(mem, reg);
	Subtract. Subtracts the first operand from the second operand and leaves the difference in the de...
	test(imm, reg);
	test(imm, mem);
	test(reg, reg);
	test(reg, mem);
	test(mem, reg);
	Test operands. Logically ANDs the two operands together and sets the flags but does not store the...
	xadd(mem, reg);
	xadd(reg, reg);
	Adds the first operand to the second operand and then stores the original value of the second ope...
	This instruction sets the flags in a manner identical to the ADD instruction.
	xchg(reg, reg);
	xchg(reg, mem);
	xchg(mem, reg);
	Swaps the values in the two operands which must be the same size. Does not affect any flags.
	xlat();
	Translate. Computes AL := [EBX + AL]; That is, it uses the value in AL as an index into a lookup ...
	xor(imm, reg);
	xor(imm, mem);
	xor(reg, reg);
	xor(reg, mem);
	xor(mem, reg);
	Exclusive-OR. Logically XORs the source operand with the destination operand and leaves the resul...
	Table 2: Floating Point Instruction Set

	f2xm1();
	Compute 2x-1 in ST0, leaving the result in ST0.
	fabs();
	Computes the absolute value of ST0.
	fadd(mem);
	fadd(sti, st0);
	fadd(st0, sti);
	Add operand to st0 or add st0 to destination register (sti, i=0..7). If the operand is a memory o...
	faddp();
	faddp(st0, sti);
	With no operands, this instruction adds st0 to st1 and then pops st0 off the FPU stack.
	fbld(mem80);
	This instruction loads a ten-byte (80-bit) packed BCD value from memory and converts it to a real...
	fbstp(mem80);
	This instruction pops the real80 object off the top of the FPU stack, converts it to an 80-bit BC...
	fchs();
	This instruction negates the floating point value on the top of the stack (st0).
	fclex();
	This instruction clears the floating point exception flags.
	fcmova(sti, st0);
	Floating point conditional move if above. Copies sti to st0 if c=0 and z=0 (unsigned greater than...
	fcmovae(sti, st0);
	Floating point conditional move if above or equal. Copies sti to st0 if c=0 (unsigned greater or ...
	fcmovb(sti, st0);
	Floating point conditional move if below. Copies sti to st0 if c=1 (unsigned less than after a CMP).
	fcmovbe(sti, st0);
	Floating point conditional move if below or equal. Copies sti to st0 if c=1 or z=1 (unsigned less...
	fcmove(sti, st0);
	Floating point conditional move if equal. Copies sti to st0 if z=1 (equal after a CMP).
	fcmovna(sti, st0);
	Floating point conditional move if not above. Copies sti to st0 if c=1 or z=1 (unsigned not above...
	fcmovnae(sti, st0);
	Floating point conditional move if not above or equal. Copies sti to st0 if c=1 (unsigned not abo...
	fcmovnb(sti, st0);
	Floating point conditional move if not below. Copies sti to st0 if c=0 (unsigned not below after ...
	fcmovnbe(sti, st0);
	Floating point conditional move if not below or equal. Copies sti to st0 if c=0 and z=0 (unsigned...
	fcmovne(sti, st0);
	Floating point conditional move if not equal. Copies sti to st0 if z=0 (not equal after a CMP).
	fcmovnu(sti, st0);
	Floating point conditional move if not unordered. Copies sti to st0 if the last floating point co...
	fcmovu(sti, st0);
	Floating point conditional move if not unordered. Copies sti to st0 if the last floating point co...
	fcom();
	fcom(mem);
	fcom(st0, sti);
	Compares the value of ST0 with the operand and sets the floating point condition bits based on th...
	fcomi(st0, sti);
	Compares the value of ST0 with the second operand and sets the appropriate bits in the FLAGs regi...
	fcomip(st0, sti);
	Compares the value of ST0 with the second operand, sets the appropriate bits in the FLAGs registe...
	fcomp();
	fcomp(mem);
	fcomp(sti);
	Compares the value of ST0 with the operand, sets the floating point status bits, and then pops ST...
	fcompp();
	Compares ST0 to ST1 and then pops both values off the stack. Leaves the result of the comparison ...
	fcos();
	Computes ST0 = cos(ST0).
	fdecstp();
	Rotates the items on the FPU stack.
	fdiv(mem);
	fdiv(sti, st0);
	fdiv(st0, sti);
	Floating point division. If a memory operand is present, it must be a real32 or real64 object; FD...
	fdivp();
	fdivp(sti);
	With no operands, this instruction divides ST1 by ST0, pops ST0, and replaces the new top of stac...
	fdivr(mem);
	fdivr(sti, st0);
	fdivr(st0, sti);
	Floating point divide with reversed operands. Like FDIV, but computes operand/ST0 rather than ST0...
	fdivrp();
	fdivrp(sti);
	Floating point divide and pop, reversed. Like FDIVP except it computes operand/ST0 rather than ST...
	ffree(sti);
	Frees the specified floating point register.
	fiadd(mem);
	Memory operand must be a 16-bit or 32-bit signed integer. This instruction converts the integer t...
	ficom(mem);
	Floating point compare to integer. Memory operand must be an int16 or int32 object. This instruct...
	ficomp(mem);
	Floating point compare to integer and pop. Memory operand must be an int16 or int32 object. This ...
	fidiv(mem);
	Floating point divide by integer. Memory operand must be an int16 or int32 object. These instruct...
	fidivr(mem);
	Floating point divide by integer, reversed. Like FIDIV above, except this instruction computes me...
	fild(mem);
	Floating point load integer. Mem operand must be an int16 or int32 object. This instructions conv...
	fimul(mem);
	Floating point multiply by integer. Converts int16 or int32 operand to a real80 value and multipl...
	fincstp();
	Rotates the registers on the FPU stack.
	finit();
	Initializes the FPU for use.
	fist(mem);
	Converts ST0 to an integer and stores the result in the specified memory operand. Memory operand ...
	fistp(mem);
	Floating point integer store and pop. Pops ST0 value off the stack, converts it to an integer, an...
	fisub(mem);
	Floating point subtract integer. Converts int16 or int32 operand to a real80 value and subtracts ...
	fisubr(mem);
	Floating point subtract integer, reversed. Like FISUB except this instruction compute mem-ST0 rat...
	fld(mem);
	fld(sti);
	Floating point load. Loads (pushes) the specified operand onto the FPU stack. Memory operands mus...
	fld1();
	Floating point load 1.0. This instruction pushes 1.0 onto the FPU stack.
	fldcw(mem16);
	Load floating point control word. This instruction copies the word operand into the floating poin...
	fldenv(mem28);
	This instruction loads the FPU status from the block of 28 bytes specified by the operand. Genera...
	fldl2e();
	Floating point load constant. Loads log2(e) onto the stack.
	fldl2t();
	Floating point load constant. Loads log2(10) onto the stack.
	fldlg2();
	Floating point load constant. Loads log10(2) onto the stack.
	fldln2();
	Floating point load constant. Loads loge(2) onto the stack.
	fldpi();
	Floating point load constant. Loads the value of pi (¹) onto the stack.
	fldz();
	Floating point load constant. Pushes the value 0.0 onto the stack.
	fmul(mem);
	fmul(sti, st0);
	fmul(st0, sti);
	Floating point multiply. If the operand is a memory operand, it must be a real32 or real64 value;...
	fmulp();
	fmulp(st0, sti);
	Floating point multiply and pop. With no operands this instruction computes ST1:=ST0*ST1 and then...
	fnop();
	Floating point no-operation.
	fpatan();
	Floating point partial arctangent. Computes ATAN(ST1/ST0), pops ST0, and then stores the result...
	fprem();
	Floating point remainder. This instruction is retained for compatibility with older programs. Use...
	fprem1();
	Floating point partial remainder. This instruction computes the remainder obtained by dviding ST0...
	fptan();
	Floating point partial tangent. This instruction computes TAN(ST0) and replaces the value in ST...
	frndint();
	Floating point round to integer. This instruction rounds the value in ST0 to an integer using the...
	frstor(mem108);
	Restores the FPU status from a 108-byte memory block.
	fsave(mem108);
	Writes the FPU status to a 108-bye memory block.
	fscale();
	Floating point scale by power of two. ST1 contains a scaling value. This instruction multiplies S...
	fsin();
	Floating point sine. Replaces ST0 with sin(ST0).
	fsincos();
	Simultaneously computes the sin and cosine values of ST0. Replaces ST0 with the sine of ST0 and t...
	fsqrt();
	Floating point square root. Replaces ST0 with the square root of ST0.
	fst(mem);
	fst(sti);
	Floating point store. Stores a copy of ST0 in the destination operand. Memory operands must be re...
	fstcw(mem16);
	Floating point store control word. Stores a copy of the floating point control word in the specif...
	fstenv(mem28);
	Floating point store FPU environment. Stores a copy of the 28-byte floating point environment in ...
	fstp(mem);
	fstp(sti);
	Floating point store and pop. Stores ST0 into the destination operand and then pops ST0 off the s...
	fstsw(ax);
	fstsw(mem16);
	Stores a copy of the 16-bit floating point status register into the specified word operand. Note ...
	fsub(mem);
	fsub(st0, sti);
	fsub(sti, st0);
	Floating point subtract. With a single memory operand (which must be a real32 or real64 object), ...
	fsubp();
	fsubp(st0, sti);
	Floating point subtract and pop. With no operands, this instruction computes ST1 := ST0 - ST1 and...
	fsubr(mem);
	fsubr(st0, sti);
	fsubr(sti, st0);
	Floating point subtract, reversed, With a real32 or real64 memory operand, this instruction compu...
	fsubrp();
	fsubrp(st0, sti);
	Floating point subtract and pop, reversed. With no operands, this instruction computes ST1 := ST0...
	ftst();
	Floating point test against zero. Compares ST0 with 0.0 and sets the floating point condition cod...
	fucom(sti);
	fucom();
	Floating point unordered comparison. With no operand, this instruction compares ST0 to ST1. With ...
	fucomi(sti, st0);
	Floating point unordered comparison.
	fucomp();
	fucomp(sti);
	Floating point unorder comparison and pop. With no operands, compares ST0 to ST1 using an unorder...
	fucompp();
	fucompp(sti);
	Floating point unordered compare and double pop. Compares ST0 to ST1, sets the condition code bit...
	fwait();
	Floating point wait. Waits for current FPU operation to complete. Generally an obsolete instructi...
	fxam();
	Floating point Examine ST0. Checks the value in ST0 and sets the condition code bits according to...
	fxch();
	fxch(sti);
	Floating point exchange. With no operands this instruction exchanges ST0 and ST1 on the FPU stack...
	fxtract();
	Floating point exponent/mantissa extraction. This instruction breaks the value in ST0 into two pi...
	fyl2x();
	Floating point partial logarithm computation. Computes ST1 := ST1 * log2(ST0); and then pops ST0.
	fyl2xp1();
	Floating point partial logarithm computation. Computes ST1 := ST1 * log2(ST0 + 1.0) and then po...
	Table 3: MMX Instruction Set

	emms();
	Empty MMX State. You must execute this instruction when you are finished using MMX instructions a...
	movd(reg32, mmi);
	movd(mem32, mmi);
	movd(mmi, reg32);
	movd(mmi, mem32);
	Moves data between a 32-bit integer register or dword memory location and an MMX register (mm0..m...
	movq(mem64, mmi);
	movq(mmi, mem64);
	movq(mmi, mmi);
	This instruction moves 64 bits between an MMX register and a qword variable in memory or between ...
	packssdw(mem64, mmi);
	packssdw(mmi, mmi);
	Pack and saturate two signed double words from source and two signed double words from destinatio...
	packsswb(mem64, mmi);
	packsswb(mmi, mmi);
	Pack and saturate four signed words from source and four signed words from destination and store ...
	packusdw(mem64, mmi);
	packusdw(mmi, mmi);
	Pack and saturate two unsigned double words from source and two unsigned double words from destin...
	packuswb(mem64, mmi);
	packuswb(mmi, mmi);
	Pack and saturate four unsigned words from source and four unsigned words from destination and st...
	paddb(mem64, mmi);
	paddb(mmi, mmi);
	Packed Add of Bytes. This instruction adds together the individual bytes of the two operands. The...
	paddd(mem64, mmi);
	paddd(mmi, mmi);
	Packed Add of Double Words. This instruction adds together the individual dwords of the two opera...
	paddsb(mem64, mmi);
	paddsb(mmi, mmi);
	Packed Add of Bytes, signed saturated. This instruction adds together the individual bytes of the...
	paddsw(mem64, mmi);
	paddsw(mmi, mmi);
	Packed Add of Words, signed saturated. This instruction adds together the individual words of the...
	paddusb(mem64, mmi);
	paddusb(mmi, mmi);
	Packed Add of Bytes, unsigned saturated. This instruction adds together the individual bytes of t...
	paddusw(mem64, mmi);
	paddusw(mmi, mmi);
	Packed Add of Words, unsigned saturated. This instruction adds together the individual words of t...
	paddw(mem64, mmi);
	paddw(mmi, mmi);
	Packed Add of Words. This instruction adds together the individual words of the two operands. The...
	pand(mem64, mmi);
	pand(mmi, mmi);
	Packed AND. This instruction computes the bitwise AND of the source and the destination values, l...
	pandn(mem64, mmi);
	pandn(mmi, mmi);
	Packed AND NOT. This instruction makes a temporary copy of the first operand and inverts all of t...
	pavgb(mem64, mmi);
	pavgb(mmi, mmi);
	Packed Average of Bytes. This instruction computes the average of the eight pairs of bytes in the...
	pavgw(mem64, mmi);
	pavgw(mmi, mmi);
	Packed Average of Words. This instruction computes the average of the four pairs of words in the ...
	pcmpeqb(mem64, mmi);
	pcmpeqb(mmi, mmi);
	Packed Compare for Equal Bytes. This instruction compares the individual bytes in the two operand...
	pcmpeqd(mem64, mmi);
	pcmpeqd(mmi, mmi);
	Packed Compare for Equal Double Words. This instruction compares the individual double wordsin th...
	pcmpeqw(mem64, mmi);
	pcmpeqw(mmi, mmi);
	Packed Compare for Equal Words. This instruction compares the individual words in the two operand...
	pcmpgtb(mem64, mmi);
	pcmpgtb(mmi, mmi);
	Packed Compare for Greater Than, Bytes. This instruction compares the individual bytes in the two...
	pcmpgtd(mem64, mmi);
	pcmpgtd(mmi, mmi);
	Packed Compare for Greater Than, Double Words. This instruction compares the individual dwords in...
	pcmpgtw(mem64, mmi);
	pcmpgtw(mmi, mmi);
	Packed Compare for Greater Than,Words. This instruction compares the individual words in the two ...
	pextrw(imm8, mmi, reg32);
	Packed Extraction of a word. The imm8 value must be a constant in the range 0..3. This instructio...
	pinsw(imm8, reg32, mmi);
	Packed Insertion of a word. The imm8 value must be a constant in the range 0..3. This instruction...
	pmaddwd(mem64, mmi);
	pmaddwd(mmi, mmi);
	Packed Multiple and Accumulate (Add). This instruction multiplies together the corresponding word...
	pmaxw(mem64, mmi);
	pmaxw(mmi, mmi);
	Packed Signed Integer Word Maximum. This instruction compares the four words between the two oper...
	pmaxub(mem64, mmi);
	pmaxub(mmi, mmi);
	Packed Unsigned Byte Maximum. This instruction compares the eight bytes between the two operands ...
	pminw(mem64, mmi);
	pminw(mmi, mmi);
	Packed Signed Integer Word Minimum. This instruction compares the four words between the two oper...
	pminub(mem64, mmi);
	pminub(mmi, mmi);
	Packed Unsigned Byte Minimum. This instruction compares the eight bytes between the two operands ...
	pmovmskb(mmi, reg32);
	Move Byte Mask to Integer. This instruction creates a byte by extracting the H.O. bit of the eigh...
	pmulhuw(mem64, mmi);
	pmulhuw(mmi, mmi);
	Packed Multiply High, Unsigned Words. This instruction multiplies the four unsigned words of the ...
	pmulhw(mem64, mmi);
	pmulhw(mmi, mmi);
	Packed Multiply High, Signed Words. This instruction multiplies the four signed words of the two ...
	pmullw(mem64, mmi);
	pmullw(mmi, mmi);
	Packed Multiply Low, Signed Words. This instruction multiplies the four signed words of the two o...
	por(mem64, mmi);
	por(mmi, mmi);
	Packed OR. Computes the bitwise OR of the two operands and stores the result in the destination (...
	psadbw(mem64, mmi);
	psadbw(mmi, mmi);
	Packed Sum of Absolute Differences. This instruction computes the absolute value of the differenc...
	pshufw(imm8,mem64,mmi);
	Packed Shuffle Word. This instruction treats the imm8 value as an array of four two-bit values. T...
	pslld(mem, mmi);
	pslld(mmi, mmi);
	pslld(imm8, mmi);
	Packed Shift Left Logical, Double Words. This instruction shifts the destination (second) operand...
	psllq(mem, mmi);
	psllq(mmi, mmi);
	psllq(imm8, mmi);
	Packed Shift Left Logical, Quad Word. This instruction shifts the destination operand to the left...
	psllw(mem, mmi);
	psllw(mmi, mmi);
	psllw(imm8, mmi);
	Packed Shift Left Logical,Words. This instruction shifts the destination (second) operand to the ...
	psard(mem, mmi);
	psard(mmi, mmi);
	psard(imm8, mmi);
	Packed Shift Right Arithmetic, Double Word. This instruction treats the two halves of the 64-bit ...
	psarw(mem, mmi);
	psarw(mmi, mmi);
	psarw(imm8, mmi);
	Packed Shift Right Arithmetic, Word. This instruction operates independently on the four words of...
	psrld(mem, mmi);
	psrld(mmi, mmi);
	psrld(imm8, mmi);
	Packed Shift Right Logical, Double Words. This instruction shifts the destination (second) operan...
	pslrq(mem, mmi);
	pslrq(mmi, mmi);
	pslrq(imm8, mmi);
	Packed Shift Right Logical, Quad Word. This instruction shifts the destination operand to the rig...
	pslrw(mem, mmi);
	pslrw(mmi, mmi);
	pslrw(imm8, mmi);
	Packed Shift Right Logical,Words. This instruction shifts the destination (second) operand to the...
	psubb(mem64, mmi);
	psubb(mmi, mmi);
	Packed Subtract of Bytes. This instruction subtracts the individual bytes of the source (first) o...
	psubd(mem64, mmi);
	psubd(mmi, mmi);
	Packed Subtract of Double Words. This instruction subtracts the individual dwords of the source (...
	psubsb(mem64, mmi);
	psubsb(mmi, mmi);
	Packed Subtract of Bytes, signed saturated. This instruction subracts the individual bytes of the...
	psubsw(mem64, mmi);
	psubsw(mmi, mmi);
	Packed Subtract of Words, signed saturated. This instruction subracts the individual words of the...
	psubusb(mem64, mmi);
	psubusb(mmi, mmi);
	Packed Subtract of Bytes, unsigned saturated. This instruction subracts the individual bytes of t...
	psubusw(mem64, mmi);
	psubusw(mmi, mmi);
	Packed Subtract of Words, unsigned saturated. This instruction subracts the individual words of t...
	psubw(mem64, mmi);
	psubw(mmi, mmi);
	Packed Subtract of Words. This instruction subtracts the individual words of the source (first) o...
	punpckhbw(mem64, mmi);
	punpckhbw(mmi, mmi);
	Unpack high packed data, bytes to words. This instruction unpacks and interleaves the high-order ...
	punpckhdq(mem64, mmi);
	punpckhdq(mmi, mmi);
	Unpack high packed data, dwords to qword. This instruction copies the H.O. dword of the source op...
	punpckhwd(mem64, mmi);
	punpckhwd(mmi, mmi);
	Unpack high packed data, words to dwords. This instruction unpacks and interleaves the high-order...
	punpcklbw(mem64, mmi);
	punpcklbw(mmi, mmi);
	Unpack low packed data, bytes to words. This instruction unpacks and interleaves the low-order fo...
	punpckldq(mem64, mmi);
	punpckldq(mmi, mmi);
	Unpack low packed data, dwords to qword. This instruction copies the L.O. dword of the source ope...
	punpcklwd(mem64, mmi);
	punpcklwd(mmi, mmi);
	Unpack low packed data, words to dwords. This instruction unpacks and interleaves the low-order t...
	pxor(mem64, mmi);
	pxor(mmi, mmi);
	Packed Exclusive-OR. This instruction exclusive-ORs the source operand with the destination opera...

	The HLA Language Reference Appendix E
	The HLA Standard Library Reference Appendix F
	HLA Exceptions Appendix G
	HLA Compile-Time Functions Appendix H
	H.1 Conversion Functions
	Table 1: Compile-Time Data Conversion Functions
	boolean
	boolean(constExpr)
	ConstExpr can be a boolean, integer, character, or string operand.
	If constExpr is numeric, this function returns false for zero and true for any other value. For c...
	int8
	xxxx(constExpr)
	Note: xxxx represents one of the function names to the left.
	constExpr can be any constant expression that evaluates to a numeric, character, boolean, or stri...
	These functions will convert their operand to the specified data type. These functions generate a...
	For boolean operands, true returns one and false returns zero.
	If the operand is a real value, then these functions truncate the value to obtain the correspondi...
	For character operands, these function return the corresponding ASCII code of the character.
	For string operands, the string must be a legal sequence of characters that form a decimal number.
	int16
	int32
	uns8
	uns16
	uns32
	byte
	word
	dword
	real32
	xxxxxx(constExpr)
	Note: xxxxxx represents one of the function names to the left.
	constExpr can be any constant expression that evaluates to a numeric or string operand.
	These functions convert their specified operand to the corresponding real value. These functions ...
	real64
	real80
	char
	char(constExpr)
	constExpr must be a positive integer value, a character, or a string.
	If the parameter is an integer value, this function returns the character with that ASCII code. I...
	string
	string(constExpr)
	constExpr can be any legal constant data type.
	This function returns the string representation of the specified parameter. For real values, this...
	cset
	cset(constExpr)
	constExpr can be a character, string, or a cset.
	This function returns a character set containing the characters specified by the operand. If the ...
	text
	text(constExpr)
	constExpr: same as for string.
	This function takes the same parameters as the string function. Instead of returning a string con...
	@odd
	@odd(constExpr)
	constExpr must be an integer value.
	This function returns true if the integer operand is an odd number, it returns false otherwise.

	H.2 Numeric Functions
	Table 2: Numeric Compile-Time Functions
	@abs
	@abs(constExpr)
	constExpr must be a numeric value.
	Returns the absolute value of the parameter. The return type is the same as the parameter type.
	@byte
	@byte(Expr, select)
	Expr must be a 32-bit ordinal expression, a real expression (32, 64, or 80 bits), or a cset expre...
	select must be less than the size of Expr’s data type.
	This function exacts the specified byte from the value of Expr as selected via the select paramet...
	Note that HLA usually extends literal constants to the largest representation possible, e.g., HLA...
	@ceil
	@ceil(constExpr)
	constExpr must be a numeric value.
	If the parameter is an integer value, this function simply converts it to a real value and return...
	@cos
	@cos(constExpr)
	constExpr must be a numeric value expressing an angle in radians.
	This function returns the cosine of the specified parameter value.
	@exp
	@exp(constExpr)
	constExpr must be a numeric value.
	This function return e raised to the specified power.
	@floor
	@floor(constExpr)
	constExpr must be a numeric value.
	This function returns the largest integer value that is less than or equal to the numeric value p...
	@log
	@log(constExpr)
	constExpr is a non-negative numeric value.
	This function computes the natural (base e) logarithm of its operand.
	@log10
	@log10(constExpr)
	constExpr is a non-negative numeric value.
	This function computes the base-10 logarithm of its operand.
	@max
	@max(list)
	list is a list of two or more comma separated numeric expressions.
	This function returns the maximum of a set of numeric values. The values in the list must all be ...
	@min
	@min(list)
	list is a list of two or more comma separated numeric expressions.
	This function returns the minimum of a set of numeric values. The values in the list must all be ...
	@random
	@random(intExpr)
	intExpr must be a positive integer value.
	This function returns a pseudo-random number between zero and intExpr-1. Currently HLA uses the r...
	@randomize
	@randomize(intExpr)
	intExpr must be a positive integer value.
	This function attempts to "randomize" the random number generator seed. Then it returns a random ...
	@sin
	@sin(constExpr)
	constExpr must be a numeric value expressing an angle in radians.
	This function returns the sine of the specified parameter value.
	@sqrt
	@sqrt(constExpr)
	constExpr m ust be a non-negative numeric value.
	This function returns the square root of the specified operand value.
	@tan
	@tan(constExpr)
	constExpr must be a numeric value expressing an angle in radians.
	This function returns the tangent of the specified parameter value.

	H.3 Date/Time Functions
	Table 3: HLA Compile-Time Date/Time Functions
	@date
	@date
	This function returns a string specifying the current date. This string typically takes the form ...
	@time
	@time
	This function returns a string specifying the current time. This string typically takes the form ...

	H.4 Classification Functions
	Table 4: HLA Compile-Time Character Classification Functions.
	@isalpha
	@isalpha(constExpr)
	constExpr must be a character or a string expression.
	This function returns true if the character operand is an alphabetic character.
	If the parameter is a string, this function returns true if all characters in the string are alph...
	@isalphanum
	@isalphanum(constExpr)
	constExpr must be a character or a string expression.
	This function returns true if the character operand is an alphanumeric character.
	If the parameter is a string, this function returns true if all characters in the string are alph...
	@isdigit
	@isdigit(constExpr)
	constExpr must be a character or a string expression.
	This function returns true if the character operand is a decimal digit character.
	If the parameter is a string, this function returns true if all characters in the string are digits.
	@islower
	@islower(constExpr)
	constExpr must be a character or a string expression.
	This function returns true if the character operand is a lower case alphabetic character.
	If the parameter is a string, this function returns true if all characters in the string are lowe...
	@isspace
	@isspace(constExpr)
	constExpr must be a character or a string expression.
	This function returns true if the character operand is a space character.
	If the parameter is a string, this function returns true if all characters in the string are spaces.
	@isupper
	@isupper(constExpr)
	constExpr must be a character or a string expression.
	This function returns true if the character operand is an upper case alphabetic character.
	If the parameter is a string, this function returns true if all characters in the string are uppe...
	@isxdigit
	@isxdigit(constExpr)
	constExpr must be a character or a string expression.
	This function returns true if the character operand is a hexadecimal digit character {0-9, a-f, A...
	If the parameter is a string, this function returns true if all characters in the string are hexa...

	H.5 String and Character Set Functions
	Table 5: HLA Compile-Time String Functions
	@delete
	@delete(strExpr, start, len)
	strExpr must be a string expression.
	start and len must be positive integer expressions.
	This function returns a string consisting of the strExpr parameter with len characters removed st...
	@extract
	@extract(csetExpr)
	csetExpr must be a character set value.
	This function returns an arbitrary character from the specified character set. Note that this fun...
	val
	c := @extract(someSet);
	someSet := someSet - {c};
	@index
	@index(strExpr, start, findStr)
	strExpr and findStr must be string expressions.
	start must be a non-negative integer value.
	This function searches for the string specified by findStr within the strExpr string starting at ...
	@insert
	@insert(destStr, start, strToIns)
	destStr and strToIns must be string expressions.
	start must be a non-negative integer expression.
	This function returns a string consisting of the combination of the destStr and strToIns strings....
	@length
	@length(strExpr)
	strExpr must be a string expression.
	This function returns the length of the specified string as an integer result.
	@lowercase
	@lowercase(strExpr, start)
	strExpr must be a string expression.
	start must be a non-negative integer expression.
	This function translates all characters from position start to the end of the string to lower cas...
	@rindex
	@rindex(strExpr, start, findStr)
	strExpr and findStr must be string expressions.
	start must be a non-negative integer value.
	This function searches backwards to find the last occurrence of the string specified by findStr w...
	@strbrk
	@strbrk(strExpr, start, csetExpr)
	strExpr must be a string expression.
	start must be a non-negative integer expression.
	csetExpr must be a character set expression.
	Starting at position start within strExpr, this function searches for the first character of strE...
	@strset
	@strset(charExpr, len)
	charExpr must be a character value.
	len must be a non-negative integer value.
	This function returns the string consisting of len copies of charExpr concatenated together.
	@strspan
	@strspan(strExpr, start, csetExpr)
	strExpr must be a string expression.
	start must be a non-negative integer expression.
	csetExpr must be a character set expression.
	Starting at position start within strExpr, this function searches for the first character of strE...
	@substr
	@substr(strExpr, start, len)
	strExpr must be a string expression.
	start and len must be non-negative integer values.
	This function returns the sequence of len characters (the "substring") starting at position start...
	@tokenize
	@tokenize(strExpr, start, Delims, Quotes)
	strExpr must be a string expression.
	start must be a non-negative integer value.
	Delims and Quotes must be character set expressions.
	This function returns an array of strings consisting of the various substrings in strExpr obtaine...
	This "lexical scan" operation begins at position start in strExpr. The function first skips over ...
	The fourth parameter, Quotes, specifies special quoting characters. Typically, this character set...
	This function is unusual insofar as it returns an array constant as its result. Typically you wou...
	@trim
	@trim(strExpr)
	strExpr must be a string expression.
	This function returns the specified string operand with leading and trailing spaces removed.
	@uppercase
	@uppercase(strExpr)
	strExpr must be a string expression.
	The function returns a copy of its string operand with any lower case alphabetic characters conve...

	H.6 Pattern Matching Functions
	H.6.1 String/Cset Pattern Matching Functions
	Table 6: HLA Compile-time Cset Pattern Matching Functions

	@peekCset
	@peekCset(str, cset, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true if the first character of str is a member of cset; it returns false ot...
	If rem is present, this function copies str to rem upon return. If matched is present and the fun...
	@oneCset
	@oneCset(str, cset, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true if the first character of str is a member of cset; it returns false ot...
	If rem is present, this function copies all characters of str beyond the first character to rem u...
	@uptoCset
	@uptoCset(str, cset, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function copies all characters up to, but not including, a single character from the cset pa...
	@zeroOrOneCset
	@zeroOrOneCset(str, cset, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function always returns true. This function copies the single character it matches (if any) ...
	@exactlyNCset
	@exactlyNCset(str, cset, n, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	n must be a non-negative integer value.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true if the first n characters of str are members of cset. The character at...
	If this function returns true, it copies the first n characters of str to matched and copies any ...
	@firstNCset
	@firstNCset(str, cset, n, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	n must be a non-negative integer value.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true if the first n characters of str are members of cset. The character at...
	If this function returns true, it copies the first n characters of str to matched and copies any ...
	@nOrLessCset
	@nOrLessCset(str, cset, n, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	n must be a non-negative integer value.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function always returns true. This function matches up to the first n characters of str are ...
	If this function returns true, it copies the matching (up to n) characters of str to matched and ...
	@nOrMoreCset
	@nOrMoreCset(str, cset, n, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	n must be a non-negative integer value.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true if it matches at least n characters from str in cset.
	If rem and matched appear in the parameter list, this function will copy all characters it matche...
	@nToMCset
	@nToMCset(str, cset, n, m, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	n and m must be non-negative integer values.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true if there are at least n characters in cset at the beginning of str. If...
	@exactlyNToMCset
	@ExactlyNToMCset(str, cset, n, m, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	n and m must be non-negative integer values.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true if there are at least n characters in cset at the beginning of str. If...
	@zeroOrMoreCset
	@zeroOrMoreCset(str, cset, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function always returns true. If rem and matched are present, this function will copy all ch...
	@oneOrMoreCset
	@OneOrMoreCset(str, cset, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true if the first character of set is a member of cset. If rem and matched ...
	H.6.2 String/Character Pattern Matching Functions
	Table 7: HLA Compile-time Character Matching Functions

	@peekChar
	@peekChar(str, char, rem, matched)
	str must be a string expression.
	char must be a character expression.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true if the first character of str is equal to char. If rem and matched are...
	@oneChar
	@oneChar(str, char, rem, matched)
	str must be a string expression.
	char must be a character expression.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true if the first character of str is equal to char. If rem and matched are...
	@uptoChar
	@uptoChar(str, char, rem, matched)
	str must be a string expression.
	char must be a character expression.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true if the char exists somewhere in str. If rem and matched are present an...
	@zeroOrOneChar
	@zeroOrOneChar(str, char, rem, matched)
	str must be a string expression.
	char must be a character expression.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function always returns true. If rem and matched are present, it sets matched to the matched...
	@zeroOrMoreChar
	@zeroOrMoreChar(str, char, rem, matched)
	str must be a string expression.
	char must be a character expression.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function always returns true. If the first character of str does not match char, then this f...
	@oneOrMoreChar
	@oneOrMoreChar(str, char, rem, matched)
	str must be a string expression.
	char must be a character expression.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true if the first character in str is equal to char; otherwise it returns f...
	If this function returns true, it copies all leading occurrences of char into matched and any rem...
	@exactlyNChar
	@exactlyNChar(str, char, n, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	n must be a non-negative integer value.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true if the first n characters of str all match char. The n+1th character m...
	If this function returns true, it returns a string of n copies of char in matched and all remaini...
	@firstNChar
	@firstNChar(str, char, n, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	n must be a non-negative integer value.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true if the first n characters of str all match char. The n+1th character m...
	If this function returns true, it returns a string of n copies of char in matched and all remaini...
	@nOrLessChar
	@nOrLessChar(str, char, n, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	n must be a non-negative integer value.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true as long as str begins with n or fewer (including zero) copies of char....
	If this function returns true, it returns a string, in matched, containing all copies of char tha...
	@nOrMoreChar
	@nOrMoreChar(str, char, n, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	n must be a non-negative integer value.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true if str begins with at least n copies of char. It returns false otherwise.
	If this function returns true, then it returns the leading characters that match char in matched ...
	@nToMChar
	@nToMChar(str, char, n, m, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	n and m must be non-negative integer values.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function matches any string that has at least n copies of char at the beginning of str. It w...
	@exactlyNToMChar
	@exactlyNToMChar(str, char, n, m, rem, matched)
	str must be a string expression.
	cset must be a character set expression.
	n and m must be non-negative integer values.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function matches any string that has at least n copies of char at the beginning of str. It w...
	H.6.3 String/Case Insenstive Character Pattern Matching Functions
	Table 8: HLA Compile-time Case Insensitive Character Matching Functions

	@peekiChar
	@peekiChar(str, char, rem, matched)
	See @peekChar for details.
	Case insensitive version of @peekChar. See @peekChar for details.
	@oneiChar
	@oneiChar(str, char, rem, matched)
	See @oneChar for details.
	Case insensitive version of @oneChar. See @oneChar for details.
	@uptoiChar
	@uptoiChar(str, char, rem, matched)
	See @uptoChar for details.
	Case insensitive version of @uptoChar. See @uptoChar for details.
	@zeroOrOneiChar
	@zeroOrOneiChar(str, char, rem, matched)
	See @zeroOrOneChar for details.
	Case insensitive version of @zeroOrOneChar. See @zeroOrOneChar for details.
	@zeroOrMoreiChar
	@zeroOrMoreiChar(str, char, rem, matched)
	See @zeroOrMoreChar for details.
	Case insensitive version of @zeroOrMoreChar. See @zeroOrMoreChar for details.
	@oneOrMoreiChar
	@OneOrMoreiChar(str, char, rem, matched)
	See @OneOrMoreChar for details.
	Case insensitive version of @OneOrMoreChar. See @OneOrMoreChar for details.
	@exactlyNiChar
	@exactlyNiChar(str, char, n, rem, matched)
	See @exactlyNChar for details.
	Case insensitive version of @exactlyNChar. See @exactlyNChar for details.
	@firstNiChar
	@firstNiChar(str, char, n, rem, matched)
	See @firstNChar for details.
	Case insensitive version of @firstNChar. See @firstNChar for details.
	@nOrLessiChar
	@nOrLessiChar(str, char, n, rem, matched)
	See @nOrLessChar for details.
	Case insensitive version of @nOrLessChar. See @nOrLessChar for details.
	@nOrMoreiChar
	@nOrMoreiChar(str, char, n, rem, matched)
	See @nOrMoreChar for details.
	Case insensitive version of @nOrMoreChar. See @nOrMoreChar for details.
	@nToMiChar
	@nToMiChar(str, char, n, m, rem, matched)
	See @nToMChar for details.
	Case insensitive version of @nToMChar. See @nToMChar for details.
	@exactlyNToMiChar
	@exactlyNToMiChar(str, char, n, m, rem, matched)
	See @exactlyNToMChar for details.
	Case insensitive version of @exactlyNToMChar. See @exactlyNToMChar for details.
	H.6.4 String/String Pattern Matching Functions
	Table 9: Compile-Time String Matching Functions

	@matchStr
	@matchStr(str, tstStr, rem, matched)
	str must be a string expression.
	tstStr must be a string expression.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true if str begins with the characters found in tstStr.
	If this function returns true, it also returns tstStr in matched and all characters in str follow...
	@matchiStr
	@matchiStr(str, tstStr, rem, matched)
	Same parameters as matchStr, see that function for details.
	This is a case insensitive version of @matchStr.
	@uptoStr
	@uptoStr(str, tstStr, rem, matched)
	Same parameters as matchStr, see that function for details.
	This function returns true if tstStr appears somewhere within str, it returns false otherwise.
	If this function returns true, then it returns all characters up to, but not including, the chara...
	@uptoiStr
	@uptoiStr(str, tstStr, rem, matched)
	Same parameters as matchStr, see that function for details.
	This is a case insensitive version of @uptoStr.
	@matchToStr
	@matchToStr(str, tstStr, rem, matched)
	Same parameters as matchStr, see that function for details.
	This function is similar to @uptoStr except if it returns true it will copy all characters up to ...
	@matchToiStr
	@matchToiStr(str, tstStr, rem, matched)
	Same parameters as matchStr, see that function for details.
	This is a case insensitive version of @matchToStr.
	H.6.5 String/Misc Pattern Matching Functions
	Table 10: Miscellaneous Compile-time Pattern Matching Functions

	@matchID
	@matchID(str, rem, matched)
	str must be a string expression.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The types of rem and matched are irrelevant but they must be VAL objects. This function stores a ...
	This function returns true if the first sequence of characters in str match the definition of an ...
	An HLA identifier is any sequence of characters that begins with an underscore or an alphabetic c...
	If this function returns true, it copies the identifier to matched and all following characters t...
	@matchIntConst
	@matchIntConst(str, rem, matched)
	str must be a string expression.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The type of rem is irrelevant but it must be a VAL object. If matched is present, it must be an i...
	Note: unlike most pattern matching functions, matched is not a string object.
	This function returns true if the leading characters of str are decimal digits (as per HLA, under...
	If this function returns true, it converts the matched integer string to integer form and stores ...
	@matchRealConst
	@matchRealConst(str, rem, matched)
	str must be a string expression.
	rem and matched are optional arguments (both are optional, but if matched is present, rem must al...
	The type of rem is irrelevant but it must be a VAL object. If matched is present, it must be an r...
	Note: unlike most pattern matching functions, matched is not a string object.
	This function returns true if the leading characters of str correspond to the HLA definition of a...
	If this function returns true, it also returns the remaining characters in rem and it converts th...
	@matchNumericConst
	@matchNumericConst(str, rem, matched)
	Same parameters as @matchIntConst or @matchRealConst; see those functions for details.
	This is a combination of @matchIntConst and @matchRealConst. If this function matches a string at...
	@matchStrConst
	@matchStrConst(str, rem, matched)
	Same parameters as @matchID; see @matchID for details.
	This function returns true if str begins with an HLA compatible literal string constant. If this ...
	@zeroOrMoreWS
	@zeroOrMoreWS(str, rem)
	str must be a string expression.
	rem is an optional argument.
	The type of rem is irrelevant but it must be a VAL object.
	This function always returns true. It matches zero or more "whitespace" characters at the beginni...
	Whitespace includes spaces, newlines, tabs, and certain other special characters.
	Note that this function does not return the matched string. To return matched whitespace characte...
	@oneOrMoreWS
	@oneOrMoreWS(str, rem)
	str must be a string expression.
	rem is an optional argument.
	The type of rem is irrelevant but it must be a VAL object. This function stores a result into thi...
	This function returns true if it matches at least one whitespace character. If it returns true, i...
	@wsOrEOS
	@wsOrEOS(str, rem)
	str must be a string expression.
	rem is an optional argument.
	The type of rem is irrelevant but it must be a VAL object. This function stores a result into thi...
	This function succeeds if there is whitespace at the beginning of str or if str is the empty stri...
	@wsThenEOS
	@wsThenEOS(str)
	str must be a string expression.
	This function returns true if str contains zero or more whitespace characters followed by the end...
	@peekWS
	@peekWS(str, rem)
	str must be a string expression.
	rem is an optional argument.
	The type of rem is irrelevant but it must be a VAL object. This function stores a result into thi...
	This function returns true if the next character in str is a whitespace character. This function ...
	@eos
	@eos(str)
	str must be a string expression.
	This function returns true if and only if str is the empty string.

	H.7 HLA Information and Symbol Table Functions
	Table 11: HLA Information and Compile-time Symbol Table Information Functions
	@name
	@name(identifier)
	identifier must be a defined symbol in the HLA program.
	This function returns a string specifying the name of the specified identifier. The name this fun...
	@type
	@type(identifier)
	identifier must be a defined symbol in the HLA program.
	This function returns a dword constant that should be unique for any given type in the program. Y...
	@typeName
	@typeName(identifier)
	identifier must be a defined symbol in the HLA program.
	This function returns a string that specifies the type of of the parameter.
	@pType
	@pType(identifierOrExpression)
	identifierOrExpression may be a defined symbol in the HLA program or a constant expression.
	This function returns a small numeric constant that specifies the primitive type of the object. S...
	@class
	@class(identifierOrExpression)
	identifierOrExpression may be a defined symbol in the HLA program or a constant expression.
	This function returns a small numeric constant that classifies the identifier or expression as to...
	@size
	@size(identifierOrExpression)
	identifierOrExpression may be a defined symbol in the HLA program or a constant expression.
	This function returns the size, in bytes of the specified object.
	@offset
	@offset(identifier)
	identifier must be a defined VAR or parameter symbol in the HLA program.
	This function returns a numeric constant providing the offset into a procedure’s activation recor...
	@staticName
	@staticName(identifier)
	identifier must be a defined static, procedure, method, iterator, or external symbol in the HLA p...
	This function returns a string that specifies the internal name that HLA uses for the object.
	@lex
	@lex(identifier)
	identifier must be a defined symbol in the HLA program.
	This function returns a small integer constant the specifies the static nesting level for the spe...
	@isExternal
	@isExternal(identifier)
	identifier must be a defined symbol in the HLA program.
	This function returns true if the specified identifier is an external symbol. Note that this func...
	@arity
	@arity(identifier)
	identifier must be a defined symbol in the HLA program.
	This function returns zero if the specified symbol is not an array. It returns a small integer co...
	@dim
	@dim(identifier)
	identifier must be a defined symbol in the HLA program.
	If the specified identifier is an array object, this function returns an array constant with one ...
	@elements
	@elements(identifier)
	identifier must be a defined symbol in the HLA program.
	This function returns the number of elements in an array object. If the specified identifier is n...
	@elementSize
	@elementSize(identifier)
	identifier must be a defined symbol in the HLA program.
	This function returns the size, in bytes, of an element of the specified array.
	@defined
	@defined(identifier)
	identifier must be a defined symbol in the HLA program.
	This function returns true if the specified symbol is defined prior to that point in the program.
	@pClass
	@pClass(identifier)
	identifier must be a parameter in the current procedure of an HLA program.
	This function returns a small integer constant specifying the parameter passing mechanism for the...
	@isConst
	@isConst(identifierOrExpression)
	identifierOrExpression may be a defined symbol in the HLA program or a constant expression.
	This function returns true if the expression is a constant expression that HLA can evaluate at th...
	@isReg
	@isReg(Expression)
	Expression may be arbitrary text, but it is typically a register object.
	This function returns true if the operand corresponds to an 80x86 general purpose register.
	@isReg8
	@isReg8(Expression)
	Expression may be arbitrary text, but it is typically a register object.
	This function returns true if the operand corresponds to an eight-bit 80x86 general purpose regis...
	@isReg16
	@isReg16(Expression)
	Expression may be arbitrary text, but it is typically a register object.
	This function returns true if the operand corresponds to a 16-bit 80x86 general purpose register.
	@isReg32
	@isReg32(Expression)
	Expression may be arbitrary text, but it is typically a register object.
	This function returns true if the operand corresponds to a 32-bit 80x86 general purpose register.
	@isFReg
	@isFReg(Expression)
	Expression may be arbitrary text, but it is typically a register object.
	This function returns true if the operand corresponds to an FPU register.
	@isMem
	@isMem(Expression)
	Expression may be arbitrary text, but it is typically a memory object (including various addressi...
	This function returns true if the specified parameter corresponds to a legal 80x86 memory address.
	@isClass
	@isClass(Text)
	Text may be arbitrary text, but it is typically a class object.
	This function returns true if the text parameter is a class name or a class object.
	@isType
	@isClass(Text)
	Text may be arbitrary text, but it is typically a type name.
	This function returns true if the specified text is a type identifier.
	@section
	@section
	This function returns a 32-bit value that specifies which portion of the program HLA is currently...
	Bit 0: Currently in the CONST section.
	Bit 1: Currently in the VAL section.
	Bit 2: Currently in the TYPE section.
	bit 3: Currently in the VAR section.
	bit 4: Currently in the STATIC section.
	bit 5: In the READONLY section.
	Bit 6: In the STORAGE section.
	Bit 7: Currently in the DATA section.
	Bits 8-11: reserved.
	Bit 12: Processing statements in main.
	Bit 13: Statements in a procedure.
	Bit 14: Statements in a method.
	Bit 15: Statements in an iterator.
	Bit 16: Statements in a macro.
	Bit 17: Statements in a keyword macro.
	Bit 18: In a Terminator macro.
	Bit 19: Statements in a Thunk.
	Bits 20-22: reserved.
	Bit 23: Processing statements in a Unit.
	Bit 24: Statements in a Program.
	Bit 25: Processing a Record declaration.
	Bit 26: Processing a Union declaration.
	Bit 27: Processing a Class declaration.
	Bit 28: Processing a Namespace declaration.
	Bits 29-31: reserved.
	@curLex
	@curLex
	Returns the current lex level of this statement within the program.
	@curOffset
	@curOffset
	Returns the current offset into the activation record. This is the offset of the last VAR object ...
	@curDir
	@curDir
	Returns +1 if processing parameters, -1 otherwise. This corresponds to whether offsets are increa...
	@addofs1st
	@addofs1st
	This function returns true when processing local variables, it returns false when processing para...
	@lastObject
	@lastObject
	This function returns a string containing the name of the last macro object processed.
	@lineNumber
	@lineNumber
	This function returns an uns32 value specifying the current line number in the file.

	H.8 Compile-Time Variables
	Table 12: HLA Compile-time Variables
	@parmOffset
	This variable specifies the starting offset for parameters in a function. This should be eight fo...
	@localOffset
	This variable specifies the starting offset for local variables in a procedure. This is typically...
	@enumSize
	This variable specifies the size (in bytes) of enum objects in your program. By default, this val...
	@minParmSize
	This variable specifies the minimum number of bytes for each parameter. Under Windows, this shoul...
	@bound
	This boolean variable, whose default value is true, controls the compilation of the BOUND instruc...
	@into
	This boolean variable, whose default value is false, controls the compilation of the INTO instruc...
	@trace
	Enables HLA’s statement tracing facilities. See the separate appendix for details.
	@exceptions
	If true (the default) then HLA uses the full exception handling package in the HLA Standard Libra...

	H.9 Miscellaneous Compile-Time Functions
	Table 13: Miscellaneous HLA Compile-time Functions and Objects
	@text
	@text(str)
	str must be a string constant expression.
	This function expands the string constant in-line as text, replacing this function invocation wit...
	@eval
	@eval(text)
	text is an arbitrary sequence of textual characters.
	This function is useable only within macro invocation parameter lists. It immediately evaluates t...
	@string:identifier
	@string:identifier
	identifier must be a text constant.
	This function returns a string constant corresponding to the string data in the specified identif...
	@toString:identifier
	@string:identifier
	identifier must be a text constant.
	This function converts the type of identifier from text to string and then returns the value of t...
	@global:identifier
	@string:identifier
	identifier must be an HLA identifier declared outside the current namespace.
	@global is legal only within a namespace declaration. It provides access to identifiers outside t...

	Installing HLA on Your System Appendix I
	http://webster.cs.ucr.edu
	I.1 What’s Included in the HLA Distribution Package
	I.2 Using the HLA Compiler
	I.3 Compiling Your First Program
	c:\lab1> hla HelloWorld
	C:\hla\AoA_Software\Volume1\Ch02> HelloWorld

	I.4 Win 2000 Installation Notes Taken from comp.lang.asm.x86
	I.4.1 To Install HLA
	I.4.2 SETTING UP UEDIT32
	I.4.3 Wordfile.txt Contents (for UEDIT)

	Debugging HLA Programs Appendix J
	1.1 The @TRACE Pseudo-Variable
	1.2 The Assert Macro
	1.3 RATASM
	1.4 The HLA Standard Library DEBUG Module

	Comparing HLA and MASM Appendix K
	HLA Code Generation for HLL Statements Appendix L
	L.1 The HLA Standard Library
	L.2 Compiling to MASM Code -- The Final Word
	L.3 The HLA if..then..endif Statement, Part I
	L.4 Boolean Expressions in HLA Control Structures
	L.5 The JT/JF Pseudo-Instructions
	L.6 The HLA if..then..elseif..else..endif Statement, Part II
	L.7 The While Statement
	L.8 repeat..until
	L.9 for..endfor
	L.10 forever..endfor
	L.11 break, breakif
	L.12 continue, continueif
	L.13 begin..end, exit, exitif
	L.14 foreach..endfor
	L.15 try..unprotect..exception..anyexception..endtry, raise

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

