Operating Systems: 2007-08 Spring Demand Paging Allan Gottlieb Page 1

In this lab you will simulate demand paging and see the number of page faults depends on page size, program
size, replacement algorithm, and job mix (job mix is definedvwealad includes locality and multiprogramming
level).

The idea is to hae a diver generate memory references and thewvela &émand paging simulator (called pager
belov) decide if each reference causes a pagk.f Assumeall memory references are for entities of onedisize,
i.e., model a word oriented machine, containing btdg. Althoughmemory is needed for page tables, OS code,
etc., you should assume all M words arailable for page frames.

The program is woked with 6 command line arguments, 5 pogtintegers and one string

M, the machine size in words.

P, he page size in words.

S, the size of a processes, i.e., the references are to virtual addresses 0..S-1.
J, the “job mix”, which determines A, B, and C, as describedvaelo

N, the number of references for each process.

R, the replacement algorithm, LIFRIQT FIFO), RANDOM, or LRU.

The driver reads all input, simulates N memory references per program, and produces all outputverheseabi
round robin scheduling with quantum g=3 (i.e., g references for process 1, then q for process 2, etc.).

The drver models locality by ensuring that a fraction A of the references are to the address one higher than the cur
rent (representing a sequential memory reference), a fraction B are to a nearby lower address (representing a back-
ward branch), a fraction C are to a nearby higher address (representing a jump aftherd ar'‘‘else” block),

and the remaining fraction (1-A-B-C) are to random addresSpscifically if the current wrd referenced by a

process is wthen the next reference by this process is to the word with address

e« w+1 mod S with probability A
« w-5mod S with probability B
e w+4 mod S with probability C
¢ arandom value in 0..S-dach with probability (1-A-B-C)/S

Since there are S possible references in casehwith probability (1-A-B-C)/S, the total probability of case 4 is
1-A-B-C, and the total probability for all four cases is A+B+C+(1-A-B-C)=1 as required.

There are four possible sets of processes (i.e., values for J)

J=1: Oneprocess with A=1 and B=C=0, the simplest (fully sequential) case.
J=2: Four processes, each with A=1 and B=C=0.

J=3: Four processes, each with A=B=C=0 (fully random references).

J=4: Oneprocess with A=.75, B=.25 and C=0; one process with A=.75, B=0, and C=.25; one process with
A=.75, B=.125 and C=.125; and one process with A=.5, B=.125 and C=.125.

The pager routine processes each reference and determines if a fault occurs, in which case it makes this page resi-
dent. Ifthere are no free frames for thaufting page, a faulting page is evicted using replacement algorithm R.

The algorithms arglobal (i.e., the victim can be grframe not just ones used by the faulting process). Because the

lab only simulates demand paging and does not simulate the running of actual processs, Jolehdl! find it eas-

iest to just implement a frame table and not page talgsprogram is written that ay. (This is advice not a
requirement.)

The system begins with all frames emptg. no pages loaded. So the first reference for each process will definitely
be a pagedult. If a un has D processes (J=1 has D=1, the othess Bad), then process k 1<=k<=D begins by
referencing word 111*k mod S.

Your program echos the input values read and produces the following oktp@ach process, print the number of
page faults and theverage residenctime. Thelatter is defined as the time (measured in memory references) that
the page wasvicted minus the time it was loaded. So at eviction calculate the currens pegjdeng time and

add it to a running sum(Pages neer evicted do not contribute to this sum.) Thedage is this sum dided by the
number ofevictions. Finally, print the total number of faults and theemall average residenctime (the total of the
running sums divided by the total number of evictions).

Use the same file of random numbers as in lab2. Due in 2 NYU weeks (3 calendar weeks), 2 Api@ad8.
luck.

Operating Systems: 2007-08 Spring Demand Paging Allan Gottlieb Page 2

Notes:

@)

@)

®)

(4)

Despitewhat books may sayhe % operator in C, C++, andvaais the remainder functionot the mod
function. For most (perhaps all) C/C++idammpilers, (-2)%9 is -2; whereas mod wouldgeg{:2) mod 9 =
7. Soto calculate (w-5) mod S abg write (w-5+S)%S.

Thebig issue in this lab is the REplacement of pages. But the placement question does arise early in the run
when there are multiple free framds.is important that we all choose the same free frame so that you can
get the benefit of my answers and ulgding output and so that on the mailing liggrgone will be referring

to the same situation.choose thénighest numbered free frame; you must do so as well

Sincerandom numbers arevidlved, we must choose the random numbers in the same ételer is a non-
obvious example. Inthe beginning of your program you set the referencedivior each job to be 111* as
described in the labNow you want to simulate g (quantum) references for each ljauggest and used
code lile the following.

for (int ref=0; ref<q; ref++) {
simulate this reference for this process
calculate the next reference for this process

}

One efect is that after simulating the gth reference you will calculate the first reference for the next quan-
tum. Henceyou may be reading the random number file before you switch to the next pr8pexdfi-

cally, at the beginning of the run you Ve the first reference gén to you for process 1, namely 111*1=111

mod S. Now you simulate q references (the first to address 111 mod S) and you calculate the next g
addresses. Thesalculations use one or twandom numbers for each referenceo(tf\a random reference
occurs). Sgou read the random number file once or twice for the last reference (gerliheugh you will

be context switching before simulating this referentkhough you do not ha use my code ahe, you

do need to use the random numbers the same way | do.

Whencalculating the next word to reference yowendour cases with probability A, B, C, and 1-A-B-C.
Read a random number from the file and divide it by RAND_MAX+1=2147483648 (RAND_MAX is the
largest value returned by the random number generator | used to produce the file; it happens to equal Inte-
ger.MAX_VALUE). This gives a quotient y satisfying 8y<1. If the random number was called r (an inte-
ger) the statement you want irvdas (note the 1d)

double y = r / (Integer. MAX_VALUE + 1d)
The C/C++ equialent is (note the 1.0)

double y = r / (MAXINT + 1.0)

If y<A, do case 1 (it occurs with probability A),

else if y<A+B, do case 2, (it occurs with probability B),

else if y<A+B+C, do case 3 (it occurs with probability C).

else /* y>=A+B+C */, do case 4 (it occurs with probability 1-A-B-C.)

The abee is a landy technique you may find useful outside this class so | recommend you figurey dut wh
works. Thisis definitelynot a hint that | will put it on the final exam. | won't.

