
Lab 3−Banker (Due 26 March) Operating Systems 2007-08 Spring Allan Gottlieb

The goal of this lab is to do resource allocation using both an optimistic resource manager and the banker’s
algorithm of Dijkstra. The optimistic resource manager is simple: Satisfy a request if possible, if not make the task
wait; when a release occurs, try to satisfy pending requests in a FIFO manner.

Your program is to read all the input for a run, then perform the simulation, and then produce output.Thirteen
required runs, including expected output, are available on the web. We will test your program on additional runs as
well.

The input begins with two values T, the number of tasks, and R, the number of resource types, followed by R
additional values, the number of units present of each resource type.(If you set ‘‘arbitrary limits’’ on say T or R,
you must, document this in your readme, check that the input satisfies the limits, print an error if it does not, and set
the limits high enough so that the required inputs all pass.)Then come multiple inputs, each representing the next
activity of a specific task.The possible activities are initiate, request, compute, release, and terminate.Time is mea-
sured in fixed units called cycles and, for simplicity, no fractional cycles are used. The manager can process one
activity (initiate, request, or release) for each task in one cycle. However, the terminate activity doesNOT require a
cycle.

The initiate activity (which much precede all others for that task) is written

initiate task-number resource-type initial-claim

(The optimistic manager ignores the claim.) If there are R resource types, there are R initiate activities for each task.

The request and release activities are written

request task-number resource-type number-requested
release task-number resource-type number-released

The compute activity is written

compute task-numbernumber-of-cycles

This activity means that for the next several cycles the process is computing and will make no requests or releases.
It retains its current resources during the computation.

Finally the terminate operation, which doesNOT require a cycle is written

terminate task-number

Commenting Your Program

You must include enough high-level comments in your program so that a reader (e.g., the grader) who is expert in
the programming language you use and knowledgeable about resource management can understand the basic opera-
tion of your program.For example, you should make clear when you are checking for safety, when you are check-
ing for deadlock, when you are releasing a previously blocked task, etc.You must also supply comments for your
major data structures.

Input

As in lab 1 (linker) we use free form input; so a single activity may span several lines and (parts of) several activities
may be on one line.Unlike lab 1, lab 3 permits you to read all the data before processing. The data for each task
occurs in order, but the tasks themselves may be interspersed.Input set 1, on the web and reprinted below, has all of
task one followed by all of task two. Inputset 8, on the web, represents the same run but the lines for tasks one and
two are interleaved.

Output

At the end of the run, print, for each task, the time taken, the waiting time, and the percentage of time spent waiting.
Also print the total time for all tasks, the total waiting time, and the overall percentage of time spent waiting.

Error Checks

When implementing banker’s algorithm, if a task’s initial claim exceeds the resources present or if, during execution,
a task’s requests exceed its claims, print a message, abort the task, and release all its resources.This does not apply
to the optimistic allocator since it does not have the concept of initial claim.



Lab 3−Banker (Due 26 March) Operating Systems 2007-08 Spring Allan Gottlieb

Deadlock

Deadlock cannot occur for banker’s algorithm, but can for the optimistic resource manager. If deadlock is detected,
print a message and abort the lowest numbered deadlocked task after releasing all its resources. If deadlock remains,
print another message and abort the next lowest numbered deadlocked task, etc.

We learned sophisticated algorithms for detecting deadlock.You are NOT expected to implemented one of
these. Insteadyou should use the trivial algorithm that detects a deadlock when all non-terminated tasks have out-
standing requests that the manager cannot satisfy. Note that, if a deadlock actually occurs during cycle n, you may
not detect it until much later since there may be non-deadlocked processes running.If you detect the deadlock at
cycle k, you abort the task(s) at cycle k and hence its/their resources become available at cycle k+1. This trivial
deadlock detection algorithm is not used in practice.

Important Note

Items returned at time n are not available until time n+1, For example, if task 1 returns 10 units during cycle 6-7 and
task 3 requests 10 units during that same cycle, the 10 units returned by task 1 arenot available for the optimistic
manager to give out and, when the banker makes its safety check, these 10 units arenot considered available. They
become available at time 7 for use in cycle 7-8.

The first data set

The input for the first run is.

2 1 4
initiate 11 4
request 11 1
release 11 1
terminate 1
initiate 21 4
request 21 1
release 21 1
terminate 2

The first line asserts that this run has 2 tasks and 1 resource type with 4 units.

The next line indicates that the run begins (at cycle 0-1, the cycle starting at 0 and ending at 1) with task 1 claiming
(all) 4 units of resource 1. Further down on line 6 we see that task 2 also claims 4 units of resource 1 during cycle
0-1.

From lines 3 and 7 we learn that each task requests a unit during cycle 1-2 and returns that unit during the next cycle
after the request is granted.For the optimistic manager, the request is granted at 2 (the end of cycle 1-2) and the
resource is returned during 2-3.

Input 1 does not use the compute activity. For the optimistic manager each task terminates at time 3.


