Lab 3-Banker (Due 26 March) Operating Systems 2007-08 Spring Allan Gottlieb

The goal of this lab is to do resource allocation using both an optimistic resource manager andetf®e bank
algorithm of Dijkstra. The optimistic resource manager is simple: Satisfy a request if possible, if adtenalsk
wait; when a release occurs, try to satisfy pending requests in a FIFO manner.

Your program is to read all the input for a run, then perform the simulation, and then produce Thitfegn
required runs, including expected output, arglable on the webWe will test your program on additional runs as
well.

The input begins with tvvalues Tthe number of tasks, and R, the number of resource types, followed by R
additional values, the number of units present of each resource(tfypeu set “arbitrary limits’ on say T or R,
you must, document this in your readme, check that the input satisfies the limits, print an error if it does not, and set
the limits high enough so that the required inputs all paBsen come multiple inputs, each representing thé ne
activity of a specific taskThe possible activities are initiate, request, compute, release, and terriinateis mea-
sured in fixed units called cycles and, for simplicitg fractional cycles are used. The manager can process one
actity (initiate, request, or release) for each task in giobec Hawvever, the terminate activity doddOT require a
cycle.

The initiate activity (which much precede all others for that task) is written
initiate t ask- nunber resource-type initial-claim
(The optimistic manager ignores the claim.) If there are R resource types, there are R initities dotieach task.
The request and release activities are written

request t ask- nunber resource-type nunber - r equest ed
rel ease t ask- nunber resource-type nunber - r el eased

The compute activity is written
compute task-numbenumber-of-cycles

This activity means that for the nextveml cycles the process is computing and will mak equests or releases.
It retains its current resources during the computation.

Finally the terminate operation, which dd¢ST require a cycle is written
terminate task-number

Commenting Your Program

You must include enough highdel comments in your program so that a reader (e.g., the grader) who is expert in

the programming language you use and knowledgeable about resource management can understand the basic opera-
tion of your program.For example, you should makdear when you are checking for safethen you are check-

ing for deadlock, when you are releasing avimgsly blocked task, etcYou must also supply comments for your

major data structures.

Input

As in lab 1 (linler) we use free form input; so a single activity may spagraidines and (parts of) geral actvities

may be on one lineUnlike lab 1, lab 3 permits you to read all the data before processing. The data for each task
occurs in orderbut the tasks themselves may be intersperggolit set 1, on the web and reprinted belbas all of

task one followed by all of task tw Inputset 8, on the web, represents the same run but the lines for tasks one and
two are interleaed.

Output

At the end of the run, print, for each task, the timemakhe waiting time, and the percentage of time spaiting.
Also print the total time for all tasks, the total waiting time, and tseadl percentage of time spent waiting.

Error Checks

When implementing bamk’s dgorithm, if a tasks initial claim eceeds the resources present or if, durikegation,
a task’s requests exceed its claims, print a message, abort the task, and release all its ré3usrdess not apply
to the optimistic allocator since it does novéde concept of initial claim.



Lab 3-Banker (Due 26 March) Operating Systems 2007-08 Spring Allan Gottlieb

Deadlock

Deadlock cannot occur for bagrks dgorithm, but can for the optimistic resource managkdeadlock is detected,
print a message and abort thevdst numbered deadlocked task after releasing all its resources. If deadlock remains,
print another message and abort the next lowest numbered deadlocked task, etc.

We learned sophisticated algorithms for detecting deadldcki are NOT expected to implemented one of
these. Insteaglou should use the trivial algorithm that detects a deadlock when all non-terminated vaskst-ha
standing requests that the manager cannot safi&fte that, if a deadlock actually occurs during cycle n, you may
not detect it until much later since there may be non-deadlocked processes riinpmgdetect the deadlock at
cycle k, you abort the task(s) at cycle k and hence its/their resources be@iatdeaat gcle k+1. This tvial
deadlock detection algorithm is not used in practice.

Important Note

Items returned at time n are netitable until time n+1, For example, if task 1 returns 10 units during cycle 6-7 and
task 3 requests 10 units during that sagwes the 10 units returned by task 1 ao# available for the optimistic
manager to ge aut and, when the banker nexkits safety check, these 10 unitsraseconsidered\ailable. The
become wailable at time 7 for use in cycle 7-8.

The first data set
The input for the first run is.

214

initiate 114
request 111
release 11
terminate 1
initiate 214
request 211
release 21
terminate 2

The first line asserts that this run has 2 tasks and 1 resource type with 4 units.

The next line indicates that the run begins yate0-1, the cycle starting at 0 and ending at 1) with task 1 claiming
(all) 4 units of resource 1. Further down on line 6 we see that task 2 also claims 4 units of resource gatiring ¢
0-1.

From lines 3 and 7 we learn that each task requests a unit during cycle 1-2 and returns that unit duringythe next c
after the request is granteéor the optimistic managethe request is granted at 2 (the end of cycle 1-2) and the
resource is returned during 2-3.

Input 1 does not use the compute activiggr the optimistic manager each task terminates at time 3.



