
Akaljed's Notes

Various tech stuff

Scapy As Webserver

with 3 comments

This is about a scriptable webserver based on Scapy that represents a hybrid of a Wireshark equivalent (with Deep Packet Inspection) and a server. The standard webserver
(Apache) doesn’t give full control over the communication flow and doesn’t allow the user to intervene or to capture the communication stream. Scapy can do both.

	
Introduction

On Linux, the most easiest way to serve clients from the Internet with a html or binary file is using netcat (nc). Netcat is able to do almost every kind of simple
network operation and is very robust.

In order to serve the client with data, an exemplary index.html is needed. Also, a favico.ico would be nice, especially as Mozilla Firefox browser always asks for
this file, regardless of whether there is a favico.ico given in the html or not.

Assuming that our index.html and favico.gif are in /home/user1/ and given that the index.html contains text only, we create a file ‘server.sh‘ with following
content:

sudo	nc	-vnlp	80	-q	0	<	/home/user1/index.html
sudo	nc	-vnlp	80	-q	0	<	/home/user1/favico.ico
	
Do not forget to make the file executable! 192.168.1.1 is assumed to be the IP address of the Linux server in this example. Start the terminal and type “sudo
./server.sh” on the Linux server. If you are connected within a LAN, start Firefox on another connected system (client) and type “http://192.168.1.1” in
the address field of Firefox.

By pressing strg-c, the server can be stopped within a second. Instead of http port 80, another port can be specified. High ports don’t need a sudo prefix. The
client (using a standard browser) then needs to additionally specify this port instead of using default port 80. (Example: 192.168.1.1:2222) Fortunately, netcat
automatically handles the http protocol and creates the correct http header for a corresponding file.

Very easy isn’t it? Of course it is also possible to specify an image instead of sending a html. The image will appear in the client’s browser.

Note that the connecting user will receive the same file every time, regardless of what he typed in the address field of his browser after the server IP (or DNS).
By enhancing the shell script and implementing new functions, more intelligence can be added (where needed). However, we won’t discuss any shell
scripting here.

	
Scapy

A well-known multi-purpose tool for networking materia is Scapy. Scapy is a python-based interface, which can do almost everything, regardless of the
complexity. It is defined by its extreme flexibility. Scapy works in kernel mode (ring-0), so you need to be root.

	
Abilities of Scapy:

Deeply understands the OSI Layer
Can read any traffic passing the network card (just as Wireshark)
Can create, modify and play with raw binary network packets.
Can create new layers at any layer (for example a packet with three tcp layers, which of course doesn’t make sense at all. Be careful with this and don’t
crash the target system.)
The value of each single field of any Layer can be specified (or modified in an existing packet).
Uses python (either interactive or as python script) and
..therefore is scriptable.
Can be programmed to behave as a webserver.

As listed, Scapy is able to print data from every packet and can be programmed to dynamically react on the arrival of specific data. The user can precisely specify
the values he’s interested into or simply print all data of a packet.
Here’s a mini example of how to capture three TCP packets with destination port 80, while only interested in the IP address of the remote sender and our
own TCP port.

https://akaljed.wordpress.com/
http://192.168.1.1&/#8221

----8<-------------------------------------

#!/usr/bin/python
from	scapy.all	import	*
#	Akaljed	Dec	2010,	http://www.akaljed.wordpress.com

#	Capture	&	print	3	TCP	packets	with	dport	80
#	The	'sourceIPs'	variable	is	a	buffer	with	5	network	packets.	
#	A	network	packet	contains	all	layers,	not	just	TCP.
sourceIPs	=	sniff(filter="tcp	and	port	80",count=3,prn=lambda	x:x.sprintf("{IP:%IP.src%:	%TCP.dport%}"))

print	"		"
if	sourceIPs[0].dport==80:	print	"specify	action	A"
if	sourceIPs[1].dport==80:	print	"specify	action	B"
if	sourceIPs[2].dport==80:	print	"specify	action	C"
#	You	get	the	idea.	Instead	of	printing	text,	specify	other	actions.

----8<-------------------------------------
	
Here another example for capturing icmp packets. It may be useful to show DDos-attacks against the system.

----8<-------------------------------------

#!/usr/bin/python
from	scapy.all	import	*
#	Akaljed	Dec	2010,	http://www.akaljed.wordpress.com

print	"			"
print	"Listening	for	next	5	ICMP	messages...	(Press	strg-c	to	abort)"
print	"			"

#	Capture	5	ICMP	packets	and	print	the	sender's	IP	address	and	the	ICMP	data,	and	the	ICMP	type	(echo	request	for	example)
#	The	ICMP	data	can	be	used	to	identify	the	senders	OS.	
#	Or	sometimes,	the	sender	might	be	trying	to	send	a	secret	message	to	you.	;)

sniff(filter="icmp	and	dst	192.168.1.1",count=5,prn=lambda	x:x.sprintf("{IP:	From	%IP.src%:	%ICMP.load%	(%ICMP.type%)}"))

----8<-------------------------------------
	
Before executing Scapy scripts, it is necessary to disable the Linux Kernels own responses. If the Linux Kernel is allowed to answer arriving network packets, it
will answer with RST-ACK, because the Linux Kernel believes that no port is open. Scapy does operate besides the Kernel (Paracommunication), therefore the
Kernel has no knowledge of what Scapy is doing.

For TCP, disable the kernel’s response with:

sudo	iptables	-A	OUTPUT	-p	tcp	--tcp-flags	RST	RST	--sport	80	-j	DROP
	
This will precisely kill only the RST-flagged TCP packets the Linux Kernel tries to send and leave other Kernel responses undamaged (ping will still work).
As probably known, iptables instructions are not remembered after reboot. If not needed anymore, the instructions can be flushed immediately with the -F
command. There is probably nothing that Scapy can’t do. Let’s make Scapy to behave as a server. The minimum conversation of a client connecting to a
server is presented by:

Syn (client)
Syn-Ack (server)
Ack (client)
Read http request and send a index.html to client.
Rst-Ack (Server)

This presents a full TCP conversation. More details about the three-way handshake (1. Syn, 2. Syn-Ack, 3. Ack) and the TCP protocol are found at the official
source: the RFC 793, but also at Wikipedia. The following explanations need intermediate or advanced network knowledge.

	
The three-way handshake (RFC 793)

The communication between the connecting client and the webserver starts with the three-way handshake. Several variables are needed in the following,
which will hold the different field values. For testing purposes, the communication can be done within a private LAN (strongly recommended). The server
has the IP address of 192.168.1.1 and the client has the IP address of 192.168.1.2 (same as above):

Network setup for testing the Scapy Webserver

We begin the Python/Scapy script as usual:

#!/usr/bin/python
from	scapy.all	import	*
			
	
The script waits for an incoming connection that concerns our IP address, i.e. 192.168.1.1. It is possible to specify multiple IP addresses on Linux, that’s why it
might be intelligent to check for the correct IP address as seen below. We also filter for TCP traffic. We are not concerned about other protocols.

http://tools.ietf.org/html/rfc793
http://en.wikipedia.org/wiki/Transmission_Control_Protocol

#	Wait	for	the	SYN	of	the	client
a=sniff(count=1,filter="tcp	and	host	192.168.1.1	and	port	80")

#	Initializing	some	variables	for	later	use.
ValueOfPort=a[0].sport
SeqNr=a[0].seq
AckNr=a[0].seq+1	#	We	are	Syn-Acking,	so	this	must	be	+1
	
Note that on Linux, Sequence numbers are relative, not absolute.

As we received the connecting SYN request of the client, we need to answer with a correct SYN-ACK to finish our part of the TCP diplomacy:

#	Generating	the	IP	layer:
ip=IP(src="192.168.1.1",	dst="192.168.1.2")

#	Generating	TCP	layer:	src	port	80,	dest	port	of	client,	
#	flags	SA	means	"Syn-Ack",	the	AckNr	ist	+1,	and	the	MSS	shall	be	a	default	1460.
TCP_SYNACK=TCP(sport=80,	dport=ValueOfPort,	flags="SA",	seq=SeqNr,	ack=AckNr,	options=[('MSS',	1460)])

#send	SYNACK	to	remote	host	AND	receive	ACK
ANSWER=sr1(ip/TCP_SYNACK)

#	Capture	next	TCP	packets	with	dport	80.	(contains	http	GET	request)
GEThttp	=	sniff(filter="tcp	and	port	80",count=1,prn=lambda	x:x.sprintf("{IP:%IP.src%:	%TCP.dport%}"))

#	Updating	the	sequence	number	as	well	as	the	Ack	number
AckNr=AckNr+len(GEThttp[0].load)
SeqNr=a[0].seq+1
	
By using the sr1 function (alias “send-and-receive-one-time”), we already received the responding ACK of the client (data of client stored in ANSWER). Thus,
client and server are connected with each other now. The ‘real’ communication can now be initiated from any side, both sides are equal. In this sense, the term
“server” just means ‘the system to which the client connects’ whereas the term “client” means ‘the system which initiates the connection’.

Any further communication must be inserted here. For a true interactive server, the article would become much too long. The correct steps for sending a html
file are:

1. Wait and filter for the http GET request.
2. Interpret the http GET request (which html file does the client want?)
3. Generate a custom packet with http OK header + actual http data.
4. Send it and wait for the client’s reply (via sr1 function).

To keep the code short, we simply assume that the client indeed sent a GET http request for receiving the index.html. Therefore, we only need to generate the
http-header with the correct content length and append the ‘index.html’ data.

As this is an example how to use Scapy, we use this opportunity to print some data of the client. Note that any fields can be printed: the ethernet mac-address,
the ttl, the FLAGS, the Sequence numbers, just everything. It is also possible to change the value of any field at any time. In our example, the most interesting
data is probably the kind of browser our client is using and some other request-related data, but feel free to experiment with other fields.

#	Print	the	GET	request	of	the	client	(contains	browser	data	and	similar	data).
#	(Sanity	check:	size	of	data	should	be	greater	than	1.)
if	len(GEThttp[0].load)>1:	print	GEThttp[0].load

#	Generate	custom	http	file	content.
html1="HTTP/1.1	200	OK\x0d\x0aDate:	Wed,	29	Sep	2010	20:19:05	GMT\x0d\x0aServer:	Testserver\x0d\x0aConnection:	Keep-Alive\x0d\x0aContent-Type:	text/html;	charset=UTF-8\x0d\x0aContent-Length:	291\x0d\x0a\x0d\x0a<!DOCTYPE	HTML	PUBLIC	\"-//W3C//DTD	HTML	4.0//EN\"><html><head><title>Testserver</title></head><body	bgcolor=\"black\"	text=\"white\"	link=\"blue\"	vlink=\"purple\"	alink=\"red\"><p>-Welcome	to	test	server-------------------------------</p></body></html>"

#	Generate	TCP	layer
data1=TCP(sport=80,	dport=ValueOfPort,	flags="PA",	seq=SeqNr,	ack=AckNr,	options=[('MSS',	1460)])

#	Construct	whole	network	packet,	send	it	and	fetch	the	returning	ack.
ackdata1=sr1(ip/data1/html1)
#	Store	new	sequence	number.
SeqNr=ackdata1.ack
	
At this point, we sent the html file to the client.

The next thing we will do is closing the connection. We use a RST-ACK. Not exactly the most diplomatic way, but it makes sure the client doesn’t
misunderstand us. When using FIN-ACK, many systems take their time to finally respond with their own FIN-ACK. As we are impatient, we want to have the
connection closed immediately.

#	Generate	RST-ACK	packet
Bye=TCP(sport=80,	dport=ValueOfPort,	flags="RA",	seq=SeqNr,	ack=AckNr,	options=[('MSS',	1460)])

send(ip/Bye)

#	the	end.
		
	
Other than the sr-function above, ‘send‘ just sends the data and doesn’t capture the answer. It is the right choice when the answer is irrelevant (which is the
case here).

	
Last words and the whole Scapy Webserver script

Having full control generally means that everything must be done manually, the Linux Kernel can’t help. Also, Scapy is very slow in comparison to compiled
c++ code. However, in the standard situation, netcat should be enough: it is simple and robust. Only Entropy knows why somebody would ever want true
control over his communication flow.

Finally, here is the whole Python/Scapy code (“server.py“):
(Be sure to observe the communication via Wireshark. There may be some unexpected communication that disrupt this example code).

----8<-------------------------------------

#!/usr/bin/python
from	scapy.all	import	*

#	Interacts	with	a	client	by	going	through	the	three-way	handshake.
#	Shuts	down	the	connection	immediately	after	the	connection	has	been	established.
#	Akaljed	Dec	2010,	http://www.akaljed.wordpress.com

#	Wait	for	client	to	connect.
a=sniff(count=1,filter="tcp	and	host	192.168.1.1	and	port	80")

#	some	variables	for	later	use.
ValueOfPort=a[0].sport
SeqNr=a[0].seq
AckNr=a[0].seq+1

#	Generating	the	IP	layer:
ip=IP(src="192.168.1.1",	dst="192.168.1.2")
#	Generating	TCP	layer:
TCP_SYNACK=TCP(sport=80,	dport=ValueOfPort,	flags="SA",	seq=SeqNr,	ack=AckNr,	options=[('MSS',	1460)])

#send	SYNACK	to	remote	host	AND	receive	ACK.
ANSWER=sr1(ip/TCP_SYNACK)

#	Capture	next	TCP	packets	with	dport	80.	(contains	http	GET	request)
GEThttp	=	sniff(filter="tcp	and	port	80",count=1,prn=lambda	x:x.sprintf("{IP:%IP.src%:	%TCP.dport%}"))
AckNr=AckNr+len(GEThttp[0].load)
SeqNr=a[0].seq+1

#	Print	the	GET	request
#	(Sanity	check:	size	of	data	should	be	greater	than	1.)
if	len(GEThttp[0].load)>1:	print	GEThttp[0].load

#	Generate	custom	http	file	content.
html1="HTTP/1.1	200	OK\x0d\x0aDate:	Wed,	29	Sep	2010	20:19:05	GMT\x0d\x0aServer:	Testserver\x0d\x0aConnection:	Keep-Alive\x0d\x0aContent-Type:	text/html;	charset=UTF-8\x0d\x0aContent-Length:	291\x0d\x0a\x0d\x0a<!DOCTYPE	HTML	PUBLIC	\"-//W3C//DTD	HTML	4.0//EN\"><html><head><title>Testserver</title></head><body	bgcolor=\"black\"	text=\"white\"	link=\"blue\"	vlink=\"purple\"	alink=\"red\"><p>-Welcome	to	test	server-------------------------------</p></body></html>"

#	Generate	TCP	data
data1=TCP(sport=80,	dport=ValueOfPort,	flags="PA",	seq=SeqNr,	ack=AckNr,	options=[('MSS',	1460)])

#	Construct	whole	network	packet,	send	it	and	fetch	the	returning	ack.
ackdata1=sr1(ip/data1/html1)
#	Store	new	sequence	number.
SeqNr=ackdata1.ack

#	Generate	RST-ACK	packet
Bye=TCP(sport=80,	dport=ValueOfPort,	flags="FA",	seq=SeqNr,	ack=AckNr,	options=[('MSS',	1460)])

send(ip/Bye)

#	The	End

----8<-------------------------------------	
	
Have fun & happy experiments.
—

Written by akaljed

December 12, 2010 at 6:05 pm

Posted in Deep Packet Inspection, Linux, Networking, Scapy, Tips & tricks, Uncategorized

Tagged with Deep Packet Inspection, Networking, Scapy

3 Responses

Subscribe to comments with RSS.

Newsletter Issue #576…

I found your entry interesting thus I’ve added a Trackback to it on my weblog :)…

The Tech Night Owl Newsletter — Cutting-Edge Tech Commentary

December 13, 2010 at 11:06 am

Reply
some missing here
after client send ack dan psh-ack with GET
the server should return ack then follow by response from server…

d

Advertisements

https://akaljed.wordpress.com/category/deep-packet-inspection/
https://akaljed.wordpress.com/category/linux/
https://akaljed.wordpress.com/category/networking/
https://akaljed.wordpress.com/category/scapy/
https://akaljed.wordpress.com/category/tips-tricks/
https://akaljed.wordpress.com/category/uncategorized/
https://akaljed.wordpress.com/tag/deep-packet-inspection/
https://akaljed.wordpress.com/tag/networking/
https://akaljed.wordpress.com/tag/scapy/
https://akaljed.wordpress.com/2010/12/12/scapy-as-webserver/feed/
http://www.technightowl.com/newsletter/2010/12/newsletter-issue-576/
https://akaljed.wordpress.com/2010/12/12/scapy-as-webserver/?replytocom=9#respond
http://ali.com/

March 4, 2013 at 10:49 am

Reply
Scapy is much too slow to be used in real context. Slow enough that the client might sometimes retransmit packets which will break the fixed
deterministic communication. So, only interesting for learning, experimenting and testing crazy ideas.

akaljed

April 1, 2013 at 8:07 pm

Create a free website or blog at WordPress.com.

https://akaljed.wordpress.com/2010/12/12/scapy-as-webserver/?replytocom=17#respond
https://akaljed.wordpress.com/
https://wordpress.com/?ref=footer_website

